1 |
2 |
MichaelA |
///////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Copyright 2009-2013 by Michael A. Morris, dba M. A. Morris & Associates
|
4 |
|
|
//
|
5 |
|
|
// All rights reserved. The source code contained herein is publicly released
|
6 |
|
|
// under the terms and conditions of the GNU Lesser Public License. No part of
|
7 |
|
|
// this source code may be reproduced or transmitted in any form or by any
|
8 |
|
|
// means, electronic or mechanical, including photocopying, recording, or any
|
9 |
|
|
// information storage and retrieval system in violation of the license under
|
10 |
|
|
// which the source code is released.
|
11 |
|
|
//
|
12 |
|
|
// The source code contained herein is free; it may be redistributed and/or
|
13 |
|
|
// modified in accordance with the terms of the GNU Lesser General Public
|
14 |
|
|
// License as published by the Free Software Foundation; either version 2.1 of
|
15 |
|
|
// the GNU Lesser General Public License, or any later version.
|
16 |
|
|
//
|
17 |
|
|
// The source code contained herein is freely released WITHOUT ANY WARRANTY;
|
18 |
|
|
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
19 |
|
|
// PARTICULAR PURPOSE. (Refer to the GNU Lesser General Public License for
|
20 |
|
|
// more details.)
|
21 |
|
|
//
|
22 |
|
|
// A copy of the GNU Lesser General Public License should have been received
|
23 |
|
|
// along with the source code contained herein; if not, a copy can be obtained
|
24 |
|
|
// by writing to:
|
25 |
|
|
//
|
26 |
|
|
// Free Software Foundation, Inc.
|
27 |
|
|
// 51 Franklin Street, Fifth Floor
|
28 |
|
|
// Boston, MA 02110-1301 USA
|
29 |
|
|
//
|
30 |
|
|
// Further, no use of this source code is permitted in any form or means
|
31 |
|
|
// without inclusion of this banner prominently in any derived works.
|
32 |
|
|
//
|
33 |
|
|
// Michael A. Morris
|
34 |
|
|
// Huntsville, AL
|
35 |
|
|
//
|
36 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
37 |
|
|
|
38 |
|
|
`timescale 1ns / 1ps
|
39 |
|
|
|
40 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
41 |
|
|
// Company: M. A. Morris & Associates
|
42 |
|
|
// Engineer: Michael A. Morris
|
43 |
|
|
//
|
44 |
|
|
// Create Date: 07:00:31 11/25/2009
|
45 |
|
|
// Design Name: WDC W65C02 Microprocessor Re-Implementation
|
46 |
|
|
// Module Name: M65C02_ALU
|
47 |
|
|
// Project Name: C:\XProjects\ISE10.1i\MAM6502
|
48 |
|
|
// Target Devices: Generic SRAM-based FPGA
|
49 |
|
|
// Tool versions: Xilinx ISE10.1i SP3
|
50 |
|
|
//
|
51 |
|
|
// Description:
|
52 |
|
|
//
|
53 |
|
|
// This module implements the ALU for the M65C02 microprocessor. Included in
|
54 |
|
|
// the ALU are the accumulator (A), pre/post-index registers (X and Y), stack
|
55 |
|
|
// pointer (S), and processor status word (P). The microcode, composed of a
|
56 |
|
|
// fixed part from the instruction decoder (IDEC) and a variable portion from
|
57 |
|
|
// the execution engine, are used to control a binary adder unit (AU), a BCD
|
58 |
|
|
// adder unit (DU), a shift unit (SU), a logic unit (LU) and a bit unit (BU).
|
59 |
|
|
// The AU performs binary two's complement addition, and the DU performs un-
|
60 |
|
|
// signed BCD addition on two operands. These units also handle subtraction,
|
61 |
|
|
// but the operand multiplexers feeding data into these units must perform the
|
62 |
|
|
// required complement of the operand to subtract from the accumulator. The SU
|
63 |
|
|
// performs arithmetic and logical shifts and rotate operations on an operand.
|
64 |
|
|
// The LU performs bit-wise operations (OR, AND, and XOR) on one operand. The
|
65 |
|
|
// BU performs bit masking and testing on one operand.
|
66 |
|
|
//
|
67 |
|
|
// The ALU requires an En input to be asserted to initiate the operation that
|
68 |
|
|
// the fixed IDEC microword requires. The SC and Done fields in the variable
|
69 |
|
|
// microwords from the execution engine controls the En input to the ALU. The
|
70 |
|
|
// En input is a registered signal which when asserted indicates that the ope-
|
71 |
|
|
// rands required to complete an operation have been read from memory. The
|
72 |
|
|
// addressing mode of the instruction will determine when En is asserted. In
|
73 |
|
|
// the case of program flow control instructions, En and the StkOp field will
|
74 |
|
|
// control the updates to the stack pointer, S. In the case of non-program
|
75 |
|
|
// flow control instructions, En alone controls the updates to these regis-
|
76 |
|
|
// ters: A, X, Y, P. For implicit or accumulator mode instructions, En is ge-
|
77 |
|
|
// nerally asserted when the opcode is loaded into the Instruction Register
|
78 |
|
|
// (IR). Otherwise, it is asserted when the memory operand is loaded into the
|
79 |
|
|
// OP1 register, and the operation defined by IDEC should be completed with
|
80 |
|
|
// the available data.
|
81 |
|
|
//
|
82 |
|
|
// The Op input selects the operation to be performed by the AU, SU, or LU.
|
83 |
|
|
// Note: Q = {Y, X, M, A}, R = {8'h01, M}, Ci = (CSel ? Sub : C).
|
84 |
|
|
//
|
85 |
|
|
// Op Mnemonic Operation Condition Code
|
86 |
|
|
// 0000 XFR ALU <= {OSel: 0, A, X, Y, P, S, M}
|
87 |
|
|
// 0001 OR ALU <= A | M; N <= ALU[7]; Z <= ~|ALU;
|
88 |
|
|
// 0010 AND ALU <= A & M; N <= ALU[7]; Z <= ~|ALU;
|
89 |
|
|
// 0011 EOR ALU <= A ^ M; N <= ALU[7]; Z <= ~|ALU;
|
90 |
|
|
// 0100 ADC ALU <= Q + M + C; N <= ALU[7]; Z <= ~|ALU;
|
91 |
|
|
// V <= OVF; C <= COut;
|
92 |
|
|
// 0101 SBC ALU <= Q + ~M + C; N <= ALU[7]; Z <= ~|ALU;
|
93 |
|
|
// V <= OVF; C <= COut;
|
94 |
|
|
// 0110 INC ALU <= Q + 1 + 0; N <= ALU[7]; Z <= ~|ALU;
|
95 |
|
|
// 0111 DEC ALU <= Q + ~1 + 1; N <= ALU[7]; Z <= ~|ALU;
|
96 |
|
|
// 1000 ASL ALU <= R << 1; N <= ALU[7]; Z <= ~|ALU; C <= R[7];
|
97 |
|
|
// 1001 LSR ALU <= R >> 1; N <= ALU[7]; Z <= ~|ALU; C <= R[0];
|
98 |
|
|
// 1010 ROL ALU <= {R[6:0], C} N <= ALU[7]; Z <= ~|ALU; C <= R[7];
|
99 |
|
|
// 1011 ROR ALU <= {C, R[7:1]} N <= ALU[7]; Z <= ~|ALU; C <= R[0];
|
100 |
|
|
// 1100 BIT ALU <= (A & M); N <= M[7]; Z <= ~|(A & M);
|
101 |
|
|
// V <= M[6];
|
102 |
|
|
// 1101 TRB ALU <= M & ~A; Z <= ~|(A & M);
|
103 |
|
|
// 1110 TSB ALU <= M | A; Z <= ~|(A & M);
|
104 |
|
|
// 1111 CMP ALU <= Q + ~M + 1 N <= ALU[7]; Z <= ~|ALU; C <= COut;
|
105 |
|
|
//
|
106 |
|
|
// Although the condition codes modified by the ALU are shown above, the CC
|
107 |
|
|
// input field will actually control loading condition codes into P register.
