1 |
9 |
nussgipfel |
/* GECKO3COM
|
2 |
|
|
*
|
3 |
|
|
* Copyright (C) 2008 by
|
4 |
|
|
* ___ ____ _ _
|
5 |
|
|
* ( _`\ ( __)( ) ( )
|
6 |
|
|
* | (_) )| (_ | |_| | Bern University of Applied Sciences
|
7 |
|
|
* | _ <'| _) | _ | School of Engineering and
|
8 |
|
|
* | (_) )| | | | | | Information Technology
|
9 |
|
|
* (____/'(_) (_) (_)
|
10 |
|
|
*
|
11 |
|
|
*
|
12 |
|
|
* This program is free software: you can redistribute it and/or modify
|
13 |
|
|
* it under the terms of the GNU General Public License as published by
|
14 |
|
|
* the Free Software Foundation, either version 3 of the License, or
|
15 |
|
|
* (at your option) any later version.
|
16 |
|
|
*
|
17 |
|
|
* This program is distributed in the hope that it will be useful,
|
18 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20 |
|
|
* GNU General Public License for more details.
|
21 |
|
|
* You should have received a copy of the GNU General Public License
|
22 |
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
23 |
|
|
*/
|
24 |
|
|
|
25 |
|
|
/*********************************************************************/
|
26 |
|
|
/** \file gecko3com_main.c
|
27 |
|
|
*********************************************************************
|
28 |
|
|
* \brief main file for the GECKO3COM project
|
29 |
|
|
*
|
30 |
|
|
* \author Christoph Zimmermann bfh.ch
|
31 |
|
|
* \date 2009-1-22
|
32 |
|
|
*
|
33 |
|
|
*/
|
34 |
|
|
|
35 |
|
|
/** enable DFU class support */
|
36 |
|
|
#define USB_DFU_SUPPORT
|
37 |
|
|
|
38 |
|
|
#include <string.h>
|
39 |
|
|
#include <stdint.h>
|
40 |
|
|
|
41 |
|
|
#include "fx2utils.h"
|
42 |
|
|
#include "timer.h"
|
43 |
|
|
#include "spi_flash.h"
|
44 |
|
|
#include "i2c.h"
|
45 |
|
|
#include "isr.h"
|
46 |
|
|
#include "eeprom_io.h"
|
47 |
|
|
#include "delay.h"
|
48 |
|
|
|
49 |
|
|
#include "gecko3com_i2c.h"
|
50 |
|
|
#include "gecko3com_spi.h"
|
51 |
|
|
#include "gecko3com_common.h"
|
52 |
|
|
#include "gecko3com_interfaces.h"
|
53 |
|
|
#include "gecko3com_commands.h"
|
54 |
|
|
#include "fpga_load.h"
|
55 |
|
|
|
56 |
|
|
#include "gecko3com_gpif.h"
|
57 |
|
|
#include "gpif_data.h"
|
58 |
|
|
|
59 |
|
|
#include "usb_common.h"
|
60 |
|
|
#include "usb_requests.h"
|
61 |
|
|
#include "usb_descriptors.h"
|
62 |
|
|
#include "usb_dfu.h"
|
63 |
|
|
#include "usb_tmc.h"
|
64 |
|
|
#include "scpi_parser.h"
|
65 |
|
|
|
66 |
|
|
#include "firmware_version.h"
|
67 |
|
|
#include "debugprint.h"
|
68 |
|
|
#ifdef DEBUG_LEVEL_ERROR
|
69 |
|
|
#include "ser.h"
|
70 |
|
|
#endif
|
71 |
|
|
|
72 |
|
|
/* -------------------------------------------------------------------- */
|
73 |
|
|
|
74 |
|
|
#define WATCHDOG_TIME 100 /**< time until the watchdog times out, 100 equals 1 second */
|
75 |
|
|
|
76 |
|
|
/* Global variables */
|
77 |
|
|
volatile uint8_t watchdog_count = WATCHDOG_TIME;
|
78 |
|
|
idata int32_t file_size;
|
79 |
|
|
xdata uint32_t flash_adress;
|
80 |
|
|
xdata unsigned char *buffer;
|
81 |
|
|
xdata TMC_Response_Queue response_queue;
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
/** \brief with executing this function, we confirm that we handled the
|
85 |
|
|
* endpoint 0 data and that we are ready to get new data (rearm the endpoint).
|
86 |
|
|
*/
|
87 |
|
|
static void get_ep0_data (void)
|
88 |
|
|
{
|
89 |
|
|
EP0BCL = 0; /* arm EP0 for OUT xfer. This sets the busy bit */
|
90 |
|
|
|
91 |
|
|
while (EP0CS & bmEPBUSY) /* wait for busy to clear */
|
92 |
|
|
;
|
93 |
|
|
}
|
94 |
|
|
|
95 |
|
|
|
96 |
|
|
/*
|
97 |
|
|
* enable debug output through the serial uart
|
98 |
|
|
*/
|
99 |
|
|
#ifdef DEBUG_LEVEL_ERROR
|
100 |
|
|
|
101 |
|
|
/** \brief simple wraper to provide putchar function over serial line */
|
102 |
|
|
void putchar (char p)
|
103 |
|
|
{
|
104 |
|
|
ser_putc((unsigned char) p);
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
/** \brief simple wraper to provide getchar function over serial line */
|
109 |
|
|
char getchar (void)
|
110 |
|
|
{
|
111 |
|
|
return (char) ser_getc();
|
112 |
|
|
}
|
113 |
|
|
#endif
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
#ifdef USB_DFU_SUPPORT
|
117 |
|
|
/** \brief this function writes the new firmware data in endpoint 0 to the I2C eeprom
|
118 |
|
|
* \note this function is only available when the DFU (device firware upgrade) class
|
119 |
|
|
* support is enabled.
|
120 |
|
|
*/
|
121 |
|
|
uint8_t app_firmware_write (void)
|
122 |
|
|
{
|
123 |
|
|
static uint16_t eeprom_offset;
|
124 |
|
|
|
125 |
|
|
get_ep0_data();
|
126 |
|
|
|
127 |
|
|
if(usb_dfu_state == DFU_STATE_dfuIDLE){
|
128 |
|
|
eeprom_offset = 0;
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
// if(!eeprom_write(I2C_ADDR_BOOT, eeprom_offset, EP0BUF, wLengthL)){
|
132 |
|
|
if(!eeprom_write(eeprom_offset, EP0BUF, wLengthL)){
|
133 |
|
|
usb_dfu_status = DFU_STATUS_errWRITE;
|
134 |
|
|
return 0;
|
135 |
|
|
}
|
136 |
|
|
|
137 |
|
|
eeprom_offset += wLengthL;
|
138 |
|
|
return 1;
|
139 |
|
|
}
|
140 |
|
|
#endif
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
/** \brief analyze the header from the fpga configuration file and compares the
|
144 |
|
|
* the fpga type with the on board fpga and returs the configuration file size.
