1 |
39 |
rhoads |
---------------------------------------------------------------------
|
2 |
43 |
rhoads |
-- TITLE: Plasma CPU core
|
3 |
39 |
rhoads |
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
|
4 |
|
|
-- DATE CREATED: 2/15/01
|
5 |
|
|
-- FILENAME: mlite_cpu.vhd
|
6 |
43 |
rhoads |
-- PROJECT: Plasma CPU core
|
7 |
39 |
rhoads |
-- COPYRIGHT: Software placed into the public domain by the author.
|
8 |
|
|
-- Software 'as is' without warranty. Author liable for nothing.
|
9 |
|
|
-- NOTE: MIPS(tm) and MIPS I(tm) are registered trademarks of MIPS
|
10 |
|
|
-- Technologies. MIPS Technologies does not endorse and is not
|
11 |
|
|
-- associated with this project.
|
12 |
|
|
-- DESCRIPTION:
|
13 |
|
|
-- Top level VHDL document that ties the eight other entities together.
|
14 |
43 |
rhoads |
-- Executes most MIPS I(tm) opcodes. Based on information found in:
|
15 |
39 |
rhoads |
-- "MIPS RISC Architecture" by Gerry Kane and Joe Heinrich
|
16 |
|
|
-- and "The Designer's Guide to VHDL" by Peter J. Ashenden
|
17 |
|
|
-- An add instruction would take the following steps (see cpu.gif):
|
18 |
|
|
-- 1. The "pc_next" entity would have previously passed the program
|
19 |
|
|
-- counter (PC) to the "mem_ctrl" entity.
|
20 |
|
|
-- 2. "Mem_ctrl" passes the opcode to the "control" entity.
|
21 |
|
|
-- 3. "Control" converts the 32-bit opcode to a 60-bit VLWI opcode
|
22 |
|
|
-- and sends control signals to the other entities.
|
23 |
|
|
-- 4. Based on the rs_index and rt_index control signals, "reg_bank"
|
24 |
|
|
-- sends the 32-bit reg_source and reg_target to "bus_mux".
|
25 |
|
|
-- 5. Based on the a_source and b_source control signals, "bus_mux"
|
26 |
|
|
-- multiplexes reg_source onto a_bus and reg_target onto b_bus.
|
27 |
|
|
-- 6. Based on the alu_func control signals, "alu" adds the values
|
28 |
|
|
-- from a_bus and b_bus and places the result on c_bus.
|
29 |
|
|
-- 7. Based on the c_source control signals, "bus_bux" multiplexes
|
30 |
|
|
-- c_bus onto reg_dest.
|
31 |
|
|
-- 8. Based on the rd_index control signal, "reg_bank" saves
|
32 |
|
|
-- reg_dest into the correct register.
|
33 |
73 |
rhoads |
-- The CPU is implemented as a two/three stage pipeline with step #1 in
|
34 |
|
|
-- the first stage and steps #2-#8 occuring the second stage. When
|
35 |
|
|
-- operating with a three stage pipeline, steps #6-#8 occur in the
|
36 |
|
|
-- third stage.
|
37 |
39 |
rhoads |
--
|
38 |
73 |
rhoads |
-- Writing to high memory where a(31)='1' takes four cycles to meet RAM
|
39 |
|
|
-- address hold times.
|
40 |
|
|
-- Addresses with a(31)='0' are assumed to be clocked and take two cycles.
