1 |
70 |
ja_rd |
--##############################################################################
|
2 |
|
|
-- l80irq : light8080 interrupt controller for l80soc
|
3 |
|
|
--##############################################################################
|
4 |
|
|
--
|
5 |
|
|
-- This is a basic interrupt controller for the light8080 core. It is meant for
|
6 |
|
|
-- demonstration purposes only (demonstration of the light8080 core) and has
|
7 |
|
|
-- not passed any serious verification test bench.
|
8 |
|
|
-- It has been built on the same principles as the rest of the modules in this
|
9 |
|
|
-- project: no more functionality than strictly needed, minimized area.
|
10 |
|
|
--
|
11 |
|
|
-- The interrupt controller operates under these rules:
|
12 |
|
|
--
|
13 |
|
|
-- -# All interrupt inputs are active at rising edge.
|
14 |
|
|
-- -# No logic is included for input sinchronization. You must take care to
|
15 |
|
|
-- prevent metastability issues yourself by the usual means.
|
16 |
|
|
-- -# If a new edge is detected before the first is serviced, it is lost.
|
17 |
|
|
-- -# As soon as a rising edge in enabled irq input K is detected, bit K in the
|
18 |
|
|
-- interrupt pending register 'irq_pending_reg' will be asserted.
|
19 |
|
|
-- Than is, disabled interrupts never get detected at all.
|
20 |
|
|
-- -# Output cpu_intr_o will be asserted as long as there's a bit asserted in
|
21 |
|
|
-- the interrupt pending register.
|
22 |
|
|
-- -# For each interrupt there is a predefined priority level and a predefined
|
23 |
|
|
-- interrupt vector -- see comments below.
|
24 |
|
|
-- -# As soon as an INTA cycle is done by the CPU (inta=1 and fetch=1) the
|
25 |
|
|
-- following will happen:
|
26 |
|
|
-- * The module will supply the interrupt vector of the highes priority
|
27 |
|
|
-- pending interrupt.
|
28 |
|
|
-- * The highest priority pending interrupt bit in the pending interrupt
|
29 |
|
|
-- register will be deasserted -- UNLESS the interrupts happens to trigger
|
30 |
|
|
-- again at the same time, in which case the pending bit will remain
|
31 |
|
|
-- asserted.
|
32 |
|
|
-- * If there are no more interrupts pending, the cpu_intr_o output will
|
33 |
|
|
-- be deasserted.
|
34 |
|
|
-- -# The CPU will have its interrupts disabled from the INTA cycle to the
|
35 |
|
|
-- execution of instruction EI.
|
36 |
|
|
-- -# The cpu_intr_o will be asserted for a single cycle.
|
37 |
|
|
-- -# The irq vectors are hardcoded to RST instructions (single byte calls).
|
38 |
|
|
--
|
39 |
|
|
-- The priorities and vectors are hardcoded to the following values:
|
40 |
|
|
--
|
41 |
|
|
-- irq_i(3) Priority 3 Vector RST 7
|
42 |
|
|
-- irq_i(2) Priority 2 Vector RST 5
|
43 |
|
|
-- irq_i(1) Priority 1 Vector RST 3
|
44 |
|
|
-- irq_i(0) Priority 0 Vector RST 1
|
45 |
|
|
--
|
46 |
|
|
-- (Priority order: 3 > 2 > 1 > 0).
|
47 |
|
|
--
|
48 |
|
|
-- This module is used in the l80soc module, for which a basic test bench
|
49 |
|
|
-- exists. Both can be used as usage example.
|
50 |
|
|
-- The module and its application is so simple than no documentation other than
|
51 |
|
|
-- these comments should be necessary.
|
52 |
|
|
--
|
53 |
|
|
-- This file and all the light8080 project files are freeware (See COPYING.TXT)
|
54 |
|
|
--##############################################################################
|
55 |
|
|
-- (See timing diagrams at bottom of file. More comprehensive explainations can
|
56 |
|
|
-- be found in the design notes)
|
57 |
|
|
--##############################################################################
|
58 |
|
|
|
59 |
|
|
library ieee;
|
60 |
|
|
use ieee.std_logic_1164.all;
|
61 |
|
|
use ieee.std_logic_arith.all;
|
62 |
|
|
use ieee.std_logic_unsigned.all;
|
63 |
|
|
|
64 |
|
|
--##############################################################################
|
65 |
|
|
--
|
66 |
|
|
--##############################################################################
|
67 |
|
|
|
68 |
|
|
entity L80irq is
|
69 |
|
|
port (
|
70 |
|
|
cpu_inta_i : in std_logic;
|
71 |
|
|
cpu_intr_o : out std_logic;
|
72 |
|
|
cpu_fetch_i : in std_logic;
|
73 |
|
|
|
74 |
|
|
data_we_i : in std_logic;
|
75 |
|
|
addr_i : in std_logic;
|
76 |
|
|
data_i : in std_logic_vector(7 downto 0);
|
77 |
|
|
data_o : out std_logic_vector(7 downto 0);
|
78 |
|
|
|
79 |
|
|
irq_i : in std_logic_vector(3 downto 0);
|
80 |
|
|
|
81 |
|
|
clk : in std_logic;
|
82 |
|
|
reset : in std_logic );
|
83 |
|
|
end L80irq;
|
84 |
|
|
|
85 |
|
|
--##############################################################################
|
86 |
|
|
--
|
87 |
|
|
--##############################################################################
|
88 |
|
|
|
89 |
|
|
architecture hardwired of L80irq is
|
90 |
|
|
|
91 |
|
|
-- irq_pending: 1 when irq[i] is pending service
|
92 |
|
|
signal irq_pending_reg : std_logic_vector(3 downto 0);
|
93 |
|
|
-- irq_enable: 1 when irq[i] is enabled
|
94 |
|
|
signal irq_enable_reg : std_logic_vector(3 downto 0);
|
95 |
|
|
-- irq_q: registered irq input used to catch rising edges
|
96 |
|
|
signal irq_q : std_logic_vector(3 downto 0);
|
97 |
|
|
-- irq_trigger: asserted to 1 when a rising edge is detected
|
98 |
|
|
signal irq_trigger : std_logic_vector(3 downto 0);
|
99 |
|
|
signal irq_clear : std_logic_vector(3 downto 0);
|
100 |
|
|
signal irq_clear_mask:std_logic_vector(3 downto 0);
|
101 |
|
|
|
102 |
|
|
signal data_rd : std_logic_vector(7 downto 0);
|
103 |
|
|
signal vector : std_logic_vector(7 downto 0);
|
104 |
|
|
signal irq_level : std_logic_vector(2 downto 0);
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
begin
|
108 |
|
|
|
109 |
|
|
edge_detection:
|
110 |
|
|
for i in 0 to 3 generate
|
111 |
|
|
begin
|
112 |
|
|
irq_trigger(i) <= '1' when -- IRQ(i) is triggered when...