|
145 |
|
|
*
|
146 |
|
|
* \param[in] xdata unsigned char *buffer pointer to the buffer to read from
|
147 |
|
|
* (normally endpoint buffer)
|
148 |
|
|
* \param[in] idata uint16_t *offset pointer to the offset, buffer[offset]
|
149 |
|
|
* is the current position, anything before this is already consumed.
|
150 |
|
|
* \param[in] idata uint16_t *byte_count pointer to the length of the whole
|
151 |
|
|
* buffer.
|
152 |
|
|
* \return returns non-zero if successful, else 0
|
153 |
|
|
*/
|
154 |
|
|
uint8_t app_check_fpga_type_from_header(/*xdata unsigned char *buffer,*/ \
|
155 |
|
|
idata uint16_t *offset, \
|
156 |
|
|
idata uint16_t *byte_count)
|
157 |
|
|
{
|
158 |
|
|
static xdata Fpga_Info fpga_file_header;
|
159 |
|
|
xdata char fpga_type[FPGA_TYPE_LEN];
|
160 |
|
|
static int8_t continue_analyse;
|
161 |
|
|
|
162 |
|
|
/* check if this is the first attempt to analyse the bit file header*/
|
163 |
|
|
if(usb_tmc_transfer.new_transfer == NEWTRANSFER) {
|
164 |
|
|
continue_analyse = 0;
|
165 |
|
|
fpga_file_header.type = FPGA_TYPE;
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
/* first value to read from the header file is the fpga type */
|
169 |
|
|
if(fpga_file_header.type == FPGA_TYPE){
|
170 |
|
|
if(fpga_scan_file(buffer, offset, byte_count, &fpga_file_header) \
|
171 |
|
|
== FPGA_INFO_COMPLETE) {
|
172 |
|
|
|
173 |
|
|
/* compare fpga type from header with value in eeprom */
|
174 |
|
|
if(!eeprom_read(FPGA_TYPE_OFFSET, fpga_type, FPGA_TYPE_LEN)){
|
175 |
|
|
return 0;
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
if(strncmp(fpga_file_header.info, fpga_type, FPGA_TYPE_LEN)) {
|
179 |
|
|
//print_err("!FPGA\n");
|
180 |
|
|
return 0;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* next value to read from the header is the file length */
|
184 |
|
|
fpga_file_header.type = FILE_LENGTH;
|
185 |
|
|
continue_analyse = FPGA_INFO_COMPLETE;
|
186 |
|
|
}
|
187 |
|
|
else {
|
188 |
|
|
continue_analyse = FPGA_INFO_NOT_COMPLETE;
|
189 |
|
|
}
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
/* second value to read from the header file is the file length */
|
193 |
|
|
if(fpga_file_header.type == FILE_LENGTH){
|
194 |
|
|
if(fpga_scan_file(buffer, offset, byte_count, &fpga_file_header) \
|
195 |
|
|
== FPGA_INFO_COMPLETE) {
|
196 |
|
|
|
197 |
|
|
((uint8_t*)&file_size)[0] = fpga_file_header.info[2];
|
198 |
|
|
((uint8_t*)&file_size)[1] = fpga_file_header.info[1];
|
199 |
|
|
((uint8_t*)&file_size)[2] = fpga_file_header.info[0];
|
200 |
|
|
((uint8_t*)&file_size)[3] = 0;
|
201 |
|
|
|
202 |
|
|
continue_analyse = FPGA_INFO_COMPLETE;
|
203 |
|
|
}
|
204 |
|
|
else {
|
205 |
|
|
continue_analyse = FPGA_INFO_NOT_COMPLETE;
|
206 |
|
|
}
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
/* adjust the offset and byte_count variables to point to the
|
210 |
|
|
* binary data after the header */
|
211 |
|
|
usb_tmc_transfer.transfer_size += USB_TMC_HEADER_SIZE;
|
212 |
|
|
usb_tmc_transfer.transfer_size -= *offset;
|
213 |
|
|
|
214 |
|
|
return continue_analyse;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
/** \brief function to configure an fpga with data from usb
|
219 |
|
|
*
|
220 |
|
|
* \param[in] xdata unsigned char *buffer pointer to the buffer to read from
|
221 |
|
|
* (normally endpoint buffer)
|
222 |
|
|
* \param[in] idata uint16_t *offset pointer to the offset, buffer[offset]
|
223 |
|
|
* is the current position, anything before this is already consumed.
|
224 |
|
|
* \param[in] idata uint16_t *byte_count pointer to the length of the whole
|
225 |
|
|
* buffer.
|
226 |
|
|
* \return returns non-zero if successful, else 0
|
227 |
|
|
*/
|
228 |
|
|
uint8_t app_configure_fpga(/* xdata unsigned char *buffer,*/ \
|
229 |
|
|
idata uint16_t *offset, \
|
230 |
|
|
idata uint16_t *byte_count)
|
231 |
|
|
{
|
232 |
|
|
/* Is this the first part of configuration? */
|
233 |
|
|
if(usb_tmc_transfer.nbytes_rxd == 0) {
|
234 |
|
|
/* setup all stuff */
|
235 |
|
|
file_size = 0;
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
/* do we still analyze the file header? */
|
239 |
|
|
if(file_size == 0) {
|
240 |
|
|
if(!app_check_fpga_type_from_header(offset, byte_count)) {
|
241 |
|
|
return 0;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* are we now finished analyzing? */
|
245 |
|
|
if(file_size != 0) {
|
246 |
|
|
/* if yes, intialize fpga for configuration */
|
247 |
|
|
//print_info("begin\n");
|
248 |
|
|
fpga_load_begin();
|
249 |
|
|
}
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* anything ready, transfer data to fpga */
|
253 |
|
|
if(file_size != 0) {
|
254 |
|
|
/* transmitt config data to fpga */
|
255 |
|
|
usb_tmc_transfer.transfer_size -= *byte_count;
|
256 |
|
|
usb_tmc_transfer.transfer_size += *offset;
|
257 |
|
|
file_size -= *byte_count;
|
258 |
|
|
file_size += *offset;
|
259 |
|
|
|
260 |
|
|
fpga_load_xfer(buffer, offset, byte_count);
|
261 |
|
|
|
262 |
|
|
//printf_tiny("buffer[0], %d\n",buffer[0]);
|
263 |
|
|
|
264 |
|
|
/* transfer finished, finishing configuration */
|
265 |
|
|
if(file_size == 0) {
|
266 |
|
|
if(!fpga_load_end()) {
|
267 |
|
|
return 0;
|
268 |
|
|
}
|
269 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
270 |
|
|
}
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
return 1;
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
|
277 |
|
|
/** \brief function to write an fpga configuration from usb to the spi flash
|
278 |
|
|
*
|
279 |
|
|
* \detail The SPI flash is big enough to hold store two different fpga
|
280 |
|
|
* configuration files. To handle this, we split the SPI flash address
|
281 |
|
|
* space simply at the half. \n
|
282 |
|
|
* The data structure in the SPI flash is really simple:\n
|
283 |
|
|
* \li 32bit file size value (little endian, as used by the fx2)
|
284 |
|
|
* \li binary data from the fpga configuration file
|
285 |
|
|
*
|
286 |
|
|
* \param[in] xdata unsigned char *buffer pointer to the buffer to read from
|
287 |
|
|
* (normally endpoint buffer)
|
288 |
|
|
* \param[in] idata uint16_t *offset pointer to the offset, buffer[offset]
|
289 |
|
|
* is the current position, anything before this is already consumed.
