OpenCores
URL https://opencores.org/ocsvn/ion/ion/trunk

Subversion Repositories ion

[/] [ion/] [trunk/] [vhdl/] [tb/] [mips_tb.vhdl] - Blame information for rev 240

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 193 ja_rd
--##############################################################################
2
-- Simulation test bench -- not synthesizable.
3
--
4
-- Simulates the MCU core connected to a simulated external static RAM on a 
5
-- 16-bit bus, plus an optional 8-bit static ROM. This setup is more or less 
6
-- that of develoment board DE-1 from Terasic.
7
--------------------------------------------------------------------------------
8 226 ja_rd
-- Simulated I/O
9
-- Apart from the io devices within the SoC module, this test bench simulates
10
-- the following ports:
11
--
12
-- 20010000: HW IRQ 0 countdown register (R/o).
13
-- 20010004: HW IRQ 1 countdown register (R/o).
14
-- 20010008: HW IRQ 2 countdown register (R/o).
15
-- 2001000c: HW IRQ 3 countdown register (R/o).
16
-- 20010010: HW IRQ 4 countdown register (R/o).
17
-- 20010014: HW IRQ 5 countdown register (R/o).
18
-- 20010018: HW IRQ 6 countdown register (R/o).
19
-- 2001001c: HW IRQ 7 countdown register (R/o).
20
-- 20010020: Debug register 0 (R/W).
21
-- 20010024: Debug register 1 (R/W).
22
-- 20010028: Debug register 2 (R/W).
23
-- 2001002c: Debug register 3 (R/W).
24
--
25
-- NOTE: these addresses are for write accesses only. for read accesses, the 
26
-- debug registers 0..3 are mirrored over all the io address range 2001xxxxh.
27
--
28
-- Writing N to an IRQ X countdown register will trigger hardware interrupt X
29
-- N clock cycles later. The interrupt line will be asserted for 1 clock cycle.
30
--
31
-- The debug registers 0 to 3 can only be used to test 32-bit i/o.
32
-- All of these registers can only be addressed as 32-bit words. Any other type
33
-- of access will yield undefined results.
34
--------------------------------------------------------------------------------
35 193 ja_rd
-- Console logging:
36
--
37
-- Console output (at addresses compatible to Plasma's) is logged to text file
38
-- "hw_sim_console_log.txt".
39
--
40
-- IMPORTANT: The code that echoes UART TX data to the simulation console does
41
-- line buffering; it will not print anything until it gets a CR (0x0d), and
42
-- will ifnore LFs (0x0a). Bear this in mind if you see no output when you 
43
-- expect it.
44
--
45
-- Console logging is done by monitoring CPU writes to the UART, NOT by looking
46
-- at the TxD pin. It will NOT catch baud-related problems, etc.
47
--------------------------------------------------------------------------------
48
-- WARNING: Will only work on Modelsim; uses custom library SignalSpy.
49
--##############################################################################
50
 
51
library ieee;
52
use ieee.std_logic_1164.all;
53
use ieee.std_logic_arith.all;
54
use ieee.std_logic_unsigned.all;
55
use std.textio.all;
56
 
57 226 ja_rd
use work.txt_util.all;
58 193 ja_rd
use work.mips_pkg.all;
59
use work.mips_tb_pkg.all;
60
use work.sim_params_pkg.all;
61 237 ja_rd
--use work.obj_code_pkg.obj_code;
62 193 ja_rd
 
63 226 ja_rd
 
64 193 ja_rd
entity mips_tb is
65
end;
66
 
67
 
68
architecture testbench of mips_tb is
69
 
70 226 ja_rd
-- External 16-bit SRAM and interface signals ----------------------------------
71 193 ja_rd
 
72 226 ja_rd
-- External SRAM address length -- these are 16-bit word addresses.
73
constant SRAM_ADDR_SIZE : integer := log2(SRAM_SIZE);
74 193 ja_rd
 
75 226 ja_rd
-- Static 16-bit wide RAM.
76 207 ja_rd
-- Using shared variables for big memory arrays speeds up simulation a lot;
77
-- see Modelsim 6.3 User Manual, section on 'Modelling Memory'.
78
-- WARNING: I have only tested this construct with Modelsim SE 6.3.
79 226 ja_rd
shared variable sram : t_hword_table(0 to SRAM_SIZE-1) := objcode_to_htable(SRAM_INIT, SRAM_SIZE);
80 193 ja_rd
 
