1 |
2 |
MichaelA |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Copyright 2012-2013 by Michael A. Morris, dba M. A. Morris & Associates
|
4 |
|
|
//
|
5 |
|
|
// All rights reserved. The source code contained herein is publicly released
|
6 |
|
|
// under the terms and conditions of the GNU Lesser Public License. No part of
|
7 |
|
|
// this source code may be reproduced or transmitted in any form or by any
|
8 |
|
|
// means, electronic or mechanical, including photocopying, recording, or any
|
9 |
|
|
// information storage and retrieval system in violation of the license under
|
10 |
|
|
// which the source code is released.
|
11 |
|
|
//
|
12 |
|
|
// The source code contained herein is free; it may be redistributed and/or
|
13 |
|
|
// modified in accordance with the terms of the GNU Lesser General Public
|
14 |
|
|
// License as published by the Free Software Foundation; either version 2.1 of
|
15 |
|
|
// the GNU Lesser General Public License, or any later version.
|
16 |
|
|
//
|
17 |
|
|
// The source code contained herein is freely released WITHOUT ANY WARRANTY;
|
18 |
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
19 |
|
|
// PARTICULAR PURPOSE. (Refer to the GNU Lesser General Public License for
|
20 |
|
|
// more details.)
|
21 |
|
|
//
|
22 |
|
|
// A copy of the GNU Lesser General Public License should have been received
|
23 |
|
|
// along with the source code contained herein; if not, a copy can be obtained
|
24 |
|
|
// by writing to:
|
25 |
|
|
//
|
26 |
|
|
// Free Software Foundation, Inc.
|
27 |
|
|
// 51 Franklin Street, Fifth Floor
|
28 |
|
|
// Boston, MA 02110-1301 USA
|
29 |
|
|
//
|
30 |
|
|
// Further, no use of this source code is permitted in any form or means
|
31 |
|
|
// without inclusion of this banner prominently in any derived works.
|
32 |
|
|
//
|
33 |
|
|
// Michael A. Morris
|
34 |
|
|
// Huntsville, AL
|
35 |
|
|
//
|
36 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
37 |
|
|
|
38 |
|
|
`timescale 1ns / 1ps
|
39 |
|
|
|
40 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
41 |
|
|
// Company: M. A. Morris & Assoc.
|
42 |
|
|
// Engineer: Michael A. Morris
|
43 |
|
|
//
|
44 |
|
|
// Create Date: 12:49:16 11/18/2012
|
45 |
|
|
// Design Name: WDC W65C02 Microprocessor Re-Implementation
|
46 |
|
|
// Module Name: M65C02.v
|
47 |
|
|
// Project Name: C:\XProjects\ISE10.1i\M65C02
|
48 |
|
|
// Target Devices: Generic SRAM-based FPGA
|
49 |
|
|
// Tool versions: Xilinx ISE10.1i SP3
|
50 |
|
|
//
|
51 |
|
|
// Description:
|
52 |
|
|
//
|
53 |
|
|
// This module provides a synthesizable implementation of a 65C02 micropro-
|
54 |
|
|
// cessor similar to the WDC W65C02S. The original W65C02 implemented a set of
|
55 |
|
|
// enhancements to the MOS6502 microprocessor. Two new addressing modes were
|
56 |
|
|
// added, several existing instructions were rounded out using the new address-
|
57 |
|
|
// ing modes, and some additional instructions were added to fill in holes pre-
|
58 |
|
|
// in the instruction set of the MOS6502. Rockwell second sourced the W65C02,
|
59 |
|
|
// and in the process added 4 bit-oriented instructions using 32 opcodes. WDC
|
60 |
|
|
// released the W65816/W65802 16-bit enhancements to the W65C02. Two of the new
|
61 |
|
|
// instructions in these processors, WAI and STP, were combined with the four
|
62 |
|
|
// Rockwell instructions, RMBx/SMBx and BBRx/BBSx, along with the original
|
63 |
|
|
// W65C02's instruction set to realize the W65C02S.
|
64 |
|
|
//
|
65 |
|
|
// The M65C02 core is a realization of the W65C02S instruction set. It is not a
|
66 |
|
|
// cycle accurate implementation, and it does not attempt to match the idiosyn-
|
67 |
|
|
// cratic behavior of the W65C02 or the W65C02S with respect to unused opcodes.
|
68 |
|
|
// In the M65C02 core, all unused opcodes are realized as single byte, single
|
69 |
|
|
// cycle NOPs.
|
70 |
|
|
//
|
71 |
|
|
// This module demonstrates how to incorporate the M65C02_Core.v logic module
|
72 |
|
|
// into an application-specific implementation. The core logic incorporates
|
73 |
|
|
// most of the logic required for a microprocessor implementation: ALU, regis-
|
74 |
|
|
// ters, address generator, and instruction decode and sequencing. Not included
|
75 |
|
|
// in the core logic are the memory interface, the interrupt handler, the clock
|
76 |
|
|
// generator, and any peripherals.
|
77 |
|
|
//
|
78 |
|
|
// This module integrates the M65C02_Core.v module, an external memory inter-
|
79 |
|
|
// face, a simple vectored interrupt controller, and a clock generator. The ob-
|
80 |
|
|
// jective is a module that emulates the external interfaces of a 5C02 proces-
|
81 |
|
|
// sor. The intent is not to develop a W65C02S replacement; an FPGA-based emu-
|
82 |
|
|
// lation of a processor still in production and readily available is not eco-
|
83 |
|
|
// nomically viable, or an objective of this project. (To be economically
|
84 |
|
|
// viable, an FPGA-based implementation of a 65C02 system using the M65C02
|
85 |
|
|
// (or WDC's synthesizable W65C02S) must be more than just a drop-in replace-
|
86 |
|
|
// ment of the microprocessor; it must include on-chip peripherals and addi-
|
87 |
|
|
// tional I/O interfaces, provide extended addressing, higher performance, etc.
|
88 |
|
|
// In other words, it must be more than just a replacement of the inexpensive
|
89 |
|
|
// 40-pin/44-pin W65C02S microprocessor.)