|
290 |
|
|
* \param[in] idata uint16_t *byte_count pointer to the length of the whole
|
291 |
|
|
* buffer.
|
292 |
|
|
* \return returns non-zero if successful, else 0
|
293 |
|
|
*/
|
294 |
|
|
uint8_t app_write_conf_to_flash(/* xdata unsigned char *buffer,*/ \
|
295 |
|
|
idata uint16_t *offset, \
|
296 |
|
|
idata uint16_t *byte_count)
|
297 |
|
|
{
|
298 |
|
|
idata uint16_t length;
|
299 |
|
|
xdata uint32_t local_uint32_var;
|
300 |
|
|
xdata unsigned char *local_buffer_ptr;
|
301 |
|
|
|
302 |
|
|
/* Is this the first part of configuration? */
|
303 |
|
|
if(usb_tmc_transfer.nbytes_rxd == 0) {
|
304 |
|
|
/* setup all stuff */
|
305 |
|
|
file_size = 0;
|
306 |
|
|
|
307 |
|
|
/* select which file slot we have to delete */
|
308 |
|
|
if(buffer[*offset] == '0') {
|
309 |
13 |
nussgipfel |
flash_adress = start_adress_slot0(flash_dr);
|
310 |
9 |
nussgipfel |
}
|
311 |
|
|
else if(buffer[*offset] == '1'){
|
312 |
13 |
nussgipfel |
flash_adress = start_adress_slot1(flash_dr);
|
313 |
9 |
nussgipfel |
}
|
314 |
|
|
else {
|
315 |
|
|
//print_err("slot\n");
|
316 |
|
|
ieee488_status.EventStatusRegister |= bmCOMMAND_ERROR;
|
317 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
318 |
|
|
return 0;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
*offset += 2;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* do we still analyze the file header? */
|
325 |
|
|
if(file_size == 0) {
|
326 |
|
|
if(!app_check_fpga_type_from_header(offset, byte_count)) {
|
327 |
|
|
return 0;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* are we now finished analyzing? */
|
331 |
|
|
if(file_size != 0) {
|
332 |
|
|
/* if yes, write file size information to the SPI flash */
|
333 |
|
|
//print_info("begin\n");
|
334 |
|
|
spiflash_erase(&flash_dr, &flash_adress);
|
335 |
|
|
local_uint32_var = file_size;
|
336 |
|
|
spiflash_write(&flash_dr, &flash_adress, (uint8_t*)&local_uint32_var, \
|
337 |
|
|
sizeof(file_size));
|
338 |
|
|
}
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* anything ready, write data to the SPI flash */
|
342 |
|
|
if(file_size != 0) {
|
343 |
|
|
//printf_tiny("off: %d\n",*offset);
|
344 |
|
|
//printf_tiny("ad: %x,",((uint8_t*)&flash_adress)[3]);
|
345 |
|
|
//printf_tiny("%x,",((uint8_t*)&flash_adress)[2]);
|
346 |
|
|
//printf_tiny("%x,",((uint8_t*)&flash_adress)[1]);
|
347 |
|
|
//printf_tiny("%x\n",((uint8_t*)&flash_adress)[0]);
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
length = *byte_count - *offset;
|
351 |
|
|
|
352 |
|
|
/* check if we have data to be written to the next flash sector: */
|
353 |
|
|
local_uint32_var = flash_adress + *byte_count;
|
354 |
|
|
if(sectorStart(local_uint32_var) != sectorStart(flash_adress)) {
|
355 |
|
|
/* before we can write to the next flash sector, we have to erase it */
|
356 |
|
|
spiflash_erase(&flash_dr, &local_uint32_var);
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/* write data to the SPI flash */
|
360 |
|
|
local_buffer_ptr = buffer;
|
361 |
|
|
local_buffer_ptr += *offset;
|
362 |
|
|
spiflash_write(&flash_dr, &flash_adress, local_buffer_ptr, length);
|
363 |
|
|
|
364 |
|
|
/* adjust the file- and transfersize */
|
365 |
|
|
usb_tmc_transfer.transfer_size -= length;
|
366 |
|
|
file_size -= length;
|
367 |
|
|
|
368 |
|
|
//printf_tiny("le, %d\n",length);
|
369 |
|
|
|
370 |
|
|
/* if transfer finished, back to TMC idle state */
|
371 |
|
|
if(file_size <= 0) {
|
372 |
|
|
file_size = 0;
|
373 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
374 |
|
|
}
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
return 1;
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
|
381 |
|
|
/** \brief erases the desired file slot in spi flash
|
382 |
|
|
* \detail send the erase command for one spi flash memory block and loop
|
383 |
|
|
* through the main_loop untill we finished erasing the whole fpga
|
384 |
|
|
* configuration file slot.
|
385 |
|
|
*
|
386 |
|
|
* \param[in] xdata unsigned char *buffer pointer to the buffer to read from
|
387 |
|
|
* (normally endpoint buffer)
|
388 |
|
|
* \param[in] idata uint16_t *offset pointer to the offset, buffer[offset]
|
389 |
|
|
* is the current position, anything before this is already consumed.
|
390 |
|
|
* \return returns non-zero if successful, else 0
|
391 |
|
|
*
|
392 |
|
|
* \todo uncomment this function after finishing debuging, else no space left!
