1 |
13 |
serginhofr |
/* Subroutines used for code generation for RISC-V.
|
2 |
|
|
Copyright (C) 2011-2014 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley.
|
4 |
|
|
Based on MIPS target for GNU compiler.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "regs.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "insn-config.h"
|
30 |
|
|
#include "conditions.h"
|
31 |
|
|
#include "insn-attr.h"
|
32 |
|
|
#include "recog.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "hash-set.h"
|
35 |
|
|
#include "machmode.h"
|
36 |
|
|
#include "vec.h"
|
37 |
|
|
#include "double-int.h"
|
38 |
|
|
#include "input.h"
|
39 |
|
|
#include "alias.h"
|
40 |
|
|
#include "symtab.h"
|
41 |
|
|
#include "wide-int.h"
|
42 |
|
|
#include "inchash.h"
|
43 |
|
|
#include "tree.h"
|
44 |
|
|
#include "fold-const.h"
|
45 |
|
|
#include "varasm.h"
|
46 |
|
|
#include "stringpool.h"
|
47 |
|
|
#include "stor-layout.h"
|
48 |
|
|
#include "calls.h"
|
49 |
|
|
#include "function.h"
|
50 |
|
|
#include "hashtab.h"
|
51 |
|
|
#include "flags.h"
|
52 |
|
|
#include "statistics.h"
|
53 |
|
|
#include "real.h"
|
54 |
|
|
#include "fixed-value.h"
|
55 |
|
|
#include "expmed.h"
|
56 |
|
|
#include "dojump.h"
|
57 |
|
|
#include "explow.h"
|
58 |
|
|
#include "emit-rtl.h"
|
59 |
|
|
#include "stmt.h"
|
60 |
|
|
#include "expr.h"
|
61 |
|
|
#include "insn-codes.h"
|
62 |
|
|
#include "optabs.h"
|
63 |
|
|
#include "libfuncs.h"
|
64 |
|
|
#include "reload.h"
|
65 |
|
|
#include "tm_p.h"
|
66 |
|
|
#include "ggc.h"
|
67 |
|
|
#include "gstab.h"
|
68 |
|
|
#include "hash-table.h"
|
69 |
|
|
#include "debug.h"
|
70 |
|
|
#include "target.h"
|
71 |
|
|
#include "target-def.h"
|
72 |
|
|
#include "common/common-target.h"
|
73 |
|
|
#include "langhooks.h"
|
74 |
|
|
#include "dominance.h"
|
75 |
|
|
#include "cfg.h"
|
76 |
|
|
#include "cfgrtl.h"
|
77 |
|
|
#include "cfganal.h"
|
78 |
|
|
#include "lcm.h"
|
79 |
|
|
#include "cfgbuild.h"
|
80 |
|
|
#include "cfgcleanup.h"
|
81 |
|
|
#include "predict.h"
|
82 |
|
|
#include "basic-block.h"
|
83 |
|
|
#include "sched-int.h"
|
84 |
|
|
#include "tree-ssa-alias.h"
|
85 |
|
|
#include "internal-fn.h"
|
86 |
|
|
#include "gimple-fold.h"
|
87 |
|
|
#include "tree-eh.h"
|
88 |
|
|
#include "gimple-expr.h"
|
89 |
|
|
#include "is-a.h"
|
90 |
|
|
#include "gimple.h"
|
91 |
|
|
#include "gimplify.h"
|
92 |
|
|
#include "bitmap.h"
|
93 |
|
|
#include "diagnostic.h"
|
94 |
|
|
#include "target-globals.h"
|
95 |
|
|
#include "opts.h"
|
96 |
|
|
#include "tree-pass.h"
|
97 |
|
|
#include "context.h"
|
98 |
|
|
#include "hash-map.h"
|
99 |
|
|
#include "plugin-api.h"
|
100 |
|
|
#include "ipa-ref.h"
|
101 |
|
|
#include "cgraph.h"
|
102 |
|
|
#include "builtins.h"
|
103 |
|
|
#include "rtl-iter.h"
|
104 |
|
|
#include <stdint.h>
|
105 |
|
|
|
106 |
|
|
/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
|
107 |
|
|
#define UNSPEC_ADDRESS_P(X) \
|
108 |
|
|
(GET_CODE (X) == UNSPEC \
|
109 |
|
|
&& XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
|
110 |
|
|
&& XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
|
111 |
|
|
|
112 |
|
|
/* Extract the symbol or label from UNSPEC wrapper X. */
|
113 |
|
|
#define UNSPEC_ADDRESS(X) \
|
114 |
|
|
XVECEXP (X, 0, 0)
|
115 |
|
|
|
116 |
|
|
/* Extract the symbol type from UNSPEC wrapper X. */
|
117 |
|
|
#define UNSPEC_ADDRESS_TYPE(X) \
|
118 |
|
|
((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
|
119 |
|
|
|
120 |
|
|
/* The maximum distance between the top of the stack frame and the
|
121 |
|
|
value sp has when we save and restore registers. This is set by the
|
122 |
|
|
range of load/store offsets and must also preserve stack alignment. */
|
123 |
|
|
#define RISCV_MAX_FIRST_STACK_STEP (IMM_REACH/2 - 16)
|
124 |
|
|
|
125 |
|
|
/* True if INSN is a riscv.md pattern or asm statement. */
|
126 |
|
|
#define USEFUL_INSN_P(INSN) \
|
127 |
|
|
(NONDEBUG_INSN_P (INSN) \
|
128 |
|
|
&& GET_CODE (PATTERN (INSN)) != USE \
|
129 |
|
|
&& GET_CODE (PATTERN (INSN)) != CLOBBER \
|
130 |
|
|
&& GET_CODE (PATTERN (INSN)) != ADDR_VEC \
|
131 |
|
|
&& GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
|
132 |
|
|
|
133 |
|
|
/* True if bit BIT is set in VALUE. */
|
134 |
|
|
#define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
|
135 |
|
|
|
136 |
|
|
/* Classifies an address.
|
137 |
|
|
|
138 |
|
|
ADDRESS_REG
|
139 |
|
|
A natural register + offset address. The register satisfies
|
140 |
|
|
riscv_valid_base_register_p and the offset is a const_arith_operand.
|
141 |
|
|
|
142 |
|
|
ADDRESS_LO_SUM
|
143 |
|
|
A LO_SUM rtx. The first operand is a valid base register and
|
144 |
|
|
the second operand is a symbolic address.
|
145 |
|
|
|
146 |
|
|
ADDRESS_CONST_INT
|
147 |
|
|
A signed 16-bit constant address.
|
148 |
|
|
|
149 |
|
|
ADDRESS_SYMBOLIC:
|
150 |
|
|
A constant symbolic address. */
|
151 |
|
|
enum riscv_address_type {
|
152 |
|
|
ADDRESS_REG,
|
153 |
|
|
ADDRESS_LO_SUM,
|
154 |
|
|
ADDRESS_CONST_INT,
|
155 |
|
|
ADDRESS_SYMBOLIC
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
enum riscv_code_model riscv_cmodel = TARGET_DEFAULT_CMODEL;
|
159 |
|
|
|
160 |
|
|
/* Macros to create an enumeration identifier for a function prototype. */
|
161 |
|
|
#define RISCV_FTYPE_NAME1(A, B) RISCV_##A##_FTYPE_##B
|
162 |
|
|
#define RISCV_FTYPE_NAME2(A, B, C) RISCV_##A##_FTYPE_##B##_##C
|
163 |
|
|
#define RISCV_FTYPE_NAME3(A, B, C, D) RISCV_##A##_FTYPE_##B##_##C##_##D
|
164 |
|
|
#define RISCV_FTYPE_NAME4(A, B, C, D, E) RISCV_##A##_FTYPE_##B##_##C##_##D##_##E
|
165 |
|
|
|
166 |
|
|
/* Classifies the prototype of a built-in function. */
|
167 |
|
|
enum riscv_function_type {
|
168 |
|
|
#define DEF_RISCV_FTYPE(NARGS, LIST) RISCV_FTYPE_NAME##NARGS LIST,
|
169 |
|
|
#include "config/riscv/riscv-ftypes.def"
|
170 |
|
|
#undef DEF_RISCV_FTYPE
|
171 |
|
|
RISCV_MAX_FTYPE_MAX
|
172 |
|
|
};
|
173 |
|
|
|
174 |
|
|
/* Specifies how a built-in function should be converted into rtl. */
|
175 |
|
|
enum riscv_builtin_type {
|
176 |
|
|
/* The function corresponds directly to an .md pattern. The return
|
177 |
|
|
value is mapped to operand 0 and the arguments are mapped to
|
178 |
|
|
operands 1 and above. */
|
179 |
|
|
RISCV_BUILTIN_DIRECT,
|
180 |
|
|
|
181 |
|
|
/* The function corresponds directly to an .md pattern. There is no return
|
182 |
|
|
value and the arguments are mapped to operands 0 and above. */
|
183 |
|
|
RISCV_BUILTIN_DIRECT_NO_TARGET
|
184 |
|
|
};
|
185 |
|
|
|
186 |
|
|
/* Information about a function's frame layout. */
|
187 |
|
|
struct GTY(()) riscv_frame_info {
|
188 |
|
|
/* The size of the frame in bytes. */
|
189 |
|
|
HOST_WIDE_INT total_size;
|
190 |
|
|
|
191 |
|
|
/* Bit X is set if the function saves or restores GPR X. */
|
192 |
|
|
unsigned int mask;
|
193 |
|
|
|
194 |
|
|
/* Likewise FPR X. */
|
195 |
|
|
unsigned int fmask;
|
196 |
|
|
|
197 |
|
|
/* How much the GPR save/restore routines adjust sp (or 0 if unused). */
|
198 |
|
|
unsigned save_libcall_adjustment;
|
199 |
|
|
|
200 |
|
|
/* Offsets of fixed-point and floating-point save areas from frame bottom */
|
201 |
|
|
HOST_WIDE_INT gp_sp_offset;
|
202 |
|
|
HOST_WIDE_INT fp_sp_offset;
|
203 |
|
|
|
204 |
|
|
/* Offset of virtual frame pointer from stack pointer/frame bottom */
|
205 |
|
|
HOST_WIDE_INT frame_pointer_offset;
|
206 |
|
|
|
207 |
|
|
/* Offset of hard frame pointer from stack pointer/frame bottom */
|
208 |
|
|
HOST_WIDE_INT hard_frame_pointer_offset;
|
209 |
|
|
|
210 |
|
|
/* The offset of arg_pointer_rtx from the bottom of the frame. */
|
211 |
|
|
HOST_WIDE_INT arg_pointer_offset;
|
212 |
|
|
};
|
213 |
|
|
|
214 |
|
|
struct GTY(()) machine_function {
|
215 |
|
|
/* The number of extra stack bytes taken up by register varargs.
|
216 |
|
|
This area is allocated by the callee at the very top of the frame. */
|
217 |
|
|
int varargs_size;
|
218 |
|
|
|
219 |
|
|
/* Cached return value of leaf_function_p. <0 if false, >0 if true. */
|
220 |
|
|
int is_leaf;
|
221 |
|
|
|
222 |
|
|
/* The current frame information, calculated by riscv_compute_frame_info. */
|
223 |
|
|
struct riscv_frame_info frame;
|
224 |
|
|
};
|
225 |
|
|
|
226 |
|
|
/* Information about a single argument. */
|
227 |
|
|
struct riscv_arg_info {
|
228 |
|
|
/* True if the argument is passed in a floating-point register, or
|
229 |
|
|
would have been if we hadn't run out of registers. */
|
230 |
|
|
bool fpr_p;
|
231 |
|
|
|
232 |
|
|
/* The number of words passed in registers, rounded up. */
|
233 |
|
|
unsigned int reg_words;
|
234 |
|
|
|
235 |
|
|
/* For EABI, the offset of the first register from GP_ARG_FIRST or
|
236 |
|
|
FP_ARG_FIRST. For other ABIs, the offset of the first register from
|
237 |
|
|
the start of the ABI's argument structure (see the CUMULATIVE_ARGS
|
238 |
|
|
comment for details).
|
239 |
|
|
|
240 |
|
|
The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
|
241 |
|
|
on the stack. */
|
242 |
|
|
unsigned int reg_offset;
|
243 |
|
|
|
244 |
|
|
/* The number of words that must be passed on the stack, rounded up. */
|
245 |
|
|
unsigned int stack_words;
|
246 |
|
|
|
247 |
|
|
/* The offset from the start of the stack overflow area of the argument's
|
248 |
|
|
first stack word. Only meaningful when STACK_WORDS is nonzero. */
|
249 |
|
|
unsigned int stack_offset;
|
250 |
|
|
};
|
251 |
|
|
|
252 |
|
|
/* Information about an address described by riscv_address_type.
|
253 |
|
|
|
254 |
|
|
ADDRESS_CONST_INT
|
255 |
|
|
No fields are used.
|
256 |
|
|
|
257 |
|
|
ADDRESS_REG
|
258 |
|
|
REG is the base register and OFFSET is the constant offset.
|
259 |
|
|
|
260 |
|
|
ADDRESS_LO_SUM
|
261 |
|
|
REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
|
262 |
|
|
is the type of symbol it references.
|
263 |
|
|
|
264 |
|
|
ADDRESS_SYMBOLIC
|
265 |
|
|
SYMBOL_TYPE is the type of symbol that the address references. */
|
266 |
|
|
struct riscv_address_info {
|
267 |
|
|
enum riscv_address_type type;
|
268 |
|
|
rtx reg;
|
269 |
|
|
rtx offset;
|
270 |
|
|
enum riscv_symbol_type symbol_type;
|
271 |
|
|
};
|
272 |
|
|
|
273 |
|
|
/* One stage in a constant building sequence. These sequences have
|
274 |
|
|
the form:
|
275 |
|
|
|
276 |
|
|
A = VALUE[0]
|
277 |
|
|
A = A CODE[1] VALUE[1]
|
278 |
|
|
A = A CODE[2] VALUE[2]
|
279 |
|
|
...
|
280 |
|
|
|
281 |
|
|
where A is an accumulator, each CODE[i] is a binary rtl operation
|
282 |
|
|
and each VALUE[i] is a constant integer. CODE[0] is undefined. */
|
283 |
|
|
struct riscv_integer_op {
|
284 |
|
|
enum rtx_code code;
|
285 |
|
|
unsigned HOST_WIDE_INT value;
|
286 |
|
|
};
|
287 |
|
|
|
288 |
|
|
/* The largest number of operations needed to load an integer constant.
|
289 |
|
|
The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI,
|
290 |
|
|
but we may attempt and reject even worse sequences. */
|
291 |
|
|
#define RISCV_MAX_INTEGER_OPS 32
|
292 |
|
|
|
293 |
|
|
/* Costs of various operations on the different architectures. */
|
294 |
|
|
|
295 |
|
|
struct riscv_tune_info
|
296 |
|
|
{
|
297 |
|
|
unsigned short fp_add[2];
|
298 |
|
|
unsigned short fp_mul[2];
|
299 |
|
|
unsigned short fp_div[2];
|
300 |
|
|
unsigned short int_mul[2];
|
301 |
|
|
unsigned short int_div[2];
|
302 |
|
|
unsigned short issue_rate;
|
303 |
|
|
unsigned short branch_cost;
|
304 |
|
|
unsigned short memory_cost;
|
305 |
|
|
};
|
306 |
|
|
|
307 |
|
|
/* Information about one CPU we know about. */
|
308 |
|
|
struct riscv_cpu_info {
|
309 |
|
|
/* This CPU's canonical name. */
|
310 |
|
|
const char *name;
|
311 |
|
|
|
312 |
|
|
/* The RISC-V ISA and extensions supported by this CPU. */
|
313 |
|
|
const char *isa;
|
314 |
|
|
|
315 |
|
|
/* Tuning parameters for this CPU. */
|
316 |
|
|
const struct riscv_tune_info *tune_info;
|
317 |
|
|
};
|
318 |
|
|
|
319 |
|
|
/* Global variables for machine-dependent things. */
|
320 |
|
|
|
321 |
|
|
/* Which tuning parameters to use. */
|
322 |
|
|
static const struct riscv_tune_info *tune_info;
|
323 |
|
|
|
324 |
|
|
/* Index [M][R] is true if register R is allowed to hold a value of mode M. */
|
325 |
|
|
bool riscv_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
|
326 |
|
|
|
327 |
|
|
/* riscv_lo_relocs[X] is the relocation to use when a symbol of type X
|
328 |
|
|
appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
|
329 |
|
|
if they are matched by a special .md file pattern. */
|
330 |
|
|
const char *riscv_lo_relocs[NUM_SYMBOL_TYPES];
|
331 |
|
|
|
332 |
|
|
/* Likewise for HIGHs. */
|
333 |
|
|
const char *riscv_hi_relocs[NUM_SYMBOL_TYPES];
|
334 |
|
|
|
335 |
|
|
/* Index R is the smallest register class that contains register R. */
|
336 |
|
|
const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = {
|
337 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
338 |
|
|
GR_REGS, T_REGS, T_REGS, T_REGS,
|
339 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
340 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
341 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
342 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
343 |
|
|
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
344 |
|
|
T_REGS, T_REGS, T_REGS, T_REGS,
|
345 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
346 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
347 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
348 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
349 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
350 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
351 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
352 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
353 |
|
|
FRAME_REGS, FRAME_REGS,
|
354 |
|
|
};
|
355 |
|
|
|
356 |
|
|
/* Costs to use when optimizing for size. */
|
357 |
|
|
static const struct riscv_tune_info rocket_tune_info = {
|
358 |
|
|
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
|
359 |
|
|
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
|
360 |
|
|
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
|
361 |
|
|
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
|
362 |
|
|
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
|
363 |
|
|
1, /* issue_rate */
|
364 |
|
|
3, /* branch_cost */
|
365 |
|
|
5 /* memory_cost */
|
366 |
|
|
};
|
367 |
|
|
|
368 |
|
|
/* Costs to use when optimizing for size. */
|
369 |
|
|
static const struct riscv_tune_info optimize_size_tune_info = {
|
370 |
|
|
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */
|
371 |
|
|
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */
|
372 |
|
|
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */
|
373 |
|
|
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */
|
374 |
|
|
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */
|
375 |
|
|
1, /* issue_rate */
|
376 |
|
|
1, /* branch_cost */
|
377 |
|
|
1 /* memory_cost */
|
378 |
|
|
};
|
379 |
|
|
|
380 |
|
|
/* A table describing all the processors GCC knows about. */
|
381 |
|
|
static const struct riscv_cpu_info riscv_cpu_info_table[] = {
|
382 |
|
|
/* Entries for generic ISAs. */
|
383 |
|
|
{ "rocket", "IMAFD", &rocket_tune_info },
|
384 |
|
|
};
|
385 |
|
|
|
386 |
|
|
/* Return the riscv_cpu_info entry for the given name string. */
|
387 |
|
|
|
388 |
|
|
static const struct riscv_cpu_info *
|
389 |
|
|
riscv_parse_cpu (const char *cpu_string)
|
390 |
|
|
{
|
391 |
|
|
unsigned int i;
|
392 |
|
|
|
393 |
|
|
for (i = 0; i < ARRAY_SIZE (riscv_cpu_info_table); i++)
|
394 |
|
|
if (strcmp (riscv_cpu_info_table[i].name, cpu_string) == 0)
|
395 |
|
|
return riscv_cpu_info_table + i;
|
396 |
|
|
|
397 |
|
|
error ("unknown cpu `%s'", cpu_string);
|
398 |
|
|
return riscv_cpu_info_table;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* Fill CODES with a sequence of rtl operations to load VALUE.
|
402 |
|
|
Return the number of operations needed. */
|
403 |
|
|
|
404 |
|
|
static int
|
405 |
|
|
riscv_build_integer_1 (struct riscv_integer_op *codes, HOST_WIDE_INT value,
|
406 |
|
|
enum machine_mode mode)
|
407 |
|
|
{
|
408 |
|
|
HOST_WIDE_INT low_part = CONST_LOW_PART (value);
|
409 |
|
|
int cost = INT_MAX, alt_cost;
|
410 |
|
|
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
|
411 |
|
|
|
412 |
|
|
if (SMALL_OPERAND (value) || LUI_OPERAND (value))
|
413 |
|
|
{
|
414 |
|
|
/* Simply ADDI or LUI */
|
415 |
|
|
codes[0].code = UNKNOWN;
|
416 |
|
|
codes[0].value = value;
|
417 |
|
|
return 1;
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
/* End with ADDI */
|
421 |
|
|
if (low_part != 0
|
422 |
|
|
&& !(mode == HImode && (int16_t)(value - low_part) != (value - low_part)))
|
423 |
|
|
{
|
424 |
|
|
cost = 1 + riscv_build_integer_1 (codes, value - low_part, mode);
|
425 |
|
|
codes[cost-1].code = PLUS;
|
426 |
|
|
codes[cost-1].value = low_part;
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/* End with XORI */
|
430 |
|
|
if (cost > 2 && (low_part < 0 || mode == HImode))
|
431 |
|
|
{
|
432 |
|
|
alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode);
|
433 |
|
|
alt_codes[alt_cost-1].code = XOR;
|
434 |
|
|
alt_codes[alt_cost-1].value = low_part;
|
435 |
|
|
if (alt_cost < cost)
|
436 |
|
|
cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes));
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/* Eliminate trailing zeros and end with SLLI */
|
440 |
|
|
if (cost > 2 && (value & 1) == 0)
|
441 |
|
|
{
|
442 |
|
|
int shift = 0;
|
443 |
|
|
while ((value & 1) == 0)
|
444 |
|
|
shift++, value >>= 1;
|
445 |
|
|
alt_cost = 1 + riscv_build_integer_1 (alt_codes, value, mode);
|
446 |
|
|
alt_codes[alt_cost-1].code = ASHIFT;
|
447 |
|
|
alt_codes[alt_cost-1].value = shift;
|
448 |
|
|
if (alt_cost < cost)
|
449 |
|
|
cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes));
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
gcc_assert (cost <= RISCV_MAX_INTEGER_OPS);
|
453 |
|
|
return cost;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
static int
|
457 |
|
|
riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value,
|
458 |
|
|
enum machine_mode mode)
|
459 |
|
|
{
|
460 |
|
|
int cost = riscv_build_integer_1 (codes, value, mode);
|
461 |
|
|
|
462 |
|
|
/* Eliminate leading zeros and end with SRLI */
|
463 |
|
|
if (value > 0 && cost > 2)
|
464 |
|
|
{
|
465 |
|
|
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
|
466 |
|
|
int alt_cost, shift = 0;
|
467 |
|
|
HOST_WIDE_INT shifted_val;
|
468 |
|
|
|
469 |
|
|
/* Try filling trailing bits with 1s */
|
470 |
|
|
while ((value << shift) >= 0)
|
471 |
|
|
shift++;
|
472 |
|
|
shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1);
|
473 |
|
|
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
|
474 |
|
|
alt_codes[alt_cost-1].code = LSHIFTRT;
|
475 |
|
|
alt_codes[alt_cost-1].value = shift;
|
476 |
|
|
if (alt_cost < cost)
|
477 |
|
|
cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes));
|
478 |
|
|
|
479 |
|
|
/* Try filling trailing bits with 0s */
|
480 |
|
|
shifted_val = value << shift;
|
481 |
|
|
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
|
482 |
|
|
alt_codes[alt_cost-1].code = LSHIFTRT;
|
483 |
|
|
alt_codes[alt_cost-1].value = shift;
|
484 |
|
|
if (alt_cost < cost)
|
485 |
|
|
cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes));
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
return cost;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
static int
|
492 |
|
|
riscv_split_integer_cost (HOST_WIDE_INT val)
|
493 |
|
|
{
|
494 |
|
|
int cost;
|
495 |
|
|
int32_t loval = val, hival = (val - (int32_t)val) >> 32;
|
496 |
|
|
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
497 |
|
|
|
498 |
|
|
cost = 2 + riscv_build_integer (codes, loval, VOIDmode);
|
499 |
|
|
if (loval != hival)
|
500 |
|
|
cost += riscv_build_integer (codes, hival, VOIDmode);
|
501 |
|
|
|
502 |
|
|
return cost;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
static int
|
506 |
|
|
riscv_integer_cost (HOST_WIDE_INT val)
|
507 |
|
|
{
|
508 |
|
|
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
509 |
|
|
return MIN (riscv_build_integer (codes, val, VOIDmode),
|
510 |
|
|
riscv_split_integer_cost (val));
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/* Try to split a 64b integer into 32b parts, then reassemble. */
|
514 |
|
|
|
515 |
|
|
static rtx
|
516 |
|
|
riscv_split_integer (HOST_WIDE_INT val, enum machine_mode mode)
|
517 |
|
|
{
|
518 |
|
|
int32_t loval = val, hival = (val - (int32_t)val) >> 32;
|
519 |
|
|
rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode);
|
520 |
|
|
|
521 |
|
|
riscv_move_integer (hi, hi, hival);
|
522 |
|
|
riscv_move_integer (lo, lo, loval);
|
523 |
|
|
|
524 |
|
|
hi = gen_rtx_fmt_ee (ASHIFT, mode, hi, GEN_INT (32));
|
525 |
|
|
hi = force_reg (mode, hi);
|
526 |
|
|
|
527 |
|
|
return gen_rtx_fmt_ee (PLUS, mode, hi, lo);
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Return true if X is a thread-local symbol. */
|
531 |
|
|
|
532 |
|
|
static bool
|
533 |
|
|
riscv_tls_symbol_p (const_rtx x)
|
534 |
|
|
{
|
535 |
|
|
return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
static bool
|
539 |
|
|
riscv_symbol_binds_local_p (const_rtx x)
|
540 |
|
|
{
|
541 |
|
|
return (SYMBOL_REF_DECL (x)
|
542 |
|
|
? targetm.binds_local_p (SYMBOL_REF_DECL (x))
|
543 |
|
|
: SYMBOL_REF_LOCAL_P (x));
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Return the method that should be used to access SYMBOL_REF or
|
547 |
|
|
LABEL_REF X in context CONTEXT. */
|
548 |
|
|
|
549 |
|
|
static enum riscv_symbol_type
|
550 |
|
|
riscv_classify_symbol (const_rtx x)
|
551 |
|
|
{
|
552 |
|
|
if (riscv_tls_symbol_p (x))
|
553 |
|
|
return SYMBOL_TLS;
|
554 |
|
|
|
555 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
556 |
|
|
{
|
557 |
|
|
if (LABEL_REF_NONLOCAL_P (x))
|
558 |
|
|
return SYMBOL_GOT_DISP;
|
559 |
|
|
return SYMBOL_ABSOLUTE;
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
gcc_assert (GET_CODE (x) == SYMBOL_REF);
|
563 |
|
|
|
564 |
|
|
if (flag_pic && !riscv_symbol_binds_local_p (x))
|
565 |
|
|
return SYMBOL_GOT_DISP;
|
566 |
|
|
|
567 |
|
|
return SYMBOL_ABSOLUTE;
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
/* Classify the base of symbolic expression X, given that X appears in
|
571 |
|
|
context CONTEXT. */
|
572 |
|
|
|
573 |
|
|
static enum riscv_symbol_type
|
574 |
|
|
riscv_classify_symbolic_expression (rtx x)
|
575 |
|
|
{
|
576 |
|
|
rtx offset;
|
577 |
|
|
|
578 |
|
|
split_const (x, &x, &offset);
|
579 |
|
|
if (UNSPEC_ADDRESS_P (x))
|
580 |
|
|
return UNSPEC_ADDRESS_TYPE (x);
|
581 |
|
|
|
582 |
|
|
return riscv_classify_symbol (x);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
/* Return true if X is a symbolic constant that can be used in context
|
586 |
|
|
CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
|
587 |
|
|
|
588 |
|
|
bool
|
589 |
|
|
riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type)
|
590 |
|
|
{
|
591 |
|
|
rtx offset;
|
592 |
|
|
|
593 |
|
|
split_const (x, &x, &offset);
|
594 |
|
|
if (UNSPEC_ADDRESS_P (x))
|
595 |
|
|
{
|
596 |
|
|
*symbol_type = UNSPEC_ADDRESS_TYPE (x);
|
597 |
|
|
x = UNSPEC_ADDRESS (x);
|
598 |
|
|
}
|
599 |
|
|
else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
|
600 |
|
|
*symbol_type = riscv_classify_symbol (x);
|
601 |
|
|
else
|
602 |
|
|
return false;
|
603 |
|
|
|
604 |
|
|
if (offset == const0_rtx)
|
605 |
|
|
return true;
|
606 |
|
|
|
607 |
|
|
/* Check whether a nonzero offset is valid for the underlying
|
608 |
|
|
relocations. */
|
609 |
|
|
switch (*symbol_type)
|
610 |
|
|
{
|
611 |
|
|
case SYMBOL_ABSOLUTE:
|
612 |
|
|
case SYMBOL_TLS_LE:
|
613 |
|
|
return (int32_t) INTVAL (offset) == INTVAL (offset);
|
614 |
|
|
|
615 |
|
|
default:
|
616 |
|
|
return false;
|
617 |
|
|
}
|
618 |
|
|
gcc_unreachable ();
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/* Returns the number of instructions necessary to reference a symbol. */
|
622 |
|
|
|
623 |
|
|
static int riscv_symbol_insns (enum riscv_symbol_type type)
|
624 |
|
|
{
|
625 |
|
|
switch (type)
|
626 |
|
|
{
|
627 |
|
|
case SYMBOL_TLS: return 0; /* Depends on the TLS model. */
|
628 |
|
|
case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference itself */
|
629 |
|
|
case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference itself */
|
630 |
|
|
case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference itself */
|
631 |
|
|
default: gcc_unreachable();
|
632 |
|
|
}
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
|
636 |
|
|
|
637 |
|
|
static bool
|
638 |
|
|
riscv_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
|
639 |
|
|
{
|
640 |
|
|
return riscv_const_insns (x) > 0;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
|
644 |
|
|
|
645 |
|
|
static bool
|
646 |
|
|
riscv_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
|
647 |
|
|
{
|
648 |
|
|
enum riscv_symbol_type type;
|
649 |
|
|
rtx base, offset;
|
650 |
|
|
|
651 |
|
|
/* There is no assembler syntax for expressing an address-sized
|
652 |
|
|
high part. */
|
653 |
|
|
if (GET_CODE (x) == HIGH)
|
654 |
|
|
return true;
|
655 |
|
|
|
656 |
|
|
split_const (x, &base, &offset);
|
657 |
|
|
if (riscv_symbolic_constant_p (base, &type))
|
658 |
|
|
{
|
659 |
|
|
/* As an optimization, don't spill symbolic constants that are as
|
660 |
|
|
cheap to rematerialize as to access in the constant pool. */
|
661 |
|
|
if (SMALL_INT (offset) && riscv_symbol_insns (type) > 0)
|
662 |
|
|
return true;
|
663 |
|
|
|
664 |
|
|
/* As an optimization, avoid needlessly generate dynamic relocations. */
|
665 |
|
|
if (flag_pic)
|
666 |
|
|
return true;
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* TLS symbols must be computed by riscv_legitimize_move. */
|
670 |
|
|
if (tls_referenced_p (x))
|
671 |
|
|
return true;
|
672 |
|
|
|
673 |
|
|
return false;
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
/* Return true if register REGNO is a valid base register for mode MODE.
