1 |
65 |
motilito |
//---------------------------------------------------------------------------------------
|
2 |
|
|
// light8080 : Intel 8080 binary compatible core
|
3 |
|
|
//---------------------------------------------------------------------------------------
|
4 |
|
|
// v1.3 (12 FEB 2012) Fix: General solution to AND, OR, XOR clearing CY,ACY.
|
5 |
|
|
// v1.2 (08 jul 2010) Fix: XOR operations were not clearing CY,ACY.
|
6 |
|
|
// v1.1 (20 sep 2008) Microcode bug in INR fixed.
|
7 |
|
|
// v1.0 (05 nov 2007) First release. Jose A. Ruiz.
|
8 |
|
|
//
|
9 |
|
|
// This file and all the light8080 project files are freeware (See COPYING.TXT)
|
10 |
|
|
//---------------------------------------------------------------------------------------
|
11 |
|
|
//
|
12 |
|
|
// vma : enable a memory or io r/w access.
|
13 |
|
|
// io : access in progress is io (and not memory)
|
14 |
|
|
// rd : read memory or io
|
15 |
|
|
// wr : write memory or io
|
16 |
|
|
// data_out : data output
|
17 |
|
|
// addr_out : memory and io address
|
18 |
|
|
// data_in : data input
|
19 |
|
|
// halt : halt status (1 when in halt state)
|
20 |
|
|
// inte : interrupt status (1 when enabled)
|
21 |
|
|
// intr : interrupt request
|
22 |
|
|
// inta : interrupt acknowledge
|
23 |
|
|
// reset : synchronous reset
|
24 |
|
|
// clk : clock
|
25 |
|
|
//
|
26 |
|
|
// (see timing diagrams at bottom of file)
|
27 |
|
|
//---------------------------------------------------------------------------------------
|
28 |
|
|
//
|
29 |
|
|
// Timing diagram 1: RD and WR cycles
|
30 |
|
|
//
|
31 |
|
|
// 1 2 3 4 5 6 7 8
|
32 |
|
|
// __ __ __ __ __ __ __ __
|
33 |
|
|
// clk __/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__
|
34 |
|
|
//
|
35 |
|
|
// ==|=====|=====|=====|=====|=====|=====|=====|=====|
|
36 |
|
|
//
|
37 |
|
|
// addr_o xxxxxxxxxxxxxx< ADR >xxxxxxxxxxx< ADR >xxxxxxxxxxx
|
38 |
|
|
//
|
39 |
|
|
// data_i xxxxxxxxxxxxxxxxxxxx< Din >xxxxxxxxxxxxxxxxxxxxxxx
|
40 |
|
|
//
|
41 |
|
|
// data_o xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx< Dout>xxxxxxxxxxx
|
42 |
|
|
// _____ _____
|
43 |
|
|
// vma_o ______________/ \___________/ \___________
|
44 |
|
|
// _____
|
45 |
|
|
// rd_o ______________/ \_____________________________
|
46 |
|
|
// _____
|
47 |
|
|
// wr_o ________________________________/ \___________
|
48 |
|
|
//
|
49 |
|
|
// (functional diagram, actual time delays not shown)
|
50 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
51 |
|
|
// This diagram shows a read cycle and a write cycle back to back.
|
52 |
|
|
// In clock edges (4) and (7), the address is loaded into the external
|
53 |
|
|
// synchronous RAM address register.
|
54 |
|
|
// In clock edge (5), read data is loaded into the CPU.
|
55 |
|
|
// In clock edge (7), write data is loaded into the external synchronous RAM.
|
56 |
|
|
// In actual operation, the CPU does about 1 rd/wr cycle for each 5 clock
|
57 |
|
|
// cycles, which is a waste of RAM bandwidth.
|
58 |
|
|
//
|
59 |
|
|
//---------------------------------------------------------------------------------------
|
60 |
|
|
|
61 |
|
|
module light8080
|
62 |
|
|
(
|
63 |
|
|
clk, reset,
|
64 |
|
|
addr_out, vma,
|
65 |
|
|
io, rd,
|
66 |
|
|
wr, fetch,
|
67 |
|
|
data_in, data_out,
|
68 |
|
|
inta, inte,
|
69 |
|
|
halt, intr
|
70 |
|
|
);
|
71 |
|
|
|
72 |
|
|
//---------------------------------------------------------------------------------------
|
73 |
|
|
//
|
74 |
|
|
// All memory and io accesses are synchronous (rising clock edge). Signal vma
|
75 |
|
|
// works as the master memory and io synchronous enable. More specifically:
|
76 |
|
|
//
|
77 |
|
|
// * All memory/io control signals (io,rd,wr) are valid only when vma is
|
78 |
|
|
// high. They never activate when vma is inactive.
|
79 |
|
|
// * Signals data_out and address are only valid when vma=1'b1. The high
|
80 |
|
|
// address byte is 0x00 for all io accesses.
|
81 |
|
|
// * Signal data_in should be valid by the end of the cycle after vma=1'b1,
|
82 |
|
|
// data is clocked in by the rising clock edge.
|
83 |
|
|
//
|
84 |
|
|
// All signals are assumed to be synchronous to the master clock. Prevention of
|
85 |
|
|
// metastability, if necessary, is up to you.
|
86 |
|
|
//
|
87 |
|
|
// Signal reset needs to be active for just 1 clock cycle (it is sampled on a
|
88 |
|
|
// positive clock edge and is subject to setup and hold times).
|
89 |
|
|
// Once reset is deasserted, the first fetch at address 0x0000 will happen 4
|
90 |
|
|
// cycles later.
|
91 |
|
|
//
|
92 |
|
|
// Signal intr is sampled on all positive clock edges. If asserted when inte is
|
93 |
|
|
// high, interrupts will be disabled, inta will be asserted high and a fetch
|
94 |
|
|
// cycle will occur immediately after the current instruction ends execution,
|
95 |
|
|
// except if intr was asserted at the last cycle of an instruction. In that case
|
96 |
|
|
// it will be honored after the next instruction ends.
|
97 |
|
|
// The fetched instruction will be executed normally, except that PC will not
|
98 |
|
|
// be valid in any subsequent fetch cycles of the same instruction,
|
99 |
|
|
// and will not be incremented (In practice, the same as the original 8080).
|
100 |
|
|
// inta will remain high for the duration of the fetched instruction, including
|
101 |
|
|
// fetch and execution time (in the original 8080 it was high only for the
|
102 |
|
|
// opcode fetch cycle).