|
113 |
|
|
irq_q(i)='0' and -- ...we see a rising edge...
|
114 |
|
|
irq_i(i)='1' and
|
115 |
|
|
irq_enable_reg(i)='1' -- ...and the irq input us enabled.
|
116 |
|
|
else '0';
|
117 |
|
|
end generate edge_detection;
|
118 |
|
|
|
119 |
|
|
interrupt_pending_reg:
|
120 |
|
|
process(clk)
|
121 |
|
|
begin
|
122 |
|
|
if clk'event and clk='1' then
|
123 |
|
|
if reset = '1' then
|
124 |
|
|
irq_pending_reg <= (others => '0');
|
125 |
|
|
irq_q <= (others => '0');
|
126 |
|
|
else
|
127 |
|
|
irq_pending_reg <= (irq_pending_reg and (not irq_clear)) or irq_trigger;
|
128 |
|
|
irq_q <= irq_i;
|
129 |
|
|
end if;
|
130 |
|
|
end if;
|
131 |
|
|
end process interrupt_pending_reg;
|
132 |
|
|
|
133 |
|
|
with irq_level select irq_clear_mask <=
|
134 |
|
|
"1000" when "111",
|
135 |
|
|
"0100" when "101",
|
136 |
|
|
"0010" when "011",
|
137 |
|
|
"0001" when others;
|
138 |
|
|
|
139 |
|
|
irq_clear <= irq_clear_mask when cpu_inta_i='1' and cpu_fetch_i='1' else "0000";
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
interrupt_enable_reg:
|
143 |
|
|
process(clk)
|
144 |
|
|
begin
|
145 |
|
|
if clk'event and clk='1' then
|
146 |
|
|
if reset = '1' then
|
147 |
|
|
-- All interrupts disabled at reset
|
148 |
|
|
irq_enable_reg <= (others => '0');
|
149 |
|
|
else
|
150 |
|
|
if data_we_i = '1' and addr_i = '0' then
|
151 |
|
|
irq_enable_reg <= data_i(3 downto 0);
|
152 |
|
|
end if;
|
153 |
|
|
end if;
|
154 |
|
|
end if;
|
155 |
|
|
end process interrupt_enable_reg;
|
156 |
|
|
|
157 |
|
|
-- Interrupt priority & vector decoding
|
158 |
|
|
irq_level <=
|
159 |
|
|
"001" when irq_pending_reg(0) = '1' else
|
160 |
|
|
"011" when irq_pending_reg(1) = '1' else
|
161 |
|
|
"110" when irq_pending_reg(2) = '1' else
|
162 |
|
|
"111";
|
163 |
|
|
|
164 |
|
|
-- Raise interrupt request when there's any irq pending
|
165 |
|
|
cpu_intr_o <= '1' when irq_pending_reg /= "0000" else '0';
|
166 |
|
|
|
167 |
|
|
-- The IRQ vector is hardcoded to a RST instruction, whose opcode is
|
168 |
|
|
-- RST <n> ---> 11nnn111
|
169 |
|
|
process(clk)
|
170 |
|
|
begin
|
171 |
|
|
if clk'event and clk='1' then
|
172 |
|
|
if cpu_inta_i='1' and cpu_fetch_i='1' then
|
173 |
|
|
vector <= "11" & irq_level & "111";
|
174 |
|
|
end if;
|
175 |
|
|
end if;
|
176 |
|
|
end process;
|
177 |
|
|
|
178 |
|
|
-- There's only an internal register, the irq enable register, so we
|
179 |
|
|
-- don't need an output register mux.
|
180 |
|
|
data_rd <= "0000" & irq_enable_reg;
|
181 |
|
|
|
182 |
|
|
-- The mdule will output the register being read, if any, OR the irq vector.
|
183 |
|
|
data_o <= vector when cpu_inta_i = '1' else data_rd;
|
184 |
|
|
|
185 |
|
|
|
186 |
|
|
|
187 |
|
|
|
188 |
|
|
end hardwired;
|
189 |
|
|
|