OpenCores
URL https://opencores.org/ocsvn/ion/ion/trunk

Subversion Repositories ion

[/] [ion/] [trunk/] [vhdl/] [mips_pkg.vhdl] - Blame information for rev 230

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 64 ja_rd
--------------------------------------------------------------------------------
2
-- mips_pkg.vhdl -- Configuration constants & utility types and functions
3
--------------------------------------------------------------------------------
4
-- IMPORTANT:
5
-- Here's where you define the memory map of the system, in the implementation 
6
-- of function decode_addr. 
7
-- You need to change that function to change the memory map, independent of any
8
-- additional address decoding you may do out of the FPGA (e.g. if you have more
9
-- than one chip on any data bus) or out of the MCU module (e.g. when you add
10
-- new IO registers).
11
-- Please see the module c2sb_demo and mips_mcu for examples of memory decoding.
12
--------------------------------------------------------------------------------
13 162 ja_rd
-- Copyright (C) 2011 Jose A. Ruiz
14 161 ja_rd
--                                                              
15
-- This source file may be used and distributed without         
16
-- restriction provided that this copyright statement is not    
17
-- removed from the file and that any derivative work contains  
18
-- the original copyright notice and the associated disclaimer. 
19
--                                                              
20
-- This source file is free software; you can redistribute it   
21
-- and/or modify it under the terms of the GNU Lesser General   
22
-- Public License as published by the Free Software Foundation; 
23
-- either version 2.1 of the License, or (at your option) any   
24
-- later version.                                               
25
--                                                              
26
-- This source is distributed in the hope that it will be       
27
-- useful, but WITHOUT ANY WARRANTY; without even the implied   
28
-- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      
29
-- PURPOSE.  See the GNU Lesser General Public License for more 
30
-- details.                                                     
31
--                                                              
32
-- You should have received a copy of the GNU Lesser General    
33
-- Public License along with this source; if not, download it   
34
-- from http://www.opencores.org/lgpl.shtml
35
--------------------------------------------------------------------------------
36 64 ja_rd
 
37 2 ja_rd
library ieee;
38
use ieee.std_logic_1164.all;
39
use ieee.std_logic_arith.all;
40
use ieee.std_logic_unsigned.all;
41
 
42
package mips_pkg is
43
 
44 64 ja_rd
---- Basic types ---------------------------------------------------------------
45
 
46
subtype t_word is std_logic_vector(31 downto 0);
47 225 ja_rd
subtype t_halfword is std_logic_vector(15 downto 0);
48
subtype t_byte is std_logic_vector(7 downto 0);
49 64 ja_rd
 
50
---- System configuration constants --------------------------------------------
51
 
52
-- True to use standard-ish MIPS-1 memory map, false to use Plasma's
53
-- (see implementation of function decode_addr below).
54
constant USE_MIPS1_ADDR_MAP : boolean := true;
55
 
56
-- Reset vector address minus 4 (0xfffffffc for Plasma, 0xbfbffffc for mips1)
57
constant RESET_VECTOR_M4 : t_word   := X"bfbffffc";
58
 
59
-- Trap vector address (0x0000003c for Plasma, 0xbfc00180 for mips1)
60
constant TRAP_VECTOR : t_word       := X"bfc00180";
61
 
62 225 ja_rd
-- Object code in bytes, i.e. as read from a binary or HEX file.
63
-- This type is used to define BRAM init constants from external scripts.
64
type t_obj_code is array(integer range <>) of std_logic_vector(7 downto 0);
65 64 ja_rd
 
66 225 ja_rd
-- Types used to define memories for synthesis or simulation.
67
type t_word_table is array(integer range <>) of t_word;
68
type t_hword_table is array(integer range <>) of t_halfword;
69
type t_byte_table is array(integer range <>) of t_byte;
70
 
71
---- Object code management -- initialization helper functions -----------------
72
 
