1 |
10 |
jguarin200 |
-- Author : Julian Andres Guarin Reyes.
|
2 |
|
|
-- Project : JART, Just Another Ray Tracer.
|
3 |
|
|
-- email : jguarin2002 at gmail.com, j.guarin at javeriana.edu.co
|
4 |
|
|
|
5 |
|
|
-- This code was entirely written by Julian Andres Guarin Reyes.
|
6 |
|
|
-- The following code is licensed under GNU Public License
|
7 |
|
|
-- http://www.gnu.org/licenses/gpl-3.0.txt.
|
8 |
|
|
|
9 |
|
|
-- This file is part of JART (Just Another Ray Tracer).
|
10 |
|
|
|
11 |
|
|
-- JART (Just Another Ray Tracer) is free software: you can redistribute it and/or modify
|
12 |
|
|
-- it under the terms of the GNU General Public License as published by
|
13 |
|
|
-- the Free Software Foundation, either version 3 of the License, or
|
14 |
|
|
-- (at your option) any later version.
|
15 |
|
|
|
16 |
|
|
-- JART (Just Another Ray Tracer) is distributed in the hope that it will be useful,
|
17 |
|
|
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
-- GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
-- You should have received a copy of the GNU General Public License
|
22 |
|
|
-- along with JART (Just Another Ray Tracer). If not, see <http://www.gnu.org/licenses/>.
|
23 |
|
|
|
24 |
|
|
|
25 |
9 |
jguarin200 |
library ieee;
|
26 |
|
|
use ieee.std_logic_1164.all;
|
27 |
|
|
use ieee.std_logic_unsigned.all;
|
28 |
|
|
use ieee.numeric_std.all;
|
29 |
|
|
|
30 |
|
|
entity uart is
|
31 |
|
|
port(
|
32 |
|
|
|
33 |
|
|
rst : in std_logic; -- reset control signal
|
34 |
|
|
clk : in std_logic; -- 100 MHz on PLL
|
35 |
|
|
|
36 |
|
|
-- Reception channel
|
37 |
|
|
Rx : in std_logic; -- Linea de entrada RS232
|
38 |
|
|
RxDataOut : out std_logic_vector(7 downto 0); -- Buffer de salida
|
39 |
|
|
RxRdy : out std_logic; -- Bandera para indicar que el dato esta listo
|
40 |
|
|
|
41 |
|
|
|
42 |
|
|
-- Transmition channel
|
43 |
|
|
Tx : out std_logic; -- Linea de salida RS232
|
44 |
|
|
TxDataIn : in std_logic_vector(7 downto 0); -- Buffer de entrada
|
45 |
|
|
TxLoad : in std_logic; -- Señal de carga
|
46 |
|
|
TxBusy : out std_logic -- Bandera de Canal ocupado
|
47 |
|
|
);
|
48 |
|
|
|
49 |
|
|
end entity;
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
architecture rtl of uart is
|
53 |
|
|
|
54 |
|
|
-------------------------------------------------------------------------------
|
55 |
|
|
-- Ticks
|
56 |
|
|
-------------------------------------------------------------------------------
|
57 |
10 |
jguarin200 |
constant TBIT : integer := 434/4; -- 15 1 bit Divide By four in order to obtain 460800 bps at 50 MHZ, by 2 for 230400, by 1 for 115200 bps
|
58 |
|
|
constant THALF_BIT : integer := 217/4; -- 7 1/2 bit Divide By four in order to obtain 460800 bps at 50 MHZ, by 2 for 230400, by 1 for 115200 bps
|
59 |
9 |
jguarin200 |
-------------------------------------------------------------------------------
|
60 |
|
|
-- Maquinas de Estado
|
61 |
|
|
-------------------------------------------------------------------------------
|
62 |
|
|
type tTxStateMachine is (WAITING_LOAD_TX,SET_STARTBIT_TX,SET_NBIT_TX,FINISH_TX);
|
63 |
|
|
type tRxStateMachine is (WAIT_START_BIT,HOLD_STARTBIT_RX,WAIT_FOR_NEW_BIT_RX,SAMPLE_BIT_RX,SAMPLE_STOPBIT_RX);--,RX_OVF,DEBUGGING_RX);
|
64 |
|
|
signal sTxState : tTxStateMachine;
|
65 |
|
|
signal sRxState : tRxStateMachine;
|
66 |
|
|
-------------------------------------------------------------------------------
|
67 |
|
|
-- Baud Rate Signals : Bit 16th bit16, Bit half bit2, Entire Bit bit1.
