OpenCores
URL https://opencores.org/ocsvn/light8080/light8080/trunk

Subversion Repositories light8080

[/] [light8080/] [trunk/] [tools/] [ihex2vlog/] [ihex2vlog.c] - Blame information for rev 83

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 65 motilito
//---------------------------------------------------------------------------------------
2
//
3
// ihex2vlog.c by Moti Litochevski, Nov 12, 2011  
4
// This program reads an Intel HEX file and generates memory Verilog module or 
5
// Xilinx RAMB16/RAMB4 verilog initialization vectors. 
6
//
7
// This program uses the ihex.c functions by Paul Stoffregen.
8
//
9
// The project was compiled using the Tiny C Compiler using the following command line:
10
//              tcc ihex2vlog.c ihex.c 
11
//
12
//---------------------------------------------------------------------------------------
13
//
14
// This file is released to the public domain under the BSD 2-clause license.
15
//
16
// Copyright (c) 2012, Moti Litochevski
17
// All rights reserved.
18
//
19
// Redistribution and use in source and binary forms, with or without modification, are 
20
// permitted provided that the following conditions are met:
21
//   o Redistributions of source code must retain the above copyright notice, this list 
22
//     of conditions and the following disclaimer.
23
//   o Redistributions in binary form must reproduce the above copyright notice, this 
24
//     list of conditions and the following disclaimer in the documentation and/or 
25
//     other materials provided with the distribution.
26
//
27
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
28
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
29
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
30
// IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
31
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
32
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
33
// OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
34
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
35
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
36
// POSSIBILITY OF SUCH DAMAGE.
37
//
38
//---------------------------------------------------------------------------------------
39
 
40
#include <stdio.h>
41
#include <stdlib.h>
42
#include <string.h>
43
 
44
// constants 
45
#define MAX_BUF_SIZE            65536 
46
 
47
/* this loads an intel hex file into the memory[] array */
48
int load_file(char *filename);
49
 
50
// the loaded memory is stored in a global variable with maximum size of 64K bytes 
51
int     memory[MAX_BUF_SIZE];
52
 
53
// Xilinx RAMB16 default parameters 
54
// total size of RAM memory block in bytes 
55
#define RAM_BLOCK_SIZE          2048
56
// maxmimum number of memory blocks - each memory block contains RAM_BLOCK_SIZE bytes 
57
#define RAM_BLOCKS                      8 
58
// number of rows in RAM block initialization vectors 
59
#define RAM_ROWS                        64 
60
// number of bytes per row in RAM block initialization vectors 
61
#define RAM_BYTEPERROW          32 
62
// Xilinx RAMB4 parameters 
63
#define RAMB4_BLOCK_SIZE        512
64
#define RAMB4_BLOCKS            32 
65
#define RAMB4_ROWS                      16 
66
#define RAMB4_BYTEPERROW        32 
67
 
68
//------------------------------------------------------------------------------
69
int main (int argc, char *argv[])
70
{
71
FILE *file;
72
int index, hex_len, block_num, iblock, irow;
73
int address, value, argi;
74
int block_size, blocks_num, raws_num, bytes_num;
75
char *argstr, modname[24];
76
 
77
        // init block size to zero to sign generic Verilog code 
78
        block_size = 0;
79
        // default address width 
80
        raws_num = 16;
81
        bytes_num = 0;
82
        // set default module name 
83
        strcpy(modname, "ram_image");
84
 
85
        // announce program start 
86
        printf("ihex2vlog conversion tool:\n");
87
 
88
        // check program usage 
89
        if (argc < 3) {
90
                printf("\n");
91
                printf("ERROR: incorrect usage of program.\n");
92
                printf("\n");
93
                printf("Usage: ihex2vlog [-a/s/m/4/16] <in.hex> <out.v>\n");
94
                printf("optional parameters:\n");
95
                printf("     -a<width>  generate initialization vectors for generic Verilog\n");
96
                printf("                code with specified address bus width. value should be\n");
97
                printf("                in the range 8 to 16.\n");
98
                printf("                this is the default option with width = 16\n");
99
                printf("     -s<value>  set size of generic verilog memory size.\n");
100
                printf("                value should be in the range 256 to 65536.\n");
101
                printf("                default value is 2**<width> (address width defined above).\n");
102
                printf("     -m<name>   set module name for generic verilog memory.\n");
103
                printf("                default value is \"ram_image\".\n");
104
                printf("     -4         generate initialization vectors for Xilinx RAMB4.\n");
105
                printf("     -16        generate initialization vectors for Xilinx RAMB16.\n");
106
                printf("\n");
107
                printf("Example: ihex2vlog test.ihx ram_image.v\n");
108
                return -1;
109
        }
110
 
