1 |
5 |
ktt1 |
--------------------------------------------------------------------------------
|
2 |
|
|
-- _ _ __ ____ --
|
3 |
|
|
-- / / | | / _| | __| --
|
4 |
|
|
-- | |_| | _ _ / / | |_ --
|
5 |
|
|
-- | _ | | | | | | | | _| --
|
6 |
|
|
-- | | | | | |_| | \ \_ | |__ --
|
7 |
|
|
-- |_| |_| \_____| \__| |____| microLab --
|
8 |
|
|
-- --
|
9 |
|
|
-- Bern University of Applied Sciences (BFH) --
|
10 |
|
|
-- Quellgasse 21 --
|
11 |
|
|
-- Room HG 4.33 --
|
12 |
|
|
-- 2501 Biel/Bienne --
|
13 |
|
|
-- Switzerland --
|
14 |
|
|
-- --
|
15 |
|
|
-- http://www.microlab.ch --
|
16 |
|
|
--------------------------------------------------------------------------------
|
17 |
|
|
-- GECKO4com
|
18 |
|
|
--
|
19 |
|
|
-- 2010/2011 Dr. Theo Kluter
|
20 |
|
|
--
|
21 |
|
|
-- This VHDL code is free code: you can redistribute it and/or modify
|
22 |
|
|
-- it under the terms of the GNU General Public License as published by
|
23 |
|
|
-- the Free Software Foundation, either version 3 of the License, or
|
24 |
|
|
-- (at your option) any later version.
|
25 |
|
|
--
|
26 |
|
|
-- This VHDL code is distributed in the hope that it will be useful,
|
27 |
|
|
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
28 |
|
|
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
29 |
|
|
-- GNU General Public License for more details.
|
30 |
|
|
-- You should have received a copy of the GNU General Public License
|
31 |
|
|
-- along with these sources. If not, see <http://www.gnu.org/licenses/>.
|
32 |
|
|
--
|
33 |
|
|
|
34 |
|
|
-- The unisim library is used for simulation of the xilinx specific components
|
35 |
|
|
-- For generic usage please use:
|
36 |
|
|
-- LIBRARY work;
|
37 |
|
|
-- USE work.xilinx_generic.all;
|
38 |
|
|
-- And use the xilinx generic package found in the xilinx generic module
|
39 |
|
|
LIBRARY unisim;
|
40 |
|
|
USE unisim.all;
|
41 |
|
|
|
42 |
|
|
ARCHITECTURE no_platform_specific OF fpga_if IS
|
43 |
|
|
|
44 |
|
|
COMPONENT FDE
|
45 |
|
|
GENERIC( INIT : bit );
|
46 |
|
|
PORT ( Q : OUT std_logic;
|
47 |
|
|
C : IN std_logic;
|
48 |
|
|
CE : IN std_logic;
|
49 |
|
|
D : IN std_logic );
|
50 |
|
|
END COMPONENT;
|
51 |
|
|
|
52 |
|
|
COMPONENT FD
|
53 |
|
|
GENERIC( INIT : bit );
|
54 |
|
|
PORT ( Q : OUT std_logic;
|
55 |
|
|
C : IN std_logic;
|
56 |
|
|
D : IN std_logic );
|
57 |
|
|
END COMPONENT;
|
58 |
|
|
|
59 |
|
|
COMPONENT idreg_rom
|
60 |
|
|
PORT( index : IN std_logic_vector( 4 DOWNTO 0 );
|
61 |
|
|
data : OUT std_logic_vector( 7 DOWNTO 0 ) );
|
62 |
|
|
END COMPONENT;
|
63 |
|
|
|
64 |
|
|
COMPONENT fifo_2kb
|
65 |
|
|
PORT ( clock : IN std_logic;
|
66 |
|
|
reset : IN std_logic;
|
67 |
|
|
-- push port
|
68 |
|
|
push : IN std_logic;
|
69 |
|
|
push_data : IN std_logic_vector( 7 DOWNTO 0 );
|
70 |
|
|
push_size : IN std_logic;
