1 |
74 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2022 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpNormalize32combo.sv
|
9 |
|
|
// - floating point normalization unit
|
10 |
|
|
// - combinational logic only
|
11 |
|
|
// - IEEE 754 representation
|
12 |
|
|
//
|
13 |
|
|
//
|
14 |
|
|
// BSD 3-Clause License
|
15 |
|
|
// Redistribution and use in source and binary forms, with or without
|
16 |
|
|
// modification, are permitted provided that the following conditions are met:
|
17 |
|
|
//
|
18 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
19 |
|
|
// list of conditions and the following disclaimer.
|
20 |
|
|
//
|
21 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
22 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
23 |
|
|
// and/or other materials provided with the distribution.
|
24 |
|
|
//
|
25 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
26 |
|
|
// contributors may be used to endorse or promote products derived from
|
27 |
|
|
// this software without specific prior written permission.
|
28 |
|
|
//
|
29 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
30 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
31 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
32 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
33 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
34 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
35 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
36 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
37 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
38 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
39 |
|
|
//
|
40 |
|
|
// This unit takes a floating point number in an intermediate
|
41 |
|
|
// format and normalizes it. No normalization occurs
|
42 |
|
|
// for NaN's or infinities. The unit has a two cycle latency.
|
43 |
|
|
//
|
44 |
|
|
// The mantissa is assumed to start with two whole bits on
|
45 |
|
|
// the left. The remaining bits are fractional.
|
46 |
|
|
//
|
47 |
|
|
// The width of the incoming format is reduced via a generation
|
48 |
|
|
// of sticky bit in place of the low order fractional bits.
|
49 |
|
|
//
|
50 |
|
|
// On an underflowed input, the incoming exponent is assumed
|
51 |
|
|
// to be negative. A right shift is needed.
|
52 |
|
|
// ============================================================================
|
53 |
|
|
|
54 |
|
|
import fp32Pkg::*;
|
55 |
|
|
|
56 |
|
|
module fpNormalize32combo(i, o, under_i, under_o, inexact_o);
|
57 |
|
|
input FP32X i; // expanded format input
|
58 |
|
|
output FP32N o; // normalized output + guard, sticky and round bits, + 1 whole digit
|
59 |
|
|
input under_i;
|
60 |
|
|
output reg under_o;
|
61 |
|
|
output reg inexact_o;
|
62 |
|
|
|
63 |
|
|
integer n;
|
64 |
|
|
// ----------------------------------------------------------------------------
|
65 |
|
|
// No Clock required
|
66 |
|
|
// ----------------------------------------------------------------------------
|
67 |
|
|
reg [fp32Pkg::EMSB+1:0] xo0;
|
68 |
|
|
reg so0;
|
69 |
|
|
|
70 |
|
|
always_comb
|
71 |
|
|
xo0 <= {under_i,i.exp};
|
72 |
|
|
always_comb
|
73 |
|
|
so0 <= i.sign; // sign doesn't change
|
74 |
|
|
|
75 |
|
|
// ----------------------------------------------------------------------------
|
76 |
|
|
// Clock #1
|
77 |
|
|
// - Capture exponent information
|
78 |
|
|
// ----------------------------------------------------------------------------
|
79 |
|
|
reg xInf1a, xInf1b, xInf1c;
|
80 |
|
|
FP32X i1;
|
81 |
|
|
|
82 |
|
|
always_comb
|
83 |
|
|
i1 <= i;
|
84 |
|
|
always_comb
|
85 |
|
|
xInf1a <= &xo0 & !under_i;
|
86 |
|
|
always_comb
|
87 |
|
|
xInf1b <= &xo0[fp32Pkg::EMSB:1] & !under_i;
|
88 |
|
|
always_comb
|
89 |
|
|
xInf1c <= &xo0[fp32Pkg::EMSB:0] & !under_i;
|
90 |
|
|
|
91 |
|
|
// ----------------------------------------------------------------------------
|
92 |
|
|
// Clock #2
|
93 |
|
|
// - determine exponent increment
|
94 |
|
|
// Since the there are *three* whole digits in the incoming format
|
95 |
|
|
// the number of whole digits needs to be reduced. If the MSB is
|
96 |
|
|
// set, then increment the exponent and no shift is needed.