111
        // clear the memory array 
112
        for (index = 0; index < MAX_BUF_SIZE; index++) {
113
                memory[index] = 0;
114
        }
115
 
116
        // check optional options 
117
        argi = 1;
118
        argstr = argv[argi];
119
        while (argstr[0]=='-') {
120
                // check Xilinx RAMB4 option 
121
                if (argstr[1] == '4') {
122
                        // init block definition values for Xilinx RAMB4 block size 
123
                        block_size = RAMB4_BLOCK_SIZE;
124
                        blocks_num = RAMB4_BLOCKS;
125
                        raws_num = RAMB4_ROWS;
126
                        bytes_num = RAMB4_BYTEPERROW;
127
                }
128
                else if ((argstr[1] == '1') & (argstr[2] == '6')) {
129
                        // init block definition values for Xilinx RAMB16 block size 
130
                        block_size = RAM_BLOCK_SIZE;
131
                        blocks_num = RAM_BLOCKS;
132
                        raws_num = RAM_ROWS;
133
                        bytes_num = RAM_BYTEPERROW;
134
                }
135
                else if (argstr[1] == 'a') {
136
                        // for generic infered RAM Verilog code this option specifies the 
137
                        // address bus width 
138
                        sscanf(&argstr[2], "%d", &raws_num);
139
                        if ((raws_num < 8) | (raws_num > 16)) {
140
                                printf("\nERROR: Address width value error (%d)\n\n", raws_num);
141
                                return -1;
142
                        }
143
                        //check if memory length should be calculated 
144
                        if (bytes_num == 0) {
145
                                // calculate the actual memory size 
146
                                bytes_num=1;
147
                                for (index=0; index<raws_num; index++)
148
                                        bytes_num=bytes_num*2;
149
                        }
150
                }
151
                else if (argstr[1] == 's') {
152
                        // set memory size option 
153
                        sscanf(&argstr[2], "%d", &bytes_num);
154
                        if ((bytes_num < 256) | (bytes_num > MAX_BUF_SIZE)) {
155
                                printf("\nERROR: Memory size value error (%d)\n\n", bytes_num);
156
                                return -1;
157
                        }
158
                }
159
                else if (argstr[1] == 'm') {
160
                        // set generic verilog memory module name 
161
                        strcpy(modname, &argstr[2]);
162
                }
163
                else
164
                        printf("\nERROR: Unsupported option \"%s\"\n\n", argstr);
165
                // update parameter index 
166
                argi++;
167
                argstr = argv[argi];
168
        }
169
 
170
        // read input hex file into the memory array 
171
        hex_len = load_file(argv[argi]);
172
        printf("HEX memory top address %d\n", hex_len);
173
        // check if file loaded OK 
174
        if (hex_len < 1) {
175
                printf("ERROR: Can't read '%s'!\n", argv[argi]);
176
                return -1;
177
        }
178
 
179
        // announce output file name 
180
        printf("Writing output file to: %s\n", argv[argi+1]);
181
        // open output file 
182
        file = fopen(argv[argi+1], "wt");
183
        if (file == NULL) {
184
                printf("ERROR: Can't write '%s'!\n", argv[argi+1]);
185
                return -1;
186
        }
187
 
188
        // check if Xilinx RAMB memory is used or generic verilog RAM 
189
        if (block_size) {
190
                // calculate the number of required RAM blocks 
191
                block_num = hex_len / block_size;
192
                printf("HEX file requires %d RAM blocks\n", block_num+1);
193
 
194
                // write file header 
195
                fprintf(file, "// RAM image for input code file: %s\n", argv[argi]);
196
                // write memory block defines to enable only required memory blocks 
197
                fprintf(file, "// enable memory blocks \n");
198
                fprintf(file, "`ifdef EN_ALL_BLOCKS\n");
199
                for (iblock = 0; iblock < blocks_num; iblock++) {
200
                        fprintf(file, "`define EN_BLOCK%d     1 \n", iblock);
201
                }
202
                fprintf(file, "`else\n");
203
                // write the memory block enable flags 
204
                for (iblock = 0; iblock < block_num+1; iblock++) {
205
                        fprintf(file, "`define EN_BLOCK%d     1 \n", iblock);
206
                }
207
                fprintf(file, "`endif\n");
208
                fprintf(file, "\n");
209
 
