| 1 |
2 |
ja_rd |
--------------------------------------------------------------------------------
|
| 2 |
|
|
-- light52_cpu.vhdl -- light52 MCS51-compatible CPU core.
|
| 3 |
|
|
--------------------------------------------------------------------------------
|
| 4 |
|
|
-- This is a 'naive' implementation of the MCS51 architecture that trades area
|
| 5 |
|
|
-- for speed.
|
| 6 |
|
|
--
|
| 7 |
|
|
-- At the bottom of the file there are some design notes referenced throughout
|
| 8 |
|
|
-- the code ('@note1' etc.).
|
| 9 |
|
|
--------------------------------------------------------------------------------
|
| 10 |
|
|
-- GENERICS:
|
| 11 |
|
|
--
|
| 12 |
|
|
--
|
| 13 |
|
|
-- IMPLEMENT_BCD_INSTRUCTIONS -- Whether or not to implement BCD instructions.
|
| 14 |
|
|
-- When true, instructions DA and XCHD will work as in the original MCS51.
|
| 15 |
|
|
-- When false, those instructions will work as NOP, saving some logic.
|
| 16 |
|
|
--
|
| 17 |
|
|
-- SEQUENTIAL_MULTIPLIER -- Sequential vs. combinational multiplier.
|
| 18 |
|
|
-- When true, a sequential implementation will be used for the multiplier,
|
| 19 |
|
|
-- which will usually save a lot of logic or a dedicated multiplier.
|
| 20 |
|
|
-- When false, a combinational registered multiplier will be used.
|
| 21 |
|
|
-- (NOT IMPLEMENTED -- setting it to true will raise an assertion failure).
|
| 22 |
|
|
--
|
| 23 |
|
|
-- USE_BRAM_FOR_XRAM -- Use extra space in IRAM/uCode RAM as XRAM.
|
| 24 |
|
|
-- When true, extra logic will be generated so that the extra space in the
|
| 25 |
|
|
-- RAM block used for IRAM/uCode can be used as XRAM.
|
| 26 |
|
|
-- This prevents RAM waste at some cost in area and clock rate.
|
| 27 |
|
|
-- When false, any extra space in the IRAM physical block will be wasted.
|
| 28 |
|
|
--
|
| 29 |
|
|
--------------------------------------------------------------------------------
|
| 30 |
|
|
-- INTERFACE SIGNALS:
|
| 31 |
|
|
--
|
| 32 |
|
|
-- clk : Clock, active rising edge.
|
| 33 |
|
|
-- reset : Synchronous reset, hold for at least 1 cycle.
|
| 34 |
|
|
--
|
| 35 |
|
|
-- XCODE is assumed to be a synchronous ROM:
|
| 36 |
|
|
--
|
| 37 |
|
|
-- code_addr : XCODE space address.
|
| 38 |
|
|
-- code_rd : XCODE read data. Must be valid at all times with 1
|
| 39 |
|
|
-- cycle of latency (synchronous memory):
|
| 40 |
|
|
-- code_rd[n] := XCODE(code_addr[n-1])
|
| 41 |
|
|
--
|
| 42 |
|
|
-- Interrupts are
|
| 43 |
|
|
--
|
| 44 |
|
|
-- irq_source : Interrupt inputs.
|
| 45 |
|
|
-- 0 is for vector 03h, 4 is for vector 23h.
|
| 46 |
|
|
-- Not registsred; must be synchronous and remain high
|
| 47 |
|
|
-- through a fetch_1 state in order to be acknowledged.
|
| 48 |
|
|
-- Priorities are fixed: 0 highest, 4 lowest.
|
| 49 |
|
|
--
|
| 50 |
|
|
-- XDATA is expected to be a synchronous 1-port RAM:
|
| 51 |
|
|
--
|
| 52 |
|
|
-- xdata_addr : XDATA space address, valid when xdata_vma is '1'.
|
| 53 |
|
|
-- xdata_vma : Asserted high when an XDATA rd/wr cycle is being done.
|
| 54 |
|
|
-- xdata_rd : Read data. Must be valid the cycle after xdata_vma is
|
| 55 |
|
|
-- asserted with xdata_we='0'.
|
| 56 |
|
|
-- xdata_wr : Write data. Valid when xdata_vma is asserted with
|
| 57 |
|
|
-- xdata_we='1';
|
| 58 |
|
|
-- xdata_we : '1' for XDATA write cycles, '0' for read cycles.
|
| 59 |
|
|
--
|
| 60 |
|
|
-- SFRs external to the CPU are accessed as synchonous RAM:
|
| 61 |
|
|
--
|
| 62 |
|
|
-- sfr_addr : SFR space address, valid when sfr_vma='1'.
|
| 63 |
|
|
-- sfr_vma : Asserted high when an SFR rd/wr cycle is being done.
|
| 64 |
|
|
-- sfr_rd : Read data. Must be valid the cycle after sfr_vma is
|
| 65 |
|
|
-- asserted with sfr_we='0'.
|
| 66 |
|
|
-- sfr_wr : Write data. Valid when sfr_vma is asserted with
|
| 67 |
|
|
-- sfr_we='1';
|
| 68 |
|
|
-- sfr_we : '1' for SFR write cycles, '0' for read cycles.
|
| 69 |
|
|
--
|
| 70 |
|
|
-- Note there's no code_vma. Even if there was one, see limitation #1 below.
|
| 71 |
|
|
--------------------------------------------------------------------------------
|
| 72 |
|
|
-- MAJOR LIMITATIONS:
|
| 73 |
|
|
--
|
| 74 |
|
|
-- 1.- Harvard architecture only.
|
| 75 |
|
|
-- The core does not support non-Harvard, unified memory space (i.e. XCODE
|
| 76 |
|
|
-- and XDATA on the same blocks). Signal sfr_vma is asserted the cycle
|
| 77 |
|
|
-- before a fetch_1 state, when a code byte needs to be present at code_rd.
|
| 78 |
|
|
-- In other words, XCODE and XDATA accesses are always simultaneous.
|
| 79 |
|
|
-- Until the core supports wait states it only supports Harvard memory
|
| 80 |
|
|
-- or a dual-port XCODE/XDATA memory.
|
| 81 |
|
|
--
|
| 82 |
|
|
-- 2.- No support yet for sequential multiplier, only combinational.
|
| 83 |
|
|
-- Setting SEQUENTIAL_MULTIPLIER to true will result in a synthesis
|
| 84 |
|
|
-- or simulation failure.
|
| 85 |
|
|
-- The core will use a dedicated multiplier block if the architecture &
|
| 86 |
|
|
-- synthesis options allow for it (e.d. DSP48).
|
| 87 |
|
|
--
|
| 88 |
|
|
-- 3.- Wasted space in RAM block used for IRAM.
|
| 89 |
|
|
-- Setting USE_BRAM_FOR_XRAM to true will result in a synthesis
|
| 90 |
|
|
-- or simulation failure.
|
| 91 |
|
|
-- Architectures with BRAM blocks larger than 512 bytes (e.g. Xilinx
|
| 92 |
|
|
-- Spartan) will have a lot of wasted space in the IRAM/uCode RAM block.
|
| 93 |
|
|
--------------------------------------------------------------------------------
|
| 94 |
|
|
-- FIXMES:
|
| 95 |
|
|
--
|
| 96 |
|
|
-- 1.- States fetch_1 and decode_0 might be overlapped with some other states
|
| 97 |
|
|
-- for a noticeable gain in performance.
|
| 98 |
|
|
-- 2.- Brief description of architecture is missing.
|
| 99 |
|
|
-- 3.- Add optional 2nd DPTR register and implicit INC DPTR feature.
|
| 100 |
|
|
-- 4.- Everything coming straight from a _reg should be named _reg too.
|
| 101 |
|
|
--------------------------------------------------------------------------------
|
| 102 |
|
|
-- REFERENCES:
|
| 103 |
|
|
-- [1] Tips for vendor-agnostic BRAM inference:
|
| 104 |
|
|
-- http://www.danstrother.com/2010/09/11/inferring-rams-in-fpgas/
|
| 105 |
|
|
--------------------------------------------------------------------------------
|
| 106 |
|
|
-- Copyright (C) 2012 Jose A. Ruiz
|
| 107 |
|
|
--
|
| 108 |
|
|
-- This source file may be used and distributed without
|
| 109 |
|
|
-- restriction provided that this copyright statement is not
|
| 110 |
|
|
-- removed from the file and that any derivative work contains
|
| 111 |
|
|
-- the original copyright notice and the associated disclaimer.
|
| 112 |
|
|
--
|
| 113 |
|
|
-- This source file is free software; you can redistribute it
|
| 114 |
|
|
-- and/or modify it under the terms of the GNU Lesser General
|
| 115 |
|
|
-- Public License as published by the Free Software Foundation;
|
| 116 |
|
|
-- either version 2.1 of the License, or (at your option) any
|
| 117 |
|
|
-- later version.
|
| 118 |
|
|
--
|
| 119 |
|
|
-- This source is distributed in the hope that it will be
|
| 120 |
|
|
-- useful, but WITHOUT ANY WARRANTY; without even the implied
|
| 121 |
|
|
-- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
| 122 |
|
|
-- PURPOSE. See the GNU Lesser General Public License for more
|
| 123 |
|
|
-- details.
|
| 124 |
|
|
--
|
| 125 |
|
|
-- You should have received a copy of the GNU Lesser General
|
| 126 |
|
|
-- Public License along with this source; if not, download it
|
| 127 |
|
|
-- from http://www.opencores.org/lgpl.shtml
|
| 128 |
|
|
--------------------------------------------------------------------------------
|
| 129 |
|
|
|
| 130 |
|
|
library ieee;
|
| 131 |
|
|
use ieee.std_logic_1164.all;
|
| 132 |
|
|
use ieee.numeric_std.all;
|
| 133 |
|
|
|
| 134 |
|
|
use work.light52_pkg.all;
|
| 135 |
|
|
use work.light52_ucode_pkg.all;
|
| 136 |
|
|
|
| 137 |
|
|
entity light52_cpu is
|
| 138 |
|
|
generic (
|
| 139 |
17 |
ja_rd |
-- Do not map unused BRAM onto XRAM space.
|
| 140 |
2 |
ja_rd |
USE_BRAM_FOR_XRAM : boolean := false;
|
| 141 |
17 |
ja_rd |
-- Implement DA and XCHD instructions by default.
|
| 142 |
2 |
ja_rd |
IMPLEMENT_BCD_INSTRUCTIONS : boolean := false;
|
| 143 |
17 |
ja_rd |
-- Use a combinational (dedicated) multiplier by default.
|
| 144 |
2 |
ja_rd |
SEQUENTIAL_MULTIPLIER : boolean := false
|
| 145 |
|
|
);
|
| 146 |
|
|
port(
|
| 147 |
|
|
clk : in std_logic;
|
| 148 |
|
|
reset : in std_logic;
|
| 149 |
|
|
|
| 150 |
|
|
code_addr : out std_logic_vector(15 downto 0);
|
| 151 |
|
|
code_rd : in std_logic_vector(7 downto 0);
|
| 152 |
|
|
|
| 153 |
|
|
irq_source : in std_logic_vector(4 downto 0);
|
| 154 |
|
|
|
| 155 |
|
|
xdata_addr : out std_logic_vector(15 downto 0);
|
| 156 |
|
|
xdata_rd : in std_logic_vector(7 downto 0);
|
| 157 |
|
|
xdata_wr : out std_logic_vector(7 downto 0);
|
| 158 |
|
|
xdata_vma : out std_logic;
|
| 159 |
|
|
xdata_we : out std_logic;
|
| 160 |
|
|
|
| 161 |
|
|
sfr_addr : out std_logic_vector(7 downto 0);
|
| 162 |
|
|
sfr_rd : in std_logic_vector(7 downto 0);
|
| 163 |
|
|
sfr_wr : out std_logic_vector(7 downto 0);
|
| 164 |
|
|
sfr_vma : out std_logic;
|
| 165 |
|
|
sfr_we : out std_logic
|
| 166 |
|
|
);
|
| 167 |
|
|
end entity light52_cpu;
|
| 168 |
|
|
|
| 169 |
|
|
|
| 170 |
|
|
architecture microcoded of light52_cpu is
|
| 171 |
|
|
|
| 172 |
|
|
---- Microcode table & instruction decoding ------------------------------------
|
| 173 |
|
|
|
| 174 |
|
|
signal ucode : unsigned(15 downto 0); -- uC word
|
| 175 |
|
|
signal ucode_1st_half : unsigned(15 downto 0); -- uC if 1st-half opcode
|
| 176 |
|
|
signal ucode_2nd_half : unsigned(15 downto 0); -- uC if 2nd-half opcode
|
| 177 |
|
|
signal ucode_2nd_half_reg : unsigned(15 downto 0); --
|
| 178 |
|
|
signal ucode_is_2nd_half : std_logic; -- opcode is 2-nd half
|
| 179 |
|
|
signal ucode_pattern : unsigned(2 downto 0); -- table row to replicate
|
| 180 |
|
|
signal ucode_index : unsigned(6 downto 0); -- index into uC table
|
| 181 |
|
|
signal do_fetch : std_logic; -- opcode is in code_rd
|
| 182 |
|
|
|
| 183 |
|
|
-- uC class (t_class), only valid in state decode_0
|
| 184 |
|
|
signal uc_class_decode_0 : t_class;
|
| 185 |
|
|
-- ALU instruction class (t_alu_class), only valid in state decode_0
|
| 186 |
|
|
signal uc_alu_class_decode_0 : t_alu_class;
|
| 187 |
|
|
-- registered uc_alu_class_decode_0, used in state machine
|
| 188 |
|
|
signal uc_alu_class_reg : t_alu_class;
|
| 189 |
|
|
-- ALU control, valid only in state decode_0
|
| 190 |
|
|
signal uc_alu_fn_decode_0 : t_alu_fns;
|
| 191 |
|
|
-- uc_alu_fn_decode_0 registered
|
| 192 |
|
|
signal alu_fn_reg : t_alu_fns;
|
| 193 |
|
|
-- Controls ALU/bitfield mux in the datapath.
|
| 194 |
|
|
signal dpath_mux0_reg : std_logic;
|
| 195 |
|
|
-- Flag mask for ALU instructions
|
| 196 |
|
|
signal uc_alu_flag_mask : t_flag_mask;
|
| 197 |
|
|
-- Flag mask for all instructions; valid in state decode_0 only
|
| 198 |
|
|
signal flag_mask_decode_0 : t_flag_mask;
|
| 199 |
|
|
-- Flag mask register for ALL instructions
|
| 200 |
|
|
signal flag_mask_reg : t_flag_mask;
|
| 201 |
|
|
-- Index of Rn register, valid for Rn addressing instructions only
|
| 202 |
|
|
signal rn_index : unsigned(2 downto 0);
|
| 203 |
|
|
|
| 204 |
|
|
|
| 205 |
|
|
---- Datapath ------------------------------------------------------------------
|
| 206 |
|
|
|
| 207 |
|
|
-- Operand selection for ALU class instructions
|
| 208 |
|
|
signal alu_class_op_sel_reg: t_alu_op_sel;
|
| 209 |
|
|
signal alu_class_op_sel : t_alu_op_sel;
|
| 210 |
|
|
-- ALU result valid for non-bit operations -- faster as it skips one mux
|
| 211 |
|
|
signal nobit_alu_result : t_byte;
|
| 212 |
|
|
-- ALU result
|
| 213 |
|
|
signal alu_result : t_byte;
|
| 214 |
|
|
signal alu_result_is_zero : std_logic; -- ALU result is zero
|
| 215 |
|
|
signal acc_is_zero : std_logic; -- ACC is zero
|
| 216 |
|
|
|
| 217 |
|
|
signal alu_cy : std_logic; -- ALU CY output
|
| 218 |
|
|
signal alu_ov : std_logic; -- ALU OV output
|
| 219 |
|
|
signal alu_ac : std_logic; -- ALU AC (aux cy) output
|
| 220 |
|
|
signal bit_input : std_logic; -- Value of ALU bit operand
|
| 221 |
|
|
|
| 222 |
|
|
signal load_b_sfr : std_logic; -- B register load enable
|
| 223 |
|
|
signal mul_ready : std_logic; -- Multiplier is finished
|
| 224 |
|
|
signal div_ready : std_logic; -- Divider is finished
|
| 225 |
|
|
signal div_ov : std_logic; -- OV flag from divider
|
| 226 |
|
|
|
| 227 |
|
|
---- State machine -------------------------------------------------------------
|
| 228 |
|
|
|
| 229 |
|
|
-- Present state register and Next state
|
| 230 |
|
|
signal ps, ns : t_cpu_state;
|
| 231 |
|
|
|
| 232 |
|
|
---- Interrupt handling --------------------------------------------------------
|
| 233 |
|
|
|
| 234 |
17 |
ja_rd |
-- IRQ inputs ANDed to IE mask bits.
