OpenCores
URL https://opencores.org/ocsvn/mlite/mlite/trunk

Subversion Repositories mlite

[/] [mlite/] [trunk/] [kernel/] [rtos.c] - Blame information for rev 351

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 138 rhoads
/*--------------------------------------------------------------------
2
 * TITLE: Plasma Real Time Operating System
3
 * AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
4
 * DATE CREATED: 12/17/05
5
 * FILENAME: rtos.c
6
 * PROJECT: Plasma CPU core
7
 * COPYRIGHT: Software placed into the public domain by the author.
8
 *    Software 'as is' without warranty.  Author liable for nothing.
9
 * DESCRIPTION:
10
 *    Plasma Real Time Operating System
11
 *    Fully pre-emptive RTOS with support for:
12
 *       Heaps, Threads, Semaphores, Mutexes, Message Queues, and Timers.
13
 *    This file tries to be hardware independent except for calls to:
14
 *       MemoryRead() and MemoryWrite() for interrupts.
15 167 rhoads
 *    Partial support for multiple CPUs using symmetric multiprocessing.
16 138 rhoads
 *--------------------------------------------------------------------*/
17
#include "plasma.h"
18
#include "rtos.h"
19
 
20
#define HEAP_MAGIC 0x1234abcd
21
#define THREAD_MAGIC 0x4321abcd
22
#define SEM_RESERVED_COUNT 2
23 256 rhoads
#define INFO_COUNT 4
24 138 rhoads
#define HEAP_COUNT 8
25
 
26 167 rhoads
 
27 138 rhoads
/*************** Structures ***************/
28
#ifdef WIN32
29 189 rhoads
   #define setjmp _setjmp
30 138 rhoads
   //x86 registers
31
   typedef struct jmp_buf2 {
32
      uint32 Ebp, Ebx, Edi, Esi, sp, pc, extra[10];
33
   } jmp_buf2;
34 189 rhoads
#elif defined(ARM_CPU)
35
   //ARM registers
36
   typedef struct jmp_buf2 {
37
      uint32 r[13], sp, lr, pc, cpsr, extra[5];
38 256 rhoads
   } jmp_buf2;
39 138 rhoads
#else  
40
   //Plasma registers
41
   typedef struct jmp_buf2 {
42
      uint32 s[9], gp, sp, pc;
43
   } jmp_buf2;
44
#endif
45
 
46
typedef struct HeapNode_s {
47
   struct HeapNode_s *next;
48
   int size;
49
} HeapNode_t;
50
 
51
struct OS_Heap_s {
52
   uint32 magic;
53
   const char *name;
54
   OS_Semaphore_t *semaphore;
55
   HeapNode_t *available;
56
   HeapNode_t base;
57
   struct OS_Heap_s *alternate;
58
};
59
//typedef struct OS_Heap_s OS_Heap_t;
60
 
61 168 rhoads
typedef enum {
62 256 rhoads
   THREAD_PEND    = 0,       //Thread in semaphore's linked list
63
   THREAD_READY   = 1,       //Thread in ThreadHead linked list
64
   THREAD_RUNNING = 2        //Thread == ThreadCurrent[cpu]
65 168 rhoads
} OS_ThreadState_e;
66
 
67 138 rhoads
struct OS_Thread_s {
68 233 rhoads
   const char *name;         //Name of thread
69
   OS_ThreadState_e state;   //Pending, ready, or running
70
   int cpuIndex;             //Which CPU is running the thread
71
   int cpuLock;              //Lock the thread to a specific CPU
72
   jmp_buf env;              //Registers saved during context swap
73
   OS_FuncPtr_t funcPtr;     //First function called
74
   void *arg;                //Argument to first function called
75
   uint32 priority;          //Priority of thread (0=low, 255=high)
76
   uint32 ticksTimeout;      //Tick value when semaphore pend times out
77 256 rhoads
   void *info[INFO_COUNT];   //User storage
78 233 rhoads
   OS_Semaphore_t *semaphorePending;  //Semaphore thread is blocked on
79
   int returnCode;           //Return value from semaphore pend
80
   uint32 processId;         //Process ID if using MMU
81
   OS_Heap_t *heap;          //Heap used if no heap specified
82
   struct OS_Thread_s *next; //Linked list of threads by priority
83
   struct OS_Thread_s *prev;
84
   struct OS_Thread_s *nextTimeout; //Linked list of threads by timeout
85
   struct OS_Thread_s *prevTimeout;
86
   uint32 magic[1];          //Bottom of stack to detect stack overflow
87 138 rhoads
};
88
//typedef struct OS_Thread_s OS_Thread_t;
89
 
90
struct OS_Semaphore_s {
91
   const char *name;
92 256 rhoads
   struct OS_Thread_s *threadHead; //threads pending on semaphore
93 138 rhoads
   int count;
94
};
95
//typedef struct OS_Semaphore_s OS_Semaphore_t;
96
 
97
struct OS_Mutex_s {
98
   OS_Semaphore_t *semaphore;
99
   OS_Thread_t *thread;
100
   int count;
101
};
102
//typedef struct OS_Mutex_s OS_Mutex_t;
103
 
104
struct OS_MQueue_s {
105
   const char *name;
106
   OS_Semaphore_t *semaphore;
107
   int count, size, used, read, write;
108
};
109
//typedef struct OS_MQueue_s OS_MQueue_t;
110
 
111
struct OS_Timer_s {
112
   const char *name;
113
   struct OS_Timer_s *next, *prev;
114
   uint32 ticksTimeout;
115
   uint32 ticksRestart;
116
   int active;
117 218 rhoads
   OS_TimerFuncPtr_t callback;
118 138 rhoads
   OS_MQueue_t *mqueue;
119
   uint32 info;
120
};
121
//typedef struct OS_Timer_s OS_Timer_t;
122
 
123
 
124
/*************** Globals ******************/
125
static OS_Heap_t *HeapArray[HEAP_COUNT];
126 256 rhoads
static int InterruptInside[OS_CPU_COUNT];
127
static int ThreadNeedReschedule[OS_CPU_COUNT];
128
static OS_Thread_t *ThreadCurrent[OS_CPU_COUNT];  //Currently running thread(s)
129 189 rhoads
static OS_Thread_t *ThreadHead;   //Linked list of threads sorted by priority
130
static OS_Thread_t *TimeoutHead;  //Linked list of threads sorted by timeout
131 138 rhoads
static int ThreadSwapEnabled;
132
static uint32 ThreadTime;
133
static void *NeedToFree;
134
static OS_Semaphore_t SemaphoreReserved[SEM_RESERVED_COUNT];
135 189 rhoads
static OS_Semaphore_t *SemaphoreSleep;
136 256 rhoads
static OS_Semaphore_t *SemaphoreRelease;
137 189 rhoads
static OS_Semaphore_t *SemaphoreLock;
138
static OS_Semaphore_t *SemaphoreTimer;
139 138 rhoads
static OS_Timer_t *TimerHead;     //Linked list of timers sorted by timeout
140
static OS_FuncPtr_t Isr[32];
141
 
142
 
143
/***************** Heap *******************/
144
/******************************************/
145 189 rhoads
OS_Heap_t *OS_HeapCreate(const char *name, void *memory, uint32 size)
146 138 rhoads
{
147
   OS_Heap_t *heap;
148
 
