1 |
2 |
alikat |
HyperMTA Processor Specifications
|
2 |
|
|
|
3 |
|
|
This is only a preliminary release and it is not complete.
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
#######################################################################
|
7 |
|
|
#######################################################################
|
8 |
|
|
|
9 |
|
|
User/System Access
|
10 |
|
|
|
11 |
|
|
Registers:
|
12 |
|
|
R0-R31: General Purpose Integer
|
13 |
|
|
F0-F31: Floating Point Registers
|
14 |
|
|
C0(F0,F1)-C15(F30,F31): Complex Floating Point Registers
|
15 |
|
|
|
16 |
|
|
Instruction Format and Next Instruction Data Placement:
|
17 |
|
|
| 42 Bits(I) | 42 Bits(I) | 42 Bits(I) | 2 Bits(11) |
|
18 |
|
|
|
19 |
|
|
| 64 Bits(D) | 20 Bits(D) | 42 Bits(I) | 2 Bits(01) |
|
20 |
|
|
NID0(I/F) NID1(I)
|
21 |
|
|
|
22 |
|
|
| 42 Bits(I) | 42 Bits(I) | 42 Bits(D) | 2 Bits(10) |
|
23 |
|
|
NID0(I)
|
24 |
|
|
|
25 |
|
|
| 126 Bits(D) | 2 Bits(00) | (Complex)
|
26 |
|
|
NID0(C)
|
27 |
|
|
// 63 Bits of each float least significat bit is zeroed or oneed by instruction
|
28 |
|
|
|
29 |
|
|
Next Instruction Data:
|
30 |
|
|
Inlined data stored within the next instruction. Nothing else to say except
|
31 |
|
|
it is one of the ways in which we hide memory latency.
|
32 |
|
|
|
33 |
|
|
Internal VLIW Branching:
|
34 |
|
|
This is another way to hide latency.
|
35 |
|
|
|
36 |
|
|
The following to reduce branch misprediction penalties since it'll be more
|
37 |
|
|
costly in this system:
|
38 |
|
|
|
39 |
|
|
| Conditional Branch | ALU OP | ALU OP |
|
40 |
|
|
If true the instruction will execute:
|
41 |
|
|
| ALU | ALU | IGNORE THIS ALU OP |
|
42 |
|
|
else
|
43 |
|
|
| IGNORE THIS | ALU | ALU OP |
|
44 |
|
|
|
45 |
|
|
Both of those were the same instruction. The Branch instruction contains
|
46 |
|
|
a mask of which molecules to execute of the next instruction. In a standard
|
47 |
|
|
pipelined system all three can be executed and in the write back stage the
|
48 |
|
|
correct molecules will be writen back. This can eliminate small loops.
|
49 |
|
|
Then a special return instruction will return the execution back to normal
|
50 |
|
|
executing all instructions. As in the example it is possible to have
|
51 |
|
|
shared instructions which will be executed either way.
|
52 |
|
|
|
53 |
|
|
ISA:
|
54 |
|
|
|
55 |
|
|
Arithmetic(64 bit):
|
56 |
|
|
ADD reg,reg,reg/imm
|
57 |
|
|
SUB reg,reg,reg/imm
|
58 |
|
|
MUL reg,reg,reg/imm
|
59 |
|
|
MULU reg,reg,reg/imm
|
60 |
|
|
DIV reg,reg,reg/imm
|
61 |
|
|
DIVU reg,reg,reg/imm
|
62 |
|
|
MOD reg,reg,reg/imm
|
63 |
|
|
MODU reg,reg,reg/imm
|
64 |
|
|
LMUL reg,reg,reg,reg/imm // Long multiply
|
65 |
|
|
LMULU reg,reg,reg,reg/imm // Long multiply unsigned
|
66 |
|
|
|
67 |
|
|
Logic(64 bit):
|
68 |
|
|
OR reg,reg,reg/imm
|
69 |
|
|
AND reg,reg,reg/imm
|
70 |
|
|
XOR reg,reg,reg/imm
|
71 |
|
|
NOT reg,reg
|
72 |
|
|
SHL reg,reg,reg/imm
|
73 |
|
|
SHR reg,reg,reg/imm