|
90 |
|
|
//
|
91 |
|
|
// The 6502 memory interface is not particularly well suited for an FPGA-based
|
92 |
|
|
// implementation. FPGA-based implementations prefer to use a single clock, and
|
93 |
|
|
// the 6502 memory interface uses a two phase clocking scheme. Further, for
|
94 |
|
|
// 6502-family peripherals which require a clock, the clock needs to be conti-
|
95 |
|
|
// nuous and symmetric. The M65C02 core logic will be overclocked relative to
|
96 |
|
|
// the 6502 memory interface. Thus, the memory interface controller can ensure
|
97 |
|
|
// that the core logic and the output clocks are synchronized and continuous
|
98 |
|
|
// and symmetric. However, this requires that any wait states needed by the ex-
|
99 |
|
|
// ternal memory or peripherals must be inserted as integer multiples of the
|
100 |
|
|
// external memory cycle length. This means that if there are four micro-cycles
|
101 |
|
|
// per external memory cycle, then every requested wait state will add an addi-
|
102 |
|
|
// tional 4 cycles to each microcycle.
|
103 |
|
|
//
|
104 |
|
|
// With this configuration, the external memory's access time determines the
|
105 |
|
|
// overall performance of the M65C02. Asynchronous memories are probably the
|
106 |
|
|
// least expensive of any of the high-speed static RAMs currently available.
|
107 |
|
|
// Therefore, the external memory interface provided with the M65C02 will pro-
|
108 |
|
|
// vide support for high-speed asynchronous SRAMs and Flash EPROMs. To provide
|
109 |
|
|
// reasonable price vs. performance, a 25ns access time will be used as the
|
110 |
|
|
// target device speed for RAM.
|
111 |
|
|
//
|
112 |
|
|
// A common interface provided by embedded computers is the asynchronous serial
|
113 |
|
|
// port. To make the interface reliable, the expectation is that the external
|
114 |
|
|
// clock input of the M65C02 will be a provided by a "baud rate" crystal oscil-
|
115 |
|
|
// lator. The frequency expected is the commonly available 18.432 MHz.
|
116 |
|
|
//
|
117 |
|
|
// The Tiockp, clock to output time, of a typical FPGA capable of 100 MHz
|
118 |
|
|
// internal operation is: 3.4ns for -5 Spartan-3AN with the IOBs configured for
|
119 |
|
|
// LVTTL operation, 12mA drive, and fast slew rate. The input setup time with
|
120 |
|
|
// input delay, Tiopickd, is: 3.73ns with IOB-DELAY=3. These delays, which sum
|
121 |
|
|
// to 7.13ns, must be added to the RAM's access time to determine the external
|
122 |
|
|
// memory cycle time: 42.13ns for a 35ns access time device.
|
123 |
|
|
//
|
124 |
|
|
// If the external 18.432 MHz clock is multiplied by 4 and divided by 4 to set
|
125 |
|
|
// the external memory cycle period, the resulting period would be 54.253ns,
|
126 |
|
|
// which satisfies the 42.13ns requirement with some margin. Therefore, the
|
127 |
|
|
// module will use a DCM whose input frequency is provided by a 18.432 MHz
|
128 |
|
|
// oscillator. The internally the M65C02 will operate at 73.728 MHz in a
|
129 |
|
|
// 4 clock per microcycle configuration; the memory controller controls the
|
130 |
|
|
// microcycle length of the M65C02.
|
131 |
|
|
//
|
132 |
|
|
// Dependencies: M65C02_Core.v
|
133 |
|
|
// M65C02_MPCv4.v
|
134 |
|
|
// M65C02_uPgm_V3a.coe (M65C02_uPgm_V3a.txt)
|
135 |
|
|
// M65C02_Decoder_ROM.coe (M65C02_Decoder_ROM.txt)
|
136 |
|
|
// M65C02_AddrGen.v
|
137 |
|
|
// M65C02_ALU.v
|
138 |
|
|
// M65C02_Bin.v
|
139 |
|
|
// M65C02_BCD.v
|
140 |
|
|
//
|
141 |
|
|
// Revision:
|
142 |
|
|
//
|
143 |
|
|
// 0.00 12B18 MAM Initial File Creation
|
144 |
|
|
//
|
145 |
|
|
// 0.01 13B16 MAM Added DCM/DFS clock generator, refined port list,
|
146 |
|
|
// and refined internal reset signal generation.
|
147 |
|
|
//
|
148 |
|
|
// 1.00 13B23 MAM Completed the integration and testing of the M65C02
|
149 |
|
|
// implementation as a standalone microprocessor.
|
150 |
|
|
//
|
151 |
|
|
// 2.00 13B25 MAM Pulled into the M65C02 module the Boot ROM/RAM used
|
152 |
|
|
// for testing. The test program will be used during
|
153 |
|
|
// testing. For a final product, the ROM/RAM can be
|
154 |
|
|
// loaded with a Monitor or other boot program. In this
|
155 |
|
|
// manner, all of the block RAM of the target FPGA is
|
156 |
|
|
// used, but maximum performance can be achieved. i.e.
|
157 |
|
|
// no clock stretching is required when running from
|
158 |
|
|
// block RAM. To perform the internal multiplexing of
|
159 |
|
|
// input data bus, added a dedicated chip enable for
|
160 |
|
|
// this device, BootROM, that controls the multiplexer.
|
161 |
|
|
// Modified the clock multiplexer, now that internal
|
162 |
|
|
// block RAM is used for the Boot/Monitor program, so
|
163 |
|
|
// that SYS and ROM chip enables are used for the dy-
|
164 |
|
|
// namic clock stretching circuit. Added a nWP input to
|
165 |
|
|
// inhibit writes to the Boot/Monitor Block RAM.
|
166 |
|
|
//
|
167 |
|
|
// 2.10 13B27 MAM Removed all unused logic, or RTL commented out.
|
168 |
|
|
//
|
169 |
|
|
// 2.20 12C02 MAM Incorporated M65C02_Core with M65C02_MPCv4 which in-
|
170 |
|
|
// cludes built-in microcycle length control and 6502-
|
171 |
|
|
// compatible wait state generator: Phi1O and Phi2O are
|
172 |
|
|
// are maintained as symmetrical signals. Removed clock
|
173 |
|
|
// stretch logic, BUFGMUX, and added four more micro-
|
174 |
|
|
// cycle state decode signals: C4-C8. This required in-
|
175 |
|
|
// creasing the MC vector size from 2 to 3 bits.
|
176 |
|
|
//
|
177 |
|
|
// 2.21 12C03 MAM Added C7 to the CE for the external memory data in-
|
178 |
|
|
// put. Also qualified DI_IFD CEwith the Rdy input sig-
|
179 |
|
|
// nal.
|
180 |
|
|
//
|
181 |
|
|
// 2.30 13F08 MAM Modified for Enso's Spartan 3A board with its 60 MHz
|
182 |
|
|
// oscillator. Added an input for that clock, divided
|
183 |
|
|
// the 60 MHz input by 4, and output the 15 MHz signal.
