| 1 |
29 |
robfinch |
// ============================================================================
|
| 2 |
|
|
// __
|
| 3 |
|
|
// \\__/ o\ (C) 2006-2019 Robert Finch, Waterloo
|
| 4 |
|
|
// \ __ / All rights reserved.
|
| 5 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 6 |
|
|
// ||
|
| 7 |
|
|
//
|
| 8 |
|
|
// fpRound.v
|
| 9 |
|
|
// - floating point rounding unit
|
| 10 |
|
|
// - parameterized FPWIDth
|
| 11 |
|
|
// - IEEE 754 representation
|
| 12 |
|
|
//
|
| 13 |
|
|
//
|
| 14 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
| 15 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 16 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 17 |
|
|
// (at your option) any later version.
|
| 18 |
|
|
//
|
| 19 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 20 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 21 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 22 |
|
|
// GNU General Public License for more details.
|
| 23 |
|
|
//
|
| 24 |
|
|
// You should have received a copy of the GNU General Public License
|
| 25 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 26 |
|
|
//
|
| 27 |
|
|
// ============================================================================
|
| 28 |
|
|
|
| 29 |
|
|
`include "fpConfig.sv"
|
| 30 |
|
|
|
| 31 |
|
|
module fpRound(clk, ce, rm, i, o);
|
| 32 |
|
|
parameter FPWID = 128;
|
| 33 |
|
|
`include "fpSize.sv"
|
| 34 |
|
|
input clk;
|
| 35 |
|
|
input ce;
|
| 36 |
|
|
input [2:0] rm; // rounding mode
|
| 37 |
|
|
input [MSB+3:0] i; // intermediate format input
|
| 38 |
|
|
output [MSB:0] o; // rounded output
|
| 39 |
|
|
|
| 40 |
|
|
//------------------------------------------------------------
|
| 41 |
|
|
// variables
|
| 42 |
|
|
wire so;
|
| 43 |
|
|
wire [EMSB:0] xo;
|
| 44 |
|
|
reg [FMSB:0] mo;
|
| 45 |
|
|
reg [EMSB:0] xo1;
|
| 46 |
|
|
reg [FMSB+3:0] mo1;
|
| 47 |
|
|
wire xInf = &i[MSB+2:FMSB+4];
|
| 48 |
|
|
wire so0 = i[MSB+3];
|
| 49 |
|
|
assign o = {so,xo,mo};
|
| 50 |
|
|
|
| 51 |
|
|
wire g = i[2]; // guard bit: always the same bit for all operations
|
| 52 |
|
|
wire r = i[1]; // rounding bit
|
| 53 |
|
|
wire s = i[0]; // sticky bit
|
| 54 |
|
|
reg rnd;
|
| 55 |
|
|
|
| 56 |
|
|
//------------------------------------------------------------
|
| 57 |
|
|
// Clock #1
|
| 58 |
|
|
// - determine round amount (add 1 or 0)
|
| 59 |
|
|
//------------------------------------------------------------
|
| 60 |
|
|
|
| 61 |
|
|
`ifdef MIN_LATENCY
|
| 62 |
|
|
always @*
|
| 63 |
|
|
`else
|
| 64 |
|
|
always @(posedge clk)
|
| 65 |
|
|
`endif
|
| 66 |
|
|
if (ce) xo1 <= i[MSB+2:FMSB+4];
|
| 67 |
|
|
`ifdef MIN_LATENCY
|
| 68 |
|
|
always @*
|
| 69 |
|
|
`else
|
| 70 |
|
|
always @(posedge clk)
|
| 71 |
|
|
`endif
|
| 72 |
|
|
if (ce) mo1 <= i[FMSB+3:0];
|
| 73 |
|
|
|
| 74 |
|
|
// Compute the round bit
|
| 75 |
|
|
// Infinities and NaNs are not rounded!