|
74 |
|
|
ROL reg,reg,reg/imm
|
75 |
|
|
ROR reg,reg,reg/imm
|
76 |
|
|
PCNT reg,reg
|
77 |
|
|
PCNTZ reg,reg
|
78 |
|
|
PCNTC reg,reg
|
79 |
|
|
CHG reg,reg
|
80 |
|
|
SB reg,imm // Set Bit
|
81 |
|
|
CB reg,imm // Clear Bit
|
82 |
|
|
TB reg,imm // Toggle Bit
|
83 |
|
|
|
84 |
|
|
Floating Point(64 Bit):
|
85 |
|
|
FADD reg,reg,reg
|
86 |
|
|
FSUB reg,reg,reg
|
87 |
|
|
FMUL reg,reg,reg
|
88 |
|
|
FDIV reg,reg,reg
|
89 |
|
|
FMOD reg,reg,reg
|
90 |
|
|
FABS reg,reg
|
91 |
|
|
FNEG reg,reg // Make Negative
|
92 |
|
|
FPOS reg,reg // Make Positive
|
93 |
|
|
FTSIGN reg,reg // Toggle Sign
|
94 |
|
|
FSQ reg,reg
|
95 |
|
|
FCMP reg,reg
|
96 |
|
|
FRND reg // Random Generator
|
97 |
|
|
FPI reg // Load PI
|
98 |
|
|
FE reg // Load E
|
99 |
|
|
FZERO reg // Load ZERO
|
100 |
|
|
FONE reg // Load ONE
|
101 |
|
|
FFLOOR reg,reg
|
102 |
|
|
FCEIL reg,reg
|
103 |
|
|
FINV reg,reg // 1/reg
|
104 |
|
|
|
105 |
|
|
Complex(128 Bit):
|
106 |
|
|
CADD reg,reg,reg
|
107 |
|
|
CSUB reg,reg,reg
|
108 |
|
|
CMUL reg,reg,reg
|
109 |
|
|
CDIV reg,reg,reg
|
110 |
|
|
CMOD reg,reg,reg // Do we really need this? I don't think so.
|
111 |
|
|
CSQ reg,reg
|
112 |
|
|
CCMP reg,reg // ?
|
113 |
|
|
CI reg // Load I
|
114 |
|
|
|
115 |
|
|
Branch: // Avoid if possible user internal VLIW branching
|
116 |
|
|
JMP rel
|
117 |
|
|
JMP reg
|
118 |
|
|
JMP{condition} rel
|
119 |
|
|
JMP{condition} reg
|
120 |
|
|
CALL rel
|
121 |
|
|
CALL reg
|
122 |
|
|
CALL{condition} rel
|
123 |
|
|
CALL{condition} reg
|
124 |
|
|
CALL [reg+8*cccc]
|
125 |
|
|
CALL{condition} [reg+8*cccc]
|
126 |
|
|
RETURN
|
127 |
|
|
RETURN{condition}
|
128 |
|
|
|
129 |
|
|
Internal VLIW Branching:
|
130 |
|
|
// Selects to execute certain molecules of each atom until a return is reached
|
131 |
|
|
// This is another way to hide memory latency
|
132 |
|
|
IVB{condition} moleculemask(0,1,2, or any combination)
|
133 |
|
|
IVRET
|
134 |
|
|
|
135 |
|
|
Interupt:
|
136 |
|
|
THROW reg/imm
|
137 |
|
|
RTI // Return Interupt
|
138 |
|
|
|
139 |
|
|
Data Movement:
|
140 |
|
|
MOV reg,reg // Move
|
141 |
|
|
MOVS reg,sreg // Move Special
|
142 |
|
|
MOVS sreg,reg
|
143 |
|
|
PREFETCH // Data Prefetch
|
144 |
|
|
PREFETCHI // Instruction Prefetch
|
145 |
|
|
LOADB(U)
|
146 |
|
|
LOADW(U)
|
147 |
|
|
LOADD(U)
|
148 |
|
|
LOADQ(U)
|
149 |
|
|
STOREB
|
150 |
|
|
STOREW
|
151 |
|
|
STORED
|
152 |
|
|
STOREQ
|
153 |
|
|
LOADF // Load/Store Float
|
154 |
|
|
STOREF
|
155 |
|
|
LOADC // Load/Store Complex
|
156 |
|
|
STOREC
|
157 |
|
|
LOADNID // Load from Next Instruction Data
|
158 |
|
|
LOADFNID // Load Float from Next Instruction Data
|
159 |
|
|
LOADCNID // Load Complex from Next Instruction Data
|
160 |
|
|
EXTRACT reg(dest),reg(src),imm(start),imm(stop)
|
161 |
|
|
DEPOSITE reg(dest),reg(src),reg(srcb),imm(start),imm(stop)
|
162 |
|
|
|
163 |
|
|
System:
|
164 |
|
|
TLBR reg(threadid),reg(tlbvalueh),reg(tlbvaluel)
|
165 |
|
|
TLBW reg(threadid),reg(tlbvalueh),reg(tlbvaluel)