|
677 |
|
|
STRICT_P is true if REG_OK_STRICT is in effect. */
|
678 |
|
|
|
679 |
|
|
int
|
680 |
|
|
riscv_regno_mode_ok_for_base_p (int regno, enum machine_mode mode ATTRIBUTE_UNUSED,
|
681 |
|
|
bool strict_p)
|
682 |
|
|
{
|
683 |
|
|
if (!HARD_REGISTER_NUM_P (regno))
|
684 |
|
|
{
|
685 |
|
|
if (!strict_p)
|
686 |
|
|
return true;
|
687 |
|
|
regno = reg_renumber[regno];
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
/* These fake registers will be eliminated to either the stack or
|
691 |
|
|
hard frame pointer, both of which are usually valid base registers.
|
692 |
|
|
Reload deals with the cases where the eliminated form isn't valid. */
|
693 |
|
|
if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
|
694 |
|
|
return true;
|
695 |
|
|
|
696 |
|
|
return GP_REG_P (regno);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Return true if X is a valid base register for mode MODE.
|
700 |
|
|
STRICT_P is true if REG_OK_STRICT is in effect. */
|
701 |
|
|
|
702 |
|
|
static bool
|
703 |
|
|
riscv_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p)
|
704 |
|
|
{
|
705 |
|
|
if (!strict_p && GET_CODE (x) == SUBREG)
|
706 |
|
|
x = SUBREG_REG (x);
|
707 |
|
|
|
708 |
|
|
return (REG_P (x)
|
709 |
|
|
&& riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
|
713 |
|
|
can address a value of mode MODE. */
|
714 |
|
|
|
715 |
|
|
static bool
|
716 |
|
|
riscv_valid_offset_p (rtx x, enum machine_mode mode)
|
717 |
|
|
{
|
718 |
|
|
/* Check that X is a signed 12-bit number. */
|
719 |
|
|
if (!const_arith_operand (x, Pmode))
|
720 |
|
|
return false;
|
721 |
|
|
|
722 |
|
|
/* We may need to split multiword moves, so make sure that every word
|
723 |
|
|
is accessible. */
|
724 |
|
|
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
725 |
|
|
&& !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
|
726 |
|
|
return false;
|
727 |
|
|
|
728 |
|
|
return true;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* Return true if a LO_SUM can address a value of mode MODE when the
|
732 |
|
|
LO_SUM symbol has type SYMBOL_TYPE. */
|
733 |
|
|
|
734 |
|
|
static bool
|
735 |
|
|
riscv_valid_lo_sum_p (enum riscv_symbol_type symbol_type, enum machine_mode mode)
|
736 |
|
|
{
|
737 |
|
|
/* Check that symbols of type SYMBOL_TYPE can be used to access values
|
738 |
|
|
of mode MODE. */
|
739 |
|
|
if (riscv_symbol_insns (symbol_type) == 0)
|
740 |
|
|
return false;
|
741 |
|
|
|
742 |
|
|
/* Check that there is a known low-part relocation. */
|
743 |
|
|
if (riscv_lo_relocs[symbol_type] == NULL)
|
744 |
|
|
return false;
|
745 |
|
|
|
746 |
|
|
/* We may need to split multiword moves, so make sure that each word
|
747 |
|
|
can be accessed without inducing a carry. This is mainly needed
|
748 |
|
|
for o64, which has historically only guaranteed 64-bit alignment
|
749 |
|
|
for 128-bit types. */
|
750 |
|
|
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
751 |
|
|
&& GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
|
752 |
|
|
return false;
|
753 |
|
|
|
754 |
|
|
return true;
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
/* Return true if X is a valid address for machine mode MODE. If it is,
|
758 |
|
|
fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
|
759 |
|
|
effect. */
|
760 |
|
|
|
761 |
|
|
static bool
|
762 |
|
|
riscv_classify_address (struct riscv_address_info *info, rtx x,
|
763 |
|
|
enum machine_mode mode, bool strict_p)
|
764 |
|
|
{
|
765 |
|
|
switch (GET_CODE (x))
|
766 |
|
|
{
|
767 |
|
|
case REG:
|
768 |
|
|
case SUBREG:
|
769 |
|
|
info->type = ADDRESS_REG;
|
770 |
|
|
info->reg = x;
|
771 |
|
|
info->offset = const0_rtx;
|
772 |
|
|
return riscv_valid_base_register_p (info->reg, mode, strict_p);
|
773 |
|
|
|
774 |
|
|
case PLUS:
|
775 |
|
|
info->type = ADDRESS_REG;
|
776 |
|
|
info->reg = XEXP (x, 0);
|
777 |
|
|
info->offset = XEXP (x, 1);
|
778 |
|
|
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
|
779 |
|
|
&& riscv_valid_offset_p (info->offset, mode));
|
780 |
|
|
|
781 |
|
|
case LO_SUM:
|
782 |
|
|
info->type = ADDRESS_LO_SUM;
|
783 |
|
|
info->reg = XEXP (x, 0);
|
784 |
|
|
info->offset = XEXP (x, 1);
|
785 |
|
|
/* We have to trust the creator of the LO_SUM to do something vaguely
|
786 |
|
|
sane. Target-independent code that creates a LO_SUM should also
|
787 |
|
|
create and verify the matching HIGH. Target-independent code that
|
788 |
|
|
adds an offset to a LO_SUM must prove that the offset will not
|
789 |
|
|
induce a carry. Failure to do either of these things would be
|
790 |
|
|
a bug, and we are not required to check for it here. The RISCV
|
791 |
|
|
backend itself should only create LO_SUMs for valid symbolic
|
792 |
|
|
constants, with the high part being either a HIGH or a copy
|
793 |
|
|
of _gp. */
|
794 |
|
|
info->symbol_type
|
795 |
|
|
= riscv_classify_symbolic_expression (info->offset);
|
796 |
|
|
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
|
797 |
|
|
&& riscv_valid_lo_sum_p (info->symbol_type, mode));
|
798 |
|
|
|
799 |
|
|
case CONST_INT:
|
800 |
|
|
/* Small-integer addresses don't occur very often, but they
|
801 |
|
|
are legitimate if $0 is a valid base register. */
|
802 |
|
|
info->type = ADDRESS_CONST_INT;
|
803 |
|
|
return SMALL_INT (x);
|
804 |
|
|
|
805 |
|
|
default:
|
806 |
|
|
return false;
|
807 |
|
|
}
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
/* Implement TARGET_LEGITIMATE_ADDRESS_P. */
|
811 |
|
|
|
812 |
|
|
static bool
|
813 |
|
|
riscv_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
|
814 |
|
|
{
|
815 |
|
|
struct riscv_address_info addr;
|
816 |
|
|
|
817 |
|
|
return riscv_classify_address (&addr, x, mode, strict_p);
|
818 |
|
|
}
|
819 |
|
|
|
820 |
|
|
/* Return the number of instructions needed to load or store a value
|
821 |
|
|
of mode MODE at address X. Return 0 if X isn't valid for MODE.
|
822 |
|
|
Assume that multiword moves may need to be split into word moves
|
823 |
|
|
if MIGHT_SPLIT_P, otherwise assume that a single load or store is
|
824 |
|
|
enough. */
|
825 |
|
|
|
826 |
|
|
int
|
827 |
|
|
riscv_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
|
828 |
|
|
{
|
829 |
|
|
struct riscv_address_info addr;
|
830 |
|
|
int n = 1;
|
831 |
|
|
|
832 |
|
|
if (!riscv_classify_address (&addr, x, mode, false))
|
833 |
|
|
return 0;
|
834 |
|
|
|
835 |
|
|
/* BLKmode is used for single unaligned loads and stores and should
|
836 |
|
|
not count as a multiword mode. */
|
837 |
|
|
if (mode != BLKmode && might_split_p)
|
838 |
|
|
n += (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
839 |
|
|
|
840 |
|
|
if (addr.type == ADDRESS_LO_SUM)
|
841 |
|
|
n += riscv_symbol_insns (addr.symbol_type) - 1;
|
842 |
|
|
|
843 |
|
|
return n;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* Return the number of instructions needed to load constant X.
|
847 |
|
|
Return 0 if X isn't a valid constant. */
|
848 |
|
|
|
849 |
|
|
int
|
850 |
|
|
riscv_const_insns (rtx x)
|
851 |
|
|
{
|
852 |
|
|
enum riscv_symbol_type symbol_type;
|
853 |
|
|
rtx offset;
|
854 |
|
|
|
855 |
|
|
switch (GET_CODE (x))
|
856 |
|
|
{
|
857 |
|
|
case HIGH:
|
858 |
|
|
if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type)
|
859 |
|
|
|| !riscv_hi_relocs[symbol_type])
|
860 |
|
|
return 0;
|
861 |
|
|
|
862 |
|
|
/* This is simply an LUI. */
|
863 |
|
|
return 1;
|
864 |
|
|
|
865 |
|
|
case CONST_INT:
|
866 |
|
|
{
|
867 |
|
|
int cost = riscv_integer_cost (INTVAL (x));
|
868 |
|
|
/* Force complicated constants to memory. */
|
869 |
|
|
return cost < 4 ? cost : 0;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
case CONST_DOUBLE:
|
873 |
|
|
case CONST_VECTOR:
|
874 |
|
|
/* Allow zeros for normal mode, where we can use x0. */
|
875 |
|
|
return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
|
876 |
|
|
|
877 |
|
|
case CONST:
|
878 |
|
|
/* See if we can refer to X directly. */
|
879 |
|
|
if (riscv_symbolic_constant_p (x, &symbol_type))
|
880 |
|
|
return riscv_symbol_insns (symbol_type);
|
881 |
|
|
|
882 |
|
|
/* Otherwise try splitting the constant into a base and offset.
|
883 |
|
|
If the offset is a 16-bit value, we can load the base address
|
884 |
|
|
into a register and then use (D)ADDIU to add in the offset.
|
885 |
|
|
If the offset is larger, we can load the base and offset
|
886 |
|
|
into separate registers and add them together with (D)ADDU.
|
887 |
|
|
However, the latter is only possible before reload; during
|
888 |
|
|
and after reload, we must have the option of forcing the
|
889 |
|
|
constant into the pool instead. */
|
890 |
|
|
split_const (x, &x, &offset);
|
891 |
|
|
if (offset != 0)
|
892 |
|
|
{
|
893 |
|
|
int n = riscv_const_insns (x);
|
894 |
|
|
if (n != 0)
|
895 |
|
|
{
|
896 |
|
|
if (SMALL_INT (offset))
|
897 |
|
|
return n + 1;
|
898 |
|
|
else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
|
899 |
|
|
return n + 1 + riscv_integer_cost (INTVAL (offset));
|
900 |
|
|
}
|
901 |
|
|
}
|
902 |
|
|
return 0;
|
903 |
|
|
|
904 |
|
|
case SYMBOL_REF:
|
905 |
|
|
case LABEL_REF:
|
906 |
|
|
return riscv_symbol_insns (riscv_classify_symbol (x));
|
907 |
|
|
|
908 |
|
|
default:
|
909 |
|
|
return 0;
|
910 |
|
|
}
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
/* X is a doubleword constant that can be handled by splitting it into
|
914 |
|
|
two words and loading each word separately. Return the number of
|
915 |
|
|
instructions required to do this. */
|
916 |
|
|
|
917 |
|
|
int
|
918 |
|
|
riscv_split_const_insns (rtx x)
|
919 |
|
|
{
|
920 |
|
|
unsigned int low, high;
|
921 |
|
|
|
922 |
|
|
low = riscv_const_insns (riscv_subword (x, false));
|
923 |
|
|
high = riscv_const_insns (riscv_subword (x, true));
|
924 |
|
|
gcc_assert (low > 0 && high > 0);
|
925 |
|
|
return low + high;
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
/* Return the number of instructions needed to implement INSN,
|
929 |
|
|
given that it loads from or stores to MEM. */
|
930 |
|
|
|
931 |
|
|
int
|
932 |
|
|
riscv_load_store_insns (rtx mem, rtx_insn *insn)
|
933 |
|
|
{
|
934 |
|
|
enum machine_mode mode;
|
935 |
|
|
bool might_split_p;
|
936 |
|
|
rtx set;
|
937 |
|
|
|
938 |
|
|
gcc_assert (MEM_P (mem));
|
939 |
|
|
mode = GET_MODE (mem);
|
940 |
|
|
|
941 |
|
|
/* Try to prove that INSN does not need to be split. */
|
942 |
|
|
might_split_p = true;
|
943 |
|
|
if (GET_MODE_BITSIZE (mode) == 64)
|
944 |
|
|
{
|
945 |
|
|
set = single_set (insn);
|
946 |
|
|
if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
|
947 |
|
|
might_split_p = false;
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
return riscv_address_insns (XEXP (mem, 0), mode, might_split_p);
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
/* Emit a move from SRC to DEST. Assume that the move expanders can
|
954 |
|
|
handle all moves if !can_create_pseudo_p (). The distinction is
|
955 |
|
|
important because, unlike emit_move_insn, the move expanders know
|
956 |
|
|
how to force Pmode objects into the constant pool even when the
|
957 |
|
|
constant pool address is not itself legitimate. */
|
958 |
|
|
|
959 |
|
|
rtx
|
960 |
|
|
riscv_emit_move (rtx dest, rtx src)
|
961 |
|
|
{
|
962 |
|
|
return (can_create_pseudo_p ()
|
963 |
|
|
? emit_move_insn (dest, src)
|
964 |
|
|
: emit_move_insn_1 (dest, src));
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
|
968 |
|
|
|
969 |
|
|
static void
|
970 |
|
|
riscv_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
|
971 |
|
|
{
|
972 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, target,
|
973 |
|
|
gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Compute (CODE OP0 OP1) and store the result in a new register
|
977 |
|
|
of mode MODE. Return that new register. */
|
978 |
|
|
|
979 |
|
|
static rtx
|
980 |
|
|
riscv_force_binary (enum machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
|
981 |
|
|
{
|
982 |
|
|
rtx reg;
|
983 |
|
|
|
984 |
|
|
reg = gen_reg_rtx (mode);
|
985 |
|
|
riscv_emit_binary (code, reg, op0, op1);
|
986 |
|
|
return reg;
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* Copy VALUE to a register and return that register. If new pseudos
|
990 |
|
|
are allowed, copy it into a new register, otherwise use DEST. */
|
991 |
|
|
|
992 |
|
|
static rtx
|
993 |
|
|
riscv_force_temporary (rtx dest, rtx value)
|
994 |
|
|
{
|
995 |
|
|
if (can_create_pseudo_p ())
|
996 |
|
|
return force_reg (Pmode, value);
|
997 |
|
|
else
|
998 |
|
|
{
|
999 |
|
|
riscv_emit_move (dest, value);
|
1000 |
|
|
return dest;
|
1001 |
|
|
}
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
|
1005 |
|
|
then add CONST_INT OFFSET to the result. */
|
1006 |
|
|
|
1007 |
|
|
static rtx
|
1008 |
|
|
riscv_unspec_address_offset (rtx base, rtx offset,
|
1009 |
|
|
enum riscv_symbol_type symbol_type)
|
1010 |
|
|
{
|
1011 |
|
|
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
|
1012 |
|
|
UNSPEC_ADDRESS_FIRST + symbol_type);
|
1013 |
|
|
if (offset != const0_rtx)
|
1014 |
|
|
base = gen_rtx_PLUS (Pmode, base, offset);
|
1015 |
|
|
return gen_rtx_CONST (Pmode, base);
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Return an UNSPEC address with underlying address ADDRESS and symbol
|
1019 |
|
|
type SYMBOL_TYPE. */
|
1020 |
|
|
|
1021 |
|
|
rtx
|
1022 |
|
|
riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type)
|
1023 |
|
|
{
|
1024 |
|
|
rtx base, offset;
|
1025 |
|
|
|
1026 |
|
|
split_const (address, &base, &offset);
|
1027 |
|
|
return riscv_unspec_address_offset (base, offset, symbol_type);
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
/* If OP is an UNSPEC address, return the address to which it refers,
|
1031 |
|
|
otherwise return OP itself. */
|
1032 |
|
|
|
1033 |
|
|
static rtx
|
1034 |
|
|
riscv_strip_unspec_address (rtx op)
|
1035 |
|
|
{
|
1036 |
|
|
rtx base, offset;
|
1037 |
|
|
|
1038 |
|
|
split_const (op, &base, &offset);
|
1039 |
|
|
if (UNSPEC_ADDRESS_P (base))
|
1040 |
|
|
op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
|
1041 |
|
|
return op;
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
/* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
|
1045 |
|
|
high part to BASE and return the result. Just return BASE otherwise.
|
1046 |
|
|
TEMP is as for riscv_force_temporary.
|
1047 |
|
|
|
1048 |
|
|
The returned expression can be used as the first operand to a LO_SUM. */
|
1049 |
|
|
|
1050 |
|
|
static rtx
|
1051 |
|
|
riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type)
|
1052 |
|
|
{
|
1053 |
|
|
addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type));
|
1054 |
|
|
return riscv_force_temporary (temp, addr);
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
/* Load an entry from the GOT. */
|
1058 |
|
|
static rtx riscv_got_load_tls_gd(rtx dest, rtx sym)
|
1059 |
|
|
{
|
1060 |
|
|
return (Pmode == DImode ? gen_got_load_tls_gddi(dest, sym) : gen_got_load_tls_gdsi(dest, sym));
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
static rtx riscv_got_load_tls_ie(rtx dest, rtx sym)
|
1064 |
|
|
{
|
1065 |
|
|
return (Pmode == DImode ? gen_got_load_tls_iedi(dest, sym) : gen_got_load_tls_iesi(dest, sym));
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
static rtx riscv_tls_add_tp_le(rtx dest, rtx base, rtx sym)
|
1069 |
|
|
{
|
1070 |
|
|
rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
|
1071 |
|
|
return (Pmode == DImode ? gen_tls_add_tp_ledi(dest, base, tp, sym) : gen_tls_add_tp_lesi(dest, base, tp, sym));
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
|
1075 |
|
|
it appears in a MEM of that mode. Return true if ADDR is a legitimate
|
1076 |
|
|
constant in that context and can be split into high and low parts.
|
1077 |
|
|
If so, and if LOW_OUT is nonnull, emit the high part and store the
|
1078 |
|
|
low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
|
1079 |
|
|
|
1080 |
|
|
TEMP is as for riscv_force_temporary and is used to load the high
|
1081 |
|
|
part into a register.