|
68 |
|
|
-------------------------------------------------------------------------------
|
69 |
|
|
signal bit2 : std_logic; -- 1/2 BAUDIO
|
70 |
|
|
signal bit1 : std_logic; -- 1 BAUDIO
|
71 |
|
|
-------------------------------------------------------------------------------
|
72 |
|
|
-- Registros de Transmision
|
73 |
|
|
-------------------------------------------------------------------------------
|
74 |
|
|
signal sTxDataInReg : std_logic_vector(7 downto 0); -- Registro de precarga de salida
|
75 |
|
|
signal sShiftTxData : std_logic_vector(9 downto 0); -- Registro de corrimiento de salida
|
76 |
|
|
|
77 |
|
|
-------------------------------------------------------------------------------
|
78 |
|
|
-- Registros de Recepcion
|
79 |
|
|
-------------------------------------------------------------------------------
|
80 |
|
|
signal sShiftRxData : std_logic_vector(7 downto 0); -- Registro de corrimiento de llegada.
|
81 |
|
|
signal sSyncRxCounter : std_logic; -- Señal de sincronizacion para el contador de medio bit.
|
82 |
|
|
signal sEnableTxCounter : std_logic; -- Señal de sincronizacion para conteo de un bit entero en la transmision.
|
83 |
|
|
signal sRx0, sRx1 : std_logic; -- Señal Rx Registrada
|
84 |
|
|
|
85 |
|
|
begin
|
86 |
|
|
|
87 |
|
|
------------------------------------------------------------------------------
|
88 |
|
|
-- Countador Principal de Transmision ---
|
89 |
|
|
-------------------------------------------------------------------------------
|
90 |
|
|
txCntr:
|
91 |
|
|
process(rst,clk)
|
92 |
|
|
variable counter : integer range 0 to 1023;
|
93 |
|
|
begin
|
94 |
|
|
if rst = '0' then
|
95 |
|
|
|
96 |
|
|
bit1 <= '0';
|
97 |
|
|
counter := 0;
|
98 |
|
|
|
99 |
|
|
elsif rising_edge(clk) then
|
100 |
|
|
|
101 |
|
|
bit1 <= '0';
|
102 |
|
|
if sEnableTxCounter ='0' then
|
103 |
|
|
counter := 0;
|
104 |
|
|
elsif counter = TBIT then
|
105 |
|
|
bit1 <= '1';
|
106 |
|
|
counter := 0;
|
107 |
|
|
else
|
108 |
|
|
counter := counter + 1;
|
109 |
|
|
end if;
|
110 |
|
|
|
111 |
|
|
end if;
|
112 |
|
|
end process;
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
------------------------------------------------------------------------------
|
117 |
|
|
-- Countador Principal de Transmision (115200 bps : 1/2 Baudio con 8 Ticks => 1 Tick / 54 ns)
|
118 |
|
|
-- Adicionalmente este contador usa la señal sSyncRxCounter, para resetearlo.
|
119 |
|
|
-------------------------------------------------------------------------------
|
120 |
|
|
rxCntr:
|
121 |
|
|
process(rst, clk)
|
122 |
|
|
variable counter : integer range 0 to 1023;
|
123 |
|
|
begin
|
124 |
|
|
|
125 |
|
|
if rst = '0' then
|
126 |
|
|
bit2 <= '0';
|
127 |
|
|
counter := 0;
|
128 |
|
|
elsif rising_edge(clk) then
|
129 |
|
|
bit2 <= '0';
|
130 |
|
|
if sSyncRxCounter = '1' then
|
131 |
|
|
counter:=0;
|
132 |
|
|
|
133 |
|
|
elsif counter = THALF_BIT then
|
134 |
|
|
-- Reset el contador y marcar medio bit.
|
135 |
|
|
bit2 <= '1';
|
136 |
|
|
counter := 0;
|
137 |
|
|
else
|
138 |
|
|
counter := counter + 1;
|
139 |
|
|
end if;
|
140 |
|
|
end if;
|
141 |
|
|
|
142 |
|
|
end process;
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
-------------------------------------------------------------------------------
|
146 |
|
|
-- Maquina de estado de transmision
|
147 |
|
|
-------------------------------------------------------------------------------
|
148 |
|
|
txFSM:
|
149 |
|
|
process(rst, clk)
|
150 |
|
|
variable counter : integer range 0 to 15;
|
151 |
|
|
begin
|
152 |
|
|
if rst = '0' then
|
153 |
|
|
|
154 |
|
|
-- Seleccionar estado de espera.
|
155 |
|
|
sTxState <= WAITING_LOAD_TX;
|
156 |
|
|
|
157 |
|
|
-- Registro de corrimiento en 1. De esa manera se pone automaticamente la linea de transmision en 1.
|
158 |
|
|
sShiftTxData <= (others => '1');
|
159 |
|
|
|
160 |
|
|
-- Deshabilitar el contador de transmision (canal libre).
