1 |
48 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpNormalize.sv
|
9 |
|
|
// - floating point normalization unit
|
10 |
|
|
// - eight cycle latency
|
11 |
|
|
// - parameterized width
|
12 |
|
|
// - IEEE 754 representation
|
13 |
|
|
//
|
14 |
|
|
//
|
15 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
16 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
17 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
18 |
|
|
// (at your option) any later version.
|
19 |
|
|
//
|
20 |
|
|
// This source file is distributed in the hope that it will be useful,
|
21 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
22 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
23 |
|
|
// GNU General Public License for more details.
|
24 |
|
|
//
|
25 |
|
|
// You should have received a copy of the GNU General Public License
|
26 |
|
|
// along with this program. If not, see .
|
27 |
|
|
//
|
28 |
|
|
// This unit takes a floating point number in an intermediate
|
29 |
|
|
// format and normalizes it. No normalization occurs
|
30 |
|
|
// for NaN's or infinities. The unit has a two cycle latency.
|
31 |
|
|
//
|
32 |
|
|
// The mantissa is assumed to start with two whole bits on
|
33 |
|
|
// the left. The remaining bits are fractional.
|
34 |
|
|
//
|
35 |
|
|
// The width of the incoming format is reduced via a generation
|
36 |
|
|
// of sticky bit in place of the low order fractional bits.
|
37 |
|
|
//
|
38 |
|
|
// On an underflowed input, the incoming exponent is assumed
|
39 |
|
|
// to be negative. A right shift is needed.
|
40 |
|
|
// ============================================================================
|
41 |
|
|
|
42 |
|
|
import fp::*;
|
43 |
|
|
|
44 |
|
|
module fpNormalize(clk, ce, i, o, under_i, under_o, inexact_o);
|
45 |
|
|
input clk;
|
46 |
|
|
input ce;
|
47 |
|
|
input [EX:0] i; // expanded format input
|
48 |
|
|
output [MSB+3:0] o; // normalized output + guard, sticky and round bits, + 1 whole digit
|
49 |
|
|
input under_i;
|
50 |
|
|
output under_o;
|
51 |
|
|
output inexact_o;
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
// ----------------------------------------------------------------------------
|
55 |
|
|
// No Clock required
|
56 |
|
|
// ----------------------------------------------------------------------------
|
57 |
|
|
reg [EMSB:0] xo0;
|
58 |
|
|
reg so0;
|
59 |
|
|
|
60 |
|
|
always @*
|
61 |
|
|
xo0 <= i[EX-1:FX+1];
|
62 |
|
|
always @*
|
63 |
|
|
so0 <= i[EX]; // sign doesn't change
|
64 |
|
|
|
65 |
|
|
// ----------------------------------------------------------------------------
|
66 |
|
|
// Clock #1
|
67 |
|
|
// - Capture exponent information
|
68 |
|
|
// ----------------------------------------------------------------------------
|
69 |
|
|
reg xInf1a, xInf1b, xInf1c;
|
70 |
|
|
wire [FX:0] i1;
|
71 |
|
|
delay1 #(FX+1) u11 (.clk(clk), .ce(ce), .i(i), .o(i1));
|
72 |
|
|
|
73 |
|
|
always @(posedge clk)
|
74 |
|
|
if (ce) xInf1a <= &xo0 & !under_i;
|
75 |
|
|
always @(posedge clk)
|
76 |
|
|
if (ce) xInf1b <= &xo0[EMSB:1] & !under_i;
|
77 |
|
|
always @(posedge clk)
|
78 |
|
|
if (ce) xInf1c = &xo0;
|
79 |
|
|
|
80 |
|
|
// ----------------------------------------------------------------------------
|
81 |
|
|
// Clock #2
|
82 |
|
|
// - determine exponent increment
|
83 |
|
|
// Since the there are *three* whole digits in the incoming format
|
84 |
|
|
// the number of whole digits needs to be reduced. If the MSB is
|
85 |
|
|
// set, then increment the exponent and no shift is needed.