149 189 rhoads
   assert(((uint32)memory & 3) == 0);
150
   heap = (OS_Heap_t*)memory;
151 138 rhoads
   heap->magic = HEAP_MAGIC;
152 189 rhoads
   heap->name = name;
153
   heap->semaphore = OS_SemaphoreCreate(name, 1);
154 138 rhoads
   heap->available = (HeapNode_t*)(heap + 1);
155
   heap->available->next = &heap->base;
156 189 rhoads
   heap->available->size = (size - sizeof(OS_Heap_t)) / sizeof(HeapNode_t);
157 138 rhoads
   heap->base.next = heap->available;
158
   heap->base.size = 0;
159
   return heap;
160
}
161
 
162
 
163
/******************************************/
164 189 rhoads
void OS_HeapDestroy(OS_Heap_t *heap)
165 138 rhoads
{
166 189 rhoads
   OS_SemaphoreDelete(heap->semaphore);
167 138 rhoads
}
168
 
169
 
170
/******************************************/
171
//Modified from K&R
172 189 rhoads
void *OS_HeapMalloc(OS_Heap_t *heap, int bytes)
173 138 rhoads
{
174
   HeapNode_t *node, *prevp;
175
   int nunits;
176
 
177 189 rhoads
   if(heap == NULL && OS_ThreadSelf())
178
      heap = OS_ThreadSelf()->heap;
179
   if((uint32)heap < HEAP_COUNT)
180
      heap = HeapArray[(int)heap];
181
   nunits = (bytes + sizeof(HeapNode_t) - 1) / sizeof(HeapNode_t) + 1;
182
   OS_SemaphorePend(heap->semaphore, OS_WAIT_FOREVER);
183
   prevp = heap->available;
184 138 rhoads
   for(node = prevp->next; ; prevp = node, node = node->next)
185
   {
186
      if(node->size >= nunits)       //Big enough?
187
      {
188
         if(node->size == nunits)    //Exactly
189
            prevp->next = node->next;
190
         else
191
         {                           //Allocate tail end
192
            node->size -= nunits;
193
            node += node->size;
194
            node->size = nunits;
195
         }
196 189 rhoads
         heap->available = prevp;
197
         node->next = (HeapNode_t*)heap;
198
         OS_SemaphorePost(heap->semaphore);
199 138 rhoads
         return (void*)(node + 1);
200
      }
201 189 rhoads
      if(node == heap->available)   //Wrapped around free list
202 138 rhoads
      {
203 189 rhoads
         OS_SemaphorePost(heap->semaphore);
204
         if(heap->alternate)
205
            return OS_HeapMalloc(heap->alternate, bytes);
206 138 rhoads
         return NULL;
207
      }
208
   }
209
}
210
 
211
 
212
/******************************************/
213
//Modified from K&R
214 189 rhoads
void OS_HeapFree(void *block)
215 138 rhoads
{
216
   OS_Heap_t *heap;
217
   HeapNode_t *bp, *node;
218
 
219 189 rhoads
   assert(block);
220
   bp = (HeapNode_t*)block - 1;   //point to block header
221 138 rhoads
   heap = (OS_Heap_t*)bp->next;
222
   assert(heap->magic == HEAP_MAGIC);
223
   if(heap->magic != HEAP_MAGIC)
224
      return;
225
   OS_SemaphorePend(heap->semaphore, OS_WAIT_FOREVER);
226
   for(node = heap->available; !(node < bp && bp < node->next); node = node->next)
227
   {
228
      if(node >= node->next && (bp > node || bp < node->next))
229
         break;               //freed block at start or end of area
230
   }
231
 
232
   if(bp + bp->size == node->next)   //join to upper
233
   {
234
      bp->size += node->next->size;
235
      bp->next = node->next->next;
236
   }
237
   else
238
   {
239
      bp->next = node->next;
240
   }
241
 
242
   if(node + node->size == bp)       //join to lower
243
   {
244
      node->size += bp->size;
245
      node->next = bp->next;
246
   }
247
   else
248
      node->next = bp;
249
   heap->available = node;
250
   OS_SemaphorePost(heap->semaphore);
251
}
252
 
253
 
254
/******************************************/
255 189 rhoads
void OS_HeapAlternate(OS_Heap_t *heap, OS_Heap_t *alternate)
256 138 rhoads
{
257 189 rhoads
   heap->alternate = alternate;
258 138 rhoads
}
259
 
260
 
261
/******************************************/
262 189 rhoads
void OS_HeapRegister(void *index, OS_Heap_t *heap)
263 138 rhoads
{
264 189 rhoads
   if((uint32)index < HEAP_COUNT)
265
      HeapArray[(int)index] = heap;
266 138 rhoads
}
267
 
268
 
269
 
270
/***************** Thread *****************/
271
/******************************************/
272
//Linked list of threads sorted by priority
273 256 rhoads
//The listed list is either ThreadHead (ready to run threads not including
274
//the currently running thread) or a list of threads waiting on a semaphore.
275 138 rhoads
//Must be called with interrupts disabled
276
static void OS_ThreadPriorityInsert(OS_Thread_t **head, OS_Thread_t *thread)
277
{
278
   OS_Thread_t *node, *prev;
279
 
280
   prev = NULL;
281
   for(node = *head; node; node = node->next)
282
   {
283 256 rhoads
      if(node->priority < thread->priority)
284 138 rhoads
         break;
285
      prev = node;
286
   }
287
 
288
   if(prev == NULL)
289
   {
290
      thread->next = *head;
291
      thread->prev = NULL;
292 256 rhoads
      if(*head)
293
         (*head)->prev = thread;
294 138 rhoads
      *head = thread;
295
   }
296
   else
297
   {
298
      if(prev->next)
299
         prev->next->prev = thread;
300
      thread->next = prev->next;
301
      thread->prev = prev;
302
      prev->next = thread;
303
   }
304
   assert(ThreadHead);
305 256 rhoads
   thread->state = THREAD_READY;
306 138 rhoads
}
307
 
308
 
309
/******************************************/
310
//Must be called with interrupts disabled
311
static void OS_ThreadPriorityRemove(OS_Thread_t **head, OS_Thread_t *thread)
312
{
313
   assert(thread->magic[0] == THREAD_MAGIC);  //check stack overflow
314
   if(thread->prev == NULL)
315
      *head = thread->next;
316
   else
317
      thread->prev->next = thread->next;
318
   if(thread->next)
319
      thread->next->prev = thread->prev;
320
   thread->next = NULL;
321
   thread->prev = NULL;
322
}
323
 
324
 
325
/******************************************/
326
//Linked list of threads sorted by timeout value
327
//Must be called with interrupts disabled
328
static void OS_ThreadTimeoutInsert(OS_Thread_t *thread)
329
{
330
   OS_Thread_t *node, *prev;
331
   int diff;
332
 
333
   prev = NULL;
334
   for(node = TimeoutHead; node; node = node->nextTimeout)
335
   {
336
      diff = thread->ticksTimeout - node->ticksTimeout;
337
      if(diff <= 0)
338
         break;
339
      prev = node;
340
   }
341
 
342
   if(prev == NULL)
343
   {
344
      thread->nextTimeout = TimeoutHead;
345
      thread->prevTimeout = NULL;
346 151 rhoads
      if(TimeoutHead)
347
         TimeoutHead->prevTimeout = thread;
348 138 rhoads
      TimeoutHead = thread;
349
   }
350
   else
351
   {
352
      if(prev->nextTimeout)
353
         prev->nextTimeout->prevTimeout = thread;
354
      thread->nextTimeout = prev->nextTimeout;
355
      thread->prevTimeout = prev;
356
      prev->nextTimeout = thread;
357
   }
358
}
359
 