|
184 |
|
|
// Expect Enso to connect the output of the divider to
|
185 |
|
|
// the input clock pin of the M65C02 DCM. This mini-
|
186 |
|
|
// mizes the amount of work needed to port the M65C02
|
187 |
|
|
// to his project. An accompanying change is needed to
|
188 |
|
|
// UCF file.
|
189 |
|
|
//
|
190 |
|
|
// 2.40 13F17 MAM Reworked address decode to match the implementation
|
191 |
|
|
// of the 1004-0001 M65C02 Demo Card: two 32kB RAMs,
|
192 |
|
|
// one 512kB Flash, IO, and Boot ROM (internal Block
|
193 |
|
|
// RAM). RAM[0] is fully mapped. Only the first 16kB of
|
194 |
|
|
// RAM[1] is mapped. For the ROM, 12kB is mapped. The
|
195 |
|
|
// external IO is mapped to 2kB. The last 2kB are
|
196 |
|
|
// mapped to a Block RAM that serves to hold the Boot
|
197 |
|
|
// Program.
|
198 |
|
|
//
|
199 |
|
|
// 2.71 13F20 MAM Corrected error in the generation of the Rst_M65C02
|
200 |
|
|
// internal reset signal. The reduction of the reset
|
201 |
|
|
// signal shift register was previously done as an AND.
|
202 |
|
|
// That reduction has been changed to an OR, which is
|
203 |
|
|
// the correct vector reduction operator to generate
|
204 |
|
|
// internal reset signal from the external nRst and the
|
205 |
|
|
// DCM_Locked signal.
|
206 |
|
|
//
|
207 |
|
|
// 2.72 13H04 MAM Removed unused code. Changed the DI multiplexer into
|
208 |
|
|
// simple OR gate. The FFs feeding into the OR gate are
|
209 |
|
|
// forced to 0 if not selected. Changed to reset signal
|
210 |
|
|
// for several output strobes and input registers. On
|
211 |
|
|
// outputs, the RnW signal terminates synchronously
|
212 |
|
|
// with the rising edge of the Wr strobe. DI_IFD is rst
|
213 |
|
|
// if an internal data source is selected. BootIFD is
|
214 |
|
|
// reset if an external data source is selected.
|
215 |
|
|
//
|
216 |
|
|
// 2.73 13H17 MAM Adapted the M16C5x Clock Generator module for use
|
217 |
|
|
// with M65C02. Also encapsulated the interrupt handler
|
218 |
|
|
// function in another module.
|
219 |
|
|
//
|
220 |
|
|
// Additional Comments:
|
221 |
|
|
//
|
222 |
|
|
// With regard to the W65C02S, the M65C02 microprocessor implementation differs
|
223 |
|
|
// in a number of ways:
|
224 |
|
|
//
|
225 |
|
|
// 1) The instruction set is emulated, but cycle accuracy was not an
|
226 |
|
|
// objective, and the implementation provided here makes no attempt to
|
227 |
|
|
// to provide instruction cycles times which match those of the W65C02S
|
228 |
|
|
// microprocessor.
|
229 |
|
|
//
|
230 |
|
|
// The M65C02 core provides pipelined execution and fetch operations.
|
231 |
|
|
// This feature allows the M65C02 to reduce the number of memory cycles
|
232 |
|
|
// required per instruction. In addition, additional address generation
|
233 |
|
|
// logic for sequential operand fetch, program counter updates, and
|
234 |
|
|
// stack pointer updates allows some complex instructions to reduce the
|
235 |
|
|
// number of memory cycles required by one or two cycles. (Branches all
|
236 |
|
|
// execute in two cycles regardless of whether the branch is taken or
|
237 |
|
|
// not taken.)
|
238 |
|
|
//
|
239 |
|
|
// 2) The W65C02S provides capabilities for wait state insertion, external
|
240 |
|
|
// DMA control, and external falling edge-edge setting of the V flag in
|
241 |
|
|
// the processor status word.
|
242 |
|
|
//
|
243 |
|
|
// The M65C02 implementation provided here does not support the inser-
|
244 |
|
|
// tion of wait states by external logic. The implementation does sup-
|
245 |
|
|
// port the BE input signal to tri-state the signals of the processor
|
246 |
|
|
// connecting to the bus. The BE_In input port will tri-state all of
|
247 |
|
|
// the M65C02 processor bus signals. Since wait state insertion is not
|
248 |
|
|
// supported, external DMA logic can not stop the M65C02 processor and
|
249 |
|
|
// take control of the bus. The nSO port is provided to reserve a pin
|
250 |
|
|
// for a potential future upgrade of the M65C02 to support the Set
|
251 |
|
|
// Overflow feature found in the W65C02S. The current implementation of
|
252 |
|
|
// the M65C02 core will have to be modified to support this function.
|
253 |
|
|
//
|
254 |
|
|
// 3) Like the W65C02S, the M65C02 provides a Vector Pull output pin. The
|
255 |
|
|
// pin, nVP, is asserted by the M65C02 during the two memory cycles in
|
256 |
|
|
// which the IRQ/NMI/BRK/RST vectors are read from ROM/RAM/Registers.
|
257 |
|
|
//
|
258 |
|
|
// 4) Unlike the W65C02S, the M65C02 provides four chip enable outputs to
|
259 |
|
|
// simplify the selection of RAM, ROM, SYStem ROM, and I/O devices.
|
260 |
|
|
//
|
261 |
|
|
// The current implementation provides a four chip enables: CE[3:0].
|
262 |
|
|
//
|
263 |
|
|
// CE[0], RAM chip enable, asserts for a 48kB range: 0x0000-0xBFFF.
|
264 |
|
|
// CE[1], ROM chip enable, asserts for a 8kB range: 0xC000-0xDFFF.
|
265 |
|
|
// CE[2], SYS chip enable, asserts for a 4kB range: 0xE000-0xEFFF.
|
266 |
|
|
// CE[3], IO chip enable, asserts for a 4kB range: 0xF000-0xFFFF.
|
267 |
|
|
//
|
268 |
|
|
// The M65C02 also makes provisions for extended address outputs,
|
269 |
|
|
// XA[3:0], which are intended to be used with a simple internal MMU to
|
270 |
|
|
// allow mapping of 8kB blocks in a total address space of 4MB.
|
271 |
|
|
//
|
272 |
|
|
// 5) The M65C02 implements a bus interface that is not exactly a standard
|
273 |
|
|
// implementation of the two phase 6502 memory interface.