|
86 |
|
|
// ----------------------------------------------------------------------------
|
87 |
|
|
wire xInf2c, xInf2b;
|
88 |
|
|
wire [EMSB:0] xo2;
|
89 |
|
|
reg incExpByOne2, incExpByTwo2;
|
90 |
|
|
delay1 u21 (.clk(clk), .ce(ce), .i(xInf1c), .o(xInf2c));
|
91 |
|
|
delay1 u22 (.clk(clk), .ce(ce), .i(xInf1b), .o(xInf2b));
|
92 |
|
|
delay2 #(EMSB+1) u23 (.clk(clk), .ce(ce), .i(xo0), .o(xo2));
|
93 |
|
|
delay2 u24 (.clk(clk), .ce(ce), .i(under_i), .o(under2));
|
94 |
|
|
|
95 |
|
|
always @(posedge clk)
|
96 |
|
|
if (ce) incExpByTwo2 <= !xInf1b & i1[FX];
|
97 |
|
|
always @(posedge clk)
|
98 |
|
|
if (ce) incExpByOne2 <= !xInf1a & i1[FX-1];
|
99 |
|
|
|
100 |
|
|
// ----------------------------------------------------------------------------
|
101 |
|
|
// Clock #3
|
102 |
|
|
// - increment exponent
|
103 |
|
|
// - detect a zero mantissa
|
104 |
|
|
// ----------------------------------------------------------------------------
|
105 |
|
|
|
106 |
|
|
wire incExpByTwo3;
|
107 |
|
|
wire incExpByOne3;
|
108 |
|
|
wire [FX:0] i3;
|
109 |
|
|
reg [EMSB:0] xo3;
|
110 |
|
|
reg zeroMan3;
|
111 |
|
|
delay1 u31 (.clk(clk), .ce(ce), .i(incExpByTwo2), .o(incExpByTwo3));
|
112 |
|
|
delay1 u32 (.clk(clk), .ce(ce), .i(incExpByOne2), .o(incExpByOne3));
|
113 |
|
|
delay3 #(FX+1) u33 (.clk(clk), .ce(ce), .i(i[FX:0]), .o(i3));
|
114 |
|
|
wire [EMSB+1:0] xv3a = xo2 + {incExpByTwo2,1'b0};
|
115 |
|
|
wire [EMSB+1:0] xv3b = xo2 + incExpByOne2;
|
116 |
|
|
|
117 |
|
|
always @(posedge clk)
|
118 |
|
|
if (ce) xo3 <= xo2 + (incExpByTwo2 ? 2'd2 : incExpByOne2 ? 2'd1 : 2'd0);
|
119 |
|
|
|
120 |
|
|
always @(posedge clk)
|
121 |
|
|
if(ce) zeroMan3 <= ((xv3b[EMSB+1]|| &xv3b[EMSB:0])||(xv3a[EMSB+1]| &xv3a[EMSB:0]))
|
122 |
|
|
&& !under2 && !xInf2c;
|
123 |
|
|
|
124 |
|
|
// ----------------------------------------------------------------------------
|
125 |
|
|
// Clock #4
|
126 |
|
|
// - Shift mantissa left
|
127 |
|
|
// - If infinity is reached then set the mantissa to zero
|
128 |
|
|
// shift mantissa left to reduce to a single whole digit
|
129 |
|
|
// - create sticky bit
|
130 |
|
|
// ----------------------------------------------------------------------------
|
131 |
|
|
|
132 |
|
|
reg [FMSB+4:0] mo4;
|
133 |
|
|
reg inexact4;
|
134 |
|
|
|
135 |
|
|
always @(posedge clk)
|
136 |
|
|
if(ce)
|
137 |
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
138 |
|
|
3'b1??: mo4 <= 1'd0;
|
139 |
|
|
3'b01?: mo4 <= {i3[FX:FMSB+1],|i3[FMSB:0]};
|
140 |
|
|
3'b001: mo4 <= {i3[FX-1:FMSB],|i3[FMSB-1:0]};
|
141 |
|
|
default: mo4 <= {i3[FX-2:FMSB-1],|i3[FMSB-2:0]};
|
142 |
|
|
endcase
|
143 |
|
|
|