|
| 235 |
2 |
ja_rd |
signal irq_masked_inputs : std_logic_vector(4 downto 0);
|
| 236 |
17 |
ja_rd |
-- IRQ inputs ANDed to IE mask bits ANDed to IP mask bits.
|
| 237 |
|
|
signal irq_masked_inputs_hp : std_logic_vector(4 downto 0);
|
| 238 |
2 |
ja_rd |
-- Level of highest-level active IRQ input. 0 is highest, 4 lowest, 7 is none.
|
| 239 |
|
|
signal irq_level_inputs : unsigned(2 downto 0);
|
| 240 |
|
|
-- Low 6 bits of IRQ service address.
|
| 241 |
|
|
signal irq_vector : unsigned(5 downto 0);
|
| 242 |
|
|
signal irq_active : std_logic; -- IRQ pending service
|
| 243 |
|
|
signal load_ie : std_logic; -- IE register load enable
|
| 244 |
17 |
ja_rd |
signal load_ip : std_logic; -- IP register load enable
|
| 245 |
|
|
-- Restore irq priority level (as per RETI execution).
|
| 246 |
|
|
signal irq_restore_level : std_logic;
|
| 247 |
|
|
-- High wwhen the active IRQ is allowed by the priority rules.
|
| 248 |
|
|
signal irq_active_allowed : std_logic;
|
| 249 |
|
|
-- High when serving a LOw Priority interrupt.
|
| 250 |
|
|
signal irq_serving_lop : std_logic;
|
| 251 |
|
|
-- High when serving a HIgh Priority interrupt.
|
| 252 |
|
|
signal irq_serving_hip : std_logic;
|
| 253 |
|
|
-- High when the active interrupt line is a HIgh Priority interrupt.
|
| 254 |
|
|
signal irq_active_hip : std_logic;
|
| 255 |
2 |
ja_rd |
|
| 256 |
|
|
---- CPU programmer's model registers ------------------------------------------
|
| 257 |
|
|
|
| 258 |
|
|
signal PC_reg : t_address; -- PC
|
| 259 |
|
|
signal pc_incremented : t_address; -- PC + 1 | PC, controlled by...
|
| 260 |
|
|
signal increment_pc : std_logic; -- ...PC increment enable
|
| 261 |
|
|
signal A_reg : t_byte; -- ACC
|
| 262 |
|
|
signal B_reg : t_byte; -- B
|
| 263 |
|
|
signal PSW_reg : unsigned(7 downto 1); -- PSW excluding P flag
|
| 264 |
|
|
signal PSW : t_byte; -- PSW, full (P is combinational)
|
| 265 |
|
|
signal SP_reg : t_byte; -- SP
|
| 266 |
|
|
signal SP_next : t_byte; -- Next value for SP
|
| 267 |
|
|
signal IE_reg : t_byte; -- IE
|
| 268 |
17 |
ja_rd |
signal IP_reg : t_byte; -- IP
|
| 269 |
2 |
ja_rd |
|
| 270 |
17 |
ja_rd |
|
| 271 |
2 |
ja_rd |
signal alu_p : std_logic; -- P flag (from ALU)
|
| 272 |
|
|
signal DPTR_reg : t_address; -- DPTR
|
| 273 |
|
|
|
| 274 |
|
|
signal next_pc : t_address; -- Next value for PC
|
| 275 |
|
|
signal jump_target : t_address; -- Addr to jump to
|
| 276 |
|
|
signal jump_is_ljmp : std_logic; -- When doing jump, long jump
|
| 277 |
|
|
signal instr_jump_is_ljmp : std_logic; -- For jump opcodes, long jump
|
| 278 |
|
|
signal rel_jump_target : t_address; -- Address of a short jump
|
| 279 |
|
|
signal rel_jump_delta : t_address; -- Offset of short jump
|
| 280 |
|
|
-- 2K block index for AJMP/ACALL. Straight from the opcode.
|
| 281 |
|
|
signal block_reg : unsigned(2 downto 0);
|
| 282 |
|
|
signal code_byte : t_byte; -- Byte from XCODE (transient)
|
| 283 |
|
|
signal ri_addr : t_byte; -- IRAM address of Ri register
|
| 284 |
|
|
signal rn_addr : t_byte; -- IRAM address of Rn register
|
| 285 |
|
|
-- The current ALU instruction CLASS uses Ri, not Rn
|
| 286 |
|
|
signal alu_use_ri_by_class : std_logic;
|
| 287 |
|
|
-- The current ALU instruction uses Ri and not Rn.
|
| 288 |
|
|
signal alu_use_ri : std_logic;
|
| 289 |
|
|
-- The current instruction is not an ALU instruction and uses Ri, not Rn
|
| 290 |
|
|
signal non_alu_use_ri : std_logic;
|
| 291 |
|
|
-- The current instruction uses Ri and not Rn
|
| 292 |
|
|
signal use_ri : std_logic;
|
| 293 |
|
|
-- Registered use_ri, controls the Ri/Rn mux.
|
| 294 |
|
|
signal use_ri_reg : std_logic;
|
| 295 |
|
|
signal rx_addr : t_byte; -- Output of Ri/Rx address selection mux
|
| 296 |
|
|
signal bit_addr : t_byte; -- Byte address of bit operand
|
| 297 |
|
|
-- Index of bit operand within its byte.
|
| 298 |
|
|
signal bit_index : unsigned(2 downto 0);
|
| 299 |
|
|
-- bit_index_registered in state decode_0
|
| 300 |
|
|
signal bit_index_reg : unsigned(2 downto 0);
|
| 301 |
|
|
signal addr0_reg : t_byte; -- Aux address register 0...
|
| 302 |
|
|
signal addr0_reg_input : t_byte; -- ...and its input mux
|
| 303 |
|
|
signal addr1_reg : t_byte; -- Aux addr reg 1
|
| 304 |
|
|
|
| 305 |
|
|
-- Asserted when the PSW flags are implicitly updated by any instruction
|
| 306 |
|
|
signal update_psw_flags : std_logic;
|
| 307 |
|
|
signal load_psw : std_logic; -- PSW explicit (SFR) load enable
|
| 308 |
|
|
signal load_acc_sfr : std_logic; -- ACC explicit (SFR) load enable
|
| 309 |
|
|
signal load_addr0 : std_logic; -- Addr0 load enable
|
| 310 |
|
|
signal load_sp : std_logic; -- SP explicit (SFR) load enable
|
| 311 |
|
|
signal load_sp_implicit : std_logic; -- SP implicit load enable
|
| 312 |
|
|
signal update_sp : std_logic; -- SP combined load enable
|
| 313 |
|
|
|
| 314 |
|
|
---- SFR interface -------------------------------------------------------------
|
| 315 |
|
|
|
| 316 |
|
|
signal sfr_addr_internal : unsigned(7 downto 0); -- SFR address
|
| 317 |
|
|
signal sfr_vma_internal : std_logic; -- SFR access enable
|
| 318 |
|
|
signal sfr_we_internal : std_logic; -- SFR write enable
|
| 319 |
|
|
signal sfr_wr_internal : t_byte; -- SFR write data bus
|
| 320 |
|
|
signal sfr_rd_internal : t_byte; -- SFR read data bus
|
| 321 |
|
|
signal sfr_rd_internal_reg :t_byte; -- Registered SFR read data
|
| 322 |
|
|
|
| 323 |
|
|
---- Conditional jumps ---------------------------------------------------------
|
| 324 |
|
|
|
| 325 |
|
|
signal jump_cond_sel_decode_0 : t_cc; -- Jump condition code...
|
| 326 |
|
|
signal jump_cond_sel_reg : t_cc; -- ...registered to control mux
|
| 327 |
|
|
signal jump_condition : std_logic; -- Value of jump condition
|
| 328 |
|
|
signal cjne_condition : std_logic; -- Value of CJNE jump condition
|
| 329 |
|
|
|
| 330 |
|
|
---- BRAM used for IRAM and uCode table ----------------------------------------
|
| 331 |
|
|
-- The BRAM is a 512 byte table: 256 bytes for the decoding table and 256 bytes
|
| 332 |
|
|
-- for the 8052 IRAM.
|
| 333 |
|
|
-- FIXME handle Xilinx and arbitrary size FPGA BRAMs.
|
| 334 |
|
|
constant BRAM_ADDR_LEN : integer := log2(BRAM_SIZE);
|
| 335 |
|
|
subtype t_bram_addr is unsigned(BRAM_ADDR_LEN-1 downto 0);
|
| 336 |
|
|
signal bram_addr_p0 : t_bram_addr;
|
| 337 |
|
|
signal bram_addr_p1 : t_bram_addr;
|
| 338 |
|
|
signal bram_data_p0 : t_byte;
|
| 339 |
|
|
signal bram_data_p1 : t_byte;
|
| 340 |
|
|
signal bram_we : std_logic;
|
| 341 |
|
|
signal bram_wr_data_p0 : t_byte;
|
| 342 |
|
|
|
| 343 |
|
|
-- Part of the BRAM inference template -- see [1]
|
| 344 |
|
|
-- The BRAM is initializzed with the decoding table.
|
| 345 |
|
|
shared variable bram : t_ucode_bram :=
|
| 346 |
|
|
ucode_to_bram(build_decoding_table(IMPLEMENT_BCD_INSTRUCTIONS));
|
| 347 |
|
|
|
| 348 |
|
|
-- IRAM/SFR address; lowest 8 bits of actual BRAM address.
|
| 349 |
|
|
signal iram_sfr_addr : t_byte;
|
| 350 |
|
|
-- IRAM/SFR read data
|
| 351 |
|
|
signal iram_sfr_rd : t_byte;
|
| 352 |
|
|
-- '1' when using direct addressing mode, '0' otherwise.
|
| 353 |
|
|
signal direct_addressing : std_logic;
|
| 354 |
|
|
-- '1' when using direct addressing to address range 80h..ffh, '0' otherwise.
|
| 355 |
|
|
signal sfr_addressing : std_logic;
|
| 356 |
|
|
signal sfr_addressing_reg : std_logic;
|
| 357 |
|
|
|
| 358 |
|
|
-- Kind of addressing the current instruction is using
|
| 359 |
|
|
signal direct_addressing_alu_reg : std_logic;
|
| 360 |
|
|
signal alu_using_direct_addressing : std_logic;
|
| 361 |
|
|
signal alu_using_indirect_addressing : std_logic;
|
| 362 |
|
|
|
| 363 |
|
|
-- XRAM/MOVC interface and DPTR control logic ----------------------------------
|
| 364 |
|
|
|
| 365 |
|
|
signal load_dph : std_logic; -- DPTR(h) load enable
|
| 366 |
|
|
signal load_dpl : std_logic; -- DPTR(l) load enable
|
| 367 |
|
|
signal inc_dptr : std_logic; -- DPTR increment enable
|
| 368 |
|
|
|
| 369 |
|
|
signal acc_ext16 : t_address; -- Accumulator zero-extended to 16 bits
|
| 370 |
|
|
signal movc_base : t_address; -- Base for MOVC address
|
| 371 |
|
|
signal movc_addr : t_address; -- MOVC address
|
| 372 |
|
|
signal dptr_plus_a_reg : t_address; -- Registered DPTR+ACC adder
|
| 373 |
|
|
|
| 374 |
|
|
|
| 375 |
|
|
begin
|
| 376 |
|
|
|
| 377 |
|
|
--## 1.- State machine #########################################################
|
| 378 |
|
|
|
| 379 |
|
|
cpu_state_machine_reg:
|
| 380 |
|
|
process(clk)
|
| 381 |
|
|
begin
|
| 382 |
|
|
if clk'event and clk='1' then
|
| 383 |
|
|
if reset='1' then
|
| 384 |
|
|
ps <= reset_0;
|
| 385 |
|
|
else
|
| 386 |
|
|
ps <= ns;
|
| 387 |
|
|
end if;
|
| 388 |
|
|
end if;
|
| 389 |
|
|
end process cpu_state_machine_reg;
|
| 390 |
|
|
|
| 391 |
|
|
|
| 392 |
|
|
cpu_state_machine_transitions:
|
| 393 |
|
|
process(ps, uc_class_decode_0, uc_alu_class_decode_0,
|
| 394 |
|
|
uc_alu_class_reg, jump_condition, alu_fn_reg,
|
| 395 |
|
|
mul_ready,div_ready,
|
| 396 |
|
|
irq_active)
|
| 397 |
|
|
begin
|
| 398 |
|
|
case ps is
|
| 399 |
|
|
when reset_0 =>
|
| 400 |
|
|
ns <= fetch_1;
|
| 401 |
|
|
|
| 402 |
|
|
when fetch_0 =>
|
| 403 |
|
|
ns <= fetch_1;
|
| 404 |
|
|
|
| 405 |
|
|
when fetch_1 =>
|
| 406 |
|
|
-- Here's where we sample the pending interrupt flags...
|
| 407 |
|
|
if irq_active='1' then
|
| 408 |
|
|
-- ...and trigger interrupt response if necessary.