|
274 |
|
|
//
|
275 |
|
|
// To address generation logic used to reduce the number of memory
|
276 |
|
|
// cycles required per instruction is combinatorial and in series with
|
277 |
|
|
// the output address lines. The M65C02 registers all I/O signals. The
|
278 |
|
|
// consequence of this implementation detail is that the M65C02's
|
279 |
|
|
// address output is delayed from its internal clock's rising edge by a
|
280 |
|
|
// significant portion of the clock period. A synchronous output is
|
281 |
|
|
// very much desired because it provides consistent clock to output
|
282 |
|
|
// delay times, and it eliminates the skew in the combinatorial signal
|
283 |
|
|
// paths of the M65C02 core's address generator. Thus, the memory
|
284 |
|
|
// address, which in a typical 6502 is output during Phi1O, is not out-
|
285 |
|
|
// put by the M65C02 until the start of Phi2O.
|
286 |
|
|
//
|
287 |
|
|
// The control signals and the output data are are similarly registered
|
288 |
|
|
// and delayed to coincide with the delay in the address. This means
|
289 |
|
|
// that the external memory and I/O devices must be able to operate
|
290 |
|
|
// with signals which are only asserted during Phi2O. The reduced
|
291 |
|
|
// operating margins means that RAMs and IO devices must be able to
|
292 |
|
|
// reliably operate in a window of approximately 20ns.
|
293 |
|
|
//
|
294 |
|
|
// To use the M65C02 core in this environment, the M65C02 processor
|
295 |
|
|
// implementation effectively shews the 6502 memory cycle by a quarter
|
296 |
|
|
// of the cycle. There are four states in the M65C02 core's microcycle.
|
297 |
|
|
//
|
298 |
|
|
// C1 - Address computation cycle
|
299 |
|
|
// C2 - Output address, data, and control signals
|
300 |
|
|
// C3 - Deassert control, and capture input data
|
301 |
|
|
// C4 - Execute current instruction and decode next instruction
|
302 |
|
|
//
|
303 |
|
|
// In this four cycle process, Phi1O is asserted during C4 and C1, and
|
304 |
|
|
// Phi2O is asserted during C2 and C3.
|
305 |
|
|
//
|
306 |
|
|
// For SRAMs, it is not difficult to meet the timing requirements im-
|
307 |
|
|
// posed by this modified 6502 memory cycle with an inexpensive device.
|
308 |
|
|
// For ROMs, the modified 6502 memory cycle is difficult to satisfy
|
309 |
|
|
// with devices suitable for use with a 6502, i.e. NOR Flash devices.
|
310 |
|
|
// The minimum access times that NOR Flash devices provide is 45ns, and
|
311 |
|
|
// the typical device requires access times of 55ns and/or 70ns.
|
312 |
|
|
//
|
313 |
|
|
// One objective of the M65C02 is to provide a memory interface solu-
|
314 |
|
|
// tion to which it is easy to connect readily available memory. It is
|
315 |
|
|
// for this reason that the CE logic is included in the implementation.
|
316 |
|
|
// In addition, two control signals, nOE and nWr, are provided so that
|
317 |
|
|
// external logic is not required to combine Phi2O and RnW into output
|
318 |
|
|
// and write enable signals.
|
319 |
|
|
//
|
320 |
|
|
// Without implementing a wait state generator, the M65C02 requires
|
321 |
|
|
// some means to support a slow NOR Flash memory devices. To accomplish
|
322 |
|
|
// this without requiring external logic or extremely fast NOR Flash
|
323 |
|
|
// devices, means that some type of internally generated clock stretch
|
324 |
|
|
// logic is required. The M65C02 provides automatic clock stretching
|
325 |
|
|
// logic for the IO chip enable address range.
|
326 |
|
|
//
|
327 |
|
|
// The FPGA clocking resources provide a glitchless clock multiplexer.
|
328 |
|
|
// Using one of these multiplexers, the M65C02 multiplexes the internal
|
329 |
|
|
// system clock between 73.728 MHz ClkFX clock and the 36.864 MHz Clk2X
|
330 |
|
|
// clock. (ClkFX and Clk2X are directly related and generated in phase
|
331 |
|
|
// from the input clock. Clk2X is used as the feedback source for the
|
332 |
|
|
// DCM, and is in phase with ClkFX which is generated by the DFS.)
|
333 |
|
|
//
|
334 |
|
|
// These clock changes will be glitch free, and will demonstrate the
|
335 |
|
|
// operation of a clocking resource of the FPGA that is seldom used.
|
336 |
|
|
// But when accessing the 4kB of IO, the frequency and duty cycle of
|
337 |
|
|
// the Phi1O/Phi2O two phase clock will not be held at 18.432 MHz or
|
338 |
|
|
// 50%. The clock multiplexer logic stretches the clocks from a nominal
|
339 |
|
|
// period equal to the period of the input clock, or 54.253ns, to a
|
340 |
|
|
// period equal to 1.5x the period of the input clock, or 81.830ns. In
|
341 |
|
|
// the clock multiplexer implemented, the Phi1O pulse width is un-
|
342 |
|
|
// changed, 27.127ns, and the Phi2O pulse width is doubled, 54.253ns.