144 |
|
|
always @(posedge clk)
|
145 |
|
|
if(ce)
|
146 |
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
147 |
|
|
3'b1??: inexact4 <= 1'd0;
|
148 |
|
|
3'b01?: inexact4 <= |i3[FMSB:0];
|
149 |
|
|
3'b001: inexact4 <= |i3[FMSB-1:0];
|
150 |
|
|
default: inexact4 <= |i3[FMSB-2:0];
|
151 |
|
|
endcase
|
152 |
|
|
|
153 |
|
|
// ----------------------------------------------------------------------------
|
154 |
|
|
// Clock edge #5
|
155 |
|
|
// - count leading zeros
|
156 |
|
|
// ----------------------------------------------------------------------------
|
157 |
|
|
wire [7:0] leadingZeros5;
|
158 |
|
|
wire [EMSB:0] xo5;
|
159 |
|
|
wire xInf5;
|
160 |
|
|
delay2 #(EMSB+1) u51 (.clk(clk), .ce(ce), .i(xo3), .o(xo5));
|
161 |
|
|
delay3 #(1) u52 (.clk(clk), .ce(ce), .i(xInf2c), .o(xInf5) );
|
162 |
|
|
|
163 |
|
|
generate
|
164 |
|
|
begin
|
165 |
|
|
if (FPWID <= 32) begin
|
166 |
|
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,5'b0}), .o(leadingZeros5) );
|
167 |
|
|
assign leadingZeros5[7:6] = 2'b00;
|
168 |
|
|
end
|
169 |
|
|
else if (FPWID<=64) begin
|
170 |
|
|
assign leadingZeros5[7] = 1'b0;
|
171 |
|
|
cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo4,8'h0}), .o(leadingZeros5) );
|
172 |
|
|
end
|
173 |
|
|
else if (FPWID<=80) begin
|
174 |
|
|
assign leadingZeros5[7] = 1'b0;
|
175 |
|
|
cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
176 |
|
|
end
|
177 |
|
|
else if (FPWID<=84) begin
|
178 |
|
|
assign leadingZeros5[7] = 1'b0;
|
179 |
|
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,24'b0}), .o(leadingZeros5) );
|
180 |
|
|
end
|
181 |
|
|
else if (FPWID<=96) begin
|
182 |
|
|
assign leadingZeros5[7] = 1'b0;
|
183 |
|
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
184 |
|
|
end
|
185 |
|
|
else if (FPWID<=128)
|
186 |
|
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );
|
187 |
|
|
end
|
188 |
|
|
endgenerate
|
189 |
|
|
|
190 |
|
|
|
191 |
|
|
// ----------------------------------------------------------------------------
|
192 |
|
|
// Clock edge #6
|
193 |
|
|
// - Compute how much we want to decrement exponent by
|
194 |
|
|
// - compute amount to shift left and right
|
195 |
|
|
// - at infinity the exponent can't be incremented, so we can't shift right
|
196 |
|
|
// otherwise it was an underflow situation so the exponent was negative
|
197 |
|
|
// shift amount needs to be negated for shift register
|
198 |
|
|
// If the exponent underflowed, then the shift direction must be to the
|
199 |
|
|
// right regardless of mantissa bits; the number is denormalized.
|
200 |
|
|
// Otherwise the shift direction must be to the left.