|
108 |
|
|
// This is especially true for the N and V condition codes with respect to the
|
109 |
|
|
// BIT instruction. N and V are modified by BIT as indicated above, except for
|
110 |
|
|
// for the BIT #imm instruction which only modifies Z, and leaves N and V un-
|
111 |
|
|
// changed like the TRB and TSB instructions.
|
112 |
|
|
//
|
113 |
|
|
// The coding for the WSel and OSel fields follows:
|
114 |
|
|
// 3 3
|
115 |
|
|
// Sel WSel OSel
|
116 |
|
|
// 000 none M
|
117 |
|
|
// 001 A A
|
118 |
|
|
// 010 X X
|
119 |
|
|
// 011 Y Y
|
120 |
|
|
// 100 - 0
|
121 |
|
|
// 101 S S
|
122 |
|
|
// 110 P P
|
123 |
|
|
// 111 M M
|
124 |
|
|
//
|
125 |
|
|
// The WSel field provides the register enable for writing into a register,
|
126 |
|
|
// and the OSel field determines the value of the ALU result bus. Typically
|
127 |
|
|
// the ALU result bus is the ALU. But on the occasion of a load, store, xfer,
|
128 |
|
|
// push, and pull instructions, the ALU bus is driven by 0, A, X, Y, S, P, and
|
129 |
|
|
// M. In this manner, the ALU result can be either loaded into the register
|
130 |
|
|
// designated by the WSel field, or it can be written to memory.
|
131 |
|
|
//
|
132 |
|
|
// The stack pointer, S, is also controlled directly by the execution SM. The
|
133 |
|
|
// execution engine provides the operation of the stack pointer for push and
|
134 |
|
|
// pop operations. The stack pointer and the two index registers are provided
|
135 |
|
|
// to the Memory Address Register address generator. The value of the stack
|
136 |
|
|
// output to the address generator is controlled by StkOp input field.
|
137 |
|
|
//
|
138 |
|
|
// The coding of these control fields and the ALU field is designed to yield a
|
139 |
|
|
// 0 at the output of the module if all the input control fields are logical
|
140 |
|
|
// 0. This means that a NOP is simply a zero for all ALU control fields.
|
141 |
|
|
//
|
142 |
|
|
// The CC_Sel field controls the CC_Out condition code test signal and the
|
143 |
|
|
// updating of the individual bits in P in response to specific instructions:
|
144 |
|
|
//
|
145 |
|
|
// 00_xxx: NOP/TRUE - CC_Out = 1 unless (CCSel[4:3] != 2'b01)
|
146 |
|
|
// 01_000: CC - CC_Out = ~C;
|
147 |
|
|
// 01_001: CS - CC_Out = C;
|
148 |
|
|
// 01_010: NE - CC_Out = ~Z;
|
149 |
|
|
// 01_011: EQ - CC_Out = Z;
|
150 |
|
|
// 01_100: VC - CC_Out = ~V;
|
151 |
|
|
// 01_101: VS - CC_Out = V;
|
152 |
|
|
// 01_110: PL - CC_OUT = ~N;
|
153 |
|
|
// 01_111: MI - CC_Out = N;
|
154 |
|
|
// 10_000: CLC - C <= 0;
|
155 |
|
|
// 10_001: SEC - C <= 1;
|
156 |
|
|
// 10_010: CLI - I <= 0;
|
157 |
|
|
// 10_011: SEI - I <= 1;
|
158 |
|
|
// 10_100: CLD - D <= 0;
|
159 |
|
|
// 10_101: SED - D <= 1;
|
160 |
|
|
// 10_110: CLV - V <= 0;
|
161 |
|
|
// 10_111: BRK - B <= 1;
|
162 |
|
|
// 11_000: Z - Z <= ~|(A & M);
|
163 |
|
|
// 11_001: NZ - N <= ALU[7]; Z <= ~|ALU;
|
164 |
|
|
// 11_010: NZC - N <= ALU[7]; Z <= ~|ALU; C <= COut
|
165 |
|
|
// 11_011: NVZ - N <= M[7]; Z <= ~|(A & M); V <= M[6];
|
166 |
|
|
// 11_100: NVZC - N <= ALU[7]; Z <= ~|ALU; V <= OVF; C <= COut;
|
167 |
|
|
// 11_101: Rsvd
|
168 |
|
|
// 11_110: Rsvd
|
169 |
|
|
// 11_111: Rsvd - P <= M;
|
170 |
|
|
//
|
171 |
|
|
// The stack operations supported are: hold, rsvd, ++S, and S--. The stack
|
172 |
|
|
// pointer can only be loaded from the X index register. Similarly, the stack
|
173 |
|
|
// pointer can only be transfered to the X index register. The stack pointer
|
174 |
|
|
// points to an open location on the stack. Thus, push operations write the
|
175 |
|
|
// value at the location pointed to by S, and post-decrements S, S--. Stack
|
176 |
|
|
// pull operations require the value to be incremented by one, ++S, before
|
177 |
|
|
// that location can be read into OP1 and subsequently written to one of four
|
178 |
|
|
// registers: P, A, X, or Y.
|
179 |
|
|
//
|
180 |
|
|
// The stack pointer control, StkOp, field is generated by the execution
|
181 |
|
|
// engine:
|
182 |
|
|
//
|
183 |
|
|
// 00 : Hold;
|
184 |
|
|
// 01 : Rsvd;
|
185 |
|
|
// 10 : S--;
|
186 |
|
|
// 11 : ++S;
|
187 |
|
|
//
|
188 |
|
|
// Dependencies: M65C02_Bin.v, M65C02_BCD.v
|
189 |
|
|
//
|
190 |
|
|
// Revision:
|
191 |
|
|
//
|
192 |
|
|
// 0.01 09K25 MAM Initial coding
|
193 |
|
|
//
|
194 |
|
|
// 0.02 09K30 MAM Corrected coding for zero detection from ~|ALU to
|
195 |
|
|
// ~|ALU[7:0]. ALU[8] is Carry Out, and first formu-
|
196 |
|
|
// lation only correct for non-arithmetic, non-shift
|
197 |
|
|
// operations. Corrected binary mode OVF equation.
|
198 |
|
|
// Changed priority of write enables for the PSW bits
|
199 |
|
|
// making the register write the highest priority,
|
200 |
|
|
// followed by the SEx and CLx instructions, respec-
|
201 |
|
|
// tively, followed by any special modes, and at the
|
202 |
|
|
// lowest priority any CC updates of ALU instructions.