|
161 |
|
|
sEnableTxCounter <= '0';
|
162 |
|
|
|
163 |
|
|
elsif rising_edge(clk) then
|
164 |
|
|
|
165 |
|
|
case sTxState is
|
166 |
|
|
|
167 |
|
|
when WAITING_LOAD_TX =>
|
168 |
|
|
|
169 |
|
|
if TxLoad = '1' then
|
170 |
|
|
|
171 |
|
|
-- Cargar Dato
|
172 |
|
|
sTxDataInReg <= TxDataIn;
|
173 |
|
|
|
174 |
|
|
-- Siguiente estado : Cargar bit
|
175 |
|
|
sTxState <= SET_STARTBIT_TX;
|
176 |
|
|
|
177 |
|
|
-- Habilitar el contador de Tx (canal ocupado)
|
178 |
|
|
sEnableTxCounter <= '1';
|
179 |
|
|
|
180 |
|
|
end if;
|
181 |
|
|
|
182 |
|
|
when SET_STARTBIT_TX =>
|
183 |
|
|
|
184 |
|
|
if bit1 = '1' then -- Esperar a que transcurra el tiempo de un bit.
|
185 |
|
|
|
186 |
|
|
-- 0 avo bit
|
187 |
|
|
counter := 1;
|
188 |
|
|
|
189 |
|
|
-- Colocar el startbit
|
190 |
|
|
sShiftTxData(9 downto 0) <= '1' & sTxDataInReg(7 downto 0) & '0'; -- Enviar START BIT
|
191 |
|
|
|
192 |
|
|
-- Pasar a esperar tbit para colocar el siguiente bit de datos en la linea tx
|
193 |
|
|
sTxState <= SET_NBIT_TX; -- Cargar siguiente dato
|
194 |
|
|
|
195 |
|
|
end if;
|
196 |
|
|
|
197 |
|
|
when SET_NBIT_TX =>
|
198 |
|
|
|
199 |
|
|
if bit1 = '1' then -- Paso un bit
|
200 |
|
|
|
201 |
|
|
-- Contar el numero de datos enviados
|
202 |
|
|
counter := counter + 1; -- Calcular el numero de datos - 1 enviados
|
203 |
|
|
|
204 |
|
|
-- Correr el registro de y transmitir el ultimo bit.
|
205 |
|
|
sShiftTxData(9 downto 0) <= '1' & sShiftTxData(9 downto 1);
|
206 |
|
|
|
207 |
|
|
if counter = 10 then -- 10 bits enviados parar.
|
208 |
|
|
|
209 |
|
|
-- Ir al estado de finalizacion de la transmision
|
210 |
|
|
sTxState <= FINISH_TX;
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
end if;
|
215 |
|
|
|
216 |
|
|
end if;
|
217 |
|
|
|
218 |
|
|
when FINISH_TX => -- stop bit
|
219 |
|
|
|
220 |
|
|
if bit1 = '1' then
|
221 |
|
|
|
222 |
|
|
-- Estado Ocioso
|
223 |
|
|
sTxState <= WAITING_LOAD_TX;
|
224 |
|
|
|
225 |
|
|
-- Deshabilitar el contador de transmision y declarar el canal de transmision libre.
|
226 |
|
|
sEnableTxCounter <= '0';
|
227 |
|
|
|
228 |
|
|
end if;
|
229 |
|
|
|
230 |
|
|
when others =>
|
231 |
|
|
|
232 |
|
|
-- Si no se sabe el estado entonces ir a finish para liberar el canal.
|
233 |
|
|
sTxState <= FINISH_TX;
|
234 |
|
|
|
235 |
|
|
end case;
|
236 |
|
|
|
237 |
|
|
end if;
|
238 |
|
|
|
239 |
|
|
end process;
|
240 |
|
|
|
241 |
|
|
-- Declarar el canal como ocupado o desocupado si el contador de transmision está encendido o apagado respectivamente
|
242 |
|
|
TxBusy <= sEnableTxCounter;
|
243 |
|
|
Tx <= sShiftTxData(0);
|
244 |
|
|
|
245 |
|
|
|
246 |
|
|
-------------------------------------------------------------------------------
|
247 |
|
|
-- Reception process
|
248 |
|
|
-------------------------------------------------------------------------------
|
249 |
|
|
rxFSM: process(rst, clk)
|
250 |
|
|
variable counter : integer range 0 to 127;
|
251 |
|
|
begin
|
252 |
|
|
if rst = '0' then
|
253 |
|
|
|
254 |
|
|
RxDataOut <= (others => '1');
|
255 |
|
|
RxRdy <= '0';
|
256 |
|
|
sShiftRxData <= (others => '1');
|
257 |
|
|
sRxState <= WAIT_START_BIT;
|
258 |
|
|
sRx0<='1';
|
259 |
|
|
sRx1<='1';
|
260 |
|
|
|
261 |
|
|
elsif rising_edge(clk) then
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
RxRdy <= '0';
|
266 |
|
|
sSyncRxCounter <='0';
|
267 |
|
|
|
268 |
|
|
-- Doble FF para la sincronizaciòn de Rx. Esto no funciona muy bien con PLL.