|
| 76 |
|
|
`ifdef MIN_LATENCY
|
| 77 |
|
|
always @*
|
| 78 |
|
|
`else
|
| 79 |
|
|
always @(posedge clk)
|
| 80 |
|
|
`endif
|
| 81 |
|
|
if (ce)
|
| 82 |
|
|
casez ({xInf,rm})
|
| 83 |
|
|
4'b0000: rnd <= (g & r) | (r & s); // round to nearest even
|
| 84 |
|
|
4'b0001: rnd <= 1'd0; // round to zero (truncate)
|
| 85 |
|
|
4'b0010: rnd <= (r | s) & !so0; // round towards +infinity
|
| 86 |
|
|
4'b0011: rnd <= (r | s) & so0; // round towards -infinity
|
| 87 |
|
|
4'b0100: rnd <= (r | s); // round to nearest away from zero
|
| 88 |
|
|
4'b1???: rnd <= 1'd0; // no rounding if exponent indicates infinite or NaN
|
| 89 |
|
|
default: rnd <= 0;
|
| 90 |
|
|
endcase
|
| 91 |
|
|
|
| 92 |
|
|
//------------------------------------------------------------
|
| 93 |
|
|
// Clock #2
|
| 94 |
|
|
// round the number, check for carry
|
| 95 |
|
|
// note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0)
|
| 96 |
|
|
// note: exponent increments if there is a carry (can only increment to infinity)
|
| 97 |
|
|
//------------------------------------------------------------
|
| 98 |
|
|
|
| 99 |
|
|
reg [MSB:0] rounded2;
|
| 100 |
|
|
reg carry2;
|
| 101 |
|
|
reg rnd2;
|
| 102 |
|
|
reg dn2;
|
| 103 |
|
|
wire [EMSB:0] xo2;
|
| 104 |
|
|
wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:2]} + rnd;
|
| 105 |
|
|
`ifdef MIN_LATENCY
|
| 106 |
|
|
always @*
|
| 107 |
|
|
`else
|
| 108 |
|
|
always @(posedge clk)
|
| 109 |
|
|
`endif
|
| 110 |
|
|
if (ce) rounded2 <= rounded1;
|
| 111 |
|
|
`ifdef MIN_LATENCY
|
| 112 |
|
|
always @*
|
| 113 |
|
|
`else
|
| 114 |
|
|
always @(posedge clk)
|
| 115 |
|
|
`endif
|
| 116 |
|
|
if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1];
|
| 117 |
|
|
`ifdef MIN_LATENCY
|
| 118 |
|
|
always @*
|
| 119 |
|
|
`else
|
| 120 |
|
|
always @(posedge clk)
|
| 121 |
|
|
`endif
|
| 122 |
|
|
if (ce) rnd2 <= rnd;
|
| 123 |
|
|
`ifdef MIN_LATENCY
|
| 124 |
|
|
always @*
|
| 125 |
|
|
`else
|
| 126 |
|
|
always @(posedge clk)
|
| 127 |
|
|
`endif
|
| 128 |
|
|
if (ce) dn2 <= !(|xo1);
|
| 129 |
|
|
assign xo2 = rounded2[MSB:FMSB+2];
|
| 130 |
|
|
|
| 131 |
|
|
//------------------------------------------------------------
|
| 132 |
|
|
// Clock #3
|
| 133 |
|
|
// - shift mantissa if required.
|
| 134 |
|
|
//------------------------------------------------------------
|
| 135 |
|
|
`ifdef MIN_LATENCY
|
| 136 |
|
|
assign so = i[MSB+3];
|
| 137 |
|
|
assign xo = xo2;
|
| 138 |
|
|
`else
|
| 139 |
|
|
delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so));
|
| 140 |
|
|
delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo));
|
| 141 |
|
|
`endif
|
| 142 |
|
|
|
| 143 |
|
|
`ifdef MIN_LATENCY
|
| 144 |
|
|
always @*
|
| 145 |
|
|
`else
|
| 146 |
|
|
always @(posedge clk)
|
| 147 |
|
|
`endif
|
| 148 |
|
|
casez({rnd2,&xo2,carry2,dn2})
|
| 149 |
|
|
4'b0??0: mo <= mo1[FMSB+2:2]; // not rounding, not denormalized, => hide MSB
|
| 150 |
|
|
4'b0??1: mo <= mo1[FMSB+3:3]; // not rounding, denormalized
|
| 151 |
|
|
4'b1000: mo <= rounded2[FMSB :0]; // exponent didn't change, number was normalized, => hide MSB,
|
| 152 |
|
|
4'b1001: mo <= rounded2[FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB
|
| 153 |
|
|
4'b1010: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB
|
| 154 |
|
|
4'b1011: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
|
| 155 |
|
|
4'b11??: mo <= 1'd0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
|
| 156 |
|
|
endcase
|
| 157 |
|
|
|
| 158 |
|
|
endmodule
|
| 159 |
|
|
|
| 160 |
|
|
|
| 161 |
|
|
// Round and register the output
|
| 162 |
|
|
/*
|
| 163 |
|
|
module fpRoundReg(clk, ce, rm, i, o);
|
| 164 |
|
|
parameter FPWID = 128;
|
| 165 |
|
|
`include "fpSize.sv"
|
| 166 |
|
|
|
| 167 |
|
|
input clk;
|
| 168 |
|
|
input ce;
|
| 169 |
|
|
input [2:0] rm; // rounding mode
|
| 170 |
|
|
input [MSB+3:0] i; // expanded format input
|
| 171 |
|
|
output reg [FPWID-1:0] o; // rounded output
|
| 172 |
|
|
|
| 173 |
|
|
wire [FPWID-1:0] o1;
|
| 174 |
|
|
fpRound #(FPWID) u1 (.rm(rm), .i(i), .o(o1) );
|
| 175 |
|
|
|
| 176 |
|
|
always @(posedge clk)
|
| 177 |
|
|
if (ce)
|
| 178 |
|
|
o <= o1;
|
| 179 |
|
|
|
| 180 |
|
|
endmodule
|
| 181 |
|
|
*/
|