|
343 |
|
|
//
|
344 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
345 |
|
|
|
346 |
|
|
module M65C02 #(
|
347 |
|
|
parameter pStkPtr_Rst = 8'hFF, // SP Value after Rst
|
348 |
|
|
|
349 |
|
|
parameter pIRQ_Vector = 16'hFFFE, // IRQ Vector Addrs
|
350 |
|
|
parameter pBRK_Vector = 16'hFFFE, // Brk Vector Addrs
|
351 |
|
|
parameter pRST_Vector = 16'hFFFC, // Reset Vector Addrs
|
352 |
|
|
parameter pNMI_Vector = 16'hFFFA, // NMI Vector Addrs
|
353 |
|
|
|
354 |
|
|
parameter pInt_Hndlr = 9'h021, // Microprogram Interrupt Handler
|
355 |
|
|
|
356 |
|
|
parameter pBRK = 3'b010, // BRK #imm instruction
|
357 |
|
|
parameter pWAI = 3'b111, // WAI Mode
|
358 |
|
|
|
359 |
|
|
parameter pNOP = 8'hEA, // M65C02 Core NOP instruction
|
360 |
|
|
|
361 |
|
|
parameter pROM_AddrWidth = 11, // Boot/Monitor ROM Addres Width
|
362 |
|
|
|
363 |
|
|
parameter pM65C02_uPgm = "Src/M65C02_uPgm_V3a.coe",
|
364 |
|
|
parameter pM65C02_IDec = "Src/M65C02_Decoder_ROM.coe",
|
365 |
|
|
parameter pBootROM_File = "Src/M65C02_Tst5.txt"
|
366 |
|
|
)(
|
367 |
|
|
input nRst, // System Reset Input
|
368 |
|
|
output nRstO, // Internal System Reset Output (OC w/ PU)
|
369 |
|
|
input ClkIn, // System Clk Input
|
370 |
|
|
|
371 |
|
|
output reg Phi2O, // Clock Phase 2 Output
|
372 |
|
|
output reg Phi1O, // Clock Phase 1 Output - complement of Phi2O
|
373 |
|
|
|
374 |
|
|
input nSO, // Set oVerflow: currently unimplemented
|
375 |
|
|
|
376 |
|
|
input nNMI, // Non-Maskable Interrupt Request: edge sense
|
377 |
|
|
input nIRQ, // Maskable Interrupt Request: level sense
|
378 |
|
|
output nVP, // Vector Pull: asserted to indicate ISR taken
|
379 |
|
|
|
380 |
|
|
input BE_In, // Bus Enable: tri-states address, data, control
|
381 |
|
|
output Sync, // Synchronize: asserted during opcode fetch
|
382 |
|
|
output nML, // Memory Lock: asserted during RMW instructions
|
383 |
|
|
|
384 |
|
|
output [3:0] nCE, // Chip Enable for External RAM/ROM Memory
|
385 |
|
|
output RnW, // Read/nWrite cycle control output signal
|
386 |
|
|
output nWr, // External Asynchronous Bus Write Strobe
|
387 |
|
|
output nOE, // External Asynchronous Bus
|
388 |
|
|
inout Rdy, // Bus cycle Ready, drive low to extend cycle
|
389 |
|
|
output [ 3:0] XA, // Extended Address Output for External Memory
|
390 |
|
|
output [15:0] A, // External Memory Address Bus
|
391 |
|
|
inout [ 7:0] DB, // External, Bidirectional Data Bus
|
392 |
|
|
|
393 |
|
|
input nWP_In, // Internal Boot/Monitor RAM write protect
|
394 |
|
|
|
395 |
|
|
output reg nWait, // Driven low by Wait instruction (ASIC-only)
|
396 |
|
|
|
397 |
|
|
output reg [4:0] LED, // LED Test Register
|
398 |
|
|
|
399 |
|
|
output nSel, // SPI I/F Chip Select
|
400 |
|
|
output SCk, // SPI I/F Serial Clock
|
401 |
|
|
output MOSI, // SPI I/F Master Out/Slave In Serial Data
|
402 |
|
|
input MISO // SPI I/F Master In/Slave Out Serial Data
|
403 |
|
|
);
|
404 |
|
|
|
405 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
406 |
|
|
//
|
407 |
|
|
// Declarations
|
408 |
|
|
//
|
409 |
|
|
|
410 |
|
|
wire Rst; // Internal reset (Clk)
|
411 |
|
|
reg OE_nRstO; // Internal reset output (Buf_ClkIn)
|
412 |
|
|
|
413 |
|
|
//wire RE_NMI; // Output pulse signal from nNMI edge detector
|
414 |
|
|
//wire CE_NMI; // NMI latch/register clock enable
|
415 |
|
|
//reg NMI; // NMI latch/register to hold NMI until serviced
|
416 |
|
|
wire NMI; // NMI latch/register to hold NMI until serviced
|
417 |
|
|
|
418 |
|
|
//reg nIRQ_IFD, IRQ; // External maskable interrupt request inputs
|
419 |
|
|
wire IRQ; // External maskable interrupt request input
|
420 |
|
|
|
421 |
|
|
wire Int; // Interrupt handler interrupt signal to M65C02
|
422 |
|
|
wire [15:0] Vector; // Interrupt handler interrupt vector to M65C02
|
423 |
|
|
|
424 |
|
|
wire Brk; // Decoded M65C02 core instruction mode - BRK
|
425 |
|
|
|
426 |
|
|
reg BE_IFD; // External Bus Enable input register (IOB)
|
427 |
|
|
wire BE; // Internal Bus Enable signal
|
428 |
|
|
|
429 |
|
|
wire IRQ_Msk; // M65C02 core interrupt mask
|
430 |
|
|
wire IntSvc; // M65C02 core interrupt service indicator
|
431 |
|
|
wire ISR; // M65C02 core signal for signaling vector read
|
432 |
|
|
wire Done; // M65C02 core instruction complete/fetch
|
433 |
|
|
wire [2:0] Mode; // M65C02 core instruction mode
|
434 |
|
|
wire RMW; // M65C02 core Read-Modify-Write indicator
|
435 |
|
|
wire [2:0] MC; // M65C02 core microcycle
|
436 |
|
|
wire [1:0] IO_Op; // M65C02 core I/O cycle type