|
| 409 |
|
|
ns <= irq_1;
|
| 410 |
|
|
else
|
| 411 |
|
|
ns <= decode_0;
|
| 412 |
|
|
end if;
|
| 413 |
|
|
|
| 414 |
|
|
when decode_0 =>
|
| 415 |
|
|
if uc_class_decode_0(5 downto 4) = "00" then
|
| 416 |
|
|
case uc_alu_class_decode_0 is
|
| 417 |
|
|
when AC_RI_to_A => ns <= alu_rx_to_ab;
|
| 418 |
|
|
when AC_A_RI_to_A => ns <= alu_rx_to_ab;
|
| 419 |
|
|
when AC_RI_to_RI => ns <= alu_rx_to_ab;
|
| 420 |
|
|
when AC_RI_to_D => ns <= alu_rx_to_ab;
|
| 421 |
|
|
|
| 422 |
|
|
when AC_D_to_A => ns <= alu_code_to_ab;
|
| 423 |
|
|
when AC_D1_to_D => ns <= alu_code_to_ab;
|
| 424 |
|
|
when AC_D_to_RI => ns <= alu_code_to_ab;
|
| 425 |
|
|
when AC_D_to_D => ns <= alu_code_to_ab;
|
| 426 |
|
|
|
| 427 |
|
|
when AC_A_RN_to_A => ns <= alu_rx_to_ab;
|
| 428 |
|
|
when AC_RN_to_RN => ns <= alu_rx_to_ab;
|
| 429 |
|
|
when AC_RN_to_A => ns <= alu_rx_to_ab;
|
| 430 |
|
|
when AC_D_to_RN => ns <= alu_code_to_ab;
|
| 431 |
|
|
when AC_RN_to_D => ns <= alu_rx_to_ab;
|
| 432 |
|
|
when AC_I_to_D => ns <= alu_code_to_ab;
|
| 433 |
|
|
|
| 434 |
|
|
when AC_I_D_to_D => ns <= alu_code_to_ab;
|
| 435 |
|
|
when AC_I_to_RI => ns <= alu_code_to_t_rx_to_ab;
|
| 436 |
|
|
when AC_I_to_RN => ns <= alu_code_to_t_rx_to_ab;
|
| 437 |
|
|
when AC_I_to_A => ns <= alu_code_to_t;
|
| 438 |
|
|
when AC_A_to_RI => ns <= alu_rx_to_ab;
|
| 439 |
|
|
when AC_A_to_D => ns <= alu_code_to_ab;
|
| 440 |
|
|
when AC_A_D_to_A => ns <= alu_code_to_ab;
|
| 441 |
|
|
when AC_A_D_to_D => ns <= alu_code_to_ab;
|
| 442 |
|
|
when AC_A_to_RN => ns <= alu_rx_to_ab;
|
| 443 |
|
|
when AC_A_I_to_A => ns <= alu_code_to_t;
|
| 444 |
|
|
when AC_A_to_A => ns <= alu_res_to_a;
|
| 445 |
|
|
|
| 446 |
|
|
when AC_DIV => ns <= alu_div_0;
|
| 447 |
|
|
when AC_MUL => ns <= alu_mul_0;
|
| 448 |
|
|
when AC_DA => ns <= alu_daa_0;
|
| 449 |
|
|
when others => ns <= bug_bad_opcode_class;
|
| 450 |
|
|
end case;
|
| 451 |
|
|
else
|
| 452 |
|
|
case uc_class_decode_0 is
|
| 453 |
|
|
when F_JRB =>
|
| 454 |
|
|
ns <= jrb_bit_0;
|
| 455 |
|
|
when F_LJMP =>
|
| 456 |
|
|
ns <= fetch_addr_1;
|
| 457 |
|
|
when F_AJMP =>
|
| 458 |
|
|
ns <= fetch_addr_0_ajmp;
|
| 459 |
|
|
when F_LCALL =>
|
| 460 |
|
|
ns <= lcall_0;
|
| 461 |
|
|
when F_ACALL =>
|
| 462 |
|
|
ns <= acall_0;
|
| 463 |
|
|
when F_JR =>
|
| 464 |
|
|
ns <= load_rel;
|
| 465 |
|
|
when F_CJNE_A_IMM =>
|
| 466 |
|
|
ns <= cjne_a_imm_0;
|
| 467 |
|
|
when F_CJNE_A_DIR =>
|
| 468 |
|
|
ns <= cjne_a_dir_0;
|
| 469 |
|
|
when F_CJNE_RI_IMM =>
|
| 470 |
|
|
ns <= cjne_ri_imm_0;
|
| 471 |
|
|
when F_CJNE_RN_IMM =>
|
| 472 |
|
|
ns <= cjne_rn_imm_0;
|
| 473 |
|
|
when F_DJNZ_DIR =>
|
| 474 |
|
|
ns <= djnz_dir_0;
|
| 475 |
|
|
when F_DJNZ_RN =>
|
| 476 |
|
|
ns <= djnz_rn_0;
|
| 477 |
|
|
when F_OPC =>
|
| 478 |
|
|
ns <= bit_res_to_c;
|
| 479 |
|
|
when F_BIT =>
|
| 480 |
|
|
ns <= bit_op_0;
|
| 481 |
|
|
when F_SPECIAL =>
|
| 482 |
|
|
ns <= special_0;
|
| 483 |
|
|
when F_PUSH =>
|
| 484 |
|
|
ns <= push_0;
|
| 485 |
|
|
when F_POP =>
|
| 486 |
|
|
ns <= pop_0;
|
| 487 |
|
|
when F_MOV_DPTR =>
|
| 488 |
|
|
ns <= mov_dptr_0;
|
| 489 |
|
|
when F_MOVX_DPTR_A =>
|
| 490 |
|
|
ns <= movx_dptr_a_0;
|
| 491 |
|
|
when F_MOVX_A_DPTR =>
|
| 492 |
|
|
ns <= movx_a_dptr_0;
|
| 493 |
|
|
when F_MOVX_A_RI =>
|
| 494 |
|
|
ns <= movx_a_ri_0;
|
| 495 |
|
|
when F_MOVX_RI_A =>
|
| 496 |
|
|
ns <= movx_ri_a_0;
|
| 497 |
|
|
when F_MOVC_PC =>
|
| 498 |
|
|
ns <= movc_pc_0;
|
| 499 |
|
|
when F_MOVC_DPTR =>
|
| 500 |
|
|
ns <= movc_dptr_0;
|
| 501 |
|
|
when F_XCH_DIR =>
|
| 502 |
|
|
ns <= xch_dir_0;
|
| 503 |
|
|
when F_XCH_RI =>
|
| 504 |
|
|
ns <= xch_rx_0;
|
| 505 |
|
|
when F_XCH_RN =>
|
| 506 |
|
|
ns <= xch_rn_0;
|
| 507 |
|
|
when F_XCHD =>
|
| 508 |
|
|
ns <= alu_xchd_0;
|
| 509 |
|
|
when F_JMP_ADPTR =>
|
| 510 |
|
|
ns <= jmp_adptr_0;
|
| 511 |
|
|
when F_RET =>
|
| 512 |
|
|
ns <= ret_0;
|
| 513 |
|
|
when F_NOP =>
|
| 514 |
|
|
ns <= fetch_1;
|
| 515 |
|
|
when others =>
|
| 516 |
|
|
ns <= bug_bad_opcode_class;
|
| 517 |
|
|
end case;
|
| 518 |
|
|
end if;
|
| 519 |
|
|
|
| 520 |
|
|
-- Interrupt processing ------------------------------------------
|
| 521 |
|
|
when irq_1 =>
|
| 522 |
|
|
ns <= irq_2;
|
| 523 |
|
|
when irq_2 =>
|
| 524 |
|
|
ns <= irq_3;
|
| 525 |
|
|
when irq_3 =>
|
| 526 |
|
|
ns <= irq_4;
|
| 527 |
|
|
when irq_4 =>
|
| 528 |
|
|
ns <= fetch_0;
|
| 529 |
|
|
|
| 530 |
|
|
-- Call/Ret instructions -----------------------------------------
|
| 531 |
|
|
when acall_0 =>
|
| 532 |
|
|
ns <= acall_1;
|
| 533 |
|
|
when acall_1 =>
|
| 534 |
|
|
ns <= acall_2;
|
| 535 |
|
|
when acall_2 =>
|
| 536 |
|
|
ns <= long_jump;
|
| 537 |
|
|
|
| 538 |
|
|
when lcall_0 =>
|
| 539 |
|
|
ns <= lcall_1;
|
| 540 |
|
|
when lcall_1 =>
|
| 541 |
|
|
ns <= lcall_2;
|
| 542 |
|
|
when lcall_2 =>
|
| 543 |
|
|
ns <= lcall_3;
|
| 544 |
|
|
when lcall_3 =>
|
| 545 |
|
|
ns <= lcall_4;
|
| 546 |
|
|
when lcall_4 =>
|
| 547 |
|
|
ns <= fetch_0;
|
| 548 |
|
|
|
| 549 |
|
|
when ret_0 =>
|
| 550 |
|
|
ns <= ret_1;
|
| 551 |
|
|
when ret_1 =>
|
| 552 |
|
|
ns <= ret_2;
|
| 553 |
|
|
when ret_2 =>
|
| 554 |
|
|
ns <= ret_3;
|
| 555 |
|
|
when ret_3 =>
|
| 556 |
|
|
ns <= fetch_0;
|
| 557 |
|
|
|
| 558 |
|
|
-- Special instructions ------------------------------------------
|
| 559 |
|
|
when special_0 =>
|
| 560 |
|
|
ns <= fetch_1;
|
| 561 |
|
|
|
| 562 |
|
|
when push_0 =>
|
| 563 |
|
|
ns <= push_1;
|
| 564 |
|
|
when push_1 =>
|
| 565 |
|
|
ns <= push_2;
|
| 566 |
|
|
when push_2 =>
|
| 567 |
|
|
ns <= fetch_1;
|
| 568 |
|
|
|
| 569 |
|
|
when pop_0 =>
|
| 570 |
|
|
ns <= pop_1;
|
| 571 |
|
|
when pop_1 =>
|
| 572 |
|
|
ns <= pop_2;
|
| 573 |
|
|
when pop_2 =>
|
| 574 |
|
|
ns <= fetch_1;
|
| 575 |
|
|
|
| 576 |
|
|
when mov_dptr_0 =>
|
| 577 |
|
|
ns <= mov_dptr_1;
|
| 578 |
|
|
when mov_dptr_1 =>
|
| 579 |
|
|
ns <= mov_dptr_2;
|
| 580 |
|
|
when mov_dptr_2 =>
|
| 581 |
|
|
ns <= fetch_1;
|
| 582 |
|
|
|
| 583 |
|
|
-- MOVC instructions ---------------------------------------------
|
| 584 |
|
|
when movc_pc_0 =>
|
| 585 |
|
|
ns <= movc_1;
|
| 586 |
|
|
when movc_dptr_0 =>
|
| 587 |
|
|
ns <= movc_1;
|
| 588 |
|
|
when movc_1 =>
|
| 589 |
|
|
ns <= fetch_1;
|
| 590 |
|
|
|
| 591 |
|
|
-- MOVX instructions ---------------------------------------------
|
| 592 |
|
|
when movx_a_dptr_0 =>
|
| 593 |
|
|
ns <= fetch_1;
|
| 594 |
|
|
when movx_dptr_a_0 =>
|
| 595 |
|
|
ns <= fetch_1;
|
| 596 |
|
|
|
| 597 |
|
|
when movx_a_ri_0 =>
|
| 598 |
|
|
ns <= movx_a_ri_1;
|
| 599 |
|
|
when movx_a_ri_1 =>
|
| 600 |
|
|
ns <= movx_a_ri_2;
|
| 601 |
|
|
when movx_a_ri_2 =>
|
| 602 |
|
|
ns <= movx_a_ri_3;
|
| 603 |
|
|
when movx_a_ri_3 =>
|
| 604 |
|
|
ns <= fetch_1;
|
| 605 |
|
|
|
| 606 |
|
|
when movx_ri_a_0 =>
|
| 607 |
|
|
ns <= movx_ri_a_1;
|
| 608 |
|
|
when movx_ri_a_1 =>
|
| 609 |
|
|
ns <= movx_ri_a_2;
|
| 610 |
|
|
when movx_ri_a_2 =>
|
| 611 |
|
|
ns <= fetch_1;
|
| 612 |
|
|
|
| 613 |
|
|
-- XCH instructions ----------------------------------------------
|
| 614 |
|
|
when xch_dir_0 =>
|
| 615 |
|
|
ns <= xch_1;
|
| 616 |
|
|
when xch_rn_0 =>
|
| 617 |
|
|
ns <= xch_1;
|
| 618 |
|
|
when xch_rx_0 =>
|
| 619 |
|
|
ns <= xch_rx_1;
|
| 620 |
|
|
when xch_rx_1 =>
|
| 621 |
|
|
ns <= xch_1;
|
| 622 |
|
|
when xch_1 =>
|
| 623 |
|
|
ns <= xch_2;
|
| 624 |
|
|
when xch_2 =>
|
| 625 |
|
|
ns <= xch_3;
|
| 626 |
|
|
when xch_3 =>
|
| 627 |
|
|
ns <= fetch_1;
|
| 628 |
|
|
|
| 629 |
|
|
-- BIT instructions ----------------------------------------------
|
| 630 |
|
|
when bit_res_to_c => -- SETB C, CPL C and CLR C only
|
| 631 |
|
|
ns <= fetch_1;
|
| 632 |
|
|
|
| 633 |
|
|
when bit_op_0 =>
|
| 634 |
|
|
ns <= bit_op_1;
|
| 635 |
|
|
when bit_op_1 =>
|
| 636 |
|
|
if uc_alu_class_reg(0)='0' then
|
| 637 |
|
|
ns <= bit_op_2;
|
| 638 |
|
|
else
|
| 639 |
|
|
ns <= bit_res_to_c;
|
| 640 |
|
|
end if;
|
| 641 |
|
|
when bit_op_2 =>
|
| 642 |
|
|
ns <= fetch_1;
|
| 643 |
|
|
|
| 644 |
|
|
|
| 645 |
|
|
-- BIT-testing relative jumps ------------------------------------
|
| 646 |
|
|
when jrb_bit_0 =>
|
| 647 |
|
|
ns <= jrb_bit_1;
|
| 648 |
|
|
when jrb_bit_1 =>
|
| 649 |
|
|
if alu_fn_reg(1 downto 0)="11" then
|
| 650 |
|
|
-- This is JBC; state jrb_bit_2 is where the bit is clear.
|
| 651 |
|
|
ns <= jrb_bit_2;
|
| 652 |
|
|
else
|
| 653 |
|
|
ns <= jrb_bit_3;
|
| 654 |
|
|
end if;
|
| 655 |
|
|
when jrb_bit_2 =>
|
| 656 |
|
|
ns <= jrb_bit_3;
|
| 657 |
|
|
when jrb_bit_3 =>
|
| 658 |
|
|
if jump_condition='1' then
|
| 659 |
|
|
ns <= jrb_bit_4;
|
| 660 |
|
|
else
|
| 661 |
|
|
ns <= fetch_0;
|
| 662 |
|
|
end if;
|
| 663 |
|
|
|
| 664 |
|
|
when jrb_bit_4 =>
|
| 665 |
|
|
ns <= fetch_0;
|
| 666 |
|
|
|
| 667 |
|
|
-- MUL/DIV instructions ------------------------------------------
|
| 668 |
|
|
when alu_div_0 =>
|
| 669 |
|
|
if div_ready='1' then
|
| 670 |
|
|
ns <= fetch_1;
|
| 671 |
|
|
else
|
| 672 |
|
|
ns <= ps;
|
| 673 |
|
|
end if;
|
| 674 |
|
|
|
| 675 |
|
|
when alu_mul_0 =>
|
| 676 |
|
|
if mul_ready='1' then
|
| 677 |
|
|
ns <= fetch_1;
|
| 678 |
|
|
else
|
| 679 |
|
|
ns <= ps;
|
| 680 |
|
|
end if;
|
| 681 |
|
|
|
| 682 |
|
|
-- BCD instructions ----------------------------------------------
|
| 683 |
|
|
when alu_daa_0 =>
|
| 684 |
|
|
ns <= alu_daa_1;
|
| 685 |
|
|
|
| 686 |
|
|
when alu_daa_1 =>
|
| 687 |
|
|
ns <= fetch_1;
|
| 688 |
|
|
|
| 689 |
|
|
when alu_xchd_0 =>
|
| 690 |
|
|
ns <= alu_xchd_1;
|
| 691 |
|
|
|
| 692 |
|
|
when alu_xchd_1 =>
|
| 693 |
|
|
ns <= alu_xchd_2;
|
| 694 |
|
|
|
| 695 |
|
|
when alu_xchd_2 =>
|
| 696 |
|
|
ns <= alu_xchd_3;
|
| 697 |
|
|
|
| 698 |
|
|
when alu_xchd_3 =>
|
| 699 |
|
|
ns <= alu_xchd_4;
|
| 700 |
|
|
|
| 701 |
|
|
when alu_xchd_4 =>
|
| 702 |
|
|
ns <= alu_xchd_5;
|
| 703 |
|
|
|
| 704 |
|
|
when alu_xchd_5 =>
|
| 705 |
|
|
ns <= fetch_1;
|
| 706 |
|
|
|
| 707 |
|
|
-- ALU instructions (other than MUL/DIV) -------------------------
|
| 708 |
|
|
when alu_rx_to_ab =>
|
| 709 |
|
|
case uc_alu_class_reg is
|
| 710 |
|
|
when AC_RI_to_A | AC_A_RI_to_A | AC_RI_to_D | AC_RI_to_RI =>
|
| 711 |
|
|
ns <= alu_ram_to_ar;
|
| 712 |
|
|
when AC_RN_to_D =>
|
| 713 |
|
|
ns <= alu_ram_to_t_code_to_ab;
|
| 714 |
|
|
when AC_A_to_RI =>
|
| 715 |
|
|
ns <= alu_ram_to_ar_2;
|
| 716 |
|
|
when others =>
|
| 717 |
|
|
ns <= alu_ram_to_t;
|
| 718 |
|
|
end case;
|
| 719 |
|
|
|
| 720 |
|
|
when alu_ram_to_ar_2 =>
|
| 721 |
|
|
ns <= alu_res_to_ram_ar_to_ab;
|
| 722 |
|
|
|
| 723 |
|
|
when alu_ram_to_ar =>
|
| 724 |
|
|
ns <= alu_ar_to_ab;
|
| 725 |
|
|
|
| 726 |
|
|
when alu_ar_to_ab =>
|
| 727 |
|
|
if uc_alu_class_reg = AC_RI_to_D then
|
| 728 |
|
|
ns <= alu_ram_to_t_code_to_ab;
|
| 729 |
|
|
else
|
| 730 |
|
|
ns <= alu_ram_to_t;
|
| 731 |
|
|
end if;
|
| 732 |
|
|
|
| 733 |
|
|
when alu_ram_to_t =>
|
| 734 |
|
|
if uc_alu_class_reg = AC_D_to_A or
|
| 735 |
