1 |
74 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2022 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpRound32combo.sv
|
9 |
|
|
// - floating point rounding unit
|
10 |
|
|
// - IEEE 754 representation
|
11 |
|
|
// - combinational logic only
|
12 |
|
|
//
|
13 |
|
|
//
|
14 |
|
|
// BSD 3-Clause License
|
15 |
|
|
// Redistribution and use in source and binary forms, with or without
|
16 |
|
|
// modification, are permitted provided that the following conditions are met:
|
17 |
|
|
//
|
18 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
19 |
|
|
// list of conditions and the following disclaimer.
|
20 |
|
|
//
|
21 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
22 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
23 |
|
|
// and/or other materials provided with the distribution.
|
24 |
|
|
//
|
25 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
26 |
|
|
// contributors may be used to endorse or promote products derived from
|
27 |
|
|
// this software without specific prior written permission.
|
28 |
|
|
//
|
29 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
30 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
31 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
32 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
33 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
34 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
35 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
36 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
37 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
38 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
39 |
|
|
//
|
40 |
|
|
// ============================================================================
|
41 |
|
|
|
42 |
|
|
import fp32Pkg::*;
|
43 |
|
|
|
44 |
|
|
module fpRound32combo(rm, i, o);
|
45 |
|
|
input [2:0] rm; // rounding mode
|
46 |
|
|
input FP32N i; // intermediate format input
|
47 |
|
|
output FP32 o; // rounded output
|
48 |
|
|
|
49 |
|
|
//------------------------------------------------------------
|
50 |
|
|
// variables
|
51 |
|
|
wire so;
|
52 |
|
|
wire [fp32Pkg::EMSB:0] xo;
|
53 |
|
|
reg [fp32Pkg::FMSB:0] mo;
|
54 |
|
|
reg [fp32Pkg::EMSB:0] xo1;
|
55 |
|
|
reg [fp32Pkg::FMSB+3:0] mo1;
|
56 |
|
|
wire xInf = &i[fp32Pkg::MSB+2:fp32Pkg::FMSB+4];
|
57 |
|
|
wire so0 = i[fp32Pkg::MSB+3];
|
58 |
|
|
|
59 |
|
|
assign o.sign = so;
|
60 |
|
|
assign o.exp = xo;
|
61 |
|
|
assign o.sig = mo;
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
wire l = i[3];
|
65 |
|
|
wire g = i[2]; // guard bit: always the same bit for all operations
|
66 |
|
|
wire r = i[1]; // rounding bit
|
67 |
|
|
wire s = i[0]; // sticky bit
|
68 |
|
|
reg rnd;
|
69 |
|
|
|
70 |
|
|
//------------------------------------------------------------
|
71 |
|
|
// Clock #1
|
72 |
|
|
// - determine round amount (add 1 or 0)
|
73 |
|
|
//------------------------------------------------------------
|
74 |
|
|
|
75 |
|
|
always_comb
|
76 |
|
|
xo1 <= i[fp32Pkg::MSB+2:fp32Pkg::FMSB+4];
|
77 |
|
|
always_comb
|
78 |
|
|
mo1 <= i[fp32Pkg::FMSB+3:0];
|
79 |
|
|
|
80 |
|
|
wire tie = g & ~(r|s);
|
81 |
|
|
// Compute the round bit
|
82 |
|
|
// Infinities and NaNs are not rounded!
|
83 |
|
|
always_comb
|
84 |
|
|
casez ({xInf,rm})
|
85 |
|
|
4'b0000: rnd <= (g & (r|s)) | (l & tie); // round to nearest ties to even
|
86 |
|
|
4'b0001: rnd <= 1'd0; // round to zero (truncate)
|
87 |
|
|
4'b0010: rnd <= g & !so0; // round towards +infinity
|
88 |
|
|
4'b0011: rnd <= g & so0; // round towards -infinity
|
89 |
|
|
4'b0100: rnd <= (g & (r|s)) | tie; // round to nearest ties away from zero
|
90 |
|
|
4'b1???: rnd <= 1'd0; // no rounding if exponent indicates infinite or NaN
|
91 |
|
|
default: rnd <= 0;
|
92 |
|
|
endcase
|
93 |
|
|
|
94 |
|
|
//------------------------------------------------------------
|
95 |
|
|
// Clock #2
|
96 |
|
|
// round the number, check for carry
|
97 |
|
|
// note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0)
|
98 |
|
|
// note: exponent increments if there is a carry (can only increment to infinity)
|
99 |
|
|
//------------------------------------------------------------
|
100 |
|
|
|
101 |
|
|
reg [fp32Pkg::MSB:0] rounded2;
|
102 |
|
|
reg carry2;
|
103 |
|
|
reg rnd2;
|
104 |
|
|
reg dn2;
|
105 |
|
|
wire [fp32Pkg::EMSB:0] xo2;
|
106 |
|
|
wire [fp32Pkg::MSB:0] rounded1 = {xo1,mo1[fp32Pkg::FMSB+3:3],1'b0} + {rnd,1'b0}; // Add onto LSB, GRS=0
|
107 |
|
|
always_comb
|
108 |
|
|
rounded2 <= rounded1;
|
109 |
|
|
always_comb
|
110 |
|
|
carry2 <= mo1[fp32Pkg::FMSB+3] & !rounded1[fp32Pkg::FMSB+1];
|
111 |
|
|
always_comb
|
112 |
|
|
rnd2 <= rnd;
|
113 |
|
|
always_comb
|
114 |
|
|
dn2 <= !(|xo1);
|
115 |
|
|
assign xo2 = rounded2[fp32Pkg::MSB:fp32Pkg::FMSB+2];
|
116 |
|
|
|
117 |
|
|
//------------------------------------------------------------
|
118 |
|
|
// Clock #3
|
119 |
|
|
// - shift mantissa if required.
|
120 |
|
|
//------------------------------------------------------------
|
121 |
|
|
assign so = i[fp32Pkg::MSB+3];
|
122 |
|
|
assign xo = xo2;
|
123 |
|
|
|
124 |
|
|
always_comb
|
125 |
|
|
casez({rnd2,&xo2,carry2,dn2})
|
126 |
|
|
4'b0??0: mo <= mo1[fp32Pkg::FMSB+2:2]; // not rounding, not denormalized, => hide MSB
|
127 |
|
|
4'b0??1: mo <= mo1[fp32Pkg::FMSB+3:3]; // not rounding, denormalized
|
128 |
|
|
4'b1000: mo <= rounded2[fp32Pkg::FMSB :0]; // exponent didn't change, number was normalized, => hide MSB,
|
129 |
|
|
4'b1001: mo <= rounded2[fp32Pkg::FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB
|
130 |
|
|
4'b1010: mo <= rounded2[fp32Pkg::FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB
|
131 |
|
|
4'b1011: mo <= rounded2[fp32Pkg::FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
|
132 |
|
|
4'b11??: mo <= 1'd0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
|
133 |
|
|
endcase
|
134 |
|
|
|
135 |
|
|
endmodule
|