|
103 |
|
|
// PC will not be autoincremented while inta is high, but it can be explicitly
|
104 |
|
|
// modified (e.g. RST, CALL, etc.). Again, the same as the original.
|
105 |
|
|
// Interrupts will be disabled upon assertion of inta, and remain disabled
|
106 |
|
|
// until explicitly enabled by the program (as in the original).
|
107 |
|
|
// If intr is asserted when inte is low, the interrupt will not be attended but
|
108 |
|
|
// it will be registered in an int_pending flag, so it will be honored when
|
109 |
|
|
// interrupts are enabled.
|
110 |
|
|
//
|
111 |
|
|
//
|
112 |
|
|
// The above means that any instruction can be supplied in an inta cycle,
|
113 |
|
|
// either single byte or multibyte. See the design notes.
|
114 |
|
|
//---------------------------------------------------------------------------------------
|
115 |
|
|
|
116 |
|
|
//---------------------------------------------------------------------------------------
|
117 |
|
|
// module interfaces
|
118 |
|
|
input clk;
|
119 |
|
|
input reset;
|
120 |
|
|
|
121 |
|
|
output [15:0] addr_out;
|
122 |
|
|
output vma;
|
123 |
|
|
output io;
|
124 |
|
|
output rd;
|
125 |
|
|
output wr;
|
126 |
|
|
output fetch;
|
127 |
|
|
|
128 |
|
|
input [7:0] data_in;
|
129 |
|
|
output [7:0] data_out;
|
130 |
|
|
|
131 |
|
|
output inta;
|
132 |
|
|
output inte;
|
133 |
|
|
output halt;
|
134 |
|
|
input intr;
|
135 |
|
|
|
136 |
|
|
//---------------------------------------------------------------------------------------
|
137 |
|
|
// internal signals
|
138 |
|
|
// addr_low: low byte of address
|
139 |
|
|
reg [7:0] addr_low;
|
140 |
|
|
// IR: instruction register. some bits left unused.
|
141 |
|
|
reg [7:0] IR;
|
142 |
|
|
// s_field: IR field, sss source reg code
|
143 |
|
|
wire [2:0] s_field;
|
144 |
|
|
// d_field: IR field, ddd destination reg code
|
145 |
|
|
wire [2:0] d_field;
|
146 |
|
|
// p_field: IR field, pp 16-bit reg pair code
|
147 |
|
|
wire [1:0] p_field;
|
148 |
|
|
// rbh: 1 when p_field=11, used in reg bank addressing for 'special' regs
|
149 |
|
|
wire rbh; // 1 when P=11 (special case)
|
150 |
|
|
// alu_op: uinst field, ALU operation code
|
151 |
|
|
wire [3:0] alu_op;
|
152 |
|
|
// uc_addr: microcode (ucode) address
|
153 |
|
|
reg [7:0] uc_addr;
|
154 |
|
|
// next_uc_addr: computed next microcode address (uaddr++/jump/ret/fetch)
|
155 |
|
|
reg [8:0] next_uc_addr;
|
156 |
|
|
// uc_jmp_addr: uinst field, absolute ucode jump address
|
157 |
|
|
wire [7:0] uc_jmp_addr;
|
158 |
|
|
// uc_ret_address: ucode return address saved in previous jump
|
159 |
|
|
reg [7:0] uc_ret_addr;
|
160 |
|
|
// addr_plus_1: uaddr + 1
|
161 |
|
|
wire [7:0] addr_plus_1;
|
162 |
|
|
// do_reset: reset, delayed 1 cycle // used to reset the microcode sequencer
|
163 |
|
|
reg do_reset;
|
164 |
|
|
|
165 |
|
|
// uc_flags1: uinst field, encoded flag of group 1 (see ucode file)
|
166 |
|
|
wire [2:0] uc_flags1;
|
167 |
|
|
// uc_flags2: uinst field, encoded flag of group 2 (see ucode file)
|
168 |
|
|
wire [2:0] uc_flags2;
|
169 |
|
|
// uc_addr_sel: selection of next uc_addr, composition of 4 flags
|
170 |
|
|
wire [3:0] uc_addr_sel;
|
171 |
|
|
// NOTE: see microcode file for information on flags
|
172 |
|
|
wire uc_jsr; // uinst field, decoded 'jsr' flag
|
173 |
|
|
wire uc_tjsr; // uinst field, decoded 'tjsr' flag
|
174 |
|
|
wire uc_decode; // uinst field, decoded 'decode' flag
|
175 |
|
|
wire uc_end; // uinst field, decoded 'end' flag
|
176 |
|
|
reg condition_reg; // registered tjst condition
|
177 |
|
|
// condition: tjsr condition (computed ccc condition from '80 instructions)
|
178 |
|
|
reg condition;
|
179 |
|
|
// condition_sel: IR field, ccc condition code
|
180 |
|
|
wire uc_do_jmp; // uinst jump (jsr/tjsr) flag, pipelined
|
181 |
|
|
wire uc_do_ret; // ret flag, pipelined
|
182 |
|
|
wire uc_halt_flag; // uinst field, decoded 'halt' flag
|
183 |
|
|
wire uc_halt; // halt command
|
184 |
|
|
reg halt_reg; // halt status reg, output as 'halt' signal
|
185 |
|
|
wire uc_ei; // uinst field, decoded 'ei' flag
|
186 |
|
|
wire uc_di; // uinst field, decoded 'di' flag
|
187 |
|
|
reg inte_reg; // inte status reg, output as 'inte' signal
|
188 |
|
|
reg int_pending; // intr requested, inta not active yet
|
189 |
|
|
reg inta_reg; // inta status reg, output as 'inta'
|
190 |
|
|
wire clr_t1; // uinst field, explicitly erase T1
|
191 |
|
|
wire do_clr_t1; // clr_t1 pipelined
|
192 |
|
|
wire clr_t2; // uinst field, explicitly erase T2
|
193 |
|
|
wire do_clr_t2; // clr_t2 pipelined
|
194 |
|
|
wire [31:0] ucode; // microcode word
|
195 |
|
|
reg [24:0] ucode_field2; // pipelined microcode
|
196 |
|
|
// used to delay interrup enable for one entire instruction after EI
|
197 |
|
|
reg delayed_ei;
|
198 |
|
|
|
199 |