|
41 |
39 |
rhoads |
-- Here are the signals for writing a character to address 0xffff:
|
42 |
|
|
--
|
43 |
|
|
-- mem_write
|
44 |
|
|
-- interrupt mem_byte_sel
|
45 |
|
|
-- reset mem_pause
|
46 |
|
|
-- ns mem_address m_data_w m_data_r
|
47 |
|
|
-- ===========================================
|
48 |
|
|
-- 6700 0 0 0 000002A4 ZZZZZZZZ A0AE0000 0 0 ( fetch write opcode)
|
49 |
|
|
-- 6800 0 0 0 000002B0 ZZZZZZZZ 0443FFF6 0 0 (1 fetch NEXT opcode)
|
50 |
73 |
rhoads |
-- 6900 0 0 1 0000FFFF 31313131 ZZZZZZZZ 0 1 (2 write the low byte)
|
51 |
|
|
-- 7000 0 0 0 000002B4 ZZZZZZZZ 00441806 0 0 ( execute NEXT opcode)
|
52 |
39 |
rhoads |
---------------------------------------------------------------------
|
53 |
|
|
library ieee;
|
54 |
|
|
use ieee.std_logic_1164.all;
|
55 |
73 |
rhoads |
use ieee.std_logic_unsigned.all;
|
56 |
39 |
rhoads |
use work.mlite_pack.all;
|
57 |
|
|
|
58 |
|
|
entity mlite_cpu is
|
59 |
73 |
rhoads |
generic(memory_type : string := "ALTERA";
|
60 |
|
|
pipeline_stages : natural := 3;
|
61 |
|
|
accurate_timing : boolean := false);
|
62 |
39 |
rhoads |
port(clk : in std_logic;
|
63 |
|
|
reset_in : in std_logic;
|
64 |
|
|
intr_in : in std_logic;
|
65 |
|
|
|
66 |
|
|
mem_address : out std_logic_vector(31 downto 0);
|
67 |
|
|
mem_data_w : out std_logic_vector(31 downto 0);
|
68 |
|
|
mem_data_r : in std_logic_vector(31 downto 0);
|
69 |
|
|
mem_byte_sel: out std_logic_vector(3 downto 0);
|
70 |
|
|
mem_write : out std_logic;
|
71 |
|
|
mem_pause : in std_logic);
|
72 |
|
|
end; --entity mlite_cpu
|
73 |
|
|
|
74 |
|
|
architecture logic of mlite_cpu is
|
75 |
73 |
rhoads |
--When using a two stage pipeline "sigD <= sig".
|
76 |
|
|
--When using a three stage pipeline "sigD <= sig when rising_edge(clk)",
|
77 |
|
|
-- so sigD is delayed by one clock cycle.
|
78 |
39 |
rhoads |
signal opcode : std_logic_vector(31 downto 0);
|
79 |
73 |
rhoads |
signal rs_index : std_logic_vector(5 downto 0);
|
80 |
|
|
signal rt_index : std_logic_vector(5 downto 0);
|
81 |
|
|
signal rd_index : std_logic_vector(5 downto 0);
|
82 |
|
|
signal rd_indexD : std_logic_vector(5 downto 0);
|
83 |
|
|
signal reg_source : std_logic_vector(31 downto 0);
|
84 |
|
|
signal reg_target : std_logic_vector(31 downto 0);
|
85 |
|
|
signal reg_dest : std_logic_vector(31 downto 0);
|
86 |
|
|
signal reg_destD : std_logic_vector(31 downto 0);
|
87 |
|
|
signal a_bus : std_logic_vector(31 downto 0);
|
88 |
|
|
signal a_busD : std_logic_vector(31 downto 0);
|
89 |
|
|
signal b_bus : std_logic_vector(31 downto 0);
|
90 |
|
|
signal b_busD : std_logic_vector(31 downto 0);
|
91 |
|
|
signal c_bus : std_logic_vector(31 downto 0);
|
92 |
|
|
signal c_alu : std_logic_vector(31 downto 0);
|
93 |
|
|
signal c_shift : std_logic_vector(31 downto 0);
|
94 |
|
|
signal c_mult : std_logic_vector(31 downto 0);
|
95 |
|
|
signal c_memory : std_logic_vector(31 downto 0);