|
203 |
|
|
//
|
204 |
|
|
// 0.03 09K30 MAM Modified ALU structure to explicitly define the
|
205 |
|
|
// width of all operations. All operations explicitly
|
206 |
|
|
// set at 9 bits. Apparently, the synthesizer is able
|
207 |
|
|
// to better resolve the specified operations into
|
208 |
|
|
// FPGA primitives. Nearly 11% improvement in the
|
209 |
|
|
// reported speed of the synthesized ckts as a result.
|
210 |
|
|
// Also reported significant reduction in the reported
|
211 |
|
|
// area of the ckts. From an area of 35 to an area of
|
212 |
|
|
// 23, which is a 33% reduction in the area of the
|
213 |
|
|
// synthesized ckts.
|
214 |
|
|
//
|
215 |
|
|
// 0.04 09L01 MAM Broke the ADC/SBC adders into an 8-bit segment and
|
216 |
|
|
// a 1-bit segment in order to determine the carries
|
217 |
|
|
// out of bit 6 and out of bit 7 independently. This
|
218 |
|
|
// allows 2's Complement Overflow to be determined as
|
219 |
|
|
// exclusive OR of these two carries: V <= ^{C[7:6]}.
|
220 |
|
|
// Setting V with the sign of the two inputs and Sum,
|
221 |
|
|
// V = (A[7] & M[7] & ~S[7]) | (~A[7] & ~M[7] & S[7]),
|
222 |
|
|
// was proving to be wrong for the three operand ADDs
|
223 |
|
|
// that these two instructions actually represent. The
|
224 |
|
|
// overflow detection mechanism is independent of the
|
225 |
|
|
// number of operands into the adder tree. There was
|
226 |
|
|
// an additional 10% improvement in speed as a result
|
227 |
|
|
// of this approach to ADC/SBC.
|
228 |
|
|
//
|
229 |
|
|
// 0.05 09L25 MAM Modified the input parameter list to include select
|
230 |
|
|
// signals for the input of the adder. Two ports were
|
231 |
|
|
// defined for the Binary/BCD adder: Q and R. Selects
|
232 |
|
|
// were added to select the Q and R operands for the
|
233 |
|
|
// various instructions that utilize the adder: ADC,
|
234 |
|
|
// SBC, INC, DEC, and CMP. Also included BCD mode for
|
235 |
|
|
// this adder. Including the BCD mode slows down the
|
236 |
|
|
// ALU.
|
237 |
|
|
//
|
238 |
|
|
// 0.06 09L31 MAM Modified the module to separate the multiplexer and
|
239 |
|
|
// the various computational units comprising the ALU.
|
240 |
|
|
// Registered versions of the Logic Unit (LU) (ORA,
|
241 |
|
|
// AND, EOR), the Arithmetic Unit (AU) (ADC, SBC, INC,
|
242 |
|
|
// DEC, CMP), the Shift Unit (SU) (ASL, LSR, ROL, ROR)
|
243 |
|
|
// and the Bit Unit (BU) (BIT, TSB, TRB) were created.
|
244 |
|
|
// The multiplexer was modified as a registered device
|
245 |
|
|
// and implements the computation unit result multi-
|
246 |
|
|
// plexer and the ALU register multiplexer. Implemen-
|
247 |
|
|
// ted a Register Write Enable and global Valid signal
|
248 |
|
|
// generator to deal with the apropriate register up-
|
249 |
|
|
// dates. Modified the stack address generation logic
|
250 |
|
|
// to accomodate the registered nature of the ALU.
|
251 |
|
|
//
|
252 |
|
|
// 1.00 11D09 MAM Removed unused code previously commented out.
|
253 |
|
|
//
|
254 |
|
|
// 1.01 11E14 MAM Corrected the comments regarding Q and R operand
|
255 |
|
|
// multiplexer encoding.
|
256 |
|
|
//
|
257 |
|
|
// 1.02 12A28 MAM Added parameter to set default value of Stack Ptr
|
258 |
|
|
// after reset.
|
259 |
|
|
//
|
260 |
|
|
// 1.10 12B04 MAM Removed pipeline registers from the ALU Valid and
|
261 |
|
|
// StkPtr signals. Also, separated the LST (Load/Store
|
262 |
|
|
// /Transfer) mux from the ALU mux for readability.
|
263 |
|
|
//
|
264 |
|
|
// 1.11 12B11 MAM Adjusted the Shift Unit's implementation to use a
|
265 |
|
|
// common structure that clearly shows the bit being
|
266 |
|
|
// being moved into the C, and similarly, the bit vec-
|
267 |
|
|
// tor being assigned to the ALU bus. Corrected com-
|
268 |
|
|
// ment on U multiplexer of the Q bus. The X and Y
|
269 |
|
|
// register operations listed were swapped.
|
270 |
|
|
//
|
271 |
|
|
// 1.20 12B18 MAM Added FF to delay SetB by one cycle. This delayed
|
272 |
|
|
// signal clears the D flag and sets the I flag on the
|
273 |
|
|
// cycle after the PSW is pushed onto the stack during
|
274 |
|
|
// a BRK instruction. Also added an input, ISR, that
|
275 |
|
|
// is asserted by the interrupt processing logic after
|
276 |
|
|
// pushing the PSW so that D is cleared and I is set.
|
277 |
|
|
// In both cases, the interrupt service routines will
|
278 |
|
|
// operate in binary mode and with external maskable
|
279 |
|
|
// interrupts disabled.
|
280 |
|
|
//
|
281 |
|
|
// 1.21 12B19 MAM Renamed module: MAM6502_ALU => M65C02_ALU.
|
282 |
|
|
//
|
283 |
|
|
// 1.30 12B20 MAM Removed FF added by 1.20. Decided that ISR strobe,
|
284 |
|
|
// controlled by the microcode, was a better control
|
285 |
|
|
// signal for this purpose. ISR expected to be assert-
|
286 |
|
|
// ed by interrupt and break microroutines at the cor-
|
287 |
|
|
// rect time before the start of the first instruction
|
288 |
|
|
// of the interrupt/trap service routine. Since the
|
289 |
|
|
// first instruction after accepting the interrupt or
|
290 |
|
|
// executing BRK is always executed, the D and I flags
|
291 |
|
|
// do not need to be modified until the end of that
|
292 |
|
|
// instruction.
|
293 |
|
|
//
|
294 |
|
|
// Substantially changed the Reg_WE logic and PSW im-
|
295 |
|
|
// plementation. During RTI testing, two problems were
|
296 |
|
|
// found and corrected: (1) control of register write
|
297 |
|
|
// enables was not possible, and (2) updates to the P
|
298 |
|
|
// were occuring unexpectedly in some situations. To
|
299 |
|
|
// correct the first, the microcode was changed and a
|
300 |
|
|
// port was added that provided a 3-bit register write
|
301 |
|
|
// enable input. This 3-bit input is combined with the
|
302 |
|
|
// 3-bit WSel field from the fixed microword, to gene-
|
303 |
|
|
// rate register write enables for A, X, Y, S, and P.
|
304 |
|
|
// This new structure appears to retain the desired
|
305 |
|
|
// speed, and it is easier to control the desired ac-
|
306 |
|
|
// tions using the microprogram.
|
307 |
|
|
//
|
308 |
|
|
// To correct the second required modifications to P
|
309 |
|
|
// register. In putting in those changes, it was appa-
|
310 |
|
|
// rent that the use of individual registers and muxes
|
311 |
|
|
// for the various input signals, was a major contri-
|
312 |
|
|
// butor to poor implementation. Thus, a single 7-bit
|
313 |
|
|
// register was implemented, with an input multiplexer
|
314 |
|
|
// the more clearly defines the input signals and data
|
315 |
|
|
// sources for each type of operation that changes the
|
316 |
|
|
// PSW at an idividual bit level or as whole.