|
71 |
|
|
-- pop port
|
72 |
|
|
pop : IN std_logic;
|
73 |
|
|
pop_data : OUT std_logic_vector( 7 DOWNTO 0 );
|
74 |
|
|
pop_size : OUT std_logic;
|
75 |
|
|
-- control port
|
76 |
|
|
fifo_full : OUT std_logic;
|
77 |
|
|
fifo_empty : OUT std_logic );
|
78 |
|
|
END COMPONENT;
|
79 |
|
|
|
80 |
|
|
TYPE FPGA_STATE_TYPE IS (IDLE , RESET_STATE , GENERATE_N_PROG ,
|
81 |
|
|
WAIT_N_INIT_HI , WAIT_AFTER_N_INIT , SET_RDNWR_LO ,
|
82 |
|
|
WAIT_RDNWR_LO , SET_N_CS_LO_WRITE , DO_WRITE ,
|
83 |
|
|
WAIT_DONE , SET_CS_HI_WRITE , WAIT_CS_HI_WRITE ,
|
84 |
|
|
SET_RDNWR_HI , WAIT_RDNWR_HI , SET_CS_LO_READ ,
|
85 |
|
|
DO_READ , SET_CS_HI_READ , WAIT_AFTER_DONE ,
|
86 |
|
|
DO_FLUSH , SIGNAL_ERROR );
|
87 |
|
|
|
88 |
|
|
SIGNAL s_fpga_state_reg : FPGA_STATE_TYPE;
|
89 |
|
|
SIGNAL s_data_to_fpga : std_logic_vector( 7 DOWNTO 0 );
|
90 |
|
|
SIGNAL s_data_from_fpga : std_logic_vector( 7 DOWNTO 0 );
|
91 |
|
|
|
92 |
|
|
SIGNAL s_cclk_reg : std_logic;
|
93 |
|
|
SIGNAL s_n_prog_reg : std_logic;
|
94 |
|
|
SIGNAL s_n_cs_reg : std_logic;
|
95 |
|
|
SIGNAL s_rd_n_wr_reg : std_logic;
|
96 |
|
|
SIGNAL s_n_init : std_logic;
|
97 |
|
|
SIGNAL s_busy : std_logic;
|
98 |
|
|
SIGNAL s_done : std_logic;
|
99 |
|
|
SIGNAL s_ena_in_ffs : std_logic;
|
100 |
|
|
SIGNAL s_ena_out_ffs : std_logic;
|
101 |
|
|
|
102 |
|
|
SIGNAL s_wait_counter_reg : std_logic_vector( 7 DOWNTO 0 );
|
103 |
|
|
SIGNAL s_wait_counter_load : std_logic;
|
104 |
|
|
SIGNAL s_wait_counter_ena : std_logic;
|
105 |
|
|
|
106 |
|
|
SIGNAL s_last_byte : std_logic;
|
107 |
|
|
SIGNAL s_next_idx_byte : std_logic;
|
108 |
|
|
SIGNAL s_last_idx_byte : std_logic;
|
109 |
|
|
SIGNAL s_idx_index_reg : std_logic_vector( 4 DOWNTO 0 );
|
110 |
|
|
SIGNAL s_idx_data : std_logic_vector( 7 DOWNTO 0 );
|
111 |
|
|
SIGNAL s_idx_count_reg : std_logic_vector( 1 DOWNTO 0 );
|
112 |
|
|
SIGNAL s_idx_valid_reg : std_logic;
|
113 |
|
|
SIGNAL s_idx_valid : std_logic;
|
114 |
|
|
SIGNAL s_first_time_reg : std_logic;
|
115 |
|
|
|
116 |
|
|
SIGNAL s_fpga_rev_reg : std_logic_vector( 3 DOWNTO 0 );
|
117 |
|
|
SIGNAL s_fpga_type_reg : std_logic_vector( 2 DOWNTO 0 );
|
118 |
|
|
SIGNAL s_valid_out_byte : std_logic;
|
119 |
|
|
SIGNAL s_n_cs_next : std_logic;
|
120 |
|
|
|
121 |
|
|
SIGNAL s_fifo_pop : std_logic;
|
122 |
|
|
SIGNAL s_fifo_data : std_logic_vector( 7 DOWNTO 0 );
|
123 |
|
|
SIGNAL s_fifo_last_byte : std_logic;
|
124 |
|
|
SIGNAL s_fifo_empty : std_logic;
|
125 |
|
|
SIGNAL s_ena_fpga_data_in : std_logic;
|
126 |
|
|
SIGNAL s_ena_data_to_fpga : std_logic;
|
127 |
|
|
|
128 |
|
|
BEGIN
|
129 |
|
|
fpga_revision <= s_fpga_rev_reg;
|
130 |
|
|
fpga_configured <= s_done;
|
131 |
|
|
fpga_idle <= '1' WHEN s_fpga_state_reg = IDLE ELSE '0';
|
132 |
|
|
|
133 |
|
|
fpga_type <= s_fpga_type_reg;
|
134 |
|
|
|
135 |
|
|