|
437 |
|
|
wire [15:0] AO; // M65C02 core Address Output
|
438 |
|
|
wire [ 7:0] DI; // M65C02 core Data Input
|
439 |
|
|
wire [ 7:0] DO; // M65C02 core Data Output
|
440 |
|
|
|
441 |
|
|
wire C1, C2, C3, C4; // Decoded microcycle states
|
442 |
|
|
wire C5, C6, C7, C8; // Decoded microcycle states
|
443 |
|
|
|
444 |
|
|
reg [1:0] VP; // Vector read/pull pulse stretcher
|
445 |
|
|
|
446 |
|
|
reg Sync_OFD;
|
447 |
|
|
reg nML_OFD;
|
448 |
|
|
reg RnW_OFD;
|
449 |
|
|
|
450 |
|
|
wire BootROM; // Internal Block RAM/ROM for Boot/Monitor
|
451 |
|
|
wire IO, ROM; // Address decode signals: CE[3], CE[2]
|
452 |
|
|
wire [1:0] RAM; // Address decode signals: CE[1], CE[0]
|
453 |
|
|
|
454 |
|
|
reg [ 3:0] nCE_OFD; // Decoded Chip Enable output (IOB registers)
|
455 |
|
|
reg [ 3:0] XA_OFD; // Extended Address output (IOB registers)
|
456 |
|
|
reg [15:0] AO_OFD; // Address Output (IOB registers)
|
457 |
|
|
|
458 |
|
|
reg nOE_OFD, nWr_OFD;
|
459 |
|
|
|
460 |
|
|
reg [7:0] DO_OFD;
|
461 |
|
|
reg [7:0] DI_IFD;
|
462 |
|
|
|
463 |
|
|
reg nWP; // Boot/Monitor RAM write protect
|
464 |
|
|
reg WE_Boot; // Write Enable for the Boot/Monitor ROM
|
465 |
|
|
reg [(pROM_AddrWidth-1):0] iAO; // Internal address pipeline register
|
466 |
|
|
reg [7:0] iDO; // Internal output data pipeline register
|
467 |
|
|
reg [7:0] Boot [((2**pROM_AddrWidth)-1):0]; // Boot ROM/RAM (2k x 8)
|
468 |
|
|
reg [7:0] Boot_DO; // Boot/Monitor ROM output data (absorbed)
|
469 |
|
|
reg [7:0] Boot_IFD; // Boot/Monitor ROM output pipeline register
|
470 |
|
|
|
471 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
472 |
|
|
//
|
473 |
|
|
// Implementation
|
474 |
|
|
//
|
475 |
|
|
|
476 |
|
|
// Instantiate the Clk and Reset Generator Module
|
477 |
|
|
|
478 |
|
|
M65C02_ClkGen ClkGen (
|
479 |
|
|
.nRst(nRst),
|
480 |
|
|
.ClkIn(ClkIn),
|
481 |
|
|
|
482 |
|
|
.Clk(Clk), // Clk <= (M/D) x ClkIn
|
483 |
|
|
.Clk_UART(), // Clk_UART <= 2x ClkIn
|
484 |
|
|
.Buf_ClkIn(Buf_ClkIn), // RefClk <= Buffered ClkIn
|
485 |
|
|
|
486 |
|
|
.Rst(Rst)
|
487 |
|
|
);
|
488 |
|
|
|
489 |
|
|
// Generate Reset output for use by external circuits
|
490 |
|
|
|
491 |
|
|
always @(posedge Buf_ClkIn or posedge Rst)
|
492 |
|
|
begin
|
493 |
|
|
if(Rst)
|
494 |
|
|
OE_nRstO <= #1 1;
|
495 |
|
|
else
|
496 |
|
|
OE_nRstO <= #1 0;
|
497 |
|
|
end
|
498 |
|
|
|
499 |
|
|
assign nRstO = ((OE_nRstO) ? 0 : 1'bZ);
|
500 |
|
|
|
501 |
|
|
//
|
502 |
|
|
// Process External NMI and maskable IRQ Interrupts
|
503 |
|
|
//
|
504 |
|
|
|
505 |
|
|
M65C02_IntHndlr #(
|
506 |
|
|
.pRST_Vector(pRST_Vector),
|
507 |
|
|
.pIRQ_Vector(pIRQ_Vector),
|
508 |
|
|
.pBRK_Vector(pBRK_Vector),
|
509 |
|
|
.pNMI_Vector(pNMI_Vector)
|
510 |
|
|
) IntHndlr (
|
511 |
|
|
.Rst(Rst),
|
512 |
|
|
.Clk(Clk),
|
513 |
|
|
|
514 |
|
|
.nNMI(nNMI),
|
515 |
|
|
.nIRQ(nIRQ),
|
516 |
|
|
.Mode(Mode),
|
517 |
|
|
|
518 |
|
|
.IRQ_Msk(IRQ_Msk),
|
519 |
|
|
.IntSvc(IntSvc),
|
520 |
|
|
|
521 |
|
|
.Int(Int),
|
522 |
|
|
.Vector(Vector),
|
523 |
|
|
|
524 |
|
|
.NMI(NMI),
|
525 |
|
|
.IRQ(IRQ),
|
526 |
|
|
.Brk(Brk)
|
527 |
|
|
);
|
528 |
|
|
|
529 |
|
|
// Synchronize BE input to Clk
|
530 |
|
|
|
531 |
|
|
always @(posedge Clk or posedge Rst) BE_IFD <= #1 ((Rst) ? 0 : BE_In);
|
532 |
|
|
|
533 |
|
|
assign BE = BE_IFD;
|
534 |
|
|
|
535 |
|
|
// Instantiate M65C02 Core
|
536 |
|
|
|
537 |
|
|
M65C02_Core #(
|
538 |
|
|
.pStkPtr_Rst(pStkPtr_Rst),
|
539 |
|
|
.pInt_Hndlr(pInt_Hndlr),
|
540 |
|
|
.pM65C02_uPgm(pM65C02_uPgm),
|
541 |
|
|
.pM65C02_IDec(pM65C02_IDec)
|
542 |
|
|
) uP (
|
543 |
|
|
.Rst(Rst),
|
544 |
|
|
.Clk(Clk),
|
545 |
|
|
|
546 |
|
|
.IRQ_Msk(IRQ_Msk),
|
547 |
|
|
.xIRQ(IRQ),
|
548 |
|
|
.Int(Int),
|
549 |
|
|
.Vector(Vector),
|
550 |
|
|
.IntSvc(IntSvc),
|
551 |
|
|
.ISR(ISR),
|
552 |
|
|
|
553 |
|
|
.Done(Done),
|
554 |
|
|
.SC(),
|
555 |
|
|
.Mode(Mode),
|
556 |
|
|
.RMW(RMW),
|
557 |
|
|
|
558 |
|
|
.MC(MC),
|
559 |
|
|
.MemTyp(),
|
560 |
|
|
.Wait(~Rdy),
|
561 |
|
|
.Rdy(),
|
562 |
|
|
|
563 |
|
|
.IO_Op(IO_Op),
|
564 |
|
|
.AO(AO),
|
565 |
|
|
.DI(DI),
|
566 |
|
|
.DO(DO),
|
567 |
|
|
|
568 |
|
|
.A(),
|
569 |
|
|
.X(),
|
570 |
|
|
.Y(),
|
571 |
|
|
.S(),
|
572 |
|
|
.P(),
|
573 |
|
|
.PC(),
|
574 |
|
|
|
575 |
|
|
.IR(),
|
576 |
|
|
.OP1(),
|
577 |
|
|
.OP2()
|
578 |
|
|
);
|
579 |
|
|
|
580 |
|
|
// Define the Memory Cycle Strobes (1 cycle in width)
|
581 |
|
|
|
582 |
|
|
assign C1 = (MC == 6); // 1st cycle of microcycle
|
583 |
|
|
assign C2 = (MC == 7); // 2nd cycle of microcycle