|
317 |
|
|
//
|
318 |
|
|
// The changes made in these two areas allow PAR to
|
319 |
|
|
// satisfy the 100 MHz operating speed objective.
|
320 |
|
|
//
|
321 |
|
|
// 1.31 12B23 MAM Delete commented out code. Changed WE_x equation to
|
322 |
|
|
// use Valid instead of En. Valid will be delayed by
|
323 |
|
|
// one cycle for BDC mode ADC/SBC instructions. This
|
324 |
|
|
// is expected to correctly write the BCD result into
|
325 |
|
|
// A and the flags into P. Without switching to Valid,
|
326 |
|
|
// the BCD result would not be captured correctly into
|
327 |
|
|
// A or P. Kept En as part of the WE_S equation, the
|
328 |
|
|
// component of the equation used for inc/dec of the
|
329 |
|
|
// stack pointer during stack operations.
|
330 |
|
|
//
|
331 |
|
|
// 1.32 12B24 MAM Modified the port list to add a ready port, Rdy.
|
332 |
|
|
// Previosly the core-level signal was applied to the
|
333 |
|
|
// ALU through the En input. Separating out Rdy allows
|
334 |
|
|
// a combinatorial logic loop to be broken. Rdy is now
|
335 |
|
|
// applied to the write enable signals. The En input
|
336 |
|
|
// drives the ALU functional units, which drive Valid
|
337 |
|
|
// in the same cycle, or in the following cycle. In
|
338 |
|
|
// the case that Valid is delayed one cycle, Rdy will
|
339 |
|
|
// be deasserted by the core-level circuit, and the
|
340 |
|
|
// cycle will be stretched. When Valid asserts, Rdy
|
341 |
|
|
// will also assert, the registers will be written,
|
342 |
|
|
// and the cycle will continue. This cycle stretch
|
343 |
|
|
// will only occur for BCD mode ADC/SBC instructions.
|
344 |
|
|
//
|
345 |
|
|
// 1.40 12B25 MAM Made a correction to the PSW. Further research into
|
346 |
|
|
// the operation of the PSW indicates that there are
|
347 |
|
|
// only 6 physical bits in the register itself. Bit 4
|
348 |
|
|
// in P, the programmer visible status word, is gener-
|
349 |
|
|
// ally described as the B, or Break flag. Research
|
350 |
|
|
// indicates that this bit is not implemented as a
|
351 |
|
|
// FF. Instead, the BRK instruction forces this bit to
|
352 |
|
|
// logic 1 during the push of P to the stack. It only
|
353 |
|
|
// exists in the copy of the PSW on the stack. It is
|
354 |
|
|
// this behavior that requires a shared vector inter-
|
355 |
|
|
// rupt service routine to examine the stack version
|
356 |
|
|
// of the PSW to determine if the interrupt is a re-
|
357 |
|
|
// sult of an external IRQ or a BRK instruction. Also
|
358 |
|
|
// applied this behavior of the B bit to PHP instruc-
|
359 |
|
|
// tion. The number of FFs used to implement PSW has
|
360 |
|
|
// been decreased by 1, and the declaration of B has
|
361 |
|
|
// been removed from the source.
|
362 |
|
|
//
|
363 |
|
|
// 1.50 12K12 MAM Modified the stack pointer logic to eliminate extra
|
364 |
|
|
// adder.
|
365 |
|
|
//
|
366 |
|
|
// 1.60 12K20 MAM During multi-cycle microcycle, the interrupt handler
|
367 |
|
|
// was found to be modifying the PSW early. This means
|
368 |
|
|
// that the D and I flags were not properly pushed onto
|
369 |
|
|
// the stack. The modified versions of the two flags
|
370 |
|
|
// were pushed onto the stack instead of the values in
|
371 |
|
|
// the PSW at the start of the interrupt handler. Fixed
|
372 |
|
|
// by qaulifying the PSW modification with the Rdy sig-
|
373 |
|
|
// nal which signifies the end of a microcycle. Worked
|
374 |
|
|
// with single cycle microcycles, including BCD ops,
|
375 |
|
|
// because Rdy is asserted and/or the BCD op completes
|
376 |
|
|
// during the push PCH cycle. With a multi-cycle micro-
|
377 |
|
|
// cycle, the modification occurred one cycle after the
|
378 |
|
|
// push PSW microcycle, but before the data was written
|
379 |
|
|
// to the stack. Hence, qualifying it with Rdy, delays
|
380 |
|
|
// the modification until the first cycle of the next
|
381 |
|
|
// microcycle; the original intent.
|
382 |
|
|
//
|
383 |
|
|
// 2.00 12L11 MAM Added the Rockwell instructions (RMBx, SMBx, BBRx,
|
384 |
|
|
// and BBSx) to the ALU. Modified the Bit Logical Unit
|
385 |
|
|
// to accept a new command and bit mask input. The new
|
386 |
|
|
// commands use four unused CCSel codes, and a mask
|
387 |
|
|
// provided by a new input port connected to the Decode
|
388 |
|
|
// ROM. All other changes expected to be made in the
|
389 |
|
|
// microprogram. RMBx/SMBx can use the RMW_DP micro-
|
390 |
|
|
// routine, but BBRx/BBSx require a new microroutine.
|
391 |
|
|
//
|
392 |
|
|
// 3.00 13H04 Made the internal bus multiplexers into a one-hot
|
393 |
|
|
// decoded OR bus. Had to make some minor adjustments
|
394 |
|
|
// to the LST_En and En_RU signals to accomodate the
|
395 |
|
|
// changes in the bus multiplexer implementation.