s_data_to_fpga <= (OTHERS => '1') WHEN
|
136 |
|
|
s_fpga_state_reg = GENERATE_N_PROG
|
137 |
|
|
ELSE
|
138 |
|
|
s_idx_data WHEN s_first_time_reg = '1' ELSE
|
139 |
|
|
s_fifo_data;
|
140 |
|
|
fpga_n_tri <= X"00" WHEN s_rd_n_wr_reg = '0' ELSE (OTHERS => '1');
|
141 |
|
|
fpga_data_in_ena <= s_ena_fpga_data_in;
|
142 |
|
|
fpga_data_out_ena <= s_ena_data_to_fpga;
|
143 |
|
|
|
144 |
|
|
swap: FOR n IN 7 DOWNTO 0 GENERATE
|
145 |
|
|
fpga_data_out(7-n) <= s_data_to_fpga(n);
|
146 |
|
|
s_data_from_fpga(7-n) <= fpga_data_in(n);
|
147 |
|
|
-- For simulation mask above and unmask below
|
148 |
|
|
-- in_ff : FDE
|
149 |
|
|
-- GENERIC MAP (INIT => '1')
|
150 |
|
|
-- PORT MAP ( Q => s_data_from_fpga(n),
|
151 |
|
|
-- CE => s_ena_fpga_data_in,
|
152 |
|
|
-- C => clock,
|
153 |
|
|
-- D => fpga_data_in(n));
|
154 |
|
|
-- one_ff : FDE
|
155 |
|
|
-- GENERIC MAP ( INIT => '1' )
|
156 |
|
|
-- PORT MAP ( Q => fpga_data_out(n),
|
157 |
|
|
-- CE => s_ena_data_to_fpga,
|
158 |
|
|
-- C => clock,
|
159 |
|
|
-- D => s_data_to_fpga(n) );
|
160 |
|
|
END GENERATE swap;
|
161 |
|
|
|
162 |
|
|
-------------------------------------------------------------------------------
|
163 |
|
|
--- here all control signals are defined ---
|
164 |
|
|
-------------------------------------------------------------------------------
|
165 |
|
|
s_ena_in_ffs <= s_cclk_reg;
|
166 |
|
|
s_ena_out_ffs <= NOT(s_cclk_reg);
|
167 |
|
|
s_last_byte <= s_last_idx_byte WHEN s_first_time_reg = '1' ELSE
|
168 |
|
|
s_fifo_last_byte;
|
169 |
|
|
s_valid_out_byte <= s_ena_out_ffs
|
170 |
|
|
WHEN
|
171 |
|
|
s_fpga_state_reg = DO_WRITE AND
|
172 |
|
|
NOT (s_n_cs_reg = '0' AND
|
173 |
|
|
s_busy = '1') AND
|
174 |
|
|
(s_first_time_reg = '1' OR
|
175 |
|
|
s_fifo_empty = '0')
|
176 |
|
|
ELSE '0';
|
177 |
|
|
s_n_cs_next <= '0' WHEN s_fpga_state_reg = DO_READ OR
|
178 |
|
|
(s_fpga_state_reg = DO_WRITE AND
|
179 |
|
|
s_valid_out_byte = '1') OR
|
180 |
|
|
(s_n_cs_reg = '0' AND
|
181 |
|
|
s_busy = '1') ELSE '1';
|
182 |
|
|
s_ena_fpga_data_in <= s_ena_in_ffs WHEN
|
183 |
|
|
s_fpga_state_reg = DO_READ
|
184 |
|
|
ELSE '0';
|
185 |
|
|
s_ena_data_to_fpga <= '1' WHEN
|
186 |
|
|
s_valid_out_byte = '1' OR
|
187 |
|
|
s_fpga_state_reg = GENERATE_N_PROG
|
188 |
|
|
ELSE '0';
|
189 |
|
|
|
190 |
|
|
-------------------------------------------------------------------------------
|
191 |
|
|
--- Here the IOB intermediate flipflops are defined ---
|
192 |
|
|
-------------------------------------------------------------------------------
|
193 |
|
|
make_cclk_reg : PROCESS( clock , reset , s_fpga_state_reg )
|
194 |
|
|
BEGIN
|
195 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
196 |
|
|
IF (reset = '1' OR
|
197 |
|
|
s_fpga_state_reg = IDLE) THEN s_cclk_reg <= '1';
|
198 |
|
|
ELSE s_cclk_reg <= NOT(s_cclk_reg);