|
1082 |
|
|
|
1083 |
|
|
When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
|
1084 |
|
|
a legitimize SET_SRC for an .md pattern, otherwise the low part
|
1085 |
|
|
is guaranteed to be a legitimate address for mode MODE. */
|
1086 |
|
|
|
1087 |
|
|
bool
|
1088 |
|
|
riscv_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *low_out)
|
1089 |
|
|
{
|
1090 |
|
|
enum riscv_symbol_type symbol_type;
|
1091 |
|
|
rtx high;
|
1092 |
|
|
|
1093 |
|
|
if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE)
|
1094 |
|
|
|| !riscv_symbolic_constant_p (addr, &symbol_type)
|
1095 |
|
|
|| riscv_symbol_insns (symbol_type) == 0
|
1096 |
|
|
|| !riscv_hi_relocs[symbol_type])
|
1097 |
|
|
return false;
|
1098 |
|
|
|
1099 |
|
|
if (low_out)
|
1100 |
|
|
{
|
1101 |
|
|
switch (symbol_type)
|
1102 |
|
|
{
|
1103 |
|
|
case SYMBOL_ABSOLUTE:
|
1104 |
|
|
high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
|
1105 |
|
|
high = riscv_force_temporary (temp, high);
|
1106 |
|
|
*low_out = gen_rtx_LO_SUM (Pmode, high, addr);
|
1107 |
|
|
break;
|
1108 |
|
|
|
1109 |
|
|
default:
|
1110 |
|
|
gcc_unreachable ();
|
1111 |
|
|
}
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
return true;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
/* Return a legitimate address for REG + OFFSET. TEMP is as for
|
1118 |
|
|
riscv_force_temporary; it is only needed when OFFSET is not a
|
1119 |
|
|
SMALL_OPERAND. */
|
1120 |
|
|
|
1121 |
|
|
static rtx
|
1122 |
|
|
riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
|
1123 |
|
|
{
|
1124 |
|
|
if (!SMALL_OPERAND (offset))
|
1125 |
|
|
{
|
1126 |
|
|
rtx high;
|
1127 |
|
|
|
1128 |
|
|
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
|
1129 |
|
|
The addition inside the macro CONST_HIGH_PART may cause an
|
1130 |
|
|
overflow, so we need to force a sign-extension check. */
|
1131 |
|
|
high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
|
1132 |
|
|
offset = CONST_LOW_PART (offset);
|
1133 |
|
|
high = riscv_force_temporary (temp, high);
|
1134 |
|
|
reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
|
1135 |
|
|
}
|
1136 |
|
|
return plus_constant (Pmode, reg, offset);
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
/* The __tls_get_attr symbol. */
|
1140 |
|
|
static GTY(()) rtx riscv_tls_symbol;
|
1141 |
|
|
|
1142 |
|
|
/* Return an instruction sequence that calls __tls_get_addr. SYM is
|
1143 |
|
|
the TLS symbol we are referencing and TYPE is the symbol type to use
|
1144 |
|
|
(either global dynamic or local dynamic). RESULT is an RTX for the
|
1145 |
|
|
return value location. */
|
1146 |
|
|
|
1147 |
|
|
static rtx
|
1148 |
|
|
riscv_call_tls_get_addr (rtx sym, rtx result)
|
1149 |
|
|
{
|
1150 |
|
|
rtx insn, a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
1151 |
|
|
|
1152 |
|
|
if (!riscv_tls_symbol)
|
1153 |
|
|
riscv_tls_symbol = init_one_libfunc ("__tls_get_addr");
|
1154 |
|
|
|
1155 |
|
|
start_sequence ();
|
1156 |
|
|
|
1157 |
|
|
emit_insn (riscv_got_load_tls_gd (a0, sym));
|
1158 |
|
|
insn = riscv_expand_call (false, result, riscv_tls_symbol, const0_rtx);
|
1159 |
|
|
RTL_CONST_CALL_P (insn) = 1;
|
1160 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
|
1161 |
|
|
insn = get_insns ();
|
1162 |
|
|
|
1163 |
|
|
end_sequence ();
|
1164 |
|
|
|
1165 |
|
|
return insn;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
|
1169 |
|
|
its address. The return value will be both a valid address and a valid
|
1170 |
|
|
SET_SRC (either a REG or a LO_SUM). */
|
1171 |
|
|
|
1172 |
|
|
static rtx
|
1173 |
|
|
riscv_legitimize_tls_address (rtx loc)
|
1174 |
|
|
{
|
1175 |
|
|
rtx dest, insn, tp, tmp1;
|
1176 |
|
|
enum tls_model model = SYMBOL_REF_TLS_MODEL (loc);
|
1177 |
|
|
|
1178 |
|
|
/* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */
|
1179 |
|
|
if (!flag_pic)
|
1180 |
|
|
model = TLS_MODEL_LOCAL_EXEC;
|
1181 |
|
|
|
1182 |
|
|
switch (model)
|
1183 |
|
|
{
|
1184 |
|
|
case TLS_MODEL_LOCAL_DYNAMIC:
|
1185 |
|
|
/* Rely on section anchors for the optimization that LDM TLS
|
1186 |
|
|
provides. The anchor's address is loaded with GD TLS. */
|
1187 |
|
|
case TLS_MODEL_GLOBAL_DYNAMIC:
|
1188 |
|
|
tmp1 = gen_rtx_REG (Pmode, GP_RETURN);
|
1189 |
|
|
insn = riscv_call_tls_get_addr (loc, tmp1);
|
1190 |
|
|
dest = gen_reg_rtx (Pmode);
|
1191 |
|
|
emit_libcall_block (insn, dest, tmp1, loc);
|
1192 |
|
|
break;
|
1193 |
|
|
|
1194 |
|
|
case TLS_MODEL_INITIAL_EXEC:
|
1195 |
|
|
/* la.tls.ie; tp-relative add */
|
1196 |
|
|
tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
|
1197 |
|
|
tmp1 = gen_reg_rtx (Pmode);
|
1198 |
|
|
emit_insn (riscv_got_load_tls_ie (tmp1, loc));
|
1199 |
|
|
dest = gen_reg_rtx (Pmode);
|
1200 |
|
|
emit_insn (gen_add3_insn (dest, tmp1, tp));
|
1201 |
|
|
break;
|
1202 |
|
|
|
1203 |
|
|
case TLS_MODEL_LOCAL_EXEC:
|
1204 |
|
|
tmp1 = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE);
|
1205 |
|
|
dest = gen_reg_rtx (Pmode);
|
1206 |
|
|
emit_insn (riscv_tls_add_tp_le (dest, tmp1, loc));
|
1207 |
|
|
dest = gen_rtx_LO_SUM (Pmode, dest,
|
1208 |
|
|
riscv_unspec_address (loc, SYMBOL_TLS_LE));
|
1209 |
|
|
break;
|
1210 |
|
|
|
1211 |
|
|
default:
|
1212 |
|
|
gcc_unreachable ();
|
1213 |
|
|
}
|
1214 |
|
|
return dest;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
/* If X is not a valid address for mode MODE, force it into a register. */
|
1218 |
|
|
|
1219 |
|
|
static rtx
|
1220 |
|
|
riscv_force_address (rtx x, enum machine_mode mode)
|
1221 |
|
|
{
|
1222 |
|
|
if (!riscv_legitimate_address_p (mode, x, false))
|
1223 |
|
|
x = force_reg (Pmode, x);
|
1224 |
|
|
return x;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
/* This function is used to implement LEGITIMIZE_ADDRESS. If X can
|
1228 |
|
|
be legitimized in a way that the generic machinery might not expect,
|
1229 |
|
|
return a new address, otherwise return NULL. MODE is the mode of
|
1230 |
|
|
the memory being accessed. */
|
1231 |
|
|
|
1232 |
|
|
static rtx
|
1233 |
|
|
riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
|
1234 |
|
|
enum machine_mode mode)
|
1235 |
|
|
{
|
1236 |
|
|
rtx addr;
|
1237 |
|
|
|
1238 |
|
|
if (riscv_tls_symbol_p (x))
|
1239 |
|
|
return riscv_legitimize_tls_address (x);
|
1240 |
|
|
|
1241 |
|
|
/* See if the address can split into a high part and a LO_SUM. */
|
1242 |
|
|
if (riscv_split_symbol (NULL, x, mode, &addr))
|
1243 |
|
|
return riscv_force_address (addr, mode);
|
1244 |
|
|
|
1245 |
|
|
/* Handle BASE + OFFSET using riscv_add_offset. */
|
1246 |
|
|
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
|
1247 |
|
|
&& INTVAL (XEXP (x, 1)) != 0)
|
1248 |
|
|
{
|
1249 |
|
|
rtx base = XEXP (x, 0);
|
1250 |
|
|
HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));
|
1251 |
|
|
|
1252 |
|
|
if (!riscv_valid_base_register_p (base, mode, false))
|
1253 |
|
|
base = copy_to_mode_reg (Pmode, base);
|
1254 |
|
|
addr = riscv_add_offset (NULL, base, offset);
|
1255 |
|
|
return riscv_force_address (addr, mode);
|
1256 |
|
|
}
|
1257 |
|
|
|
1258 |
|
|
return x;
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
/* Load VALUE into DEST. TEMP is as for riscv_force_temporary. */
|
1262 |
|
|
|
1263 |
|
|
void
|
1264 |
|
|
riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value)
|
1265 |
|
|
{
|
1266 |
|
|
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
1267 |
|
|
enum machine_mode mode;
|
1268 |
|
|
int i, num_ops;
|
1269 |
|
|
rtx x;
|
1270 |
|
|
|
1271 |
|
|
mode = GET_MODE (dest);
|
1272 |
|
|
num_ops = riscv_build_integer (codes, value, mode);
|
1273 |
|
|
|
1274 |
|
|
if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */
|
1275 |
|
|
&& num_ops >= riscv_split_integer_cost (value))
|
1276 |
|
|
x = riscv_split_integer (value, mode);
|
1277 |
|
|
else
|
1278 |
|
|
{
|
1279 |
|
|
/* Apply each binary operation to X. */
|
1280 |
|
|
x = GEN_INT (codes[0].value);
|
1281 |
|
|
|
1282 |
|
|
for (i = 1; i < num_ops; i++)
|
1283 |
|
|
{
|
1284 |
|
|
if (!can_create_pseudo_p ())
|
1285 |
|
|
{
|
1286 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp, x));
|
1287 |
|
|
x = temp;
|
1288 |
|
|
}
|
1289 |
|
|
else
|
1290 |
|
|
x = force_reg (mode, x);
|
1291 |
|
|
|
1292 |
|
|
x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
|
1293 |
|
|
}
|
1294 |
|
|
}
|
1295 |
|
|
|
1296 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, dest, x));
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
/* Subroutine of riscv_legitimize_move. Move constant SRC into register
|
1300 |
|
|
DEST given that SRC satisfies immediate_operand but doesn't satisfy
|
1301 |
|
|
move_operand. */
|
1302 |
|
|
|
1303 |
|
|
static void
|
1304 |
|
|
riscv_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
|
1305 |
|
|
{
|
1306 |
|
|
rtx base, offset;
|
1307 |
|
|
|
1308 |
|
|
/* Split moves of big integers into smaller pieces. */
|
1309 |
|
|
if (splittable_const_int_operand (src, mode))
|
1310 |
|
|
{
|
1311 |
|
|
riscv_move_integer (dest, dest, INTVAL (src));
|
1312 |
|
|
return;
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
/* Split moves of symbolic constants into high/low pairs. */
|
1316 |
|
|
if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
|
1317 |
|
|
{
|
1318 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, dest, src));
|
1319 |
|
|
return;
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
/* Generate the appropriate access sequences for TLS symbols. */
|
1323 |
|
|
if (riscv_tls_symbol_p (src))
|
1324 |
|
|
{
|
1325 |
|
|
riscv_emit_move (dest, riscv_legitimize_tls_address (src));
|
1326 |
|
|
return;
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
/* If we have (const (plus symbol offset)), and that expression cannot
|
1330 |
|
|
be forced into memory, load the symbol first and add in the offset. Also
|
1331 |
|
|
prefer to do this even if the constant _can_ be forced into memory, as it
|
1332 |
|
|
usually produces better code. */
|
1333 |
|
|
split_const (src, &base, &offset);
|
1334 |
|
|
if (offset != const0_rtx
|
1335 |
|
|
&& (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ()))
|
1336 |
|
|
{
|
1337 |
|
|
base = riscv_force_temporary (dest, base);
|
1338 |
|
|
riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset)));
|
1339 |
|
|
return;
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
src = force_const_mem (mode, src);
|
1343 |
|
|
|
1344 |
|
|
/* When using explicit relocs, constant pool references are sometimes
|
1345 |
|
|
not legitimate addresses. */
|
1346 |
|
|
riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
|
1347 |
|
|
riscv_emit_move (dest, src);
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
|
1351 |
|
|
sequence that is valid. */
|
1352 |
|
|
|
1353 |
|
|
bool
|
1354 |
|
|
riscv_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
|
1355 |
|
|
{
|
1356 |
|
|
if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
|
1357 |
|
|
{
|
1358 |
|
|
riscv_emit_move (dest, force_reg (mode, src));
|
1359 |
|
|
return true;
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
/* We need to deal with constants that would be legitimate
|
1363 |
|
|
immediate_operands but aren't legitimate move_operands. */
|
1364 |
|
|
if (CONSTANT_P (src) && !move_operand (src, mode))
|
1365 |
|
|
{
|
1366 |
|
|
riscv_legitimize_const_move (mode, dest, src);
|
1367 |
|
|
set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
|
1368 |
|
|
return true;
|
1369 |
|
|
}
|
1370 |
|
|
return false;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
/* Return true if there is an instruction that implements CODE and accepts
|
1374 |
|
|
X as an immediate operand. */
|
1375 |
|
|
|
1376 |
|
|
static int
|
1377 |
|
|
riscv_immediate_operand_p (int code, HOST_WIDE_INT x)
|
1378 |
|
|
{
|
1379 |
|
|
switch (code)
|
1380 |
|
|
{
|
1381 |
|
|
case ASHIFT:
|
1382 |
|
|
case ASHIFTRT:
|
1383 |
|
|
case LSHIFTRT:
|
1384 |
|
|
/* All shift counts are truncated to a valid constant. */
|
1385 |
|
|
return true;
|
1386 |
|
|
|
1387 |
|
|
case AND:
|
1388 |
|
|
case IOR:
|
1389 |
|
|
case XOR:
|
1390 |
|
|
case PLUS:
|
1391 |
|
|
case LT:
|
1392 |
|
|
case LTU:
|
1393 |
|
|
/* These instructions take 12-bit signed immediates. */
|
1394 |
|
|
return SMALL_OPERAND (x);
|
1395 |
|
|
|
1396 |
|
|
case LE:
|
1397 |
|
|
/* We add 1 to the immediate and use SLT. */
|
1398 |
|
|
return SMALL_OPERAND (x + 1);
|
1399 |
|
|
|
1400 |
|
|
case LEU:
|
1401 |
|
|
/* Likewise SLTU, but reject the always-true case. */
|
1402 |
|
|
return SMALL_OPERAND (x + 1) && x + 1 != 0;
|
1403 |
|
|
|
1404 |
|
|
case GE:
|
1405 |
|
|
case GEU:
|
1406 |
|
|
/* We can emulate an immediate of 1 by using GT/GTU against x0. */
|
1407 |
|
|
return x == 1;
|
1408 |
|
|
|
1409 |
|
|
default:
|
1410 |
|
|
/* By default assume that x0 can be used for 0. */
|
1411 |
|
|
return x == 0;
|
1412 |
|
|
}
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/* Return the cost of binary operation X, given that the instruction
|
1416 |
|
|
sequence for a word-sized or smaller operation takes SIGNLE_INSNS
|
1417 |
|
|
instructions and that the sequence of a double-word operation takes
|
1418 |
|
|
DOUBLE_INSNS instructions. */
|
1419 |
|
|
|
1420 |
|
|
static int
|
1421 |
|
|
riscv_binary_cost (rtx x, int single_insns, int double_insns)
|
1422 |
|
|
{
|
1423 |
|
|
if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
|
1424 |
|
|
return COSTS_N_INSNS (double_insns);
|
1425 |
|
|
return COSTS_N_INSNS (single_insns);
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
/* Return the cost of sign-extending OP to mode MODE, not including the
|
1429 |
|
|
cost of OP itself. */
|
1430 |
|
|
|
1431 |
|
|
static int
|
1432 |
|
|
riscv_sign_extend_cost (enum machine_mode mode, rtx op)
|
1433 |
|
|
{
|
1434 |
|
|
if (MEM_P (op))
|
1435 |
|
|
/* Extended loads are as cheap as unextended ones. */
|
1436 |
|
|
return 0;
|
1437 |
|
|
|
1438 |
|
|
if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
|
1439 |
|
|
/* A sign extension from SImode to DImode in 64-bit mode is free. */
|
1440 |
|
|
return 0;
|
1441 |
|
|
|
1442 |
|
|
/* We need to use a shift left and a shift right. */
|
1443 |
|
|
return COSTS_N_INSNS (2);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/* Return the cost of zero-extending OP to mode MODE, not including the
|
1447 |
|
|
cost of OP itself. */
|
1448 |
|
|
|
1449 |
|
|
static int
|
1450 |
|
|
riscv_zero_extend_cost (enum machine_mode mode, rtx op)
|
1451 |
|
|
{
|
1452 |
|
|
if (MEM_P (op))
|
1453 |
|
|
/* Extended loads are as cheap as unextended ones. */
|
1454 |
|
|
return 0;
|
1455 |
|
|
|
1456 |
|
|
if ((TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) ||
|
1457 |
|
|
((mode == DImode || mode == SImode) && GET_MODE (op) == HImode))
|
1458 |
|
|
/* We need a shift left by 32 bits and a shift right by 32 bits. */
|
1459 |
|
|
return COSTS_N_INSNS (2);
|
1460 |
|
|
|
1461 |
|
|
/* We can use ANDI. */
|
1462 |
|
|
return COSTS_N_INSNS (1);
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
/* Implement TARGET_RTX_COSTS. */
|
1466 |
|
|
|
1467 |
|
|
static bool
|
1468 |
|
|
riscv_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
|
1469 |
|
|
int *total, bool speed)
|
1470 |
|
|
{
|
1471 |
|
|
enum machine_mode mode = GET_MODE (x);
|
1472 |
|
|
bool float_mode_p = FLOAT_MODE_P (mode);
|
1473 |
|
|
int cost;
|
1474 |
|
|
|
1475 |
|
|
switch (code)
|
1476 |
|
|
{
|
1477 |
|
|
case CONST_INT:
|
1478 |
|
|
if (riscv_immediate_operand_p (outer_code, INTVAL (x)))
|
1479 |
|
|
{
|
1480 |
|
|
*total = 0;
|
1481 |
|
|
return true;
|
1482 |
|
|
}
|
1483 |
|
|
/* Fall through. */
|
1484 |
|
|
|
1485 |
|
|
case SYMBOL_REF:
|
1486 |
|
|
case LABEL_REF:
|
1487 |
|
|
case CONST_DOUBLE:
|
1488 |
|
|
case CONST:
|
1489 |
|
|
if (speed)
|
1490 |
|
|
*total = 1;
|
1491 |
|
|
else if ((cost = riscv_const_insns (x)) > 0)
|
1492 |
|
|
*total = COSTS_N_INSNS (cost);
|
1493 |
|
|
else /* The instruction will be fetched from the constant pool. */
|
1494 |
|
|
*total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE));
|
1495 |
|
|
return true;
|
1496 |
|
|
|
1497 |
|
|
case MEM:
|
1498 |
|
|
/* If the address is legitimate, return the number of
|
1499 |
|
|
instructions it needs. */
|
1500 |
|
|
if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0)
|
1501 |
|
|
{
|
1502 |
|
|
*total = COSTS_N_INSNS (cost + tune_info->memory_cost);
|
1503 |
|
|
return true;
|
1504 |
|
|
}
|
1505 |
|
|
/* Otherwise use the default handling. */
|
1506 |
|
|
return false;
|
1507 |
|
|
|
1508 |
|
|
case NOT:
|
1509 |
|
|
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
|
1510 |
|
|
return false;
|
1511 |
|
|
|
1512 |
|
|
case AND:
|
1513 |
|
|
case IOR:
|
1514 |
|
|
case XOR:
|
1515 |
|
|
/* Double-word operations use two single-word operations. */
|
1516 |
|
|
*total = riscv_binary_cost (x, 1, 2);
|
1517 |
|
|
return false;
|
1518 |
|
|
|
1519 |
|
|
case ASHIFT:
|
1520 |
|
|
case ASHIFTRT:
|
1521 |
|
|
case LSHIFTRT:
|
1522 |
|
|
*total = riscv_binary_cost (x, 1, CONSTANT_P (XEXP (x, 1)) ? 4 : 9);
|
1523 |
|
|
return false;
|
1524 |
|
|
|
1525 |
|
|
case ABS:
|
1526 |
|
|
*total = COSTS_N_INSNS (float_mode_p ? 1 : 3);
|
1527 |
|
|
return false;
|
1528 |
|
|
|
1529 |
|
|
case LO_SUM:
|
1530 |
|
|
*total = set_src_cost (XEXP (x, 0), speed);
|
1531 |
|
|
return true;
|
1532 |
|
|
|
1533 |
|
|
case LT:
|
1534 |
|
|
case LTU:
|
1535 |
|
|
case LE:
|
1536 |
|
|
case LEU:
|
1537 |
|
|
case GT:
|
1538 |
|
|
case GTU:
|
1539 |
|
|
case GE:
|
1540 |
|
|
case GEU:
|
1541 |
|
|
case EQ:
|
1542 |
|
|
case NE:
|
1543 |
|
|
case UNORDERED:
|
1544 |
|
|
case LTGT:
|
1545 |
|
|
/* Branch comparisons have VOIDmode, so use the first operand's
|
1546 |
|
|
mode instead. */
|
1547 |
|
|
mode = GET_MODE (XEXP (x, 0));
|
1548 |
|
|
if (float_mode_p)
|
1549 |
|
|
*total = tune_info->fp_add[mode == DFmode];
|
1550 |
|
|
else
|
1551 |
|
|
*total = riscv_binary_cost (x, 1, 3);
|
1552 |
|
|
return false;
|
1553 |
|
|
|
1554 |
|
|
case MINUS:
|
1555 |
|
|
if (float_mode_p
|
1556 |
|
|
&& !HONOR_NANS (mode)
|
1557 |
|
|
&& !HONOR_SIGNED_ZEROS (mode))
|
1558 |
|
|
{
|
1559 |
|
|
/* See if we can use NMADD or NMSUB. See riscv.md for the
|
1560 |
|
|
associated patterns. */
|
1561 |
|
|
rtx op0 = XEXP (x, 0);
|
1562 |
|
|
rtx op1 = XEXP (x, 1);
|
1563 |
|
|
if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
|
1564 |
|
|
{
|
1565 |
|
|
*total = (tune_info->fp_mul[mode == DFmode]
|
1566 |
|
|
+ set_src_cost (XEXP (XEXP (op0, 0), 0), speed)
|
1567 |
|
|
+ set_src_cost (XEXP (op0, 1), speed)
|
1568 |
|
|
+ set_src_cost (op1, speed));
|
1569 |
|
|
return true;
|
1570 |
|
|
}
|
1571 |
|
|
if (GET_CODE (op1) == MULT)
|
1572 |
|
|
{
|
1573 |
|
|
*total = (tune_info->fp_mul[mode == DFmode]
|
1574 |
|
|
+ set_src_cost (op0, speed)
|
1575 |
|
|
+ set_src_cost (XEXP (op1, 0), speed)
|
1576 |
|
|
+ set_src_cost (XEXP (op1, 1), speed));
|
1577 |
|
|
return true;
|
1578 |
|
|
}
|
1579 |
|
|
}
|
1580 |
|
|
/* Fall through. */
|
1581 |
|
|
|
1582 |
|
|
case PLUS:
|
1583 |
|
|
if (float_mode_p)
|
1584 |
|
|
*total = tune_info->fp_add[mode == DFmode];
|
1585 |
|
|
else
|
1586 |
|
|
*total = riscv_binary_cost (x, 1, 4);
|
1587 |
|
|
return false;
|
1588 |
|
|
|
1589 |
|
|
case NEG:
|
1590 |
|
|
if (float_mode_p
|
1591 |
|
|
&& !HONOR_NANS (mode)
|
1592 |
|
|
&& HONOR_SIGNED_ZEROS (mode))
|
1593 |
|
|
{
|
1594 |
|
|
/* See if we can use NMADD or NMSUB. See riscv.md for the
|
1595 |
|
|
associated patterns. */
|
1596 |
|
|
rtx op = XEXP (x, 0);
|
1597 |
|
|
if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
|
1598 |
|
|
&& GET_CODE (XEXP (op, 0)) == MULT)
|
1599 |
|
|
{
|
1600 |
|
|
*total = (tune_info->fp_mul[mode == DFmode]
|
1601 |
|
|
+ set_src_cost (XEXP (XEXP (op, 0), 0), speed)
|
1602 |
|
|
+ set_src_cost (XEXP (XEXP (op, 0), 1), speed)
|
1603 |
|
|
+ set_src_cost (XEXP (op, 1), speed));
|
1604 |
|
|
return true;
|
1605 |
|
|
}
|
1606 |
|
|
}
|
1607 |
|
|
|
1608 |
|
|
if (float_mode_p)
|
1609 |
|
|
*total = tune_info->fp_add[mode == DFmode];
|
1610 |
|
|
else
|
1611 |
|
|
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
|
1612 |
|
|
return false;
|
1613 |
|
|
|
1614 |
|
|
case MULT:
|
1615 |
|
|
if (float_mode_p)
|
1616 |
|
|
*total = tune_info->fp_mul[mode == DFmode];
|
1617 |
|
|
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
1618 |
|
|
*total = 3 * tune_info->int_mul[0] + COSTS_N_INSNS (2);
|
1619 |
|
|
else if (!speed)
|
1620 |
|
|
*total = COSTS_N_INSNS (1);
|
1621 |
|
|
else
|
1622 |
|
|
*total = tune_info->int_mul[mode == DImode];
|
1623 |
|
|
return false;
|
1624 |
|
|
|
1625 |
|
|
case DIV:
|
1626 |
|
|
case SQRT:
|
1627 |
|
|
case MOD:
|
1628 |
|
|
if (float_mode_p)
|
1629 |
|
|
{
|
1630 |
|
|
*total = tune_info->fp_div[mode == DFmode];
|
1631 |
|
|
return false;
|
1632 |
|
|
}
|
1633 |
|
|
/* Fall through. */
|
1634 |
|
|
|
1635 |
|
|
case UDIV:
|
1636 |
|
|
case UMOD:
|
1637 |
|
|
if (speed)
|
1638 |
|
|
*total = tune_info->int_div[mode == DImode];
|
1639 |
|
|
else
|
1640 |
|
|
*total = COSTS_N_INSNS (1);
|
1641 |
|
|
return false;
|
1642 |
|
|
|
1643 |
|
|
case SIGN_EXTEND:
|
1644 |
|
|
*total = riscv_sign_extend_cost (mode, XEXP (x, 0));
|
1645 |
|
|
return false;
|
1646 |
|
|
|
1647 |
|
|
case ZERO_EXTEND:
|
1648 |
|
|
*total = riscv_zero_extend_cost (mode, XEXP (x, 0));
|
1649 |
|
|
return false;
|
1650 |
|
|
|
1651 |
|
|
case FLOAT:
|
1652 |
|
|
case UNSIGNED_FLOAT:
|
1653 |
|
|
case FIX:
|
1654 |
|
|
case FLOAT_EXTEND:
|
1655 |
|
|
case FLOAT_TRUNCATE:
|
1656 |
|
|
*total = tune_info->fp_add[mode == DFmode];
|
1657 |
|
|
return false;
|
1658 |
|
|
|
1659 |
|
|
default:
|
1660 |
|
|
return false;
|
1661 |
|
|
}
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
/* Implement TARGET_ADDRESS_COST. */
|
1665 |
|
|
|
1666 |
|
|
static int
|
1667 |
|
|
riscv_address_cost (rtx addr, enum machine_mode mode,
|
1668 |
|
|
addr_space_t as ATTRIBUTE_UNUSED,
|
1669 |
|
|
bool speed ATTRIBUTE_UNUSED)
|
1670 |
|
|
{
|
1671 |
|
|
return riscv_address_insns (addr, mode, false);
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
/* Return one word of double-word value OP. HIGH_P is true to select the
|
1675 |
|
|
high part or false to select the low part. */
|
1676 |
|
|
|
1677 |
|
|
rtx
|
1678 |
|
|
riscv_subword (rtx op, bool high_p)
|
1679 |
|
|
{
|
1680 |
|
|
unsigned int byte;
|
1681 |
|
|
enum machine_mode mode;
|
1682 |
|
|
|
1683 |
|
|
mode = GET_MODE (op);
|
1684 |
|
|
if (mode == VOIDmode)
|
1685 |
|
|
mode = TARGET_64BIT ? TImode : DImode;
|
1686 |
|
|
|
1687 |
|
|
byte = high_p ? UNITS_PER_WORD : 0;
|
1688 |
|
|
|
1689 |
|
|
if (FP_REG_RTX_P (op))
|
1690 |
|
|
return gen_rtx_REG (word_mode, REGNO (op) + high_p);
|
1691 |
|
|
|
1692 |
|
|
if (MEM_P (op))
|
1693 |
|
|
return adjust_address (op, word_mode, byte);
|
1694 |
|
|
|
1695 |
|
|
return simplify_gen_subreg (word_mode, op, mode, byte);
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
/* Return true if a 64-bit move from SRC to DEST should be split into two. */
|
1699 |
|
|
|
1700 |
|
|
bool
|
1701 |
|
|
riscv_split_64bit_move_p (rtx dest, rtx src)
|
1702 |
|
|
{
|
1703 |
|
|
/* All 64b moves are legal in 64b mode. All 64b FPR <-> FPR and
|
1704 |
|
|
FPR <-> MEM moves are legal in 32b mode, too. Although
|
1705 |
|
|
FPR <-> GPR moves are not available in general in 32b mode,
|
1706 |
|
|
we can at least load 0 into an FPR with fcvt.d.w fpr, x0. */
|
1707 |
|
|
return !(TARGET_64BIT
|
1708 |
|
|
|| (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
|
1709 |
|
|
|| (FP_REG_RTX_P (dest) && MEM_P (src))
|
1710 |
|
|
|| (FP_REG_RTX_P (src) && MEM_P (dest))
|
1711 |
|
|
|| (FP_REG_RTX_P(dest) && src == CONST0_RTX(GET_MODE(src))));
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
/* Split a doubleword move from SRC to DEST. On 32-bit targets,
|
1715 |
|
|
this function handles 64-bit moves for which riscv_split_64bit_move_p
|
1716 |
|
|
holds. For 64-bit targets, this function handles 128-bit moves. */
|
1717 |
|
|
|
1718 |
|
|
void
|
1719 |
|
|
riscv_split_doubleword_move (rtx dest, rtx src)
|
1720 |
|
|
{
|
1721 |
|
|
rtx low_dest;
|
1722 |
|
|
|
1723 |
|
|
/* The operation can be split into two normal moves. Decide in
|
1724 |
|
|
which order to do them. */
|
1725 |
|
|
low_dest = riscv_subword (dest, false);
|
1726 |
|
|
if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src))
|
1727 |
|
|
{
|
1728 |
|
|
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
|
1729 |
|
|
riscv_emit_move (low_dest, riscv_subword (src, false));
|
1730 |
|
|
}
|
1731 |
|
|
else
|
1732 |
|
|
{
|
1733 |
|
|
riscv_emit_move (low_dest, riscv_subword (src, false));
|
1734 |
|
|
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
|
1735 |
|
|
}
|
1736 |
|
|
}
|
1737 |
|
|
|
1738 |
|
|
/* Return the appropriate instructions to move SRC into DEST. Assume
|
1739 |
|
|
that SRC is operand 1 and DEST is operand 0. */
|
1740 |
|
|
|
1741 |
|
|
const char *
|
1742 |
|
|
riscv_output_move (rtx dest, rtx src)
|
1743 |
|
|
{
|
1744 |
|
|
enum rtx_code dest_code, src_code;
|
1745 |
|
|
enum machine_mode mode;
|
1746 |
|
|
bool dbl_p;
|
1747 |
|
|
|
1748 |
|
|
dest_code = GET_CODE (dest);
|
1749 |
|
|
src_code = GET_CODE (src);
|
1750 |
|
|
mode = GET_MODE (dest);
|
1751 |
|
|
dbl_p = (GET_MODE_SIZE (mode) == 8);
|
1752 |
|
|
|
1753 |
|
|
if (dbl_p && riscv_split_64bit_move_p (dest, src))
|
1754 |
|
|
return "#";
|
1755 |
|
|
|
1756 |
|
|
if (dest_code == REG && GP_REG_P (REGNO (dest)))
|
1757 |
|
|
{
|
1758 |
|
|
if (src_code == REG && FP_REG_P (REGNO (src)))
|
1759 |
|
|
return dbl_p ? "fmv.x.d\t%0,%1" : "fmv.x.s\t%0,%1";
|
1760 |
|
|
|
1761 |
|
|
if (src_code == MEM)
|
1762 |
|
|
switch (GET_MODE_SIZE (mode))
|
1763 |
|
|
{
|
1764 |
|
|
case 1: return "lbu\t%0,%1";
|
1765 |
|
|
case 2: return "lhu\t%0,%1";
|
1766 |
|
|
case 4: return "lw\t%0,%1";
|
1767 |
|
|
case 8: return "ld\t%0,%1";
|
1768 |
|
|
}
|
1769 |
|
|
|
1770 |
|
|
if (src_code == CONST_INT)
|
1771 |
|
|
return "li\t%0,%1";
|
1772 |
|
|
|
1773 |
|
|
if (src_code == HIGH)
|
1774 |
|
|
return "lui\t%0,%h1";
|
1775 |
|
|
|
1776 |
|
|
if (symbolic_operand (src, VOIDmode))
|
1777 |
|
|
switch (riscv_classify_symbolic_expression (src))
|
1778 |
|
|
{
|
1779 |
|
|
case SYMBOL_GOT_DISP: return "la\t%0,%1";
|
1780 |
|
|
case SYMBOL_ABSOLUTE: return "lla\t%0,%1";
|
1781 |
|
|
default: gcc_unreachable();
|
1782 |
|
|
}
|
1783 |
|
|
}
|
1784 |
|
|
if ((src_code == REG && GP_REG_P (REGNO (src)))
|
1785 |
|
|
|| (src == CONST0_RTX (mode)))
|
1786 |
|
|
{
|
1787 |
|
|
if (dest_code == REG)
|
1788 |
|
|
{
|
1789 |
|
|
if (GP_REG_P (REGNO (dest)))
|
1790 |
|
|
return "mv\t%0,%z1";
|
1791 |
|
|
|
1792 |
|
|
if (FP_REG_P (REGNO (dest)))
|
1793 |
|
|
{
|
1794 |
|
|
if (!dbl_p)
|
1795 |
|
|
return "fmv.s.x\t%0,%z1";
|
1796 |
|
|
if (TARGET_64BIT)
|
1797 |
|
|
return "fmv.d.x\t%0,%z1";
|
1798 |
|
|
/* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */
|
1799 |
|
|
gcc_assert (src == CONST0_RTX (mode));
|
1800 |
|
|
return "fcvt.d.w\t%0,x0";
|
1801 |
|
|
}
|
1802 |
|
|
}
|
1803 |
|
|
if (dest_code == MEM)
|
1804 |
|
|
switch (GET_MODE_SIZE (mode))
|
1805 |
|
|
{
|
1806 |
|
|
case 1: return "sb\t%z1,%0";
|
1807 |
|
|
case 2: return "sh\t%z1,%0";
|
1808 |
|
|
case 4: return "sw\t%z1,%0";
|
1809 |
|
|
case 8: return "sd\t%z1,%0";
|
1810 |
|
|
}
|
1811 |
|
|
}
|
1812 |
|
|
if (src_code == REG && FP_REG_P (REGNO (src)))
|
1813 |
|
|
{
|
1814 |
|
|
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
1815 |
|
|
return dbl_p ? "fmv.d\t%0,%1" : "fmv.s\t%0,%1";
|
1816 |
|
|
|
1817 |
|
|
if (dest_code == MEM)
|
1818 |
|
|
return dbl_p ? "fsd\t%1,%0" : "fsw\t%1,%0";
|
1819 |
|
|
}
|
1820 |
|
|
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
1821 |
|
|
{
|
1822 |
|
|
if (src_code == MEM)
|
1823 |
|
|
return dbl_p ? "fld\t%0,%1" : "flw\t%0,%1";
|
1824 |
|
|
}
|
1825 |
|
|
gcc_unreachable ();
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
/* Return true if CMP1 is a suitable second operand for integer ordering
|
1829 |
|
|
test CODE. See also the *sCC patterns in riscv.md. */
|
1830 |
|
|
|
1831 |
|
|
static bool
|
1832 |
|
|
riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
|
1833 |
|
|
{
|
1834 |
|
|
switch (code)
|
1835 |
|
|
{
|
1836 |
|
|
case GT:
|
1837 |
|
|
case GTU:
|
1838 |
|
|
return reg_or_0_operand (cmp1, VOIDmode);
|
1839 |
|
|
|
1840 |
|
|
case GE:
|
1841 |
|
|
case GEU:
|
1842 |
|
|
return cmp1 == const1_rtx;
|
1843 |
|
|
|
1844 |
|
|
case LT:
|
1845 |
|
|
case LTU:
|
1846 |
|
|
return arith_operand (cmp1, VOIDmode);
|
1847 |
|
|
|
1848 |
|
|
case LE:
|
1849 |
|
|
return sle_operand (cmp1, VOIDmode);
|
1850 |
|
|
|
1851 |
|
|
case LEU:
|
1852 |
|
|
return sleu_operand (cmp1, VOIDmode);
|
1853 |
|
|
|
1854 |
|
|
default:
|
1855 |
|
|
gcc_unreachable ();
|
1856 |
|
|
}
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
/* Return true if *CMP1 (of mode MODE) is a valid second operand for
|
1860 |
|
|
integer ordering test *CODE, or if an equivalent combination can
|
1861 |
|
|
be formed by adjusting *CODE and *CMP1. When returning true, update
|
1862 |
|
|
*CODE and *CMP1 with the chosen code and operand, otherwise leave
|
1863 |
|
|
them alone. */
|
1864 |
|
|
|
1865 |
|
|
static bool
|
1866 |
|
|
riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
|
1867 |
|
|
enum machine_mode mode)
|
1868 |
|
|
{
|
1869 |
|
|
HOST_WIDE_INT plus_one;
|
1870 |
|
|
|
1871 |
|
|
if (riscv_int_order_operand_ok_p (*code, *cmp1))
|
1872 |
|
|
return true;
|
1873 |
|
|
|
1874 |
|
|
if (CONST_INT_P (*cmp1))
|
1875 |
|
|
switch (*code)
|
1876 |
|
|
{
|
1877 |
|
|
case LE:
|
1878 |
|
|
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
|
1879 |
|
|
if (INTVAL (*cmp1) < plus_one)
|
1880 |
|
|
{
|
1881 |
|
|
*code = LT;
|
1882 |
|
|
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
1883 |
|
|
return true;
|
1884 |
|
|
}
|
1885 |
|
|
break;
|
1886 |
|
|
|
1887 |
|
|
case LEU:
|
1888 |
|
|
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
|
1889 |
|
|
if (plus_one != 0)
|
1890 |
|
|
{
|
1891 |
|
|
*code = LTU;
|
1892 |
|
|
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
1893 |
|
|
return true;
|
1894 |
|
|
}
|
1895 |
|
|
break;
|
1896 |
|
|
|
1897 |
|
|
default:
|
1898 |
|
|
break;
|
1899 |
|
|
}
|
1900 |
|
|
return false;
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
/* Compare CMP0 and CMP1 using ordering test CODE and store the result
|
1904 |
|
|
in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
|
1905 |
|
|
is nonnull, it's OK to set TARGET to the inverse of the result and
|
1906 |
|
|
flip *INVERT_PTR instead. */
|
1907 |
|
|
|
1908 |
|
|
static void
|
1909 |
|
|
riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
|
1910 |
|
|
rtx target, rtx cmp0, rtx cmp1)
|
1911 |
|
|
{
|
1912 |
|
|
enum machine_mode mode;
|
1913 |
|
|
|
1914 |
|
|
/* First see if there is a RISCV instruction that can do this operation.