|
396 |
|
|
//
|
397 |
|
|
// Additional Comments:
|
398 |
|
|
//
|
399 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
400 |
|
|
|
401 |
|
|
module M65C02_ALU #(
|
402 |
|
|
parameter pStkPtr_Rst = 0 // Stack Pointer Value after Reset
|
403 |
|
|
)(
|
404 |
|
|
input Rst, // System Reset - synchronous reset
|
405 |
|
|
input Clk, // System Clock
|
406 |
|
|
|
407 |
|
|
input Rdy, // Ready
|
408 |
|
|
|
409 |
|
|
input En, // Enable - ALU functions
|
410 |
|
|
input [2:0] Reg_WE, // Register Write Enable
|
411 |
|
|
input ISR, // Asserted on entry to Interrupt Service Routine
|
412 |
|
|
|
413 |
|
|
// ALU Ports
|
414 |
|
|
|
415 |
|
|
input [3:0] Op, // ALU Operation Select
|
416 |
|
|
input [1:0] QSel, // ALU Q Bus Multiplexer Select
|
417 |
|
|
input RSel, // ALU R Bus Multiplexer Select
|
418 |
|
|
input Sub, // ALU Adder Operation Select
|
419 |
|
|
input CSel, // ALU Carry In Multiplexer Select
|
420 |
|
|
input [2:0] WSel, // ALU Register WE Select
|
421 |
|
|
input [2:0] OSel, // ALU Output Multiplexer Select
|
422 |
|
|
input [4:0] CCSel, // ALU Condition Code Operation Select
|
423 |
|
|
input [7:0] Msk, // ALU Mask for Rockwell Instructions
|
424 |
|
|
|
425 |
|
|
input [7:0] M, // ALU Memory Operand Input
|
426 |
|
|
output reg [7:0] Out, // ALU Output(asynchronous)
|
427 |
|
|
output Valid, // ALU Output Valid
|
428 |
|
|
|
429 |
|
|
output reg CC_Out, // Condition Code Test Output
|
430 |
|
|
|
431 |
|
|
// Stack Pointer Output
|
432 |
|
|
|
433 |
|
|
input [1:0] StkOp, // Stack Pointer Operation Select
|
434 |
|
|
|
435 |
|
|
output [7:0] StkPtr, // Stack Pointer Output: {S, S+1}
|
436 |
|
|
|
437 |
|
|
// Internal Processor Registers
|
438 |
|
|
|
439 |
|
|
output reg [7:0] A, // Accumulator
|
440 |
|
|
output reg [7:0] X, // X Index Register
|
441 |
|
|
output reg [7:0] Y, // Y Index Register
|
442 |
|
|
output reg [7:0] S, // Stack Pointer
|
443 |
|
|
|
444 |
|
|
output [7:0] P // Processor Status Word
|
445 |
|
|
);
|
446 |
|
|
|
447 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
448 |
|
|
//
|
449 |
|
|
// Local Parameter Decalarations
|
450 |
|
|
//
|
451 |
|
|
|
452 |
|
|
// Op[3:0] Encodings
|
453 |
|
|
|
454 |
|
|
// Logic Unit
|
455 |
|
|
localparam pALU_NOP = 0; // NOP - No Operation: ALU<={OSel: M,A,X,Y,Z,P,S,M}
|
456 |
|
|
localparam pALU_AND = 1; // AND - bitwise AND Accumulator with Memory
|
457 |
|
|
localparam pALU_ORA = 2; // ORA - bitwise OR Accumulator with Memory
|
458 |
|
|
localparam pALU_EOR = 3; // EOR - bitwise XOR Accumulator with Memory
|
459 |
|
|
// Arithmetic Unit
|
460 |
|
|
localparam pALU_ADC = 4; // ADC - Add Memory to Accumulator + Carry
|
461 |
|
|
localparam pALU_SBC = 5; // SBC - Add ~Memory to Accumulator + Carry (Sub)
|
462 |
|
|
localparam pALU_INC = 6; // INC - Increment {A, X, Y, or M} (binary-only)
|
463 |
|
|
localparam pALU_DEC = 7; // DEC - Decrement {A, X, Y, or M} (binary-only)
|
464 |
|
|
// Shift Unit
|
465 |
|
|
localparam pALU_ASL = 8; // ASL - Arithmetic Shift Left {A, or M}
|
466 |
|
|
localparam pALU_LSR = 9; // LSR - Logical Shift Right {A, or M}
|
467 |
|
|
localparam pALU_ROL = 10; // ROL - Rotate Left through Carry {A, or M}
|
468 |
|
|
localparam pALU_ROR = 11; // ROR - Rotate Right through Carry {A, or M}
|
469 |
|
|
// Bit Unit
|
470 |
|
|
localparam pALU_BIT = 12; // BIT - Test Memory with Bit Mask in Accumulator
|
471 |
|
|
localparam pALU_TRB = 13; // TRB - Test and Reset Memory with Bit Mask in A
|
472 |
|
|
localparam pALU_TSB = 14; // TSB - Test and Set Memory with Bit Mask in A
|
473 |
|
|
// Compare Unit
|
474 |
|
|
localparam pALU_CMP = 15; // CMP - Compare Memory to Accumulator (binary-only)
|
475 |
|
|
|
476 |
|
|
// WSel/OSel Register Select Field Codes
|
477 |
|
|
|
478 |
|
|
localparam pSel_A = 1; // Select Accumulator
|
479 |
|
|
localparam pSel_X = 2; // Select X Index
|
480 |
|
|
localparam pSel_Y = 3; // Select Y Index
|
481 |
|
|
localparam pSel_Z = 4; // Select Zero
|
482 |
|
|
localparam pSel_S = 5; // Select Stack Pointer
|
483 |
|
|
localparam pSel_P = 6; // Select PSW
|
484 |
|
|
localparam pSel_M = 7; // Select Memory Operand
|
485 |
|
|
|
486 |
|
|
// Condition Code Select
|
487 |
|
|
|
488 |
|
|
localparam pSMB = 4; // Set Memory Bit
|
489 |
|
|
localparam pRMB = 5; // Reset Memory Bit
|
490 |
|
|
localparam pBBS = 6; // Branch if Memory Bit Set
|
491 |
|
|
localparam pBBR = 7; // Branch if Mmemory Bit Reset
|
492 |
|
|
//
|
493 |
|
|
localparam pCC = 8; // Carry Clear
|
494 |
|
|
localparam pCS = 9; // Carry Set
|
495 |
|
|
localparam pNE = 10; // Not Equal to Zero
|
496 |
|
|
localparam pEQ = 11; // Equal to Zero
|
497 |
|
|
localparam pVC = 12; // Overflow Clear
|
498 |
|
|
localparam pVS = 13; // Overflow Set
|
499 |
|
|
localparam pPL = 14; // Plus (Not Negative)
|
500 |
|
|
localparam pMI = 15; // Negative
|
501 |
|
|
localparam pCLC = 16; // Clear C
|
502 |
|
|
localparam pSEC = 17; // Set Carry
|
503 |
|
|
localparam pCLI = 18; // Clear Interrupt mask
|
504 |
|
|
localparam pSEI = 19; // Set Interrupt mask
|
505 |
|
|
localparam pCLD = 20; // Clear Decimal mode
|
506 |
|
|
localparam pSED = 21; // Set Decimal mode
|
507 |
|
|
localparam pCLV = 22; // Clear Overflow
|
508 |
|
|
localparam pBRK = 23; // Set BRK flag
|
509 |
|
|
localparam pZ = 24; // Set Z = ~|(A & M)
|
510 |
|
|
localparam pNZ = 25; // Set N and Z flags from ALU
|
511 |
|
|
localparam pNZC = 26; // Set N, Z, and C flags from ALU
|
512 |
|
|
localparam pNVZ = 27; // Set N and V flags from M[7:6], and Z = ~|(A & M)
|
513 |
|
|
localparam pNVZC = 28; // Set N, V, Z, and C from ALU
|
514 |
|
|
//
|
515 |
|
|
//
|
516 |
|
|
localparam pPSW = 31; // Set P from ALU