|
96 |
39 |
rhoads |
signal imm : std_logic_vector(15 downto 0);
|
97 |
|
|
signal pc : std_logic_vector(31 downto 0);
|
98 |
|
|
signal pc_plus4 : std_logic_vector(31 downto 0);
|
99 |
73 |
rhoads |
signal alu_func : alu_function_type;
|
100 |
|
|
signal alu_funcD : alu_function_type;
|
101 |
|
|
signal shift_func : shift_function_type;
|
102 |
|
|
signal shift_funcD : shift_function_type;
|
103 |
|
|
signal mult_func : mult_function_type;
|
104 |
|
|
signal mult_funcD : mult_function_type;
|
105 |
|
|
signal branch_func : branch_function_type;
|
106 |
39 |
rhoads |
signal take_branch : std_logic;
|
107 |
73 |
rhoads |
signal take_branchD : std_logic;
|
108 |
39 |
rhoads |
signal a_source : a_source_type;
|
109 |
|
|
signal b_source : b_source_type;
|
110 |
|
|
signal c_source : c_source_type;
|
111 |
|
|
signal pc_source : pc_source_type;
|
112 |
|
|
signal mem_source : mem_source_type;
|
113 |
|
|
signal pause_mult : std_logic;
|
114 |
73 |
rhoads |
signal pause_ctrl : std_logic;
|
115 |
|
|
signal pause_pipeline : std_logic;
|
116 |
|
|
signal pause_any : std_logic;
|
117 |
|
|
signal pause_non_ctrl : std_logic;
|
118 |
|
|
signal pause_bank : std_logic;
|
119 |
39 |
rhoads |
signal nullify_op : std_logic;
|
120 |
|
|
signal intr_enable : std_logic;
|
121 |
|
|
signal intr_signal : std_logic;
|
122 |
73 |
rhoads |
signal reset_reg : std_logic_vector(3 downto 0);
|
123 |
60 |
rhoads |
signal reset : std_logic;
|
124 |
39 |
rhoads |
begin --architecture
|
125 |
|
|
|
126 |
73 |
rhoads |
pause_any <= (mem_pause or pause_ctrl) or (pause_mult or pause_pipeline);
|
127 |
|
|
pause_non_ctrl <= (mem_pause or pause_mult) or pause_pipeline;
|
128 |
|
|
pause_bank <= (mem_pause or pause_ctrl or pause_mult) and not pause_pipeline;
|
129 |
39 |
rhoads |
nullify_op <= '1' when pc_source = from_lbranch and
|
130 |
73 |
rhoads |
(take_branchD = '0' or branch_func = branch_yes) else
|
131 |
39 |
rhoads |
'0';
|
132 |
|
|
c_bus <= c_alu or c_shift or c_mult;
|
133 |
73 |
rhoads |
reset <= '1' when reset_in = '1' or reset_reg /= "1111" else '0';
|
134 |
39 |
rhoads |
|
135 |
73 |
rhoads |
--synchronize reset and interrupt pins
|
136 |
|
|
intr_proc: process(clk, reset_in, intr_in, intr_enable, pc_source, pc, pause_any)
|
137 |
|
|
begin
|
138 |
|
|
if reset_in = '1' then
|
139 |
|
|
reset_reg <= "0000";
|
140 |
|
|
elsif rising_edge(clk) then
|
141 |
|
|
if reset_reg /= "1111" then
|
142 |
|
|
reset_reg <= reset_reg + 1;
|
143 |
|
|
end if;
|
144 |
39 |
rhoads |
end if;
|
145 |
73 |
rhoads |
if rising_edge(clk) then
|
146 |
|
|
--don't try to interrupt a multi-cycle instruction
|
147 |
|
|
if intr_in = '1' and intr_enable = '1' and
|
148 |
|
|
pc_source = from_inc4 and pc(2) = '0' and
|
149 |
|
|
pause_any = '0' then
|
150 |
|
|
--the epc will be backed up one opcode (pc-4)
|
151 |
|
|
intr_signal <= '1';
|
152 |
|
|
else
|
153 |
|
|
intr_signal <= '0';