|
199 |
|
|
END IF;
|
200 |
|
|
END IF;
|
201 |
|
|
END PROCESS make_cclk_reg;
|
202 |
|
|
|
203 |
|
|
make_n_prog_reg : PROCESS( clock , s_fpga_state_reg )
|
204 |
|
|
BEGIN
|
205 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
206 |
|
|
IF (s_fpga_state_reg = GENERATE_N_PROG) THEN s_n_prog_reg <= '0';
|
207 |
|
|
ELSE s_n_prog_reg <= '1';
|
208 |
|
|
END IF;
|
209 |
|
|
END IF;
|
210 |
|
|
END PROCESS make_n_prog_reg;
|
211 |
|
|
|
212 |
|
|
make_n_cs_reg : PROCESS( clock , s_ena_out_ffs )
|
213 |
|
|
BEGIN
|
214 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
215 |
|
|
IF (s_ena_out_ffs = '1') THEN
|
216 |
|
|
s_n_cs_reg <= s_n_cs_next;
|
217 |
|
|
END IF;
|
218 |
|
|
END IF;
|
219 |
|
|
END PROCESS make_n_cs_reg;
|
220 |
|
|
|
221 |
|
|
make_rd_n_wr_reg : PROCESS( clock , reset , s_fpga_state_reg )
|
222 |
|
|
BEGIN
|
223 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
224 |
|
|
IF (reset = '1' OR
|
225 |
|
|
s_fpga_state_reg = RESET_STATE OR
|
226 |
|
|
s_fpga_state_reg = SET_RDNWR_HI OR
|
227 |
|
|
s_fpga_state_reg = DO_FLUSH) THEN s_rd_n_wr_reg <= '1';
|
228 |
|
|
ELSIF (s_fpga_state_reg = SET_RDNWR_LO) THEN s_rd_n_wr_reg <= '0';
|
229 |
|
|
END IF;
|
230 |
|
|
END IF;
|
231 |
|
|
END PROCESS make_rd_n_wr_reg;
|
232 |
|
|
|
233 |
|
|
make_crc_error : PROCESS( clock , s_fpga_state_reg )
|
234 |
|
|
BEGIN
|
235 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
236 |
|
|
IF (s_fpga_state_reg = RESET_STATE) THEN fpga_crc_error <= '0';
|
237 |
|
|
ELSIF (s_fpga_state_reg = SIGNAL_ERROR) THEN fpga_crc_error <= '1';
|
238 |
|
|
END IF;
|
239 |
|
|
END IF;
|
240 |
|
|
END PROCESS make_crc_error;
|
241 |
|
|
|
242 |
|
|
-------------------------------------------------------------------------------
|
243 |
|
|
--- Here the state machine is defined ---
|
244 |
|
|
-------------------------------------------------------------------------------
|
245 |
|
|
fpga_state_machine : PROCESS( clock , reset , s_fpga_state_reg ,
|
246 |
|
|
s_wait_counter_reg , s_n_init , s_idx_valid ,
|
247 |
|
|
s_idx_count_reg )
|
248 |
|
|
VARIABLE v_next_state : FPGA_STATE_TYPE;
|
249 |
|
|
BEGIN
|
250 |
|
|
CASE (s_fpga_state_reg) IS
|
251 |
|
|
WHEN RESET_STATE => v_next_state := GENERATE_N_PROG;
|
252 |
|
|
WHEN GENERATE_N_PROG => IF (s_wait_counter_reg(7) = '1' AND
|
253 |
|
|
s_n_init = '0') THEN
|
254 |
|
|
v_next_state := WAIT_N_INIT_HI;
|
255 |
|
|
ELSE
|
256 |
|
|
v_next_state := GENERATE_N_PROG;
|
257 |
|
|
END IF;
|
258 |
|
|
WHEN WAIT_N_INIT_HI => IF (s_n_init = '1') THEN
|
259 |
|
|
v_next_state := WAIT_AFTER_N_INIT;
|
260 |
|
|
ELSE
|
261 |
|
|
v_next_state := WAIT_N_INIT_HI;
|
262 |
|
|
END IF;
|
263 |
|
|
WHEN WAIT_AFTER_N_INIT => IF (s_wait_counter_reg(7) = '1') THEN
|
264 |
|
|
v_next_state := SET_RDNWR_LO;
|
265 |
|
|
ELSE
|
