| 1 |
2 |
alikat |
HyperMTA Processor Specifications
|
| 2 |
|
|
|
| 3 |
|
|
This is only a preliminary release and it is not complete.
|
| 4 |
|
|
|
| 5 |
|
|
|
| 6 |
|
|
#######################################################################
|
| 7 |
|
|
#######################################################################
|
| 8 |
|
|
|
| 9 |
|
|
User/System Access
|
| 10 |
|
|
|
| 11 |
|
|
Registers:
|
| 12 |
|
|
R0-R31: General Purpose Integer
|
| 13 |
|
|
F0-F31: Floating Point Registers
|
| 14 |
|
|
C0(F0,F1)-C15(F30,F31): Complex Floating Point Registers
|
| 15 |
|
|
|
| 16 |
|
|
Instruction Format and Next Instruction Data Placement:
|
| 17 |
|
|
| 42 Bits(I) | 42 Bits(I) | 42 Bits(I) | 2 Bits(11) |
|
| 18 |
|
|
|
| 19 |
|
|
| 64 Bits(D) | 20 Bits(D) | 42 Bits(I) | 2 Bits(01) |
|
| 20 |
|
|
NID0(I/F) NID1(I)
|
| 21 |
|
|
|
| 22 |
|
|
| 42 Bits(I) | 42 Bits(I) | 42 Bits(D) | 2 Bits(10) |
|
| 23 |
|
|
NID0(I)
|
| 24 |
|
|
|
| 25 |
|
|
| 126 Bits(D) | 2 Bits(00) | (Complex)
|
| 26 |
|
|
NID0(C)
|
| 27 |
|
|
// 63 Bits of each float least significat bit is zeroed or oneed by instruction
|
| 28 |
|
|
|
| 29 |
|
|
Next Instruction Data:
|
| 30 |
|
|
Inlined data stored within the next instruction. Nothing else to say except
|
| 31 |
|
|
it is one of the ways in which we hide memory latency.
|
| 32 |
|
|
|
| 33 |
|
|
Internal VLIW Branching:
|
| 34 |
|
|
This is another way to hide latency.
|
| 35 |
|
|
|
| 36 |
|
|
The following to reduce branch misprediction penalties since it'll be more
|
| 37 |
|
|
costly in this system:
|
| 38 |
|
|
|
| 39 |
|
|
| Conditional Branch | ALU OP | ALU OP |
|
| 40 |
|
|
If true the instruction will execute:
|
| 41 |
|
|
| ALU | ALU | IGNORE THIS ALU OP |
|
| 42 |
|
|
else
|
| 43 |
|
|
| IGNORE THIS | ALU | ALU OP |
|
| 44 |
|
|
|
| 45 |
|
|
Both of those were the same instruction. The Branch instruction contains
|
| 46 |
|
|
a mask of which molecules to execute of the next instruction. In a standard
|
| 47 |
|
|
pipelined system all three can be executed and in the write back stage the
|
| 48 |
|
|
correct molecules will be writen back. This can eliminate small loops.
|
| 49 |
|
|
Then a special return instruction will return the execution back to normal
|
| 50 |
|
|
executing all instructions. As in the example it is possible to have
|
| 51 |
|
|
shared instructions which will be executed either way.