|
517 |
|
|
|
518 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
519 |
|
|
//
|
520 |
|
|
// Declarations
|
521 |
|
|
//
|
522 |
|
|
|
523 |
|
|
reg COut; // Carry Out -> input to C
|
524 |
|
|
reg [5:0] PSW; // Processor Status Word (Register)
|
525 |
|
|
wire N, V, D, I, Z, C; // Individual, Registered Bits in PSW
|
526 |
|
|
|
527 |
|
|
wire [7:0] W, U, Q; // Adder Input Busses
|
528 |
|
|
wire [7:0] T, R;
|
529 |
|
|
wire Ci; // Adder Carry In signal
|
530 |
|
|
|
531 |
|
|
// ALU Component Output Busses
|
532 |
|
|
|
533 |
|
|
reg [8:0] LU; // Logic Unit Output
|
534 |
|
|
reg LU_Valid; // LU Output Valid
|
535 |
|
|
wire [8:0] AU; // Adder Unit Output
|
536 |
|
|
wire AU_Valid; // AU Output Valid
|
537 |
|
|
wire [8:0] DU; // Decimal (BCD) Unit Output
|
538 |
|
|
wire DU_Valid; // DU Output Valid
|
539 |
|
|
reg [8:0] SU; // Shift/Rotate Unit Output
|
540 |
|
|
reg SU_Valid; // SU Output Valid
|
541 |
|
|
reg [8:0] BU; // Bit Unit Output
|
542 |
|
|
reg BU_Valid; // BU Output Valid
|
543 |
|
|
|
544 |
|
|
reg [8:0] RU; // Rockwell Unit Output
|
545 |
|
|
reg RU_Valid; // RU Output Valid
|
546 |
|
|
|
547 |
|
|
wire LST_En; // Load/Store/Transfer Enable
|
548 |
|
|
reg [5:0] LST_Sel; // Load/Store/Transfer Select ROM
|
549 |
|
|
reg [8:0] LST; // Load/Store/Transfer Output Multiplexer
|
550 |
|
|
|
551 |
|
|
reg SelA, SelX, SelY, SelS, SelP; // Decoded Register Write Selects
|
552 |
|
|
|
553 |
|
|
wire OV; // Arithmetic Unit Overflow Flag
|
554 |
|
|
|
555 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
556 |
|
|
//
|
557 |
|
|
// Implementation
|
558 |
|
|
//
|
559 |
|
|
|
560 |
|
|
// Q Multiplexer
|
561 |
|
|
|
562 |
|
|
assign W = ((QSel[0]) ? M : A); // ? INC M/DEC M : Default
|
563 |
|
|
assign U = ((QSel[0]) ? Y : X); // ? INY/DEY/CPY : INX/DEX/CPX
|
564 |
|
|
assign Q = ((QSel[1]) ? U : W);
|
565 |
|
|
|
566 |
|
|
// R Multiplexer
|
567 |
|
|
|
568 |
|
|
assign T = ((RSel) ? 8'h01 : M); // ? INC/DEC : ADC/SBC/CMP (default)
|
569 |
|
|
assign R = ((Sub) ? ~T : T); // ? SBC/DEC/CMP : ADC/INC (default)
|
570 |
|
|
|
571 |
|
|
// Carry In Multiplexer
|
572 |
|
|
|
573 |
|
|
assign Ci = ((CSel) ? Sub : C); // ? INC/DEC/CMP : ADC/SBC (default)
|
574 |
|
|
|
575 |
|
|
// M65C02 Logic, Arithmetic, Shift, and Bit Unit Implementations
|
576 |
|
|
|
577 |
|
|
// Logic Unit Implementation
|
578 |
|
|
|
579 |
|
|
assign En_LU = (En & (Op[3:2] == 2'b00) & |Op[1:0]);
|
580 |
|
|
|
581 |
|
|
always @(*)
|
582 |
|
|
begin
|
583 |
|
|
if(En_LU)
|
584 |
|
|
case(Op[1:0])
|
585 |
|
|
2'b01 : LU <= {1'b0, A & M}; // AND
|
586 |
|
|
2'b10 : LU <= {1'b0, A | M}; // ORA
|
587 |
|
|
default : LU <= {1'b0, A ^ M}; // EOR
|
588 |
|
|
endcase
|
589 |
|
|
else
|
590 |
|
|
LU <= 0;
|
591 |
|
|
end
|
592 |
|
|
|
593 |
|
|
always @(*)
|
594 |
|
|
begin
|
595 |
|
|
LU_Valid <= En_LU;
|
596 |
|
|
end
|
597 |
|
|
|
598 |
|
|
// Binary Adder Unit Implementation (INC/INX/INY/DEC/DEX/DEY/CMP, ADC/SBC)
|
599 |
|
|
|
600 |
|
|
assign En_AU = ( (En & ( (Op == pALU_ADC) | (Op == pALU_SBC)) & ~D)
|
601 |
|
|
| (En & ( (Op == pALU_INC)
|
602 |
|
|
| (Op == pALU_DEC)
|
603 |
|
|
| (Op == pALU_CMP))));
|
604 |
|
|
|
605 |
|
|
M65C02_BIN BIN (
|
606 |
|
|
.En(En_AU),
|
607 |
|
|
.A(Q),
|
608 |
|
|
.B(R),
|
609 |
|
|
.Ci(Ci),
|
610 |
|
|
.Out(AU),
|
611 |
|
|
.OV(OV_AU),
|
612 |
|
|
.Valid(AU_Valid)
|
613 |
|
|
);
|
614 |
|
|
|
615 |
|
|
// Decimal (BCD) Adder Unit Implementation (ADC/SBC (Decimal-Only))
|
616 |
|
|
|
617 |
|
|
assign En_DU = (En & ((Op == pALU_ADC) | (Op == pALU_SBC)) & D);
|
618 |
|
|
|
619 |
|
|
M65C02_BCD BCD (
|
620 |
|
|
.Rst(Rst),
|
621 |
|
|
.Clk(Clk),
|
622 |
|
|
.En(En_DU),
|
623 |
|
|
.Op(Sub),
|
624 |
|
|
.A(Q),
|
625 |
|
|
.B(R),
|
626 |
|
|
.Ci(Ci),
|
627 |
|
|
.Out(DU),
|
628 |
|
|
.OV(OV_DU),
|
629 |
|
|
.Valid(DU_Valid)
|
630 |
|
|
);
|
631 |
|
|
|
632 |
|
|
// Multiplex Overflow based on the Adder used
|
633 |
|
|
|
634 |
|
|
assign OV = ((AU_Valid) ? OV_AU : OV_DU);
|
635 |
|
|
|
636 |
|
|
// Shift Unit Implementation
|
637 |
|
|
|
638 |
|
|
assign En_SU = (En & (Op[3:2] == 2'b10));
|
639 |
|
|
|
640 |
|
|
always @(*)
|
641 |
|
|
begin
|
642 |
|
|
if(En_SU)
|
643 |
|
|
case(Op[1:0])
|
644 |
|
|
2'b00 : SU <= {W[7], {W[6:0], 1'b0}}; // ASL
|
645 |
|
|
2'b01 : SU <= {W[0], {1'b0, W[7:1]}}; // LSR
|
646 |
|
|
2'b10 : SU <= {W[7], {W[6:0], C}}; // ROL
|
647 |
|
|
2'b11 : SU <= {W[0], {C, W[7:1]}}; // ROR
|
648 |
|
|
endcase
|
649 |
|
|
else
|
650 |
|
|
SU <= 0;
|
651 |
|
|
end
|
652 |
|
|
|
653 |
|
|
always @(*)
|
654 |
|
|
begin
|
655 |
|
|
SU_Valid <= En_SU;
|
656 |
|
|
end
|
657 |
|
|
|
658 |
|
|
// Bit Unit Implementation
|
659 |
|
|
|
660 |
|
|
assign En_BU = (En & ((Op[3:2] == 2'b11) & ~(Op == pALU_CMP)));
|
661 |
|
|
|
662 |
|
|
always @(*)
|
663 |
|
|
begin
|
664 |
|
|
if(En_BU)
|
665 |
|
|
case(Op[1:0])
|
666 |
|
|
2'b01 : BU <= {1'b0, ~A & M}; // TRB
|
667 |
|
|
2'b10 : BU <= {1'b0, A | M}; // TSB
|
668 |
|
|
default : BU <= {1'b0, A & M}; // BIT
|
669 |
|
|
endcase
|
670 |
|
|
else
|
671 |
|
|
BU <= 0;
|
672 |
|
|
end
|
673 |
|
|
|
674 |
|
|
always @(*)
|
675 |
|
|
begin
|
676 |
|
|
BU_Valid <= En_BU;
|
677 |
|
|
end
|
678 |
|
|
|
679 |
|
|
// Rockwell Unit
|
680 |
|
|
// Capabilities expanded to execute the Rockwell RSBx, SMBx, BBRx, and BBSx
|
681 |
|
|
// instructions. The CCSel field is used to select the operation:
|
682 |
|
|
// 4 - SMBx; 4 - RMBx; 6 = BBSx; 7 - BBRx;
|
683 |
|
|
// if(CCSel[4:2] == 1) one of the Rockwell instructions is being executed;
|
684 |
|
|
// else a normal 65C02 instruction is being executed;
|
685 |
|
|
//
|
686 |
|
|
// For the Rockwell instructions, the mask is not provided by the accumulator.