73
-- Dummy t_obj_code constant, to be used essentially as a syntactic placeholder.
74
constant default_object_code : t_obj_code(0 to 3) := (
75
    X"00", X"00", X"00", X"00"
76
    );
77
 
78
-- Builds BRAM initialization constant from a constant CONSTRAINED byte array
79
-- containing the application object code.
80
-- The constant is a 32-bit, big endian word table.
81
-- The object code is placed at the beginning of the BRAM and the rest is
82
-- filled with zeros.
83
-- The object code is truncated if it doesn't fit the given table size.
84
-- CAN BE USED IN SYNTHESIZABLE CODE to compute a BRAM initialization constant 
85
-- from a constant argument.
86
function objcode_to_wtable(oC : t_obj_code; size : integer) return t_word_table;
87
 
88
-- Builds BRAM initialization constant from a constant CONSTRAINED byte array
89
-- containing the application object code.
90
-- The constant is a 32-bit, big endian word table.
91
-- The object code is placed at the beginning of the BRAM and the rest is
92
-- filled with zeros.
93
-- The object code is truncated if it doesn't fit the given table size.
94
-- CAN BE USED IN SYNTHESIZABLE CODE to compute a BRAM initialization constant 
95
-- from a constant argument.
96
function objcode_to_htable(oC : t_obj_code; size : integer) return t_hword_table;
97
 
98
-- Builds BRAM initialization constant from a constant CONSTRAINED byte array
99
-- containing the application object code.
100
-- The constant is an 8-bit byte table.
101
-- The object code is placed at the beginning of the BRAM and the rest is
102
-- filled with zeros.
103
-- The object code is truncated if it doesn't fit the given table size.
104
-- CAN BE USED IN SYNTHESIZABLE CODE to compute a BRAM initialization constant 
105
-- from a constant argument.
106
function objcode_to_btable(oC : t_obj_code; size : integer) return t_byte_table;
107
 
108
 
109
 
110 64 ja_rd
---- Address decoding ----------------------------------------------------------
111
 
112
-- Note: it is the cache module that does all internal address decoding --------
113
 
114
-- This is the slice of the address that will be used to decode memory areas
115 48 ja_rd
subtype t_addr_decode is std_logic_vector(31 downto 24);
116 37 ja_rd
 
117 64 ja_rd
-- Part of the memory area attribute: the type of memory determines how the
118
-- cache module handles each block
119 72 ja_rd
subtype t_memory_type is std_logic_vector(7 downto 5);
120 64 ja_rd
-- These are all the types the cache knows about
121
constant MT_BRAM : t_memory_type            := "000";
122
constant MT_IO_SYNC : t_memory_type         := "001";
123
constant MT_SRAM_16B : t_memory_type        := "010";
124 75 ja_rd
constant MT_SRAM_8B : t_memory_type         := "011";
125 64 ja_rd
constant MT_DDR_16B : t_memory_type         := "100";
126
constant MT_UNMAPPED : t_memory_type        := "111";
127 37 ja_rd
 
128 72 ja_rd
-- Wait state counter -- we're supporting static memory from 10 to >100 ns
129
subtype t_wait_state_count is std_logic_vector(2 downto 0);
130 64 ja_rd
 
131 72 ja_rd
-- 'Attributes' of some memory block -- used when decoding memory addresses
132
type t_range_attr is record
133
    mem_type :          t_memory_type;
134
    writeable :         std_logic;
135
    cacheable :         std_logic;
136
    wait_states :       t_wait_state_count;
137
end record t_range_attr;
138
 
139
 
140
 
141 64 ja_rd
---- More basic types and constants --------------------------------------------
142
 