81 226 ja_rd
 
82 193 ja_rd
signal sram_chip_addr :     std_logic_vector(SRAM_ADDR_SIZE downto 1);
83 226 ja_rd
signal sram_output :        t_halfword;
84 193 ja_rd
 
85
 
86
-- PROM table and interface signals --------------------------------------------
87
 
88 226 ja_rd
constant PROM_ADDR_SIZE : integer := log2(PROM_SIZE);
89
subtype t_prom_address is std_logic_vector(PROM_ADDR_SIZE-1 downto 0);
90
 
91 193 ja_rd
-- We'll simulate a 16-bit-wide static PROM (e.g. a Flash) with some serious
92
-- cycle time (70 or 90 ns).
93 207 ja_rd
-- FIXME FLASH read cycle time not modelled yet.
94 193 ja_rd
signal prom_rd_addr :       t_prom_address;
95 226 ja_rd
signal prom_output :        t_byte;
96 193 ja_rd
signal prom_oe_n :          std_logic;
97
 
98 207 ja_rd
-- 8-bit wide FLASH modelled as read only block.
99
-- We don't simulate the actual FLASH chip: no FLASH writes, control regs, etc.
100 226 ja_rd
shared variable prom : t_byte_table(0 to PROM_SIZE-1) := objcode_to_btable(PROM_INIT, PROM_SIZE);
101 193 ja_rd
 
102
 
103
-- I/O devices -----------------------------------------------------------------
104
 
105
signal data_uart :          std_logic_vector(31 downto 0);
106
signal data_uart_status :   std_logic_vector(31 downto 0);
107
signal uart_tx_rdy :        std_logic := '1';
108
signal uart_rx_rdy :        std_logic := '1';
109
 
110
--------------------------------------------------------------------------------
111
 
112
signal clk :                std_logic := '0';
113
signal reset :              std_logic := '1';
114
signal interrupt :          std_logic := '0';
115
signal done :               std_logic := '0';
116
 
117
-- interface to asynchronous 16-bit-wide external SRAM
118 226 ja_rd
signal mpu_sram_address :   std_logic_vector(31 downto 0);
119
signal mpu_sram_data_rd :   t_halfword;
120
signal mpu_sram_data_wr :   t_halfword;
121 193 ja_rd
signal mpu_sram_byte_we_n : std_logic_vector(1 downto 0);
122
signal mpu_sram_oe_n :      std_logic;
123
 
124
-- interface to i/o
125
signal io_rd_data :         std_logic_vector(31 downto 0);
126
signal io_wr_data :         std_logic_vector(31 downto 0);
127
signal io_rd_addr :         std_logic_vector(31 downto 2);
128
signal io_wr_addr :         std_logic_vector(31 downto 2);
129
signal io_rd_vma :          std_logic;
130
signal io_byte_we :         std_logic_vector(3 downto 0);
131
 
132
signal rxd :                std_logic;
133
signal txd :                std_logic;
134
 
135 200 ja_rd
-- Other CPU signals 
136
signal cpu_irq :            std_logic_vector(7 downto 0);
137 193 ja_rd
 
138
--------------------------------------------------------------------------------
139
-- Logging signals
140
 
141
 
142
-- Log file
143
file log_file: TEXT open write_mode is "hw_sim_log.txt";
144
 
145
-- Console output log file
146
file con_file: TEXT open write_mode is "hw_sim_console_log.txt";
147
 
148
-- All the info needed by the logger is here
149
signal log_info :           t_log_info;
150
 
151 200 ja_rd
-- IRQ trigger simulation ------------------------------------------------------
152 193 ja_rd
 
153 200 ja_rd
signal irq_trigger_addr :   std_logic_vector(2 downto 0);
154
signal irq_trigger_data :   std_logic_vector(31 downto 0);
155
signal irq_trigger_load :   std_logic;
156 193 ja_rd
 
157 200 ja_rd
subtype t_irq_countdown     is std_logic_vector(31 downto 0);
158
type t_irq_countdown_array  is array(0 to 7) of t_irq_countdown;
159 193 ja_rd
 
160 200 ja_rd
signal irq_countdown :      t_irq_countdown_array;
161
 
162 211 ja_rd
-- Simulated block of 4 read/write, 32-bit I/O registers, used in cache test. 
163
type t_debug_reg_block is array(0 to 3) of t_word;
164
signal debug_reg_block :    t_debug_reg_block;
165 200 ja_rd
 