360
 
361
/******************************************/
362
//Must be called with interrupts disabled
363
static void OS_ThreadTimeoutRemove(OS_Thread_t *thread)
364
{
365
   if(thread->prevTimeout == NULL && TimeoutHead != thread)
366
      return;         //not in list
367
   if(thread->prevTimeout == NULL)
368
      TimeoutHead = thread->nextTimeout;
369
   else
370
      thread->prevTimeout->nextTimeout = thread->nextTimeout;
371
   if(thread->nextTimeout)
372
      thread->nextTimeout->prevTimeout = thread->prevTimeout;
373
   thread->nextTimeout = NULL;
374
   thread->prevTimeout = NULL;
375
}
376
 
377
 
378
/******************************************/
379 256 rhoads
//Loads highest priority thread from the ThreadHead linked list
380
//The currently running thread isn't in the ThreadHead list
381 138 rhoads
//Must be called with interrupts disabled
382 189 rhoads
static void OS_ThreadReschedule(int roundRobin)
383 138 rhoads
{
384 256 rhoads
   OS_Thread_t *threadNext, *threadCurrent;
385
   int rc, cpuIndex = OS_CpuIndex();
386 138 rhoads
 
387 256 rhoads
   if(ThreadSwapEnabled == 0 || InterruptInside[cpuIndex])
388 138 rhoads
   {
389 256 rhoads
      ThreadNeedReschedule[cpuIndex] |= 2 + roundRobin;  //Reschedule later
390 138 rhoads
      return;
391
   }
392
 
393
   //Determine which thread should run
394 256 rhoads
   threadNext = ThreadHead;
395
   while(threadNext && threadNext->cpuLock != -1 &&
396
         threadNext->cpuLock != cpuIndex)
397
      threadNext = threadNext->next;
398
   if(threadNext == NULL)
399 189 rhoads
      return;
400 176 rhoads
   threadCurrent = ThreadCurrent[cpuIndex];
401 138 rhoads
 
402 256 rhoads
   if(threadCurrent == NULL ||
403
      threadCurrent->state == THREAD_PEND ||
404
      threadCurrent->priority < threadNext->priority ||
405
      (roundRobin && threadCurrent->priority == threadNext->priority))
406 138 rhoads
   {
407
      //Swap threads
408 167 rhoads
      ThreadCurrent[cpuIndex] = threadNext;
409 168 rhoads
      if(threadCurrent)
410 138 rhoads
      {
411 168 rhoads
         assert(threadCurrent->magic[0] == THREAD_MAGIC); //check stack overflow
412 256 rhoads
         if(threadCurrent->state == THREAD_RUNNING)
413
            OS_ThreadPriorityInsert(&ThreadHead, threadCurrent);
414
         rc = setjmp(threadCurrent->env);  //ANSI C call to save registers
415 138 rhoads
         if(rc)
416 256 rhoads
            return;  //Returned from longjmp()
417 138 rhoads
      }
418 168 rhoads
 
419 256 rhoads
      //Remove the new running thread from the ThreadHead linked list
420
      threadNext = ThreadCurrent[OS_CpuIndex()]; //removed warning
421
      assert(threadNext->state == THREAD_READY);
422
      OS_ThreadPriorityRemove(&ThreadHead, threadNext);
423
      threadNext->state = THREAD_RUNNING;
424
      threadNext->cpuIndex = OS_CpuIndex();
425
      longjmp(threadNext->env, 1);         //ANSI C call to restore registers
426 138 rhoads
   }
427
}
428
 
429
 
430 189 rhoads
/******************************************/
431 256 rhoads
void OS_ThreadCpuLock(OS_Thread_t *thread, int cpuIndex)
432 176 rhoads
{
433 256 rhoads
   thread->cpuLock = cpuIndex;
434
   if(thread == OS_ThreadSelf() && cpuIndex != (int)OS_CpuIndex())
435 176 rhoads
      OS_ThreadSleep(1);
436
}
437
 
438
 
439 138 rhoads
/******************************************/
440 189 rhoads
static void OS_ThreadInit(void *arg)
441 138 rhoads
{
442 167 rhoads
   uint32 cpuIndex = OS_CpuIndex();
443 189 rhoads
   (void)arg;
444 138 rhoads
 
445 168 rhoads
   OS_CriticalEnd(1);
446 167 rhoads
   ThreadCurrent[cpuIndex]->funcPtr(ThreadCurrent[cpuIndex]->arg);
447 138 rhoads
   OS_ThreadExit();
448
}
449
 
450
 
451
/******************************************/
452
//Stops warning "argument X might be clobbered by `longjmp'"
453
static void OS_ThreadRegsInit(jmp_buf env)
454
{
455
   setjmp(env); //ANSI C call to save registers
456
}
457
 
458
 
459
/******************************************/
460 189 rhoads
OS_Thread_t *OS_ThreadCreate(const char *name,
461
                             OS_FuncPtr_t funcPtr,
462
                             void *arg,
463
                             uint32 priority,
464
                             uint32 stackSize)
465 138 rhoads
{
466
   OS_Thread_t *thread;
467
   uint8 *stack;
468
   jmp_buf2 *env;
469
   uint32 state;
470
 
471 256 rhoads
   OS_SemaphorePend(SemaphoreRelease, OS_WAIT_FOREVER);
472 138 rhoads
   if(NeedToFree)
473
      OS_HeapFree(NeedToFree);
474
   NeedToFree = NULL;
475 256 rhoads
   OS_SemaphorePost(SemaphoreRelease);
476 138 rhoads
 
477 189 rhoads
   if(stackSize == 0)
478
      stackSize = STACK_SIZE_DEFAULT;
479
   if(stackSize < STACK_SIZE_MINIMUM)
480
      stackSize = STACK_SIZE_MINIMUM;
481
   thread = (OS_Thread_t*)OS_HeapMalloc(NULL, sizeof(OS_Thread_t) + stackSize);
482 138 rhoads
   assert(thread);
483
   if(thread == NULL)
484
      return NULL;
485 189 rhoads
   memset(thread, 0, sizeof(OS_Thread_t));
486 138 rhoads
   stack = (uint8*)(thread + 1);
487 189 rhoads
   memset(stack, 0xcd, stackSize);
488 138 rhoads
 
489 189 rhoads
   thread->name = name;
490 168 rhoads
   thread->state = THREAD_READY;
491 176 rhoads
   thread->cpuLock = -1;
492 189 rhoads
   thread->funcPtr = funcPtr;
493
   thread->arg = arg;
494
   thread->priority = priority;
495 138 rhoads
   thread->semaphorePending = NULL;
496
   thread->returnCode = 0;
497 189 rhoads
   if(OS_ThreadSelf())
498
   {
499
      thread->processId = OS_ThreadSelf()->processId;
500
      thread->heap = OS_ThreadSelf()->heap;
501
   }
502
   else
503
   {
504
      thread->processId = 0;
505
      thread->heap = NULL;
506
   }
507 138 rhoads
   thread->next = NULL;
508
   thread->prev = NULL;
509
   thread->nextTimeout = NULL;
510
   thread->prevTimeout = NULL;
511
   thread->magic[0] = THREAD_MAGIC;
512
 
513
   OS_ThreadRegsInit(thread->env);
514
   env = (jmp_buf2*)thread->env;
515 200 rhoads
   env->sp = (uint32)stack + stackSize - 24; //minimum stack frame size
516 138 rhoads
   env->pc = (uint32)OS_ThreadInit;
517
 
518
   state = OS_CriticalBegin();
519
   OS_ThreadPriorityInsert(&ThreadHead, thread);
520
   OS_ThreadReschedule(0);
521
   OS_CriticalEnd(state);
522
   return thread;
523
}
524
 