|
|
uc_alu_class_reg = AC_A_D_to_A or
|
| 736 |
|
|
uc_alu_class_reg = AC_RN_to_A or
|
| 737 |
|
|
uc_alu_class_reg = AC_A_RN_to_A or
|
| 738 |
|
|
uc_alu_class_reg = AC_RI_to_A or
|
| 739 |
|
|
uc_alu_class_reg = AC_A_RI_to_A
|
| 740 |
|
|
then
|
| 741 |
|
|
ns <= alu_res_to_a;
|
| 742 |
|
|
elsif uc_alu_class_reg = AC_D1_to_D then
|
| 743 |
|
|
ns <= alu_res_to_ram_code_to_ab;
|
| 744 |
|
|
else
|
| 745 |
|
|
ns <= alu_res_to_ram;
|
| 746 |
|
|
end if;
|
| 747 |
|
|
|
| 748 |
|
|
when alu_res_to_ram_code_to_ab =>
|
| 749 |
|
|
ns <= fetch_1;
|
| 750 |
|
|
|
| 751 |
|
|
when alu_res_to_a =>
|
| 752 |
|
|
ns <= fetch_1;
|
| 753 |
|
|
|
| 754 |
|
|
when alu_ram_to_t_code_to_ab =>
|
| 755 |
|
|
ns <= alu_res_to_ram;
|
| 756 |
|
|
|
| 757 |
|
|
when alu_res_to_ram =>
|
| 758 |
|
|
ns <= fetch_1;
|
| 759 |
|
|
|
| 760 |
|
|
when alu_code_to_ab =>
|
| 761 |
|
|
case uc_alu_class_reg is
|
| 762 |
|
|
when AC_I_to_D =>
|
| 763 |
|
|
ns <= alu_code_to_t;
|
| 764 |
|
|
when AC_I_D_to_D =>
|
| 765 |
|
|
ns <= alu_ram_to_v_code_to_t;
|
| 766 |
|
|
when AC_D_to_RI | AC_D_to_RN =>
|
| 767 |
|
|
ns <= alu_ram_to_t_rx_to_ab;
|
| 768 |
|
|
when AC_A_to_D =>
|
| 769 |
|
|
ns <= alu_res_to_ram;
|
| 770 |
|
|
when others =>
|
| 771 |
|
|
ns <= alu_ram_to_t;
|
| 772 |
|
|
end case;
|
| 773 |
|
|
|
| 774 |
|
|
when alu_ram_to_t_rx_to_ab =>
|
| 775 |
|
|
if uc_alu_class_reg = AC_D_to_RI then
|
| 776 |
|
|
ns <= alu_ram_to_ar_2;
|
| 777 |
|
|
else
|
| 778 |
|
|
ns <= alu_res_to_ram;
|
| 779 |
|
|
end if;
|
| 780 |
|
|
|
| 781 |
|
|
when alu_res_to_ram_ar_to_ab =>
|
| 782 |
|
|
ns <= fetch_1;
|
| 783 |
|
|
|
| 784 |
|
|
when alu_code_to_t =>
|
| 785 |
|
|
if uc_alu_class_reg = AC_I_to_D then
|
| 786 |
|
|
ns <= alu_res_to_ram;
|
| 787 |
|
|
else
|
| 788 |
|
|
ns <= alu_res_to_a;
|
| 789 |
|
|
end if;
|
| 790 |
|
|
|
| 791 |
|
|
when alu_ram_to_v_code_to_t =>
|
| 792 |
|
|
ns <= alu_res_to_ram;
|
| 793 |
|
|
|
| 794 |
|
|
when alu_code_to_t_rx_to_ab =>
|
| 795 |
|
|
if uc_alu_class_reg = AC_I_to_RI then
|
| 796 |
|
|
ns <= alu_ram_to_ar_2;
|
| 797 |
|
|
else
|
| 798 |
|
|
ns <= alu_res_to_ram;
|
| 799 |
|
|
end if;
|
| 800 |
|
|
|
| 801 |
|
|
-- DJNZ Rn -------------------------------------------------------
|
| 802 |
|
|
when djnz_rn_0 =>
|
| 803 |
|
|
ns <= djnz_dir_1;
|
| 804 |
|
|
|
| 805 |
|
|
-- DJNZ dir ------------------------------------------------------
|
| 806 |
|
|
when djnz_dir_0 =>
|
| 807 |
|
|
ns <= djnz_dir_1;
|
| 808 |
|
|
when djnz_dir_1 =>
|
| 809 |
|
|
ns <= djnz_dir_2;
|
| 810 |
|
|
when djnz_dir_2 =>
|
| 811 |
|
|
ns <= djnz_dir_3;
|
| 812 |
|
|
when djnz_dir_3 =>
|
| 813 |
|
|
if jump_condition='1' then
|
| 814 |
|
|
ns <= djnz_dir_4;
|
| 815 |
|
|
else
|
| 816 |
|
|
ns <= fetch_0;
|
| 817 |
|
|
end if;
|
| 818 |
|
|
when djnz_dir_4 =>
|
| 819 |
|
|
ns <= fetch_0;
|
| 820 |
|
|
|
| 821 |
|
|
-- CJNE A, dir --------------------------------------------------
|
| 822 |
|
|
when cjne_a_dir_0 =>
|
| 823 |
|
|
ns <= cjne_a_dir_1;
|
| 824 |
|
|
when cjne_a_dir_1 =>
|
| 825 |
|
|
ns <= cjne_a_dir_2;
|
| 826 |
|
|
when cjne_a_dir_2 =>
|
| 827 |
|
|
if jump_condition='1' then
|
| 828 |
|
|
ns <= cjne_a_dir_3;
|
| 829 |
|
|
else
|
| 830 |
|
|
ns <= fetch_0;
|
| 831 |
|
|
end if;
|
| 832 |
|
|
when cjne_a_dir_3 =>
|
| 833 |
|
|
ns <= fetch_0;
|
| 834 |
|
|
|
| 835 |
|
|
-- CJNE Rn, #imm ------------------------------------------------
|
| 836 |
|
|
when cjne_rn_imm_0 =>
|
| 837 |
|
|
ns <= cjne_rn_imm_1;
|
| 838 |
|
|
when cjne_rn_imm_1 =>
|
| 839 |
|
|
ns <= cjne_rn_imm_2;
|
| 840 |
|
|
when cjne_rn_imm_2 =>
|
| 841 |
|
|
if jump_condition='1' then
|
| 842 |
|
|
ns <= cjne_rn_imm_3;
|
| 843 |
|
|
else
|
| 844 |
|
|
ns <= fetch_0;
|
| 845 |
|
|
end if;
|
| 846 |
|
|
when cjne_rn_imm_3 =>
|
| 847 |
|
|
ns <= fetch_0;
|
| 848 |
|
|
|
| 849 |
|
|
-- CJNE @Ri, #imm ------------------------------------------------
|
| 850 |
|
|
when cjne_ri_imm_0 =>
|
| 851 |
|
|
ns <= cjne_ri_imm_1;
|
| 852 |
|
|
when cjne_ri_imm_1 =>
|
| 853 |
|
|
ns <= cjne_ri_imm_2;
|
| 854 |
|
|
when cjne_ri_imm_2 =>
|
| 855 |
|
|
ns <= cjne_ri_imm_3;
|
| 856 |
|
|
when cjne_ri_imm_3 =>
|
| 857 |
|
|
ns <= cjne_ri_imm_4;
|
| 858 |
|
|
when cjne_ri_imm_4 =>
|
| 859 |
|
|
if jump_condition='1' then
|
| 860 |
|
|
ns <= cjne_ri_imm_5;
|
| 861 |
|
|
else
|
| 862 |
|
|
ns <= fetch_0;
|
| 863 |
|
|
end if;
|
| 864 |
|
|
when cjne_ri_imm_5 =>
|
| 865 |
|
|
ns <= fetch_0;
|
| 866 |
|
|
|
| 867 |
|
|
|
| 868 |
|
|
-- CJNE A, #imm -------------------------------------------------
|
| 869 |
|
|
when cjne_a_imm_0 =>
|
| 870 |
|
|
ns <= cjne_a_imm_1;
|
| 871 |
|
|
when cjne_a_imm_1 =>
|
| 872 |
|
|
if jump_condition='1' then
|
| 873 |
|
|
ns <= cjne_a_imm_2;
|
| 874 |
|
|
else
|
| 875 |
|
|
ns <= fetch_0;
|
| 876 |
|
|
end if;
|
| 877 |
|
|
when cjne_a_imm_2 =>
|
| 878 |
|
|
ns <= fetch_0;
|
| 879 |
|
|
|
| 880 |
|
|
-- Relative and long jumps --------------------------------------
|
| 881 |
|
|
when load_rel =>
|
| 882 |
|
|
if jump_condition='1' then
|
| 883 |
|
|
ns <= rel_jump;
|
| 884 |
|
|
else
|
| 885 |
|
|
ns <= fetch_1;
|
| 886 |
|
|
end if;
|
| 887 |
|
|
when rel_jump =>
|
| 888 |
|
|
ns <= fetch_0;
|
| 889 |
|
|
|
| 890 |
|
|
when fetch_addr_1 =>
|
| 891 |
|
|
ns <= fetch_addr_0;
|
| 892 |
|
|
when fetch_addr_0 =>
|
| 893 |
|
|
ns <= long_jump;
|
| 894 |
|
|
when fetch_addr_0_ajmp =>
|
| 895 |
|
|
ns <= long_jump;
|
| 896 |
|
|
when long_jump =>
|
| 897 |
|
|
ns <= fetch_0;
|
| 898 |
|
|
|
| 899 |
|
|
when jmp_adptr_0 =>
|
| 900 |
|
|
ns <= fetch_0;
|
| 901 |
|
|
|
| 902 |
|
|
|
| 903 |
|
|
-- Derailed state machine should end here -----------------------
|
| 904 |
|
|
-- NOTE: This applies to undecoded or unimplemented instructions,
|
| 905 |
|
|
-- not to a state machine derailed by EM event, etc.
|
| 906 |
|
|
|
| 907 |
|
|
when others =>
|
| 908 |
|
|
ns <= bug_bad_opcode_class;
|
| 909 |
|
|
end case;
|
| 910 |
|
|
end process cpu_state_machine_transitions;
|
| 911 |
|
|
|
| 912 |
|
|
|
| 913 |
|
|
--## 2.- Interrupt handling ####################################################
|
| 914 |
|
|
|
| 915 |
17 |
ja_rd |
|
| 916 |
|
|
-- IP SFR is implemented as a regular SFR as per the MC51 architecture.
|
| 917 |
|
|
load_ip <= '1' when sfr_addr_internal=SFR_ADDR_IP and sfr_we_internal='1'
|
| 918 |
|
|
else '0';
|
| 919 |
|
|
|
| 920 |
|
|
IP_register:
|
| 921 |
|
|
process(clk)
|
| 922 |
|
|
begin
|
| 923 |
|
|
if clk'event and clk='1' then
|
| 924 |
|
|
if reset='1' then
|
| 925 |
|
|
IP_reg <= (others => '0');
|
| 926 |
|
|
else
|
| 927 |
|
|
if load_ip='1' then
|
| 928 |
|
|
IP_reg <= alu_result;
|
| 929 |
|
|
end if;
|
| 930 |
|
|
end if;
|
| 931 |
|
|
end if;
|
| 932 |
|
|
end process IP_register;
|
| 933 |
|
|
|
| 934 |
|
|
|
| 935 |
|
|
-- IE SFR is implemented as a regular SFR as per the MC51 architecture.
|
| 936 |
2 |
ja_rd |
load_ie <= '1' when sfr_addr_internal=SFR_ADDR_IE and sfr_we_internal='1'
|
| 937 |
|
|
else '0';
|
| 938 |
|
|
|
| 939 |
|
|
IE_register:
|
| 940 |
|
|
process(clk)
|
| 941 |
|
|
begin
|
| 942 |
|
|
if clk'event and clk='1' then
|
| 943 |
|
|
if reset='1' then
|
| 944 |
|
|
IE_reg <= (others => '0');
|
| 945 |
|
|
else
|
| 946 |
|
|
if load_ie='1' then
|
| 947 |
|
|
IE_reg <= alu_result;
|
| 948 |
|
|
end if;
|
| 949 |
|
|
end if;
|
| 950 |
|
|
end if;
|
| 951 |
|
|
end process IE_register;
|
| 952 |
|
|
|
| 953 |
|
|
-- RETI restores the IRQ level to 7 (idle value). No interrupt will be serviced
|
| 954 |
|
|
-- if its level is below this. Remember 0 is top, 4 is bottom and 7 is idle.
|
| 955 |
|
|
irq_restore_level <= '1' when ps=ret_0 and alu_fn_reg(0)='1' else '0';
|
| 956 |
|
|
|
| 957 |
|
|
-- Mask the irq inputs with IE register bits...
|
| 958 |
|
|
irq_masked_inputs <= irq_source and std_logic_vector(IE_reg(4 downto 0));
|
| 959 |
17 |
ja_rd |
-- ...separate the highpriority interrupt inputs by masking with IP register...
|
| 960 |
|
|
irq_masked_inputs_hp <= irq_masked_inputs and std_logic_vector(IP_reg(4 downto 0));
|
| 961 |
2 |
ja_rd |
-- ...and encode the highest priority active input
|
| 962 |
|
|
irq_level_inputs <=
|
| 963 |
17 |
ja_rd |
"000" when irq_masked_inputs_hp(0)='1' else
|
| 964 |
|
|
"001" when irq_masked_inputs_hp(1)='1' else
|
| 965 |
|
|
"010" when irq_masked_inputs_hp(2)='1' else
|
| 966 |
|
|
"011" when irq_masked_inputs_hp(3)='1' else
|
| 967 |
|
|
"100" when irq_masked_inputs_hp(4)='1' else
|
| 968 |
2 |
ja_rd |
"000" when irq_masked_inputs(0)='1' else
|
| 969 |
|
|
"001" when irq_masked_inputs(1)='1' else
|
| 970 |
|
|
"010" when irq_masked_inputs(2)='1' else
|
| 971 |
|
|
"011" when irq_masked_inputs(3)='1' else
|
| 972 |
|
|
"100" when irq_masked_inputs(4)='1' else
|
| 973 |
|
|
"111";
|
| 974 |
17 |
ja_rd |
|
| 975 |
|
|
irq_active_hip <= '1' when irq_masked_inputs_hp/="00000" else '0';
|
| 976 |
|
|
|
| 977 |
|
|
-- An active, enabled interrupt will be serviced only if...
|
| 978 |
|
|
irq_active_allowed <= '1' when
|
| 979 |
|
|
-- ...other high-priority interrupt is NOT being serviced...
|
| 980 |
|
|
irq_serving_hip='0' and
|
| 981 |
|
|
-- ...and either the incoming interrupt is high-priority...
|
| 982 |
|
|
(irq_active_hip='1' or
|
| 983 |
|
|
-- -- ...or no interrupt is being serviced at all;
|
| 984 |
|
|
(irq_active_hip='0' and irq_serving_lop='0'))
|
| 985 |
|
|
-- otherwise the interrupt is not allowed to proceed.
|
| 986 |
|
|
else '0';
|
| 987 |
2 |
ja_rd |
|
| 988 |
|
|
-- We have a pending irq if interrupts are enabled...
|
| 989 |
|
|
irq_active <= '1' when IE_reg(7)='1' and
|
| 990 |
17 |
ja_rd |
-- ...and some interrupt source is active...
|
| 991 |
|
|
irq_level_inputs/="111" and
|
| 992 |
|
|
-- ...and the active interrupt is allowed by the priority
|
| 993 |
|
|
-- rules...
|
| 994 |
|
|
irq_active_allowed='1'
|
| 995 |
|
|
-- ...otherwise the interrupt is ignored.
|
| 996 |
|
|
else '0';
|
| 997 |
2 |
ja_rd |
|
| 998 |
|
|
irq_registered_priority_encoder:
|
| 999 |
|
|
process(clk)
|
| 1000 |
|
|
begin
|
| 1001 |
|
|
if clk'event and clk='1' then
|
| 1002 |
17 |
ja_rd |
if reset='1' then
|
| 1003 |
|
|
-- After reset, no interrupt of either priority level is being
|
| 1004 |
|
|
-- serviced.
|
| 1005 |
|
|
irq_serving_hip <= '0';
|
| 1006 |
|
|
irq_serving_lop <= '0';
|
| 1007 |
|
|
elsif irq_restore_level='1' then
|
| 1008 |
|
|
-- RETI executed: if high-priority level was active...
|
| 1009 |
|
|
if irq_serving_hip='1' then
|
| 1010 |
|
|
-- ...disable it, reverting to the previous priority level...
|
| 1011 |
|
|
irq_serving_hip <= '0';
|
| 1012 |
|
|
else
|
| 1013 |
|
|
-- otherwise disable the low priority level.
|
| 1014 |
|
|
irq_serving_lop <= '0';
|
| 1015 |
|
|
end if;
|
| 1016 |
|
|
else
|
| 1017 |
2 |
ja_rd |
-- Evaluate and register the interrupt priority in the same state
|
| 1018 |
|
|
-- the irq is to be acknowledged.