|
154 |
|
|
end if;
|
155 |
|
|
end if;
|
156 |
|
|
end process;
|
157 |
39 |
rhoads |
|
158 |
|
|
u1_pc_next: pc_next PORT MAP (
|
159 |
|
|
clk => clk,
|
160 |
60 |
rhoads |
reset_in => reset,
|
161 |
73 |
rhoads |
take_branch => take_branchD,
|
162 |
|
|
pause_in => pause_any,
|
163 |
|
|
pc_new => c_bus(31 downto 2),
|
164 |
39 |
rhoads |
opcode25_0 => opcode(25 downto 0),
|
165 |
|
|
pc_source => pc_source,
|
166 |
|
|
pc_out => pc,
|
167 |
|
|
pc_out_plus4 => pc_plus4);
|
168 |
|
|
|
169 |
73 |
rhoads |
u2_mem_ctrl: mem_ctrl
|
170 |
|
|
generic map (ACCURATE_TIMING => accurate_timing)
|
171 |
|
|
PORT MAP (
|
172 |
39 |
rhoads |
clk => clk,
|
173 |
60 |
rhoads |
reset_in => reset,
|
174 |
73 |
rhoads |
pause_in => pause_non_ctrl,
|
175 |
39 |
rhoads |
nullify_op => nullify_op,
|
176 |
|
|
address_pc => pc,
|
177 |
|
|
opcode_out => opcode,
|
178 |
|
|
|
179 |
73 |
rhoads |
address_data => c_bus,
|
180 |
39 |
rhoads |
mem_source => mem_source,
|
181 |
|
|
data_write => reg_target,
|
182 |
|
|
data_read => c_memory,
|
183 |
73 |
rhoads |
pause_out => pause_ctrl,
|
184 |
39 |
rhoads |
|
185 |
|
|
mem_address => mem_address,
|
186 |
|
|
mem_data_w => mem_data_w,
|
187 |
|
|
mem_data_r => mem_data_r,
|
188 |
|
|
mem_byte_sel => mem_byte_sel,
|
189 |
73 |
rhoads |
mem_write => mem_write);
|
190 |
39 |
rhoads |
|
191 |
|
|
u3_control: control PORT MAP (
|
192 |
|
|
opcode => opcode,
|
193 |
|
|
intr_signal => intr_signal,
|
194 |
|
|
rs_index => rs_index,
|
195 |
|
|
rt_index => rt_index,
|
196 |
|
|
rd_index => rd_index,
|
197 |
|
|
imm_out => imm,
|
198 |
73 |
rhoads |
alu_func => alu_func,
|
199 |
|
|
shift_func => shift_func,
|
200 |
|
|
mult_func => mult_func,
|
201 |
|
|
branch_func => branch_func,
|
202 |
39 |
rhoads |
a_source_out => a_source,
|
203 |
|
|
b_source_out => b_source,
|
204 |
|
|
c_source_out => c_source,
|
205 |
|
|
pc_source_out=> pc_source,
|
206 |
|
|
mem_source_out=> mem_source);
|
207 |
|
|
|
208 |
47 |
rhoads |
u4_reg_bank: reg_bank
|
209 |
|
|
generic map(memory_type => memory_type)
|
210 |
|
|
port map (
|
211 |
39 |
rhoads |
clk => clk,
|
212 |
60 |
rhoads |
reset_in => reset,
|
213 |
73 |
rhoads |
pause => pause_bank,
|
214 |
39 |
rhoads |
rs_index => rs_index,
|
215 |
|
|
rt_index => rt_index,
|
216 |
73 |
rhoads |
rd_index => rd_indexD,
|
217 |
39 |
rhoads |
reg_source_out => reg_source,
|
218 |
|
|
reg_target_out => reg_target,
|
219 |
73 |
rhoads |
reg_dest_new => reg_destD,
|
220 |
39 |
rhoads |
intr_enable => intr_enable);
|
221 |
|
|
|
222 |
|
|
u5_bus_mux: bus_mux port map (
|
223 |
|
|
imm_in => imm,
|
224 |
|
|
reg_source => reg_source,
|
225 |
|
|
a_mux => a_source,
|
226 |
|
|
a_out => a_bus,
|
227 |
|
|
|
228 |
|
|
reg_target => reg_target,
|
229 |
|
|
b_mux => b_source,
|
230 |
|
|
b_out => b_bus,
|
231 |
|
|
|
232 |
|
|
c_bus => c_bus,
|
233 |
|
|
c_memory => c_memory,
|
234 |
|
|
c_pc => pc,