525
 
526
/******************************************/
527
void OS_ThreadExit(void)
528
{
529 167 rhoads
   uint32 state, cpuIndex = OS_CpuIndex();
530 138 rhoads
 
531 306 rhoads
   for(;;)
532
   {
533
      OS_SemaphorePend(SemaphoreRelease, OS_WAIT_FOREVER);
534
      if(NeedToFree)
535
         OS_HeapFree(NeedToFree);
536
      NeedToFree = NULL;
537
      OS_SemaphorePost(SemaphoreRelease);
538
 
539
      state = OS_CriticalBegin();
540
      if(NeedToFree)
541
      {
542
         OS_CriticalEnd(state);
543
         continue;
544
      }
545
      ThreadCurrent[cpuIndex]->state = THREAD_PEND;
546
      NeedToFree = ThreadCurrent[cpuIndex];
547
      OS_ThreadReschedule(0);
548
      OS_CriticalEnd(state);
549
   }
550 138 rhoads
}
551
 
552
 
553
/******************************************/
554
OS_Thread_t *OS_ThreadSelf(void)
555
{
556 167 rhoads
   return ThreadCurrent[OS_CpuIndex()];
557 138 rhoads
}
558
 
559
 
560
/******************************************/
561 189 rhoads
void OS_ThreadSleep(int ticks)
562 138 rhoads
{
563 189 rhoads
   OS_SemaphorePend(SemaphoreSleep, ticks);
564 138 rhoads
}
565
 
566
 
567
/******************************************/
568
uint32 OS_ThreadTime(void)
569
{
570
   return ThreadTime;
571
}
572
 
573
 
574
/******************************************/
575 256 rhoads
void OS_ThreadInfoSet(OS_Thread_t *thread, uint32 index, void *Info)
576 138 rhoads
{
577 256 rhoads
   if(index < INFO_COUNT)
578
      thread->info[index] = Info;
579 138 rhoads
}
580
 
581
 
582
/******************************************/
583 256 rhoads
void *OS_ThreadInfoGet(OS_Thread_t *thread, uint32 index)
584 138 rhoads
{
585 256 rhoads
   if(index < INFO_COUNT)
586
      return thread->info[index];
587
   return NULL;
588 138 rhoads
}
589
 
590
 
591
/******************************************/
592 189 rhoads
uint32 OS_ThreadPriorityGet(OS_Thread_t *thread)
593 138 rhoads
{
594 189 rhoads
   return thread->priority;
595 138 rhoads
}
596
 
597
 
598
/******************************************/
599 189 rhoads
void OS_ThreadPrioritySet(OS_Thread_t *thread, uint32 priority)
600 138 rhoads
{
601
   uint32 state;
602
   state = OS_CriticalBegin();
603 189 rhoads
   thread->priority = priority;
604 256 rhoads
   if(thread->state == THREAD_READY)
605 168 rhoads
   {
606 189 rhoads
      OS_ThreadPriorityRemove(&ThreadHead, thread);
607
      OS_ThreadPriorityInsert(&ThreadHead, thread);
608 168 rhoads
      OS_ThreadReschedule(0);
609
   }
610 138 rhoads
   OS_CriticalEnd(state);
611
}
612
 
613
 
614
/******************************************/
615 189 rhoads
void OS_ThreadProcessId(OS_Thread_t *thread, uint32 processId, OS_Heap_t *heap)
616
{
617
   thread->processId = processId;
618
   thread->heap = heap;
619
}
620
 
621
 
622
/******************************************/
623 138 rhoads
//Must be called with interrupts disabled
624
void OS_ThreadTick(void *Arg)
625
{
626
   OS_Thread_t *thread;
627
   OS_Semaphore_t *semaphore;
628
   int diff;
629
   (void)Arg;
630
 
631
   ++ThreadTime;
632
   while(TimeoutHead)
633
   {
634
      thread = TimeoutHead;
635
      diff = ThreadTime - thread->ticksTimeout;
636
      if(diff < 0)
637
         break;
638
      OS_ThreadTimeoutRemove(thread);
639
      semaphore = thread->semaphorePending;
640
      ++semaphore->count;
641
      thread->semaphorePending = NULL;
642
      thread->returnCode = -1;
643
      OS_ThreadPriorityRemove(&semaphore->threadHead, thread);
644
      OS_ThreadPriorityInsert(&ThreadHead, thread);
645
   }
646
   OS_ThreadReschedule(1);
647
}
648
 
649
 
650
 
651
/***************** Semaphore **************/
652
/******************************************/
653 189 rhoads
OS_Semaphore_t *OS_SemaphoreCreate(const char *name, uint32 count)
654 138 rhoads
{
655
   OS_Semaphore_t *semaphore;
656 189 rhoads
   static int semCount = 0;
657 138 rhoads
 
658
   if(semCount < SEM_RESERVED_COUNT)
659 189 rhoads
      semaphore = &SemaphoreReserved[semCount++];  //Heap not ready yet
660 138 rhoads
   else
661 189 rhoads
      semaphore = (OS_Semaphore_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Semaphore_t));
662 138 rhoads
   assert(semaphore);
663
   if(semaphore == NULL)
664
      return NULL;
665
 
666 189 rhoads
   semaphore->name = name;
667 138 rhoads
   semaphore->threadHead = NULL;
668 189 rhoads
   semaphore->count = count;
669 138 rhoads
   return semaphore;
670
}
671
 
672
 
673
/******************************************/
674 189 rhoads
void OS_SemaphoreDelete(OS_Semaphore_t *semaphore)
675 138 rhoads
{
676 189 rhoads
   while(semaphore->threadHead)
677
      OS_SemaphorePost(semaphore);
678
   OS_HeapFree(semaphore);
679 138 rhoads
}
680
 
681
 
682
/******************************************/
683 189 rhoads
int OS_SemaphorePend(OS_Semaphore_t *semaphore, int ticks)
684 138 rhoads
{
685 167 rhoads
   uint32 state, cpuIndex;
686 138 rhoads
   OS_Thread_t *thread;
687
   int returnCode=0;
688
 
689 189 rhoads
   assert(semaphore);
690 256 rhoads
   assert(InterruptInside[OS_CpuIndex()] == 0);
691 138 rhoads
   state = OS_CriticalBegin();
692 189 rhoads
   if(--semaphore->count < 0)
693 138 rhoads
   {
694 189 rhoads
      if(ticks == 0)
695 138 rhoads
      {
696 189 rhoads
         ++semaphore->count;
697 138 rhoads
         OS_CriticalEnd(state);
698
         return -1;
699
      }
700 189 rhoads
      cpuIndex = OS_CpuIndex();
701 167 rhoads
      thread = ThreadCurrent[cpuIndex];
702 189 rhoads
      assert(thread);
703
      thread->semaphorePending = semaphore;
704
      thread->ticksTimeout = ticks + OS_ThreadTime();
705 256 rhoads
      //FYI: The current thread isn't in the ThreadHead linked list
706 189 rhoads
      OS_ThreadPriorityInsert(&semaphore->threadHead, thread);
707 256 rhoads
      thread->state = THREAD_PEND;
708 189 rhoads
      if(ticks != OS_WAIT_FOREVER)
709 138 rhoads
         OS_ThreadTimeoutInsert(thread);
710
      assert(ThreadHead);
711
      OS_ThreadReschedule(0);
712
      returnCode = thread->returnCode;
713
   }
714
   OS_CriticalEnd(state);
715
   return returnCode;
716
}
717
 
718
 
719
/******************************************/
720 189 rhoads
void OS_SemaphorePost(OS_Semaphore_t *semaphore)
721 138 rhoads
{
722
   uint32 state;
723 146 rhoads
   OS_Thread_t *thread;
724 138 rhoads
 