|
| 52 |
|
|
|
| 53 |
|
|
ISA:
|
| 54 |
|
|
|
| 55 |
|
|
Arithmetic(64 bit):
|
| 56 |
|
|
ADD reg,reg,reg/imm
|
| 57 |
|
|
SUB reg,reg,reg/imm
|
| 58 |
|
|
MUL reg,reg,reg/imm
|
| 59 |
|
|
MULU reg,reg,reg/imm
|
| 60 |
|
|
DIV reg,reg,reg/imm
|
| 61 |
|
|
DIVU reg,reg,reg/imm
|
| 62 |
|
|
MOD reg,reg,reg/imm
|
| 63 |
|
|
MODU reg,reg,reg/imm
|
| 64 |
|
|
LMUL reg,reg,reg,reg/imm // Long multiply
|
| 65 |
|
|
LMULU reg,reg,reg,reg/imm // Long multiply unsigned
|
| 66 |
|
|
|
| 67 |
|
|
Logic(64 bit):
|
| 68 |
|
|
OR reg,reg,reg/imm
|
| 69 |
|
|
AND reg,reg,reg/imm
|
| 70 |
|
|
XOR reg,reg,reg/imm
|
| 71 |
|
|
NOT reg,reg
|
| 72 |
|
|
SHL reg,reg,reg/imm
|
| 73 |
|
|
SHR reg,reg,reg/imm
|
| 74 |
|
|
ROL reg,reg,reg/imm
|
| 75 |
|
|
ROR reg,reg,reg/imm
|
| 76 |
|
|
PCNT reg,reg
|
| 77 |
|
|
PCNTZ reg,reg
|
| 78 |
|
|
PCNTC reg,reg
|
| 79 |
|
|
CHG reg,reg
|
| 80 |
|
|
SB reg,imm // Set Bit
|
| 81 |
|
|
CB reg,imm // Clear Bit
|
| 82 |
|
|
TB reg,imm // Toggle Bit
|
| 83 |
|
|
|
| 84 |
|
|
Floating Point(64 Bit):
|
| 85 |
|
|
FADD reg,reg,reg
|
| 86 |
|
|
FSUB reg,reg,reg
|
| 87 |
|
|
FMUL reg,reg,reg
|
| 88 |
|
|
FDIV reg,reg,reg
|
| 89 |
|
|
FMOD reg,reg,reg
|
| 90 |
|
|
FABS reg,reg
|
| 91 |
|
|
FNEG reg,reg // Make Negative
|
| 92 |
|
|
FPOS reg,reg // Make Positive
|
| 93 |
|
|
FTSIGN reg,reg // Toggle Sign
|
| 94 |
|
|
FSQ reg,reg
|
| 95 |
|
|
FCMP reg,reg
|
| 96 |
|
|
FRND reg // Random Generator
|
| 97 |
|
|
FPI reg // Load PI
|
| 98 |
|
|
FE reg // Load E
|
| 99 |
|
|
FZERO reg // Load ZERO
|
| 100 |
|
|
FONE reg // Load ONE
|
| 101 |
|
|
FFLOOR reg,reg
|
| 102 |
|
|
FCEIL reg,reg
|
| 103 |
|
|
FINV reg,reg // 1/reg
|
| 104 |
|
|
|
| 105 |
|
|
Complex(128 Bit):
|
| 106 |
|
|
CADD reg,reg,reg
|
| 107 |
|
|
CSUB reg,reg,reg
|
| 108 |
|
|
CMUL reg,reg,reg
|
| 109 |
|
|
CDIV reg,reg,reg
|
| 110 |
|
|
CMOD reg,reg,reg // Do we really need this? I don't think so.
|
| 111 |
|
|
CSQ reg,reg
|
| 112 |
|
|
CCMP reg,reg // ?
|
| 113 |
|
|
CI reg // Load I
|
| 114 |
|
|
|
| 115 |
|
|
Branch: // Avoid if possible user internal VLIW branching
|
| 116 |
|
|
JMP rel
|
| 117 |
|
|
JMP reg
|
| 118 |
|
|
JMP{condition} rel
|
| 119 |
|
|
JMP{condition} reg
|
| 120 |
|
|
CALL rel
|
| 121 |
|
|
CALL reg
|
| 122 |
|
|
CALL{condition} rel
|
| 123 |
|
|
CALL{condition} reg
|
| 124 |
|
|
CALL [reg+8*cccc]
|
| 125 |
|
|
CALL{condition} [reg+8*cccc]
|
| 126 |
|
|
RETURN
|
| 127 |
|
|
RETURN{condition}
|
| 128 |
|
|
|
| 129 |
|
|
Internal VLIW Branching:
|
| 130 |
|
|
// Selects to execute certain molecules of each atom until a return is reached
|
| 131 |
|
|
// This is another way to hide memory latency
|
| 132 |
|
|
IVB{condition} moleculemask(0,1,2, or any combination)
|
| 133 |
|
|
IVRET
|
| 134 |
|
|
|
| 135 |
|
|
Interupt:
|
| 136 |
|
|
THROW reg/imm
|
| 137 |
|
|
RTI // Return Interupt
|
| 138 |
|
|
|
| 139 |
|
|
Data Movement:
|
| 140 |
|
|
MOV reg,reg // Move
|
| 141 |
|
|
MOVS reg,sreg // Move Special
|
| 142 |
|
|
MOVS sreg,reg
|
| 143 |
|
|
PREFETCH // Data Prefetch
|
| 144 |
|
|
PREFETCHI // Instruction Prefetch
|
| 145 |
|
|
LOADB(U)
|
| 146 |
|
|
LOADW(U)
|
| 147 |
|
|
LOADD(U)
|
| 148 |
|
|
LOADQ(U)
|
| 149 |
|
|
STOREB
|
| 150 |
|
|
STOREW
|
| 151 |
|
|
STORED
|
| 152 |
|
|
STOREQ
|
| 153 |
|
|
LOADF // Load/Store Float
|
| 154 |
|
|
STOREF
|
| 155 |
|
|
LOADC // Load/Store Complex
|
| 156 |
|
|
STOREC
|
| 157 |
|
|
LOADNID // Load from Next Instruction Data
|
| 158 |
|
|