|
584 |
|
|
assign C3 = (MC == 5); // 3rd cycle of microcycle
|
585 |
|
|
assign C4 = (MC == 4); // 4th cycle of microcycle
|
586 |
|
|
//
|
587 |
|
|
assign C5 = (MC == 2); // 5th cycle of microcycle (Wait State Sequence)
|
588 |
|
|
assign C6 = (MC == 3); // 6th cycle of microcycle (Wait State Sequence)
|
589 |
|
|
assign C7 = (MC == 1); // 7th cycle of microcycle (Wait State Sequence)
|
590 |
|
|
assign C8 = (MC == 0); // 8th cycle of microcycle (Wait State Sequence)
|
591 |
|
|
|
592 |
|
|
// Assign Phi1O and Phi2O
|
593 |
|
|
|
594 |
|
|
always @(posedge Clk or posedge Rst)
|
595 |
|
|
begin
|
596 |
|
|
if(Rst)
|
597 |
|
|
{Phi1O, Phi2O} <= #1 2'b01;
|
598 |
|
|
else begin
|
599 |
|
|
Phi1O <= #1 (C3 | C4 | C7 | C8);
|
600 |
|
|
Phi2O <= #1 (C1 | C2 | C5 | C6);
|
601 |
|
|
end
|
602 |
|
|
end
|
603 |
|
|
|
604 |
|
|
// Generate Chip Enables
|
605 |
|
|
|
606 |
|
|
assign BootROM = (&AO[15:12] & AO[11]); // 0xF800 - 0xFFFF = 2kB (Int)
|
607 |
|
|
assign IO = (&AO[15:12] & ~AO[11]); // 0xF000 - 0xF7FF = 2kB (Ext)
|
608 |
|
|
assign ROM = (&AO[15:14] & ~&AO[13:12]); // 0xC000 - 0xEFFF = 12kB (Ext)
|
609 |
|
|
assign RAM[1] = (AO[15] & ~AO[14]); // 0x8000 - 0xBFFF = 16kB (Ext)
|
610 |
|
|
assign RAM[0] = ~AO[15]; // 0x0000 - 0x7FFF = 32kB (Ext)
|
611 |
|
|
|
612 |
|
|
always @(posedge Clk)
|
613 |
|
|
begin
|
614 |
|
|
if(Rst)
|
615 |
|
|
nCE_OFD <= #1 ~0;
|
616 |
|
|
else if(C1)
|
617 |
|
|
nCE_OFD <= #1 {~IO, ~ROM, ~RAM[1], ~RAM[0]};
|
618 |
|
|
end
|
619 |
|
|
|
620 |
|
|
assign nCE = ((BE) ? nCE_OFD : {4{1'bZ}});
|
621 |
|
|
|
622 |
|
|
// Generate Address Output
|
623 |
|
|
|
624 |
|
|
always @(posedge Clk)
|
625 |
|
|
begin
|
626 |
|
|
if(Rst)
|
627 |
|
|
{XA_OFD, AO_OFD} <= #1 {{4{1'b1}}, pRST_Vector};
|
628 |
|
|
else
|
629 |
|
|
{XA_OFD, AO_OFD} <= #1 {{4{AO[15]}}, AO};
|
630 |
|
|
end
|
631 |
|
|
|
632 |
|
|
assign {XA, A} = ((BE) ? {XA_OFD, AO_OFD} : {{4{1'bZ}}, {16{1'bZ}}});
|
633 |
|
|
|
634 |
|
|
// Generate Vector Pull Output
|
635 |
|
|
|
636 |
|
|
always @(posedge Clk)
|
637 |
|
|
begin
|
638 |
|
|
if(Rst)
|
639 |
|
|
VP <= #1 0;
|
640 |
|
|
else if(C4)
|
641 |
|
|
VP <= #1 ((ISR) ? 2'b11 : {1'b0, VP[1]});
|
642 |
|
|
end
|
643 |
|
|
|
644 |
|
|
assign nVP = ((BE) ? ~VP[0] : 1'bZ);
|
645 |
|
|
|
646 |
|
|
// Generate nWait output; assert nRdy input when nWait asserted
|
647 |
|
|
|
648 |
|
|
always @(posedge Clk or posedge Rst)
|
649 |
|
|
begin
|
650 |
|
|
if(Rst)
|
651 |
|
|
nWait <= #1 1;
|
652 |
|
|
else if(C1)
|
653 |
|
|
nWait <= #1 ~(Mode == pWAI);
|
654 |
|
|
end
|
655 |
|
|
|
656 |
|
|
// Generate M65C02 Memory Lock Signal
|
657 |
|
|
|
658 |
|
|
always @(posedge Clk)
|
659 |
|
|
begin
|
660 |
|
|
if(Rst)
|
661 |
|
|
nML_OFD <= #1 1;
|
662 |
|
|
else if(C1)
|
663 |
|
|
nML_OFD <= #1 ~RMW;
|
664 |
|
|
end
|
665 |
|
|
|
666 |
|
|
assign nML = ((BE) ? nML_OFD : 1'bZ);
|
667 |
|
|
|
668 |
|
|
// Generate Sync Output
|
669 |
|
|
|
670 |
|
|
always @(posedge Clk)
|
671 |
|
|
begin
|
672 |
|
|
if(Rst)
|
673 |
|
|
Sync_OFD <= #1 1;
|
674 |
|
|
else if(C1)
|
675 |
|
|
Sync_OFD <= #1 Done;
|
676 |
|
|
end
|
677 |
|
|
|
678 |
|
|
assign Sync = ((BE) ? Sync_OFD : 1'bZ);
|
679 |
|
|
|
680 |
|
|
// Generate M65C02 RnW output
|
681 |
|
|
|
682 |
|
|
always @(posedge Clk)
|
683 |
|
|
begin
|
684 |
|
|
if(Rst | ((C3 | C7) & Rdy))
|
685 |
|
|
RnW_OFD <= #1 1;
|
686 |
|
|
else if(C1)
|
687 |
|
|
RnW_OFD <= #1 ~(IO_Op == 1);
|
688 |
|
|
end
|
689 |
|
|
|
690 |
|
|
assign RnW = ((BE) ? RnW_OFD : 1'bZ);
|
691 |
|
|
|
692 |
|
|
// Generate Asynchronous SRAM Read Strobe
|
693 |
|
|
|
694 |
|
|
always @(posedge Clk)
|
695 |
|
|
begin
|
696 |
|
|
if(Rst | ((C3 | C7) & Rdy))
|
697 |
|
|
nOE_OFD <= #1 1;
|
698 |
|
|
else if(C1)
|
699 |
|
|
nOE_OFD <= #1 (~IO_Op[1] | BootROM);
|
700 |
|
|
end
|
701 |
|
|
|
702 |
|
|
assign nOE = ((BE) ? nOE_OFD : 1'bZ);
|
703 |
|
|
|
704 |
|
|
// Generate Asynchronous SRAM Write Strobe
|
705 |
|
|
|
706 |
|
|
always @(posedge Clk)
|
707 |
|
|
begin
|
708 |
|
|
if(Rst | ((C3 | C7) & Rdy))
|
709 |
|
|
nWr_OFD <= #1 1;
|
710 |
|
|
else if(C1)
|
711 |
|
|
nWr_OFD <= #1 ~(IO_Op == 1);
|
712 |
|
|
end
|
713 |
|
|
|
714 |
|
|
assign nWr = ((BE) ? nWr_OFD : 1'bZ);
|
715 |
|
|
|
716 |
|
|
// Drive DO out of M65C02 module
|
717 |
|
|
// Feed nWR strobe back in as second output enable. Coupled with half cycle
|
718 |
|
|
// shift in the nOE signal, these delays should make it easy to satisfy
|
719 |
|
|
// bus disable times when write operations follow reads and vice-versa.