|
201 |
|
|
// ----------------------------------------------------------------------------
|
202 |
|
|
reg [7:0] lshiftAmt6;
|
203 |
|
|
reg [7:0] rshiftAmt6;
|
204 |
|
|
wire rightOrLeft6; // 0=left,1=right
|
205 |
|
|
wire xInf6;
|
206 |
|
|
wire [EMSB:0] xo6;
|
207 |
|
|
wire [FMSB+4:0] mo6;
|
208 |
|
|
wire zeroMan6;
|
209 |
|
|
vtdl #(1) u61 (.clk(clk), .ce(ce), .a(4'd5), .d(under_i), .q(rightOrLeft6) );
|
210 |
|
|
delay1 #(EMSB+1) u62 (.clk(clk), .ce(ce), .i(xo5), .o(xo6));
|
211 |
|
|
delay2 #(FMSB+5) u63 (.clk(clk), .ce(ce), .i(mo4), .o(mo6) );
|
212 |
|
|
delay1 #(1) u64 (.clk(clk), .ce(ce), .i(xInf5), .o(xInf6) );
|
213 |
|
|
delay3 u65 (.clk(clk), .ce(ce), .i(zeroMan3), .o(zeroMan6));
|
214 |
|
|
|
215 |
|
|
always @(posedge clk)
|
216 |
|
|
if (ce) lshiftAmt6 <= leadingZeros5 > xo5 ? xo5 : leadingZeros5;
|
217 |
|
|
|
218 |
|
|
always @(posedge clk)
|
219 |
|
|
if (ce) rshiftAmt6 <= xInf5 ? 1'd0 : $signed(xo5) > 1'd0 ? 1'd0 : ~xo5+2'd1; // xo2 is negative !
|
220 |
|
|
|
221 |
|
|
// ----------------------------------------------------------------------------
|
222 |
|
|
// Clock edge #7
|
223 |
|
|
// - fogure exponent
|
224 |
|
|
// - shift mantissa
|
225 |
|
|
// ----------------------------------------------------------------------------
|
226 |
|
|
|
227 |
|
|
reg [EMSB:0] xo7;
|
228 |
|
|
wire rightOrLeft7;
|
229 |
|
|
reg [FMSB+4:0] mo7l, mo7r;
|
230 |
|
|
delay1 u71 (.clk(clk), .ce(ce), .i(rightOrLeft6), .o(rightOrLeft7));
|
231 |
|
|
|
232 |
|
|
always @(posedge clk)
|
233 |
|
|
if (ce)
|
234 |
|
|
xo7 <= zeroMan6 ? xo6 :
|
235 |
|
|
xInf6 ? xo6 : // an infinite exponent is either a NaN or infinity; no need to change
|
236 |
|
|
rightOrLeft6 ? 1'd0 : // on a right shift, the exponent was negative, it's being made to zero
|
237 |
|
|
xo6 - lshiftAmt6; // on a left shift, the exponent can't be decremented below zero
|
238 |
|
|
|
239 |
|
|
always @(posedge clk)
|
240 |
|
|
if (ce) mo7r <= mo6 >> rshiftAmt6;
|
241 |
|
|
always @(posedge clk)
|
242 |
|
|
if (ce) mo7l <= mo6 << lshiftAmt6;
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
// ----------------------------------------------------------------------------
|
246 |
|
|
// Clock edge #8
|
247 |
|
|
// - select mantissa
|
248 |
|
|
// ----------------------------------------------------------------------------
|
249 |
|
|
|
250 |
|
|
wire so;
|
251 |
|
|
wire [EMSB:0] xo;
|
252 |
|
|
reg [FMSB+4:0] mo;
|
253 |
|
|
vtdl #(1) u81 (.clk(clk), .ce(ce), .a(4'd7), .d(so0), .q(so) );
|
254 |
|
|
delay1 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xo7), .o(xo));
|
255 |
|
|
vtdl u83 (.clk(clk), .ce(ce), .a(4'd3), .d(inexact4), .q(inexact_o));
|
256 |
|
|
delay1 u84 (.clk(clk), .ce(ce), .i(rightOrLeft7), .o(under_o));
|
257 |
|
|
|
258 |
|
|
always @(posedge clk)
|
259 |
|
|
if (ce) mo <= rightOrLeft7 ? mo7r : mo7l;
|
260 |
|
|
|
261 |
|
|
assign o = {so,xo,mo[FMSB+4:1]};
|
262 |
|
|
|
263 |
|
|
endmodule
|
264 |
|
|
|