143 2 ja_rd
subtype t_addr is std_logic_vector(31 downto 0);
144
subtype t_dword is std_logic_vector(63 downto 0);
145
subtype t_regnum is std_logic_vector(4 downto 0);
146
type t_rbank is array(0 to 31) of t_word;
147
subtype t_pc is std_logic_vector(31 downto 2);
148 64 ja_rd
-- This is used as a textual shortcut only
149 2 ja_rd
constant ZERO : t_word := (others => '0');
150 64 ja_rd
-- control word for ALU
151 2 ja_rd
type t_alu_control is record
152
    logic_sel :         std_logic_vector(1 downto 0);
153
    shift_sel :         std_logic_vector(1 downto 0);
154
    shift_amount :      std_logic_vector(4 downto 0);
155
    neg_sel :           std_logic_vector(1 downto 0);
156
    use_arith :         std_logic;
157
    use_logic :         std_logic_vector(1 downto 0);
158
    cy_in :             std_logic;
159
    use_slt :           std_logic;
160
    arith_unsigned :    std_logic;
161
end record t_alu_control;
162 64 ja_rd
-- Flags coming from the ALU
163 2 ja_rd
type t_alu_flags is record
164
    inp1_lt_zero :      std_logic;
165
    inp1_eq_zero :      std_logic;
166
    inp1_lt_inp2 :      std_logic;
167
    inp1_eq_inp2 :      std_logic;
168
end record t_alu_flags;
169
 
170 134 ja_rd
-- Debug info output by sinthesizable MPU core; meant to debug the core itself, 
171
-- not to debug software!
172
type t_debug_info is record
173
    cache_enabled :     std_logic;
174
    unmapped_access :   std_logic;
175
end record t_debug_info;
176
 
177
 
178 12 ja_rd
-- 32-cycle mul/div module control. Bits 4-3 & 1-0 of IR.
179
subtype t_mult_function is std_logic_vector(3 downto 0);
180
constant MULT_NOTHING       : t_mult_function := "0000";
181
constant MULT_READ_LO       : t_mult_function := "1010"; -- 18
182
constant MULT_READ_HI       : t_mult_function := "1000"; -- 16
183
constant MULT_WRITE_LO      : t_mult_function := "1011"; -- 19
184
constant MULT_WRITE_HI      : t_mult_function := "1001"; -- 17
185
constant MULT_MULT          : t_mult_function := "1101"; -- 25
186
constant MULT_SIGNED_MULT   : t_mult_function := "1100"; -- 24
187
constant MULT_DIVIDE        : t_mult_function := "1111"; -- 26
188
constant MULT_SIGNED_DIVIDE : t_mult_function := "1110"; -- 27
189
 
190 37 ja_rd
-- Computes ceil(log2(A)), e.g. address width of memory block
191
-- CAN BE USED IN SYNTHESIZABLE CODE as long as called with constant arguments
192
function log2(A : natural) return natural;
193 12 ja_rd
 
194 64 ja_rd
-- Decodes a memory address, gives the type of memory
195
-- CAN BE USED IN SYNTHESIZABLE CODE, argument does not need to be constant
196
function decode_addr(addr : t_addr_decode) return t_range_attr;
197 37 ja_rd
 
198 64 ja_rd
 
199 2 ja_rd
end package;
200 37 ja_rd
 
201
package body mips_pkg is
202
 
203
function log2(A : natural) return natural is
204
begin
205
    for I in 1 to 30 loop -- Works for up to 32 bit integers
206 85 ja_rd
        if(2**I >= A) then
207
            return(I);
208 37 ja_rd
        end if;
209
    end loop;
210
    return(30);
211
end function log2;
212
 
213 64 ja_rd
-- Address decoding for Plasma-like system
214
function decode_addr_plasma(addr : t_addr_decode) return t_range_attr is
215
begin
216
 
217
    case addr(31 downto 27) is
218 72 ja_rd
    when "00000"    => return (MT_BRAM     ,'0','0',"000"); -- useg
219
    when "10000"    => return (MT_SRAM_16B ,'1','1',"000"); -- kseg0
220
    when "00100"    => return (MT_IO_SYNC  ,'1','0',"000"); -- kseg1 i/o
221
    when others     => return (MT_UNMAPPED ,'0','0',"000"); -- stray
222 64 ja_rd
    end case;
223
 