|
| 1019 |
|
|
if ps=fetch_1 and irq_active='1' then
|
| 1020 |
17 |
ja_rd |
irq_serving_hip <= irq_active_hip;
|
| 1021 |
|
|
irq_serving_lop <= irq_serving_lop or (not irq_active_hip);
|
| 1022 |
|
|
-- This irq vector is going to be used in state irq_2.
|
| 1023 |
|
|
irq_vector <= irq_level_inputs & "011";
|
| 1024 |
2 |
ja_rd |
end if;
|
| 1025 |
|
|
end if;
|
| 1026 |
|
|
end if;
|
| 1027 |
|
|
end process irq_registered_priority_encoder;
|
| 1028 |
|
|
|
| 1029 |
|
|
|
| 1030 |
|
|
|
| 1031 |
|
|
--## 3.- Combined register bank & decoding table ###############################
|
| 1032 |
|
|
|
| 1033 |
|
|
-- No support yet for XRAM on this RAM block
|
| 1034 |
|
|
assert not USE_BRAM_FOR_XRAM
|
| 1035 |
|
|
report "This version of the core does not support using the IRAM/uCode "&
|
| 1036 |
|
|
"RAM block wasted space for XRAM"
|
| 1037 |
|
|
severity failure;
|
| 1038 |
|
|
|
| 1039 |
|
|
|
| 1040 |
|
|
-- This is the row of the opcode table that will be replicated for the 2nd half
|
| 1041 |
|
|
-- of the table. We always replicate row 7 (opcode X7h) except for 'DNJZ Rn'
|
| 1042 |
|
|
-- (opcodes d8h..dfh) where we replicate row 5 -- opcode d7h is not a DJNZ and
|
| 1043 |
|
|
-- breaks the pattern (see @note1).
|
| 1044 |
|
|
ucode_pattern <= "101" when code_rd(7 downto 4)="1101" else "111";
|
| 1045 |
|
|
|
| 1046 |
|
|
with code_rd(3) select ucode_index <=
|
| 1047 |
|
|
ucode_pattern & unsigned(code_rd(7 downto 4)) when '1',
|
| 1048 |
|
|
unsigned(code_rd(2 downto 0)) &
|
| 1049 |
|
|
unsigned(code_rd(7 downto 4)) when others;
|
| 1050 |
|
|
|
| 1051 |
|
|
-- IRAM/SFR address source mux; controlled by current state
|
| 1052 |
|
|
with ps select iram_sfr_addr <=
|
| 1053 |
|
|
rx_addr when alu_rx_to_ab,
|
| 1054 |
|
|
rx_addr when alu_code_to_t_rx_to_ab,
|
| 1055 |
|
|
rx_addr when alu_ram_to_t_rx_to_ab,
|
| 1056 |
|
|
rx_addr when cjne_rn_imm_0,
|
| 1057 |
|
|
rx_addr when cjne_ri_imm_0,
|
| 1058 |
|
|
rx_addr when alu_xchd_0,
|
| 1059 |
|
|
rx_addr when movx_a_ri_0,
|
| 1060 |
|
|
rx_addr when movx_ri_a_0,
|
| 1061 |
|
|
rx_addr when xch_rx_0,
|
| 1062 |
|
|
rx_addr when xch_rn_0,
|
| 1063 |
|
|
addr0_reg when alu_res_to_ram_ar_to_ab,
|
| 1064 |
|
|
bit_addr when jrb_bit_0,
|
| 1065 |
|
|
bit_addr when bit_op_0,
|
| 1066 |
|
|
SP_reg when push_2, -- Write dir data to [sp]
|
| 1067 |
|
|
SP_reg when pop_0 | ret_0 | ret_1 | ret_2,
|
| 1068 |
|
|
SP_reg when acall_1 | acall_2 | lcall_2 | lcall_3,
|
| 1069 |
|
|
SP_reg when irq_2 | irq_3,
|
| 1070 |
|
|
addr0_reg when djnz_dir_1 | djnz_dir_2,
|
| 1071 |
|
|
addr0_reg when push_1, -- Read dir data for PUSH
|
| 1072 |
|
|
code_byte when cjne_a_imm_1,
|
| 1073 |
|
|
code_byte when cjne_a_dir_0,
|
| 1074 |
|
|
code_byte when cjne_a_dir_2,
|
| 1075 |
|
|
code_byte when cjne_rn_imm_1,
|
| 1076 |
|
|
code_byte when cjne_rn_imm_2,
|
| 1077 |
|
|
code_byte when cjne_ri_imm_4,
|
| 1078 |
|
|
code_byte when djnz_dir_0, -- DIR addr
|
| 1079 |
|
|
code_byte when djnz_dir_3, -- REL offset
|
| 1080 |
|
|
rx_addr when djnz_rn_0,
|
| 1081 |
|
|
addr0_reg when jrb_bit_2,
|
| 1082 |
|
|
code_byte when jrb_bit_3,
|
| 1083 |
|
|
addr0_reg when bit_op_2,
|
| 1084 |
|
|
code_byte when fetch_addr_0,
|
| 1085 |
|
|
code_byte when fetch_addr_0_ajmp,
|
| 1086 |
|
|
code_byte when alu_code_to_ab, -- DIRECT addressing
|
| 1087 |
|
|
code_byte when push_0, -- read dir address
|
| 1088 |
|
|
code_byte when pop_1,
|
| 1089 |
|
|
code_byte when acall_0 | lcall_0 | lcall_1,
|
| 1090 |
|
|
code_byte when alu_res_to_ram_code_to_ab,
|
| 1091 |
|
|
code_byte when alu_ram_to_t_code_to_ab,
|
| 1092 |
|
|
code_byte when load_rel,
|
| 1093 |
|
|
SFR_ADDR_DPH when mov_dptr_1,
|
| 1094 |
|
|
SFR_ADDR_DPL when mov_dptr_2,
|
| 1095 |
|
|
code_byte when xch_dir_0,
|
| 1096 |
|
|
addr0_reg when others;
|
| 1097 |
|
|
|
| 1098 |
|
|
-- Assert this when an ALU instruction is about to use direct addressing.
|
| 1099 |
|
|
with ps select alu_using_direct_addressing <=
|
| 1100 |
|
|
'1' when alu_code_to_ab,
|
| 1101 |
|
|
'1' when xch_dir_0,
|
| 1102 |
|
|
'1' when alu_ram_to_t_code_to_ab,
|
| 1103 |
|
|
'0' when others;
|
| 1104 |
|
|
|
| 1105 |
|
|
-- Assert this when an ALU instruction is using direct addressing.
|
| 1106 |
|
|
with ps select alu_using_indirect_addressing <=
|
| 1107 |
|
|
'1' when alu_ar_to_ab,
|
| 1108 |
|
|
'1' when alu_rx_to_ab,
|
| 1109 |
|
|
'1' when xch_rx_0,
|
| 1110 |
|
|
'1' when movx_a_ri_0,
|
| 1111 |
|
|
'1' when movx_ri_a_0,
|
| 1112 |
|
|
'1' when alu_ram_to_t_rx_to_ab,
|
| 1113 |
|
|
'1' when alu_res_to_ram_ar_to_ab,
|
| 1114 |
|
|
'1' when alu_code_to_t_rx_to_ab,
|
| 1115 |
|
|
'0' when others;
|
| 1116 |
|
|
|
| 1117 |
|
|
-- This register remembers what kind of addressing the current ALU instruction
|
| 1118 |
|
|
-- is using.
|
| 1119 |
|
|
-- This is necessary because the ALU instruction states are shared by many
|
| 1120 |
|
|
-- different instructions with different addressing modes.
|
| 1121 |
|
|
alu_addressing_mode_flipflop:
|
| 1122 |
|
|
process(clk)
|
| 1123 |
|
|
begin
|
| 1124 |
|
|
if clk'event and clk='1' then
|
| 1125 |
|
|
if reset = '1' then
|
| 1126 |
|
|
direct_addressing_alu_reg <= '0';
|
| 1127 |
|
|
else
|
| 1128 |
|
|
if alu_using_direct_addressing = '1' then
|
| 1129 |
|
|
direct_addressing_alu_reg <= '1';
|
| 1130 |
|
|
elsif alu_using_indirect_addressing = '1' then
|
| 1131 |
|
|
direct_addressing_alu_reg <= '0';
|
| 1132 |
|
|
end if;
|
| 1133 |
|
|
end if;
|
| 1134 |
|
|
end if;
|
| 1135 |
|
|
end process alu_addressing_mode_flipflop;
|
| 1136 |
|
|
|
| 1137 |
|
|
-- This signal controls the T reg input mux. it should be valid in the cycle
|
| 1138 |
|
|
-- the read/write is performed AND in the cycle after a read.
|
| 1139 |
|
|
-- FIXME these should be asserted in READ or WRITE states; many are not! review!
|
| 1140 |
|
|
with ps select direct_addressing <=
|
| 1141 |
|
|
-- For most instructions all we need to know is the current state...
|
| 1142 |
|
|
'0' when alu_rx_to_ab,
|
| 1143 |
|
|
'0' when cjne_a_imm_0,
|
| 1144 |
|
|
'0' when cjne_a_imm_1,
|
| 1145 |
|
|
'0' when cjne_ri_imm_4,
|
| 1146 |
|
|
'0' when cjne_ri_imm_3,
|
| 1147 |
|
|
'0' when fetch_addr_0,
|
| 1148 |
|
|
'0' when load_rel,
|
| 1149 |
|
|
'0' when cjne_rn_imm_1,
|
| 1150 |
|
|
'0' when cjne_rn_imm_2,
|
| 1151 |
|
|
'1' when jrb_bit_0 | jrb_bit_1 | jrb_bit_2,
|
| 1152 |
|
|
'1' when bit_op_0 | bit_op_1 | bit_op_2,
|
| 1153 |
|
|
-- FIXME these below have been verified and corrected
|
| 1154 |
14 |
ja_rd |
'1' when djnz_dir_0,
|
| 1155 |
2 |
ja_rd |
'1' when djnz_dir_1,
|
| 1156 |
|
|
'1' when djnz_dir_2,
|
| 1157 |
|
|
'1' when push_0,
|
| 1158 |
|
|
'1' when pop_1 | pop_2,
|
| 1159 |
|
|
'0' when movx_a_ri_0,
|
| 1160 |
|
|
'0' when movx_ri_a_0,
|
| 1161 |
|
|
'1' when xch_dir_0,
|
| 1162 |
|
|
'1' when cjne_a_dir_0,
|
| 1163 |
|
|
'1' when cjne_a_dir_1,
|
| 1164 |
|
|
'0' when alu_xchd_2 | alu_xchd_3,
|
| 1165 |
|
|
-- ... and for ALU instructions we use info recorded while decoding.
|
| 1166 |
|
|
'1' when alu_code_to_ab,
|
| 1167 |
|
|
direct_addressing_alu_reg when xch_1,
|
| 1168 |
|
|
direct_addressing_alu_reg when xch_2,
|
| 1169 |
|
|
direct_addressing_alu_reg when alu_ar_to_ab,
|
| 1170 |
|
|
direct_addressing_alu_reg when alu_ram_to_t,
|
| 1171 |
|
|
direct_addressing_alu_reg when alu_ram_to_t_code_to_ab,
|
| 1172 |
|
|
direct_addressing_alu_reg when alu_ram_to_t_rx_to_ab,
|
| 1173 |
|
|
direct_addressing_alu_reg when alu_ram_to_v_code_to_t,
|
| 1174 |
|
|
direct_addressing_alu_reg when alu_res_to_ram,
|
| 1175 |
|
|
'1' when alu_res_to_ram_code_to_ab, -- D1 -> D only
|
| 1176 |
|
|
'0' when alu_res_to_ram_ar_to_ab,
|
| 1177 |
|
|
'0' when others;
|
| 1178 |
|
|
|
| 1179 |
|
|
-- SFRs are only ever accessed by direct addresing to area 80h..ffh
|
| 1180 |
|
|
sfr_addressing <= direct_addressing and iram_sfr_addr(7);
|
| 1181 |
|
|
|
| 1182 |
|
|
-- In 'fetch' states (including the last state of all instructions) the BRAM
|
| 1183 |
|
|
-- is used as a decode table indexed by the opcode -- both ports!
|
| 1184 |
|
|
-- The decode table is in the lowest 256 bytes and the actual IRAM data is
|
| 1185 |
|
|
-- in the highest 256 bytes, thus the address MSB.
|
| 1186 |
|
|
with do_fetch select bram_addr_p0 <=
|
| 1187 |
|
|
-- 'fetch' states
|
| 1188 |
|
|
'0' & ucode_index & '0' when '1',
|
| 1189 |
|
|
'1' & iram_sfr_addr when others;
|
| 1190 |
|
|
|
| 1191 |
|
|
with do_fetch select bram_addr_p1 <=
|
| 1192 |
|
|
-- 'fetch' states
|
| 1193 |
|
|
'0' & ucode_index & '1' when '1',
|
| 1194 |
|
|
'1' & iram_sfr_addr when others;
|
| 1195 |
|
|
|
| 1196 |
|
|
-- FIXME SFR/RAM selection bit: make sure it checks
|
| 1197 |
|
|
with ps select bram_we <=
|
| 1198 |
|
|
not sfr_addressing when alu_res_to_ram,
|
| 1199 |
|
|
not sfr_addressing when alu_res_to_ram_code_to_ab,
|
| 1200 |
|
|
'1' when alu_res_to_ram_ar_to_ab,
|
| 1201 |
|
|
not sfr_addressing when djnz_dir_2,
|
| 1202 |
|
|
not sfr_addressing when bit_op_2,
|
| 1203 |
|
|
not sfr_addressing when jrb_bit_2,
|
| 1204 |
|
|
not sfr_addressing when push_2, -- FIXME verify
|
| 1205 |
|
|
not sfr_addressing when pop_2, -- FIXME verify
|
| 1206 |
|
|
not sfr_addressing when xch_2,
|
| 1207 |
|
|
'1' when alu_xchd_4,
|
| 1208 |
|
|
'1' when acall_1 | acall_2 | lcall_2 | lcall_3,
|
| 1209 |
|
|
'1' when irq_2 | irq_3,
|
| 1210 |
|
|
'0' when others;
|
| 1211 |
|
|
|
| 1212 |
|
|
-- The datapath result is what's written back to the IRAM/SFR, except when
|
| 1213 |
|
|
-- pushing the PC in a xCALL instruction.
|
| 1214 |
|
|
with ps select bram_wr_data_p0 <=
|
| 1215 |
|
|
PC_reg(7 downto 0) when acall_1 | lcall_2 | irq_2,
|
| 1216 |
|
|
PC_reg(15 downto 8) when acall_2 | lcall_3 | irq_3,
|
| 1217 |
|
|
alu_result when others;
|
| 1218 |
|
|
|
| 1219 |
|
|
|
| 1220 |
|
|
-- IMPORTANT: the 2-port BRAM is inferred using a template which is valid for
|
| 1221 |
|
|
-- both Altera and Xilinx. Otherwise, the synth tools would infer TWO BRAMs
|
| 1222 |
|
|
-- instead of one.
|
| 1223 |
|
|
-- This template is FRAGILE: for example, changing the order of assignments in
|
| 1224 |
|
|
-- process *_port0 will break the synthesis (i.e. 2 BRAMs again).
|
| 1225 |
|
|
-- See a more detailed explaination in [3].
|
| 1226 |
|
|
|
| 1227 |
|
|
-- BRAM port 0 is read/write (i.e. same address for read and write)
|
| 1228 |
|
|
register_bank_bram_port0:
|
| 1229 |
|
|
process(clk)
|
| 1230 |
|
|
begin
|
| 1231 |
|
|
if clk'event and clk='1' then
|
| 1232 |
|
|
if bram_we='1' then
|
| 1233 |
|
|
bram(to_integer(bram_addr_p0)) := bram_wr_data_p0;
|
| 1234 |
|
|
end if;
|
| 1235 |
|
|
bram_data_p0 <= bram(to_integer(bram_addr_p0));
|
| 1236 |
|
|
end if;
|
| 1237 |
|
|
end process register_bank_bram_port0;
|
| 1238 |
|
|
|
| 1239 |
|
|
-- Port 1 is read only
|
| 1240 |
|
|
register_bank_bram_port1:
|
| 1241 |
|
|
process(clk)
|
| 1242 |
|
|
begin
|
| 1243 |
|
|
if clk'event and clk='1' then
|
| 1244 |
|
|
bram_data_p1 <= bram(to_integer(bram_addr_p1));
|
| 1245 |
|
|
end if;
|
| 1246 |
|
|
end process register_bank_bram_port1;
|
| 1247 |
|
|
|
| 1248 |
|
|
-- End of BRAM inference template
|
| 1249 |
|
|
|
| 1250 |
|
|
--## 4.- Instruction decode logic ##############################################
|
| 1251 |
|
|
|
| 1252 |
|
|
-- Assert do_fetch on the states when the *opcode* is present in code_rd.