725 189 rhoads
   assert(semaphore);
726 138 rhoads
   state = OS_CriticalBegin();
727 189 rhoads
   if(++semaphore->count <= 0)
728 138 rhoads
   {
729 189 rhoads
      thread = semaphore->threadHead;
730 138 rhoads
      OS_ThreadTimeoutRemove(thread);
731 189 rhoads
      OS_ThreadPriorityRemove(&semaphore->threadHead, thread);
732 138 rhoads
      OS_ThreadPriorityInsert(&ThreadHead, thread);
733
      thread->semaphorePending = NULL;
734
      thread->returnCode = 0;
735 146 rhoads
      OS_ThreadReschedule(0);
736 138 rhoads
   }
737
   OS_CriticalEnd(state);
738
}
739
 
740
 
741
 
742
/***************** Mutex ******************/
743
/******************************************/
744 189 rhoads
OS_Mutex_t *OS_MutexCreate(const char *name)
745 138 rhoads
{
746
   OS_Mutex_t *mutex;
747
 
748 189 rhoads
   mutex = (OS_Mutex_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Mutex_t));
749 138 rhoads
   if(mutex == NULL)
750
      return NULL;
751 189 rhoads
   mutex->semaphore = OS_SemaphoreCreate(name, 1);
752 138 rhoads
   if(mutex->semaphore == NULL)
753
      return NULL;
754
   mutex->thread = NULL;
755
   mutex->count = 0;
756
   return mutex;
757
}
758
 
759
 
760
/******************************************/
761 189 rhoads
void OS_MutexDelete(OS_Mutex_t *mutex)
762 138 rhoads
{
763 189 rhoads
   OS_SemaphoreDelete(mutex->semaphore);
764
   OS_HeapFree(mutex);
765 138 rhoads
}
766
 
767
 
768
/******************************************/
769 189 rhoads
void OS_MutexPend(OS_Mutex_t *mutex)
770 138 rhoads
{
771
   OS_Thread_t *thread;
772
 
773 189 rhoads
   assert(mutex);
774 138 rhoads
   thread = OS_ThreadSelf();
775 189 rhoads
   if(thread == mutex->thread)
776 138 rhoads
   {
777 189 rhoads
      ++mutex->count;
778 138 rhoads
      return;
779
   }
780 189 rhoads
   OS_SemaphorePend(mutex->semaphore, OS_WAIT_FOREVER);
781
   mutex->thread = thread;
782
   mutex->count = 1;
783 138 rhoads
}
784
 
785
 
786
/******************************************/
787 189 rhoads
void OS_MutexPost(OS_Mutex_t *mutex)
788 138 rhoads
{
789 189 rhoads
   assert(mutex);
790
   assert(mutex->thread == OS_ThreadSelf());
791
   assert(mutex->count > 0);
792
   if(--mutex->count <= 0)
793 138 rhoads
   {
794 189 rhoads
      mutex->thread = NULL;
795
      OS_SemaphorePost(mutex->semaphore);
796 138 rhoads
   }
797
}
798
 
799
 
800
 
801
/***************** MQueue *****************/
802
/******************************************/
803 189 rhoads
OS_MQueue_t *OS_MQueueCreate(const char *name,
804
                             int messageCount,
805
                             int messageBytes)
806 138 rhoads
{
807
   OS_MQueue_t *queue;
808
   int size;
809
 
810 189 rhoads
   size = messageBytes / sizeof(uint32);
811
   queue = (OS_MQueue_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_MQueue_t) +
812
      messageCount * size * 4);
813 138 rhoads
   if(queue == NULL)
814
      return queue;
815 189 rhoads
   queue->name = name;
816
   queue->semaphore = OS_SemaphoreCreate(name, 0);
817 138 rhoads
   if(queue->semaphore == NULL)
818
      return NULL;
819 189 rhoads
   queue->count = messageCount;
820 138 rhoads
   queue->size = size;
821
   queue->used = 0;
822
   queue->read = 0;
823
   queue->write = 0;
824
   return queue;
825
}
826
 
827
 
828
/******************************************/
829 189 rhoads
void OS_MQueueDelete(OS_MQueue_t *mQueue)
830 138 rhoads
{
831 189 rhoads
   OS_SemaphoreDelete(mQueue->semaphore);
832
   OS_HeapFree(mQueue);
833 138 rhoads
}
834
 
835
 
836
/******************************************/
837 189 rhoads
int OS_MQueueSend(OS_MQueue_t *mQueue, void *message)
838 138 rhoads
{
839
   uint32 state, *dst, *src;
840
   int i;
841
 
842 189 rhoads
   assert(mQueue);
843
   src = (uint32*)message;
844 138 rhoads
   state = OS_CriticalBegin();
845 189 rhoads
   if(++mQueue->used > mQueue->count)
846 138 rhoads
   {
847 189 rhoads
      --mQueue->used;
848 138 rhoads
      OS_CriticalEnd(state);
849
      return -1;
850
   }
851 189 rhoads
   dst = (uint32*)(mQueue + 1) + mQueue->write * mQueue->size;
852
   for(i = 0; i < mQueue->size; ++i)
853 138 rhoads
      dst[i] = src[i];
854 189 rhoads
   if(++mQueue->write >= mQueue->count)
855
      mQueue->write = 0;
856 138 rhoads
   OS_CriticalEnd(state);
857 189 rhoads
   OS_SemaphorePost(mQueue->semaphore);
858 138 rhoads
   return 0;
859
}
860
 
861
 
862
/******************************************/
863 189 rhoads
int OS_MQueueGet(OS_MQueue_t *mQueue, void *message, int ticks)
864 138 rhoads
{
865
   uint32 state, *dst, *src;
866
   int i, rc;
867
 
868 189 rhoads
   assert(mQueue);
869
   dst = (uint32*)message;
870
   rc = OS_SemaphorePend(mQueue->semaphore, ticks);
871 138 rhoads
   if(rc)
872
      return rc;
873
   state = OS_CriticalBegin();
874 189 rhoads
   --mQueue->used;
875
   src = (uint32*)(mQueue + 1) + mQueue->read * mQueue->size;
876
   for(i = 0; i < mQueue->size; ++i)
877 138 rhoads
      dst[i] = src[i];
878 189 rhoads
   if(++mQueue->read >= mQueue->count)
879
      mQueue->read = 0;
880 138 rhoads
   OS_CriticalEnd(state);
881
   return 0;
882
}
883
 
884
 
885
 
886 223 rhoads
/***************** Jobs *******************/
887
/******************************************/
888
typedef void (*JobFunc_t)();
889
static OS_MQueue_t *jobQueue;
890
static OS_Thread_t *jobThread;
891
 
892
static void JobThread(void *arg)
893
{
894
   uint32 message[4];
895
   JobFunc_t funcPtr;
896
   (void)arg;
897
   for(;;)
898
   {
899
      OS_MQueueGet(jobQueue, message, OS_WAIT_FOREVER);
900
      funcPtr = (JobFunc_t)message[0];
901
      funcPtr(message[1], message[2], message[3]);
902
   }
903
}
904
 
905
 
906
/******************************************/
907
void OS_Job(void (*funcPtr)(), void *arg0, void *arg1, void *arg2)
908
{
909
   uint32 message[4];
910
   int rc;
911
 
912 256 rhoads
   OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
913 223 rhoads
   if(jobThread == NULL)
914
   {
915
      jobQueue = OS_MQueueCreate("job", 100, 16);
916
      jobThread = OS_ThreadCreate("job", JobThread, NULL, 150, 4000);
917
   }
918 256 rhoads
   OS_SemaphorePost(SemaphoreLock);
919
 