210
                // write memory blocks 
211
                for (iblock = 0; iblock <= block_num; iblock++) {
212
                        // write memory block header 
213
                        fprintf(file, "// block %d \n", iblock);
214
 
215
                        // loop though block rows 
216
                        for (irow = 0; irow < raws_num; irow++) {
217
                                // write start of line 
218
                                fprintf(file, "defparam mem%d.INIT_%X%X = 256'h", iblock, irow/16, irow & 0xf);
219
 
220
                                // write memory bytes 
221
                                for (index = 0; index < bytes_num; index++) {
222
                                        address = iblock*block_size + irow*bytes_num + bytes_num - index - 1;
223
 
224
                                        if (address < hex_len)
225
                                                value = memory[address] & 0xff;
226
                                        else
227
                                                value = 0;
228
 
229
                                        fprintf(file, "%x%x", value/16, value & 0xf);
230
                                }
231
                                fprintf(file, ";\n");
232
                        }
233
                }
234
        }
235
        else {
236
                // generate generic Verilog RAM code 
237
                printf("Generate generic Verilog RAM code.\n");
238
 
239
                // write output file header 
240
                fprintf(file, "//-----------------------------------------------------------------------------\n");
241
                fprintf(file, "//\n");
242
                fprintf(file, "// RAM image for input code file: %s\n", argv[argi]);
243
                fprintf(file, "//\n");
244
                fprintf(file, "//-----------------------------------------------------------------------------\n");
245
                fprintf(file, "module %s\n", modname);
246
                fprintf(file, "(\n");
247
                fprintf(file, " clk, addr, \n");
248
                fprintf(file, " we, din, dout\n");
249
                fprintf(file, ");\n");
250
                fprintf(file, "//-----------------------------------------------------------------------------\n");
251
                fprintf(file, "input           clk;\n");
252
                fprintf(file, "input   [%d:0]  addr;\n", raws_num-1);
253
                fprintf(file, "input           we;\n");
254
                fprintf(file, "input   [7:0]   din;\n");
255
                fprintf(file, "output  [7:0]   dout;\n");
256
                fprintf(file, "//-----------------------------------------------------------------------------\n");
257
                fprintf(file, "reg [7:0] dout;\n");
258
                fprintf(file, "reg [7:0] ram [%d:0];\n", bytes_num-1);
259
                fprintf(file, "//-----------------------------------------------------------------------------\n");
260
                fprintf(file, "initial \n");
261
                fprintf(file, "begin\n");
262
                // dump memory values as RAM init values 
263
                for (index=0; index<bytes_num; index++) {
264
                        if ((index&3) == 0) fprintf(file, "    ");
265
                        fprintf(file, "ram[%d] = 8\'h%x%x; ", index, (memory[index]/16)&0xf, memory[index]&0xf);
266
                        if ((index&3) == 3) fprintf(file, "\n");
267
                }
268
                fprintf(file, "end\n");
269
                fprintf(file, "\n");
270
                fprintf(file, "//-----------------------------------------------------------------------------\n");
271
                fprintf(file, "always @(posedge clk)\n");
272
                fprintf(file, "begin\n");
273
                fprintf(file, "    if (we)\n");
274 68 motilito
                fprintf(file, "    begin\n");
275 65 motilito
                fprintf(file, "        ram[addr] <= din;\n");
276 68 motilito
                fprintf(file, "        dout <= din;\n");
277
                fprintf(file, "    end\n");
278
                fprintf(file, "    else\n");
279
                fprintf(file, "        dout <= ram[addr];\n");
280 65 motilito
                fprintf(file, "end\n");
281
                fprintf(file, "\n");
282
                fprintf(file, "endmodule\n");
283
                fprintf(file, "//-----------------------------------------------------------------------------\n");
284
        }
285
 
286
        // close output file 
287
        fclose(file);
288
        return 0;
289
}
290
//------------------------------------------------------------------------------

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.