|
| 1253 |
|
|
-- (not asserted for other instruction bytes, only the opcode).
|
| 1254 |
|
|
with ps select do_fetch <=
|
| 1255 |
|
|
'1' when fetch_1,
|
| 1256 |
|
|
'0' when others;
|
| 1257 |
|
|
|
| 1258 |
|
|
-- The main decode word is the synchrous BRAM output. Which means it is only
|
| 1259 |
|
|
-- valid for 1 clock cycle (state decode_0). Most state machine decisions are
|
| 1260 |
|
|
-- taken in that state. All information which is needed at a later state, like
|
| 1261 |
|
|
-- ALU control signals, is registered.
|
| 1262 |
|
|
-- Note that the BRAM is used for the 1st half of the decode table (@note1)...
|
| 1263 |
|
|
ucode_1st_half <= bram_data_p0 & bram_data_p1;
|
| 1264 |
|
|
|
| 1265 |
|
|
-- ...the 2nd hald of the table is done combinationally and then registered.
|
| 1266 |
|
|
ucode_2nd_half(8 downto 0) <= ucode_1st_half(8 downto 0);
|
| 1267 |
|
|
-- We take advantage of the opcode table layout: the 2nd half columns are always
|
| 1268 |
|
|
-- identical to the 1st half column, 7th or 5th row opcode (see ucode_pattern),
|
| 1269 |
|
|
-- except for the addressing mode:
|
| 1270 |
|
|
with code_rd(7 downto 4) select ucode_2nd_half(15 downto 9) <=
|
| 1271 |
|
|
"00" & AC_RN_to_RN when "0000",
|
| 1272 |
|
|
"00" & AC_RN_to_RN when "0001",
|
| 1273 |
|
|
"00" & AC_A_RN_to_A when "0010",
|
| 1274 |
|
|
"00" & AC_A_RN_to_A when "0011",
|
| 1275 |
|
|
|
| 1276 |
|
|
"00" & AC_A_RN_to_A when "0100",
|
| 1277 |
|
|
"00" & AC_A_RN_to_A when "0101",
|
| 1278 |
|
|
"00" & AC_A_RN_to_A when "0110",
|
| 1279 |
|
|
"00" & AC_I_to_RN when "0111",
|
| 1280 |
|
|
|
| 1281 |
|
|
"00" & AC_RN_to_D when "1000",
|
| 1282 |
|
|
"00" & AC_A_RN_to_A when "1001",
|
| 1283 |
|
|
"00" & AC_D_to_RN when "1010",
|
| 1284 |
|
|
F_CJNE_RN_IMM & CC_CJNE(3 downto 3) when "1011",
|
| 1285 |
|
|
|
| 1286 |
|
|
F_XCH_RN & "0" when "1100",
|
| 1287 |
|
|
F_DJNZ_RN & CC_NZ(3 downto 3) when "1101",
|
| 1288 |
|
|
"00" & AC_RN_to_A when "1110",
|
| 1289 |
|
|
"00" & AC_A_to_RN when others;
|
| 1290 |
|
|
|
| 1291 |
|
|
|
| 1292 |
|
|
-- Register the combinational half of the uCode table so its timing is the same
|
| 1293 |
|
|
-- as the BRAM (so that both halves have the same timing).
|
| 1294 |
|
|
process(clk)
|
| 1295 |
|
|
begin
|
| 1296 |
|
|
if clk'event and clk='1' then
|
| 1297 |
|
|
-- Register the information as soon as it is available: get opcode bits
|
| 1298 |
|
|
-- when the opcode is in code_rd...
|
| 1299 |
|
|
if do_fetch='1' then
|
| 1300 |
|
|
ucode_is_2nd_half <= code_rd(3);
|
| 1301 |
|
|
rn_index <= unsigned(code_rd(2 downto 0));
|
| 1302 |
|
|
end if;
|
| 1303 |
|
|
-- ...and get the ucode word when it is valid: the lowest half of the
|
| 1304 |
|
|
-- ucode word comes from the ucode BRAM and is valid in decode_0.
|
| 1305 |
|
|
if ps = decode_0 then
|
| 1306 |
|
|
ucode_2nd_half_reg <= ucode_2nd_half;
|
| 1307 |
|
|
end if;
|
| 1308 |
|
|
end if;
|
| 1309 |
|
|
end process;
|
| 1310 |
|
|
|
| 1311 |
|
|
-- uCode may come from the BRAM (1st half of the table) or from combinational
|
| 1312 |
|
|
-- logic (2nd half). This is the multiplexor.
|
| 1313 |
|
|
ucode <= ucode_1st_half when ucode_is_2nd_half='0' else ucode_2nd_half_reg;
|
| 1314 |
|
|
|
| 1315 |
|
|
-- Extract uCode fields for convenience.
|
| 1316 |
|
|
|
| 1317 |
|
|
-- For ALU instructions, we have the flag mask in the uCode word...
|
| 1318 |
|
|
uc_alu_flag_mask <= ucode_1st_half(8 downto 7);
|
| 1319 |
|
|
-- ...and all other instructions only update the C flag, if any.
|
| 1320 |
|
|
with uc_class_decode_0(5 downto 4) select flag_mask_decode_0 <=
|
| 1321 |
|
|
uc_alu_flag_mask when "00",
|
| 1322 |
|
|
FM_C when others; -- Will only be used in a few states.
|
| 1323 |
|
|
|
| 1324 |
|
|
-- The mux for signal ucode operates after state decode_0, because its input
|
| 1325 |
|
|
-- ucode_2nd_half_reg ir registered in that state. These following signals
|
| 1326 |
|
|
-- depend on the ucode but need to be valid IN state decode_0 so they are muxed
|
| 1327 |
|
|
-- separately directly on the opcode bit.
|
| 1328 |
|
|
-- Valid only in state decode_0, all of these are registered too for later use.
|
| 1329 |
|
|
|
| 1330 |
|
|
with ucode_is_2nd_half select jump_cond_sel_decode_0 <=
|
| 1331 |
|
|
ucode_1st_half(9 downto 6) when '0',
|
| 1332 |
|
|
ucode_2nd_half(9 downto 6) when others;
|
| 1333 |
|
|
|
| 1334 |
|
|
with ucode_is_2nd_half select uc_alu_fn_decode_0 <=
|
| 1335 |
|
|
ucode_1st_half(5 downto 0) when '0',
|
| 1336 |
|
|
ucode_2nd_half(5 downto 0) when others;
|
| 1337 |
|
|
|
| 1338 |
|
|
with ucode_is_2nd_half select uc_class_decode_0 <=
|
| 1339 |
|
|
ucode_1st_half(15 downto 10) when '0',
|
| 1340 |
|
|
ucode_2nd_half(15 downto 10) when others;
|
| 1341 |
|
|
|
| 1342 |
|
|
with ucode_is_2nd_half select uc_alu_class_decode_0 <= -- ALU opc. addrng. mode
|
| 1343 |
|
|
ucode_1st_half(13 downto 9) when '0',
|
| 1344 |
|
|
ucode_2nd_half(13 downto 9) when others;
|
| 1345 |
|
|
|
| 1346 |
|
|
|
| 1347 |
|
|
-- Register ALU & conditional jump control signals for use in states
|
| 1348 |
|
|
-- after decode_0.
|
| 1349 |
|
|
alu_control_registers:
|
| 1350 |
|
|
process(clk)
|
| 1351 |
|
|
begin
|
| 1352 |
|
|
if clk'event and clk='1' then
|
| 1353 |
|
|
if ps=decode_0 then
|
| 1354 |
|
|
uc_alu_class_reg <= uc_alu_class_decode_0;
|
| 1355 |
|
|
alu_class_op_sel_reg <= alu_class_op_sel;
|
| 1356 |
|
|
use_ri_reg <= use_ri;
|
| 1357 |
|
|
flag_mask_reg <= flag_mask_decode_0;
|
| 1358 |
|
|
alu_fn_reg <= uc_alu_fn_decode_0;
|
| 1359 |
|
|
dpath_mux0_reg <= uc_alu_fn_decode_0(1) and uc_alu_fn_decode_0(0);
|
| 1360 |
|
|
jump_cond_sel_reg <= jump_cond_sel_decode_0;
|
| 1361 |
|
|
instr_jump_is_ljmp <= ucode(10);
|
| 1362 |
|
|
end if;
|
| 1363 |
|
|
end if;
|
| 1364 |
|
|
end process alu_control_registers;
|
| 1365 |
|
|
|
| 1366 |
|
|
--## 5.- PC and code address generation ########################################
|
| 1367 |
|
|
|
| 1368 |
|
|
rel_jump_delta(15 downto 8) <= (others => addr0_reg(7));
|
| 1369 |
|
|
rel_jump_delta(7 downto 0) <= addr0_reg;
|
| 1370 |
|
|
rel_jump_target <= PC_reg + rel_jump_delta;
|
| 1371 |
|
|
|
| 1372 |
|
|
-- A jump is LONG when running LJMP/LCALL OR acknowledging an interrupt.
|
| 1373 |
|
|
jump_is_ljmp <= '1' when ps=irq_4 else instr_jump_is_ljmp;
|
| 1374 |
|
|
|
| 1375 |
|
|
-- Mux for two kinds of jump target, AJMP/LJMP (jumps and calls)
|
| 1376 |
|
|
with jump_is_ljmp select jump_target <=
|
| 1377 |
|
|
PC_reg(15 downto 11) & block_reg & addr0_reg when '0', -- AJMP
|
| 1378 |
|
|
addr1_reg & addr0_reg when others; -- LJMP
|
| 1379 |
|
|
|
| 1380 |
|
|
-- Decide whether or not to increment the PC by looking at the NEXT state, not
|
| 1381 |
|
|
-- the present one. See @note5.
|
| 1382 |
|
|
with ns select increment_pc <=
|
| 1383 |
|
|
'1' when decode_0, -- See @note6.
|
| 1384 |
|
|
'1' when alu_ram_to_t_code_to_ab,
|
| 1385 |
|
|
'1' when alu_code_to_ab,
|
| 1386 |
|
|
'1' when alu_res_to_ram_code_to_ab,
|
| 1387 |
|
|
'1' when alu_ram_to_v_code_to_t,
|
| 1388 |
|
|
'1' when alu_code_to_t_rx_to_ab,
|
| 1389 |
|
|
'1' when alu_code_to_t,
|
| 1390 |
|
|
'1' when jrb_bit_0,
|
| 1391 |
|
|
'1' when jrb_bit_3,
|
| 1392 |
|
|
'1' when bit_op_0,
|
| 1393 |
|
|
'1' when cjne_a_imm_0,
|
| 1394 |
|
|
'1' when cjne_a_imm_1,
|
| 1395 |
|
|
'1' when cjne_a_dir_0,
|
| 1396 |
|
|
'1' when cjne_a_dir_2,
|
| 1397 |
|
|
'1' when cjne_ri_imm_3,
|
| 1398 |
|
|
'1' when cjne_ri_imm_4,
|
| 1399 |
|
|
'1' when cjne_rn_imm_1,
|
| 1400 |
|
|
'1' when cjne_rn_imm_2,
|
| 1401 |
|
|
'1' when fetch_addr_0,
|
| 1402 |
|
|
'1' when fetch_addr_1,
|
| 1403 |
|
|
'1' when fetch_addr_0_ajmp,
|
| 1404 |
|
|
'1' when acall_0 | lcall_0 | lcall_1,
|
| 1405 |
|
|
'1' when load_rel,
|
| 1406 |
|
|
'1' when djnz_dir_0,
|
| 1407 |
|
|
'1' when djnz_dir_3,
|
| 1408 |
|
|
'1' when push_0,
|
| 1409 |
|
|
'1' when pop_1,
|
| 1410 |
|
|
'1' when mov_dptr_0,
|
| 1411 |
|
|
'1' when mov_dptr_1,
|
| 1412 |
|
|
'1' when xch_dir_0,
|
| 1413 |
|
|
'0' when others;
|
| 1414 |
|
|
|
| 1415 |
|
|
with increment_pc select pc_incremented <=
|
| 1416 |
|
|
PC_reg + 1 when '1',
|
| 1417 |
|
|
PC_reg when others;
|
| 1418 |
|
|
|
| 1419 |
|
|
|
| 1420 |
|
|
with ps select next_pc <=
|
| 1421 |
|
|
X"0000" when reset_0,
|
| 1422 |
|
|
jump_target when long_jump | lcall_4 | ret_3 | irq_4,
|
| 1423 |
|
|
dptr_plus_a_reg when jmp_adptr_0,
|
| 1424 |
|
|
rel_jump_target when rel_jump,
|
| 1425 |
|
|
rel_jump_target when cjne_a_imm_2,
|
| 1426 |
|
|
rel_jump_target when cjne_a_dir_3,
|
| 1427 |
|
|
rel_jump_target when cjne_ri_imm_5,
|
| 1428 |
|
|
rel_jump_target when cjne_rn_imm_3,
|
| 1429 |
|
|
rel_jump_target when djnz_dir_4,
|
| 1430 |
|
|
rel_jump_target when jrb_bit_4,
|
| 1431 |
|
|
pc_incremented when others;
|
| 1432 |
|
|
|
| 1433 |
|
|
|
| 1434 |
|
|
program_counter:
|
| 1435 |
|
|
process(clk)
|
| 1436 |
|
|
begin
|
| 1437 |
|
|
if clk'event and clk='1' then
|
| 1438 |
|
|
if reset='1' then
|
| 1439 |
|
|
PC_reg <= (others => '0');
|
| 1440 |
|
|
else
|
| 1441 |
|
|
PC_reg <= next_pc;
|
| 1442 |
|
|
end if;
|
| 1443 |
|
|
end if;
|
| 1444 |
|
|
end process program_counter;
|
| 1445 |
|
|
|
| 1446 |
|
|
with ps select code_addr <=
|
| 1447 |
|
|
std_logic_vector(movc_addr) when movc_pc_0 | movc_dptr_0,
|
| 1448 |
|
|
std_logic_vector(PC_reg) when others;
|
| 1449 |
|
|
|
| 1450 |
|
|
|
| 1451 |
|
|
---- MOVC logic ----------------------------------------------------------------
|
| 1452 |
|
|
acc_ext16 <= (X"00") & A_reg;
|
| 1453 |
|
|
|
| 1454 |
|
|
with ps select movc_base <=
|
| 1455 |
|
|
PC_reg when movc_pc_0,
|
| 1456 |
|
|
DPTR_reg when others;
|
| 1457 |
|
|
|
| 1458 |
|
|
movc_addr <= movc_base + acc_ext16;
|
| 1459 |
|
|
|
| 1460 |
|
|
-- This register will not always hold DPTR+A, at times it will hold PC+A. In the
|
| 1461 |
|
|
-- state in which it will be used, it will be DPTR+A.
|
| 1462 |
|
|
registered_dptr_plus_a:
|
| 1463 |
|
|
process(clk)
|
| 1464 |
|
|
begin
|
| 1465 |
|
|
if clk'event and clk='1' then
|
| 1466 |
|
|
dptr_plus_a_reg <= movc_addr;
|
| 1467 |
|
|
end if;
|
| 1468 |
|
|
end process registered_dptr_plus_a;
|
| 1469 |
|
|
|
| 1470 |
|
|
|
| 1471 |
|
|
--## 6.- Conditional jump logic ################################################
|
| 1472 |
|
|
|
| 1473 |
|
|
cjne_condition <= not alu_result_is_zero; -- FIXME redundant, remove
|
| 1474 |
|
|
|
| 1475 |
|
|
with jump_cond_sel_reg select jump_condition <=
|
| 1476 |
|
|
'1' when CC_ALWAYS,
|
| 1477 |
|
|
not alu_result_is_zero when CC_NZ,
|
| 1478 |
|
|
alu_result_is_zero when CC_Z,
|
| 1479 |
|
|
not acc_is_zero when CC_ACCNZ,
|
| 1480 |
|
|
acc_is_zero when CC_ACCZ,
|
| 1481 |
|
|
cjne_condition when CC_CJNE,
|
| 1482 |
|
|
PSW(7) when CC_C,
|
| 1483 |
|
|
not PSW(7) when CC_NC,
|
| 1484 |
|
|
bit_input when CC_BIT,
|
| 1485 |
|
|
not bit_input when CC_NOBIT,
|
| 1486 |
|
|
'0' when others;
|
| 1487 |
|
|
|
| 1488 |
|
|
|
| 1489 |
|
|
--## 7.- Address registers #####################################################
|
| 1490 |
|
|
|
| 1491 |
|
|
---- Address 0 and 1 registers -------------------------------------------------
|
| 1492 |
|
|
|
| 1493 |
|
|
-- addr0_reg is the most frequent source of IRAM/SFR addresses and is used as
|
| 1494 |
|
|
-- an aux reg in jumps and rets.