|
269 |
|
|
-- Preguntar a Alejandra.
|
270 |
|
|
sRx0 <= Rx;
|
271 |
|
|
sRx1 <= sRx0;
|
272 |
|
|
|
273 |
|
|
case sRxState is
|
274 |
|
|
|
275 |
|
|
when WAIT_START_BIT => -- Wait start bit
|
276 |
|
|
|
277 |
|
|
if (sRx1 and not(sRx0))='1' then -- Si hay un Flanco de bajada
|
278 |
|
|
|
279 |
|
|
-- Siguiente estado : esperar que pase el bit de start
|
280 |
|
|
sRxState <= HOLD_STARTBIT_RX;
|
281 |
|
|
|
282 |
|
|
-- Sincronizacion contador
|
283 |
|
|
sSyncRxCounter <='1';
|
284 |
|
|
|
285 |
|
|
|
286 |
|
|
-- Vamos en el primer bit.
|
287 |
|
|
counter := 0;
|
288 |
|
|
|
289 |
|
|
end if;
|
290 |
|
|
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
when HOLD_STARTBIT_RX =>
|
294 |
|
|
|
295 |
|
|
if bit2 = '1' then -- Nos encontramos en la mitad del baudio del start bit. Ahora lo muestreamos sin cargarlo ;)
|
296 |
|
|
|
297 |
|
|
sRxState <= WAIT_FOR_NEW_BIT_RX; -- Siguiente estado es detectar nuevo bit.
|
298 |
|
|
|
299 |
|
|
end if;
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
when WAIT_FOR_NEW_BIT_RX =>
|
303 |
|
|
|
304 |
|
|
if bit2 = '1' then -- En este momento nos encontramos en el comienzo de un bit.
|
305 |
|
|
|
306 |
|
|
if counter = 8 then -- Si hemos leido el OCTAVO bit entonces el que sigue es el NOVENO bit (STOP BIT)
|
307 |
|
|
|
308 |
|
|
sRxState <= SAMPLE_STOPBIT_RX; -- Ir al estado de lectura del stop bit.
|
309 |
|
|
|
310 |
|
|
else
|
311 |
|
|
|
312 |
|
|
sRxState <= SAMPLE_BIT_RX;-- Ir al estado de carga de un bit de datos.
|
313 |
|
|
|
314 |
|
|
end if;
|
315 |
|
|
|
316 |
|
|
end if;
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
when SAMPLE_BIT_RX =>
|
320 |
|
|
|
321 |
|
|
if bit2 = '1' then -- Nos encontramos en la mitad de un baudio. Muestrear el bit correspondiente.
|
322 |
|
|
|
323 |
|
|
--Contar el numero de bits leidos.
|
324 |
|
|
counter := counter + 1;
|
325 |
|
|
|
326 |
|
|
--Cargar el bit que se encuentra en la linea RX (después del flip flop para evitar metaestabilidad)
|
327 |
|
|
sShiftRxData(7 downto 0) <= sRx0 & sShiftRxData(7 downto 1);
|
328 |
|
|
|
329 |
|
|
-- Siguiente estado : Detectar nuevo baudio.
|
330 |
|
|
sRxState <= WAIT_FOR_NEW_BIT_RX;
|
331 |
|
|
|
332 |
|
|
end if;
|
333 |
|
|
|
334 |
|
|
|
335 |
|
|
|
336 |
|
|
when SAMPLE_STOPBIT_RX =>
|
337 |
|
|
|
338 |
|
|
if bit2 = '1' then -- Estamos en la mitad del stop bit.
|
339 |
|
|
|
340 |
|
|
-- Cargar el dato del shift register al buffer de salida.
|
341 |
|
|
RxDataOut <= sShiftRxData;
|
342 |
|
|
|
343 |
|
|
-- Siguiente estado: Ocioso, esperando por un start bit.
|
344 |
|
|
sRxState <= WAIT_START_BIT;
|
345 |
|
|
|
346 |
|
|
-- Avisar que está listo el dato.
|
347 |
|
|
RxRdy <='1';
|
348 |
|
|
|
349 |
|
|
end if;
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
when others =>
|
353 |
|
|
|
354 |
|
|
sRxState <= WAIT_START_BIT;
|
355 |
|
|
|
356 |
|
|
end case;
|
357 |
|
|
|
358 |
|
|
end if;
|
359 |
|
|
|
360 |
|
|
end process;
|
361 |
|
|
|
362 |
|
|
end rtl;
|
363 |
|
|
|