|
720 |
|
|
|
721 |
|
|
|
722 |
|
|
always @(posedge Clk or posedge Rst)
|
723 |
|
|
begin
|
724 |
|
|
if(Rst)
|
725 |
|
|
DO_OFD <= #1 0;
|
726 |
|
|
else if(C1)
|
727 |
|
|
DO_OFD <= #1 DO;
|
728 |
|
|
end
|
729 |
|
|
|
730 |
|
|
assign DB = ((BE & ~nWr) ? DO_OFD : 8'bZ);
|
731 |
|
|
|
732 |
|
|
// Capture Input Data from External Memory
|
733 |
|
|
// Half cycle shift allows more time for RAM/peripheral device to output
|
734 |
|
|
// data. Internal signal paths in the FPGA will operate on the data within
|
735 |
|
|
// half a cycle of Clk. This requires tighter path controls by the map and
|
736 |
|
|
// route tools. DI is distributed to IR, OP1, OP2, uPgm_ROM, and IDec_ROM.
|
737 |
|
|
|
738 |
|
|
assign CE_DI_FFs = ((C3 | C7) & Rdy);
|
739 |
|
|
assign Rst_DI_IFD = (Rst | BootROM);
|
740 |
|
|
|
741 |
|
|
always @(posedge Clk)
|
742 |
|
|
begin
|
743 |
|
|
if(Rst_DI_IFD)
|
744 |
|
|
DI_IFD <= #1 0;
|
745 |
|
|
else if(CE_DI_FFs)
|
746 |
|
|
DI_IFD <= #1 DB;
|
747 |
|
|
end
|
748 |
|
|
|
749 |
|
|
// Implement 2k x 8 internal Boot/Monitor ROM in Block RAM
|
750 |
|
|
// Allow writes so that the NMI, RST, and IRQ vectors can be changed.
|
751 |
|
|
// External active low write protect signal allows the writing to this RAM
|
752 |
|
|
// to be inhibited.
|
753 |
|
|
|
754 |
|
|
// Synchronize external Boot/Monitor ROM write protect
|
755 |
|
|
|
756 |
|
|
always @(posedge Clk or posedge Rst) nWP <= #1 ((Rst) ? 0 : nWP_In);
|
757 |
|
|
|
758 |
|
|
// Generate a synchronous Boot/Monitor ROM write enable
|
759 |
|
|
|
760 |
|
|
always @(posedge Clk or posedge Rst)
|
761 |
|
|
begin
|
762 |
|
|
if(Rst)
|
763 |
|
|
WE_Boot <= #1 0;
|
764 |
|
|
else
|
765 |
|
|
WE_Boot <= #1 (BootROM & (IO_Op == 1) & nWP & C1);
|
766 |
|
|
end
|
767 |
|
|
|
768 |
|
|
// Capture the output address to break long delay path like done for output
|
769 |
|
|
// address
|
770 |
|
|
|
771 |
|
|
always @(posedge Clk)
|
772 |
|
|
begin
|
773 |
|
|
if(Rst) begin
|
774 |
|
|
iAO <= #1 pRST_Vector;
|
775 |
|
|
iDO <= #1 0;
|
776 |
|
|
end else if(C1) begin
|
777 |
|
|
iAO <= #1 AO;
|
778 |
|
|
iDO <= #1 DO;
|
779 |
|
|
end
|
780 |
|
|
end
|
781 |
|
|
|
782 |
|
|
initial
|
783 |
|
|
$readmemh(pBootROM_File, Boot, 0, ((2**pROM_AddrWidth)-1));
|
784 |
|
|
|
785 |
|
|
always @(posedge Clk)
|
786 |
|
|
begin
|
787 |
|
|
if(WE_Boot)
|
788 |
|
|
Boot[iAO] <= #1 iDO;
|
789 |
|
|
|
790 |
|
|
Boot_DO <= #1 Boot[iAO];
|
791 |
|
|
end
|
792 |
|
|
|
793 |
|
|
// Add pipeline register to break circular path through Address Generator
|
794 |
|
|
|
795 |
|
|
always @(posedge Clk or posedge Rst)
|
796 |
|
|
begin
|
797 |
|
|
if(Rst)
|
798 |
|
|
Boot_IFD <= #1 0;
|
799 |
|
|
else if(CE_DI_FFs)
|
800 |
|
|
Boot_IFD <= #1 ((BootROM) ? Boot_DO : 0);
|
801 |
|
|
end
|
802 |
|
|
|
803 |
|
|
// Multiplex the External and Internal Data sources
|
804 |
|
|
|
805 |
|
|
assign DI = Boot_IFD | DI_IFD;
|
806 |
|
|
|
807 |
|
|
// LED Test Register
|
808 |
|
|
|
809 |
|
|
assign WE_LED = (IO & (iAO[10:3] == 8'hFF) & (IO_Op == 1));
|
810 |
|
|
|
811 |
|
|
always @(posedge Clk)
|
812 |
|
|
begin
|
813 |
|
|
if(Rst)
|
814 |
|
|
LED <= #1 0;
|
815 |
|
|
else if(C3)
|
816 |
|
|
LED <= #1 ((WE_LED) ? iDO[7:3] : LED);
|
817 |
|
|
end
|
818 |
|
|
|
819 |
|
|
endmodule
|