|
|
wire load_al; // uinst field, load AL reg from rbank
|
200 |
|
|
wire load_addr; // uinst field, enable external addr reg load
|
201 |
|
|
wire load_t1; // uinst field, load reg T1
|
202 |
|
|
wire load_t2; // uinst field, load reg T2
|
203 |
|
|
wire mux_in; // uinst field, T1/T2 input data selection
|
204 |
|
|
wire load_do; // uinst field, pipelined, load DO reg
|
205 |
|
|
// rb_addr_sel: uinst field, rbank address selection: (sss,ddd,pp,ra_field)
|
206 |
|
|
wire [1:0] rb_addr_sel;
|
207 |
|
|
// ra_field: uinst field, explicit reg bank address
|
208 |
|
|
wire [3:0] ra_field;
|
209 |
|
|
wire [7:0] rbank_data; // rbank output
|
210 |
|
|
reg [7:0] alu_output; // ALU output
|
211 |
|
|
// data_output: datapath output: ALU output vs. F reg
|
212 |
|
|
wire [7:0] data_output;
|
213 |
|
|
reg [7:0] T1; // T1 reg (ALU operand)
|
214 |
|
|
reg [7:0] T2; // T2 reg (ALU operand)
|
215 |
|
|
// alu_input: data loaded into T1, T2: rbank data vs. DI
|
216 |
|
|
wire [7:0] alu_input;
|
217 |
|
|
wire we_rb; // uinst field, commands a write to the rbank
|
218 |
|
|
wire inhibit_pc_increment; // avoid PC changes (during INTA)
|
219 |
|
|
reg [3:0] rbank_rd_addr; // rbank rd addr
|
220 |
|
|
wire [3:0] rbank_wr_addr; // rbank wr addr
|
221 |
|
|
reg [7:0] DO; // data output reg
|
222 |
|
|
|
223 |
|
|
// Register bank : BC, DE, HL, AF, [PC, XY, ZW, SP]
|
224 |
|
|
// This will be implemented as asynchronous LUT RAM in those devices where this
|
225 |
|
|
// feature is available (Xilinx) and as multiplexed registers where it isn't
|
226 |
|
|
// (Altera).
|
227 |
|
|
reg [7:0] rbank[0:15];
|
228 |
|
|
|
229 |
|
|
reg [7:0] flag_reg; // F register
|
230 |
|
|
// flag_pattern: uinst field, F update pattern: which flags are updated
|
231 |
|
|
wire [1:0] flag_pattern;
|
232 |
|
|
wire flag_s; // new computed S flag
|
233 |
|
|
wire flag_z; // new computed Z flag
|
234 |
|
|
wire flag_p; // new computed P flag
|
235 |
|
|
wire flag_cy; // new computed C flag
|
236 |
|
|
wire flag_cy_1; // C flag computed from arith/logic operation
|
237 |
|
|
wire flag_cy_2; // C flag computed from CPC circuit
|
238 |
|
|
wire do_cy_op; // ALU explicit CY operation (CPC, etc.)
|
239 |
|
|
wire do_cy_op_d; // do_cy_op, pipelined
|
240 |
|
|
wire do_cpc; // ALU operation is CPC
|
241 |
|
|
wire do_cpc_d; // do_cpc, pipelined
|
242 |
|
|
wire do_daa; // ALU operation is DAA
|
243 |
|
|
wire clear_cy; // Instruction unconditionally clears CY
|
244 |
|
|
wire clear_ac; // Instruction unconditionally clears AC
|
245 |
|
|
wire set_ac; // Instruction unconditionally sets AC
|
246 |
|
|
wire flag_ac; // new computed half carry flag
|
247 |
|
|
// flag_aux_cy: new computed half carry flag (used in 16-bit ops)
|
248 |
|
|
wire flag_aux_cy;
|
249 |
|
|
wire load_psw; // load F register
|
250 |
|
|
|
251 |
|
|
// aux carry computation and control signals
|
252 |
|
|
wire use_aux; // decoded from flags in 1st phase
|
253 |
|
|
wire use_aux_cy; // 2nd phase signal
|
254 |
|
|
reg reg_aux_cy;
|
255 |
|
|
wire aux_cy_in;
|
256 |
|
|
wire set_aux_cy;
|
257 |
|
|
wire set_aux;
|
258 |
|
|
|
259 |
|
|
// ALU control signals, together they select ALU operation
|
260 |
|
|
wire [1:0] alu_fn;
|
261 |
|
|
wire use_logic; // logic/arith mux control
|
262 |
|
|
wire [1:0] mux_fn;
|
263 |
|
|
wire use_psw; // ALU/F mux control
|
264 |
|
|
|
265 |
|
|
// ALU arithmetic operands and result
|
266 |
|
|
wire [8:0] arith_op1;
|
267 |
|
|
wire [8:0] arith_op2;
|
268 |
|
|
wire [8:0] arith_op2_sgn;
|
269 |
|
|
wire [8:0] arith_res;
|
270 |
|
|
wire [7:0] arith_res8;
|
271 |
|
|
|
272 |
|
|
// ALU DAA intermediate signals (DAA has fully dedicated logic)
|
273 |
|
|
wire [8:0] daa_res;
|
274 |
|
|
reg [8:0] daa_res9;
|
275 |
|
|
wire daa_test1;
|
276 |
|
|
wire daa_test1a;
|
277 |
|
|
wire daa_test2;
|
278 |
|
|
wire [7:0] arith_daa_res;
|
279 |
|
|
wire cy_daa;
|
280 |
|
|
|
281 |
|
|
// ALU CY flag intermediate signals
|
282 |
|
|
wire cy_in_sgn;
|
283 |
|
|
wire cy_in;
|
284 |
|
|
wire cy_in_gated;
|
285 |
|
|
wire cy_adder;
|
286 |
|
|
wire cy_arith;
|
287 |
|
|
wire cy_shifter;
|
288 |
|
|
|
289 |
|
|
// ALU intermediate results
|
290 |
|
|
reg [7:0] logic_res;
|
291 |
|
|
wire [7:0] shift_res;
|
292 |
|
|
wire [7:0] alu_mux1;
|
293 |
|
|
|
294 |
|
|
//---------------------------------------------------------------------------------------
|
295 |
|
|
// module implementation
|
296 |
|
|
// IR register, load when uc_decode flag activates
|
297 |
|
|
always @ (posedge clk)
|
298 |
|
|
begin
|
299 |
|
|
if (uc_decode)
|
300 |
|
|
IR <= data_in;
|
301 |
|
|
end
|
302 |
|
|
|
303 |
|
|
assign s_field = IR[2:0]; // IR field extraction : sss reg code
|
304 |
|
|
assign d_field = IR[5:3]; // ddd reg code
|
305 |
|
|
assign p_field = IR[5:4]; // pp 16-bit reg pair code