|
166 |
|
|
|
167 |
|
|
Interupts: -- Avoid this unless absolutely nessicary
|
168 |
|
|
THROW reg/imm(vector) // Throw Exception
|
169 |
|
|
RETI // Return from Interupt
|
170 |
|
|
|
171 |
|
|
System:
|
172 |
|
|
IFENCE // Instruction Fence
|
173 |
|
|
DFENCE // Data Fence
|
174 |
|
|
REGISTER reg(threadptr),imm(interupt vector) // Registers an interupt
|
175 |
|
|
SYSCALL // Syscall (Pauses Current Stream/Flags for Service)
|
176 |
|
|
|
177 |
|
|
Process Management: // Dispatched through MP Bus (8 Threads = 1 Process)
|
178 |
|
|
PROCESS.LOAD reg(addrptr),reg(processorid:processid)
|
179 |
|
|
PROCESS.STORE reg(addrptr),reg(processorid:processid)
|
180 |
|
|
PROCESS.START reg(processorid:processid)
|
181 |
|
|
PROCESS.STOP reg(processorid:processid)
|
182 |
|
|
|
183 |
|
|
Thread Management: // Dispatched through MP Bus
|
184 |
|
|
THREAD.LOAD reg(addrptr),reg(processorid:threadid) // Loads a threads state
|
185 |
|
|
THREAD.STORE reg(addrptr),reg(processorid:threadid) // Saves a threads state
|
186 |
|
|
THREAD.START reg(processorid:threadid) // Continues execution of a thread
|
187 |
|
|
THREAD.STOP reg(processorid:threadid) // Stops execution of a thread
|
188 |
|
|
BREAK // Debugger Support
|
189 |
|
|
|
190 |
|
|
Processor Management: // Dispatched through MP Bus
|
191 |
|
|
PROCESSOR.START reg(processorid) // Start the processor
|
192 |
|
|
PROCESSOR.STOP reg(processorid) // Stop the processor
|
193 |
|
|
PROCESSOR.PAUSE reg(processorid) // Pause a processor and all it's streams
|
194 |
|
|
PROCESSOR.CONTINUE reg(processorid) // Resume a processor from pause
|
195 |
|
|
PROCESSOR.RESET reg(processorid) // Restart a processor
|
196 |
|
|
PROCESSOR.PING reg(processorid),reg(result/hop count) // Ping's a processor
|
197 |
|
|
// result is number of hops to processor or 0 for nonexistant
|
198 |
|
|
|
199 |
|
|
Processor IDs:
|
200 |
|
|
0000: Startup
|
201 |
|
|
0001: Master Processor (OS Only)
|
202 |
|
|
0002-FFFE: Slave Processors
|
203 |
|
|
FFFF: Broadcast ID
|
204 |
|
|
|
205 |
|
|
Routing:
|
206 |
|
|
| | |
|
207 |
|
|
| | |
|
208 |
|
|
| | |
|
209 |
|
|
| | |
|
210 |
|
|
-----------1-------------2---------------3------------
|
211 |
|
|
| | |
|
212 |
|
|
| | |
|
213 |
|
|
| | |
|
214 |
|
|
| | |
|
215 |
|
|
-----------4-------------5 NO CONNECTION 6------------
|
216 |
|
|
| | |
|
217 |
|
|
| | |
|
218 |
|
|
| | |
|
219 |
|
|
| | |
|
220 |
|
|
-----------7-------------8---------------9------------
|
221 |
|
|
| | |
|
222 |
|
|
| | |
|
223 |
|
|
| | |
|
224 |
|
|
| | |
|
225 |
|
|
|
226 |
|
|
Each router will automatically keep track of processor id's and their routing keys
|
227 |
|
|
and each router will try to route to a specified processor using the best way possible
|
228 |
|
|
When a processor is assigned a processor id it automatically tells the router its
|
229 |
|
|
id and the router from then on builds routing key tables as data transfers occur.