|
1915 |
|
|
If not, try doing the same for the inverse operation. If that also
|
1916 |
|
|
fails, force CMP1 into a register and try again. */
|
1917 |
|
|
mode = GET_MODE (cmp0);
|
1918 |
|
|
if (riscv_canonicalize_int_order_test (&code, &cmp1, mode))
|
1919 |
|
|
riscv_emit_binary (code, target, cmp0, cmp1);
|
1920 |
|
|
else
|
1921 |
|
|
{
|
1922 |
|
|
enum rtx_code inv_code = reverse_condition (code);
|
1923 |
|
|
if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode))
|
1924 |
|
|
{
|
1925 |
|
|
cmp1 = force_reg (mode, cmp1);
|
1926 |
|
|
riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
|
1927 |
|
|
}
|
1928 |
|
|
else if (invert_ptr == 0)
|
1929 |
|
|
{
|
1930 |
|
|
rtx inv_target;
|
1931 |
|
|
|
1932 |
|
|
inv_target = riscv_force_binary (GET_MODE (target),
|
1933 |
|
|
inv_code, cmp0, cmp1);
|
1934 |
|
|
riscv_emit_binary (XOR, target, inv_target, const1_rtx);
|
1935 |
|
|
}
|
1936 |
|
|
else
|
1937 |
|
|
{
|
1938 |
|
|
*invert_ptr = !*invert_ptr;
|
1939 |
|
|
riscv_emit_binary (inv_code, target, cmp0, cmp1);
|
1940 |
|
|
}
|
1941 |
|
|
}
|
1942 |
|
|
}
|
1943 |
|
|
|
1944 |
|
|
/* Return a register that is zero iff CMP0 and CMP1 are equal.
|
1945 |
|
|
The register will have the same mode as CMP0. */
|
1946 |
|
|
|
1947 |
|
|
static rtx
|
1948 |
|
|
riscv_zero_if_equal (rtx cmp0, rtx cmp1)
|
1949 |
|
|
{
|
1950 |
|
|
if (cmp1 == const0_rtx)
|
1951 |
|
|
return cmp0;
|
1952 |
|
|
|
1953 |
|
|
return expand_binop (GET_MODE (cmp0), sub_optab,
|
1954 |
|
|
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
|
1955 |
|
|
}
|
1956 |
|
|
|
1957 |
|
|
/* Return false if we can easily emit code for the FP comparison specified
|
1958 |
|
|
by *CODE. If not, set *CODE to its inverse and return true. */
|
1959 |
|
|
|
1960 |
|
|
static bool
|
1961 |
|
|
riscv_reversed_fp_cond (enum rtx_code *code)
|
1962 |
|
|
{
|
1963 |
|
|
switch (*code)
|
1964 |
|
|
{
|
1965 |
|
|
case EQ:
|
1966 |
|
|
case LT:
|
1967 |
|
|
case LE:
|
1968 |
|
|
case GT:
|
1969 |
|
|
case GE:
|
1970 |
|
|
case LTGT:
|
1971 |
|
|
case ORDERED:
|
1972 |
|
|
/* We know how to emit code for these cases... */
|
1973 |
|
|
return false;
|
1974 |
|
|
|
1975 |
|
|
default:
|
1976 |
|
|
/* ...but we must invert these and rely on the others. */
|
1977 |
|
|
*code = reverse_condition_maybe_unordered (*code);
|
1978 |
|
|
return true;
|
1979 |
|
|
}
|
1980 |
|
|
}
|
1981 |
|
|
|
1982 |
|
|
/* Convert a comparison into something that can be used in a branch or
|
1983 |
|
|
conditional move. On entry, *OP0 and *OP1 are the values being
|
1984 |
|
|
compared and *CODE is the code used to compare them.
|
1985 |
|
|
|
1986 |
|
|
Update *CODE, *OP0 and *OP1 so that they describe the final comparison. */
|
1987 |
|
|
|
1988 |
|
|
static void
|
1989 |
|
|
riscv_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1)
|
1990 |
|
|
{
|
1991 |
|
|
rtx cmp_op0 = *op0;
|
1992 |
|
|
rtx cmp_op1 = *op1;
|
1993 |
|
|
|
1994 |
|
|
if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
|
1995 |
|
|
{
|
1996 |
|
|
if (splittable_const_int_operand (cmp_op1, VOIDmode))
|
1997 |
|
|
{
|
1998 |
|
|
HOST_WIDE_INT rhs = INTVAL (cmp_op1), new_rhs;
|
1999 |
|
|
enum rtx_code new_code;
|
2000 |
|
|
|
2001 |
|
|
switch (*code)
|
2002 |
|
|
{
|
2003 |
|
|
case LTU: new_rhs = rhs - 1; new_code = LEU; goto try_new_rhs;
|
2004 |
|
|
case LEU: new_rhs = rhs + 1; new_code = LTU; goto try_new_rhs;
|
2005 |
|
|
case GTU: new_rhs = rhs + 1; new_code = GEU; goto try_new_rhs;
|
2006 |
|
|
case GEU: new_rhs = rhs - 1; new_code = GTU; goto try_new_rhs;
|
2007 |
|
|
case LT: new_rhs = rhs - 1; new_code = LE; goto try_new_rhs;
|
2008 |
|
|
case LE: new_rhs = rhs + 1; new_code = LT; goto try_new_rhs;
|
2009 |
|
|
case GT: new_rhs = rhs + 1; new_code = GE; goto try_new_rhs;
|
2010 |
|
|
case GE: new_rhs = rhs - 1; new_code = GT;
|
2011 |
|
|
try_new_rhs:
|
2012 |
|
|
/* Convert e.g. OP0 > 4095 into OP0 >= 4096. */
|
2013 |
|
|
if ((rhs < 0) == (new_rhs < 0)
|
2014 |
|
|
&& riscv_integer_cost (new_rhs) < riscv_integer_cost (rhs))
|
2015 |
|
|
{
|
2016 |
|
|
*op1 = GEN_INT (new_rhs);
|
2017 |
|
|
*code = new_code;
|
2018 |
|
|
}
|
2019 |
|
|
break;
|
2020 |
|
|
|
2021 |
|
|
case EQ:
|
2022 |
|
|
case NE:
|
2023 |
|
|
/* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */
|
2024 |
|
|
if (SMALL_OPERAND (-rhs))
|
2025 |
|
|
{
|
2026 |
|
|
*op0 = gen_reg_rtx (GET_MODE (cmp_op0));
|
2027 |
|
|
riscv_emit_binary (PLUS, *op0, cmp_op0, GEN_INT (-rhs));
|
2028 |
|
|
*op1 = const0_rtx;
|
2029 |
|
|
}
|
2030 |
|
|
default:
|
2031 |
|
|
break;
|
2032 |
|
|
}
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
if (*op1 != const0_rtx)
|
2036 |
|
|
*op1 = force_reg (GET_MODE (cmp_op0), *op1);
|
2037 |
|
|
}
|
2038 |
|
|
else
|
2039 |
|
|
{
|
2040 |
|
|
/* For FP comparisons, set an integer register with the result of the
|
2041 |
|
|
comparison, then branch on it. */
|
2042 |
|
|
rtx tmp0, tmp1, final_op;
|
2043 |
|
|
enum rtx_code fp_code = *code;
|
2044 |
|
|
*code = riscv_reversed_fp_cond (&fp_code) ? EQ : NE;
|
2045 |
|
|
|
2046 |
|
|
switch (fp_code)
|
2047 |
|
|
{
|
2048 |
|
|
case ORDERED:
|
2049 |
|
|
/* a == a && b == b */
|
2050 |
|
|
tmp0 = gen_reg_rtx (SImode);
|
2051 |
|
|
riscv_emit_binary (EQ, tmp0, cmp_op0, cmp_op0);
|
2052 |
|
|
tmp1 = gen_reg_rtx (SImode);
|
2053 |
|
|
riscv_emit_binary (EQ, tmp1, cmp_op1, cmp_op1);
|
2054 |
|
|
final_op = gen_reg_rtx (SImode);
|
2055 |
|
|
riscv_emit_binary (AND, final_op, tmp0, tmp1);
|
2056 |
|
|
break;
|
2057 |
|
|
|
2058 |
|
|
case LTGT:
|
2059 |
|
|
/* a < b || a > b */
|
2060 |
|
|
tmp0 = gen_reg_rtx (SImode);
|
2061 |
|
|
riscv_emit_binary (LT, tmp0, cmp_op0, cmp_op1);
|
2062 |
|
|
tmp1 = gen_reg_rtx (SImode);
|
2063 |
|
|
riscv_emit_binary (GT, tmp1, cmp_op0, cmp_op1);
|
2064 |
|
|
final_op = gen_reg_rtx (SImode);
|
2065 |
|
|
riscv_emit_binary (IOR, final_op, tmp0, tmp1);
|
2066 |
|
|
break;
|
2067 |
|
|
|
2068 |
|
|
case EQ:
|
2069 |
|
|
case LE:
|
2070 |
|
|
case LT:
|
2071 |
|
|
case GE:
|
2072 |
|
|
case GT:
|
2073 |
|
|
/* We have instructions for these cases. */
|
2074 |
|
|
final_op = gen_reg_rtx (SImode);
|
2075 |
|
|
riscv_emit_binary (fp_code, final_op, cmp_op0, cmp_op1);
|
2076 |
|
|
break;
|
2077 |
|
|
|
2078 |
|
|
default:
|
2079 |
|
|
gcc_unreachable ();
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
/* Compare the binary result against 0. */
|
2083 |
|
|
*op0 = final_op;
|
2084 |
|
|
*op1 = const0_rtx;
|
2085 |
|
|
}
|
2086 |
|
|
}
|
2087 |
|
|
|
2088 |
|
|
/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
|
2089 |
|
|
and OPERAND[3]. Store the result in OPERANDS[0].
|
2090 |
|
|
|
2091 |
|
|
On 64-bit targets, the mode of the comparison and target will always be
|
2092 |
|
|
SImode, thus possibly narrower than that of the comparison's operands. */
|
2093 |
|
|
|
2094 |
|
|
void
|
2095 |
|
|
riscv_expand_scc (rtx operands[])
|
2096 |
|
|
{
|
2097 |
|
|
rtx target = operands[0];
|
2098 |
|
|
enum rtx_code code = GET_CODE (operands[1]);
|
2099 |
|
|
rtx op0 = operands[2];
|
2100 |
|
|
rtx op1 = operands[3];
|
2101 |
|
|
|
2102 |
|
|
gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
|
2103 |
|
|
|
2104 |
|
|
if (code == EQ || code == NE)
|
2105 |
|
|
{
|
2106 |
|
|
rtx zie = riscv_zero_if_equal (op0, op1);
|
2107 |
|
|
riscv_emit_binary (code, target, zie, const0_rtx);
|
2108 |
|
|
}
|
2109 |
|
|
else
|
2110 |
|
|
riscv_emit_int_order_test (code, 0, target, op0, op1);
|
2111 |
|
|
}
|
2112 |
|
|
|
2113 |
|
|
/* Compare OPERANDS[1] with OPERANDS[2] using comparison code
|
2114 |
|
|
CODE and jump to OPERANDS[3] if the condition holds. */
|
2115 |
|
|
|
2116 |
|
|
void
|
2117 |
|
|
riscv_expand_conditional_branch (rtx *operands)
|
2118 |
|
|
{
|
2119 |
|
|
enum rtx_code code = GET_CODE (operands[0]);
|
2120 |
|
|
rtx op0 = operands[1];
|
2121 |
|
|
rtx op1 = operands[2];
|
2122 |
|
|
rtx condition;
|
2123 |
|
|
|
2124 |
|
|
riscv_emit_compare (&code, &op0, &op1);
|
2125 |
|
|
condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
|
2126 |
|
|
emit_jump_insn (gen_condjump (condition, operands[3]));
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
|
2130 |
|
|
least PARM_BOUNDARY bits of alignment, but will be given anything up
|
2131 |
|
|
to STACK_BOUNDARY bits if the type requires it. */
|
2132 |
|
|
|
2133 |
|
|
static unsigned int
|
2134 |
|
|
riscv_function_arg_boundary (enum machine_mode mode, const_tree type)
|
2135 |
|
|
{
|
2136 |
|
|
unsigned int alignment;
|
2137 |
|
|
|
2138 |
|
|
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
|
2139 |
|
|
if (alignment < PARM_BOUNDARY)
|
2140 |
|
|
alignment = PARM_BOUNDARY;
|
2141 |
|
|
if (alignment > STACK_BOUNDARY)
|
2142 |
|
|
alignment = STACK_BOUNDARY;
|
2143 |
|
|
return alignment;
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
/* Fill INFO with information about a single argument. CUM is the
|
2147 |
|
|
cumulative state for earlier arguments. MODE is the mode of this
|
2148 |
|
|
argument and TYPE is its type (if known). NAMED is true if this
|
2149 |
|
|
is a named (fixed) argument rather than a variable one. */
|
2150 |
|
|
|
2151 |
|
|
static void
|
2152 |
|
|
riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum,
|
2153 |
|
|
enum machine_mode mode, const_tree type, bool named)
|
2154 |
|
|
{
|
2155 |
|
|
bool doubleword_aligned_p;
|
2156 |
|
|
unsigned int num_bytes, num_words, max_regs;
|
2157 |
|
|
|
2158 |
|
|
/* Work out the size of the argument. */
|
2159 |
|
|
num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
|
2160 |
|
|
num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
2161 |
|
|
|
2162 |
|
|
/* Scalar, complex and vector floating-point types are passed in
|
2163 |
|
|
floating-point registers, as long as this is a named rather
|
2164 |
|
|
than a variable argument. */
|
2165 |
|
|
info->fpr_p = (named
|
2166 |
|
|
&& (type == 0 || FLOAT_TYPE_P (type))
|
2167 |
|
|
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|
2168 |
|
|
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
2169 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
2170 |
|
|
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
|
2171 |
|
|
|
2172 |
|
|
/* Complex floats should only go into FPRs if there are two FPRs free,
|
2173 |
|
|
otherwise they should be passed in the same way as a struct
|
2174 |
|
|
containing two floats. */
|
2175 |
|
|
if (info->fpr_p
|
2176 |
|
|
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
2177 |
|
|
&& GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
|
2178 |
|
|
{
|
2179 |
|
|
if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
|
2180 |
|
|
info->fpr_p = false;
|
2181 |
|
|
else
|
2182 |
|
|
num_words = 2;
|
2183 |
|
|
}
|
2184 |
|
|
|
2185 |
|
|
/* See whether the argument has doubleword alignment. */
|
2186 |
|
|
doubleword_aligned_p = (riscv_function_arg_boundary (mode, type)
|
2187 |
|
|
> BITS_PER_WORD);
|
2188 |
|
|
|
2189 |
|
|
/* Set REG_OFFSET to the register count we're interested in.
|
2190 |
|
|
The EABI allocates the floating-point registers separately,
|
2191 |
|
|
but the other ABIs allocate them like integer registers. */
|
2192 |
|
|
info->reg_offset = cum->num_gprs;
|
2193 |
|
|
|
2194 |
|
|
/* Advance to an even register if the argument is doubleword-aligned. */
|
2195 |
|
|
if (doubleword_aligned_p)
|
2196 |
|
|
info->reg_offset += info->reg_offset & 1;
|
2197 |
|
|
|
2198 |
|
|
/* Work out the offset of a stack argument. */
|
2199 |
|
|
info->stack_offset = cum->stack_words;
|
2200 |
|
|
if (doubleword_aligned_p)
|
2201 |
|
|
info->stack_offset += info->stack_offset & 1;
|
2202 |
|
|
|
2203 |
|
|
max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
|
2204 |
|
|
|
2205 |
|
|
/* Partition the argument between registers and stack. */
|
2206 |
|
|
info->reg_words = MIN (num_words, max_regs);
|
2207 |
|
|
info->stack_words = num_words - info->reg_words;
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
/* INFO describes a register argument that has the normal format for the
|
2211 |
|
|
argument's mode. Return the register it uses, assuming that FPRs are
|
2212 |
|
|
available if HARD_FLOAT_P. */
|
2213 |
|
|
|
2214 |
|
|
static unsigned int
|
2215 |
|
|
riscv_arg_regno (const struct riscv_arg_info *info, bool hard_float_p)
|
2216 |
|
|
{
|
2217 |
|
|
if (!info->fpr_p || !hard_float_p)
|
2218 |
|
|
return GP_ARG_FIRST + info->reg_offset;
|
2219 |
|
|
else
|
2220 |
|
|
return FP_ARG_FIRST + info->reg_offset;
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
/* Implement TARGET_FUNCTION_ARG. */
|
2224 |
|
|
|
2225 |
|
|
static rtx
|
2226 |
|
|
riscv_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
|
2227 |
|
|
const_tree type, bool named)
|
2228 |
|
|
{
|
2229 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
2230 |
|
|
struct riscv_arg_info info;
|
2231 |
|
|
|
2232 |
|
|
if (mode == VOIDmode)
|
2233 |
|
|
return NULL;
|
2234 |
|
|
|
2235 |
|
|
riscv_get_arg_info (&info, cum, mode, type, named);
|
2236 |
|
|
|
2237 |
|
|
/* Return straight away if the whole argument is passed on the stack. */
|
2238 |
|
|
if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
|
2239 |
|
|
return NULL;
|
2240 |
|
|
|
2241 |
|
|
/* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
|
2242 |
|
|
contains a double in its entirety, then that 64-bit chunk is passed
|
2243 |
|
|
in a floating-point register. */
|
2244 |
|
|
if (TARGET_HARD_FLOAT
|
2245 |
|
|
&& named
|
2246 |
|
|
&& type != 0
|
2247 |
|
|
&& TREE_CODE (type) == RECORD_TYPE
|
2248 |
|
|
&& TYPE_SIZE_UNIT (type)
|
2249 |
|
|
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
|
2250 |
|
|
{
|
2251 |
|
|
tree field;
|
2252 |
|
|
|
2253 |
|
|
/* First check to see if there is any such field. */
|
2254 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
2255 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
2256 |
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
|
2257 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
|
2258 |
|
|
&& tree_fits_shwi_p (bit_position (field))
|
2259 |
|
|
&& int_bit_position (field) % BITS_PER_WORD == 0)
|
2260 |
|
|
break;
|
2261 |
|
|
|
2262 |
|
|
if (field != 0)
|
2263 |
|
|
{
|
2264 |
|
|
/* Now handle the special case by returning a PARALLEL
|
2265 |
|
|
indicating where each 64-bit chunk goes. INFO.REG_WORDS
|
2266 |
|
|
chunks are passed in registers. */
|
2267 |
|
|
unsigned int i;
|
2268 |
|
|
HOST_WIDE_INT bitpos;
|
2269 |
|
|
rtx ret;
|
2270 |
|
|
|
2271 |
|
|
/* assign_parms checks the mode of ENTRY_PARM, so we must
|
2272 |
|
|
use the actual mode here. */
|
2273 |
|
|
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
|
2274 |
|
|
|
2275 |
|
|
bitpos = 0;
|
2276 |
|
|
field = TYPE_FIELDS (type);
|
2277 |
|
|
for (i = 0; i < info.reg_words; i++)
|
2278 |
|
|
{
|
2279 |
|
|
rtx reg;
|
2280 |
|
|
|
2281 |
|
|
for (; field; field = DECL_CHAIN (field))
|
2282 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
2283 |
|
|
&& int_bit_position (field) >= bitpos)
|
2284 |
|
|
break;
|
2285 |
|
|
|
2286 |
|
|
if (field
|
2287 |
|
|
&& int_bit_position (field) == bitpos
|
2288 |
|
|
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
|
2289 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
|
2290 |
|
|
reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
|
2291 |
|
|
else
|
2292 |
|
|
reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
|
2293 |
|
|
|
2294 |
|
|
XVECEXP (ret, 0, i)
|
2295 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode, reg,
|
2296 |
|
|
GEN_INT (bitpos / BITS_PER_UNIT));
|
2297 |
|
|
|
2298 |
|
|
bitpos += BITS_PER_WORD;
|
2299 |
|
|
}
|
2300 |
|
|
return ret;
|
2301 |
|
|
}
|
2302 |
|
|
}
|
2303 |
|
|
|
2304 |
|
|
/* Handle the n32/n64 conventions for passing complex floating-point
|
2305 |
|
|
arguments in FPR pairs. The real part goes in the lower register
|
2306 |
|
|
and the imaginary part goes in the upper register. */
|
2307 |
|
|
if (info.fpr_p
|
2308 |
|
|
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
2309 |
|
|
{
|
2310 |
|
|
rtx real, imag;
|
2311 |
|
|
enum machine_mode inner;
|
2312 |
|
|
unsigned int regno;
|
2313 |
|
|
|
2314 |
|
|
inner = GET_MODE_INNER (mode);
|
2315 |
|
|
regno = FP_ARG_FIRST + info.reg_offset;
|
2316 |
|
|
if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
|
2317 |
|
|
{
|
2318 |
|
|
/* Real part in registers, imaginary part on stack. */
|
2319 |
|
|
gcc_assert (info.stack_words == info.reg_words);
|
2320 |
|
|
return gen_rtx_REG (inner, regno);
|
2321 |
|
|
}
|
2322 |
|
|
else
|
2323 |
|
|
{
|
2324 |
|
|
gcc_assert (info.stack_words == 0);
|
2325 |
|
|
real = gen_rtx_EXPR_LIST (VOIDmode,
|
2326 |
|
|
gen_rtx_REG (inner, regno),
|
2327 |
|
|
const0_rtx);
|
2328 |
|
|
imag = gen_rtx_EXPR_LIST (VOIDmode,
|
2329 |
|
|
gen_rtx_REG (inner,
|
2330 |
|
|
regno + info.reg_words / 2),
|
2331 |
|
|
GEN_INT (GET_MODE_SIZE (inner)));
|
2332 |
|
|
return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
|
2333 |
|
|
}
|
2334 |
|
|
}
|
2335 |
|
|
|
2336 |
|
|
return gen_rtx_REG (mode, riscv_arg_regno (&info, TARGET_HARD_FLOAT));
|
2337 |
|
|
}
|
2338 |
|
|
|
2339 |
|
|
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
|
2340 |
|
|
|
2341 |
|
|
static void
|
2342 |
|
|
riscv_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
|
2343 |
|
|
const_tree type, bool named)
|
2344 |
|
|
{
|
2345 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
2346 |
|
|
struct riscv_arg_info info;
|
2347 |
|
|
|
2348 |
|
|
riscv_get_arg_info (&info, cum, mode, type, named);
|
2349 |
|
|
|
2350 |
|
|
/* Advance the register count. This has the effect of setting
|
2351 |
|
|
num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
|
2352 |
|
|
argument required us to skip the final GPR and pass the whole
|
2353 |
|
|
argument on the stack. */
|
2354 |
|
|
cum->num_gprs = info.reg_offset + info.reg_words;
|
2355 |
|
|
|
2356 |
|
|
/* Advance the stack word count. */
|
2357 |
|
|
if (info.stack_words > 0)
|
2358 |
|
|
cum->stack_words = info.stack_offset + info.stack_words;
|
2359 |
|
|
}
|
2360 |
|
|
|
2361 |
|
|
/* Implement TARGET_ARG_PARTIAL_BYTES. */
|
2362 |
|
|
|
2363 |
|
|
static int
|
2364 |
|
|
riscv_arg_partial_bytes (cumulative_args_t cum,
|
2365 |
|
|
enum machine_mode mode, tree type, bool named)
|
2366 |
|
|
{
|
2367 |
|
|
struct riscv_arg_info info;
|
2368 |
|
|
|
2369 |
|
|
riscv_get_arg_info (&info, get_cumulative_args (cum), mode, type, named);
|
2370 |
|
|
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
/* See whether VALTYPE is a record whose fields should be returned in
|
2374 |
|
|
floating-point registers. If so, return the number of fields and
|
2375 |
|
|
list them in FIELDS (which should have two elements). Return 0
|
2376 |
|
|
otherwise.