|
306 |
|
|
|
307 |
|
|
//---------------------------------------------------------------------------------------
|
308 |
|
|
// Microcode sequencer
|
309 |
|
|
// do_reset is reset delayed 1 cycle
|
310 |
|
|
always @ (posedge clk)
|
311 |
|
|
do_reset <= reset;
|
312 |
|
|
|
313 |
|
|
assign uc_flags1 = ucode[31:29];
|
314 |
|
|
assign uc_flags2 = ucode[28:26];
|
315 |
|
|
|
316 |
|
|
// microcode address control flags are gated by do_reset (reset has priority)
|
317 |
|
|
assign uc_do_ret = ((uc_flags2 == 3'b011) && !do_reset) ? 1'b1 : 1'b0;
|
318 |
|
|
assign uc_jsr = ((uc_flags2 == 3'b010) && !do_reset) ? 1'b1 : 1'b0;
|
319 |
|
|
assign uc_tjsr = ((uc_flags2 == 3'b100) && !do_reset) ? 1'b1 : 1'b0;
|
320 |
|
|
assign uc_decode = ((uc_flags1 == 3'b001) && !do_reset) ? 1'b1 : 1'b0;
|
321 |
|
|
assign uc_end = (((uc_flags2 == 3'b001) || (uc_tjsr && !condition_reg)) && !do_reset) ? 1'b1 : 1'b0;
|
322 |
|
|
|
323 |
|
|
// other microinstruction flags are decoded
|
324 |
|
|
assign uc_halt_flag = (uc_flags1 == 3'b111) ? 1'b1 : 1'b0;
|
325 |
|
|
assign uc_halt = (uc_halt_flag && !inta_reg) ? 1'b1 : 1'b0;
|
326 |
|
|
assign uc_ei = (uc_flags1 == 3'b011) ? 1'b1 : 1'b0;
|
327 |
|
|
assign uc_di = ((uc_flags1 == 3'b010) || inta_reg) ? 1'b1 : 1'b0;
|
328 |
|
|
// clr_t1/2 clears T1/T2 when explicitly commanded; T2 and T1 clear implicitly
|
329 |
|
|
// at the end of each instruction (by uc_decode)
|
330 |
|
|
assign clr_t2 = (uc_flags2 == 3'b001) ? 1'b1 : 1'b0;
|
331 |
|
|
assign clr_t1 = (uc_flags1 == 3'b110) ? 1'b1 : 1'b0;
|
332 |
|
|
assign use_aux = (uc_flags1 == 3'b101) ? 1'b1 : 1'b0;
|
333 |
|
|
assign set_aux = (uc_flags2 == 3'b111) ? 1'b1 : 1'b0;
|
334 |
|
|
|
335 |
|
|
assign load_al = ucode[24];
|
336 |
|
|
assign load_addr = ucode[25];
|
337 |
|
|
|
338 |
|
|
assign do_cy_op_d = (ucode[5:2] == 4'b1011) ? 1'b1 : 1'b0; // decode CY ALU op
|
339 |
|
|
assign do_cpc_d = ucode[0]; // decode CPC ALU op
|
340 |
|
|
|
341 |
|
|
// uinst jump command, either unconditional or on a given condition
|
342 |
|
|
assign uc_do_jmp = uc_jsr | (uc_tjsr & condition_reg);
|
343 |
|
|
|
344 |
|
|
assign vma = load_addr; // addr is valid, either for memory or io
|
345 |
|
|
|
346 |
|
|
// assume the only uinst that does memory access in the range 0..f is 'fetch'
|
347 |
|
|
assign fetch = ((uc_addr[7:4] == 4'b0) && load_addr) ? 1'b1 : 1'b0;
|
348 |
|
|
|
349 |
|
|
// external bus interface control signals
|
350 |
|
|
assign io = (uc_flags1 == 3'b100) ? 1'b1 : 1'b0; // IO access (vs. memory)
|
351 |
|
|
assign rd = (uc_flags2 == 3'b101) ? 1'b1 : 1'b0; // RD access
|
352 |
|
|
assign wr = (uc_flags2 == 3'b110) ? 1'b1 : 1'b0; // WR access
|
353 |
|
|
|
354 |
|
|
assign uc_jmp_addr = {ucode[11:10], ucode[5:0]};
|
355 |
|
|
assign uc_addr_sel = {uc_do_ret, uc_do_jmp, uc_decode, uc_end};
|
356 |
|
|
assign addr_plus_1 = uc_addr + 8'd1;
|
357 |
|
|
|
358 |
|
|
// TODO simplify this!!
|
359 |
|
|
|
360 |
|
|
// NOTE: when end==1'b1 we jump either to the FETCH ucode or to the HALT ucode
|
361 |
|
|
// depending on the value of the halt signal.
|
362 |
|
|
// We use the unregistered uc_halt instead of halt_reg because otherwise #end
|
363 |
|
|
// should be on the cycle following #halt, wasting a cycle.
|
364 |
|
|
// This means that the flag #halt has to be used with #end or will be ignored.
|
365 |
|
|
// Note how we used DI (containing instruction opcode) as a microcode address
|
366 |
|
|
always @ (*)
|
367 |
|
|
begin
|
368 |
|
|
case (uc_addr_sel)
|
369 |
|
|
4'b1000: next_uc_addr <= {1'b0, uc_ret_addr}; // ret
|
370 |
|
|
4'b0100: next_uc_addr <= {1'b0, uc_jmp_addr}; // jsr/tjsr
|
371 |
|
|
4'b0000: next_uc_addr <= {1'b0, addr_plus_1}; // uaddr++
|
372 |
|
|
4'b0001: next_uc_addr <= {6'b0, uc_halt, 2'b11}; // end: go to fetch/halt uaddr
|
373 |
|
|
default: next_uc_addr <= {1'b1, data_in}; // decode fetched address
|
374 |
|
|
endcase
|
375 |
|
|
end
|
376 |
|
|
|
377 |
|
|
// read microcode rom is implemented here in a different module
|
378 |
|
|
micro_rom rom
|
379 |
|
|
(
|
380 |
|
|
.clock(clk),
|
381 |
|
|
.uc_addr(next_uc_addr),
|
382 |
|
|
.uc_dout(ucode)
|
383 |
|
|
);
|
384 |
|
|
|
385 |
|
|
// microcode address register
|
386 |
|
|
always @ (posedge clk)
|
387 |
|
|
begin
|
388 |
|
|
if (reset)
|
389 |
|
|
uc_addr <= 8'h0;
|
390 |
|
|
else
|
391 |
|
|
uc_addr <= next_uc_addr[7:0];
|
392 |
|
|
end
|
393 |
|
|
|
394 |
|
|
// ucode address 1-level 'return stack'
|
395 |
|
|
always @ (posedge clk)
|
396 |
|
|
begin
|
397 |
|
|
if (reset)
|
398 |
|
|
uc_ret_addr <= 8'h0;
|
399 |
|
|
else if (uc_do_jmp)
|
400 |
|
|
uc_ret_addr <= addr_plus_1;
|
401 |
|
|
end
|
402 |
|
|
|
403 |
|
|
assign alu_op = ucode[3:0];
|
404 |
|
|
|
405 |
|
|
// pipeline uinst field2 for 1-cycle delayed execution.