|
393 |
|
|
*/
|
394 |
|
|
uint8_t app_gecko3com_flash_delete(/* uint8_t *buffer,*/ idata uint16_t *offset) {
|
395 |
|
|
|
396 |
|
|
xdata uint32_t flash_adress;
|
397 |
|
|
xdata uint32_t local_uint32_var;
|
398 |
|
|
char slot;
|
399 |
|
|
|
400 |
|
|
/* send the delete command for each block and loop through the main_loop */
|
401 |
|
|
/* check busy and set usb_tmc_state back to idle when finished file delete */
|
402 |
|
|
if(usb_tmc_transfer.new_transfer == NEWTRANSFER) {
|
403 |
|
|
//print_info("new\n");
|
404 |
|
|
|
405 |
|
|
/* select which file slot we have to delete */
|
406 |
|
|
slot = buffer[*offset];
|
407 |
|
|
if(slot == '0') {
|
408 |
13 |
nussgipfel |
flash_adress = start_adress_slot0(flash_dr);
|
409 |
9 |
nussgipfel |
}
|
410 |
|
|
else if(slot == '1'){
|
411 |
13 |
nussgipfel |
flash_adress = start_adress_slot1(flash_dr);
|
412 |
9 |
nussgipfel |
}
|
413 |
|
|
else {
|
414 |
|
|
//print_err("del\n");
|
415 |
|
|
ieee488_status.EventStatusRegister |= bmCOMMAND_ERROR;
|
416 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
417 |
|
|
return 0;
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
/* to "delete" means to set the file_size at the beginning of the confguration
|
422 |
|
|
file slot to zero */
|
423 |
|
|
local_uint32_var = 0;
|
424 |
|
|
spiflash_write(&flash_dr, &flash_adress, (uint8_t*)&local_uint32_var,4);
|
425 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
426 |
|
|
|
427 |
|
|
return 1;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
|
431 |
|
|
/** \brief Handle the class commands on endpoint 0.
|
432 |
|
|
*
|
433 |
|
|
* \return If we handle this one, return non-zero.
|
434 |
|
|
*/
|
435 |
|
|
unsigned char app_class_cmd (void)
|
436 |
|
|
{
|
437 |
|
|
#ifdef USB_DFU_SUPPORT
|
438 |
|
|
if (usb_dfu_request()){
|
439 |
|
|
if(!usb_handle_dfu_packet()){
|
440 |
|
|
//print_err("dfu request\n");
|
441 |
|
|
return 0;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
else
|
446 |
|
|
#endif
|
447 |
|
|
if (usb_tmc_request()){
|
448 |
|
|
if(!usb_handle_tmc_packet()){
|
449 |
|
|
//print_err("tmc request\n");
|
450 |
|
|
return 0;
|
451 |
|
|
}
|
452 |
|
|
}
|
453 |
|
|
else {
|
454 |
|
|
//print_err("invalid class request\n");
|
455 |
|
|
return 0; /* invalid class request */
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
return 1;
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
|
462 |
|
|
/** \brief Handle our "Vendor Extension" commands on endpoint 0.
|
463 |
|
|
*
|
464 |
|
|
* \return If we handle this one, return non-zero.
|
465 |
|
|
*/
|
466 |
|
|
unsigned char app_vendor_cmd (void)
|
467 |
|
|
{
|
468 |
|
|
/* vendor commands are only used after production
|
469 |
|
|
* starting with firmware version 0.4 we remove the vendor commands
|
470 |
|
|
* to save memory for more importand functions!
|
471 |
|
|
|
472 |
|
|
if (bRequestType == VRT_VENDOR_IN){ */
|
473 |
|
|
/*********************************
|
474 |
|
|
* handle the IN requests
|
475 |
|
|
********************************/
|
476 |
|
|
/*
|
477 |
|
|
switch (bRequest){
|
478 |
|
|
|
479 |
|
|
default:
|
480 |
|
|
return 0;
|
481 |
|
|
}
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
else if (bRequestType == VRT_VENDOR_OUT){ */
|
485 |
|
|
/***********************************
|
486 |
|
|
* handle the OUT requests
|
487 |
|
|
**********************************/
|
488 |
|
|
/*
|
489 |
|
|
switch (bRequest){
|
490 |
|
|
case VRQ_SET_SERIAL:
|
491 |
|
|
get_ep0_data();
|
492 |
|
|
if(wLengthL > SERIAL_NO_LEN){
|
493 |
|
|
return 0;
|
494 |
|
|
}
|
495 |
|
|
if(!eeprom_write(I2C_ADDR_BOOT, SERIAL_NO_OFFSET, EP0BUF, wLengthL)){
|
496 |
|
|
return 0;
|
497 |
|
|
}
|
498 |
|
|
break;
|
499 |
|
|
|
500 |
|
|
case VRQ_SET_HW_REV:
|
501 |
|
|
get_ep0_data();
|
502 |
|
|
if(!eeprom_write(I2C_ADDR_BOOT, HW_REV_OFFSET, EP0BUF, 1)){
|
503 |
|
|
return 0;
|
504 |
|
|
}
|
505 |
|
|
break;
|
506 |
|
|
|
507 |
|
|
case VRQ_SET_FPGA_TYPE:
|
508 |
|
|
get_ep0_data();
|
509 |
|
|
if(wLengthL > FPGA_TYPE_LEN){
|
510 |
|
|
return 0;
|
511 |
|
|
}
|
512 |
|
|
if(!eeprom_write(I2C_ADDR_BOOT, FPGA_TYPE_OFFSET, EP0BUF, wLengthL)){
|
513 |
|
|
return 0;
|
514 |
|
|
}
|
515 |
|
|
break;
|
516 |
|
|
|
517 |
|
|
case VRQ_SET_FPGA_IDCODE:
|
518 |
|
|
get_ep0_data();
|
519 |
|
|
if(!eeprom_write(I2C_ADDR_BOOT, FPGA_IDCODE_OFFSET, EP0BUF, FPGA_IDCODE_LEN)){
|
520 |
|
|
return 0;
|
521 |
|
|
}
|
522 |
|
|
break;
|
523 |
|
|
|
524 |
|
|
default:
|
525 |
|
|
return 0;
|
526 |
|
|
|
527 |
|
|
}
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
else */
|
531 |
|
|
return 0; /* invalid bRequestType */
|
532 |
|
|
|
533 |
|
|
//return 1;
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
|
537 |
|
|
/** \brief Read h/w rev code and serial number out of boot eeprom and
|
538 |
|
|
* patch the usb descriptors with these values.