LOADFNID // Load Float from Next Instruction Data
|
| 159 |
|
|
LOADCNID // Load Complex from Next Instruction Data
|
| 160 |
|
|
EXTRACT reg(dest),reg(src),imm(start),imm(stop)
|
| 161 |
|
|
DEPOSITE reg(dest),reg(src),reg(srcb),imm(start),imm(stop)
|
| 162 |
|
|
|
| 163 |
|
|
System:
|
| 164 |
|
|
TLBR reg(threadid),reg(tlbvalueh),reg(tlbvaluel)
|
| 165 |
|
|
TLBW reg(threadid),reg(tlbvalueh),reg(tlbvaluel)
|
| 166 |
|
|
|
| 167 |
|
|
Interupts: -- Avoid this unless absolutely nessicary
|
| 168 |
|
|
THROW reg/imm(vector) // Throw Exception
|
| 169 |
|
|
RETI // Return from Interupt
|
| 170 |
|
|
|
| 171 |
|
|
System:
|
| 172 |
|
|
IFENCE // Instruction Fence
|
| 173 |
|
|
DFENCE // Data Fence
|
| 174 |
|
|
REGISTER reg(threadptr),imm(interupt vector) // Registers an interupt
|
| 175 |
|
|
SYSCALL // Syscall (Pauses Current Stream/Flags for Service)
|
| 176 |
|
|
|
| 177 |
|
|
Process Management: // Dispatched through MP Bus (8 Threads = 1 Process)
|
| 178 |
|
|
PROCESS.LOAD reg(addrptr),reg(processorid:processid)
|
| 179 |
|
|
PROCESS.STORE reg(addrptr),reg(processorid:processid)
|
| 180 |
|
|
PROCESS.START reg(processorid:processid)
|
| 181 |
|
|
PROCESS.STOP reg(processorid:processid)
|
| 182 |
|
|
|
| 183 |
|
|
Thread Management: // Dispatched through MP Bus
|
| 184 |
|
|
THREAD.LOAD reg(addrptr),reg(processorid:threadid) // Loads a threads state
|
| 185 |
|
|
THREAD.STORE reg(addrptr),reg(processorid:threadid) // Saves a threads state
|
| 186 |
|
|
THREAD.START reg(processorid:threadid) // Continues execution of a thread
|
| 187 |
|
|
THREAD.STOP reg(processorid:threadid) // Stops execution of a thread
|
| 188 |
|
|
BREAK // Debugger Support
|
| 189 |
|
|
|
| 190 |
|
|
Processor Management: // Dispatched through MP Bus
|
| 191 |
|
|
PROCESSOR.START reg(processorid) // Start the processor
|
| 192 |
|
|
PROCESSOR.STOP reg(processorid) // Stop the processor
|
| 193 |
|
|
PROCESSOR.PAUSE reg(processorid) // Pause a processor and all it's streams
|
| 194 |
|
|
PROCESSOR.CONTINUE reg(processorid) // Resume a processor from pause
|
| 195 |
|
|
PROCESSOR.RESET reg(processorid) // Restart a processor
|
| 196 |
|
|
PROCESSOR.PING reg(processorid),reg(result/hop count) // Ping's a processor
|
| 197 |
|
|
// result is number of hops to processor or 0 for nonexistant
|
| 198 |
|
|
|
| 199 |
|
|
Processor IDs:
|
| 200 |
|
|
0000: Startup
|
| 201 |
|
|
0001: Master Processor (OS Only)
|
| 202 |
|
|
0002-FFFE: Slave Processors
|
| 203 |
|
|
FFFF: Broadcast ID
|
| 204 |
|
|
|
| 205 |
|
|
Routing:
|
| 206 |
|
|
| | |
|
| 207 |
|
|
| | |
|
| 208 |
|
|
| | |
|
| 209 |
|
|
| | |
|
| 210 |
|
|
-----------1-------------2---------------3------------
|
| 211 |
|
|
| | |
|
| 212 |
|
|
| | |
|
| 213 |
|
|
| | |
|
| 214 |
|
|
| | |
|
| 215 |
|
|
-----------4-------------5 NO CONNECTION 6------------
|
| 216 |
|
|
| | |
|
| 217 |
|
|
| | |
|
| 218 |
|
|
| | |
|
| 219 |
|
|
| | |
|
| 220 |
|
|
-----------7-------------8---------------9------------
|
| 221 |
|
|
| | |
|
| 222 |
|
|
| | |
|
| 223 |
|
|
| | |
|
| 224 |
|
|
| | |
|
| 225 |
|
|
|
| 226 |
|
|
Each router will automatically keep track of processor id's and their routing keys
|
| 227 |
|
|
and each router will try to route to a specified processor using the best way possible
|
| 228 |
|
|
When a processor is assigned a processor id it automatically tells the router its
|
| 229 |
|
|
id and the router from then on builds routing key tables as data transfers occur.