|
406 |
|
|
// note the same rbank addr field is used in cycles 1 and 2; this enforces
|
407 |
|
|
// some constraints on uinst programming but simplifies the system.
|
408 |
|
|
always @ (posedge clk)
|
409 |
|
|
begin
|
410 |
|
|
ucode_field2 <= {do_cy_op_d, do_cpc_d, clr_t2, clr_t1,
|
411 |
|
|
set_aux, use_aux, rbank_rd_addr, ucode[14:4], alu_op};
|
412 |
|
|
end
|
413 |
|
|
|
414 |
|
|
//---------------------------------------------------------------------------------------
|
415 |
|
|
// HALT logic
|
416 |
|
|
always @ (posedge clk)
|
417 |
|
|
begin
|
418 |
|
|
if (reset || int_pending) //inta_reg
|
419 |
|
|
halt_reg <= 1'b0;
|
420 |
|
|
else if (uc_halt)
|
421 |
|
|
halt_reg <= 1'b1;
|
422 |
|
|
end
|
423 |
|
|
|
424 |
|
|
assign halt = halt_reg;
|
425 |
|
|
|
426 |
|
|
//---------------------------------------------------------------------------------------
|
427 |
|
|
// INTE logic // inte_reg = 1'b1 means interrupts ENABLED
|
428 |
|
|
always @ (posedge clk)
|
429 |
|
|
begin
|
430 |
|
|
if (reset)
|
431 |
|
|
begin
|
432 |
|
|
inte_reg <= 1'b0;
|
433 |
|
|
delayed_ei <= 1'b0;
|
434 |
|
|
end
|
435 |
|
|
else
|
436 |
|
|
begin
|
437 |
|
|
if ((uc_di || uc_ei) && uc_end)
|
438 |
|
|
begin
|
439 |
|
|
//inte_reg <= uc_ei;
|
440 |
|
|
delayed_ei <= uc_ei; // FIXME DI must not be delayed
|
441 |
|
|
end
|
442 |
|
|
|
443 |
|
|
// at the last cycle of every instruction...
|
444 |
|
|
if (uc_end)
|
445 |
|
|
begin
|
446 |
|
|
// ...disable interrupts if the instruction is DI...
|
447 |
|
|
if (uc_di)
|
448 |
|
|
inte_reg <= 1'b0;
|
449 |
|
|
else
|
450 |
|
|
// ...of enable interrupts after the instruction following EI
|
451 |
|
|
inte_reg <= delayed_ei;
|
452 |
|
|
end
|
453 |
|
|
end
|
454 |
|
|
end
|
455 |
|
|
|
456 |
|
|
assign inte = inte_reg;
|
457 |
|
|
|
458 |
|
|
// interrupts are ignored when inte=1'b0 but they are registered and will be
|
459 |
|
|
// honored when interrupts are enabled
|
460 |
|
|
always @ (posedge clk)
|
461 |
|
|
begin
|
462 |
|
|
if (reset)
|
463 |
|
|
int_pending <= 1'b0;
|
464 |
|
|
else
|
465 |
|
|
begin
|
466 |
|
|
// intr will raise int_pending only if inta has not been asserted.
|
467 |
|
|
// Otherwise, if intr overlapped inta, we'd enter a microcode endless
|
468 |
|
|
// loop, executing the interrupt vector again and again.
|
469 |
|
|
if (intr && inte_reg && !int_pending && !inta_reg)
|
470 |
|
|
int_pending <= 1'b1;
|
471 |
|
|
else if (inte_reg && uc_end)
|
472 |
|
|
// int_pending is cleared when we're about to service the interrupt,
|
473 |
|
|
// that is when interrupts are enabled and the current instruction ends.
|
474 |
|
|
int_pending <= 1'b0;
|
475 |
|
|
end
|
476 |
|
|
end
|
477 |
|
|
|
478 |
|
|
//---------------------------------------------------------------------------------------
|
479 |
|
|
// INTA logic
|
480 |
|
|
// INTA goes high from END to END, that is for the entire time the instruction
|
481 |
|
|
// takes to fetch and execute; in the original 8080 it was asserted only for
|
482 |
|
|
// the M1 cycle.
|
483 |
|
|
// All instructions can be used in an inta cycle, including XTHL which was
|
484 |
|
|
// forbidden in the original 8080.
|
485 |
|
|
// It's up to you figuring out which cycle is which in multibyte instructions.
|
486 |
|
|
always @ (posedge clk)
|
487 |
|
|
begin
|
488 |
|
|
if (reset)
|
489 |
|
|
inta_reg <= 1'b0;
|
490 |
|
|
else if (int_pending && uc_end)
|
491 |
|
|
// enter INTA state
|
492 |
|
|
inta_reg <= 1'b1;
|
493 |
|
|
else if (uc_end && !uc_halt_flag)
|
494 |
|
|
// exit INTA state
|
495 |
|
|
// NOTE: don't reset inta when exiting halt state (uc_halt_flag=1'b1).
|
496 |
|
|
// If we omit this condition, when intr happens on halt state, inta
|
497 |
|
|
// will only last for 1 cycle, because in halt state uc_end is
|
498 |
|
|
// always asserted.