|
539 |
|
|
*/
|
540 |
|
|
void patch_usb_descriptors(void)
|
541 |
|
|
{
|
542 |
|
|
xdata uint8_t hw_rev;
|
543 |
|
|
xdata unsigned char serial_no[SERIAL_NO_LEN];
|
544 |
|
|
unsigned char ch;
|
545 |
|
|
uint8_t i,j;
|
546 |
|
|
|
547 |
|
|
/* hardware revision */
|
548 |
|
|
eeprom_read(HW_REV_OFFSET, &hw_rev, 1); /* LSB of device id */
|
549 |
|
|
usb_desc_hw_rev_binary_patch_location_0[0] = hw_rev;
|
550 |
|
|
usb_desc_hw_rev_binary_patch_location_1[0] = hw_rev;
|
551 |
|
|
|
552 |
|
|
/* serial number */
|
553 |
|
|
eeprom_read(SERIAL_NO_OFFSET, serial_no, SERIAL_NO_LEN);
|
554 |
|
|
|
555 |
|
|
for (i = 0; i < SERIAL_NO_LEN; i++){
|
556 |
|
|
ch = serial_no[i];
|
557 |
|
|
if (ch == 0xff) /* make unprogrammed EEPROM default to '0' */
|
558 |
|
|
ch = '0';
|
559 |
|
|
|
560 |
|
|
j = i << 1;
|
561 |
|
|
usb_desc_serial_number_ascii[j] = ch;
|
562 |
|
|
}
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
|
566 |
|
|
/** \brief we do all the work here. infinite loop */
|
567 |
|
|
static void main_loop (void)
|
568 |
|
|
{
|
569 |
|
|
tHeader *tmc_header, *tmc_response_header;
|
570 |
|
|
idata uint16_t offset, byte_count;
|
571 |
|
|
static idata uint32_t transfer_size;
|
572 |
|
|
xdata Scanner scpi_scanner;
|
573 |
|
|
|
574 |
|
|
uint16_t index;
|
575 |
|
|
|
576 |
|
|
buffer = EP2FIFOBUF;
|
577 |
|
|
scpi_scanner.action = NOACTION;
|
578 |
13 |
nussgipfel |
index = 0;
|
579 |
9 |
nussgipfel |
|
580 |
|
|
while (1){
|
581 |
|
|
|
582 |
|
|
usb_tmc_transfer.new_transfer = 0;
|
583 |
|
|
|
584 |
|
|
/* -------------------------------------------------------------------- */
|
585 |
|
|
/* SETUP Package on Endpoint 0. Handle if we received one */
|
586 |
|
|
if (usb_setup_packet_avail())
|
587 |
|
|
usb_handle_setup_packet();
|
588 |
|
|
|
589 |
|
|
/* -------------------------------------------------------------------- */
|
590 |
|
|
/* Let's do some work when an Endpoint has data */
|
591 |
|
|
if (!(EP2468STAT & bmEP2EMPTY) && flLOCAL == GECKO3COM_LOCAL){
|
592 |
|
|
offset = 0;
|
593 |
|
|
|
594 |
|
|
if(usb_tmc_state == TMC_STATE_IDLE || usb_tmc_transfer.transfer_size == 0){
|
595 |
|
|
|
596 |
|
|
/* start to analyze the data in Endpoint 2 if it is a correct TMC header */
|
597 |
|
|
tmc_header = (tHeader*)EP2FIFOBUF;
|
598 |
|
|
|
599 |
|
|
/* bTag sanity check. store bTag for correct IN transfer response */
|
600 |
|
|
if (tmc_header->bTag == ~tmc_header->bTagInverse) {
|
601 |
|
|
usb_tmc_transfer.bTag = tmc_header->bTag;
|
602 |
|
|
|
603 |
|
|
/* TMC header is correct. Now find out what we have to do: */
|
604 |
|
|
|
605 |
|
|
/* check if this transfer is a DEV_DEP_MSG_OUT message */
|
606 |
|
|
if(tmc_header->MsgID == DEV_DEP_MSG_OUT){
|
607 |
|
|
usb_tmc_transfer.transfer_size = \
|
608 |
|
|
((DEV_DEP_MSG_OUT_Header*)tmc_header->msg_specific)->TransferSize;
|
609 |
|
|
usb_tmc_transfer.new_transfer = NEWTRANSFER;
|
610 |
|
|
offset = USB_TMC_HEADER_SIZE;
|
611 |
|
|
|
612 |
|
|
/* Decide if we should start the SCPI parser or not
|
613 |
|
|
* if not IDLE, the transfer size was 0 and we continue
|
614 |
|
|
* to exectue the action and don't try to parse a new command */
|
615 |
|
|
if(usb_tmc_state == TMC_STATE_IDLE) {
|
616 |
|
|
|
617 |
|
|
/* fresh OUT Transfer: handle device dependent command message */
|
618 |
|
|
usb_tmc_state = TMC_STATE_OUT_TRANSFER;
|
619 |
|
|
usb_tmc_transfer.nbytes_rxd = 0;
|
620 |
|
|
|
621 |
|
|
/* when we receive an new out message before we sent the response,
|
622 |
|
|
* we have to clear the response queue first*/
|
623 |
|
|
IEEE488_clear_mav();
|
624 |
|
|
usb_tmc_transfer.nbytes_txd = 0;
|
625 |
|
|
response_queue.length = 0;
|
626 |
|
|
|
627 |
|
|
|
628 |
|
|
/* setup variables for scpi parser.
|
629 |
|
|
* offset points to first command byte in endpoint buffer */
|
630 |
|
|
scpi_scanner.source = EP2FIFOBUF;
|
631 |
|
|
scpi_scanner.action = NOACTION;
|
632 |
|
|
|
633 |
|
|
/* start SCPI parser */
|
634 |
|
|
if(!scpi_scan(&offset, &scpi_scanner, &response_queue)){
|
635 |
|
|
/* the parser returned an error. set flags */
|
636 |
|
|
ieee488_status.EventStatusRegister |= bmCOMMAND_ERROR;
|
637 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
638 |
|
|
scpi_scanner.action = NOACTION;
|
639 |
|
|
usb_tmc_transfer.new_transfer = 0;
|
640 |
|
|
//print_err("syntax failure\n");
|
641 |
|
|
}
|
642 |
|
|
}
|
643 |
|
|
}
|
644 |
|
|
/* finished handling an DEV_DEP_MSG_OUT message */
|
645 |
|
|
|
646 |
|
|
/* ---------------------------------------------------------------- */
|
647 |
|
|
/* check if this transfer is a IN request and we have a IN response
|
648 |
|
|
* queued */
|
649 |
|
|
else if(tmc_header->MsgID == REQUEST_DEV_DEP_MSG_IN \
|
650 |
|
|
&& response_queue.length > 0) {
|
651 |
|
|
|
652 |
|
|
/* IN Transfer: Handle response message to a device dependent
|
653 |
|
|
* command message. For this we change the TMC state.