920 223 rhoads
   message[0] = (uint32)funcPtr;
921
   message[1] = (uint32)arg0;
922
   message[2] = (uint32)arg1;
923
   message[3] = (uint32)arg2;
924 304 rhoads
   rc = OS_MQueueSend(jobQueue, message);
925 223 rhoads
}
926
 
927
 
928 138 rhoads
/***************** Timer ******************/
929
/******************************************/
930 189 rhoads
static void OS_TimerThread(void *arg)
931 138 rhoads
{
932
   uint32 timeNow;
933
   int diff, ticks;
934
   uint32 message[8];
935
   OS_Timer_t *timer;
936 189 rhoads
   (void)arg;
937 138 rhoads
 
938
   timeNow = OS_ThreadTime();
939
   for(;;)
940
   {
941
      //Determine how long to sleep
942
      OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
943
      if(TimerHead)
944
         ticks = TimerHead->ticksTimeout - timeNow;
945
      else
946
         ticks = OS_WAIT_FOREVER;
947
      OS_SemaphorePost(SemaphoreLock);
948
      OS_SemaphorePend(SemaphoreTimer, ticks);
949
 
950
      //Send messages for all timed out timers
951
      timeNow = OS_ThreadTime();
952
      for(;;)
953
      {
954 189 rhoads
         timer = NULL;
955 138 rhoads
         OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
956 189 rhoads
         if(TimerHead)
957 138 rhoads
         {
958 189 rhoads
            diff = timeNow - TimerHead->ticksTimeout;
959
            if(diff >= 0)
960
               timer = TimerHead;
961 138 rhoads
         }
962 189 rhoads
         OS_SemaphorePost(SemaphoreLock);
963
         if(timer == NULL)
964 138 rhoads
            break;
965
         if(timer->ticksRestart)
966
            OS_TimerStart(timer, timer->ticksRestart, timer->ticksRestart);
967
         else
968
            OS_TimerStop(timer);
969
 
970 218 rhoads
         if(timer->callback)
971
            timer->callback(timer, timer->info);
972
         else
973
         {
974
            //Send message
975
            message[0] = MESSAGE_TYPE_TIMER;
976
            message[1] = (uint32)timer;
977
            message[2] = timer->info;
978
            OS_MQueueSend(timer->mqueue, message);
979
         }
980 138 rhoads
      }
981
   }
982
}
983
 
984
 
985
/******************************************/
986 189 rhoads
OS_Timer_t *OS_TimerCreate(const char *name, OS_MQueue_t *mQueue, uint32 info)
987 138 rhoads
{
988
   OS_Timer_t *timer;
989
 
990
   OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
991
   if(SemaphoreTimer == NULL)
992
   {
993
      SemaphoreTimer = OS_SemaphoreCreate("Timer", 0);
994 256 rhoads
      OS_ThreadCreate("Timer", OS_TimerThread, NULL, 250, 2000);
995 138 rhoads
   }
996
   OS_SemaphorePost(SemaphoreLock);
997
 
998 189 rhoads
   timer = (OS_Timer_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Timer_t));
999 138 rhoads
   if(timer == NULL)
1000
      return NULL;
1001 189 rhoads
   timer->name = name;
1002 218 rhoads
   timer->callback = NULL;
1003 189 rhoads
   timer->mqueue = mQueue;
1004 138 rhoads
   timer->next = NULL;
1005
   timer->prev = NULL;
1006 189 rhoads
   timer->info = info;
1007 138 rhoads
   timer->active = 0;
1008
   return timer;
1009
}
1010
 
1011
 
1012
/******************************************/
1013 189 rhoads
void OS_TimerDelete(OS_Timer_t *timer)
1014 138 rhoads
{
1015 189 rhoads
   OS_TimerStop(timer);
1016
   OS_HeapFree(timer);
1017 138 rhoads
}
1018
 
1019
 
1020
/******************************************/
1021 218 rhoads
void OS_TimerCallback(OS_Timer_t *timer, OS_TimerFuncPtr_t callback)
1022
{
1023
   timer->callback = callback;
1024
}
1025
 
1026
 
1027
/******************************************/
1028 138 rhoads
//Must not be called from an ISR
1029 189 rhoads
void OS_TimerStart(OS_Timer_t *timer, uint32 ticks, uint32 ticksRestart)
1030 138 rhoads
{
1031
   OS_Timer_t *node, *prev;
1032
   int diff, check=0;
1033
 
1034 189 rhoads
   assert(timer);
1035 256 rhoads
   assert(InterruptInside[OS_CpuIndex()] == 0);
1036 189 rhoads
   ticks += OS_ThreadTime();
1037
   if(timer->active)
1038
      OS_TimerStop(timer);
1039 138 rhoads
   OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
1040 189 rhoads
   if(timer->active)
1041
   {
1042
      //Prevent race condition
1043
      OS_SemaphorePost(SemaphoreLock);
1044
      return;
1045
   }
1046
   timer->ticksTimeout = ticks;
1047
   timer->ticksRestart = ticksRestart;
1048
   timer->active = 1;
1049 138 rhoads
   prev = NULL;
1050
   for(node = TimerHead; node; node = node->next)
1051
   {
1052 189 rhoads
      diff = ticks - node->ticksTimeout;
1053 138 rhoads
      if(diff <= 0)
1054
         break;
1055
      prev = node;
1056
   }
1057 189 rhoads
   timer->next = node;
1058
   timer->prev = prev;
1059 138 rhoads
   if(node)
1060 189 rhoads
      node->prev = timer;
1061 138 rhoads
   if(prev == NULL)
1062
   {
1063 189 rhoads
      TimerHead = timer;
1064 138 rhoads
      check = 1;
1065
   }
1066
   else
1067 189 rhoads
      prev->next = timer;
1068 138 rhoads
   OS_SemaphorePost(SemaphoreLock);
1069
   if(check)
1070
      OS_SemaphorePost(SemaphoreTimer);
1071
}
1072
 
1073
 
1074
/******************************************/
1075
//Must not be called from an ISR
1076 189 rhoads
void OS_TimerStop(OS_Timer_t *timer)
1077 138 rhoads
{
1078 189 rhoads
   assert(timer);
1079 256 rhoads
   assert(InterruptInside[OS_CpuIndex()] == 0);
1080 138 rhoads
   OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
1081 189 rhoads
   if(timer->active)
1082 138 rhoads
   {
1083 189 rhoads
      timer->active = 0;
1084
      if(timer->prev == NULL)
1085
         TimerHead = timer->next;
1086 138 rhoads
      else
1087 189 rhoads
         timer->prev->next = timer->next;
1088
      if(timer->next)
1089
         timer->next->prev = timer->prev;
1090 138 rhoads
   }
1091
   OS_SemaphorePost(SemaphoreLock);
1092
}
1093
 
1094
 
1095
/***************** ISR ********************/
1096
/******************************************/
1097 189 rhoads
void OS_InterruptServiceRoutine(uint32 status, uint32 *stack)
1098 138 rhoads
{
1099
   int i;
1100 256 rhoads
   uint32 state, cpuIndex = OS_CpuIndex();
1101 138 rhoads
 
1102 189 rhoads
   if(status == 0 && Isr[31])
1103
      Isr[31](stack);                   //SYSCALL or BREAK
1104
 