|
499 |
|
|
inta_reg <= 1'b0;
|
500 |
|
|
end
|
501 |
|
|
|
502 |
|
|
assign inta = inta_reg;
|
503 |
|
|
|
504 |
|
|
//---------------------------------------------------------------------------------------
|
505 |
|
|
// Datapath
|
506 |
|
|
|
507 |
|
|
// extract pipelined microcode fields
|
508 |
|
|
assign ra_field = ucode[18:15];
|
509 |
|
|
assign load_t1 = ucode[23];
|
510 |
|
|
assign load_t2 = ucode[22];
|
511 |
|
|
assign mux_in = ucode[21];
|
512 |
|
|
assign rb_addr_sel = ucode[20:19];
|
513 |
|
|
assign load_do = ucode_field2[7];
|
514 |
|
|
assign set_aux_cy = ucode_field2[20];
|
515 |
|
|
assign do_clr_t1 = ucode_field2[21];
|
516 |
|
|
assign do_clr_t2 = ucode_field2[22];
|
517 |
|
|
|
518 |
|
|
// T1 register
|
519 |
|
|
always @ (posedge clk)
|
520 |
|
|
begin
|
521 |
|
|
if (reset || uc_decode || do_clr_t1)
|
522 |
|
|
T1 <= 8'h0;
|
523 |
|
|
else if (load_t1)
|
524 |
|
|
T1 <= alu_input;
|
525 |
|
|
end
|
526 |
|
|
|
527 |
|
|
// T2 register
|
528 |
|
|
always @ (posedge clk)
|
529 |
|
|
begin
|
530 |
|
|
if (reset || uc_decode || do_clr_t2)
|
531 |
|
|
T2 <= 8'h0;
|
532 |
|
|
else if (load_t2)
|
533 |
|
|
T2 <= alu_input;
|
534 |
|
|
end
|
535 |
|
|
|
536 |
|
|
// T1/T2 input data mux
|
537 |
|
|
assign alu_input = mux_in ? rbank_data : data_in;
|
538 |
|
|
|
539 |
|
|
// register bank address mux logic
|
540 |
|
|
assign rbh = (p_field == 2'b11) ? 1'b1 : 1'b0;
|
541 |
|
|
|
542 |
|
|
always @ (*)
|
543 |
|
|
begin
|
544 |
|
|
case (rb_addr_sel)
|
545 |
|
|
2'b00: rbank_rd_addr <= ra_field;
|
546 |
|
|
2'b01: rbank_rd_addr <= {1'b0, s_field};
|
547 |
|
|
2'b10: rbank_rd_addr <= {1'b0, d_field};
|
548 |
|
|
2'b11: rbank_rd_addr <= {rbh, p_field, ra_field[0]};
|
549 |
|
|
endcase
|
550 |
|
|
end
|
551 |
|
|
|
552 |
|
|
// RBank writes are inhibited in INTA state, but only for PC increments.
|
553 |
|
|
assign inhibit_pc_increment = (inta_reg && use_aux_cy && (rbank_wr_addr[3:1] == 3'b100)) ? 1'b1 : 1'b0;
|
554 |
|
|
assign we_rb = ucode_field2[6] & ~inhibit_pc_increment;
|
555 |
|
|
|
556 |
|
|
// Register bank logic
|
557 |
|
|
// NOTE: read is asynchronous, while write is synchronous; but note also
|
558 |
|
|
// that write phase for a given uinst happens the cycle after the read phase.
|
559 |
|
|
// This way we give the ALU time to do its job.
|
560 |
|
|
assign rbank_wr_addr = ucode_field2[18:15];
|
561 |
|
|
always @ (posedge clk)
|
562 |
|
|
begin
|
563 |
|
|
if (we_rb)
|
564 |
|
|
rbank[rbank_wr_addr] <= alu_output;
|
565 |
|
|
end
|
566 |
|
|
assign rbank_data = rbank[rbank_rd_addr];
|
567 |
|
|
|
568 |
|
|
// should we read F register or ALU output?
|
569 |
|
|
assign use_psw = (ucode_field2[5:4] == 2'b11) ? 1'b1 : 1'b0;
|
570 |
|
|
assign data_output = use_psw ? flag_reg : alu_output;
|
571 |
|
|
|
572 |
|
|
always @ (posedge clk)
|
573 |
|
|
begin
|
574 |
|
|
if (load_do)
|
575 |
|
|
DO <= data_output;
|
576 |
|
|
end
|
577 |
|
|
|
578 |
|
|
//---------------------------------------------------------------------------------------
|
579 |
|
|
// ALU
|
580 |
|
|
assign alu_fn = ucode_field2[1:0];
|
581 |
|
|
assign use_logic = ucode_field2[2];
|
582 |
|
|
assign mux_fn = ucode_field2[4:3];
|
583 |
|
|
//#### make sure this is "00" in the microcode when no F updates should happen!
|
584 |
|
|
assign flag_pattern = ucode_field2[9:8];
|
585 |
|
|
assign use_aux_cy = ucode_field2[19];
|
586 |
|
|
assign do_cpc = ucode_field2[23];
|
587 |
|
|
assign do_cy_op = ucode_field2[24];
|
588 |
|
|
assign do_daa = (ucode_field2[5:2] == 4'b1010) ? 1'b1 : 1'b0;
|
589 |
|
|
|
590 |
|
|
// ucode_field2(14) will be set for those instructions that modify CY and AC
|
591 |
|
|
// without following the standard rules -- AND, OR and XOR instructions.
|
592 |
|
|
// Some instructions will unconditionally clear CY (AND, OR, XOR)
|
593 |
|
|
assign clear_cy = ucode_field2[14];
|
594 |
|
|
// Some instructions will unconditionally clear AC (OR, XOR)...
|
595 |
|
|
assign clear_ac = (ucode_field2[14] && (ucode_field2[5:0] != 6'b000100)) ? 1'b1 : 1'b0;
|
596 |
|
|
// ...and some others unconditionally SET AC (AND)
|
597 |
|
|
assign set_ac = (ucode_field2[14] && (ucode_field2[5:0] == 6'b000100)) ? 1'b1 : 1'b0;
|
598 |
|
|
|
599 |
|
|
assign aux_cy_in = (!set_aux_cy) ? reg_aux_cy : 1'b1;
|
600 |
|
|
|
601 |
|
|
// carry input selection: normal or aux (for 16 bit increments)?