|
654 |
|
|
* Sending the requested data to the IN endpoint
|
655 |
|
|
* happens further below */
|
656 |
|
|
usb_tmc_state = TMC_STATE_IN_TRANSFER;
|
657 |
|
|
usb_tmc_transfer.transfer_size = \
|
658 |
|
|
((REQUEST_DEV_DEP_MSG_IN_Header*) tmc_header->msg_specific)\
|
659 |
|
|
->TransferSize;
|
660 |
|
|
usb_tmc_transfer.nbytes_txd = 0;
|
661 |
|
|
|
662 |
|
|
}
|
663 |
|
|
else {
|
664 |
|
|
/* TMC header error: unknown message ID */
|
665 |
|
|
EP2CS |= bmEPSTALL;
|
666 |
|
|
//print_err("ID\n");
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
else {
|
671 |
|
|
/* TMC header error: bTag and bTagInverse don't match */
|
672 |
|
|
EP2CS |= bmEPSTALL;
|
673 |
|
|
//print_err("bTag\n");
|
674 |
|
|
}
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* -------------------------------------------------------------------- */
|
678 |
|
|
/* OUT Transfer: The SCPI parser has detected a application specific
|
679 |
|
|
* command. Here we execute the desired functions for these commands: */
|
680 |
|
|
if(usb_tmc_state == TMC_STATE_OUT_TRANSFER){
|
681 |
|
|
|
682 |
|
|
/* set the correct byte_count value */
|
683 |
|
|
/* read byte counter register of EP2FIFOBUF */
|
684 |
|
|
byte_count = (EP2BCH << 8) + EP2BCL;
|
685 |
|
|
|
686 |
|
|
/* decide which value is the smaller one */
|
687 |
|
|
if((byte_count - offset) > usb_tmc_transfer.transfer_size) {
|
688 |
|
|
byte_count = usb_tmc_transfer.transfer_size;
|
689 |
|
|
/* transfer_size does not includ the header length: */
|
690 |
|
|
byte_count += offset;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
/* select what we have to to according to the parsed scpi command */
|
694 |
|
|
switch (scpi_scanner.action) {
|
695 |
|
|
|
696 |
|
|
case SYSTEM_RESET:
|
697 |
|
|
/* Send a global reset signal to the FPGA and all connected modules */
|
698 |
|
|
gecko3com_system_reset();
|
699 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
700 |
|
|
break;
|
701 |
|
|
|
702 |
|
|
case rqFPGA_IDCODE:
|
703 |
|
|
/* Request to read the FPGA JTAG ID code */
|
704 |
|
|
eeprom_read(FPGA_IDCODE_OFFSET, response_queue.buf, FPGA_IDCODE_LEN);
|
705 |
|
|
response_queue.buf[FPGA_IDCODE_LEN] = '\n';
|
706 |
|
|
response_queue.length = FPGA_IDCODE_LEN+1;
|
707 |
|
|
IEEE488_set_mav();
|
708 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
709 |
|
|
break;
|
710 |
|
|
|
711 |
|
|
case rqFPGA_TYPE:
|
712 |
|
|
/* Request to read the FPGA type string */
|
713 |
|
|
eeprom_read(FPGA_TYPE_OFFSET, response_queue.buf, FPGA_TYPE_LEN);
|
714 |
|
|
response_queue.buf[FPGA_TYPE_LEN] = '\n';
|
715 |
|
|
response_queue.length = FPGA_TYPE_LEN+1;
|
716 |
|
|
IEEE488_set_mav();
|
717 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
718 |
|
|
break;
|
719 |
|
|
|
720 |
|
|
case rqFPGA_DONE:
|
721 |
|
|
/* Is the FPGA configured or not? Check the "done" pin*/
|
722 |
|
|
if(fpga_done()) {
|
723 |
|
|
response_queue.buf[0] = '1';
|
724 |
|
|
}
|
725 |
|
|
else {
|
726 |
|
|
response_queue.buf[0] = '0';
|
727 |
|
|
}
|
728 |
|
|
response_queue.buf[1] = '\n';
|
729 |
|
|
response_queue.length = 2;
|
730 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
731 |
|
|
break;
|
732 |
|
|
|
733 |
|
|
case FPGA_CONFIGURE:
|
734 |
|
|
/* Configure the FPGA directly */
|
735 |
|
|
if(!app_configure_fpga(&offset, &byte_count)) {
|
736 |
|
|
//print_err("conf\n");
|
737 |
|
|
ieee488_status.EventStatusRegister |= bmEXECUTION_ERROR;
|
738 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
739 |
|
|
}
|
740 |
|
|
break;
|
741 |
|
|
|
742 |
|
|
case FPGA_COMMUNICATION:
|
743 |
|
|
/* Switch the context from the FX2 to the FPGA.
|
744 |
|
|
* After this command all endpoint 2 and 6 data goes directly to the
|
745 |
|
|
* FPGA, the FX2 doesn't parse commands anymore. Use endpoint 0 TMC
|
746 |
|
|
* commands to switch back */
|
747 |
|
|
init_gpif();
|
748 |
|
|
flLOCAL = GECKO3COM_REMOTE;
|
749 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
750 |
|
|
break;
|
751 |
|
|
|
752 |
|
|
case SPI_DELETE:
|
753 |
|
|
/* Erases one of the file spaces in the SPI flash */
|
754 |
|
|
if(!app_gecko3com_flash_delete(&offset)) {
|
755 |
|
|
ieee488_status.EventStatusRegister |= bmEXECUTION_ERROR;
|
756 |
|
|
}
|
757 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
758 |
|
|
break;
|
759 |
|
|
|
760 |
|
|
case SPI_WRITE:
|
761 |
|
|
/* Writes a FPGA configuration file into a file space in the
|
762 |
|
|
* SPI flash. */
|
763 |
|
|
if(!app_write_conf_to_flash(&offset, &byte_count)) {
|
764 |
|
|
ieee488_status.EventStatusRegister |= bmEXECUTION_ERROR;
|
765 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
766 |
|
|
}
|
767 |
|
|
break;
|
768 |
|
|
|
769 |
|
|
default:
|
770 |
|
|
|
771 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
772 |
|
|
}
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
usb_tmc_transfer.nbytes_rxd += ((EP2BCH << 8) + EP2BCL - USB_TMC_HEADER_SIZE);
|
776 |
|
|
|
777 |
|
|
/* finished handling usb package.