|
97 |
|
|
// ----------------------------------------------------------------------------
|
98 |
|
|
reg xInf2c, xInf2b;
|
99 |
|
|
reg [fp32Pkg::EMSB:0] xo2;
|
100 |
|
|
reg incExpByOne2, incExpByTwo2;
|
101 |
|
|
reg under2;
|
102 |
|
|
always_comb
|
103 |
|
|
xInf2c <= xInf1c;
|
104 |
|
|
always_comb
|
105 |
|
|
xInf2b <= xInf1b;
|
106 |
|
|
always_comb
|
107 |
|
|
xo2 <= xo0;
|
108 |
|
|
always_comb
|
109 |
|
|
under2 <= under_i;
|
110 |
|
|
always_comb
|
111 |
|
|
incExpByTwo2 <= !xInf1b & i1[fp32Pkg::FX];
|
112 |
|
|
always_comb
|
113 |
|
|
incExpByOne2 <= !xInf1a & i1[fp32Pkg::FX-1];
|
114 |
|
|
|
115 |
|
|
// ----------------------------------------------------------------------------
|
116 |
|
|
// Clock #3
|
117 |
|
|
// - increment exponent
|
118 |
|
|
// - detect a zero mantissa
|
119 |
|
|
// ----------------------------------------------------------------------------
|
120 |
|
|
|
121 |
|
|
reg incExpByTwo3;
|
122 |
|
|
reg incExpByOne3;
|
123 |
|
|
FP32X i3;
|
124 |
|
|
reg [fp32Pkg::EMSB+1:0] xo3;
|
125 |
|
|
reg zeroMan3;
|
126 |
|
|
always_comb
|
127 |
|
|
incExpByTwo3 <= incExpByTwo2;
|
128 |
|
|
always_comb
|
129 |
|
|
incExpByOne3 <= incExpByOne2;
|
130 |
|
|
always_comb
|
131 |
|
|
i3 <= i;
|
132 |
|
|
wire [fp32Pkg::EMSB+1:0] xv3a = xo2 + {incExpByTwo2,1'b0};
|
133 |
|
|
wire [fp32Pkg::EMSB+1:0] xv3b = xo2 + incExpByOne2;
|
134 |
|
|
|
135 |
|
|
always_comb
|
136 |
|
|
xo3 <= xo2 + (incExpByTwo2 ? 2'd2 : incExpByOne2 ? 2'd1 : 2'd0);
|
137 |
|
|
|
138 |
|
|
always_comb
|
139 |
|
|
zeroMan3 <= ((xv3b[fp32Pkg::EMSB+1]|| &xv3b[fp32Pkg::EMSB:0])||(xv3a[fp32Pkg::EMSB+1]| &xv3a[fp32Pkg::EMSB:0]))
|
140 |
|
|
&& !under2 && !xInf2c;
|
141 |
|
|
|
142 |
|
|
// ----------------------------------------------------------------------------
|
143 |
|
|
// Clock #4
|
144 |
|
|
// - Shift mantissa left
|
145 |
|
|
// - If infinity is reached then set the mantissa to zero
|
146 |
|
|
// shift mantissa left to reduce to a single whole digit
|
147 |
|
|
// - create sticky bit
|
148 |
|
|
// ----------------------------------------------------------------------------
|
149 |
|
|
|
150 |
|
|
reg [fp32Pkg::FMSB+5:0] mo4;
|
151 |
|
|
reg inexact4;
|
152 |
|
|
|
153 |
|
|
always_comb
|
154 |
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
155 |
|
|
3'b1??: mo4 <= 1'd0;
|
156 |
|
|
3'b01?: mo4 <= {i3[fp32Pkg::FX:fp32Pkg::FMSB],|i3[fp32Pkg::FMSB-1:0]};
|
157 |
|
|
3'b001: mo4 <= {i3[fp32Pkg::FX-1:fp32Pkg::FMSB-1],|i3[fp32Pkg::FMSB-2:0]};
|
158 |
|
|
default: mo4 <= {i3[fp32Pkg::FX-2:fp32Pkg::FMSB-2],|i3[fp32Pkg::FMSB-3:0]};
|
159 |
|
|
endcase
|
160 |
|
|
|
161 |
|
|
always_comb
|
162 |
|
|
casez({zeroMan3,incExpByTwo3,incExpByOne3})
|
163 |
|
|
3'b1??: inexact4 <= 1'd0;
|
164 |
|
|
3'b01?: inexact4 <= |i3[fp32Pkg::FMSB+1:0];
|
165 |
|
|
3'b001: inexact4 <= |i3[fp32Pkg::FMSB:0];
|
166 |
|
|
default: inexact4 <= |i3[fp32Pkg::FMSB-1:0];
|
167 |
|
|
endcase
|
168 |
|
|
|
169 |
|
|
// ----------------------------------------------------------------------------
|
170 |
|
|
// Clock edge #5
|
171 |
|
|
// - count leading zeros
|
172 |
|
|
// ----------------------------------------------------------------------------
|
173 |
|
|
reg [7:0] leadingZeros5;
|
174 |
|
|
reg [fp32Pkg::EMSB+1:0] xo5;
|
175 |
|
|
reg xInf5;
|
176 |
|
|
always_comb
|
177 |
|
|
xo5 <= xo3;
|
178 |
|
|
always_comb
|
179 |
|
|
xInf5 <= xInf2c;
|
180 |
|
|
|
181 |
|
|
/* Lookup table based leading zero count modules give slightly better
|
182 |
|
|
performance but cases must be coded.
