1 |
2 |
ayersg |
`timescale 1ns / 1ps
|
2 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
3 |
|
|
// Company:
|
4 |
|
|
// Engineer: Grant Ayers (ayers@cs.utah.edu)
|
5 |
|
|
//
|
6 |
|
|
// Create Date: 09:59:05 05/24/2010
|
7 |
|
|
// Design Name:
|
8 |
|
|
// Module Name: uart_bootloader
|
9 |
|
|
// Project Name:
|
10 |
|
|
// Target Devices:
|
11 |
|
|
// Tool versions:
|
12 |
|
|
// Description:
|
13 |
|
|
// Implements the XUM bootloader protocol over a serial port (115200 8N1).
|
14 |
|
|
// The protocol is as follows:
|
15 |
|
|
//
|
16 |
|
|
// 1. Programmer sends 'XUM' ascii bytes
|
17 |
|
|
// 2. Programmer sends a number indicating how many 32-bit data words it
|
18 |
|
|
// has to send, minus 1. (For example, if it has one 32-bit data word,
|
19 |
|
|
// this number will be 0.) The size of this number is 18 bits.
|
20 |
|
|
// This means the minimum transmission size is 1 word (32 bits), and
|
21 |
|
|
// the maximum transmission size is 262144 words (exactly 1MB).
|
22 |
|
|
// This 18-bit number is sent in three bytes, and the six most
|
23 |
|
|
// significant bits of the first byte must be 0.
|
24 |
|
|
// 3. The FPGA sends back the third size byte from the programmer, allowing
|
25 |
|
|
// the programmer to determine if the FPGA is listening and conforming
|
26 |
|
|
// to the XUM boot protocol.
|
27 |
|
|
// 4. The programmer sends another 18-bit number indicating the starting
|
28 |
|
|
// offset in memory where the data should be placed. Normally this will
|
29 |
|
|
// be 0. This number is also sent in three bytes, and the six most
|
30 |
|
|
// significant bits of the first byte are ignored.
|
31 |
|
|
// 5. The programmer sends the data. A copy of each byte that it sends will
|
32 |
|
|
// be sent back to the programmer from the FPGA, allowing the programmer
|
33 |
|
|
// to determine if all of the data was transmitted successfully.
|
34 |
|
|
//
|
35 |
|
|
// Dependencies:
|
36 |
|
|
//
|
37 |
|
|
// Revision:
|
38 |
|
|
// Revision 0.01 - File Created
|
39 |
|
|
// Additional Comments:
|
40 |
|
|
//
|
41 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
42 |
|
|
module uart_bootloader(
|
43 |
|
|
input clock, // 100Mhz
|
44 |
|
|
input reset, // System-wide global reset
|
45 |
|
|
input RxD, // UART data from computer
|
46 |
|
|
output TxD, // UART data to computer
|
47 |
|
|
output resetCPU, // Reset CPUs' PCs to start execution at 0x0
|
48 |
|
|
output reg writeMem = 0, // Write command to instruction memory
|
49 |
|
|
output reg [17:0] addrMem = 0, // address to instruction memory
|
50 |
|
|
output reg [31:0] dataMem = 0 // 32-bit data words of instruction memory
|
51 |
|
|
);
|
52 |
|
|
|
53 |
|
|
localparam [3:0] HEAD_1=0, HEAD_2=1, HEAD_3=2, SIZE_1=3, SIZE_2=4, SIZE_3=5, OFST_1=6, OFST_2=7,
|
54 |
|
|
OFST_3=8, ADDRSET=9, DATA_1=10, DATA_2=11, DATA_3=12, DATA_4=13, ADDRINC=14;
|
55 |
|
|
|
56 |
|
|
/* UART Signals */
|
57 |
|
|
reg uart_write = 0;
|
58 |
|
|
reg uart_read = 0;
|
59 |
|
|
|
60 |
|
|
wire [7:0] uart_rx_data;
|
61 |
|
|
wire [7:0] uart_tx_data = uart_rx_data;
|
62 |
|
|
wire uart_rx_data_ready;
|
63 |
|
|
|
64 |
|
|
reg [17:0] size = 0; // Number of 32-bit words to expect
|
65 |
|
|
reg [17:0] offset = 0; // Starting address to store words
|
66 |
|
|
reg [17:0] rx_count = 0; // Number of 32-bit words received so far
|
67 |
|
|
|
68 |
|
|
reg [3:0] state = HEAD_1;
|
69 |
|
|
|
70 |
|
|
// The CPU(s) is continuously reset while memory is being replaced.