|
602 |
|
|
assign cy_in = (!use_aux_cy) ? flag_reg[0] : aux_cy_in;
|
603 |
|
|
|
604 |
|
|
// carry is not used (0) in add/sub operations
|
605 |
|
|
assign cy_in_gated = cy_in & alu_fn[0];
|
606 |
|
|
|
607 |
|
|
//---------------------------------------------------------------------------------------
|
608 |
|
|
// Adder/substractor
|
609 |
|
|
|
610 |
|
|
// zero extend adder operands to 9 bits to ease CY output synthesis
|
611 |
|
|
// use zero extension because we're only interested in cy from 7 to 8
|
612 |
|
|
assign arith_op1 = {1'b0, T2};
|
613 |
|
|
assign arith_op2 = {1'b0, T1};
|
614 |
|
|
|
615 |
|
|
// The adder/substractor is done in 2 stages to help XSL synth it properly
|
616 |
|
|
// Other codings result in 1 adder + a substractor + 1 mux
|
617 |
|
|
|
618 |
|
|
// do 2nd op 2's complement if substracting...
|
619 |
|
|
assign arith_op2_sgn = (!alu_fn[1]) ? arith_op2 : ~arith_op2;
|
620 |
|
|
// ...and complement cy input too
|
621 |
|
|
assign cy_in_sgn = (!alu_fn[1]) ? cy_in_gated : ~cy_in_gated;
|
622 |
|
|
|
623 |
|
|
// once 2nd operand has been negated (or not) add operands normally
|
624 |
|
|
assign arith_res = arith_op1 + arith_op2_sgn + cy_in_sgn;
|
625 |
|
|
|
626 |
|
|
// take only 8 bits; 9th bit of adder is cy output
|
627 |
|
|
assign arith_res8 = arith_res[7:0];
|
628 |
|
|
assign cy_adder = arith_res[8];
|
629 |
|
|
|
630 |
|
|
//---------------------------------------------------------------------------------------
|
631 |
|
|
// DAA dedicated logic
|
632 |
|
|
// Note a DAA takes 2 cycles to complete!
|
633 |
|
|
|
634 |
|
|
//daa_test1a=1'b1 when daa_res9(7:4) > 0x06
|
635 |
|
|
assign daa_test1a = arith_op2[3] & (arith_op2[2] | arith_op2[1] | arith_op2[0]);
|
636 |
|
|
assign daa_test1 = (flag_reg[4] || daa_test1a) ? 1'b1 : 1'b0;
|
637 |
|
|
|
638 |
|
|
always @ (posedge clk)
|
639 |
|
|
begin
|
640 |
|
|
if (reset)
|
641 |
|
|
daa_res9 <= 9'b0;
|
642 |
|
|
else if (daa_test1)
|
643 |
|
|
daa_res9 <= arith_op2 + 9'd6;
|
644 |
|
|
else
|
645 |
|
|
daa_res9 <= arith_op2;
|
646 |
|
|
end
|
647 |
|
|
|
648 |
|
|
assign daa_test2 = (flag_reg[0] || daa_test1a) ? 1'b1 : 1'b0;
|
649 |
|
|
|
650 |
|
|
assign daa_res = daa_test2 ? ({1'b0, daa_res9[7:0]} + 9'h60) : daa_res9;
|
651 |
|
|
|
652 |
|
|
assign cy_daa = daa_res[8];
|
653 |
|
|
|
654 |
|
|
// DAA vs. adder mux
|
655 |
|
|
assign arith_daa_res = do_daa ? daa_res[7:0] : arith_res8;
|
656 |
|
|
|
657 |
|
|
// DAA vs. adder CY mux
|
658 |
|
|
assign cy_arith = do_daa ? cy_daa : cy_adder;
|
659 |
|
|
|
660 |
|
|
//---------------------------------------------------------------------------------------
|
661 |
|
|
// Logic operations block
|
662 |
|
|
always @ (*)
|
663 |
|
|
begin
|
664 |
|
|
case (alu_fn)
|
665 |
|
|
2'b00: logic_res <= T1 & T2;
|
666 |
|
|
2'b01: logic_res <= T1 ^ T2;
|
667 |
|
|
2'b10: logic_res <= T1 | T2;
|
668 |
|
|
2'b11: logic_res <= ~T1;
|
669 |
|
|
endcase
|
670 |
|
|
end
|
671 |
|
|
|
672 |
|
|
//---------------------------------------------------------------------------------------
|
673 |
|
|
// Shifter
|
674 |
|
|
assign shift_res[6:1] = (!alu_fn[0]) ? T1[5:0] : T1[7:2];
|
675 |
|
|
|
676 |
|
|
assign shift_res[0] = (alu_fn == 2'b00) ? T1[7] : // rot left
|
677 |
|
|
(alu_fn == 2'b10) ? cy_in : // rot left through carry
|
678 |
|
|
T1[1]; // rot right
|
679 |
|
|
assign shift_res[7] = (alu_fn == 2'b01) ? T1[0] : // rot right
|
680 |
|
|
(alu_fn == 2'b11) ? cy_in : // rot right through carry
|
681 |
|
|
T1[6]; // rot left
|
682 |
|
|
|
683 |
|
|
assign cy_shifter = (!alu_fn[0]) ? T1[7] : // left
|
684 |
|
|
T1[0]; // right
|
685 |
|
|
|
686 |
|
|
assign alu_mux1 = use_logic ? logic_res : shift_res;
|
687 |
|
|
|
688 |
|
|
always @ (*)
|
689 |
|
|
begin
|
690 |
|
|
case (mux_fn)
|
691 |
|
|
2'b00: alu_output <= alu_mux1;
|
692 |
|
|
2'b01: alu_output <= arith_daa_res;
|
693 |
|
|
2'b10: alu_output <= ~alu_mux1;
|
694 |
|
|
2'b11: alu_output <= {2'b0, d_field, 3'b0}; // RST
|
695 |
|
|
endcase
|
696 |
|
|
end
|
697 |
|
|
|
698 |
|
|
//---------------------------------------------------------------------------------------
|
699 |
|
|
// flag computation
|
700 |
|
|
assign flag_s = alu_output[7];
|
701 |
|
|
assign flag_p = ~(^alu_output);
|
702 |
|
|
assign flag_z = (alu_output == 8'h0) ? 1'b1 : 1'b0;
|
703 |
|
|
|
704 |
|
|
// AC is either the CY from bit 4 OR 0 if the instruction clears it implicitly
|
705 |
|
|
assign flag_ac = set_ac ? 1'b1 :
|
706 |
|
|
clear_ac ? 1'b0 :
|
707 |
|
|
(arith_op1[4] ^ arith_op2_sgn[4] ^ alu_output[4]);
|
708 |
|
|
|
709 |
|
|
// CY comes from the adder or the shifter, or is 0 if the instruction
|
710 |
|
|
// implicitly clears it.