|
235 |
|
|
c_pc_plus4 => pc_plus4,
|
236 |
|
|
c_mux => c_source,
|
237 |
|
|
reg_dest_out => reg_dest,
|
238 |
|
|
|
239 |
73 |
rhoads |
branch_func => branch_func,
|
240 |
39 |
rhoads |
take_branch => take_branch);
|
241 |
|
|
|
242 |
47 |
rhoads |
u6_alu: alu
|
243 |
|
|
generic map (adder_type => memory_type)
|
244 |
|
|
port map (
|
245 |
73 |
rhoads |
a_in => a_busD,
|
246 |
|
|
b_in => b_busD,
|
247 |
|
|
alu_function => alu_funcD,
|
248 |
39 |
rhoads |
c_alu => c_alu);
|
249 |
|
|
|
250 |
|
|
u7_shifter: shifter port map (
|
251 |
73 |
rhoads |
value => b_busD,
|
252 |
|
|
shift_amount => a_busD(4 downto 0),
|
253 |
|
|
shift_func => shift_funcD,
|
254 |
39 |
rhoads |
c_shift => c_shift);
|
255 |
|
|
|
256 |
47 |
rhoads |
u8_mult: mult
|
257 |
|
|
generic map (adder_type => memory_type)
|
258 |
|
|
port map (
|
259 |
39 |
rhoads |
clk => clk,
|
260 |
73 |
rhoads |
a => a_busD,
|
261 |
|
|
b => b_busD,
|
262 |
|
|
mult_func => mult_funcD,
|
263 |
39 |
rhoads |
c_mult => c_mult,
|
264 |
|
|
pause_out => pause_mult);
|
265 |
|
|
|
266 |
73 |
rhoads |
pipeline2: if pipeline_stages <= 2 generate
|
267 |
|
|
a_busD <= a_bus;
|
268 |
|
|
b_busD <= b_bus;
|
269 |
|
|
alu_funcD <= alu_func;
|
270 |
|
|
shift_funcD <= shift_func;
|
271 |
|
|
mult_funcD <= mult_func;
|
272 |
|
|
rd_indexD <= rd_index;
|
273 |
|
|
|
274 |
|
|
reg_destD <= reg_dest;
|
275 |
|
|
take_branchD <= take_branch;
|
276 |
|
|
pause_pipeline <= '0';
|
277 |
|
|
end generate; --pipeline2
|
278 |
|
|
|
279 |
|
|
pipeline3: if pipeline_stages >= 3 generate
|
280 |
|
|
--When operating in three stage pipeline mode, the following signals
|
281 |
|
|
--are delayed by one clock cycle: a_bus, b_bus, alu/shift/mult_func,
|
282 |
|
|
--c_source, and rd_index.
|
283 |
|
|
u9_pipeline: pipeline port map (
|
284 |
|
|
clk => clk,
|
285 |
|
|
reset => reset,
|
286 |
|
|
a_bus => a_bus,
|
287 |
|
|
a_busD => a_busD,
|
288 |
|
|
b_bus => b_bus,
|
289 |
|
|
b_busD => b_busD,
|
290 |
|
|
alu_func => alu_func,
|
291 |
|
|
alu_funcD => alu_funcD,
|
292 |
|
|
shift_func => shift_func,
|
293 |
|
|
shift_funcD => shift_funcD,
|
294 |
|
|
mult_func => mult_func,
|
295 |
|
|
mult_funcD => mult_funcD,
|
296 |
|
|
reg_dest => reg_dest,
|
297 |
|
|
reg_destD => reg_destD,
|
298 |
|
|
rd_index => rd_index,
|
299 |
|
|
rd_indexD => rd_indexD,
|
300 |
|
|
|
301 |
|
|
rs_index => rs_index,
|
302 |
|
|
rt_index => rt_index,
|
303 |
|
|
pc_source => pc_source,
|
304 |
|
|
mem_source => mem_source,
|
305 |
|
|
a_source => a_source,
|
306 |
|
|
b_source => b_source,
|
307 |
|
|
c_source => c_source,
|
308 |
|
|
c_bus => c_bus,
|
309 |
|
|
take_branch => take_branch,
|
310 |
|
|
take_branchD => take_branchD,
|
311 |
|
|
pause_any => pause_any,
|
312 |
|
|
pause_pipeline => pause_pipeline);
|
313 |
|
|
end generate; --pipeline3
|
314 |
|
|
|
315 |
39 |
rhoads |
end; --architecture logic
|
316 |
|
|
|