1105 256 rhoads
   InterruptInside[cpuIndex] = 1;
1106 138 rhoads
   i = 0;
1107
   do
1108
   {
1109 189 rhoads
      if(status & 1)
1110 138 rhoads
      {
1111
         if(Isr[i])
1112 189 rhoads
            Isr[i](stack);
1113 138 rhoads
         else
1114
            OS_InterruptMaskClear(1 << i);
1115
      }
1116 189 rhoads
      status >>= 1;
1117 138 rhoads
      ++i;
1118 189 rhoads
   } while(status);
1119 256 rhoads
   InterruptInside[cpuIndex] = 0;
1120 138 rhoads
 
1121 167 rhoads
   state = OS_SpinLock();
1122 256 rhoads
   if(ThreadNeedReschedule[cpuIndex])
1123
      OS_ThreadReschedule(ThreadNeedReschedule[cpuIndex] & 1);
1124 167 rhoads
   OS_SpinUnlock(state);
1125 138 rhoads
}
1126
 
1127
 
1128
/******************************************/
1129 189 rhoads
void OS_InterruptRegister(uint32 mask, OS_FuncPtr_t funcPtr)
1130 138 rhoads
{
1131
   int i;
1132
 
1133
   for(i = 0; i < 32; ++i)
1134
   {
1135 189 rhoads
      if(mask & (1 << i))
1136
         Isr[i] = funcPtr;
1137 138 rhoads
   }
1138
}
1139
 
1140
 
1141
/******************************************/
1142
//Plasma hardware dependent
1143
uint32 OS_InterruptStatus(void)
1144
{
1145
   return MemoryRead(IRQ_STATUS);
1146
}
1147
 
1148
 
1149
/******************************************/
1150
//Plasma hardware dependent
1151 189 rhoads
uint32 OS_InterruptMaskSet(uint32 mask)
1152 138 rhoads
{
1153 189 rhoads
   uint32 state;
1154 138 rhoads
   state = OS_CriticalBegin();
1155 189 rhoads
   mask |= MemoryRead(IRQ_MASK);
1156 138 rhoads
   MemoryWrite(IRQ_MASK, mask);
1157
   OS_CriticalEnd(state);
1158
   return mask;
1159
}
1160
 
1161
 
1162
/******************************************/
1163
//Plasma hardware dependent
1164 189 rhoads
uint32 OS_InterruptMaskClear(uint32 mask)
1165 138 rhoads
{
1166 189 rhoads
   uint32 state;
1167 138 rhoads
   state = OS_CriticalBegin();
1168 189 rhoads
   mask = MemoryRead(IRQ_MASK) & ~mask;
1169 138 rhoads
   MemoryWrite(IRQ_MASK, mask);
1170
   OS_CriticalEnd(state);
1171
   return mask;
1172
}
1173
 
1174
 
1175
/**************** Init ********************/
1176
/******************************************/
1177
static volatile uint32 IdleCount;
1178 189 rhoads
static void OS_IdleThread(void *arg)
1179 138 rhoads
{
1180 189 rhoads
   (void)arg;
1181 138 rhoads
 
1182 151 rhoads
   //Don't block in the idle thread!
1183 138 rhoads
   for(;;)
1184
   {
1185
      ++IdleCount;
1186
   }
1187
}
1188
 
1189
 
1190
/******************************************/
1191
#ifndef DISABLE_IRQ_SIM
1192 189 rhoads
static void OS_IdleSimulateIsr(void *arg)
1193 138 rhoads
{
1194
   uint32 count=0, value;
1195 189 rhoads
   (void)arg;
1196 138 rhoads
 
1197
   for(;;)
1198
   {
1199
      MemoryRead(IRQ_MASK + 4);       //calls Sleep(10)
1200
#if WIN32
1201
      while(OS_InterruptMaskSet(0) & IRQ_UART_WRITE_AVAILABLE)
1202 176 rhoads
         OS_InterruptServiceRoutine(IRQ_UART_WRITE_AVAILABLE, 0);
1203 138 rhoads
#endif
1204 189 rhoads
      value = OS_InterruptMaskSet(0) & 0xf;
1205
      if(value)
1206
         OS_InterruptServiceRoutine(value, 0);
1207 138 rhoads
      ++count;
1208
   }
1209
}
1210
#endif //DISABLE_IRQ_SIM
1211
 
1212
 
1213
/******************************************/
1214
//Plasma hardware dependent
1215 189 rhoads
static void OS_ThreadTickToggle(void *arg)
1216 138 rhoads
{
1217 167 rhoads
   uint32 status, mask, state;
1218 138 rhoads
 
1219 189 rhoads
   //Toggle looking for IRQ_COUNTER18 or IRQ_COUNTER18_NOT
1220 167 rhoads
   state = OS_SpinLock();
1221 138 rhoads
   status = MemoryRead(IRQ_STATUS) & (IRQ_COUNTER18 | IRQ_COUNTER18_NOT);
1222
   mask = MemoryRead(IRQ_MASK) | IRQ_COUNTER18 | IRQ_COUNTER18_NOT;
1223
   mask &= ~status;
1224
   MemoryWrite(IRQ_MASK, mask);
1225 189 rhoads
   OS_ThreadTick(arg);
1226 167 rhoads
   OS_SpinUnlock(state);
1227 138 rhoads
}
1228
 
1229
 
1230
/******************************************/
1231 189 rhoads
void OS_Init(uint32 *heapStorage, uint32 bytes)
1232 138 rhoads
{
1233 168 rhoads
   int i;
1234 138 rhoads
   OS_AsmInterruptInit();               //Patch interrupt vector
1235
   OS_InterruptMaskClear(0xffffffff);   //Disable interrupts
1236 189 rhoads
   HeapArray[0] = OS_HeapCreate("Default", heapStorage, bytes);
1237
   HeapArray[1] = HeapArray[0];
1238 138 rhoads
   SemaphoreSleep = OS_SemaphoreCreate("Sleep", 0);
1239 256 rhoads
   SemaphoreRelease = OS_SemaphoreCreate("Release", 1);
1240 138 rhoads
   SemaphoreLock = OS_SemaphoreCreate("Lock", 1);
1241 168 rhoads
   for(i = 0; i < OS_CPU_COUNT; ++i)
1242
      OS_ThreadCreate("Idle", OS_IdleThread, NULL, 0, 256);
1243 138 rhoads
#ifndef DISABLE_IRQ_SIM
1244
   if((OS_InterruptStatus() & (IRQ_COUNTER18 | IRQ_COUNTER18_NOT)) == 0)
1245
   {
1246
      //Detected that running in simulator so create SimIsr thread
1247
      UartPrintfCritical("SimIsr\n");
1248
      OS_ThreadCreate("SimIsr", OS_IdleSimulateIsr, NULL, 1, 0);
1249
   }
1250
#endif //DISABLE_IRQ_SIM
1251
   //Plasma hardware dependent
1252 189 rhoads
   OS_InterruptRegister(IRQ_COUNTER18 | IRQ_COUNTER18_NOT, OS_ThreadTickToggle);
1253 138 rhoads
   OS_InterruptMaskSet(IRQ_COUNTER18 | IRQ_COUNTER18_NOT);
1254
}
1255
 
1256
 
1257
/******************************************/
1258
void OS_Start(void)
1259
{
1260
   ThreadSwapEnabled = 1;
1261 167 rhoads
   (void)OS_SpinLock();
1262 138 rhoads
   OS_ThreadReschedule(1);
1263
}
1264
 
1265
 
1266
/******************************************/
1267
//Place breakpoint here
1268
void OS_Assert(void)
1269
{
1270
}
1271
 
1272
 
1273 167 rhoads
#if OS_CPU_COUNT > 1
1274
static uint8 SpinLockArray[OS_CPU_COUNT];
1275
/******************************************/
1276
uint32 OS_CpuIndex(void)
1277
{
1278
   return 0; //0 to OS_CPU_COUNT-1
1279
}
1280
 