|
778 |
|
|
* rearm OUT endpoint to receive new data */
|
779 |
|
|
OUTPKTEND = bmSKIP | USB_TMC_EP_OUT;
|
780 |
|
|
|
781 |
|
|
} /* end of OUT Transfer clause */
|
782 |
|
|
|
783 |
|
|
|
784 |
|
|
/* -------------------------------------------------------------------- */
|
785 |
|
|
/* Let's continue to send data when an Endpoint is free */
|
786 |
|
|
/* IN Transfer: Generate a valid TMC IN header and send the response
|
787 |
|
|
* message data to the endpoint */
|
788 |
|
|
if (!(EP2468STAT & bmEP6FULL) && usb_tmc_state == TMC_STATE_IN_TRANSFER){
|
789 |
|
|
|
790 |
|
|
/* fresh IN transfer, send first header */
|
791 |
|
|
if(usb_tmc_transfer.nbytes_txd == 0) {
|
792 |
|
|
index = 0;
|
793 |
|
|
tmc_response_header = (tHeader*)EP6FIFOBUF;
|
794 |
|
|
tmc_response_header->MsgID = REQUEST_DEV_DEP_MSG_IN;
|
795 |
|
|
tmc_response_header->bTag = usb_tmc_transfer.bTag;
|
796 |
|
|
tmc_response_header->bTagInverse = ~usb_tmc_transfer.bTag;
|
797 |
|
|
tmc_response_header->Reserved = 0;
|
798 |
|
|
((DEV_DEP_MSG_IN_Header*)tmc_response_header->msg_specific)-> \
|
799 |
|
|
TransferSize = response_queue.length;
|
800 |
|
|
((DEV_DEP_MSG_IN_Header*)tmc_response_header->msg_specific)->\
|
801 |
|
|
Reserved[0] = 0;
|
802 |
|
|
((DEV_DEP_MSG_IN_Header*)tmc_response_header->msg_specific)->\
|
803 |
|
|
Reserved[1] = 0;
|
804 |
|
|
((DEV_DEP_MSG_IN_Header*)tmc_response_header->msg_specific)->\
|
805 |
|
|
Reserved[2] = 0;
|
806 |
|
|
|
807 |
|
|
/* if we can send all data in one usb packet,
|
808 |
|
|
set EOM (end of message) bit */
|
809 |
|
|
/* WARNING: set EOM bit in the LAST tmc transfer.
|
810 |
|
|
* we transmitt anything in one transfer so we set this bit always. */
|
811 |
|
|
/*if(USBCS & bmHSM && response_queue.length <= 500 | \
|
812 |
|
|
response_queue.length <= 56)*/
|
813 |
|
|
((DEV_DEP_MSG_OUT_Header*)tmc_response_header->msg_specific)->\
|
814 |
|
|
bmTransferAttributes = bmTA_EOM;
|
815 |
|
|
/*else
|
816 |
|
|
((DEV_DEP_MSG_OUT_Header*)tmc_response_header->msg_specific)->\
|
817 |
|
|
bmTransferAttributes = 0;*/
|
818 |
|
|
|
819 |
|
|
index = USB_TMC_HEADER_SIZE;
|
820 |
|
|
} /* finished writing header */
|
821 |
|
|
|
822 |
|
|
|
823 |
|
|
/* Transmit data */
|
824 |
|
|
for(usb_tmc_transfer.nbytes_txd; \
|
825 |
|
|
usb_tmc_transfer.nbytes_txd <= response_queue.length; \
|
826 |
|
|
usb_tmc_transfer.nbytes_txd++){
|
827 |
|
|
|
828 |
|
|
/* copy the data from the response queue to the IN endpoint */
|
829 |
|
|
EP6FIFOBUF[index++] = response_queue.buf[usb_tmc_transfer.nbytes_txd];
|
830 |
|
|
|
831 |
|
|
/* we send any response in one packet so we don't have to check if
|
832 |
|
|
* the endpoint buffer is full */
|
833 |
|
|
/*if(!(USBCS & bmHSM) && index == 64 | \
|
834 |
|
|
index == 512)
|
835 |
|
|
break;
|
836 |
|
|
*/
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
EP6BCH = index >> 8;
|
840 |
|
|
EP6BCL = index & 0xFF;
|
841 |
|
|
index = 0;
|
842 |
|
|
|
843 |
|
|
/* detect end of transfer */
|
844 |
|
|
if(usb_tmc_transfer.nbytes_txd >= response_queue.length){
|
845 |
|
|
usb_tmc_state = TMC_STATE_IDLE;
|
846 |
|
|
IEEE488_clear_mav();
|
847 |
|
|
response_queue.length = 0;
|
848 |
|
|
}
|
849 |
|
|
} /* end of IN Transfer clause */
|
850 |
|
|
|
851 |
18 |
nussgipfel |
/* if(!(EP2468STAT & bmEP2EMPTY) && flLOCAL == GECKO3COM_REMOTE) { */
|
852 |
|
|
/* flGPIF &= ~bmGPIF_PENDING_DATA; */
|
853 |
|
|
/* OUTPKTEND = USB_TMC_EP_OUT; */
|
854 |
|
|
/* gpif_trigger_write(); */
|
855 |
|
|
/* EP2FIFOCFG |= bmAUTOOUT; */
|
856 |
|
|
/* } */
|
857 |
|
|
|
858 |
9 |
nussgipfel |
/* if the LED flag is set to off, disable the external LED */
|
859 |
|
|
if(flLED == LEDS_OFF) {
|
860 |
|
|
set_led_ext(LEDS_OFF);
|
861 |
|
|
}
|
862 |
|
|
|
863 |
|
|
/* resets the watchdog timer back to the initial value */
|
864 |
|
|
watchdog_count = WATCHDOG_TIME;
|
865 |
|
|
|
866 |
|
|
} /* end of infinite main loop */
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
|
870 |
|
|
/** \brief ISR called at 100 Hz from timer2 interrupt
|
871 |
|
|
*
|
872 |
|
|
* Toggle led 0
|
873 |
|
|
*/
|
874 |
|
|
void isr_tick (void) interrupt
|
875 |
|
|
{
|
876 |
|
|
static uint8_t count = 1;
|
877 |
|
|
|
878 |
|
|
if (--count == 0){
|
879 |
|
|
count = 50;
|
880 |
|
|
toggle_led_0();
|
881 |
|
|
flLED = LEDS_OFF;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
// if (--watchdog_count == 0){
|
885 |
|
|
// clear_timer_irq();
|
886 |
|
|
// #ifdef DEBUG_LEVEL_ERROR
|
887 |
|
|
// print_err("Watchdog timed out! System reset\n");
|
888 |
|
|
//mdelay(100); /* wait 100 ms to give the uart some time to transmit */
|
889 |
|
|
// #endif
|
890 |
|
|
|
891 |
|
|
/* simulate CPU reset */ /* FIXME this stuff here does not work. no idea how to simulate an CPU reset instead... */
|
892 |
|
|
/* _asm
|
893 |
|
|
ljmp __reset_vector
|
894 |
|
|
_endasm;*/
|
895 |
|
|
//}
|
896 |
|
|
|
897 |
|
|
#ifdef USB_DFU_SUPPORT
|
898 |
|
|
if (usb_dfu_state == DFU_STATE_appDETACH){
|
899 |
|
|
if (--usb_dfu_timeout == 0){
|
900 |
|
|
usb_toggle_dfu_handlers();
|
901 |
|
|
}
|
902 |
|
|
}
|
903 |
|
|
#endif
|
904 |
|
|
|
905 |
|
|
clear_timer_irq();
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
|
909 |
|
|
/** \brief starting point of execution.