266 |
|
|
v_next_state := WAIT_AFTER_N_INIT;
|
267 |
|
|
END IF;
|
268 |
|
|
WHEN SET_RDNWR_LO => v_next_state := WAIT_RDNWR_LO;
|
269 |
|
|
WHEN WAIT_RDNWR_LO => IF (s_wait_counter_reg(7) = '1' AND
|
270 |
|
|
s_ena_out_ffs = '1') THEN
|
271 |
|
|
v_next_state := SET_N_CS_LO_WRITE;
|
272 |
|
|
ELSE
|
273 |
|
|
v_next_state := WAIT_RDNWR_LO;
|
274 |
|
|
END IF;
|
275 |
|
|
WHEN SET_N_CS_LO_WRITE => v_next_state := DO_WRITE;
|
276 |
|
|
WHEN DO_WRITE => IF (s_last_byte = '1' AND
|
277 |
|
|
s_valid_out_byte = '1') THEN
|
278 |
|
|
v_next_state := SET_CS_HI_WRITE;
|
279 |
|
|
ELSIF (s_n_init = '0') THEN
|
280 |
|
|
v_next_state := DO_FLUSH;
|
281 |
|
|
ELSE
|
282 |
|
|
v_next_state := DO_WRITE;
|
283 |
|
|
END IF;
|
284 |
|
|
WHEN SET_CS_HI_WRITE => IF (s_n_cs_reg = '1') THEN
|
285 |
|
|
v_next_state := WAIT_CS_HI_WRITE;
|
286 |
|
|
ELSE
|
287 |
|
|
v_next_state := SET_CS_HI_WRITE;
|
288 |
|
|
END IF;
|
289 |
|
|
WHEN WAIT_CS_HI_WRITE => IF (s_wait_counter_reg(7) = '1') THEN
|
290 |
|
|
v_next_state := SET_RDNWR_HI;
|
291 |
|
|
ELSE
|
292 |
|
|
v_next_state := WAIT_CS_HI_WRITE;
|
293 |
|
|
END IF;
|
294 |
|
|
WHEN SET_RDNWR_HI => v_next_state := WAIT_RDNWR_HI;
|
295 |
|
|
WHEN WAIT_RDNWR_HI => IF (s_wait_counter_reg(7) = '1' AND
|
296 |
|
|
s_ena_out_ffs = '1') THEN
|
297 |
|
|
IF (s_first_time_reg = '1') THEN
|
298 |
|
|
v_next_state := SET_CS_LO_READ;
|
299 |
|
|
ELSE
|
300 |
|
|
v_next_state := WAIT_DONE;
|
301 |
|
|
END IF;
|
302 |
|
|
ELSE
|
303 |
|
|
v_next_state := WAIT_RDNWR_HI;
|
304 |
|
|
END IF;
|
305 |
|
|
WHEN SET_CS_LO_READ => v_next_state := DO_READ;
|
306 |
|
|
WHEN DO_READ => IF (s_idx_valid = '1' AND
|
307 |
|
|
s_idx_count_reg = "11") THEN
|
308 |
|
|
v_next_state := SET_CS_HI_READ;
|
309 |
|
|
ELSE
|
310 |
|
|
v_next_state := DO_READ;
|
311 |
|
|
END IF;
|
312 |
|
|
WHEN WAIT_DONE => IF (s_done = '1') THEN
|
313 |
|
|
v_next_state := WAIT_AFTER_DONE;
|
314 |
|
|
ELSE
|
315 |
|
|
v_next_state := WAIT_DONE;
|
316 |
|
|
END IF;
|
317 |
|
|
WHEN WAIT_AFTER_DONE => IF (s_wait_counter_reg(7) = '1') THEN
|
318 |
|
|
v_next_state := IDLE;
|
319 |
|
|
ELSE
|
320 |
|
|
v_next_state := WAIT_AFTER_DONE;
|
321 |
|
|
END IF;
|
322 |
|
|
WHEN IDLE => IF (s_fifo_empty = '0') THEN
|
323 |
|
|
v_next_state := RESET_STATE;
|
324 |
|
|
ELSE
|
325 |
|
|
v_next_state := IDLE;
|
326 |
|
|
END IF;
|
327 |
|
|
WHEN DO_FLUSH => IF (s_last_byte = '1' OR
|
328 |
|
|
s_first_time_reg = '1') THEN
|
329 |
|
|
v_next_state := SIGNAL_ERROR;
|
330 |
|
|
ELSE
|
331 |
|
|
v_next_state := DO_FLUSH;
|
332 |
|
|
END IF;
|
333 |
|
|
WHEN OTHERS => v_next_state := IDLE;
|
334 |
|
|
END CASE;
|
335 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
336 |
|
|
IF (reset = '1') THEN s_fpga_state_reg <= RESET_STATE;
|
337 |
|
|
ELSE s_fpga_state_reg <= v_next_state;
|
338 |
|
|