166 211 ja_rd
 
167 193 ja_rd
begin
168
 
169
    -- UUT instantiation -------------------------------------------------------
170 226 ja_rd
    mpu: entity work.mips_soc
171 193 ja_rd
    generic map (
172 226 ja_rd
        BOOT_BRAM_SIZE => bram_size,
173 237 ja_rd
        OBJECT_CODE    => obj_code,
174 193 ja_rd
        CLOCK_FREQ     => 50000000,
175
        SRAM_ADDR_SIZE => 32
176
    )
177
    port map (
178 205 ja_rd
        interrupt       => cpu_irq,
179 193 ja_rd
 
180
        -- interface to FPGA i/o devices
181
        io_rd_data      => io_rd_data,
182
        io_rd_addr      => io_rd_addr,
183
        io_wr_addr      => io_wr_addr,
184
        io_wr_data      => io_wr_data,
185
        io_rd_vma       => io_rd_vma,
186
        io_byte_we      => io_byte_we,
187
 
188
        -- interface to asynchronous 16-bit-wide EXTERNAL SRAM
189
        sram_address    => mpu_sram_address,
190
        sram_data_rd    => mpu_sram_data_rd,
191
        sram_data_wr    => mpu_sram_data_wr,
192
        sram_byte_we_n  => mpu_sram_byte_we_n,
193
        sram_oe_n       => mpu_sram_oe_n,
194
 
195
        uart_rxd        => rxd,
196
        uart_txd        => txd,
197
 
198 237 ja_rd
        p0_out          => OPEN,
199
        p1_in           => X"00000000",
200
 
201 193 ja_rd
        debug_info      => OPEN,
202
 
203
        clk             => clk,
204
        reset           => reset
205
    );
206
 
207
 
208
    -- Master clock: free running clock used as main module clock --------------
209
    run_master_clock:
210
    process(done, clk)
211
    begin
212
        if done = '0' then
213
            clk <= not clk after T/2;
214
        end if;
215
    end process run_master_clock;
216
 
217
    -- Main simulation process: reset MCU and wait for fixed period ------------
218
    drive_uut:
219
    process
220
    variable l : line;
221
    begin
222
        wait for T*4;
223
        reset <= '0';
224
 
225
        wait for T*SIMULATION_LENGTH;
226
 
227
        -- Flush console output to log console file (in case the end of the
228
        -- simulation caugh an unterminated line in the buffer)
229
        if log_info.con_line_ix > 1 then
230
            write(l, log_info.con_line_buf(1 to log_info.con_line_ix));
231
            writeline(con_file, l);
232
        end if;
233
 
234
        print("TB finished");
235
        done <= '1';
236
        wait;
237
 
238
    end process drive_uut;
239
 
240
 
241
 
242
    -- SRAM/FLASH mux (on a real board this would be a simple address decoder)
243
    mpu_sram_data_rd <=
244
        X"00" & prom_output when mpu_sram_address(31 downto 27)="10110" else
245
        sram_output;
246
 
247
 
248
    -- Do a very basic simulation of an external SRAM --------------------------
249
 
250
    sram_chip_addr <= mpu_sram_address(SRAM_ADDR_SIZE downto 1);
251
 
252
    -- FIXME should add some verification of /WE 
253
    sram_output <=
254 226 ja_rd
        sram(conv_integer(unsigned(sram_chip_addr))) when mpu_sram_oe_n='0'
255 193 ja_rd
        else (others => 'Z');
256
 
257
    simulated_sram_write:
258
    process(mpu_sram_byte_we_n, mpu_sram_address, mpu_sram_oe_n)
259
    begin
260
        -- Write cycle
261
        -- FIXME should add OE\ to write control logic
262
        if mpu_sram_byte_we_n'event or mpu_sram_address'event then
263
            if mpu_sram_byte_we_n(1)='0' then
264 226 ja_rd
                sram(conv_integer(unsigned(sram_chip_addr)))(15 downto 8) := mpu_sram_data_wr(15 downto  8);
265 193 ja_rd
            end if;
266
            if mpu_sram_byte_we_n(0)='0' then
267 226 ja_rd
                sram(conv_integer(unsigned(sram_chip_addr)))( 7 downto 0) := mpu_sram_data_wr( 7 downto  0);
268 193 ja_rd
            end if;
269
        end if;
270
    end process simulated_sram_write;
271
 
