1 |
29 |
eightycc |
`timescale 1ns / 1ps
|
2 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
3 |
|
|
// IBM 650 Reconstruction in Verilog (i650)
|
4 |
|
|
//
|
5 |
|
|
// This file is part of the IBM 650 Reconstruction in Verilog (i650) project
|
6 |
|
|
// http:////www.opencores.org/project,i650
|
7 |
|
|
//
|
8 |
|
|
// Description: Arithmetic operation control.
|
9 |
|
|
//
|
10 |
|
|
// Additional Comments: See US 2959351, Fig. 85.
|
11 |
|
|
//
|
12 |
|
|
// Copyright (c) 2015 Robert Abeles
|
13 |
|
|
//
|
14 |
|
|
// This source file is free software; you can redistribute it
|
15 |
|
|
// and/or modify it under the terms of the GNU Lesser General
|
16 |
|
|
// Public License as published by the Free Software Foundation;
|
17 |
|
|
// either version 2.1 of the License, or (at your option) any
|
18 |
|
|
// later version.
|
19 |
|
|
//
|
20 |
|
|
// This source is distributed in the hope that it will be
|
21 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied
|
22 |
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
23 |
|
|
// PURPOSE. See the GNU Lesser General Public License for more
|
24 |
|
|
// details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU Lesser General
|
27 |
|
|
// Public License along with this source; if not, download it
|
28 |
|
|
// from http://www.opencores.org/lgpl.shtml
|
29 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
30 |
|
|
`include "defines.v"
|
31 |
|
|
|
32 |
|
|
module arith_ctl (
|
33 |
|
|
input rst,
|
34 |
|
|
input ap, bp, cp,
|
35 |
|
|
input dx, d0, d5, d9, dxl, d0l, d1l,
|
36 |
|
|
input wu,
|
37 |
|
|
|
38 |
|
|
input [0:6] adder_out,
|
39 |
|
|
input man_acc_reset, overflow_stop,
|
40 |
|
|
input prog_add_d0,
|
41 |
|
|
input half_correct_sig,
|
42 |
|
|
|
43 |
|
|
output end_of_operation, arith_restart_d5, zero_insert, carry_blank,
|
44 |
|
|
no_carry_blank, carry_insert, no_carry_insert,
|
45 |
|
|
output reg compl_adj, divide, multiply, acc_true_add,
|
46 |
|
|
output reg half_correct, hc_add_5
|
47 |
|
|
);
|
48 |
|
|
|
49 |
|
|
// registers to be defined:
|
50 |
|
|
// reg compl_adj, divide, multiply;
|
51 |
|
|
reg compl_result, end_mult_div, acc_compl_add, left_shift, shift_count,
|
52 |
|
|
right_shift, dist_true;
|
53 |
|
|
|
54 |
|
|
//-----------------------------------------------------------------------------
|
55 |
|
|
// Special control circuits
|
56 |
|
|
//
|
57 |
|
|
// [88:70] Several special control circuits which are not associated with any
|
58 |
|
|
// particular operation or group of operations are energized by the arithmetic
|
59 |
|
|
// controls.
|
60 |
|
|
//
|
61 |
|
|
// These are: (1) Arithmetic operation and arithmetic restart. (2) Upper-lower
|
62 |
|
|
// check (adder control gate). (3) Adder output zero insert control. (4) No
|
63 |
|
|
// carry insert-carry blank and carry insert-no carry blank. (5) Accumulator
|
64 |
|
|
// sign read-out.