|
183 |
|
|
generate
|
184 |
|
|
begin
|
185 |
|
|
if (FPWID <= 32) begin
|
186 |
|
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,4'b0}), .o(leadingZeros5) );
|
187 |
|
|
assign leadingZeros5[7:6] = 2'b00;
|
188 |
|
|
end
|
189 |
|
|
else if (FPWID<=32) begin
|
190 |
|
|
assign leadingZeros5[7] = 1'b0;
|
191 |
|
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,7'h0}), .o(leadingZeros5) );
|
192 |
|
|
end
|
193 |
|
|
else if (FPWID<=80) begin
|
194 |
|
|
assign leadingZeros5[7] = 1'b0;
|
195 |
|
|
cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );
|
196 |
|
|
end
|
197 |
|
|
else if (FPWID<=84) begin
|
198 |
|
|
assign leadingZeros5[7] = 1'b0;
|
199 |
|
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,23'b0}), .o(leadingZeros5) );
|
200 |
|
|
end
|
201 |
|
|
else if (FPWID<=96) begin
|
202 |
|
|
assign leadingZeros5[7] = 1'b0;
|
203 |
|
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );
|
204 |
|
|
end
|
205 |
|
|
else if (FPWID<=128)
|
206 |
|
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );
|
207 |
|
|
end
|
208 |
|
|
endgenerate
|
209 |
|
|
*/
|
210 |
|
|
|
211 |
|
|
// Sideways add.
|
212 |
|
|
// Normally there would be only one to two leading zeros. It is tempting then
|
213 |
|
|
// to check for only one or two. But, denormalized numbers might have more
|
214 |
|
|
// leading zeros. If denormals were not supported this could be made smaller
|
215 |
|
|
// and faster.
|
216 |
|
|
`ifdef SUPPORT_DENORMALS
|
217 |
|
|
reg [7:0] lzc;
|
218 |
|
|
reg got_one;
|
219 |
|
|
always_comb
|
220 |
|
|
begin
|
221 |
|
|
got_one = 1'b0;
|
222 |
|
|
lzc = 8'h00;
|
223 |
|
|
for (n = fp32Pkg::FMSB+5; n >= 0; n = n - 1) begin
|
224 |
|
|
if (!got_one) begin
|
225 |
|
|
if (mo4[n])
|
226 |
|
|
got_one = 1'b1;
|
227 |
|
|
else
|
228 |
|
|
lzc = lzc + 1'b1;
|
229 |
|
|
end
|
230 |
|
|
end
|
231 |
|
|
end
|
232 |
|
|
always_comb
|
233 |
|
|
leadingZeros5 <= lzc;
|
234 |
|
|
`else
|
235 |
|
|
always_comb
|
236 |
|
|
casez(mo4[fp32Pkg::FMSB+5:fp32Pkg::FMSB+4])
|
237 |
|
|
2'b1?: leadingZeros5 <= 8'd0;
|
238 |
|
|
2'b01: leadingZeros5 <= 8'd1;
|
239 |
|
|
2'b00: leadingZeros5 <= 8'd2;
|
240 |
|
|
endcase
|
241 |
|
|
`endif
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
// ----------------------------------------------------------------------------
|
245 |
|
|
// Clock edge #6
|
246 |
|
|
// - Compute how much we want to decrement exponent by
|
247 |
|
|
// - compute amount to shift left and right
|
248 |
|
|
// - at infinity the exponent can't be incremented, so we can't shift right
|
249 |
|
|
// otherwise it was an underflow situation so the exponent was negative
|
250 |
|
|
// shift amount needs to be negated for shift register
|
251 |
|
|
// If the exponent underflowed, then the shift direction must be to the
|
252 |
|
|
// right regardless of mantissa bits; the number is denormalized.
|
253 |
|
|
// Otherwise the shift direction must be to the left.