|
| 1495 |
|
|
|
| 1496 |
|
|
-- Decide when to load the address register...
|
| 1497 |
|
|
with ps select load_addr0 <=
|
| 1498 |
|
|
'1' when fetch_addr_0,
|
| 1499 |
|
|
'1' when fetch_addr_0_ajmp,
|
| 1500 |
|
|
'1' when irq_2,
|
| 1501 |
|
|
'1' when acall_0 | lcall_1,
|
| 1502 |
|
|
'1' when load_rel,
|
| 1503 |
|
|
'1' when cjne_a_imm_1,
|
| 1504 |
|
|
'1' when cjne_a_dir_0,
|
| 1505 |
|
|
'1' when cjne_a_dir_2,
|
| 1506 |
|
|
'1' when cjne_ri_imm_1,
|
| 1507 |
|
|
'1' when cjne_ri_imm_4,
|
| 1508 |
|
|
'1' when cjne_rn_imm_2,
|
| 1509 |
|
|
'1' when alu_xchd_1,
|
| 1510 |
|
|
'1' when djnz_dir_0,
|
| 1511 |
|
|
'1' when djnz_dir_3,
|
| 1512 |
|
|
'1' when djnz_rn_0,
|
| 1513 |
|
|
'1' when jrb_bit_0,
|
| 1514 |
|
|
'1' when jrb_bit_3,
|
| 1515 |
|
|
'1' when bit_op_0,
|
| 1516 |
|
|
'1' when pop_1,
|
| 1517 |
|
|
'1' when ret_2,
|
| 1518 |
|
|
'1' when alu_rx_to_ab,
|
| 1519 |
|
|
'1' when movx_a_ri_1,
|
| 1520 |
|
|
'1' when movx_ri_a_1,
|
| 1521 |
|
|
'1' when xch_dir_0,
|
| 1522 |
|
|
'1' when xch_rx_0,
|
| 1523 |
|
|
'1' when xch_rn_0,
|
| 1524 |
|
|
'1' when xch_rx_1,
|
| 1525 |
|
|
'1' when alu_ram_to_ar,
|
| 1526 |
|
|
'1' when alu_ram_to_t_code_to_ab,
|
| 1527 |
|
|
'1' when alu_code_to_ab,
|
| 1528 |
|
|
'1' when alu_res_to_ram_code_to_ab,
|
| 1529 |
|
|
'1' when alu_ram_to_t_rx_to_ab,
|
| 1530 |
|
|
--'1' when alu_res_to_ram_ram_to_ab,
|
| 1531 |
|
|
'1' when alu_ram_to_ar_2,
|
| 1532 |
|
|
'1' when alu_code_to_t_rx_to_ab,
|
| 1533 |
|
|
'0' when others;
|
| 1534 |
|
|
|
| 1535 |
|
|
-- ...and decide what to load into it.
|
| 1536 |
|
|
with ps select addr0_reg_input <=
|
| 1537 |
|
|
iram_sfr_rd when alu_ram_to_ar,
|
| 1538 |
|
|
iram_sfr_rd when alu_ram_to_ar_2,
|
| 1539 |
|
|
iram_sfr_rd when cjne_ri_imm_1,
|
| 1540 |
|
|
iram_sfr_rd when alu_xchd_1,
|
| 1541 |
|
|
iram_sfr_rd when movx_a_ri_1,
|
| 1542 |
|
|
iram_sfr_rd when movx_ri_a_1,
|
| 1543 |
|
|
iram_sfr_rd when xch_rx_0,
|
| 1544 |
|
|
iram_sfr_rd when xch_rx_1,
|
| 1545 |
|
|
iram_sfr_rd when ret_2,
|
| 1546 |
|
|
"00" & irq_vector when irq_2,
|
| 1547 |
|
|
iram_sfr_addr when others;
|
| 1548 |
|
|
|
| 1549 |
|
|
-- Auxiliary address registers 0 and 1 plus flag bit_index_reg
|
| 1550 |
|
|
address_registers:
|
| 1551 |
|
|
process(clk)
|
| 1552 |
|
|
begin
|
| 1553 |
|
|
if clk'event and clk='1' then
|
| 1554 |
|
|
if load_addr0='1' then
|
| 1555 |
|
|
-- Used to address IRAM/SCR and XRAM
|
| 1556 |
|
|
addr0_reg <= addr0_reg_input;
|
| 1557 |
|
|
-- The bit index is registered at the same time for use by bit ops.
|
| 1558 |
|
|
-- Signal bit_index is valid at the same time as addr0_reg_input.
|
| 1559 |
|
|
bit_index_reg <= bit_index;
|
| 1560 |
|
|
end if;
|
| 1561 |
|
|
if ps = lcall_0 or ps = fetch_addr_1 then
|
| 1562 |
|
|
addr1_reg <= unsigned(code_rd);
|
| 1563 |
|
|
elsif ps = irq_2 then
|
| 1564 |
|
|
addr1_reg <= (others => '0');
|
| 1565 |
|
|
elsif ps = ret_1 then
|
| 1566 |
|
|
addr1_reg <= iram_sfr_rd;
|
| 1567 |
|
|
end if;
|
| 1568 |
|
|
end if;
|
| 1569 |
|
|
end process address_registers;
|
| 1570 |
|
|
|
| 1571 |
|
|
---- Opcode register(s) and signals directly derived from the opcode -----------
|
| 1572 |
|
|
|
| 1573 |
|
|
-- These register holds the instruction opcode byte.
|
| 1574 |
|
|
absolute_jump_block_register:
|
| 1575 |
|
|
process(clk)
|
| 1576 |
|
|
begin
|
| 1577 |
|
|
if clk'event and clk='1' then
|
| 1578 |
|
|
if ps=decode_0 then
|
| 1579 |
|
|
block_reg <= unsigned(code_rd(7 downto 5));
|
| 1580 |
|
|
end if;
|
| 1581 |
|
|
end if;
|
| 1582 |
|
|
end process absolute_jump_block_register;
|
| 1583 |
|
|
|
| 1584 |
|
|
-- Unregistered dir address; straight from code memory.
|
| 1585 |
|
|
code_byte <= unsigned(code_rd);
|
| 1586 |
|
|
|
| 1587 |
|
|
-- Index of bit within byte. Will be registered along with bit_addr.
|
| 1588 |
|
|
bit_index <= unsigned(code_rd(2 downto 0));
|
| 1589 |
|
|
|
| 1590 |
|
|
-- Address of the byte containing the operand bit, if any.
|
| 1591 |
|
|
with code_rd(7) select bit_addr <=
|
| 1592 |
|
|
"0010" & unsigned(code_rd(6 downto 3)) when '0',
|
| 1593 |
|
|
"1" & unsigned(code_rd(6 downto 3)) & "000" when others;
|
| 1594 |
|
|
|
| 1595 |
|
|
|
| 1596 |
|
|
---- Rn and @Ri addresses and multiplexor --------------------------------------
|
| 1597 |
|
|
ri_addr <= "000" & PSW_reg(4 downto 3) & "00" & rn_index(0);
|
| 1598 |
|
|
rn_addr <= "000" & PSW_reg(4 downto 3) & rn_index;
|
| 1599 |
|
|
|
| 1600 |
|
|
|
| 1601 |
|
|
-- This logic only gets evaluated in state decode_0; and it needs to be valid
|
| 1602 |
|
|
-- only for Rn and @Ri instructions, otherwise it is not evaluated.
|
| 1603 |
|
|
-- Does the ALU instruction, if any, use @Ri?
|
| 1604 |
|
|
with uc_alu_class_decode_0 select alu_use_ri_by_class <=
|
| 1605 |
|
|
'1' when AC_A_RI_to_A,
|
| 1606 |
|
|
'1' when AC_RI_to_A,
|
| 1607 |
|
|
'1' when AC_RI_to_RI,
|
| 1608 |
|
|
'1' when AC_RI_to_D,
|
| 1609 |
|
|
'1' when AC_D_to_RI,
|
| 1610 |
|
|
'1' when AC_I_to_RI,
|
| 1611 |
|
|
'1' when AC_A_to_RI,
|
| 1612 |
|
|
'0' when others;
|
| 1613 |
|
|
|
| 1614 |
|
|
-- The instruction uses @Ri unless it uses Rn.
|
| 1615 |
|
|
-- This signal gets registered as use_ri_reg in state decode_0.
|
| 1616 |
|
|
alu_use_ri <= '0' when code_rd(3)='1' else alu_use_ri_by_class;
|
| 1617 |
|
|
|
| 1618 |
|
|
non_alu_use_ri <= '1' when ucode(11 downto 10)="10" else '0';
|
| 1619 |
|
|
|
| 1620 |
|
|
use_ri <= alu_use_ri when ucode(15 downto 14)="00" else non_alu_use_ri;
|
| 1621 |
|
|
|
| 1622 |
|
|
-- This is the actual Rn/Ri multiplexor.
|
| 1623 |
|
|
rx_addr <= ri_addr when use_ri_reg='1' else rn_addr;
|
| 1624 |
|
|
|
| 1625 |
|
|
|
| 1626 |
|
|
--## 8.- SFR interface #########################################################
|
| 1627 |
|
|
|
| 1628 |
|
|
-- Assert sfr_vma when a SFR read or write cycle is going on (address valid).
|
| 1629 |
|
|
-- FIXME some of these are not read cycles but the cycle after!
|
| 1630 |
|
|
with ps select sfr_vma_internal <=
|
| 1631 |
|
|
sfr_addressing when alu_ar_to_ab,
|
| 1632 |
|
|
sfr_addressing when alu_ram_to_t,
|
| 1633 |
|
|
sfr_addressing when alu_ram_to_t_code_to_ab,
|
| 1634 |
|
|
sfr_addressing when alu_ram_to_v_code_to_t,
|
| 1635 |
|
|
sfr_addressing when alu_res_to_ram,
|
| 1636 |
|
|
sfr_addressing when alu_res_to_ram_code_to_ab,
|
| 1637 |
|
|
sfr_addressing when alu_res_to_ram_ar_to_ab,
|
| 1638 |
|
|
sfr_addressing when djnz_dir_1,
|
| 1639 |
|
|
sfr_addressing when djnz_dir_2,
|
| 1640 |
|
|
sfr_addressing when cjne_ri_imm_3,
|
| 1641 |
|
|
sfr_addressing when cjne_ri_imm_2,
|
| 1642 |
|
|
-- FIXME these are corrected states, the above may be bad
|
| 1643 |
|
|
sfr_addressing when cjne_a_dir_0,
|
| 1644 |
|
|
sfr_addressing when jrb_bit_0,
|
| 1645 |
|
|
sfr_addressing when bit_op_0,
|
| 1646 |
|
|
sfr_addressing when bit_op_2,
|
| 1647 |
|
|
sfr_addressing when xch_1,
|
| 1648 |
|
|
sfr_addressing when xch_2,
|
| 1649 |
|
|
sfr_addressing when alu_xchd_2,
|
| 1650 |
|
|
-- FIXME some other states missing
|
| 1651 |
|
|
'0' when others;
|
| 1652 |
|
|
|
| 1653 |
|
|
-- Assert sfr_we_internal when a SFR write cycle is done.
|
| 1654 |
|
|
-- FIXME there should be a direct_we, not separate decoding for iram/sfr
|
| 1655 |
|
|
with ps select sfr_we_internal <=
|
| 1656 |
|
|
sfr_addressing when alu_res_to_ram,
|
| 1657 |
|
|
sfr_addressing when alu_res_to_ram_code_to_ab,
|
| 1658 |
|
|
sfr_addressing when alu_res_to_ram_ar_to_ab,
|
| 1659 |
|
|
sfr_addressing when djnz_dir_2,
|
| 1660 |
|
|
sfr_addressing when bit_op_2,
|
| 1661 |
|
|
sfr_addressing when jrb_bit_2,
|
| 1662 |
|
|
sfr_addressing when pop_2,
|
| 1663 |
|
|
'1' when mov_dptr_1,
|
| 1664 |
|
|
'1' when mov_dptr_2,
|
| 1665 |
|
|
sfr_addressing when xch_2,
|
| 1666 |
|
|
'0' when others;
|
| 1667 |
|
|
|
| 1668 |
|
|
-- The SFR address is the full 8 address bits; even if we know there are no
|
| 1669 |
|
|
-- SFRs in the 00h..7fh range.
|
| 1670 |
|
|
sfr_addr_internal <= iram_sfr_addr;
|
| 1671 |
|
|
sfr_addr <= std_logic_vector(sfr_addr_internal);
|
| 1672 |
|
|
-- Data written into the internal or externa SFR is the IRAM input data.
|
| 1673 |
|
|
sfr_wr_internal <= bram_wr_data_p0;
|
| 1674 |
|
|
sfr_wr <= std_logic_vector(sfr_wr_internal);
|
| 1675 |
|
|
-- Internal and external SFR bus is identical.
|
| 1676 |
|
|
sfr_we <= sfr_we_internal;
|
| 1677 |
|
|
sfr_vma <= sfr_vma_internal;
|
| 1678 |
|
|
|
| 1679 |
|
|
-- Internal SFR read multiplexor. Will be registered.
|
| 1680 |
|
|
with sfr_addr_internal select sfr_rd_internal <=
|
| 1681 |
|
|
PSW when SFR_ADDR_PSW,
|
| 1682 |
|
|
SP_reg when SFR_ADDR_SP,
|
| 1683 |
|
|
A_reg when SFR_ADDR_ACC,
|
| 1684 |
|
|
B_reg when SFR_ADDR_B,
|
| 1685 |
|
|
DPTR_reg(15 downto 8) when SFR_ADDR_DPH,
|
| 1686 |
|
|
DPTR_reg( 7 downto 0) when SFR_ADDR_DPL,
|
| 1687 |
|
|
IE_reg when SFR_ADDR_IE,
|
| 1688 |
17 |
ja_rd |
IP_reg when SFR_ADDR_IP,
|
| 1689 |
2 |
ja_rd |
unsigned(sfr_rd) when others;
|
| 1690 |
|
|
|
| 1691 |
|
|
-- Registering the SFR read mux gives the SFR block the same timing behavior as
|
| 1692 |
|
|
-- the IRAM block, and improves clock rate a lot.
|
| 1693 |
|
|
SFR_mux_register:
|
| 1694 |
|
|
process(clk)
|
| 1695 |
|
|
begin
|
| 1696 |
|
|
if clk'event and clk='1' then
|
| 1697 |
|
|
sfr_rd_internal_reg <= sfr_rd_internal;
|
| 1698 |
|
|
sfr_addressing_reg <= sfr_addressing;
|
| 1699 |
|
|
end if;
|
| 1700 |
|
|
end process SFR_mux_register;
|
| 1701 |
|
|
|
| 1702 |
|
|
-- Data read from the IRAM/SFR: this is the IRAM vs. SFR multiplexor.
|
| 1703 |
|
|
-- Note it is controlled with sfr_addressing_reg, which is in sync with both
|
| 1704 |
|
|
-- sfr_rd_internal_reg and bram_data_p0 because of the 1-cycle data latency
|
| 1705 |
|
|
-- of the BRAM and the SFR interface.
|
| 1706 |
|
|
iram_sfr_rd <= sfr_rd_internal_reg when sfr_addressing_reg='1' else bram_data_p0;
|
| 1707 |
|
|
|
| 1708 |
|
|
|
| 1709 |
|
|
--## 9.- PSW register and flag logic ###########################################
|
| 1710 |
|
|
|
| 1711 |
|
|
|
| 1712 |
|
|
-- PSW flag update enable.
|
| 1713 |
|
|
with ps select update_psw_flags <=
|
| 1714 |
|
|
-- Flags are updated at the same time ACC/RAM/SFR is loaded...