1281
 
1282
/******************************************/
1283
//Symmetric Multiprocessing Spin Lock Mutex
1284
uint32 OS_SpinLock(void)
1285
{
1286 168 rhoads
   uint32 state, cpuIndex, i, j, ok, delay;
1287 167 rhoads
 
1288 168 rhoads
   cpuIndex = OS_CpuIndex();
1289
   delay = cpuIndex + 8;
1290 167 rhoads
   state = OS_AsmInterruptEnable(0);
1291
   do
1292
   {
1293
      ok = 1;
1294 168 rhoads
      if(++SpinLockArray[cpuIndex] == 1)
1295 167 rhoads
      {
1296
         for(i = 0; i < OS_CPU_COUNT; ++i)
1297
         {
1298 168 rhoads
            if(i != cpuIndex && SpinLockArray[i])
1299 167 rhoads
               ok = 0;
1300
         }
1301
         if(ok == 0)
1302
         {
1303 168 rhoads
            SpinLockArray[cpuIndex] = 0;
1304
            for(j = 0; j < delay; ++j)  //wait a bit
1305 167 rhoads
               ++i;
1306 168 rhoads
            if(delay < 128)
1307
               delay <<= 1;
1308 167 rhoads
         }
1309
      }
1310
   } while(ok == 0);
1311
   return state;
1312
}
1313
 
1314
 
1315
/******************************************/
1316
void OS_SpinUnlock(uint32 state)
1317
{
1318 168 rhoads
   uint32 cpuIndex;
1319
   cpuIndex = OS_CpuIndex();
1320
   if(--SpinLockArray[cpuIndex] == 0)
1321 167 rhoads
      OS_AsmInterruptEnable(state);
1322 168 rhoads
 
1323
   assert(SpinLockArray[cpuIndex] < 10);
1324 167 rhoads
}
1325 256 rhoads
#endif  //OS_CPU_COUNT > 1
1326 167 rhoads
 
1327
 
1328 336 rhoads
/************** WIN32/Linux Support *************/
1329 138 rhoads
#ifdef WIN32
1330 336 rhoads
#ifdef LINUX
1331
#define putch putchar
1332
#undef _LIBC
1333
#undef kbhit
1334
#undef getch
1335
#define UartPrintf UartPrintf2
1336
#define UartScanf UartScanf2
1337
#include <stdio.h>
1338
#include <stdlib.h>
1339
#include <termios.h>
1340
#include <unistd.h>
1341
void Sleep(unsigned int value)
1342
{
1343
   usleep(value * 1000);
1344
}
1345
 
1346
int kbhit(void)
1347
{
1348
   struct termios oldt, newt;
1349
   struct timeval tv;
1350
   fd_set read_fd;
1351
 
1352
   tcgetattr(STDIN_FILENO, &oldt);
1353
   newt = oldt;
1354
   newt.c_lflag &= ~(ICANON | ECHO);
1355
   tcsetattr(STDIN_FILENO, TCSANOW, &newt);
1356
   tv.tv_sec=0;
1357
   tv.tv_usec=0;
1358
   FD_ZERO(&read_fd);
1359
   FD_SET(0,&read_fd);
1360
   if(select(1, &read_fd, NULL, NULL, &tv) == -1)
1361
      return 0;
1362
   if(FD_ISSET(0,&read_fd))
1363
      return 1;
1364
   return 0;
1365
}
1366
 
1367
int getch(void)
1368
{
1369
   struct termios oldt, newt;
1370
   int ch;
1371
 
1372
   tcgetattr(STDIN_FILENO, &oldt);
1373
   newt = oldt;
1374
   newt.c_lflag &= ~(ICANON | ECHO);
1375
   tcsetattr(STDIN_FILENO, TCSANOW, &newt);
1376
   ch = getchar();
1377
   return ch;
1378
}
1379
#else
1380 138 rhoads
//Support RTOS inside Windows
1381 233 rhoads
#undef kbhit
1382
#undef getch
1383
#undef putch
1384 138 rhoads
extern int kbhit();
1385
extern int getch(void);
1386
extern int putch(int);
1387
extern void __stdcall Sleep(unsigned long value);
1388 336 rhoads
#endif
1389 138 rhoads
 
1390
static uint32 Memory[8];
1391
 
1392 189 rhoads
uint32 MemoryRead(uint32 address)
1393 138 rhoads
{
1394 189 rhoads
   Memory[2] |= IRQ_UART_WRITE_AVAILABLE;    //IRQ_STATUS
1395
   switch(address)
1396 138 rhoads
   {
1397
   case UART_READ:
1398
      if(kbhit())
1399 189 rhoads
         Memory[0] = getch();                //UART_READ
1400 138 rhoads
      Memory[2] &= ~IRQ_UART_READ_AVAILABLE; //clear bit
1401
      return Memory[0];
1402
   case IRQ_MASK:
1403 189 rhoads
      return Memory[1];                      //IRQ_MASK
1404 138 rhoads
   case IRQ_MASK + 4:
1405
      Sleep(10);
1406
      return 0;
1407
   case IRQ_STATUS:
1408
      if(kbhit())
1409
         Memory[2] |= IRQ_UART_READ_AVAILABLE;
1410
      return Memory[2];
1411
   }
1412
   return 0;
1413
}
1414
 
1415 189 rhoads
void MemoryWrite(uint32 address, uint32 value)
1416 138 rhoads
{
1417 189 rhoads
   switch(address)
1418 138 rhoads
   {
1419
   case UART_WRITE:
1420 189 rhoads
      putch(value);
1421 138 rhoads
      break;
1422
   case IRQ_MASK:
1423 189 rhoads
      Memory[1] = value;
1424 138 rhoads
      break;
1425
   case IRQ_STATUS:
1426 189 rhoads
      Memory[2] = value;
1427 138 rhoads
      break;
1428
   }
1429
}
1430
 
1431 189 rhoads
uint32 OS_AsmInterruptEnable(uint32 enableInterrupt)
1432 138 rhoads
{
1433 189 rhoads
   return enableInterrupt;
1434 138 rhoads
}
1435
 
1436
void OS_AsmInterruptInit(void)
1437
{
1438
}
1439
#endif  //WIN32
1440
 
1441
 
1442
/**************** Example *****************/
1443
#ifndef NO_MAIN
1444 218 rhoads
#ifdef WIN32
1445 138 rhoads
static uint8 HeapSpace[1024*512];
1446 218 rhoads
#endif
1447 138 rhoads
 
1448 218 rhoads
int main(int programEnd, char *argv[])
1449 138 rhoads
{
1450 218 rhoads
   (void)programEnd;  //Pointer to end of used memory
1451
   (void)argv;
1452 256 rhoads
 
1453 138 rhoads
   UartPrintfCritical("Starting RTOS\n");
1454 218 rhoads
#ifdef WIN32
1455 138 rhoads
   OS_Init((uint32*)HeapSpace, sizeof(HeapSpace));
1456 218 rhoads
#else
1457
   //Remaining space after program in 1MB external RAM
1458
   OS_Init((uint32*)programEnd,
1459
           RAM_EXTERNAL_BASE + RAM_EXTERNAL_SIZE - programEnd);
1460
#endif
1461 138 rhoads
   UartInit();
1462 223 rhoads
   OS_ThreadCreate("Main", MainThread, NULL, 100, 4000);
1463 138 rhoads
   OS_Start();
1464
   return 0;
1465
}
1466 256 rhoads
#endif  //NO_MAIN
1467 138 rhoads
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.