|
254 |
|
|
// ----------------------------------------------------------------------------
|
255 |
|
|
reg [7:0] lshiftAmt6;
|
256 |
|
|
reg [7:0] rshiftAmt6;
|
257 |
|
|
reg rightOrLeft6; // 0=left,1=right
|
258 |
|
|
reg xInf6;
|
259 |
|
|
reg [fp32Pkg::EMSB+1:0] xo6;
|
260 |
|
|
reg [fp32Pkg::FMSB+5:0] mo6;
|
261 |
|
|
reg zeroMan6;
|
262 |
|
|
always_comb
|
263 |
|
|
rightOrLeft6 <= under_i;
|
264 |
|
|
always_comb
|
265 |
|
|
xo6 <= xo5;
|
266 |
|
|
always_comb
|
267 |
|
|
mo6 <= mo4;
|
268 |
|
|
always_comb
|
269 |
|
|
xInf6 <= xInf5;
|
270 |
|
|
always_comb
|
271 |
|
|
zeroMan6 <= zeroMan3;
|
272 |
|
|
|
273 |
|
|
always_comb
|
274 |
|
|
lshiftAmt6 <= leadingZeros5 > xo5 ? xo5 : leadingZeros5;
|
275 |
|
|
|
276 |
|
|
always_comb
|
277 |
|
|
rshiftAmt6 <= xInf5 ? 1'd0 : $signed(xo5) > 1'd0 ? 1'd0 : ~xo5+2'd1; // xo2 is negative !
|
278 |
|
|
|
279 |
|
|
// ----------------------------------------------------------------------------
|
280 |
|
|
// Clock edge #7
|
281 |
|
|
// - figure exponent
|
282 |
|
|
// - shift mantissa
|
283 |
|
|
// - figure sticky bit
|
284 |
|
|
// ----------------------------------------------------------------------------
|
285 |
|
|
|
286 |
|
|
reg [fp32Pkg::EMSB:0] xo7;
|
287 |
|
|
reg rightOrLeft7;
|
288 |
|
|
reg [fp32Pkg::FMSB+5:0] mo7l, mo7r;
|
289 |
|
|
reg St6,St7;
|
290 |
|
|
always_comb
|
291 |
|
|
rightOrLeft7 <= rightOrLeft6;
|
292 |
|
|
|
293 |
|
|
always_comb
|
294 |
|
|
xo7 <= zeroMan6 ? xo6 :
|
295 |
|
|
xInf6 ? xo6 : // an infinite exponent is either a NaN or infinity; no need to change
|
296 |
|
|
rightOrLeft6 ? 1'd0 : // on a right shift, the exponent was negative, it's being made to zero
|
297 |
|
|
xo6 - lshiftAmt6; // on a left shift, the exponent can't be decremented below zero
|
298 |
|
|
|
299 |
|
|
always_comb
|
300 |
|
|
mo7r <= mo6 >> rshiftAmt6;
|
301 |
|
|
always_comb
|
302 |
|
|
mo7l <= mo6 << lshiftAmt6;
|
303 |
|
|
|
304 |
|
|
// The sticky bit is set if the bits shifted out on a right shift are set.
|
305 |
|
|
always_comb
|
306 |
|
|
begin
|
307 |
|
|
St6 = 1'b0;
|
308 |
|
|
for (n = 0; n < FMSB+5; n = n + 1)
|
309 |
|
|
if (n <= rshiftAmt6 + 1) St6 = St6|mo6[n];
|
310 |
|
|
end
|
311 |
|
|
always_comb
|
312 |
|
|
St7 <= St6;
|
313 |
|
|
|
314 |
|
|
// ----------------------------------------------------------------------------
|
315 |
|
|
// Clock edge #8
|
316 |
|
|
// - select mantissa
|
317 |
|
|
// ----------------------------------------------------------------------------
|
318 |
|
|
|
319 |
|
|
reg so;
|
320 |
|
|
reg [fp32Pkg::EMSB:0] xo;
|
321 |
|
|
reg [fp32Pkg::FMSB+5:0] mo;
|
322 |
|
|
always_comb
|
323 |
|
|
so <= so0;
|
324 |
|
|
always_comb
|
325 |
|
|
xo <= xo7;
|
326 |
|
|
always_comb
|
327 |
|
|
inexact_o <= inexact4;
|
328 |
|
|
always_comb
|
329 |
|
|
under_o <= rightOrLeft7;
|
330 |
|
|
|
331 |
|
|
always_comb
|
332 |
|
|
mo <= rightOrLeft7 ? mo7r|{St7,2'b0} : mo7l;
|
333 |
|
|
|
334 |
|
|
assign o.sign = so;
|
335 |
|
|
assign o.exp = xo;
|
336 |
|
|
assign o.sig = mo[FMSB+5:2];
|
337 |
|
|
|
338 |
|
|
endmodule
|
339 |
|
|
|