|
71 |
|
|
assign resetCPU = ((state!=HEAD_1) && (state!=HEAD_2) && (state!=HEAD_3) && (state!=SIZE_1));
|
72 |
|
|
|
73 |
|
|
always @(posedge clock) begin
|
74 |
|
|
if (reset) begin
|
75 |
|
|
state <= HEAD_1;
|
76 |
|
|
uart_read <= 0;
|
77 |
|
|
uart_write <= 0;
|
78 |
|
|
writeMem <= 0;
|
79 |
|
|
rx_count <= 0;
|
80 |
|
|
end
|
81 |
|
|
else begin
|
82 |
|
|
uart_read <= uart_rx_data_ready & ((state!=ADDRSET) && (state!=ADDRINC));
|
83 |
|
|
uart_write <= uart_rx_data_ready & ((state==SIZE_3) || (state==DATA_1) || (state==DATA_2) || (state==DATA_3) || (state==DATA_4));
|
84 |
|
|
writeMem <= uart_rx_data_ready & (state == DATA_4);
|
85 |
|
|
rx_count <= (state == HEAD_1) ? 0 : ((state == ADDRINC) ? rx_count + 1 : rx_count);
|
86 |
|
|
case (state)
|
87 |
|
|
HEAD_1: begin
|
88 |
|
|
if (uart_rx_data_ready) begin
|
89 |
|
|
state <= (uart_rx_data == 8'h58) ? HEAD_2 : HEAD_1; // 'X'
|
90 |
|
|
end
|
91 |
|
|
else begin
|
92 |
|
|
state <= HEAD_1;
|
93 |
|
|
end
|
94 |
|
|
end
|
95 |
|
|
HEAD_2: begin
|
96 |
|
|
if (uart_rx_data_ready) begin
|
97 |
|
|
state <= (uart_rx_data == 8'h55) ? HEAD_3 : HEAD_1; // 'U'
|
98 |
|
|
end
|
99 |
|
|
else begin
|
100 |
|
|
state <= HEAD_2;
|
101 |
|
|
end
|
102 |
|
|
end
|
103 |
|
|
HEAD_3: begin
|
104 |
|
|
if (uart_rx_data_ready) begin
|
105 |
|
|
state <= (uart_rx_data == 8'h4D) ? SIZE_1 : HEAD_1; // 'M'
|
106 |
|
|
end
|
107 |
|
|
else begin
|
108 |
|
|
state <= HEAD_3;
|
109 |
|
|
end
|
110 |
|
|
end
|
111 |
|
|
SIZE_1: begin
|
112 |
|
|
if (uart_rx_data_ready) begin
|
113 |
|
|
state <= (uart_rx_data[7:2] == 6'b000000) ? SIZE_2 : HEAD_1; // 6 leading 0s
|
114 |
|
|
size[17:16] <= uart_rx_data[1:0];
|
115 |
|
|
end
|
116 |
|
|
else begin
|
117 |
|
|
state <= SIZE_1;
|
118 |
|
|
end
|
119 |
|
|
end
|
120 |
|
|
SIZE_2: begin
|
121 |
|
|
state <= (uart_rx_data_ready) ? SIZE_3 : SIZE_2;
|
122 |
|
|
size[15:8] <= (uart_rx_data_ready) ? uart_rx_data : size[15:8];
|
123 |
|
|
end
|
124 |
|
|
SIZE_3: begin
|
125 |
|
|
state <= (uart_rx_data_ready) ? OFST_1 : SIZE_3;
|
126 |
|
|