|
910 |
|
|
*
|
911 |
|
|
* we initialize all system components here. after that we go to the main_loop
|
912 |
|
|
* function there all the work is done.
|
913 |
|
|
*/
|
914 |
|
|
void main(void)
|
915 |
|
|
{
|
916 |
|
|
/* variables needed for the stand-alone fpga configuration */
|
917 |
|
|
uint8_t led_color;
|
918 |
|
|
idata uint16_t i, local_offset;
|
919 |
|
|
xdata uint32_t spi_base_adress;
|
920 |
|
|
|
921 |
|
|
init_gecko3com();
|
922 |
|
|
init_io_ext();
|
923 |
|
|
init_usb_tmc();
|
924 |
|
|
init_fpga_interface();
|
925 |
|
|
init_spiflash(&flash_dr);
|
926 |
|
|
|
927 |
|
|
/* disconnect USB, so the host doesn't wait for us during the fpga
|
928 |
|
|
*configuration process (takes up to 20s) */
|
929 |
|
|
USBCS |= bmDISCON;
|
930 |
|
|
|
931 |
|
|
#ifdef DEBUG_LEVEL_ERROR
|
932 |
|
|
ser_init();
|
933 |
|
|
printf_tiny("hi\n");
|
934 |
|
|
#endif
|
935 |
|
|
|
936 |
|
|
/* set the context switch flag to local operation, not fpga */
|
937 |
|
|
flLOCAL = GECKO3COM_LOCAL;
|
938 |
|
|
|
939 |
|
|
/* enable GPIF state output for debuging */
|
940 |
|
|
IFCONFIG |= bmGSTATE;
|
941 |
|
|
|
942 |
|
|
EA = 0; /* disable all interrupts */
|
943 |
|
|
|
944 |
|
|
patch_usb_descriptors();
|
945 |
|
|
setup_autovectors();
|
946 |
|
|
usb_install_handlers();
|
947 |
|
|
hook_timer_tick((unsigned short) isr_tick);
|
948 |
|
|
|
949 |
|
|
EA = 1; /* global interrupt enable */
|
950 |
|
|
|
951 |
|
|
/* finished initializing GECKO3COM system */
|
952 |
|
|
/*------------------------------------------------------------------------*/
|
953 |
|
|
|
954 |
|
|
/* start to configure the FPGA from the configuration SPI flash */
|
955 |
|
|
/* read which configuration, the first or second, we should use */
|
956 |
|
|
if(get_switch()){
|
957 |
|
|
led_color = GREEN;
|
958 |
13 |
nussgipfel |
spi_base_adress = start_adress_slot0(flash_dr);
|
959 |
9 |
nussgipfel |
}
|
960 |
|
|
else {
|
961 |
|
|
led_color = RED;
|
962 |
13 |
nussgipfel |
spi_base_adress = start_adress_slot1(flash_dr);
|
963 |
9 |
nussgipfel |
}
|
964 |
|
|
|
965 |
|
|
/* read the configuration file size from the spi flash */
|
966 |
|
|
spiflash_read(&flash_dr, &spi_base_adress, response_queue.buf, 4);
|
967 |
|
|
((idata uint8_t*)&file_size)[0] = response_queue.buf[0];
|
968 |
|
|
((idata uint8_t*)&file_size)[1] = response_queue.buf[1];
|
969 |
|
|
((idata uint8_t*)&file_size)[2] = response_queue.buf[2];
|
970 |
|
|
((idata uint8_t*)&file_size)[3] = response_queue.buf[3];
|
971 |
|
|
spi_base_adress += 4;
|
972 |
|
|
|
973 |
13 |
nussgipfel |
/* debug stuff */
|
974 |
|
|
response_queue.buf[0] = init_spiflash(&flash_dr);
|
975 |
|
|
IEEE488_set_mav();
|
976 |
|
|
response_queue.length = 1;
|
977 |
|
|
|
978 |
9 |
nussgipfel |
/* there is nothing to configure when the filesize is 0 or 0xFFFFFFFF */
|
979 |
|
|
if(file_size == 0 || file_size == 0xFFFFFFFF) {
|
980 |
|
|
/* show that we don't load a config */
|
981 |
|
|
set_led_ext(ORANGE);
|
982 |
|
|
}
|
983 |
|
|
else {
|
984 |
|
|
fpga_load_begin();
|
985 |
|
|
i = TMC_RESPONSE_QUEUE_LENGTH-1;
|
986 |
|
|
while(file_size > 0) {
|
987 |
|
|
set_led_ext(led_color); /* show which config we load */
|
988 |
|
|
|
989 |
|
|
if(i > file_size) {
|
990 |
|
|
i = (uint8_t)file_size;
|
991 |
|
|
}
|
992 |
|
|
spiflash_read(&flash_dr, &spi_base_adress, response_queue.buf, i);
|
993 |
|
|
|
994 |
|
|
local_offset = 0;
|
995 |
|
|
fpga_load_xfer(response_queue.buf, &local_offset, &i);
|
996 |
|
|
file_size -= i;
|
997 |
|
|
spi_base_adress += i;
|
998 |
|
|
}
|
999 |
|
|
fpga_load_end();
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
USBCS &= ~bmDISCON; /* reconnect USB */
|
1003 |
|
|
|
1004 |
|
|
main_loop();
|
1005 |
|
|
}
|