|
| 1715 |
|
|
'1' when alu_res_to_a,
|
| 1716 |
|
|
'1' when alu_res_to_ram,
|
| 1717 |
|
|
'1' when alu_res_to_ram_code_to_ab,
|
| 1718 |
|
|
'1' when alu_res_to_ram_ar_to_ab,
|
| 1719 |
|
|
'1' when alu_daa_1,
|
| 1720 |
|
|
-- (XCHD states included for generality only; they never
|
| 1721 |
|
|
-- update any flags (FM_NONE)).
|
| 1722 |
|
|
'1' when alu_xchd_4 | alu_xchd_5,
|
| 1723 |
|
|
-- ...when the CJNE magnitude comparison is made...
|
| 1724 |
|
|
'1' when cjne_a_imm_1,
|
| 1725 |
|
|
'1' when cjne_a_dir_2,
|
| 1726 |
|
|
'1' when cjne_ri_imm_4,
|
| 1727 |
|
|
'1' when cjne_rn_imm_2,
|
| 1728 |
|
|
-- ...when C is updated due by bit operation...
|
| 1729 |
|
|
'1' when bit_res_to_c,
|
| 1730 |
|
|
-- ...and when a mul/div is done.
|
| 1731 |
|
|
mul_ready when alu_mul_0,
|
| 1732 |
|
|
div_ready when alu_div_0,
|
| 1733 |
|
|
-- Note some
|
| 1734 |
|
|
'0' when others;
|
| 1735 |
|
|
|
| 1736 |
|
|
-- PSW write enable for SFR accesses.
|
| 1737 |
|
|
load_psw <= '1' when sfr_addr_internal=SFR_ADDR_PSW and sfr_we_internal='1'
|
| 1738 |
|
|
else '0';
|
| 1739 |
|
|
|
| 1740 |
|
|
PSW_register:
|
| 1741 |
|
|
process(clk)
|
| 1742 |
|
|
begin
|
| 1743 |
|
|
if clk'event and clk='1' then
|
| 1744 |
|
|
if reset='1' then
|
| 1745 |
|
|
PSW_reg <= (others => '0');
|
| 1746 |
|
|
elsif load_psw = '1' then
|
| 1747 |
|
|
PSW_reg <= alu_result(7 downto 1);
|
| 1748 |
|
|
elsif update_psw_flags = '1' then
|
| 1749 |
|
|
|
| 1750 |
|
|
-- C flag
|
| 1751 |
|
|
if flag_mask_reg /= FM_NONE then
|
| 1752 |
|
|
PSW_reg(7) <= alu_cy;
|
| 1753 |
|
|
end if;
|
| 1754 |
|
|
-- OV flag
|
| 1755 |
|
|
if flag_mask_reg = FM_C_OV or flag_mask_reg = FM_ALL then
|
| 1756 |
|
|
PSW_reg(2) <= alu_ov;
|
| 1757 |
|
|
end if;
|
| 1758 |
|
|
-- AC flag
|
| 1759 |
|
|
if flag_mask_reg = FM_ALL then
|
| 1760 |
|
|
PSW_reg(6) <= alu_ac;
|
| 1761 |
|
|
end if;
|
| 1762 |
|
|
end if;
|
| 1763 |
|
|
end if;
|
| 1764 |
|
|
end process PSW_register;
|
| 1765 |
|
|
|
| 1766 |
|
|
-- Note that P flag (bit 0) is registered separately. Join flags up here.
|
| 1767 |
|
|
PSW <= PSW_reg(7 downto 1) & alu_p;
|
| 1768 |
|
|
|
| 1769 |
|
|
|
| 1770 |
|
|
--## 10.- Stack logic ##########################################################
|
| 1771 |
|
|
|
| 1772 |
|
|
-- SP write enable for SFR accesses.
|
| 1773 |
|
|
load_sp <= '1' when sfr_addr_internal=SFR_ADDR_SP and sfr_we_internal='1'
|
| 1774 |
|
|
else '0';
|
| 1775 |
|
|
|
| 1776 |
|
|
with ps select load_sp_implicit <=
|
| 1777 |
|
|
'1' when push_1 | pop_1,
|
| 1778 |
|
|
'1' when ret_0 | ret_1,
|
| 1779 |
|
|
'1' when acall_0 | acall_1 | lcall_1 | lcall_2,
|
| 1780 |
|
|
'1' when irq_1 | irq_2,
|
| 1781 |
|
|
'0' when others;
|
| 1782 |
|
|
|
| 1783 |
|
|
update_sp <= load_sp or load_sp_implicit;
|
| 1784 |
|
|
|
| 1785 |
|
|
with ps select SP_next <=
|
| 1786 |
|
|
SP_reg + 1 when push_1 | acall_0 | acall_1 |
|
| 1787 |
|
|
lcall_1 | lcall_2 |
|
| 1788 |
|
|
irq_1 | irq_2,
|
| 1789 |
|
|
SP_reg - 1 when pop_1 | ret_0 | ret_1,
|
| 1790 |
|
|
nobit_alu_result when others;
|
| 1791 |
|
|
|
| 1792 |
|
|
|
| 1793 |
|
|
stack_pointer:
|
| 1794 |
|
|
process(clk)
|
| 1795 |
|
|
begin
|
| 1796 |
|
|
if clk'event and clk='1' then
|
| 1797 |
|
|
if reset = '1' then
|
| 1798 |
|
|
SP_reg <= X"07";
|
| 1799 |
|
|
else
|
| 1800 |
|
|
if update_sp = '1' then
|
| 1801 |
|
|
SP_reg <= SP_next;
|
| 1802 |
|
|
end if;
|
| 1803 |
|
|
end if;
|
| 1804 |
|
|
end if;
|
| 1805 |
|
|
end process stack_pointer;
|
| 1806 |
|
|
|
| 1807 |
|
|
|
| 1808 |
|
|
--## 11.- Datapath: ALU and ALU operand multiplexors ###########################
|
| 1809 |
|
|
|
| 1810 |
|
|
-- ALU input operand mux control for ALU class instructions. Other instructions
|
| 1811 |
|
|
-- that use the ALU (CJNE, DJNZ...) will need to control those muxes. That logic
|
| 1812 |
|
|
-- is within the ALU module.
|
| 1813 |
|
|
-- Note that this signal gets registered for speed before being used.
|
| 1814 |
|
|
with uc_alu_class_decode_0 select alu_class_op_sel <=
|
| 1815 |
|
|
AI_A_T when AC_A_RI_to_A,
|
| 1816 |
|
|
AI_A_T when AC_A_RN_to_A,
|
| 1817 |
|
|
AI_A_T when AC_A_I_to_A,
|
| 1818 |
|
|
AI_A_T when AC_A_D_to_A,
|
| 1819 |
|
|
AI_A_T when AC_A_D_to_D,
|
| 1820 |
|
|
AI_V_T when AC_I_D_to_D,
|
| 1821 |
|
|
AI_A_0 when AC_A_to_RI,
|
| 1822 |
|
|
AI_A_0 when AC_A_to_D,
|
| 1823 |
|
|
AI_A_0 when AC_A_to_RN,
|
| 1824 |
|
|
AI_A_0 when AC_A_to_A,
|
| 1825 |
|
|
AI_T_0 when others;
|
| 1826 |
|
|
|
| 1827 |
|
|
|
| 1828 |
|
|
alu : entity work.light52_alu
|
| 1829 |
|
|
generic map (
|
| 1830 |
|
|
IMPLEMENT_BCD_INSTRUCTIONS => IMPLEMENT_BCD_INSTRUCTIONS,
|
| 1831 |
|
|
SEQUENTIAL_MULTIPLIER => SEQUENTIAL_MULTIPLIER
|
| 1832 |
|
|
)
|
| 1833 |
|
|
port map (
|
| 1834 |
|
|
clk => clk,
|
| 1835 |
|
|
reset => reset,
|
| 1836 |
|
|
|
| 1837 |
|
|
-- Data outputs
|
| 1838 |
|
|
result => alu_result,
|
| 1839 |
|
|
nobit_result => nobit_alu_result,
|
| 1840 |
|
|
bit_input_out => bit_input,
|
| 1841 |
|
|
|
| 1842 |
|
|
-- Access to internal stuff
|
| 1843 |
|
|
ACC => A_reg,
|
| 1844 |
|
|
B => B_reg,
|
| 1845 |
|
|
|
| 1846 |
|
|
-- XRAM, IRAM and CODE data interface
|
| 1847 |
|
|
xdata_wr => xdata_wr,
|
| 1848 |
|
|
xdata_rd => xdata_rd,
|
| 1849 |
|
|
code_rd => code_rd,
|
| 1850 |
|
|
iram_sfr_rd => iram_sfr_rd,
|
| 1851 |
|
|
|
| 1852 |
|
|
-- Input and output flags
|
| 1853 |
|
|
cy_in => PSW_reg(7),
|
| 1854 |
|
|
ac_in => PSW_reg(6),
|
| 1855 |
|
|
cy_out => alu_cy,
|
| 1856 |
|
|
ov_out => alu_ov,
|
| 1857 |
|
|
ac_out => alu_ac,
|
| 1858 |
|
|
p_out => alu_p,
|
| 1859 |
|
|
acc_is_zero => acc_is_zero,
|
| 1860 |
|
|
result_is_zero => alu_result_is_zero,
|
| 1861 |
|
|
|
| 1862 |
|
|
-- Control inputs
|
| 1863 |
|
|
use_bitfield => dpath_mux0_reg,
|
| 1864 |
|
|
alu_fn_reg => alu_fn_reg,
|
| 1865 |
|
|
bit_index_reg => bit_index_reg,
|
| 1866 |
|
|
op_sel => alu_class_op_sel_reg,
|
| 1867 |
|
|
load_acc_sfr => load_acc_sfr,
|
| 1868 |
|
|
|
| 1869 |
|
|
load_b_sfr => load_b_sfr,
|
| 1870 |
|
|
mul_ready => mul_ready,
|
| 1871 |
|
|
div_ready => div_ready,
|
| 1872 |
|
|
|
| 1873 |
|
|
ps => ps
|
| 1874 |
|
|
);
|
| 1875 |
|
|
|
| 1876 |
|
|
|
| 1877 |
|
|
load_b_sfr <= '1' when (sfr_addr_internal=SFR_ADDR_B and
|
| 1878 |
|
|
sfr_we_internal='1')
|
| 1879 |
|
|
else '0';
|
| 1880 |
|
|
|
| 1881 |
|
|
load_acc_sfr <= '1' when (sfr_addr_internal=SFR_ADDR_ACC and
|
| 1882 |
|
|
sfr_we_internal='1')
|
| 1883 |
|
|
else '0';
|
| 1884 |
|
|
|
| 1885 |
|
|
--## 12.- DPTR and XDATA address generation ####################################
|
| 1886 |
|
|
|
| 1887 |
|
|
-- FIXME this should be encapsulated so that a 2nd DPTR can be easily added.
|
| 1888 |
|
|
|
| 1889 |
|
|
load_dph <= '1' when sfr_addr_internal=SFR_ADDR_DPH and sfr_we_internal='1'
|
| 1890 |
|
|
else '0';
|
| 1891 |
|
|
load_dpl <= '1' when sfr_addr_internal=SFR_ADDR_DPL and sfr_we_internal='1'
|
| 1892 |
|
|
else '0';
|
| 1893 |
|
|
inc_dptr <= '1' when ps=special_0 else '0';
|
| 1894 |
|
|
|
| 1895 |
|
|
DPTR_register:
|
| 1896 |
|
|
process(clk)
|
| 1897 |
|
|
begin
|
| 1898 |
|
|
if clk'event and clk='1' then
|
| 1899 |
|
|
if inc_dptr='1' then
|
| 1900 |
|
|
DPTR_reg <= DPTR_reg + 1;
|
| 1901 |
|
|
else
|
| 1902 |
|
|
if load_dph='1' then
|
| 1903 |
|
|
DPTR_reg(15 downto 8) <= nobit_alu_result;
|
| 1904 |
|
|
end if;
|
| 1905 |
|
|
if load_dpl='1' then
|
| 1906 |
|
|
DPTR_reg(7 downto 0) <= nobit_alu_result;
|
| 1907 |
|
|
end if;
|
| 1908 |
|
|
end if;
|
| 1909 |
|
|
end if;
|
| 1910 |
|
|
end process DPTR_register;
|
| 1911 |
|
|
|
| 1912 |
|
|
with ps select xdata_addr <=
|
| 1913 |
|
|
X"00" & std_logic_vector(addr0_reg) when movx_ri_a_2,
|
| 1914 |
|
|
X"00" & std_logic_vector(addr0_reg) when movx_a_ri_2,
|
| 1915 |
|
|
std_logic_vector(DPTR_reg) when others;
|
| 1916 |
|
|
|
| 1917 |
|
|
with ps select xdata_vma <=
|
| 1918 |
|
|
'1' when movx_dptr_a_0 | movx_a_dptr_0,
|
| 1919 |
|
|
'1' when movx_a_ri_2 | movx_ri_a_2,
|
| 1920 |
|
|
'0' when others;
|
| 1921 |
|
|
|
| 1922 |
|
|
with ps select xdata_we <=
|
| 1923 |
|
|
'1' when movx_dptr_a_0,
|
| 1924 |
|
|
'1' when movx_ri_a_2,
|
| 1925 |
|
|
'0' when others;
|
| 1926 |
|
|
|
| 1927 |
|
|
|
| 1928 |
|
|
end architecture microcoded;
|
| 1929 |
|
|
|
| 1930 |
|
|
--------------------------------------------------------------------------------
|
| 1931 |
|
|
-- NOTES:
|
| 1932 |
|
|
--
|
| 1933 |
|
|
-- @note1: Decoding of '2nd half' opcodes.
|
| 1934 |
|
|
-- The top half of the opcode table is decoded using the BRAM initialized
|
| 1935 |
|
|
-- as a decoding table.
|
| 1936 |
|
|
-- The bottom half of the table (Rn opcodes, rows 8 to 15) is very
|
| 1937 |
|
|
-- symmetric: you only need to decode the columns, and the opcode of each
|
| 1938 |
|
|
-- column is the same as that of row 7 (with a couple exceptions).
|
| 1939 |
|
|
-- This means we can replace the entire bottom half of the decoding table
|
| 1940 |
|
|
-- with some logic, combined with row 7 (or 5). Logic marked with @note1
|
| 1941 |
|
|
-- has this purpose.
|
| 1942 |
|
|
--
|
| 1943 |
|
|
-- @note2: Unnecessary reset values for data registers.
|
| 1944 |
|
|
-- Reset values are strictly unnecessary for data registers such as ACC (as
|
| 1945 |
|
|
-- opposed to control registers). They have been given a reset value only
|
| 1946 |
|
|
-- so that the simulations logs are identical to those of B51 software
|
| 1947 |
|
|
-- simulator.
|
| 1948 |
|
|
--
|
| 1949 |
|
|
-- @note3: Adder/subtractor.
|
| 1950 |
|
|
-- The adder/subtractor is coded as a simple adder in which the subtrahend
|
| 1951 |
|
|
-- is optionally negated -- this is for portability across synth tools.
|
| 1952 |
|
|
--
|
| 1953 |
|
|
-- @note4: End states of the instructions.
|
| 1954 |
|
|
-- All instructions end in either fetch_0 or fetch_1. State fetch_1 can be
|
| 1955 |
|
|
-- thus considered the first state all instructions have in common. It is
|
| 1956 |
|
|
-- this state that does the the interrupt check.
|
| 1957 |
|
|
-- In a future revision, many instructions may overlap fetch_0 and fetch_1
|
| 1958 |
|
|
-- with their last states and the irq check will change.
|
| 1959 |
|
|
--
|
| 1960 |
|
|
-- @note5: Use of ns (instead of ps) in pc_incremented.
|
| 1961 |
|
|
-- This is done because several states are 'shared' by more than one
|
| 1962 |
|
|
-- instruction (i.e. they belong to more than one state machine paths) so
|
| 1963 |
|
|
-- looking at the present state is not enough (Note that the *complete*
|
| 1964 |
|
|
-- state in fact includes ps and uc_class_decode_0).
|
| 1965 |
|
|
-- This hack simplifies the logic but hurts speed A LOT (like 10% or more).
|
| 1966 |
|
|
-- We should use a *cleaner* state machine; it'd be much larger but also
|
| 1967 |
|
|
-- simpler.
|
| 1968 |
|
|
--
|
| 1969 |
|
|
-- @note6: State on which PC is incremented.
|
| 1970 |
|
|
-- PC is incremented in state decode_0 and not fetch_1 so that it is still
|
| 1971 |
|
|
-- valid in fetch_1 in case we have to push it for an interrupt response.
|
| 1972 |
|
|
--------------------------------------------------------------------------------
|