|
2377 |
|
|
|
2378 |
|
|
For n32 & n64, a structure with one or two fields is returned in
|
2379 |
|
|
floating-point registers as long as every field has a floating-point
|
2380 |
|
|
type. */
|
2381 |
|
|
|
2382 |
|
|
static int
|
2383 |
|
|
riscv_fpr_return_fields (const_tree valtype, tree *fields)
|
2384 |
|
|
{
|
2385 |
|
|
tree field;
|
2386 |
|
|
int i;
|
2387 |
|
|
|
2388 |
|
|
if (TREE_CODE (valtype) != RECORD_TYPE)
|
2389 |
|
|
return 0;
|
2390 |
|
|
|
2391 |
|
|
i = 0;
|
2392 |
|
|
for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field))
|
2393 |
|
|
{
|
2394 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
2395 |
|
|
continue;
|
2396 |
|
|
|
2397 |
|
|
if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
|
2398 |
|
|
return 0;
|
2399 |
|
|
|
2400 |
|
|
if (i == 2)
|
2401 |
|
|
return 0;
|
2402 |
|
|
|
2403 |
|
|
fields[i++] = field;
|
2404 |
|
|
}
|
2405 |
|
|
return i;
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
/* Return true if the function return value MODE will get returned in a
|
2409 |
|
|
floating-point register. */
|
2410 |
|
|
|
2411 |
|
|
static bool
|
2412 |
|
|
riscv_return_mode_in_fpr_p (enum machine_mode mode)
|
2413 |
|
|
{
|
2414 |
|
|
return ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
2415 |
|
|
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
|
2416 |
|
|
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
2417 |
|
|
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
/* Return the representation of an FPR return register when the
|
2421 |
|
|
value being returned in FP_RETURN has mode VALUE_MODE and the
|
2422 |
|
|
return type itself has mode TYPE_MODE. On NewABI targets,
|
2423 |
|
|
the two modes may be different for structures like:
|
2424 |
|
|
|
2425 |
|
|
struct __attribute__((packed)) foo { float f; }
|
2426 |
|
|
|
2427 |
|
|
where we return the SFmode value of "f" in FP_RETURN, but where
|
2428 |
|
|
the structure itself has mode BLKmode. */
|
2429 |
|
|
|
2430 |
|
|
static rtx
|
2431 |
|
|
riscv_return_fpr_single (enum machine_mode type_mode,
|
2432 |
|
|
enum machine_mode value_mode)
|
2433 |
|
|
{
|
2434 |
|
|
rtx x;
|
2435 |
|
|
|
2436 |
|
|
x = gen_rtx_REG (value_mode, FP_RETURN);
|
2437 |
|
|
if (type_mode != value_mode)
|
2438 |
|
|
{
|
2439 |
|
|
x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
|
2440 |
|
|
x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
|
2441 |
|
|
}
|
2442 |
|
|
return x;
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
/* Return a composite value in a pair of floating-point registers.
|
2446 |
|
|
MODE1 and OFFSET1 are the mode and byte offset for the first value,
|
2447 |
|
|
likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
|
2448 |
|
|
complete value.
|
2449 |
|
|
|
2450 |
|
|
For n32 & n64, $f0 always holds the first value and $f2 the second.
|
2451 |
|
|
Otherwise the values are packed together as closely as possible. */
|
2452 |
|
|
|
2453 |
|
|
static rtx
|
2454 |
|
|
riscv_return_fpr_pair (enum machine_mode mode,
|
2455 |
|
|
enum machine_mode mode1, HOST_WIDE_INT offset1,
|
2456 |
|
|
enum machine_mode mode2, HOST_WIDE_INT offset2)
|
2457 |
|
|
{
|
2458 |
|
|
return gen_rtx_PARALLEL
|
2459 |
|
|
(mode,
|
2460 |
|
|
gen_rtvec (2,
|
2461 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
2462 |
|
|
gen_rtx_REG (mode1, FP_RETURN),
|
2463 |
|
|
GEN_INT (offset1)),
|
2464 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
2465 |
|
|
gen_rtx_REG (mode2, FP_RETURN + 1),
|
2466 |
|
|
GEN_INT (offset2))));
|
2467 |
|
|
|
2468 |
|
|
}
|
2469 |
|
|
|
2470 |
|
|
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
|
2471 |
|
|
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
|
2472 |
|
|
VALTYPE is null and MODE is the mode of the return value. */
|
2473 |
|
|
|
2474 |
|
|
rtx
|
2475 |
|
|
riscv_function_value (const_tree valtype, const_tree func, enum machine_mode mode)
|
2476 |
|
|
{
|
2477 |
|
|
if (valtype)
|
2478 |
|
|
{
|
2479 |
|
|
tree fields[2];
|
2480 |
|
|
int unsigned_p;
|
2481 |
|
|
|
2482 |
|
|
mode = TYPE_MODE (valtype);
|
2483 |
|
|
unsigned_p = TYPE_UNSIGNED (valtype);
|
2484 |
|
|
|
2485 |
|
|
/* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
|
2486 |
|
|
return values, promote the mode here too. */
|
2487 |
|
|
mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
|
2488 |
|
|
|
2489 |
|
|
/* Handle structures whose fields are returned in $f0/$f2. */
|
2490 |
|
|
switch (riscv_fpr_return_fields (valtype, fields))
|
2491 |
|
|
{
|
2492 |
|
|
case 1:
|
2493 |
|
|
return riscv_return_fpr_single (mode,
|
2494 |
|
|
TYPE_MODE (TREE_TYPE (fields[0])));
|
2495 |
|
|
|
2496 |
|
|
case 2:
|
2497 |
|
|
return riscv_return_fpr_pair (mode,
|
2498 |
|
|
TYPE_MODE (TREE_TYPE (fields[0])),
|
2499 |
|
|
int_byte_position (fields[0]),
|
2500 |
|
|
TYPE_MODE (TREE_TYPE (fields[1])),
|
2501 |
|
|
int_byte_position (fields[1]));
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
/* Only use FPRs for scalar, complex or vector types. */
|
2505 |
|
|
if (!FLOAT_TYPE_P (valtype))
|
2506 |
|
|
return gen_rtx_REG (mode, GP_RETURN);
|
2507 |
|
|
}
|
2508 |
|
|
|
2509 |
|
|
/* Handle long doubles for n32 & n64. */
|
2510 |
|
|
if (mode == TFmode)
|
2511 |
|
|
return riscv_return_fpr_pair (mode,
|
2512 |
|
|
DImode, 0,
|
2513 |
|
|
DImode, GET_MODE_SIZE (mode) / 2);
|
2514 |
|
|
|
2515 |
|
|
if (riscv_return_mode_in_fpr_p (mode))
|
2516 |
|
|
{
|
2517 |
|
|
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
2518 |
|
|
return riscv_return_fpr_pair (mode,
|
2519 |
|
|
GET_MODE_INNER (mode), 0,
|
2520 |
|
|
GET_MODE_INNER (mode),
|
2521 |
|
|
GET_MODE_SIZE (mode) / 2);
|
2522 |
|
|
else
|
2523 |
|
|
return gen_rtx_REG (mode, FP_RETURN);
|
2524 |
|
|
}
|
2525 |
|
|
|
2526 |
|
|
return gen_rtx_REG (mode, GP_RETURN);
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
/* Implement TARGET_RETURN_IN_MEMORY. Scalars and small structures
|
2530 |
|
|
that fit in two registers are returned in a0/a1. */
|
2531 |
|
|
|
2532 |
|
|
static bool
|
2533 |
|
|
riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
|
2534 |
|
|
{
|
2535 |
|
|
return !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD);
|
2536 |
|
|
}
|
2537 |
|
|
|
2538 |
|
|
/* Implement TARGET_PASS_BY_REFERENCE. */
|
2539 |
|
|
|
2540 |
|
|
static bool
|
2541 |
|
|
riscv_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
|
2542 |
|
|
enum machine_mode mode, const_tree type,
|
2543 |
|
|
bool named ATTRIBUTE_UNUSED)
|
2544 |
|
|
{
|
2545 |
|
|
if (type && riscv_return_in_memory (type, NULL_TREE))
|
2546 |
|
|
return true;
|
2547 |
|
|
return targetm.calls.must_pass_in_stack (mode, type);
|
2548 |
|
|
}
|
2549 |
|
|
|
2550 |
|
|
/* Implement TARGET_SETUP_INCOMING_VARARGS. */
|
2551 |
|
|
|
2552 |
|
|
static void
|
2553 |
|
|
riscv_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
|
2554 |
|
|
tree type, int *pretend_size ATTRIBUTE_UNUSED,
|
2555 |
|
|
int no_rtl)
|
2556 |
|
|
{
|
2557 |
|
|
CUMULATIVE_ARGS local_cum;
|
2558 |
|
|
int gp_saved;
|
2559 |
|
|
|
2560 |
|
|
/* The caller has advanced CUM up to, but not beyond, the last named
|
2561 |
|
|
argument. Advance a local copy of CUM past the last "real" named
|
2562 |
|
|
argument, to find out how many registers are left over. */
|
2563 |
|
|
local_cum = *get_cumulative_args (cum);
|
2564 |
|
|
riscv_function_arg_advance (pack_cumulative_args (&local_cum), mode, type, 1);
|
2565 |
|
|
|
2566 |
|
|
/* Found out how many registers we need to save. */
|
2567 |
|
|
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
|
2568 |
|
|
|
2569 |
|
|
if (!no_rtl && gp_saved > 0)
|
2570 |
|
|
{
|
2571 |
|
|
rtx ptr, mem;
|
2572 |
|
|
|
2573 |
|
|
ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
|
2574 |
|
|
REG_PARM_STACK_SPACE (cfun->decl)
|
2575 |
|
|
- gp_saved * UNITS_PER_WORD);
|
2576 |
|
|
mem = gen_frame_mem (BLKmode, ptr);
|
2577 |
|
|
set_mem_alias_set (mem, get_varargs_alias_set ());
|
2578 |
|
|
|
2579 |
|
|
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
|
2580 |
|
|
mem, gp_saved);
|
2581 |
|
|
}
|
2582 |
|
|
if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
|
2583 |
|
|
cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD;
|
2584 |
|
|
}
|
2585 |
|
|
|
2586 |
|
|
/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
|
2587 |
|
|
|
2588 |
|
|
static void
|
2589 |
|
|
riscv_va_start (tree valist, rtx nextarg)
|
2590 |
|
|
{
|
2591 |
|
|
nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
|
2592 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
2593 |
|
|
}
|
2594 |
|
|
|
2595 |
|
|
/* Expand a call of type TYPE. RESULT is where the result will go (null
|
2596 |
|
|
for "call"s and "sibcall"s), ADDR is the address of the function,
|
2597 |
|
|
ARGS_SIZE is the size of the arguments and AUX is the value passed
|
2598 |
|
|
to us by riscv_function_arg. Return the call itself. */
|
2599 |
|
|
|
2600 |
|
|
rtx
|
2601 |
|
|
riscv_expand_call (bool sibcall_p, rtx result, rtx addr, rtx args_size)
|
2602 |
|
|
{
|
2603 |
|
|
rtx pattern;
|
2604 |
|
|
|
2605 |
|
|
if (!call_insn_operand (addr, VOIDmode))
|
2606 |
|
|
{
|
2607 |
|
|
rtx reg = RISCV_EPILOGUE_TEMP (Pmode);
|
2608 |
|
|
riscv_emit_move (reg, addr);
|
2609 |
|
|
addr = reg;
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
if (result == 0)
|
2613 |
|
|
{
|
2614 |
|
|
rtx (*fn) (rtx, rtx);
|
2615 |
|
|
|
2616 |
|
|
if (sibcall_p)
|
2617 |
|
|
fn = gen_sibcall_internal;
|
2618 |
|
|
else
|
2619 |
|
|
fn = gen_call_internal;
|
2620 |
|
|
|
2621 |
|
|
pattern = fn (addr, args_size);
|
2622 |
|
|
}
|
2623 |
|
|
else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
|
2624 |
|
|
{
|
2625 |
|
|
/* Handle return values created by riscv_return_fpr_pair. */
|
2626 |
|
|
rtx (*fn) (rtx, rtx, rtx, rtx);
|
2627 |
|
|
rtx reg1, reg2;
|
2628 |
|
|
|
2629 |
|
|
if (sibcall_p)
|
2630 |
|
|
fn = gen_sibcall_value_multiple_internal;
|
2631 |
|
|
else
|
2632 |
|
|
fn = gen_call_value_multiple_internal;
|
2633 |
|
|
|
2634 |
|
|
reg1 = XEXP (XVECEXP (result, 0, 0), 0);
|
2635 |
|
|
reg2 = XEXP (XVECEXP (result, 0, 1), 0);
|
2636 |
|
|
pattern = fn (reg1, addr, args_size, reg2);
|
2637 |
|
|
}
|
2638 |
|
|
else
|
2639 |
|
|
{
|
2640 |
|
|
rtx (*fn) (rtx, rtx, rtx);
|
2641 |
|
|
|
2642 |
|
|
if (sibcall_p)
|
2643 |
|
|
fn = gen_sibcall_value_internal;
|
2644 |
|
|
else
|
2645 |
|
|
fn = gen_call_value_internal;
|
2646 |
|
|
|
2647 |
|
|
/* Handle return values created by riscv_return_fpr_single. */
|
2648 |
|
|
if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
|
2649 |
|
|
result = XEXP (XVECEXP (result, 0, 0), 0);
|
2650 |
|
|
pattern = fn (result, addr, args_size);
|
2651 |
|
|
}
|
2652 |
|
|
|
2653 |
|
|
return emit_call_insn (pattern);
|
2654 |
|
|
}
|
2655 |
|
|
|
2656 |
|
|
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
|
2657 |
|
|
Assume that the areas do not overlap. */
|
2658 |
|
|
|
2659 |
|
|
static void
|
2660 |
|
|
riscv_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
|
2661 |
|
|
{
|
2662 |
|
|
HOST_WIDE_INT offset, delta;
|
2663 |
|
|
unsigned HOST_WIDE_INT bits;
|
2664 |
|
|
int i;
|
2665 |
|
|
enum machine_mode mode;
|
2666 |
|
|
rtx *regs;
|
2667 |
|
|
|
2668 |
|
|
bits = MAX( BITS_PER_UNIT,
|
2669 |
|
|
MIN( BITS_PER_WORD, MIN( MEM_ALIGN(src),MEM_ALIGN(dest) ) ) );
|
2670 |
|
|
|
2671 |
|
|
mode = mode_for_size (bits, MODE_INT, 0);
|
2672 |
|
|
delta = bits / BITS_PER_UNIT;
|
2673 |
|
|
|
2674 |
|
|
/* Allocate a buffer for the temporary registers. */
|
2675 |
|
|
regs = XALLOCAVEC (rtx, length / delta);
|
2676 |
|
|
|
2677 |
|
|
/* Load as many BITS-sized chunks as possible. Use a normal load if
|
2678 |
|
|
the source has enough alignment, otherwise use left/right pairs. */
|
2679 |
|
|
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
2680 |
|
|
{
|
2681 |
|
|
regs[i] = gen_reg_rtx (mode);
|
2682 |
|
|
riscv_emit_move (regs[i], adjust_address (src, mode, offset));
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
/* Copy the chunks to the destination. */
|
2686 |
|
|
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
2687 |
|
|
riscv_emit_move (adjust_address (dest, mode, offset), regs[i]);
|
2688 |
|
|
|
2689 |
|
|
/* Mop up any left-over bytes. */
|
2690 |
|
|
if (offset < length)
|
2691 |
|
|
{
|
2692 |
|
|
src = adjust_address (src, BLKmode, offset);
|
2693 |
|
|
dest = adjust_address (dest, BLKmode, offset);
|
2694 |
|
|
move_by_pieces (dest, src, length - offset,
|
2695 |
|
|
MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
|
2696 |
|
|
}
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
/* Helper function for doing a loop-based block operation on memory
|
2700 |
|
|
reference MEM. Each iteration of the loop will operate on LENGTH
|
2701 |
|
|
bytes of MEM.
|
2702 |
|
|
|
2703 |
|
|
Create a new base register for use within the loop and point it to
|
2704 |
|
|
the start of MEM. Create a new memory reference that uses this
|
2705 |
|
|
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
|
2706 |
|
|
|
2707 |
|
|
static void
|
2708 |
|
|
riscv_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
|
2709 |
|
|
rtx *loop_reg, rtx *loop_mem)
|
2710 |
|
|
{
|
2711 |
|
|
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
|
2712 |
|
|
|
2713 |
|
|
/* Although the new mem does not refer to a known location,
|
2714 |
|
|
it does keep up to LENGTH bytes of alignment. */
|
2715 |
|
|
*loop_mem = change_address (mem, BLKmode, *loop_reg);
|
2716 |
|
|
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
|
2717 |
|
|
}
|
2718 |
|
|
|
2719 |
|
|
/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
|
2720 |
|
|
bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
|
2721 |
|
|
the memory regions do not overlap. */
|
2722 |
|
|
|
2723 |
|
|
static void
|
2724 |
|
|
riscv_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
|
2725 |
|
|
HOST_WIDE_INT bytes_per_iter)
|
2726 |
|
|
{
|
2727 |
|
|
rtx label, src_reg, dest_reg, final_src, test;
|
2728 |
|
|
HOST_WIDE_INT leftover;
|
2729 |
|
|
|
2730 |
|
|
leftover = length % bytes_per_iter;
|
2731 |
|
|
length -= leftover;
|
2732 |
|
|
|
2733 |
|
|
/* Create registers and memory references for use within the loop. */
|
2734 |
|
|
riscv_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
|
2735 |
|
|
riscv_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
|
2736 |
|
|
|
2737 |
|
|
/* Calculate the value that SRC_REG should have after the last iteration
|
2738 |
|
|
of the loop. */
|
2739 |
|
|
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
|
2740 |
|
|
0, 0, OPTAB_WIDEN);
|
2741 |
|
|
|
2742 |
|
|
/* Emit the start of the loop. */
|
2743 |
|
|
label = gen_label_rtx ();
|
2744 |
|
|
emit_label (label);
|
2745 |
|
|
|
2746 |
|
|
/* Emit the loop body. */
|
2747 |
|
|
riscv_block_move_straight (dest, src, bytes_per_iter);
|
2748 |
|
|
|
2749 |
|
|
/* Move on to the next block. */
|
2750 |
|
|
riscv_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
|
2751 |
|
|
riscv_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
|
2752 |
|
|
|
2753 |
|
|
/* Emit the loop condition. */
|
2754 |
|
|
test = gen_rtx_NE (VOIDmode, src_reg, final_src);
|
2755 |
|
|
if (Pmode == DImode)
|
2756 |
|
|
emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
|
2757 |
|
|
else
|
2758 |
|
|
emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
|
2759 |
|
|
|
2760 |
|
|
/* Mop up any left-over bytes. */
|
2761 |
|
|
if (leftover)
|
2762 |
|
|
riscv_block_move_straight (dest, src, leftover);
|
2763 |
|
|
}
|
2764 |
|
|
|
2765 |
|
|
/* Expand a movmemsi instruction, which copies LENGTH bytes from
|
2766 |
|
|
memory reference SRC to memory reference DEST. */
|
2767 |
|
|
|
2768 |
|
|
bool
|
2769 |
|
|
riscv_expand_block_move (rtx dest, rtx src, rtx length)
|
2770 |
|
|
{
|
2771 |
|
|
if (CONST_INT_P (length))
|
2772 |
|
|
{
|
2773 |
|
|
HOST_WIDE_INT factor, align;
|
2774 |
|
|
|
2775 |
|
|
align = MIN (MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), BITS_PER_WORD);
|
2776 |
|
|
factor = BITS_PER_WORD / align;
|
2777 |
|
|
|
2778 |
|
|
if (INTVAL (length) <= RISCV_MAX_MOVE_BYTES_STRAIGHT / factor)
|
2779 |
|
|
{
|
2780 |
|
|
riscv_block_move_straight (dest, src, INTVAL (length));
|
2781 |
|
|
return true;
|
2782 |
|
|
}
|
2783 |
|
|
else if (optimize && align >= BITS_PER_WORD)
|
2784 |
|
|
{
|
2785 |
|
|
riscv_block_move_loop (dest, src, INTVAL (length),
|
2786 |
|
|
RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / factor);
|
2787 |
|
|
return true;
|
2788 |
|
|
}
|
2789 |
|
|
}
|
2790 |
|
|
return false;
|
2791 |
|
|
}
|
2792 |
|
|
|
2793 |
|
|
/* (Re-)Initialize riscv_lo_relocs and riscv_hi_relocs. */
|
2794 |
|
|
|
2795 |
|
|
static void
|
2796 |
|
|
riscv_init_relocs (void)
|
2797 |
|
|
{
|
2798 |
|
|
memset (riscv_hi_relocs, '\0', sizeof (riscv_hi_relocs));
|
2799 |
|
|
memset (riscv_lo_relocs, '\0', sizeof (riscv_lo_relocs));
|
2800 |
|
|
|
2801 |
|
|
if (!flag_pic && riscv_cmodel == CM_MEDLOW)
|
2802 |
|
|
{
|
2803 |
|
|
riscv_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
|
2804 |
|
|
riscv_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
|
2805 |
|
|
}
|
2806 |
|
|
|
2807 |
|
|
if (!flag_pic || flag_pie)
|
2808 |
|
|
{
|
2809 |
|
|
riscv_hi_relocs[SYMBOL_TLS_LE] = "%tprel_hi(";
|
2810 |
|
|
riscv_lo_relocs[SYMBOL_TLS_LE] = "%tprel_lo(";
|
2811 |
|
|
}
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM
|
2815 |
|
|
in context CONTEXT. RELOCS is the array of relocations to use. */
|
2816 |
|
|
|
2817 |
|
|
static void
|
2818 |
|
|
riscv_print_operand_reloc (FILE *file, rtx op, const char **relocs)
|
2819 |
|
|
{
|
2820 |
|
|
enum riscv_symbol_type symbol_type;
|
2821 |
|
|
const char *p;
|
2822 |
|
|
|
2823 |
|
|
symbol_type = riscv_classify_symbolic_expression (op);
|
2824 |
|
|
gcc_assert (relocs[symbol_type]);
|
2825 |
|
|
|
2826 |
|
|
fputs (relocs[symbol_type], file);
|
2827 |
|
|
output_addr_const (file, riscv_strip_unspec_address (op));
|
2828 |
|
|
for (p = relocs[symbol_type]; *p != 0; p++)
|
2829 |
|
|
if (*p == '(')
|
2830 |
|
|
fputc (')', file);
|
2831 |
|
|
}
|
2832 |
|
|
|
2833 |
|
|
static const char *
|
2834 |
|
|
riscv_memory_model_suffix (enum memmodel model)
|
2835 |
|
|
{
|
2836 |
|
|
switch (model)
|
2837 |
|
|
{
|
2838 |
|
|
case MEMMODEL_ACQ_REL:
|
2839 |
|
|
case MEMMODEL_SEQ_CST:
|
2840 |
|
|
return ".sc";
|
2841 |
|
|
case MEMMODEL_ACQUIRE:
|
2842 |
|
|
case MEMMODEL_CONSUME:
|
2843 |
|
|
return ".aq";
|
2844 |
|
|
case MEMMODEL_RELEASE:
|
2845 |
|
|
return ".rl";
|
2846 |
|
|
case MEMMODEL_RELAXED:
|
2847 |
|
|
return "";
|
2848 |
|
|
default: gcc_unreachable();
|
2849 |
|
|
}
|
2850 |
|
|
}
|
2851 |
|
|
|
2852 |
|
|
/* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are:
|
2853 |
|
|
|
2854 |
|
|
'h' Print the high-part relocation associated with OP, after stripping
|
2855 |
|
|
any outermost HIGH.