224
end function decode_addr_plasma;
225
 
226 75 ja_rd
-- Address decoding for MIPS-I-like system as implemented in target hardware
227 64 ja_rd
function decode_addr_mips1(addr : t_addr_decode) return t_range_attr is
228
begin
229
 
230
    case addr(31 downto 27) is
231 120 ja_rd
    when "00000"    => return (MT_SRAM_16B ,'1','1',"010"); -- useg
232
    when "10000"    => return (MT_SRAM_16B ,'1','1',"010"); -- kseg0
233 72 ja_rd
    --when "10100"    => return (MT_IO_SYNC  ,'1','0',"000"); -- kseg1 i/o
234
    when "00100"    => return (MT_IO_SYNC  ,'1','0',"000"); -- kseg1 i/o
235 120 ja_rd
    when "10110"    => return (MT_SRAM_8B  ,'0','0',"111"); -- kseg1 flash
236 72 ja_rd
    when "10111"    => return (MT_BRAM     ,'0','0',"000"); -- kseg1 boot rom
237
    when others     => return (MT_UNMAPPED ,'0','0',"000"); -- stray
238 64 ja_rd
    end case;
239
 
240
end function decode_addr_mips1;
241
 
242
 
243
function decode_addr(addr : t_addr_decode) return t_range_attr is
244
begin
245
    if USE_MIPS1_ADDR_MAP then
246
        return decode_addr_mips1(addr);
247
    else
248
        return decode_addr_plasma(addr);
249
    end if;
250
 
251
end function decode_addr;
252
 
253 225 ja_rd
function objcode_to_wtable(oC : t_obj_code;
254
                           size : integer)
255
                           return t_word_table is
256
variable br : t_word_table(integer range 0 to size-1):=(others => X"00000000");
257
variable i, address, index : integer;
258
begin
259
 
260
    -- Copy object code to start of BRAM...
261
    i := 0;
262
    for i in 0 to oC'length-1 loop
263
        case i mod 4 is
264
        when 0 =>       index := 24;
265
        when 1 =>       index := 16;
266
        when 2 =>       index := 8;
267
        when others =>  index := 0;
268
        end case;
269
 
270
        address := i / 4;
271
        if address >= size then
272
            exit;
273
        end if;
274
        br(address)(index+7 downto index) := oC(i);
275
    end loop;
276
 
277
    return br;
278
end function objcode_to_wtable;
279
 
280
 
281
function objcode_to_htable(oC : t_obj_code;
282
                           size : integer)
283
                           return t_hword_table is
284
variable br : t_hword_table(integer range 0 to size-1):=(others => X"0000");
285
variable i, address, index : integer;
286
begin
287
 
288
    -- Copy object code to start of BRAM...
289
    i := 0;
290
    for i in 0 to oC'length-1 loop
291
        case i mod 2 is
292
        when 1 =>       index := 8;
293
        when others =>  index := 0;
294
        end case;
295
 
296
        address := i / 2;
297
        if address >= size then
298
            exit;
299
        end if;
300
        br(address)(index+7 downto index) := oC(i);
301
    end loop;
302
 
303
 
304
    return br;
305
end function objcode_to_htable;
306
 
307
function objcode_to_btable(oC : t_obj_code;
308
                           size : integer)
309
                           return t_byte_table is
310
variable br : t_byte_table(integer range 0 to size-1):=(others => X"00");
311
variable i, address, index : integer;
312
begin
313
 
314
    -- Copy object code to start of table, leave the rest of the table
315
    for i in 0 to oC'length-1 loop
316
        if i >= size then
317
            exit;
318
        end if;
319
        br(i) := oC(i);
320
    end loop;
321
 
322
    return br;
323
end function objcode_to_btable;
324
 
325 37 ja_rd
end package body;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.