|
711 |
|
|
assign flag_cy_1 = clear_cy ? 1'b0 :
|
712 |
|
|
use_logic ? cy_arith :
|
713 |
|
|
cy_shifter;
|
714 |
|
|
|
715 |
|
|
assign flag_cy_2 = (!do_cpc) ? ~flag_reg[0] : 1'b1; // cmc, stc
|
716 |
|
|
assign flag_cy = (!do_cy_op) ? flag_cy_1 : flag_cy_2;
|
717 |
|
|
|
718 |
|
|
assign flag_aux_cy = cy_adder;
|
719 |
|
|
|
720 |
|
|
// auxiliary carry reg
|
721 |
|
|
always @ (posedge clk)
|
722 |
|
|
begin
|
723 |
|
|
if (reset || uc_decode)
|
724 |
|
|
reg_aux_cy <= 1'b1; // inits to 0 every instruction
|
725 |
|
|
else
|
726 |
|
|
reg_aux_cy <= flag_aux_cy;
|
727 |
|
|
end
|
728 |
|
|
|
729 |
|
|
// load PSW from ALU (i.e. POP AF) or from flag signals
|
730 |
|
|
assign load_psw = (we_rb && (rbank_wr_addr == 4'b0110)) ? 1'b1 : 1'b0;
|
731 |
|
|
|
732 |
|
|
// The F register has been split in two separate groups that always update
|
733 |
|
|
// together (C and all others).
|
734 |
|
|
|
735 |
|
|
// F register, flags S,Z,AC,P and C
|
736 |
|
|
always @ (posedge clk)
|
737 |
|
|
begin
|
738 |
|
|
if (reset)
|
739 |
|
|
begin
|
740 |
|
|
flag_reg[7] <= 1'b0;
|
741 |
|
|
flag_reg[6] <= 1'b0;
|
742 |
|
|
flag_reg[5] <= 1'b0; // constant flag
|
743 |
|
|
flag_reg[4] <= 1'b0;
|
744 |
|
|
flag_reg[3] <= 1'b0; // constant flag
|
745 |
|
|
flag_reg[2] <= 1'b0;
|
746 |
|
|
flag_reg[1] <= 1'b1; // constant flag
|
747 |
|
|
flag_reg[0] <= 1'b0;
|
748 |
|
|
end
|
749 |
|
|
else
|
750 |
|
|
begin
|
751 |
|
|
if (flag_pattern[1])
|
752 |
|
|
begin
|
753 |
|
|
if (load_psw)
|
754 |
|
|
begin
|
755 |
|
|
flag_reg[7] <= alu_output[7];
|
756 |
|
|
flag_reg[6] <= alu_output[6];
|
757 |
|
|
flag_reg[4] <= alu_output[4];
|
758 |
|
|
flag_reg[2] <= alu_output[2];
|
759 |
|
|
end
|
760 |
|
|
else
|
761 |
|
|
begin
|
762 |
|
|
flag_reg[7] <= flag_s;
|
763 |
|
|
flag_reg[6] <= flag_z;
|
764 |
|
|
flag_reg[4] <= flag_ac;
|
765 |
|
|
flag_reg[2] <= flag_p;
|
766 |
|
|
end
|
767 |
|
|
end
|
768 |
|
|
|
769 |
|
|
// C flag
|
770 |
|
|
if (flag_pattern[0])
|
771 |
|
|
begin
|
772 |
|
|
if (load_psw)
|
773 |
|
|
flag_reg[0] <= alu_output[0];
|
774 |
|
|
else
|
775 |
|
|
flag_reg[0] <= flag_cy;
|
776 |
|
|
end
|
777 |
|
|
|
778 |
|
|
// constant flags
|
779 |
|
|
flag_reg[5] <= 1'b0; // constant flag
|
780 |
|
|
flag_reg[3] <= 1'b0; // constant flag
|
781 |
|
|
flag_reg[1] <= 1'b1; // constant flag
|
782 |
|
|
end
|
783 |
|
|
end
|
784 |
|
|
|
785 |
|
|
//---------------------------------------------------------------------------------------
|
786 |
|
|
// Condition computation
|
787 |
|
|
always @ (*)
|
788 |
|
|
begin
|
789 |
|
|
case (d_field[2:0])
|
790 |
|
|
3'b000: condition <= ~flag_reg[6]; // NZ
|
791 |
|
|
3'b001: condition <= flag_reg[6]; // Z
|
792 |
|
|
3'b010: condition <= ~flag_reg[0]; // NC
|
793 |
|
|
3'b011: condition <= flag_reg[0]; // C
|
794 |
|
|
3'b100: condition <= ~flag_reg[2]; // PO
|
795 |
|
|
3'b101: condition <= flag_reg[2]; // PE
|
796 |
|
|
3'b110: condition <= ~flag_reg[7]; // P
|
797 |
|
|
3'b111: condition <= flag_reg[7]; // M
|
798 |
|
|
endcase
|
799 |
|
|
end
|
800 |
|
|
|
801 |
|
|
// condition is registered to shorten the delay path; the extra 1-cycle
|
802 |
|
|
// delay is not relevant because conditions are tested in the next instruction
|
803 |
|
|
// at the earliest, and there's at least the fetch uinsts intervening.
|
804 |
|
|
always @ (posedge clk)
|
805 |
|
|
begin
|
806 |
|
|
if (reset)
|
807 |
|
|
condition_reg <= 1'b0;
|
808 |
|
|
else
|
809 |
|
|
condition_reg <= condition;
|
810 |
|
|
end
|
811 |
|
|
|
812 |
|
|
// low byte address register
|
813 |
|
|
always @ (posedge clk)
|
814 |
|
|
begin
|
815 |
|
|
if (reset)
|
816 |
|
|
addr_low <= 8'h0;
|
817 |
|
|
else if (load_al)
|
818 |
|
|
addr_low <= rbank_data;
|
819 |
|
|
end
|
820 |
|
|
|
821 |
|
|
// note external address registers (high byte) are loaded directly from rbank
|
822 |
|
|
assign addr_out = {rbank_data, addr_low};
|
823 |
|
|
|
824 |
|
|
assign data_out = DO;
|
825 |
|
|
|
826 |
|
|
endmodule
|
827 |
|
|
//---------------------------------------------------------------------------------------
|
828 |
|
|
//---------------------------------------------------------------------------------------
|