|
2856 |
|
|
'R' Print the low-part relocation associated with OP.
|
2857 |
|
|
'C' Print the integer branch condition for comparison OP.
|
2858 |
|
|
'A' Print the atomic operation suffix for memory model OP.
|
2859 |
|
|
'z' Print $0 if OP is zero, otherwise print OP normally. */
|
2860 |
|
|
|
2861 |
|
|
static void
|
2862 |
|
|
riscv_print_operand (FILE *file, rtx op, int letter)
|
2863 |
|
|
{
|
2864 |
|
|
enum rtx_code code;
|
2865 |
|
|
|
2866 |
|
|
gcc_assert (op);
|
2867 |
|
|
code = GET_CODE (op);
|
2868 |
|
|
|
2869 |
|
|
switch (letter)
|
2870 |
|
|
{
|
2871 |
|
|
case 'h':
|
2872 |
|
|
if (code == HIGH)
|
2873 |
|
|
op = XEXP (op, 0);
|
2874 |
|
|
riscv_print_operand_reloc (file, op, riscv_hi_relocs);
|
2875 |
|
|
break;
|
2876 |
|
|
|
2877 |
|
|
case 'R':
|
2878 |
|
|
riscv_print_operand_reloc (file, op, riscv_lo_relocs);
|
2879 |
|
|
break;
|
2880 |
|
|
|
2881 |
|
|
case 'C':
|
2882 |
|
|
/* The RTL names match the instruction names. */
|
2883 |
|
|
fputs (GET_RTX_NAME (code), file);
|
2884 |
|
|
break;
|
2885 |
|
|
|
2886 |
|
|
case 'A':
|
2887 |
|
|
fputs (riscv_memory_model_suffix ((enum memmodel)INTVAL (op)), file);
|
2888 |
|
|
break;
|
2889 |
|
|
|
2890 |
|
|
default:
|
2891 |
|
|
switch (code)
|
2892 |
|
|
{
|
2893 |
|
|
case REG:
|
2894 |
|
|
if (letter && letter != 'z')
|
2895 |
|
|
output_operand_lossage ("invalid use of '%%%c'", letter);
|
2896 |
|
|
fprintf (file, "%s", reg_names[REGNO (op)]);
|
2897 |
|
|
break;
|
2898 |
|
|
|
2899 |
|
|
case MEM:
|
2900 |
|
|
if (letter == 'y')
|
2901 |
|
|
fprintf (file, "%s", reg_names[REGNO(XEXP(op, 0))]);
|
2902 |
|
|
else if (letter && letter != 'z')
|
2903 |
|
|
output_operand_lossage ("invalid use of '%%%c'", letter);
|
2904 |
|
|
else
|
2905 |
|
|
output_address (XEXP (op, 0));
|
2906 |
|
|
break;
|
2907 |
|
|
|
2908 |
|
|
default:
|
2909 |
|
|
if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
|
2910 |
|
|
fputs (reg_names[GP_REG_FIRST], file);
|
2911 |
|
|
else if (letter && letter != 'z')
|
2912 |
|
|
output_operand_lossage ("invalid use of '%%%c'", letter);
|
2913 |
|
|
else
|
2914 |
|
|
output_addr_const (file, riscv_strip_unspec_address (op));
|
2915 |
|
|
break;
|
2916 |
|
|
}
|
2917 |
|
|
}
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
|
2921 |
|
|
|
2922 |
|
|
static void
|
2923 |
|
|
riscv_print_operand_address (FILE *file, rtx x)
|
2924 |
|
|
{
|
2925 |
|
|
struct riscv_address_info addr;
|
2926 |
|
|
|
2927 |
|
|
if (riscv_classify_address (&addr, x, word_mode, true))
|
2928 |
|
|
switch (addr.type)
|
2929 |
|
|
{
|
2930 |
|
|
case ADDRESS_REG:
|
2931 |
|
|
riscv_print_operand (file, addr.offset, 0);
|
2932 |
|
|
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
2933 |
|
|
return;
|
2934 |
|
|
|
2935 |
|
|
case ADDRESS_LO_SUM:
|
2936 |
|
|
riscv_print_operand_reloc (file, addr.offset, riscv_lo_relocs);
|
2937 |
|
|
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
2938 |
|
|
return;
|
2939 |
|
|
|
2940 |
|
|
case ADDRESS_CONST_INT:
|
2941 |
|
|
output_addr_const (file, x);
|
2942 |
|
|
fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
|
2943 |
|
|
return;
|
2944 |
|
|
|
2945 |
|
|
case ADDRESS_SYMBOLIC:
|
2946 |
|
|
output_addr_const (file, riscv_strip_unspec_address (x));
|
2947 |
|
|
return;
|
2948 |
|
|
}
|
2949 |
|
|
gcc_unreachable ();
|
2950 |
|
|
}
|
2951 |
|
|
|
2952 |
|
|
static bool
|
2953 |
|
|
riscv_size_ok_for_small_data_p (int size)
|
2954 |
|
|
{
|
2955 |
|
|
return g_switch_value && IN_RANGE (size, 1, g_switch_value);
|
2956 |
|
|
}
|
2957 |
|
|
|
2958 |
|
|
/* Return true if EXP should be placed in the small data section. */
|
2959 |
|
|
|
2960 |
|
|
static bool
|
2961 |
|
|
riscv_in_small_data_p (const_tree x)
|
2962 |
|
|
{
|
2963 |
|
|
if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL)
|
2964 |
|
|
return false;
|
2965 |
|
|
|
2966 |
|
|
if (TREE_CODE (x) == VAR_DECL && DECL_SECTION_NAME (x))
|
2967 |
|
|
{
|
2968 |
|
|
const char *sec = DECL_SECTION_NAME (x);
|
2969 |
|
|
return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0;
|
2970 |
|
|
}
|
2971 |
|
|
|
2972 |
|
|
return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x)));
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
/* Return a section for X, handling small data. */
|
2976 |
|
|
|
2977 |
|
|
static section *
|
2978 |
|
|
riscv_elf_select_rtx_section (enum machine_mode mode, rtx x,
|
2979 |
|
|
unsigned HOST_WIDE_INT align)
|
2980 |
|
|
{
|
2981 |
|
|
section *s = default_elf_select_rtx_section (mode, x, align);
|
2982 |
|
|
|
2983 |
|
|
if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode)))
|
2984 |
|
|
{
|
2985 |
|
|
if (strncmp (s->named.name, ".rodata.cst", strlen (".rodata.cst")) == 0)
|
2986 |
|
|
{
|
2987 |
|
|
/* Rename .rodata.cst* to .srodata.cst*. */
|
2988 |
|
|
char *name = (char *) alloca (strlen (s->named.name) + 2);
|
2989 |
|
|
sprintf (name, ".s%s", s->named.name + 1);
|
2990 |
|
|
return get_section (name, s->named.common.flags, NULL);
|
2991 |
|
|
}
|
2992 |
|
|
|
2993 |
|
|
if (s == data_section)
|
2994 |
|
|
return sdata_section;
|
2995 |
|
|
}
|
2996 |
|
|
|
2997 |
|
|
return s;
|
2998 |
|
|
}
|
2999 |
|
|
|
3000 |
|
|
/* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
|
3001 |
|
|
|
3002 |
|
|
static void ATTRIBUTE_UNUSED
|
3003 |
|
|
riscv_output_dwarf_dtprel (FILE *file, int size, rtx x)
|
3004 |
|
|
{
|
3005 |
|
|
switch (size)
|
3006 |
|
|
{
|
3007 |
|
|
case 4:
|
3008 |
|
|
fputs ("\t.dtprelword\t", file);
|
3009 |
|
|
break;
|
3010 |
|
|
|
3011 |
|
|
case 8:
|
3012 |
|
|
fputs ("\t.dtpreldword\t", file);
|
3013 |
|
|
break;
|
3014 |
|
|
|
3015 |
|
|
default:
|
3016 |
|
|
gcc_unreachable ();
|
3017 |
|
|
}
|
3018 |
|
|
output_addr_const (file, x);
|
3019 |
|
|
fputs ("+0x800", file);
|
3020 |
|
|
}
|
3021 |
|
|
|
3022 |
|
|
/* Make the last instruction frame-related and note that it performs
|
3023 |
|
|
the operation described by FRAME_PATTERN. */
|
3024 |
|
|
|
3025 |
|
|
static void
|
3026 |
|
|
riscv_set_frame_expr (rtx frame_pattern)
|
3027 |
|
|
{
|
3028 |
|
|
rtx insn;
|
3029 |
|
|
|
3030 |
|
|
insn = get_last_insn ();
|
3031 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3032 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3033 |
|
|
frame_pattern,
|
3034 |
|
|
REG_NOTES (insn));
|
3035 |
|
|
}
|
3036 |
|
|
|
3037 |
|
|
/* Return a frame-related rtx that stores REG at MEM.
|
3038 |
|
|
REG must be a single register. */
|
3039 |
|
|
|
3040 |
|
|
static rtx
|
3041 |
|
|
riscv_frame_set (rtx mem, rtx reg)
|
3042 |
|
|
{
|
3043 |
|
|
rtx set;
|
3044 |
|
|
|
3045 |
|
|
set = gen_rtx_SET (VOIDmode, mem, reg);
|
3046 |
|
|
RTX_FRAME_RELATED_P (set) = 1;
|
3047 |
|
|
|
3048 |
|
|
return set;
|
3049 |
|
|
}
|
3050 |
|
|
|
3051 |
|
|
/* Return true if the current function must save register REGNO. */
|
3052 |
|
|
|
3053 |
|
|
static bool
|
3054 |
|
|
riscv_save_reg_p (unsigned int regno)
|
3055 |
|
|
{
|
3056 |
|
|
bool call_saved = !global_regs[regno] && !call_really_used_regs[regno];
|
3057 |
|
|
bool might_clobber = crtl->saves_all_registers
|
3058 |
|
|
|| df_regs_ever_live_p (regno)
|
3059 |
|
|
|| (regno == HARD_FRAME_POINTER_REGNUM
|
3060 |
|
|
&& frame_pointer_needed);
|
3061 |
|
|
|
3062 |
|
|
return (call_saved && might_clobber)
|
3063 |
|
|
|| (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return);
|
3064 |
|
|
}
|
3065 |
|
|
|
3066 |
|
|
/* Determine whether to call GPR save/restore routines. */
|
3067 |
|
|
static bool
|
3068 |
|
|
riscv_use_save_libcall (const struct riscv_frame_info *frame)
|
3069 |
|
|
{
|
3070 |
|
|
if (!TARGET_SAVE_RESTORE || crtl->calls_eh_return || frame_pointer_needed)
|
3071 |
|
|
return false;
|
3072 |
|
|
|
3073 |
|
|
return frame->save_libcall_adjustment != 0;
|
3074 |
|
|
}
|
3075 |
|
|
|
3076 |
|
|
/* Determine which GPR save/restore routine to call. */
|
3077 |
|
|
|
3078 |
|
|
static unsigned
|
3079 |
|
|
riscv_save_libcall_count (unsigned mask)
|
3080 |
|
|
{
|
3081 |
|
|
for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--)
|
3082 |
|
|
if (BITSET_P (mask, n))
|
3083 |
|
|
return CALLEE_SAVED_REG_NUMBER (n) + 1;
|
3084 |
|
|
abort ();
|
3085 |
|
|
}
|
3086 |
|
|
|
3087 |
|
|
/* Populate the current function's riscv_frame_info structure.
|
3088 |
|
|
|
3089 |
|
|
RISC-V stack frames grown downward. High addresses are at the top.
|
3090 |
|
|
|
3091 |
|
|
+-------------------------------+
|
3092 |
|
|
| |
|
3093 |
|
|
| incoming stack arguments |
|
3094 |
|
|
| |
|
3095 |
|
|
+-------------------------------+ <-- incoming stack pointer
|
3096 |
|
|
| |
|
3097 |
|
|
| callee-allocated save area |
|
3098 |
|
|
| for arguments that are |
|
3099 |
|
|
| split between registers and |
|
3100 |
|
|
| the stack |
|
3101 |
|
|
| |
|
3102 |
|
|
+-------------------------------+ <-- arg_pointer_rtx
|
3103 |
|
|
| |
|
3104 |
|
|
| callee-allocated save area |
|
3105 |
|
|
| for register varargs |
|
3106 |
|
|
| |
|
3107 |
|
|
+-------------------------------+ <-- hard_frame_pointer_rtx;
|
3108 |
|
|
| | stack_pointer_rtx + gp_sp_offset
|
3109 |
|
|
| GPR save area | + UNITS_PER_WORD
|
3110 |
|
|
| |
|
3111 |
|
|
+-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
|
3112 |
|
|
| | + UNITS_PER_HWVALUE
|
3113 |
|
|
| FPR save area |
|
3114 |
|
|
| |
|
3115 |
|
|
+-------------------------------+ <-- frame_pointer_rtx (virtual)
|
3116 |
|
|
| |
|
3117 |
|
|
| local variables |
|
3118 |
|
|
| |
|
3119 |
|
|
P +-------------------------------+
|
3120 |
|
|
| |
|
3121 |
|
|
| outgoing stack arguments |
|
3122 |
|
|
| |
|
3123 |
|
|
+-------------------------------+ <-- stack_pointer_rtx
|
3124 |
|
|
|
3125 |
|
|
Dynamic stack allocations such as alloca insert data at point P.
|
3126 |
|
|
They decrease stack_pointer_rtx but leave frame_pointer_rtx and
|
3127 |
|
|
hard_frame_pointer_rtx unchanged. */
|
3128 |
|
|
|
3129 |
|
|
static void
|
3130 |
|
|
riscv_compute_frame_info (void)
|
3131 |
|
|
{
|
3132 |
|
|
struct riscv_frame_info *frame;
|
3133 |
|
|
HOST_WIDE_INT offset;
|
3134 |
|
|
unsigned int regno, i, num_x_saved = 0, num_f_saved = 0;
|
3135 |
|
|
|
3136 |
|
|
frame = &cfun->machine->frame;
|
3137 |
|
|
memset (frame, 0, sizeof (*frame));
|
3138 |
|
|
|
3139 |
|
|
/* Find out which GPRs we need to save. */
|
3140 |
|
|
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
|
3141 |
|
|
if (riscv_save_reg_p (regno))
|
3142 |
|
|
frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
|
3143 |
|
|
|
3144 |
|
|
/* If this function calls eh_return, we must also save and restore the
|
3145 |
|
|
EH data registers. */
|
3146 |
|
|
if (crtl->calls_eh_return)
|
3147 |
|
|
for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++)
|
3148 |
|
|
frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
|
3149 |
|
|
|
3150 |
|
|
/* Find out which FPRs we need to save. This loop must iterate over
|
3151 |
|
|
the same space as its companion in riscv_for_each_saved_gpr_and_fpr. */
|
3152 |
|
|
if (TARGET_HARD_FLOAT)
|
3153 |
|
|
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
3154 |
|
|
if (riscv_save_reg_p (regno))
|
3155 |
|
|
frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++;
|
3156 |
|
|
|
3157 |
|
|
/* At the bottom of the frame are any outgoing stack arguments. */
|
3158 |
|
|
offset = crtl->outgoing_args_size;
|
3159 |
|
|
/* Next are local stack variables. */
|
3160 |
|
|
offset += RISCV_STACK_ALIGN (get_frame_size ());
|
3161 |
|
|
/* The virtual frame pointer points above the local variables. */
|
3162 |
|
|
frame->frame_pointer_offset = offset;
|
3163 |
|
|
/* Next are the callee-saved FPRs. */
|
3164 |
|
|
if (frame->fmask)
|
3165 |
|
|
{
|
3166 |
|
|
offset += RISCV_STACK_ALIGN (num_f_saved * UNITS_PER_FPREG);
|
3167 |
|
|
frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
|
3168 |
|
|
}
|
3169 |
|
|
/* Next are the callee-saved GPRs. */
|
3170 |
|
|
if (frame->mask)
|
3171 |
|
|
{
|
3172 |
|
|
unsigned x_save_size = RISCV_STACK_ALIGN (num_x_saved * UNITS_PER_WORD);
|
3173 |
|
|
unsigned num_save_restore = 1 + riscv_save_libcall_count (frame->mask);
|
3174 |
|
|
|
3175 |
|
|
/* Only use save/restore routines if they don't alter the stack size. */
|
3176 |
|
|
if (RISCV_STACK_ALIGN (num_save_restore * UNITS_PER_WORD) == x_save_size)
|
3177 |
|
|
frame->save_libcall_adjustment = x_save_size;
|
3178 |
|
|
|
3179 |
|
|
offset += x_save_size;
|
3180 |
|
|
frame->gp_sp_offset = offset - UNITS_PER_WORD;
|
3181 |
|
|
}
|
3182 |
|
|
/* The hard frame pointer points above the callee-saved GPRs. */
|
3183 |
|
|
frame->hard_frame_pointer_offset = offset;
|
3184 |
|
|
/* Above the hard frame pointer is the callee-allocated varags save area. */
|
3185 |
|
|
offset += RISCV_STACK_ALIGN (cfun->machine->varargs_size);
|
3186 |
|
|
frame->arg_pointer_offset = offset;
|
3187 |
|
|
/* Next is the callee-allocated area for pretend stack arguments. */
|
3188 |
|
|
offset += crtl->args.pretend_args_size;
|
3189 |
|
|
frame->total_size = offset;
|
3190 |
|
|
/* Next points the incoming stack pointer and any incoming arguments. */
|
3191 |
|
|
|
3192 |
|
|
/* Only use save/restore routines when the GPRs are atop the frame. */
|
3193 |
|
|
if (frame->hard_frame_pointer_offset != frame->total_size)
|
3194 |
|
|
frame->save_libcall_adjustment = 0;
|
3195 |
|
|
}
|
3196 |
|
|
|
3197 |
|
|
/* Make sure that we're not trying to eliminate to the wrong hard frame
|
3198 |
|
|
pointer. */
|
3199 |
|
|
|
3200 |
|
|
static bool
|
3201 |
|
|
riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
|
3202 |
|
|
{
|
3203 |
|
|
return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
|
3204 |
|
|
}
|
3205 |
|
|
|
3206 |
|
|
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
|
3207 |
|
|
or argument pointer. TO is either the stack pointer or hard frame
|
3208 |
|
|
pointer. */
|
3209 |
|
|
|
3210 |
|
|
HOST_WIDE_INT
|
3211 |
|
|
riscv_initial_elimination_offset (int from, int to)
|
3212 |
|
|
{
|
3213 |
|
|
HOST_WIDE_INT src, dest;
|
3214 |
|
|
|
3215 |
|
|
riscv_compute_frame_info ();
|
3216 |
|
|
|
3217 |
|
|
if (to == HARD_FRAME_POINTER_REGNUM)
|
3218 |
|
|
dest = cfun->machine->frame.hard_frame_pointer_offset;
|
3219 |
|
|
else if (to == STACK_POINTER_REGNUM)
|
3220 |
|
|
dest = 0; /* this is the base of all offsets */
|
3221 |
|
|
else
|
3222 |
|
|
gcc_unreachable ();
|
3223 |
|
|
|
3224 |
|
|
if (from == FRAME_POINTER_REGNUM)
|
3225 |
|
|
src = cfun->machine->frame.frame_pointer_offset;
|
3226 |
|
|
else if (from == ARG_POINTER_REGNUM)
|
3227 |
|
|
src = cfun->machine->frame.arg_pointer_offset;
|
3228 |
|
|
else
|
3229 |
|
|
gcc_unreachable ();
|
3230 |
|
|
|
3231 |
|
|
return src - dest;
|
3232 |
|
|
}
|
3233 |
|
|
|
3234 |
|
|
/* Implement RETURN_ADDR_RTX. We do not support moving back to a
|
3235 |
|
|
previous frame. */
|
3236 |
|
|
|
3237 |
|
|
rtx
|
3238 |
|
|
riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
|
3239 |
|
|
{
|
3240 |
|
|
if (count != 0)
|
3241 |
|
|
return const0_rtx;
|
3242 |
|
|
|
3243 |
|
|
return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
|
3244 |
|
|
}
|
3245 |
|
|
|
3246 |
|
|
/* Emit code to change the current function's return address to
|
3247 |
|
|
ADDRESS. SCRATCH is available as a scratch register, if needed.
|
3248 |
|
|
ADDRESS and SCRATCH are both word-mode GPRs. */
|
3249 |
|
|
|
3250 |
|
|
void
|
3251 |
|
|
riscv_set_return_address (rtx address, rtx scratch)
|
3252 |
|
|
{
|
3253 |
|
|
rtx slot_address;
|
3254 |
|
|
|
3255 |
|
|
gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
|
3256 |
|
|
slot_address = riscv_add_offset (scratch, stack_pointer_rtx,
|
3257 |
|
|
cfun->machine->frame.gp_sp_offset);
|
3258 |
|
|
riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
/* A function to save or store a register. The first argument is the
|
3262 |
|
|
register and the second is the stack slot. */
|
3263 |
|
|
typedef void (*riscv_save_restore_fn) (rtx, rtx);
|
3264 |
|
|
|
3265 |
|
|
/* Use FN to save or restore register REGNO. MODE is the register's
|
3266 |
|
|
mode and OFFSET is the offset of its save slot from the current
|
3267 |
|
|
stack pointer. */
|
3268 |
|
|
|
3269 |
|
|
static void
|
3270 |
|
|
riscv_save_restore_reg (enum machine_mode mode, int regno,
|
3271 |
|
|
HOST_WIDE_INT offset, riscv_save_restore_fn fn)
|
3272 |
|
|
{
|
3273 |
|
|
rtx mem;
|
3274 |
|
|
|
3275 |
|
|
mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset));
|
3276 |
|
|
fn (gen_rtx_REG (mode, regno), mem);
|
3277 |
|
|
}
|
3278 |
|
|
|
3279 |
|
|
/* Call FN for each register that is saved by the current function.