272
 
273
    -- Do a very basic simulation of an external PROM (FLASH) ------------------
274
    -- (wired to the same bus as the sram and both are static).
275
 
276 226 ja_rd
    prom_rd_addr <= mpu_sram_address(PROM_ADDR_SIZE-1 downto 0);
277 193 ja_rd
 
278
    prom_oe_n <= mpu_sram_oe_n;
279 226 ja_rd
 
280
    simulated_flash:
281
    if PROM_SIZE > 0 generate
282
        prom_output <=
283
            prom(conv_integer(unsigned(prom_rd_addr))) when prom_oe_n='0' else
284
            (others => 'Z');
285
    end generate;
286
 
287
    unused_flash:
288
    if PROM_SIZE <= 0 generate
289
        prom_output <= (others => 'Z');
290
    end generate;
291 193 ja_rd
 
292
    -- Simulate dummy I/O traffic external to the MCU --------------------------
293 226 ja_rd
    -- The only IO present is the test interrupt trigger registers and the
294
    -- debug register block.
295 200 ja_rd
    simulated_io:
296
    process(clk)
297
    variable i : integer;
298
    variable uart_data : integer;
299
    begin
300
        if clk'event and clk='1' then
301
            if io_byte_we /= "0000" then
302
                if io_wr_addr(31 downto 16)=X"2001" then
303 226 ja_rd
                    if io_wr_addr(5)='0' then
304
                        -- IRQ trigger register block (write only)
305
                        irq_trigger_load <= '1';
306
                        irq_trigger_data <= io_wr_data;
307
                        irq_trigger_addr <= io_wr_addr(4 downto 2);
308
                    else
309
                        -- Debug register block (read/write)
310
                        debug_reg_block(conv_integer(unsigned(io_wr_addr(3 downto 2)))) <= io_wr_data;
311
                    end if;
312 200 ja_rd
                else
313
                    irq_trigger_load <= '0';
314
                end if;
315
            else
316
                irq_trigger_load <= '0';
317
            end if;
318
        end if;
319
    end process simulated_io;
320
 
321 211 ja_rd
    -- The only readable i/o is the debug reg block. We simulate an asynchronous
322 226 ja_rd
    -- read port (a mux). 
323
    -- For read accesses, this register block is mirrored all over the io 
324
    --- address space 2001xxxxh.
325 211 ja_rd
    io_rd_data <= debug_reg_block(conv_integer(unsigned(io_rd_addr(3 downto 2))));
326
 
327 200 ja_rd
    -- Simulate IRQs -----------------------------------------------------------
328
    irq_trigger_registers:
329
    process(clk)
330
    variable index : integer range 0 to 7;
331
    begin
332
        if clk'event and clk='1' then
333
            if reset='1' then
334
                cpu_irq <= "00000000";
335
            else
336
                if irq_trigger_load='1' then
337
                    index := conv_integer(irq_trigger_addr);
338
                    irq_countdown(index) <= irq_trigger_data;
339
                else
340
                    for index in 0 to 7 loop
341
                        if irq_countdown(index) = X"00000001" then
342
                            cpu_irq(index) <= '1';
343
                            irq_countdown(index) <= irq_countdown(index) - 1;
344
                        elsif irq_countdown(index)/=X"00000000" then
345
                            irq_countdown(index) <= irq_countdown(index) - 1;
346
                            cpu_irq(index) <= '0';
347
                        else
348
                            cpu_irq(index) <= '0';
349
                        end if;
350
                    end loop;
351
                end if;
352
            end if;
353
        end if;
354
    end process irq_trigger_registers;
355 193 ja_rd
 
356 200 ja_rd
 
357 193 ja_rd
    -- This is useless (the simulated UART will not be actually used)
358
    -- but at least prevents the simulator from optimizing the logic away.
359
    rxd <= txd;
360
 
361
 
362
    -- Logging process: launch logger function ---------------------------------
363
    log_execution:
364
    process
365
    begin
366
        log_cpu_activity(clk, reset, done,
367
                         "mips_tb/mpu", "cpu",
368
                         log_info, "log_info",
369
                         LOG_TRIGGER_ADDRESS, log_file, con_file);
370
        wait;
371
    end process log_execution;
372
 
373
end architecture testbench;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.