|
65 |
|
|
//-----------------------------------------------------------------------------
|
66 |
|
|
|
67 |
|
|
//-----------------------------------------------------------------------------
|
68 |
|
|
// Arithmetic operation and arithmetic restart
|
69 |
|
|
//
|
70 |
|
|
// [89:20] On arithmetic operations the restart signal is sent back to program
|
71 |
|
|
// control shortly after the operation signal is received by arithmetic
|
72 |
|
|
// control, before the operation is completed. This allows the control
|
73 |
|
|
// commutator to advance on its "I" half cycle, find the next instruction and
|
74 |
|
|
// begin its interpretation, concurrently with the performance of the operation
|
75 |
|
|
// by arithmetic control. The control commutator's operation interlock will
|
76 |
|
|
// prevent its advance beyond the point where there would be conflict between
|
77 |
|
|
// the arithmetic operation in process and an operation called for by the new
|
78 |
|
|
// instruction. Athe the end of the arithmetic operation in process, and end of
|
79 |
|
|
// operation signal developed by arithmetic control releases the operation
|
80 |
|
|
// interlock and allows the contorl commutator to advance.
|
81 |
|
|
//-----------------------------------------------------------------------------
|
82 |
|
|
reg arith_operation, arith_restart;
|
83 |
|
|
assign arith_restart_d5 = arith_restart & d5;
|
84 |
|
|
wire arith_op_on_p = compl_adj
|
85 |
|
|
| divide
|
86 |
|
|
| multiply
|
87 |
|
|
| compl_result
|
88 |
|
|
| acc_true_add
|
89 |
|
|
| acc_compl_add
|
90 |
|
|
| hc_add_5
|
91 |
|
|
| left_shift
|
92 |
|
|
| shift_count
|
93 |
|
|
| right_shift
|
94 |
|
|
| overflow_stop
|
95 |
|
|
| end_mult_div;
|
96 |
|
|
|
97 |
|
|
always @(posedge ap)
|
98 |
|
|
if (rst) begin
|
99 |
|
|
arith_operation <= 0;
|
100 |
|
|
arith_restart <= 0;
|
101 |
|
|
end else begin
|
102 |
|
|
arith_operation <= arith_op_on_p? 1'b1
|
103 |
|
|
: dx? 1'b0
|
104 |
|
|
: arith_operation;
|
105 |
|
|
arith_restart <= (arith_op_on_p & ~arith_operation)? 1'b1
|
106 |
|
|
: d9? 1'b0
|
107 |
|
|
: arith_restart;
|
108 |
|
|
end;
|
109 |
|
|
digit_pulse eop (rst, bp, ~arith_operation, 1'b1, end_of_operation);
|
110 |
|
|
|
111 |
|
|
`ifdef 0
|
112 |
|
|
//-----------------------------------------------------------------------------
|
113 |
|
|
// Upper-lower check -- adder control gate
|
114 |
|
|
//
|
115 |
|
|
// [90:5] It will be recalled from the description of the one digit adder in
|
116 |
|
|
// the section on basic principles that an upper-lower check gate was required
|
117 |
|
|
// as on of the conditions necessary to allow the distributor early outputs
|
118 |
|
|
// through to the adder, in either true or complement form. The purpose of this
|
119 |
|
|
// gate is to insure that either an upper or a lower signal and not both has
|
120 |
|
|
// been sensed and that both reset and no reset are not present before allowing
|
121 |
|
|
// distributor values to enter the adder.