|
687 |
|
|
// Instead, the mask is provided by least significant 8 bits of the fixed
|
688 |
|
|
// microword, which was added as an additional input to the module.
|
689 |
|
|
|
690 |
|
|
assign En_RU = (CCSel[4:2] == 4'b001);
|
691 |
|
|
|
692 |
|
|
always @(*)
|
693 |
|
|
begin
|
694 |
|
|
if(En_RU)
|
695 |
|
|
case(CCSel[1:0])
|
696 |
|
|
2'b00 : RU <= {1'b0, Msk | M}; // SMBx
|
697 |
|
|
2'b01 : RU <= {1'b0, Msk & M}; // RMBx
|
698 |
|
|
2'b10 : RU <= {1'b0, Msk & M}; // BBSx
|
699 |
|
|
2'b11 : RU <= {1'b0, Msk & ~M}; // BBRx
|
700 |
|
|
endcase
|
701 |
|
|
else
|
702 |
|
|
RU <= 0;
|
703 |
|
|
end
|
704 |
|
|
|
705 |
|
|
always @(*) RU_Valid <= En_RU;
|
706 |
|
|
|
707 |
|
|
// Load/Store/Transfer Enable
|
708 |
|
|
|
709 |
|
|
assign LST_En = ((Op == pALU_NOP) & ~(CCSel[4:2] == 4'b001));
|
710 |
|
|
|
711 |
|
|
// Load/Store/Transfer Multiplexer
|
712 |
|
|
|
713 |
|
|
always @(*)
|
714 |
|
|
begin
|
715 |
|
|
case(OSel)
|
716 |
|
|
3'b000 : LST_Sel <= 6'b000_00_1; // LDA/PLA/LDX/PLX/LDY/PLY/PLP
|
717 |
|
|
3'b001 : LST_Sel <= 6'b100_00_0; // STA/TAX/TAY/PHA
|
718 |
|
|
3'b010 : LST_Sel <= 6'b010_00_0; // STX/TXA/TXS/PHX
|
719 |
|
|
3'b011 : LST_Sel <= 6'b001_00_0; // STY/TYA/PHY
|
720 |
|
|
3'b100 : LST_Sel <= 6'b000_00_0; // STZ
|
721 |
|
|
3'b101 : LST_Sel <= 6'b000_10_0; // TSX
|
722 |
|
|
3'b110 : LST_Sel <= 6'b000_01_0; // PHP
|
723 |
|
|
3'b111 : LST_Sel <= 6'b000_00_1; // LDA/PLA/LDX/PLX/LDY/PLY/PLP
|
724 |
|
|
endcase
|
725 |
|
|
end
|
726 |
|
|
|
727 |
|
|
always @(*)
|
728 |
|
|
begin
|
729 |
|
|
if(LST_En)
|
730 |
|
|
LST <= ( ((LST_Sel[5]) ? {1'b0, A} : 0) // STA/TAX/TAY/PHA
|
731 |
|
|
| ((LST_Sel[4]) ? {1'b0, X} : 0) // STX/TXA/TXS/PHX
|
732 |
|
|
| ((LST_Sel[3]) ? {1'b0, Y} : 0) // STY/TYA/PHY
|
733 |
|
|
| ((LST_Sel[2]) ? {1'b0, S} : 0) // TSX
|
734 |
|
|
| ((LST_Sel[1]) ? {1'b0, P} : 0) // PHP
|
735 |
|
|
| ((LST_Sel[0]) ? {1'b0, M} : 0));// LDA/PLA/LDX/PLX/LDY/PLY/PLP
|
736 |
|
|
else
|
737 |
|
|
LST <= 0; // STZ
|
738 |
|
|
end
|
739 |
|
|
|
740 |
|
|
always @(*) {COut, Out} <= LU | AU | DU | SU | BU | RU | LST;
|
741 |
|
|
|
742 |
|
|
// Assign ALU (Result) Valid Output (removed pipeline register 12B04, mam)
|
743 |
|
|
|
744 |
|
|
assign Valid = |{LU_Valid,
|
745 |
|
|
AU_Valid,
|
746 |
|
|
DU_Valid,
|
747 |
|
|
SU_Valid,
|
748 |
|
|
BU_Valid,
|
749 |
|
|
RU_Valid,
|
750 |
|
|
LST_En };
|
751 |
|
|
|
752 |
|
|
// Condition Code Output
|
753 |
|
|
|
754 |
|
|
always @(*)
|
755 |
|
|
begin
|
756 |
|
|
case(CCSel)
|
757 |
|
|
pBBR : CC_Out <= |RU; // Added for Rockwell instructions
|
758 |
|
|
pBBS : CC_Out <= |RU; // Added for Rockwell instructions
|
759 |
|
|
//
|
760 |
|
|
pCC : CC_Out <= ~C;
|
761 |
|
|
pCS : CC_Out <= C;
|
762 |
|
|
pNE : CC_Out <= ~Z;
|
763 |
|
|
pEQ : CC_Out <= Z;
|
764 |
|
|
pVC : CC_Out <= ~V;
|
765 |
|
|
pVS : CC_Out <= V;
|
766 |
|
|
pPL : CC_Out <= ~N;
|
767 |
|
|
pMI : CC_Out <= N;
|
768 |
|
|
default : CC_Out <= 1;
|
769 |
|
|
endcase
|
770 |
|
|
end
|
771 |
|
|
|
772 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
773 |
|
|
// Internal ALU Registers
|
774 |
|
|
//
|
775 |
|
|
|
776 |
|
|
// Decode Register Write Enables
|
777 |
|
|
|
778 |
|
|
always @(*)
|
779 |
|
|
begin
|
780 |
|
|
casex({Reg_WE, WSel})
|
781 |
|
|
6'b001xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b1000_1;
|
782 |
|
|
6'b100001 : {SelA, SelX, SelY, SelS, SelP} <= 5'b1000_1;
|
783 |
|
|
6'b010xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b0100_1;
|
784 |
|
|
6'b100010 : {SelA, SelX, SelY, SelS, SelP} <= 5'b0100_1;
|
785 |
|
|
6'b011xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b0010_1;
|
786 |
|
|
6'b100011 : {SelA, SelX, SelY, SelS, SelP} <= 5'b0010_1;
|
787 |
|
|
6'b101xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b0001_0;
|
788 |
|
|
6'b100101 : {SelA, SelX, SelY, SelS, SelP} <= 5'b0001_0;
|
789 |
|
|
6'b110xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b0000_1;
|
790 |
|
|
6'b100110 : {SelA, SelX, SelY, SelS, SelP} <= 5'b0000_1;
|
791 |
|
|
6'b111xxx : {SelA, SelX, SelY, SelS, SelP} <= 5'b0000_1;
|
792 |
|
|