END IF;
|
339 |
|
|
END IF;
|
340 |
|
|
END PROCESS fpga_state_machine;
|
341 |
|
|
|
342 |
|
|
-------------------------------------------------------------------------------
|
343 |
|
|
--- Here the identification signals are defined ---
|
344 |
|
|
-------------------------------------------------------------------------------
|
345 |
|
|
|
346 |
|
|
s_next_idx_byte <= '1' WHEN
|
347 |
|
|
s_fpga_state_reg = DO_WRITE AND
|
348 |
|
|
s_ena_out_ffs = '1' AND
|
349 |
|
|
NOT( s_n_cs_reg = '0' AND
|
350 |
|
|
s_busy = '1' ) AND
|
351 |
|
|
s_first_time_reg = '1'
|
352 |
|
|
ELSE '0';
|
353 |
|
|
s_last_idx_byte <= '1' WHEN
|
354 |
|
|
s_idx_index_reg = "00000"
|
355 |
|
|
ELSE '0';
|
356 |
|
|
s_idx_valid <= '1' WHEN
|
357 |
|
|
s_idx_valid_reg = '1' AND
|
358 |
|
|
s_first_time_reg = '1' AND
|
359 |
|
|
s_busy = '0'
|
360 |
|
|
ELSE '0';
|
361 |
|
|
|
362 |
|
|
make_idx_valid : PROCESS( clock , s_fpga_state_reg ,
|
363 |
|
|
s_ena_in_ffs )
|
364 |
|
|
BEGIN
|
365 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
366 |
|
|
IF (s_fpga_state_reg = DO_READ) THEN
|
367 |
|
|
s_idx_valid_reg <= s_ena_in_ffs;
|
368 |
|
|
ELSE
|
369 |
|
|
s_idx_valid_reg <= '0';
|
370 |
|
|
END IF;
|
371 |
|
|
END IF;
|
372 |
|
|
END PROCESS make_idx_valid;
|
373 |
|
|
|
374 |
|
|
make_idx_count_reg : PROCESS( clock , reset , s_idx_valid )
|
375 |
|
|
BEGIN
|
376 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
377 |
|
|
IF (reset = '1') THEN s_idx_count_reg <= "00";
|
378 |
|
|
ELSIF (s_idx_valid = '1') THEN
|
379 |
|
|
s_idx_count_reg <= unsigned(s_idx_count_reg) + 1;
|
380 |
|
|
END IF;
|
381 |
|
|
END IF;
|
382 |
|
|
END PROCESS make_idx_count_reg;
|
383 |
|
|
|
384 |
|
|
make_idx_index_reg : PROCESS( clock , reset , s_next_idx_byte )
|
385 |
|
|
BEGIN
|
386 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
387 |
|
|
IF (reset = '1') THEN s_idx_index_reg <= "10011";
|
388 |
|
|
ELSIF (s_next_idx_byte = '1') THEN
|
389 |
|
|
s_idx_index_reg <= unsigned(s_idx_index_reg) - 1;
|
390 |
|
|
END IF;
|
391 |
|
|
END IF;
|
392 |
|
|
END PROCESS make_idx_index_reg;
|
393 |
|
|
|
394 |
|
|
make_fpga_rev_reg : PROCESS( clock , reset , s_idx_valid ,
|
395 |
|
|
s_idx_count_reg , s_data_from_fpga )
|
396 |
|
|
BEGIN
|
397 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
398 |
|
|
IF (reset = '1') THEN s_fpga_rev_reg <= X"F";
|
399 |
|
|
ELSIF (s_idx_valid = '1' AND
|
400 |
|
|
s_idx_count_reg = "00") THEN
|
401 |
|
|
s_fpga_rev_reg <= s_data_from_fpga( 7 DOWNTO 4 );
|
402 |
|
|
END IF;
|
403 |
|
|
END IF;
|
404 |
|
|
END PROCESS make_fpga_rev_reg;
|
405 |
|
|
|
406 |
|
|
make_fpga_type_reg : PROCESS( clock , reset , s_idx_valid ,
|
407 |
|
|
s_idx_count_reg , s_data_from_fpga )
|
408 |
|
|
BEGIN
|
409 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
410 |
|
|