|
| 230 |
|
|
Routers also buffer memory transfers and cache for their own memory banks.
|
| 231 |
|
|
The routing processors must be capable of sustaining 1 memory read/write to
|
| 232 |
|
|
each processor every clock cycle. Instructions will have a small special
|
| 233 |
|
|
buffer so that small loops can be made without any memory access penalty.
|
| 234 |
|
|
(That is loops not implemented with Internal VLIW Branching.)
|
| 235 |
|
|
|
| 236 |
|
|
I/O Interfacing:
|
| 237 |
|
|
There are memory based I/O chips connected to the memory routing network.
|
| 238 |
|
|
They are able to throw interupts by signalling processors through the MP
|
| 239 |
|
|
Bus that their is a service request needed to be serviced.
|
| 240 |
|
|
|
| 241 |
|
|
CPU Bus Interface:
|
| 242 |
|
|
Consist of MP Bus interface which connects to microkernel risc processor
|
| 243 |
|
|
and the memory i/o interface that is 128 bits in length and transfers
|
| 244 |
|
|
data through.
|
| 245 |
|
|
|
| 246 |
|
|
#######################################################################
|
| 247 |
|
|
#######################################################################
|
| 248 |
|
|
MicroKernel Support Processor's ISA(Small risc core) -- Incomplete
|
| 249 |
|
|
This microprocessor runs part of the os and manages the mp bus.
|
| 250 |
|
|
|
| 251 |
|
|
Arithmetic:
|
| 252 |
|
|
ADD
|
| 253 |
|
|
SUB
|
| 254 |
|
|
SHR
|
| 255 |
|
|
SHL
|
| 256 |
|
|
ROR
|
| 257 |
|
|
ROL
|
| 258 |
|
|
RND // Random Number Generator
|
| 259 |
|
|
Arguments: reg,reg,reg
|
| 260 |
|
|
Arguments: reg,reg,imm16
|
| 261 |
|
|
|
| 262 |
|
|
Logic:
|
| 263 |
|
|
OR
|
| 264 |
|
|
AND
|
| 265 |
|
|
XOR
|
| 266 |
|
|
NOT
|
| 267 |
|
|
Arguments: reg,reg,reg
|
| 268 |
|
|
|
| 269 |
|
|
Memory:
|
| 270 |
|
|
LB/LW/LD(S)
|
| 271 |
|
|
SB/SW/SD
|
| 272 |
|
|
Arguments: reg,[reg+imm16]
|
| 273 |
|
|
|
| 274 |
|
|
Branch:
|
| 275 |
|
|
BEQ(L)
|
| 276 |
|
|
BNE(L)
|
| 277 |
|
|
BZ(L)
|
| 278 |
|
|
BNZ(L)
|
| 279 |
|
|
BC(L)
|
| 280 |
|
|
BNC(L)
|
| 281 |
|
|
J(L)
|
| 282 |
|
|
JR(L)
|
| 283 |
|
|
|
| 284 |
|
|
Interupts/Special:
|
| 285 |
|
|
NOP // No Operation
|
| 286 |
|
|
|
| 287 |
|
|
MP(MultiProcessing) Interconnect:
|
| 288 |
|
|
MPIREAD // Write Buffer
|
| 289 |
|
|
MPIWRITE // Read Buffer
|
| 290 |
|
|
MPIREQ? // Branch on Request Pending
|
| 291 |
|
|
|
| 292 |
|
|
Threads:
|
| 293 |
|
|
TSREQ? // Branch on Thread Service Request
|
| 294 |
|
|
|
| 295 |
|
|
Local Processor Manipulation:
|
| 296 |
|
|
PSTOP // Processor
|
| 297 |
|
|
PSTART
|
| 298 |
|
|
TSTOP reg(threadid) // Thread
|
| 299 |
|
|
TSTART reg(threadid)
|