|
122 |
|
|
//-----------------------------------------------------------------------------
|
123 |
|
|
|
124 |
|
|
//-----------------------------------------------------------------------------
|
125 |
|
|
// Adder output zero insert control
|
126 |
|
|
//
|
127 |
|
|
// [90:45]
|
128 |
|
|
//-----------------------------------------------------------------------------
|
129 |
|
|
assign zero_insert = dxl & right_shift
|
130 |
|
|
| (dxl | d0l) & left_shift
|
131 |
|
|
| (dxl | d0l) & acc_true_add & compl_adj
|
132 |
|
|
| end_mult_div & acc_true_add & dist_true
|
133 |
|
|
& div & no_rem & wu
|
134 |
|
|
| d0l & add_or_subt_sig
|
135 |
|
|
| dxl & mult_or_div_sig
|
136 |
|
|
| left_shift & (dxl | (d1l & ~significant_digit))
|
137 |
|
|
| mult_div_left_shift & d1l
|
138 |
|
|
| d0l & significant_digit;
|
139 |
|
|
|
140 |
|
|
//-----------------------------------------------------------------------------
|
141 |
|
|
// Carry insertion
|
142 |
|
|
//-----------------------------------------------------------------------------
|
143 |
|
|
assign carry_blank = dxl
|
144 |
|
|
| prog_add_d0
|
145 |
|
|
| (d0l & ~compl_acc_or_dist & ~hc_add_5);
|
146 |
|
|
assign no_carry_blank = d1 & sel_stor_add_tlu
|
147 |
|
|
| d1l & quotient_digit & compl_acc_or_dist
|
148 |
|
|
| d0l & ~quotient_digit & compl_acc_or_dist;
|
149 |
|
|
assign carry_insert = d1 & sel_stor_add_tlu
|
150 |
|
|
| d1l & quotient_digit & compl_acc_or_dist
|
151 |
|
|
| d0l & ~quotient_digit & compl_acc_or_dist;
|
152 |
|
|
assign no_carry_insert = dxl
|
153 |
|
|
| prog_add_d0
|
154 |
|
|
| (d0l & ~compl_acc_or_dist & ~hc_add_5);
|
155 |
|
|
|
156 |
|
|
//-----------------------------------------------------------------------------
|
157 |
|
|
// Sign control
|
158 |
|
|
//-----------------------------------------------------------------------------
|
159 |
|
|
assign acc_plus_out = (((~rem & d0u & ~ap) | (d0l & ~ap)) & acc_plus)
|
160 |
|
|
| (d0u & rem & rem_plus & ~ap);
|
161 |
|
|
assign acc_minus_out = (((~rem & d0u & ~ap) | (d0l & ~ap)) & acc_plus)
|
162 |
|
|
| (d0u & rem & rem_minus & ~ap);
|
163 |
|
|
wire acc_sign_reset = (d1l & add_sign_ctrl & ~divide & ~multiply)
|
164 |
|
|
| (d0 & mult_or_div_sig & a_c);
|
165 |
|
|
|
166 |
|
|
reg acc_plus, acc_minus;
|
167 |
|
|
//wire acc_plus_on_p = (carry_test & compl_result_test_sig)
|
168 |
|
|
// | (add_or_subt_sig & reset_op)
|
169 |
|
|
// | (rem_minus &
|
170 |
|
|
//wire acc_minus_on_p =
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
//-----------------------------------------------------------------------------
|
174 |
|
|
// Adder entry controls
|
175 |
|
|
//-----------------------------------------------------------------------------
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
//-----------------------------------------------------------------------------
|
179 |
|
|
// Arithmetic control
|
180 |
|
|
//-----------------------------------------------------------------------------
|
181 |
|
|
wire end_true_add;
|
182 |
|
|
|
183 |
|
|
//-----------------------------------------------------------------------------
|
184 |
|
|
// Half correct control
|
185 |
|
|
//-----------------------------------------------------------------------------
|
186 |
|
|
wire hc_ed0l_9 = ed0l & half_correct
|
187 |
|
|
& adder_out[`biq_b5] & adder_out[`biq_q4];
|
188 |
|
|
|
189 |
|
|
always @(posedge rst, posedge cp) begin
|
190 |
|
|
if (rst) begin
|
191 |
|
|
half_correct <= 0;
|
192 |
|
|
hc_add_5 <= 0;
|
193 |
|
|
end else begin
|
194 |
|
|
if (man_acc_reset | end_true_add) begin
|
195 |
|
|
hc_add_5 <= 0;
|
196 |
|
|
end else if (hc_ed0l_9) begin
|
197 |
|
|
hc_add_5 <= 1;
|
198 |
|
|
end
|
199 |
|
|
if (hc_add_5 & ~hc_ed0l_9 & ed0l) begin
|
200 |
|
|
half_correct <= 0;
|
201 |
|
|
end else if (half_correct_sig) begin
|
202 |
|
|
half_correct <= 1;
|
203 |
|
|
end
|
204 |
|
|
end
|
205 |
|
|
end;
|
206 |
|
|
`endif
|
207 |
|
|
|
208 |
|
|
endmodule
|