IF (reset = '1') THEN s_fpga_type_reg <= "111";
|
411 |
|
|
ELSIF (s_idx_valid = '1') THEN
|
412 |
|
|
CASE (s_idx_count_reg) IS
|
413 |
|
|
WHEN "00" => IF (s_data_from_fpga(3 DOWNTO 0) = X"1") THEN
|
414 |
|
|
s_fpga_type_reg <= "000";
|
415 |
|
|
ELSE
|
416 |
|
|
s_fpga_type_reg <= "111";
|
417 |
|
|
END IF;
|
418 |
|
|
WHEN "01" => CASE (s_data_from_fpga) IS
|
419 |
|
|
WHEN X"42" => NULL;
|
420 |
|
|
WHEN X"43" => s_fpga_type_reg(0) <= '1';
|
421 |
|
|
WHEN X"44" => s_fpga_type_reg(1) <= '1';
|
422 |
|
|
WHEN X"45" => s_fpga_type_reg(2) <= '1';
|
423 |
|
|
WHEN OTHERS=> s_fpga_type_reg <= "111";
|
424 |
|
|
END CASE;
|
425 |
|
|
WHEN "10" => CASE (s_data_from_fpga) IS
|
426 |
|
|
WHEN X"00" |
|
427 |
|
|
X"40" => NULL;
|
428 |
|
|
WHEN X"80" => s_fpga_type_reg(0) <=
|
429 |
|
|
s_fpga_type_reg(1);
|
430 |
|
|
WHEN OTHERS => s_fpga_type_reg <= "111";
|
431 |
|
|
END CASE;
|
432 |
|
|
WHEN OTHERS => IF (s_data_from_fpga /= X"93") THEN
|
433 |
|
|
s_fpga_type_reg <= "111";
|
434 |
|
|
END IF;
|
435 |
|
|
END CASE;
|
436 |
|
|
END IF;
|
437 |
|
|
END IF;
|
438 |
|
|
END PROCESS make_fpga_type_reg;
|
439 |
|
|
|
440 |
|
|
make_first_time_reg : PROCESS( clock , reset , s_fpga_state_reg )
|
441 |
|
|
BEGIN
|
442 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
443 |
|
|
IF (reset = '1') THEN s_first_time_reg <= '1';
|
444 |
|
|
ELSIF (s_fpga_state_reg = SET_CS_HI_READ) THEN s_first_time_reg <= '0';
|
445 |
|
|
END IF;
|
446 |
|
|
END IF;
|
447 |
|
|
END PROCESS make_first_time_reg;
|
448 |
|
|
|
449 |
|
|
idx_rom : idreg_rom
|
450 |
|
|
PORT MAP ( index => s_idx_index_reg,
|
451 |
|
|
data => s_idx_data );
|
452 |
|
|
|
453 |
|
|
|
454 |
|
|
-------------------------------------------------------------------------------
|
455 |
|
|
--- Here the wait counter is defined ---
|
456 |
|
|
-------------------------------------------------------------------------------
|
457 |
|
|
|
458 |
|
|
s_wait_counter_load <= '1' WHEN
|
459 |
|
|
s_fpga_state_reg = RESET_STATE OR
|
460 |
|
|
s_fpga_state_reg = WAIT_N_INIT_HI OR
|
461 |
|
|
s_fpga_state_reg = SET_RDNWR_LO OR
|
462 |
|
|
s_fpga_state_reg = SET_CS_HI_WRITE OR
|
463 |
|
|
s_fpga_state_reg = SET_RDNWR_HI OR
|
464 |
|
|
s_fpga_state_reg = WAIT_DONE
|
465 |
|
|
ELSE '0';
|
466 |
|
|
s_wait_counter_ena <= NOT(s_wait_counter_reg(7))
|
467 |
|
|
WHEN
|
468 |
|
|
s_fpga_state_reg = GENERATE_N_PROG OR
|
469 |
|
|
s_fpga_state_reg = WAIT_AFTER_N_INIT OR
|
470 |
|
|
s_fpga_state_reg = WAIT_RDNWR_LO OR
|
471 |
|
|
s_fpga_state_reg = WAIT_CS_HI_WRITE OR
|
472 |
|
|
s_fpga_state_reg = WAIT_RDNWR_HI OR
|
473 |
|
|
s_fpga_state_reg = WAIT_AFTER_DONE
|
474 |
|
|
ELSE '0';
|
475 |
|
|
|
476 |
|
|
make_wait_counter_reg : PROCESS( clock , s_wait_counter_load ,
|
477 |
|
|
s_wait_counter_ena )
|
478 |
|
|
BEGIN
|
479 |
|
|