|
3280 |
|
|
SP_OFFSET is the offset of the current stack pointer from the start
|
3281 |
|
|
of the frame. */
|
3282 |
|
|
|
3283 |
|
|
static void
|
3284 |
|
|
riscv_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
|
3285 |
|
|
riscv_save_restore_fn fn)
|
3286 |
|
|
{
|
3287 |
|
|
HOST_WIDE_INT offset;
|
3288 |
|
|
int regno;
|
3289 |
|
|
|
3290 |
|
|
/* Save the link register and s-registers. */
|
3291 |
|
|
offset = cfun->machine->frame.gp_sp_offset - sp_offset;
|
3292 |
|
|
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++)
|
3293 |
|
|
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
|
3294 |
|
|
{
|
3295 |
|
|
riscv_save_restore_reg (word_mode, regno, offset, fn);
|
3296 |
|
|
offset -= UNITS_PER_WORD;
|
3297 |
|
|
}
|
3298 |
|
|
|
3299 |
|
|
/* This loop must iterate over the same space as its companion in
|
3300 |
|
|
riscv_compute_frame_info. */
|
3301 |
|
|
offset = cfun->machine->frame.fp_sp_offset - sp_offset;
|
3302 |
|
|
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
3303 |
|
|
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
|
3304 |
|
|
{
|
3305 |
|
|
riscv_save_restore_reg (DFmode, regno, offset, fn);
|
3306 |
|
|
offset -= GET_MODE_SIZE (DFmode);
|
3307 |
|
|
}
|
3308 |
|
|
}
|
3309 |
|
|
|
3310 |
|
|
/* Emit a move from SRC to DEST, given that one of them is a register
|
3311 |
|
|
save slot and that the other is a register. TEMP is a temporary
|
3312 |
|
|
GPR of the same mode that is available if need be. */
|
3313 |
|
|
|
3314 |
|
|
static void
|
3315 |
|
|
riscv_emit_save_slot_move (rtx dest, rtx src, rtx temp)
|
3316 |
|
|
{
|
3317 |
|
|
unsigned int regno;
|
3318 |
|
|
rtx mem;
|
3319 |
|
|
enum reg_class rclass;
|
3320 |
|
|
|
3321 |
|
|
if (REG_P (src))
|
3322 |
|
|
{
|
3323 |
|
|
regno = REGNO (src);
|
3324 |
|
|
mem = dest;
|
3325 |
|
|
}
|
3326 |
|
|
else
|
3327 |
|
|
{
|
3328 |
|
|
regno = REGNO (dest);
|
3329 |
|
|
mem = src;
|
3330 |
|
|
}
|
3331 |
|
|
|
3332 |
|
|
rclass = riscv_secondary_reload_class (REGNO_REG_CLASS (regno),
|
3333 |
|
|
GET_MODE (mem), mem, mem == src);
|
3334 |
|
|
|
3335 |
|
|
if (rclass == NO_REGS)
|
3336 |
|
|
riscv_emit_move (dest, src);
|
3337 |
|
|
else
|
3338 |
|
|
{
|
3339 |
|
|
gcc_assert (!reg_overlap_mentioned_p (dest, temp));
|
3340 |
|
|
riscv_emit_move (temp, src);
|
3341 |
|
|
riscv_emit_move (dest, temp);
|
3342 |
|
|
}
|
3343 |
|
|
if (MEM_P (dest))
|
3344 |
|
|
riscv_set_frame_expr (riscv_frame_set (dest, src));
|
3345 |
|
|
}
|
3346 |
|
|
|
3347 |
|
|
/* Save register REG to MEM. Make the instruction frame-related. */
|
3348 |
|
|
|
3349 |
|
|
static void
|
3350 |
|
|
riscv_save_reg (rtx reg, rtx mem)
|
3351 |
|
|
{
|
3352 |
|
|
riscv_emit_save_slot_move (mem, reg, RISCV_PROLOGUE_TEMP (GET_MODE (reg)));
|
3353 |
|
|
}
|
3354 |
|
|
|
3355 |
|
|
/* Return the code to invoke the GPR save routine. */
|
3356 |
|
|
|
3357 |
|
|
const char *
|
3358 |
|
|
riscv_output_gpr_save (unsigned mask)
|
3359 |
|
|
{
|
3360 |
|
|
static char buf[GP_REG_NUM * 32];
|
3361 |
|
|
size_t len = 0;
|
3362 |
|
|
unsigned n = riscv_save_libcall_count (mask), i;
|
3363 |
|
|
unsigned frame_size = RISCV_STACK_ALIGN ((n + 1) * UNITS_PER_WORD);
|
3364 |
|
|
|
3365 |
|
|
len += sprintf (buf + len, "call\tt0,__riscv_save_%u", n);
|
3366 |
|
|
|
3367 |
|
|
#ifdef DWARF2_UNWIND_INFO
|
3368 |
|
|
/* Describe the effect of the call to __riscv_save_X. */
|
3369 |
|
|
if (dwarf2out_do_cfi_asm ())
|
3370 |
|
|
{
|
3371 |
|
|
len += sprintf (buf + len, "\n\t.cfi_def_cfa_offset %u", frame_size);
|
3372 |
|
|
|
3373 |
|
|
for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
|
3374 |
|
|
if (BITSET_P (cfun->machine->frame.mask, i))
|
3375 |
|
|
len += sprintf (buf + len, "\n\t.cfi_offset %u,%d", i,
|
3376 |
|
|
(CALLEE_SAVED_REG_NUMBER (i) + 2) * -UNITS_PER_WORD);
|
3377 |
|
|
}
|
3378 |
|
|
#endif
|
3379 |
|
|
|
3380 |
|
|
return buf;
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
/* Expand the "prologue" pattern. */
|
3384 |
|
|
|
3385 |
|
|
void
|
3386 |
|
|
riscv_expand_prologue (void)
|
3387 |
|
|
{
|
3388 |
|
|
struct riscv_frame_info *frame = &cfun->machine->frame;
|
3389 |
|
|
HOST_WIDE_INT size = frame->total_size;
|
3390 |
|
|
unsigned mask = frame->mask;
|
3391 |
|
|
rtx insn;
|
3392 |
|
|
|
3393 |
|
|
if (flag_stack_usage_info)
|
3394 |
|
|
current_function_static_stack_size = size;
|
3395 |
|
|
|
3396 |
|
|
/* When optimizing for size, call a subroutine to save the registers. */
|
3397 |
|
|
if (riscv_use_save_libcall (frame))
|
3398 |
|
|
{
|
3399 |
|
|
frame->mask = 0; /* Temporarily fib that we need not save GPRs. */
|
3400 |
|
|
size -= frame->save_libcall_adjustment;
|
3401 |
|
|
emit_insn (gen_gpr_save (GEN_INT (mask)));
|
3402 |
|
|
}
|
3403 |
|
|
|
3404 |
|
|
/* Save the registers. Allocate up to RISCV_MAX_FIRST_STACK_STEP
|
3405 |
|
|
bytes beforehand; this is enough to cover the register save area
|
3406 |
|
|
without going out of range. */
|
3407 |
|
|
if ((frame->mask | frame->fmask) != 0)
|
3408 |
|
|
{
|
3409 |
|
|
HOST_WIDE_INT step1;
|
3410 |
|
|
|
3411 |
|
|
step1 = MIN (size, RISCV_MAX_FIRST_STACK_STEP);
|
3412 |
|
|
insn = gen_add3_insn (stack_pointer_rtx,
|
3413 |
|
|
stack_pointer_rtx,
|
3414 |
|
|
GEN_INT (-step1));
|
3415 |
|
|
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
|
3416 |
|
|
size -= step1;
|
3417 |
|
|
riscv_for_each_saved_gpr_and_fpr (size, riscv_save_reg);
|
3418 |
|
|
}
|
3419 |
|
|
|
3420 |
|
|
frame->mask = mask; /* Undo the above fib. */
|
3421 |
|
|
|
3422 |
|
|
/* Set up the frame pointer, if we're using one. */
|
3423 |
|
|
if (frame_pointer_needed)
|
3424 |
|
|
{
|
3425 |
|
|
insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
|
3426 |
|
|
GEN_INT (frame->hard_frame_pointer_offset - size));
|
3427 |
|
|
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
|
3428 |
|
|
}
|
3429 |
|
|
|
3430 |
|
|
/* Allocate the rest of the frame. */
|
3431 |
|
|
if (size > 0)
|
3432 |
|
|
{
|
3433 |
|
|
if (SMALL_OPERAND (-size))
|
3434 |
|
|
{
|
3435 |
|
|
insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
|
3436 |
|
|
GEN_INT (-size));
|
3437 |
|
|
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
|
3438 |
|
|
}
|
3439 |
|
|
else
|
3440 |
|
|
{
|
3441 |
|
|
riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (-size));
|
3442 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx,
|
3443 |
|
|
stack_pointer_rtx,
|
3444 |
|
|
RISCV_PROLOGUE_TEMP (Pmode)));
|
3445 |
|
|
|
3446 |
|
|
/* Describe the effect of the previous instructions. */
|
3447 |
|
|
insn = plus_constant (Pmode, stack_pointer_rtx, -size);
|
3448 |
|
|
insn = gen_rtx_SET (VOIDmode, stack_pointer_rtx, insn);
|
3449 |
|
|
riscv_set_frame_expr (insn);
|
3450 |
|
|
}
|
3451 |
|
|
}
|
3452 |
|
|
}
|
3453 |
|
|
|
3454 |
|
|
/* Emit instructions to restore register REG from slot MEM. */
|
3455 |
|
|
|
3456 |
|
|
static void
|
3457 |
|
|
riscv_restore_reg (rtx reg, rtx mem)
|
3458 |
|
|
{
|
3459 |
|
|
riscv_emit_save_slot_move (reg, mem, RISCV_EPILOGUE_TEMP (GET_MODE (reg)));
|
3460 |
|
|
}
|
3461 |
|
|
|
3462 |
|
|
/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
|
3463 |
|
|
says which. */
|
3464 |
|
|
|
3465 |
|
|
void
|
3466 |
|
|
riscv_expand_epilogue (bool sibcall_p)
|
3467 |
|
|
{
|
3468 |
|
|
/* Split the frame into two. STEP1 is the amount of stack we should
|
3469 |
|
|
deallocate before restoring the registers. STEP2 is the amount we
|
3470 |
|
|
should deallocate afterwards.
|
3471 |
|
|
|
3472 |
|
|
Start off by assuming that no registers need to be restored. */
|
3473 |
|
|
struct riscv_frame_info *frame = &cfun->machine->frame;
|
3474 |
|
|
unsigned mask = frame->mask;
|
3475 |
|
|
HOST_WIDE_INT step1 = frame->total_size;
|
3476 |
|
|
HOST_WIDE_INT step2 = 0;
|
3477 |
|
|
bool use_restore_libcall = !sibcall_p && riscv_use_save_libcall (frame);
|
3478 |
|
|
rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
|
3479 |
|
|
|
3480 |
|
|
if (!sibcall_p && riscv_can_use_return_insn ())
|
3481 |
|
|
{
|
3482 |
|
|
emit_jump_insn (gen_return ());
|
3483 |
|
|
return;
|
3484 |
|
|
}
|
3485 |
|
|
|
3486 |
|
|
/* Move past any dynamic stack allocations. */
|
3487 |
|
|
if (cfun->calls_alloca)
|
3488 |
|
|
{
|
3489 |
|
|
rtx adjust = GEN_INT (-frame->hard_frame_pointer_offset);
|
3490 |
|
|
if (!SMALL_INT (adjust))
|
3491 |
|
|
{
|
3492 |
|
|
riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust);
|
3493 |
|
|
adjust = RISCV_EPILOGUE_TEMP (Pmode);
|
3494 |
|
|
}
|
3495 |
|
|
|
3496 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx, adjust));
|
3497 |
|
|
}
|
3498 |
|
|
|
3499 |
|
|
/* If we need to restore registers, deallocate as much stack as
|
3500 |
|
|
possible in the second step without going out of range. */
|
3501 |
|
|
if ((frame->mask | frame->fmask) != 0)
|
3502 |
|
|
{
|
3503 |
|
|
step2 = MIN (step1, RISCV_MAX_FIRST_STACK_STEP);
|
3504 |
|
|
step1 -= step2;
|
3505 |
|
|
}
|
3506 |
|
|
|
3507 |
|
|
/* Set TARGET to BASE + STEP1. */
|
3508 |
|
|
if (step1 > 0)
|
3509 |
|
|
{
|
3510 |
|
|
/* Get an rtx for STEP1 that we can add to BASE. */
|
3511 |
|
|
rtx adjust = GEN_INT (step1);
|
3512 |
|
|
if (!SMALL_OPERAND (step1))
|
3513 |
|
|
{
|
3514 |
|
|
riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust);
|
3515 |
|
|
adjust = RISCV_EPILOGUE_TEMP (Pmode);
|
3516 |
|
|
}
|
3517 |
|
|
|
3518 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, adjust));
|
3519 |
|
|
}
|
3520 |
|
|
|
3521 |
|
|
if (use_restore_libcall)
|
3522 |
|
|
frame->mask = 0; /* Temporarily fib that we need not save GPRs. */
|
3523 |
|
|
|
3524 |
|
|
/* Restore the registers. */
|
3525 |
|
|
riscv_for_each_saved_gpr_and_fpr (frame->total_size - step2,
|
3526 |
|
|
riscv_restore_reg);
|
3527 |
|
|
|
3528 |
|
|
if (use_restore_libcall)
|
3529 |
|
|
{
|
3530 |
|
|
frame->mask = mask; /* Undo the above fib. */
|
3531 |
|
|
gcc_assert (step2 >= frame->save_libcall_adjustment);
|
3532 |
|
|
step2 -= frame->save_libcall_adjustment;
|
3533 |
|
|
}
|
3534 |
|
|
|
3535 |
|
|
/* Deallocate the final bit of the frame. */
|
3536 |
|
|
if (step2 > 0)
|
3537 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
|
3538 |
|
|
GEN_INT (step2)));
|
3539 |
|
|
|
3540 |
|
|
if (use_restore_libcall)
|
3541 |
|
|
{
|
3542 |
|
|
emit_insn (gen_gpr_restore (GEN_INT (riscv_save_libcall_count (mask))));
|
3543 |
|
|
emit_jump_insn (gen_gpr_restore_return (ra));
|
3544 |
|
|
return;
|
3545 |
|
|
}
|
3546 |
|
|
|
3547 |
|
|
/* Add in the __builtin_eh_return stack adjustment. */
|
3548 |
|
|
if (crtl->calls_eh_return)
|
3549 |
|
|
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
|
3550 |
|
|
EH_RETURN_STACKADJ_RTX));
|
3551 |
|
|
|
3552 |
|
|
if (!sibcall_p)
|
3553 |
|
|
emit_jump_insn (gen_simple_return_internal (ra));
|
3554 |
|
|
}
|
3555 |
|
|
|
3556 |
|
|
/* Return nonzero if this function is known to have a null epilogue.
|
3557 |
|
|
This allows the optimizer to omit jumps to jumps if no stack
|
3558 |
|
|
was created. */
|
3559 |
|
|
|
3560 |
|
|
bool
|
3561 |
|
|
riscv_can_use_return_insn (void)
|
3562 |
|
|
{
|
3563 |
|
|
return reload_completed && cfun->machine->frame.total_size == 0;
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
/* Return true if register REGNO can store a value of mode MODE.
|
3567 |
|
|
The result of this function is cached in riscv_hard_regno_mode_ok. */
|
3568 |
|
|
|
3569 |
|
|
static bool
|
3570 |
|
|
riscv_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
|
3571 |
|
|
{
|
3572 |
|
|
unsigned int size = GET_MODE_SIZE (mode);
|
3573 |
|
|
enum mode_class mclass = GET_MODE_CLASS (mode);
|
3574 |
|
|
|
3575 |
|
|
/* This is hella bogus but ira_build segfaults on RV32 without it. */
|
3576 |
|
|
if (VECTOR_MODE_P (mode))
|
3577 |
|
|
return true;
|
3578 |
|
|
|
3579 |
|
|
if (GP_REG_P (regno))
|
3580 |
|
|
{
|
3581 |
|
|
if (size <= UNITS_PER_WORD)
|
3582 |
|
|
return true;
|
3583 |
|
|
|
3584 |
|
|
/* Double-word values must be even-register-aligned. */
|
3585 |
|
|
if (size <= 2 * UNITS_PER_WORD)
|
3586 |
|
|
return regno % 2 == 0;
|
3587 |
|
|
}
|
3588 |
|
|
|
3589 |
|
|
if (FP_REG_P (regno))
|
3590 |
|
|
{
|
3591 |
|
|
if (mclass == MODE_FLOAT
|
3592 |
|
|
|| mclass == MODE_COMPLEX_FLOAT
|
3593 |
|
|
|| mclass == MODE_VECTOR_FLOAT)
|
3594 |
|
|
return size <= UNITS_PER_FPVALUE;
|
3595 |
|
|
}
|
3596 |
|
|
|
3597 |
|
|
return false;
|
3598 |
|
|
}
|
3599 |
|
|
|
3600 |
|
|
/* Implement HARD_REGNO_NREGS. */
|
3601 |
|
|
|
3602 |
|
|
unsigned int
|
3603 |
|
|
riscv_hard_regno_nregs (int regno, enum machine_mode mode)
|
3604 |
|
|
{
|
3605 |
|
|
if (FP_REG_P (regno))
|
3606 |
|
|
return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
|
3607 |
|
|
|
3608 |
|
|
/* All other registers are word-sized. */
|
3609 |
|
|
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
3610 |
|
|
}
|
3611 |
|
|
|
3612 |
|
|
/* Implement CLASS_MAX_NREGS, taking the maximum of the cases
|
3613 |
|
|
in riscv_hard_regno_nregs. */
|
3614 |
|
|
|
3615 |
|
|
int
|
3616 |
|
|
riscv_class_max_nregs (enum reg_class rclass, enum machine_mode mode)
|
3617 |
|
|
{
|
3618 |
|
|
int size;
|
3619 |
|
|
HARD_REG_SET left;
|
3620 |
|
|
|
3621 |
|
|
size = 0x8000;
|
3622 |
|
|
COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
|
3623 |
|
|
if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
|
3624 |
|
|
{
|
3625 |
|
|
size = MIN (size, UNITS_PER_FPREG);
|
3626 |
|
|
AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
|
3627 |
|
|
}
|
3628 |
|
|
if (!hard_reg_set_empty_p (left))
|
3629 |
|
|
size = MIN (size, UNITS_PER_WORD);
|
3630 |
|
|
return (GET_MODE_SIZE (mode) + size - 1) / size;
|
3631 |
|
|
}
|
3632 |
|
|
|
3633 |
|
|
/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
|
3634 |
|
|
|
3635 |
|
|
static reg_class_t
|
3636 |
|
|
riscv_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
|
3637 |
|
|
{
|
3638 |
|
|
return reg_class_subset_p (FP_REGS, rclass) ? FP_REGS :
|
3639 |
|
|
reg_class_subset_p (GR_REGS, rclass) ? GR_REGS :
|
3640 |
|
|
rclass;
|
3641 |
|
|
}
|
3642 |
|
|
|
3643 |
|
|
/* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
|
3644 |
|
|
Return a "canonical" class to represent it in later calculations. */
|
3645 |
|
|
|
3646 |
|
|
static reg_class_t
|
3647 |
|
|
riscv_canonicalize_move_class (reg_class_t rclass)
|
3648 |
|
|
{
|
3649 |
|
|
if (reg_class_subset_p (rclass, GENERAL_REGS))
|
3650 |
|
|
rclass = GENERAL_REGS;
|
3651 |
|
|
|
3652 |
|
|
return rclass;
|
3653 |
|
|
}
|
3654 |
|
|
|
3655 |
|
|
/* Implement TARGET_MEMORY_MOVE_COST. */
|
3656 |
|
|
|
3657 |
|
|
static int
|
3658 |
|
|
riscv_memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in)
|
3659 |
|
|
{
|
3660 |
|
|
return (tune_info->memory_cost
|
3661 |
|
|
+ memory_move_secondary_cost (mode, rclass, in));
|
3662 |
|
|
}
|
3663 |
|
|
|
3664 |
|
|
/* Return the register class required for a secondary register when
|
3665 |
|
|
copying between one of the registers in RCLASS and value X, which
|
3666 |
|
|
has mode MODE. X is the source of the move if IN_P, otherwise it
|
3667 |
|
|
is the destination. Return NO_REGS if no secondary register is
|
3668 |
|
|
needed. */
|
3669 |
|
|
|
3670 |
|
|
enum reg_class
|
3671 |
|
|
riscv_secondary_reload_class (enum reg_class rclass,
|
3672 |
|
|
enum machine_mode mode, rtx x,
|
3673 |
|
|
bool in_p ATTRIBUTE_UNUSED)
|
3674 |
|
|
{
|
3675 |
|
|
int regno;
|
3676 |
|
|
|
3677 |
|
|
regno = true_regnum (x);
|
3678 |
|
|
|
3679 |
|
|
if (reg_class_subset_p (rclass, FP_REGS))
|
3680 |
|
|
{
|
3681 |
|
|
if (MEM_P (x) && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
|
3682 |
|
|
/* We can use flw/fld/fsw/fsd. */
|
3683 |
|
|
return NO_REGS;
|
3684 |
|
|
|
3685 |
|
|
if (GP_REG_P (regno) || x == CONST0_RTX (mode))
|
3686 |
|
|
/* We can use fmv or go through memory when mode > Pmode. */
|
3687 |
|
|
return NO_REGS;
|
3688 |
|
|
|
3689 |
|
|
if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
|
3690 |
|
|
/* We can force the constant to memory and use flw/fld. */
|
3691 |
|
|
return NO_REGS;
|
3692 |
|
|
|
3693 |
|
|
if (FP_REG_P (regno))
|
3694 |
|
|
/* We can use fmv.fmt. */
|
3695 |
|
|
return NO_REGS;
|
3696 |
|
|
|
3697 |
|
|
/* Otherwise, we need to reload through an integer register. */
|
3698 |
|
|
return GR_REGS;
|
3699 |
|
|
}
|
3700 |
|
|
if (FP_REG_P (regno))
|
3701 |
|
|
return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
|
3702 |
|
|
|
3703 |
|
|
return NO_REGS;
|
3704 |
|
|
}
|
3705 |
|
|
|
3706 |
|
|
/* Implement TARGET_MODE_REP_EXTENDED. */
|
3707 |
|
|
|
3708 |
|
|
static int
|
3709 |
|
|
riscv_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
|
3710 |
|
|
{
|
3711 |
|
|
/* On 64-bit targets, SImode register values are sign-extended to DImode. */
|
3712 |
|
|
if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
|
3713 |
|
|
return SIGN_EXTEND;
|
3714 |
|
|
|
3715 |
|
|
return UNKNOWN;
|
3716 |
|
|
}
|
3717 |
|
|
|
3718 |
|
|
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
|
3719 |
|
|
|
3720 |
|
|
static bool
|
3721 |
|
|
riscv_scalar_mode_supported_p (enum machine_mode mode)
|
3722 |
|
|
{
|
3723 |
|
|
if (ALL_FIXED_POINT_MODE_P (mode)
|
3724 |
|
|
&& GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
|
3725 |
|
|
return true;
|
3726 |
|
|
|
3727 |
|
|
return default_scalar_mode_supported_p (mode);
|
3728 |
|
|
}
|
3729 |
|
|
|
3730 |
|
|
/* Return the number of instructions that can be issued per cycle. */
|
3731 |
|
|
|
3732 |
|
|
static int
|
3733 |
|
|
riscv_issue_rate (void)
|
3734 |
|
|
{
|
3735 |
|
|
return tune_info->issue_rate;
|
3736 |
|
|
}
|
3737 |
|
|
|
3738 |
|
|
/* This structure describes a single built-in function. */
|
3739 |
|
|
struct riscv_builtin_description {
|
3740 |
|
|
/* The code of the main .md file instruction. See riscv_builtin_type
|
3741 |
|
|
for more information. */
|
3742 |
|
|
enum insn_code icode;
|
3743 |
|
|
|
3744 |
|
|
/* The name of the built-in function. */
|
3745 |
|
|
const char *name;
|
3746 |
|
|
|
3747 |
|
|
/* Specifies how the function should be expanded. */
|
3748 |
|
|
enum riscv_builtin_type builtin_type;
|
3749 |
|
|
|
3750 |
|
|
/* The function's prototype. */
|
3751 |
|
|
enum riscv_function_type function_type;
|
3752 |
|
|
|
3753 |
|
|
/* Whether the function is available. */
|
3754 |
|
|
unsigned int (*avail) (void);
|
3755 |
|
|
};
|
3756 |
|
|
|
3757 |
|
|
static unsigned int
|
3758 |
|
|
riscv_builtin_avail_riscv (void)
|
3759 |
|
|
{
|
3760 |
|
|
return 1;
|
3761 |
|
|
}
|
3762 |
|
|
|
3763 |
|
|
/* Construct a riscv_builtin_description from the given arguments.
|
3764 |
|
|
|
3765 |
|
|
INSN is the name of the associated instruction pattern, without the
|
3766 |
|
|
leading CODE_FOR_riscv_.
|
3767 |
|
|
|
3768 |
|
|
CODE is the floating-point condition code associated with the
|
3769 |
|
|
function. It can be 'f' if the field is not applicable.
|
3770 |
|
|
|
3771 |
|
|
NAME is the name of the function itself, without the leading
|
3772 |
|
|
"__builtin_riscv_".
|
3773 |
|
|
|
3774 |
|
|
BUILTIN_TYPE and FUNCTION_TYPE are riscv_builtin_description fields.
|
3775 |
|
|
|
3776 |
|
|
AVAIL is the name of the availability predicate, without the leading
|
3777 |
|
|
riscv_builtin_avail_. */
|
3778 |
|
|
#define RISCV_BUILTIN(INSN, NAME, BUILTIN_TYPE, FUNCTION_TYPE, AVAIL) \
|
3779 |
|
|
{ CODE_FOR_ ## INSN, "__builtin_riscv_" NAME, \
|
3780 |
|
|
BUILTIN_TYPE, FUNCTION_TYPE, riscv_builtin_avail_ ## AVAIL }
|
3781 |
|
|
|
3782 |
|
|
/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT function
|
3783 |
|
|
mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE and AVAIL
|
3784 |
|
|
are as for RISCV_BUILTIN. */
|
3785 |
|
|
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
|
3786 |
|
|
RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
|
3787 |
|
|
|
3788 |
|
|
/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT_NO_TARGET
|
3789 |
|
|
function mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE
|
3790 |
|
|
and AVAIL are as for RISCV_BUILTIN. */
|
3791 |
|
|
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
|
3792 |
|
|
RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT_NO_TARGET, \
|
3793 |
|
|
FUNCTION_TYPE, AVAIL)
|
3794 |
|
|
|
3795 |
|
|
static const struct riscv_builtin_description riscv_builtins[] = {
|
3796 |
|
|
DIRECT_NO_TARGET_BUILTIN (nop, RISCV_VOID_FTYPE_VOID, riscv),
|
3797 |
|
|
};
|
3798 |
|
|
|
3799 |
|
|
/* Index I is the function declaration for riscv_builtins[I], or null if the
|
3800 |
|
|
function isn't defined on this target. */
|
3801 |
|
|
static GTY(()) tree riscv_builtin_decls[ARRAY_SIZE (riscv_builtins)];
|
3802 |
|
|
|
3803 |
|
|
|
3804 |
|
|
/* Source-level argument types. */
|
3805 |
|
|
#define RISCV_ATYPE_VOID void_type_node
|
3806 |
|
|
#define RISCV_ATYPE_INT integer_type_node
|
3807 |
|
|
#define RISCV_ATYPE_POINTER ptr_type_node
|
3808 |
|
|
#define RISCV_ATYPE_CPOINTER const_ptr_type_node
|
3809 |
|
|
|
3810 |
|
|
/* Standard mode-based argument types. */
|
3811 |
|
|
#define RISCV_ATYPE_UQI unsigned_intQI_type_node
|
3812 |
|
|
#define RISCV_ATYPE_SI intSI_type_node
|
3813 |
|
|
#define RISCV_ATYPE_USI unsigned_intSI_type_node
|
3814 |
|
|
#define RISCV_ATYPE_DI intDI_type_node
|
3815 |
|
|
#define RISCV_ATYPE_UDI unsigned_intDI_type_node
|
3816 |
|
|
#define RISCV_ATYPE_SF float_type_node
|
3817 |
|
|
#define RISCV_ATYPE_DF double_type_node
|
3818 |
|
|
|
3819 |
|
|
/* RISCV_FTYPE_ATYPESN takes N RISCV_FTYPES-like type codes and lists
|
3820 |
|
|
their associated RISCV_ATYPEs. */
|
3821 |
|
|
#define RISCV_FTYPE_ATYPES1(A, B) \
|
3822 |
|
|
RISCV_ATYPE_##A, RISCV_ATYPE_##B
|
3823 |
|
|
|
3824 |
|
|
#define RISCV_FTYPE_ATYPES2(A, B, C) \
|
3825 |
|
|
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C
|
3826 |
|
|
|
3827 |
|
|
#define RISCV_FTYPE_ATYPES3(A, B, C, D) \
|
3828 |
|
|
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D
|
3829 |
|
|
|
3830 |
|
|
#define RISCV_FTYPE_ATYPES4(A, B, C, D, E) \
|
3831 |
|
|
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D, \
|
3832 |
|
|
RISCV_ATYPE_##E
|
3833 |
|
|
|
3834 |
|
|
/* Return the function type associated with function prototype TYPE. */
|
3835 |
|
|
|
3836 |
|
|
static tree
|
3837 |
|
|
riscv_build_function_type (enum riscv_function_type type)
|
3838 |
|
|
{
|
3839 |
|
|
static tree types[(int) RISCV_MAX_FTYPE_MAX];
|
3840 |
|
|
|
3841 |
|
|
if (types[(int) type] == NULL_TREE)
|
3842 |
|
|
switch (type)
|
3843 |
|
|
{
|
3844 |
|
|
#define DEF_RISCV_FTYPE(NUM, ARGS) \
|
3845 |
|
|
case RISCV_FTYPE_NAME##NUM ARGS: \
|
3846 |
|
|
types[(int) type] \
|
3847 |
|
|
= build_function_type_list (RISCV_FTYPE_ATYPES##NUM ARGS, \
|
3848 |
|
|
NULL_TREE); \
|
3849 |
|
|
break;
|
3850 |
|
|
#include "config/riscv/riscv-ftypes.def"
|
3851 |
|
|
#undef DEF_RISCV_FTYPE
|
3852 |
|
|
default:
|
3853 |
|
|
gcc_unreachable ();
|
3854 |
|
|
}
|
3855 |
|
|
|
3856 |
|
|
return types[(int) type];
|
3857 |
|
|
}
|
3858 |
|
|
|
3859 |
|
|
/* Implement TARGET_INIT_BUILTINS. */
|
3860 |
|
|
|
3861 |
|
|
static void
|
3862 |
|
|
riscv_init_builtins (void)
|
3863 |
|
|
{
|
3864 |
|
|
const struct riscv_builtin_description *d;
|
3865 |
|
|
unsigned int i;
|
3866 |
|
|
|
3867 |
|
|
/* Iterate through all of the bdesc arrays, initializing all of the
|
3868 |
|
|
builtin functions. */
|
3869 |
|
|
for (i = 0; i < ARRAY_SIZE (riscv_builtins); i++)
|
3870 |
|
|
{
|
3871 |
|
|
d = &riscv_builtins[i];
|
3872 |
|
|
if (d->avail ())
|
3873 |
|
|
riscv_builtin_decls[i]
|
3874 |
|
|
= add_builtin_function (d->name,
|
3875 |
|
|
riscv_build_function_type (d->function_type),
|
3876 |
|
|
i, BUILT_IN_MD, NULL, NULL);
|
3877 |
|
|
}
|
3878 |
|
|
}
|
3879 |
|
|
|
3880 |
|
|
/* Implement TARGET_BUILTIN_DECL. */
|
3881 |
|
|
|
3882 |
|
|
static tree
|
3883 |
|
|
riscv_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED)
|
3884 |
|
|
{
|
3885 |
|
|
if (code >= ARRAY_SIZE (riscv_builtins))
|
3886 |
|
|
return error_mark_node;
|
3887 |
|
|
return riscv_builtin_decls[code];
|
3888 |
|
|
}
|
3889 |
|
|
|
3890 |
|
|
/* Take argument ARGNO from EXP's argument list and convert it into a
|
3891 |
|
|
form suitable for input operand OPNO of instruction ICODE. Return the
|
3892 |
|
|
value. */
|
3893 |
|
|
|
3894 |
|
|
static rtx
|
3895 |
|
|
riscv_prepare_builtin_arg (enum insn_code icode,
|
3896 |
|
|
unsigned int opno, tree exp, unsigned int argno)
|
3897 |
|
|
{
|
3898 |
|
|
tree arg;
|
3899 |
|
|
rtx value;
|
3900 |
|
|
enum machine_mode mode;
|
3901 |
|
|
|
3902 |
|
|
arg = CALL_EXPR_ARG (exp, argno);
|
3903 |
|
|
value = expand_normal (arg);
|
3904 |
|
|
mode = insn_data[icode].operand[opno].mode;
|
3905 |
|
|
if (!insn_data[icode].operand[opno].predicate (value, mode))
|
3906 |
|
|
{
|
3907 |
|
|
/* We need to get the mode from ARG for two reasons:
|
3908 |
|
|
|
3909 |
|
|
- to cope with address operands, where MODE is the mode of the
|
3910 |
|
|
memory, rather than of VALUE itself.