6'b100111 : {SelA, SelX, SelY, SelS, SelP} <= 5'b0000_1;
|
793 |
|
|
default : {SelA, SelX, SelY, SelS, SelP} <= 5'b0000_0;
|
794 |
|
|
endcase
|
795 |
|
|
end
|
796 |
|
|
|
797 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
798 |
|
|
//
|
799 |
|
|
// A - Accumulator
|
800 |
|
|
//
|
801 |
|
|
|
802 |
|
|
assign WE_A = SelA & Valid & Rdy;
|
803 |
|
|
|
804 |
|
|
always @(posedge Clk)
|
805 |
|
|
begin
|
806 |
|
|
if(Rst)
|
807 |
|
|
A <= #1 0;
|
808 |
|
|
else if(WE_A)
|
809 |
|
|
A <= #1 Out;
|
810 |
|
|
end
|
811 |
|
|
|
812 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
813 |
|
|
//
|
814 |
|
|
// X - Pre-Index Register
|
815 |
|
|
//
|
816 |
|
|
|
817 |
|
|
assign WE_X = SelX & Valid & Rdy;
|
818 |
|
|
|
819 |
|
|
always @(posedge Clk)
|
820 |
|
|
begin
|
821 |
|
|
if(Rst)
|
822 |
|
|
X <= #1 0;
|
823 |
|
|
else if(WE_X)
|
824 |
|
|
X <= #1 Out;
|
825 |
|
|
end
|
826 |
|
|
|
827 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
828 |
|
|
//
|
829 |
|
|
// Y - Post-Index Register
|
830 |
|
|
//
|
831 |
|
|
|
832 |
|
|
assign WE_Y = SelY & Valid & Rdy;
|
833 |
|
|
|
834 |
|
|
always @(posedge Clk)
|
835 |
|
|
begin
|
836 |
|
|
if(Rst)
|
837 |
|
|
Y <= #1 0;
|
838 |
|
|
else if(WE_Y)
|
839 |
|
|
Y <= #1 Out;
|
840 |
|
|
end
|
841 |
|
|
|
842 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
843 |
|
|
//
|
844 |
|
|
// P - Processor Status Word: {N, V, 1, B, D, I, Z, C}
|
845 |
|
|
//
|
846 |
|
|
|
847 |
|
|
assign WE_P = SelP & Valid & Rdy;
|
848 |
|
|
|
849 |
|
|
always @(posedge Clk)
|
850 |
|
|
begin
|
851 |
|
|
if(Rst)
|
852 |
|
|
PSW <= #1 6'b00_0100; // I set by default on Rst
|
853 |
|
|
else if(ISR & Rdy)
|
854 |
|
|
PSW <= #1 {N, V, 1'b0, 1'b1, Z, C};
|
855 |
|
|
else if(WE_P)
|
856 |
|
|
case(CCSel)
|
857 |
|
|
pCLC : PSW <= #1 { N, V, D, I, Z,1'b0};
|
858 |
|
|
pSEC : PSW <= #1 { N, V, D, I, Z,1'b1};
|
859 |
|
|
pCLI : PSW <= #1 { N, V, D,1'b0, Z, C};
|
860 |
|
|
pSEI : PSW <= #1 { N, V, D,1'b1, Z, C};
|
861 |
|
|
pCLD : PSW <= #1 { N, V,1'b0, I, Z, C};
|
862 |
|
|
pSED : PSW <= #1 { N, V,1'b1, I, Z, C};
|
863 |
|
|
pCLV : PSW <= #1 { N,1'b0, D, I, Z, C};
|
864 |
|
|
//
|
865 |
|
|
pZ : PSW <= #1 { N, V, D, I,~|(A & M), C};
|
866 |
|
|
pNZ : PSW <= #1 {Out[7], V, D, I, ~|Out, C};
|
867 |
|
|
pNZC : PSW <= #1 {Out[7], V, D, I, ~|Out,COut};
|
868 |
|
|
pNVZ : PSW <= #1 { M[7],M[6], D, I,~|(A & M), C};
|
869 |
|
|
pNVZC : PSW <= #1 {Out[7], OV, D, I, ~|Out,COut};
|
870 |
|
|
pPSW : PSW <= #1 {Out[7:6], Out[3:0]};
|
871 |
|
|
default : PSW <= #1 PSW;
|
872 |
|
|
endcase
|
873 |
|
|
end
|
874 |
|
|
|
875 |
|
|
// Decode PSW bits
|
876 |
|
|
|
877 |
|
|
assign N = PSW[5]; // Negative, nominally Out[7], but M[7] if BIT/TRB/TSB
|
878 |
|
|
assign V = PSW[4]; // oVerflow, nominally OV, but M[6] if BIT/TRB/TSB
|
879 |
|
|
assign D = PSW[3]; // Decimal, set/cleared by SED/CLD, cleared on ISR entry
|
880 |
|
|
assign I = PSW[2]; // Interrupt Mask, set/cleared by SEI/CLI, set on ISR entry
|
881 |
|
|
assign Z = PSW[1]; // Zero, nominally ~|Out, but ~|(A&M) if BIT/TRB/TSB
|
882 |
|
|
assign C = PSW[0]; // Carry, set by ADC/SBC, and ASL/ROL/LSR/ROR instructions
|
883 |
|
|
|
884 |
|
|
// Assign PSW bits to P (PSW output port)
|
885 |
|
|
|
886 |
|
|
assign P = {N, V, 1'b1, ((CCSel == pBRK) | (OSel == pSel_P)), D, I, Z, C};
|
887 |
|
|
|
888 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
889 |
|
|
//
|
890 |
|
|
// Stack Pointer
|
891 |
|
|
//
|
892 |
|
|
|
893 |
|
|
assign Ld_S = Rdy & (SelS & Valid);
|
894 |
|
|
assign CE_S = Rdy & StkOp[1];
|
895 |
|
|
|
896 |
|
|
always @(posedge Clk)
|
897 |
|
|
begin
|
898 |
|
|
if(Rst)
|
899 |
|
|
S <= #1 pStkPtr_Rst;
|
900 |
|
|
else if(Ld_S)
|
901 |
|
|
S <= #1 X; // TXS
|
902 |
|
|
else if(CE_S)
|
903 |
|
|
S <= #1 ((StkOp[0]) ? (S + 1) // Pop
|
904 |
|
|
: (S - 1)); // Push
|
905 |
|
|
end
|
906 |
|
|
|
907 |
|
|
// Assign StkPtr Multiplexer for Push (0) and Pop (1) operation
|
908 |
|
|
// Synchronous operation removed, 12B04, mam
|
909 |
|
|
|
910 |
|
|
assign StkPtr = ((&StkOp) ? (S + 1) : S); // Stack Addrs to MAR
|
911 |
|
|
|
912 |
|
|
endmodule
|