IF (clock'event AND (clock = '1')) THEN
|
480 |
|
|
IF (s_wait_counter_load = '1') THEN
|
481 |
|
|
s_wait_counter_reg <= X"7F";
|
482 |
|
|
ELSIF (s_wait_counter_ena = '1') THEN
|
483 |
|
|
s_wait_counter_reg <= unsigned(s_wait_counter_reg) - 1;
|
484 |
|
|
END IF;
|
485 |
|
|
END IF;
|
486 |
|
|
END PROCESS make_wait_counter_reg;
|
487 |
|
|
|
488 |
|
|
-------------------------------------------------------------------------------
|
489 |
|
|
--- Here the bitfile handling is defined ---
|
490 |
|
|
-------------------------------------------------------------------------------
|
491 |
|
|
s_fifo_pop <= '1' WHEN s_first_time_reg = '0' AND
|
492 |
|
|
(s_valid_out_byte = '1' OR
|
493 |
|
|
s_fpga_state_reg = DO_FLUSH ) ELSE '0';
|
494 |
|
|
|
495 |
|
|
bitfifo : fifo_2kb
|
496 |
|
|
PORT MAP ( clock => clock,
|
497 |
|
|
reset => reset,
|
498 |
|
|
-- push port
|
499 |
|
|
push => push,
|
500 |
|
|
push_data => push_data,
|
501 |
|
|
push_size => last_byte,
|
502 |
|
|
-- pop port
|
503 |
|
|
pop => s_fifo_pop,
|
504 |
|
|
pop_data => s_fifo_data,
|
505 |
|
|
pop_size => s_fifo_last_byte,
|
506 |
|
|
-- control port
|
507 |
|
|
fifo_full => fifo_full,
|
508 |
|
|
fifo_empty => s_fifo_empty );
|
509 |
|
|
|
510 |
|
|
|
511 |
|
|
-------------------------------------------------------------------------------
|
512 |
|
|
--- Here the IOB flipflops are defined ---
|
513 |
|
|
-------------------------------------------------------------------------------
|
514 |
|
|
cclk_ff : FD
|
515 |
|
|
GENERIC MAP ( INIT => '1' )
|
516 |
|
|
PORT MAP ( Q => fpga_cclk,
|
517 |
|
|
C => clock,
|
518 |
|
|
D => s_cclk_reg );
|
519 |
|
|
n_prog_ff : FD
|
520 |
|
|
GENERIC MAP ( INIT => '1' )
|
521 |
|
|
PORT MAP ( Q => fpga_n_prog,
|
522 |
|
|
C => clock,
|
523 |
|
|
D => s_n_prog_reg );
|
524 |
|
|
n_cs_ff : FDE
|
525 |
|
|
GENERIC MAP ( INIT => '1' )
|
526 |
|
|
PORT MAP ( Q => fpga_n_cs,
|
527 |
|
|
C => clock,
|
528 |
|
|
CE => s_ena_out_ffs,
|
529 |
|
|
D => s_n_cs_next );
|
530 |
|
|
rd_n_wr_ff : FDE
|
531 |
|
|
GENERIC MAP ( INIT => '1' )
|
532 |
|
|
PORT MAP ( Q => fpga_rd_n_wr,
|
533 |
|
|
C => clock,
|
534 |
|
|
CE => s_ena_out_ffs,
|
535 |
|
|
D => s_rd_n_wr_reg );
|
536 |
|
|
n_init_ff : FDE
|
537 |
|
|
GENERIC MAP ( INIT => '1' )
|
538 |
|
|
PORT MAP ( Q => s_n_init,
|
539 |
|
|
C => clock,
|
540 |
|
|
CE => s_ena_in_ffs,
|
541 |
|
|
D => fpga_n_init );
|
542 |
|
|
busy_ff : FDE
|
543 |
|
|
GENERIC MAP ( INIT => '0' )
|
544 |
|
|
PORT MAP ( Q => s_busy,
|
545 |
|
|
C => clock,
|
546 |
|
|
CE => s_ena_in_ffs,
|
547 |
|
|
D => fpga_busy );
|
548 |
|
|
done_ff : FDE
|
549 |
|
|
GENERIC MAP ( INIT => '0' )
|
550 |
|
|
PORT MAP ( Q => s_done,
|
551 |
|
|
C => clock,
|
552 |
|
|
CE => s_ena_in_ffs,
|
553 |
|
|
D => fpga_done );
|
554 |
|
|
|
555 |
|
|
END no_platform_specific;
|