|
3911 |
|
|
|
3912 |
|
|
- to cope with special predicates like pmode_register_operand,
|
3913 |
|
|
where MODE is VOIDmode. */
|
3914 |
|
|
value = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (arg)), value);
|
3915 |
|
|
|
3916 |
|
|
/* Check the predicate again. */
|
3917 |
|
|
if (!insn_data[icode].operand[opno].predicate (value, mode))
|
3918 |
|
|
{
|
3919 |
|
|
error ("invalid argument to built-in function");
|
3920 |
|
|
return const0_rtx;
|
3921 |
|
|
}
|
3922 |
|
|
}
|
3923 |
|
|
|
3924 |
|
|
return value;
|
3925 |
|
|
}
|
3926 |
|
|
|
3927 |
|
|
/* Return an rtx suitable for output operand OP of instruction ICODE.
|
3928 |
|
|
If TARGET is non-null, try to use it where possible. */
|
3929 |
|
|
|
3930 |
|
|
static rtx
|
3931 |
|
|
riscv_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
|
3932 |
|
|
{
|
3933 |
|
|
enum machine_mode mode;
|
3934 |
|
|
|
3935 |
|
|
mode = insn_data[icode].operand[op].mode;
|
3936 |
|
|
if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
|
3937 |
|
|
target = gen_reg_rtx (mode);
|
3938 |
|
|
|
3939 |
|
|
return target;
|
3940 |
|
|
}
|
3941 |
|
|
|
3942 |
|
|
/* Expand a RISCV_BUILTIN_DIRECT or RISCV_BUILTIN_DIRECT_NO_TARGET function;
|
3943 |
|
|
HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
|
3944 |
|
|
and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
|
3945 |
|
|
suggests a good place to put the result. */
|
3946 |
|
|
|
3947 |
|
|
static rtx
|
3948 |
|
|
riscv_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
|
3949 |
|
|
bool has_target_p)
|
3950 |
|
|
{
|
3951 |
|
|
rtx ops[MAX_RECOG_OPERANDS];
|
3952 |
|
|
int opno, argno;
|
3953 |
|
|
|
3954 |
|
|
/* Map any target to operand 0. */
|
3955 |
|
|
opno = 0;
|
3956 |
|
|
if (has_target_p)
|
3957 |
|
|
{
|
3958 |
|
|
target = riscv_prepare_builtin_target (icode, opno, target);
|
3959 |
|
|
ops[opno] = target;
|
3960 |
|
|
opno++;
|
3961 |
|
|
}
|
3962 |
|
|
|
3963 |
|
|
/* Map the arguments to the other operands. The n_operands value
|
3964 |
|
|
for an expander includes match_dups and match_scratches as well as
|
3965 |
|
|
match_operands, so n_operands is only an upper bound on the number
|
3966 |
|
|
of arguments to the expander function. */
|
3967 |
|
|
gcc_assert (opno + call_expr_nargs (exp) <= insn_data[icode].n_operands);
|
3968 |
|
|
for (argno = 0; argno < call_expr_nargs (exp); argno++, opno++)
|
3969 |
|
|
ops[opno] = riscv_prepare_builtin_arg (icode, opno, exp, argno);
|
3970 |
|
|
|
3971 |
|
|
switch (opno)
|
3972 |
|
|
{
|
3973 |
|
|
case 2:
|
3974 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
|
3975 |
|
|
break;
|
3976 |
|
|
|
3977 |
|
|
case 3:
|
3978 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
|
3979 |
|
|
break;
|
3980 |
|
|
|
3981 |
|
|
case 4:
|
3982 |
|
|
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
|
3983 |
|
|
break;
|
3984 |
|
|
|
3985 |
|
|
default:
|
3986 |
|
|
gcc_unreachable ();
|
3987 |
|
|
}
|
3988 |
|
|
return target;
|
3989 |
|
|
}
|
3990 |
|
|
|
3991 |
|
|
/* Implement TARGET_EXPAND_BUILTIN. */
|
3992 |
|
|
|
3993 |
|
|
static rtx
|
3994 |
|
|
riscv_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
3995 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
3996 |
|
|
int ignore ATTRIBUTE_UNUSED)
|
3997 |
|
|
{
|
3998 |
|
|
tree fndecl;
|
3999 |
|
|
unsigned int fcode, avail;
|
4000 |
|
|
const struct riscv_builtin_description *d;
|
4001 |
|
|
|
4002 |
|
|
fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
4003 |
|
|
fcode = DECL_FUNCTION_CODE (fndecl);
|
4004 |
|
|
gcc_assert (fcode < ARRAY_SIZE (riscv_builtins));
|
4005 |
|
|
d = &riscv_builtins[fcode];
|
4006 |
|
|
avail = d->avail ();
|
4007 |
|
|
gcc_assert (avail != 0);
|
4008 |
|
|
switch (d->builtin_type)
|
4009 |
|
|
{
|
4010 |
|
|
case RISCV_BUILTIN_DIRECT:
|
4011 |
|
|
return riscv_expand_builtin_direct (d->icode, target, exp, true);
|
4012 |
|
|
|
4013 |
|
|
case RISCV_BUILTIN_DIRECT_NO_TARGET:
|
4014 |
|
|
return riscv_expand_builtin_direct (d->icode, target, exp, false);
|
4015 |
|
|
}
|
4016 |
|
|
gcc_unreachable ();
|
4017 |
|
|
}
|
4018 |
|
|
|
4019 |
|
|
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
|
4020 |
|
|
in order to avoid duplicating too much logic from elsewhere. */
|
4021 |
|
|
|
4022 |
|
|
static void
|
4023 |
|
|
riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
|
4024 |
|
|
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
|
4025 |
|
|
tree function)
|
4026 |
|
|
{
|
4027 |
|
|
rtx this_rtx, temp1, temp2, fnaddr;
|
4028 |
|
|
rtx_insn *insn;
|
4029 |
|
|
bool use_sibcall_p;
|
4030 |
|
|
|
4031 |
|
|
/* Pretend to be a post-reload pass while generating rtl. */
|
4032 |
|
|
reload_completed = 1;
|
4033 |
|
|
|
4034 |
|
|
/* Mark the end of the (empty) prologue. */
|
4035 |
|
|
emit_note (NOTE_INSN_PROLOGUE_END);
|
4036 |
|
|
|
4037 |
|
|
/* Determine if we can use a sibcall to call FUNCTION directly. */
|
4038 |
|
|
fnaddr = XEXP (DECL_RTL (function), 0);
|
4039 |
|
|
use_sibcall_p = absolute_symbolic_operand (fnaddr, Pmode);
|
4040 |
|
|
|
4041 |
|
|
/* We need two temporary registers in some cases. */
|
4042 |
|
|
temp1 = gen_rtx_REG (Pmode, GP_TEMP_FIRST);
|
4043 |
|
|
temp2 = gen_rtx_REG (Pmode, GP_TEMP_FIRST + 1);
|
4044 |
|
|
|
4045 |
|
|
/* Find out which register contains the "this" pointer. */
|
4046 |
|
|
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
|
4047 |
|
|
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
|
4048 |
|
|
else
|
4049 |
|
|
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
4050 |
|
|
|
4051 |
|
|
/* Add DELTA to THIS_RTX. */
|
4052 |
|
|
if (delta != 0)
|
4053 |
|
|
{
|
4054 |
|
|
rtx offset = GEN_INT (delta);
|
4055 |
|
|
if (!SMALL_OPERAND (delta))
|
4056 |
|
|
{
|
4057 |
|
|
riscv_emit_move (temp1, offset);
|
4058 |
|
|
offset = temp1;
|
4059 |
|
|
}
|
4060 |
|
|
emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
|
4061 |
|
|
}
|
4062 |
|
|
|
4063 |
|
|
/* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
|
4064 |
|
|
if (vcall_offset != 0)
|
4065 |
|
|
{
|
4066 |
|
|
rtx addr;
|
4067 |
|
|
|
4068 |
|
|
/* Set TEMP1 to *THIS_RTX. */
|
4069 |
|
|
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
|
4070 |
|
|
|
4071 |
|
|
/* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
|
4072 |
|
|
addr = riscv_add_offset (temp2, temp1, vcall_offset);
|
4073 |
|
|
|
4074 |
|
|
/* Load the offset and add it to THIS_RTX. */
|
4075 |
|
|
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
|
4076 |
|
|
emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
|
4077 |
|
|
}
|
4078 |
|
|
|
4079 |
|
|
/* Jump to the target function. Use a sibcall if direct jumps are
|
4080 |
|
|
allowed, otherwise load the address into a register first. */
|
4081 |
|
|
if (use_sibcall_p)
|
4082 |
|
|
{
|
4083 |
|
|
insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
|
4084 |
|
|
SIBLING_CALL_P (insn) = 1;
|
4085 |
|
|
}
|
4086 |
|
|
else
|
4087 |
|
|
{
|
4088 |
|
|
riscv_emit_move(temp1, fnaddr);
|
4089 |
|
|
emit_jump_insn (gen_indirect_jump (temp1));
|
4090 |
|
|
}
|
4091 |
|
|
|
4092 |
|
|
/* Run just enough of rest_of_compilation. This sequence was
|
4093 |
|
|
"borrowed" from alpha.c. */
|
4094 |
|
|
insn = get_insns ();
|
4095 |
|
|
split_all_insns_noflow ();
|
4096 |
|
|
shorten_branches (insn);
|
4097 |
|
|
final_start_function (insn, file, 1);
|
4098 |
|
|
final (insn, file, 1);
|
4099 |
|
|
final_end_function ();
|
4100 |
|
|
|
4101 |
|
|
/* Clean up the vars set above. Note that final_end_function resets
|
4102 |
|
|
the global pointer for us. */
|
4103 |
|
|
reload_completed = 0;
|
4104 |
|
|
}
|
4105 |
|
|
|
4106 |
|
|
/* Allocate a chunk of memory for per-function machine-dependent data. */
|
4107 |
|
|
|
4108 |
|
|
static struct machine_function *
|
4109 |
|
|
riscv_init_machine_status (void)
|
4110 |
|
|
{
|
4111 |
|
|
return ggc_cleared_alloc<machine_function> ();
|
4112 |
|
|
}
|
4113 |
|
|
|
4114 |
|
|
/* Implement TARGET_OPTION_OVERRIDE. */
|
4115 |
|
|
|
4116 |
|
|
static void
|
4117 |
|
|
riscv_option_override (void)
|
4118 |
|
|
{
|
4119 |
|
|
int regno, mode;
|
4120 |
|
|
const struct riscv_cpu_info *cpu;
|
4121 |
|
|
|
4122 |
|
|
#ifdef SUBTARGET_OVERRIDE_OPTIONS
|
4123 |
|
|
SUBTARGET_OVERRIDE_OPTIONS;
|
4124 |
|
|
#endif
|
4125 |
|
|
|
4126 |
|
|
flag_pcc_struct_return = 0;
|
4127 |
|
|
|
4128 |
|
|
if (flag_pic)
|
4129 |
|
|
g_switch_value = 0;
|
4130 |
|
|
|
4131 |
|
|
/* Prefer a call to memcpy over inline code when optimizing for size,
|
4132 |
|
|
though see MOVE_RATIO in riscv.h. */
|
4133 |
|
|
if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
|
4134 |
|
|
target_flags |= MASK_MEMCPY;
|
4135 |
|
|
|
4136 |
|
|
/* Handle -mtune. */
|
4137 |
|
|
cpu = riscv_parse_cpu (riscv_tune_string ? riscv_tune_string :
|
4138 |
|
|
RISCV_TUNE_STRING_DEFAULT);
|
4139 |
|
|
tune_info = optimize_size ? &optimize_size_tune_info : cpu->tune_info;
|
4140 |
|
|
|
4141 |
|
|
/* If the user hasn't specified a branch cost, use the processor's
|
4142 |
|
|
default. */
|
4143 |
|
|
if (riscv_branch_cost == 0)
|
4144 |
|
|
riscv_branch_cost = tune_info->branch_cost;
|
4145 |
|
|
|
4146 |
|
|
/* Set up riscv_hard_regno_mode_ok. */
|
4147 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
4148 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
4149 |
|
|
riscv_hard_regno_mode_ok[mode][regno]
|
4150 |
|
|
= riscv_hard_regno_mode_ok_p (regno, (enum machine_mode) mode);
|
4151 |
|
|
|
4152 |
|
|
/* Function to allocate machine-dependent function status. */
|
4153 |
|
|
init_machine_status = &riscv_init_machine_status;
|
4154 |
|
|
|
4155 |
|
|
if (riscv_cmodel_string)
|
4156 |
|
|
{
|
4157 |
|
|
if (strcmp (riscv_cmodel_string, "medlow") == 0)
|
4158 |
|
|
riscv_cmodel = CM_MEDLOW;
|
4159 |
|
|
else if (strcmp (riscv_cmodel_string, "medany") == 0)
|
4160 |
|
|
riscv_cmodel = CM_MEDANY;
|
4161 |
|
|
else
|
4162 |
|
|
error ("unsupported code model: %s", riscv_cmodel_string);
|
4163 |
|
|
}
|
4164 |
|
|
|
4165 |
|
|
if (flag_pic)
|
4166 |
|
|
riscv_cmodel = CM_PIC;
|
4167 |
|
|
|
4168 |
|
|
riscv_init_relocs ();
|
4169 |
|
|
}
|
4170 |
|
|
|
4171 |
|
|
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
|
4172 |
|
|
|
4173 |
|
|
static void
|
4174 |
|
|
riscv_conditional_register_usage (void)
|
4175 |
|
|
{
|
4176 |
|
|
int regno;
|
4177 |
|
|
|
4178 |
|
|
if (!TARGET_HARD_FLOAT)
|
4179 |
|
|
{
|
4180 |
|
|
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
4181 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1;
|
4182 |
|
|
}
|
4183 |
|
|
}
|
4184 |
|
|
|
4185 |
|
|
/* Return a register priority for hard reg REGNO. */
|
4186 |
|
|
static int
|
4187 |
|
|
riscv_register_priority (int regno)
|
4188 |
|
|
{
|
4189 |
|
|
/* Favor x8-x15/f8-f15 to improve the odds of RVC instruction selection. */
|
4190 |
|
|
if (TARGET_RVC && (IN_RANGE (regno, GP_REG_FIRST + 8, GP_REG_FIRST + 15)
|
4191 |
|
|
|| IN_RANGE (regno, FP_REG_FIRST + 8, FP_REG_FIRST + 15)))
|
4192 |
|
|
return 1;
|
4193 |
|
|
|
4194 |
|
|
return 0;
|
4195 |
|
|
}
|
4196 |
|
|
|
4197 |
|
|
/* Implement TARGET_TRAMPOLINE_INIT. */
|
4198 |
|
|
|
4199 |
|
|
static void
|
4200 |
|
|
riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
|
4201 |
|
|
{
|
4202 |
|
|
rtx addr, end_addr, mem;
|
4203 |
|
|
uint32_t trampoline[4];
|
4204 |
|
|
unsigned int i;
|
4205 |
|
|
HOST_WIDE_INT static_chain_offset, target_function_offset;
|
4206 |
|
|
|
4207 |
|
|
/* Work out the offsets of the pointers from the start of the
|
4208 |
|
|
trampoline code. */
|
4209 |
|
|
gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE);
|
4210 |
|
|
static_chain_offset = TRAMPOLINE_CODE_SIZE;
|
4211 |
|
|
target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
|
4212 |
|
|
|
4213 |
|
|
/* Get pointers to the beginning and end of the code block. */
|
4214 |
|
|
addr = force_reg (Pmode, XEXP (m_tramp, 0));
|
4215 |
|
|
end_addr = riscv_force_binary (Pmode, PLUS, addr, GEN_INT (TRAMPOLINE_CODE_SIZE));
|
4216 |
|
|
|
4217 |
|
|
/* auipc t0, 0
|
4218 |
|
|
l[wd] t1, target_function_offset(t0)
|
4219 |
|
|
l[wd] t0, static_chain_offset(t0)
|
4220 |
|
|
jr t1
|
4221 |
|
|
*/
|
4222 |
|
|
trampoline[0] = OPCODE_AUIPC | (STATIC_CHAIN_REGNUM << SHIFT_RD);
|
4223 |
|
|
trampoline[1] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
|
4224 |
|
|
| (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD)
|
4225 |
|
|
| (STATIC_CHAIN_REGNUM << SHIFT_RS1)
|
4226 |
|
|
| (target_function_offset << SHIFT_IMM);
|
4227 |
|
|
trampoline[2] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
|
4228 |
|
|
| (STATIC_CHAIN_REGNUM << SHIFT_RD)
|
4229 |
|
|
| (STATIC_CHAIN_REGNUM << SHIFT_RS1)
|
4230 |
|
|
| (static_chain_offset << SHIFT_IMM);
|
4231 |
|
|
trampoline[3] = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1);
|
4232 |
|
|
|
4233 |
|
|
/* Copy the trampoline code. */
|
4234 |
|
|
for (i = 0; i < ARRAY_SIZE (trampoline); i++)
|
4235 |
|
|
{
|
4236 |
|
|
mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode));
|
4237 |
|
|
riscv_emit_move (mem, gen_int_mode (trampoline[i], SImode));
|
4238 |
|
|
}
|
4239 |
|
|
|
4240 |
|
|
/* Set up the static chain pointer field. */
|
4241 |
|
|
mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
|
4242 |
|
|
riscv_emit_move (mem, chain_value);
|
4243 |
|
|
|
4244 |
|
|
/* Set up the target function field. */
|
4245 |
|
|
mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
|
4246 |
|
|
riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
|
4247 |
|
|
|
4248 |
|
|
/* Flush the code part of the trampoline. */
|
4249 |
|
|
emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
|
4250 |
|
|
emit_insn (gen_clear_cache (addr, end_addr));
|
4251 |
|
|
}
|
4252 |
|
|
|
4253 |
|
|
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
|
4254 |
|
|
|
4255 |
|
|
static bool
|
4256 |
|
|
riscv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
|
4257 |
|
|
tree exp ATTRIBUTE_UNUSED)
|
4258 |
|
|
{
|
4259 |
|
|
if (TARGET_SAVE_RESTORE)
|
4260 |
|
|
{
|
4261 |
|
|
/* When optimzing for size, don't use sibcalls in non-leaf routines */
|
4262 |
|
|
if (cfun->machine->is_leaf == 0)
|
4263 |
|
|
cfun->machine->is_leaf = leaf_function_p () ? 1 : -1;
|
4264 |
|
|
|
4265 |
|
|
return cfun->machine->is_leaf > 0;
|
4266 |
|
|
}
|
4267 |
|
|
|
4268 |
|
|
return true;
|
4269 |
|
|
}
|
4270 |
|
|
|
4271 |
|
|
static bool
|
4272 |
|
|
riscv_lra_p (void)
|
4273 |
|
|
{
|
4274 |
|
|
return riscv_lra_flag;
|
4275 |
|
|
}
|
4276 |
|
|
|
4277 |
|
|
/* Initialize the GCC target structure. */
|
4278 |
|
|
#undef TARGET_ASM_ALIGNED_HI_OP
|
4279 |
|
|
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
|
4280 |
|
|
#undef TARGET_ASM_ALIGNED_SI_OP
|
4281 |
|
|
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
|
4282 |
|
|
#undef TARGET_ASM_ALIGNED_DI_OP
|
4283 |
|
|
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
|
4284 |
|
|
|
4285 |
|
|
#undef TARGET_OPTION_OVERRIDE
|
4286 |
|
|
#define TARGET_OPTION_OVERRIDE riscv_option_override
|
4287 |
|
|
|
4288 |
|
|
#undef TARGET_LEGITIMIZE_ADDRESS
|
4289 |
|
|
#define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address
|
4290 |
|
|
|
4291 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
4292 |
|
|
#define TARGET_SCHED_ISSUE_RATE riscv_issue_rate
|
4293 |
|
|
|
4294 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
4295 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL riscv_function_ok_for_sibcall
|
4296 |
|
|
|
4297 |
|
|
#undef TARGET_MEMORY_MOVE_COST
|
4298 |
|
|
#define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost
|
4299 |
|
|
#undef TARGET_RTX_COSTS
|
4300 |
|
|
#define TARGET_RTX_COSTS riscv_rtx_costs
|
4301 |
|
|
#undef TARGET_ADDRESS_COST
|
4302 |
|
|
#define TARGET_ADDRESS_COST riscv_address_cost
|
4303 |
|
|
|
4304 |
|
|
#undef TARGET_PREFERRED_RELOAD_CLASS
|
4305 |
|
|
#define TARGET_PREFERRED_RELOAD_CLASS riscv_preferred_reload_class
|
4306 |
|
|
|
4307 |
|
|
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
|
4308 |
|
|
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
|
4309 |
|
|
|
4310 |
|
|
#undef TARGET_EXPAND_BUILTIN_VA_START
|
4311 |
|
|
#define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start
|
4312 |
|
|
|
4313 |
|
|
#undef TARGET_PROMOTE_FUNCTION_MODE
|
4314 |
|
|
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
|
4315 |
|
|
|
4316 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
4317 |
|
|
#define TARGET_RETURN_IN_MEMORY riscv_return_in_memory
|
4318 |
|
|
|
4319 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
4320 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk
|
4321 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
4322 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
|
4323 |
|
|
|
4324 |
|
|
#undef TARGET_PRINT_OPERAND
|
4325 |
|
|
#define TARGET_PRINT_OPERAND riscv_print_operand
|
4326 |
|
|
#undef TARGET_PRINT_OPERAND_ADDRESS
|
4327 |
|
|
#define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address
|
4328 |
|
|
|
4329 |
|
|
#undef TARGET_SETUP_INCOMING_VARARGS
|
4330 |
|
|
#define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs
|
4331 |
|
|
#undef TARGET_STRICT_ARGUMENT_NAMING
|
4332 |
|
|
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
|
4333 |
|
|
#undef TARGET_MUST_PASS_IN_STACK
|
4334 |
|
|
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
|
4335 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
4336 |
|
|
#define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference
|
4337 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
4338 |
|
|
#define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes
|
4339 |
|
|
#undef TARGET_FUNCTION_ARG
|
4340 |
|
|
#define TARGET_FUNCTION_ARG riscv_function_arg
|
4341 |
|
|
#undef TARGET_FUNCTION_ARG_ADVANCE
|
4342 |
|
|
#define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance
|
4343 |
|
|
#undef TARGET_FUNCTION_ARG_BOUNDARY
|
4344 |
|
|
#define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary
|
4345 |
|
|
|
4346 |
|
|
#undef TARGET_MODE_REP_EXTENDED
|
4347 |
|
|
#define TARGET_MODE_REP_EXTENDED riscv_mode_rep_extended
|
4348 |
|
|
|
4349 |
|
|
#undef TARGET_SCALAR_MODE_SUPPORTED_P
|
4350 |
|
|
#define TARGET_SCALAR_MODE_SUPPORTED_P riscv_scalar_mode_supported_p
|
4351 |
|
|
|
4352 |
|
|
#undef TARGET_INIT_BUILTINS
|
4353 |
|
|
#define TARGET_INIT_BUILTINS riscv_init_builtins
|
4354 |
|
|
#undef TARGET_BUILTIN_DECL
|
4355 |
|
|
#define TARGET_BUILTIN_DECL riscv_builtin_decl
|
4356 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
4357 |
|
|
#define TARGET_EXPAND_BUILTIN riscv_expand_builtin
|
4358 |
|
|
|
4359 |
|
|
#undef TARGET_HAVE_TLS
|
4360 |
|
|
#define TARGET_HAVE_TLS HAVE_AS_TLS
|
4361 |
|
|
|
4362 |
|
|
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
4363 |
|
|
#define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem
|
4364 |
|
|
|
4365 |
|
|
#undef TARGET_LEGITIMATE_CONSTANT_P
|
4366 |
|
|
#define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p
|
4367 |
|
|
|
4368 |
|
|
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
|
4369 |
|
|
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
|
4370 |
|
|
|
4371 |
|
|
#ifdef HAVE_AS_DTPRELWORD
|
4372 |
|
|
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
|
4373 |
|
|
#define TARGET_ASM_OUTPUT_DWARF_DTPREL riscv_output_dwarf_dtprel
|
4374 |
|
|
#endif
|
4375 |
|
|
|
4376 |
|
|
#undef TARGET_LEGITIMATE_ADDRESS_P
|
4377 |
|
|
#define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p
|
4378 |
|
|
|
4379 |
|
|
#undef TARGET_CAN_ELIMINATE
|
4380 |
|
|
#define TARGET_CAN_ELIMINATE riscv_can_eliminate
|
4381 |
|
|
|
4382 |
|
|
#undef TARGET_CONDITIONAL_REGISTER_USAGE
|
4383 |
|
|
#define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage
|
4384 |
|
|
|
4385 |
|
|
#undef TARGET_TRAMPOLINE_INIT
|
4386 |
|
|
#define TARGET_TRAMPOLINE_INIT riscv_trampoline_init
|
4387 |
|
|
|
4388 |
|
|
#undef TARGET_IN_SMALL_DATA_P
|
4389 |
|
|
#define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p
|
4390 |
|
|
|
4391 |
|
|
#undef TARGET_ASM_SELECT_RTX_SECTION
|
4392 |
|
|
#define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section
|
4393 |
|
|
|
4394 |
|
|
#undef TARGET_MIN_ANCHOR_OFFSET
|
4395 |
|
|
#define TARGET_MIN_ANCHOR_OFFSET (-IMM_REACH/2)
|
4396 |
|
|
|
4397 |
|
|
#undef TARGET_MAX_ANCHOR_OFFSET
|
4398 |
|
|
#define TARGET_MAX_ANCHOR_OFFSET (IMM_REACH/2-1)
|
4399 |
|
|
|
4400 |
|
|
#undef TARGET_LRA_P
|
4401 |
|
|
#define TARGET_LRA_P riscv_lra_p
|
4402 |
|
|
|
4403 |
|
|
#undef TARGET_REGISTER_PRIORITY
|
4404 |
|
|
#define TARGET_REGISTER_PRIORITY riscv_register_priority
|
4405 |
|
|
|
4406 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
4407 |
|
|
|
4408 |
|
|
#include "gt-riscv.h"
|