size[7:0] <= (uart_rx_data_ready) ? uart_rx_data : size[7:0];
|
127 |
|
|
end
|
128 |
|
|
OFST_1: begin
|
129 |
|
|
state <= (uart_rx_data_ready) ? OFST_2 : OFST_1;
|
130 |
|
|
offset[17:16] <= (uart_rx_data_ready) ? uart_rx_data[1:0] : offset[17:16];
|
131 |
|
|
end
|
132 |
|
|
OFST_2: begin
|
133 |
|
|
state <= (uart_rx_data_ready) ? OFST_3 : OFST_2;
|
134 |
|
|
offset[15:8] <= (uart_rx_data_ready) ? uart_rx_data : offset[15:8];
|
135 |
|
|
end
|
136 |
|
|
OFST_3: begin
|
137 |
|
|
state <= (uart_rx_data_ready) ? ADDRSET : OFST_3;
|
138 |
|
|
offset[7:0] <= (uart_rx_data_ready) ? uart_rx_data : offset[7:0];
|
139 |
|
|
end
|
140 |
|
|
ADDRSET: begin
|
141 |
|
|
state <= DATA_1;
|
142 |
|
|
addrMem <= offset;
|
143 |
|
|
end
|
144 |
|
|
DATA_1: begin
|
145 |
|
|
state <= (uart_rx_data_ready) ? DATA_2 : DATA_1;
|
146 |
|
|
dataMem[31:24] <= (uart_rx_data_ready) ? uart_rx_data : dataMem[31:24];
|
147 |
|
|
end
|
148 |
|
|
DATA_2: begin
|
149 |
|
|
state <= (uart_rx_data_ready) ? DATA_3 : DATA_2;
|
150 |
|
|
dataMem[23:16] <= (uart_rx_data_ready) ? uart_rx_data : dataMem[23:16];
|
151 |
|
|
end
|
152 |
|
|
DATA_3: begin
|
153 |
|
|
state <= (uart_rx_data_ready) ? DATA_4 : DATA_3;
|
154 |
|
|
dataMem[15:8] <= (uart_rx_data_ready) ? uart_rx_data : dataMem[15:8];
|
155 |
|
|
end
|
156 |
|
|
DATA_4: begin
|
157 |
|
|
state <= (uart_rx_data_ready) ? ADDRINC : DATA_4;
|
158 |
|
|
dataMem[7:0] <= (uart_rx_data_ready) ? uart_rx_data : dataMem[7:0];
|
159 |
|
|
end
|
160 |
|
|
ADDRINC: begin
|
161 |
|
|
addrMem <= addrMem + 1;
|
162 |
|
|
state <= (rx_count == size) ? HEAD_1 : DATA_1;
|
163 |
|
|
end
|
164 |
|
|
default: state <= HEAD_1;
|
165 |
|
|
endcase
|
166 |
|
|
end
|
167 |
|
|
end
|
168 |
|
|
|
169 |
|
|
|
170 |
|
|
uart_min uart (
|
171 |
|
|
.clock (clock),
|
172 |
|
|
.reset (reset),
|
173 |
|
|
.write (uart_write),
|
174 |
|
|
.data_in (uart_tx_data),
|
175 |
|
|
.read (uart_read),
|
176 |
|
|
.data_out (uart_rx_data),
|
177 |
|
|
.data_ready (uart_rx_data_ready),
|
178 |
|
|
.RxD (RxD),
|
179 |
|
|
.TxD (TxD)
|
180 |
|
|
);
|
181 |
|
|
|
182 |
|
|
endmodule
|