|
230 |
|
|
Routers also buffer memory transfers and cache for their own memory banks.
|
231 |
|
|
The routing processors must be capable of sustaining 1 memory read/write to
|
232 |
|
|
each processor every clock cycle. Instructions will have a small special
|
233 |
|
|
buffer so that small loops can be made without any memory access penalty.
|
234 |
|
|
(That is loops not implemented with Internal VLIW Branching.)
|
235 |
|
|
|
236 |
|
|
I/O Interfacing:
|
237 |
|
|
There are memory based I/O chips connected to the memory routing network.
|
238 |
|
|
They are able to throw interupts by signalling processors through the MP
|
239 |
|
|
Bus that their is a service request needed to be serviced.
|
240 |
|
|
|
241 |
|
|
CPU Bus Interface:
|
242 |
|
|
Consist of MP Bus interface which connects to microkernel risc processor
|
243 |
|
|
and the memory i/o interface that is 128 bits in length and transfers
|
244 |
|
|
data through.
|
245 |
|
|
|
246 |
|
|
#######################################################################
|
247 |
|
|
#######################################################################
|
248 |
|
|
MicroKernel Support Processor's ISA(Small risc core) -- Incomplete
|
249 |
|
|
This microprocessor runs part of the os and manages the mp bus.
|
250 |
|
|
|
251 |
|
|
Arithmetic:
|
252 |
|
|
ADD
|
253 |
|
|
SUB
|
254 |
|
|
SHR
|
255 |
|
|
SHL
|
256 |
|
|
ROR
|
257 |
|
|
ROL
|
258 |
|
|
RND // Random Number Generator
|
259 |
|
|
Arguments: reg,reg,reg
|
260 |
|
|
Arguments: reg,reg,imm16
|
261 |
|
|
|
262 |
|
|
Logic:
|
263 |
|
|
OR
|
264 |
|
|
AND
|
265 |
|
|
XOR
|
266 |
|
|
NOT
|
267 |
|
|
Arguments: reg,reg,reg
|
268 |
|
|
|
269 |
|
|
Memory:
|
270 |
|
|
LB/LW/LD(S)
|
271 |
|
|
SB/SW/SD
|
272 |
|
|
Arguments: reg,[reg+imm16]
|
273 |
|
|
|
274 |
|
|
Branch:
|
275 |
|
|
BEQ(L)
|
276 |
|
|
BNE(L)
|
277 |
|
|
BZ(L)
|
278 |
|
|
BNZ(L)
|
279 |
|
|
BC(L)
|
280 |
|
|
BNC(L)
|
281 |
|
|
J(L)
|
282 |
|
|
JR(L)
|
283 |
|
|
|
284 |
|
|
Interupts/Special:
|
285 |
|
|
NOP // No Operation
|
286 |
|
|
|
287 |
|
|
MP(MultiProcessing) Interconnect:
|
288 |
|
|
MPIREAD // Write Buffer
|
289 |
|
|
MPIWRITE // Read Buffer
|
290 |
|
|
MPIREQ? // Branch on Request Pending
|
291 |
|
|
|
292 |
|
|
Threads:
|
293 |
|
|
TSREQ? // Branch on Thread Service Request
|
294 |
|
|
|
295 |
|
|
Local Processor Manipulation:
|
296 |
|
|
PSTOP // Processor
|
297 |
|
|
PSTART
|
298 |
|
|
TSTOP reg(threadid) // Thread
|
299 |
|
|
TSTART reg(threadid)
|