1 |
5 |
gajos |
-----------------------------------------------------------------------
|
2 |
|
|
---- ----
|
3 |
|
|
---- Montgomery modular multiplier and exponentiator ----
|
4 |
|
|
---- ----
|
5 |
|
|
---- This file is part of the Montgomery modular multiplier ----
|
6 |
|
|
---- and exponentiator project ----
|
7 |
|
|
---- http://opencores.org/project,mod_mult_exp ----
|
8 |
|
|
---- ----
|
9 |
|
|
---- Description: ----
|
10 |
|
|
---- Montgomery modular exponentiator main module. It combines ----
|
11 |
|
|
---- all subomponents. It takes four numbers as the input: ----
|
12 |
|
|
---- base, power, modulus and Montgomery residuum ----
|
13 |
|
|
---- (2^(2*word_length) mod N) and results the modular ----
|
14 |
|
|
---- exponentiation A^B mod M. ----
|
15 |
|
|
---- In fact input data are read through one input controlled by ----
|
16 |
|
|
---- the ctrl input. ----
|
17 |
|
|
---- To Do: ----
|
18 |
|
|
---- ----
|
19 |
|
|
---- Author(s): ----
|
20 |
|
|
---- - Krzysztof Gajewski, gajos@opencores.org ----
|
21 |
|
|
---- k.gajewski@gmail.com ----
|
22 |
|
|
---- ----
|
23 |
|
|
-----------------------------------------------------------------------
|
24 |
|
|
---- ----
|
25 |
|
|
---- Copyright (C) 2014 Authors and OPENCORES.ORG ----
|
26 |
|
|
---- ----
|
27 |
|
|
---- This source file may be used and distributed without ----
|
28 |
|
|
---- restriction provided that this copyright statement is not ----
|
29 |
|
|
---- removed from the file and that any derivative work contains ----
|
30 |
|
|
---- the original copyright notice and the associated disclaimer. ----
|
31 |
|
|
---- ----
|
32 |
|
|
---- This source file is free software; you can redistribute it ----
|
33 |
|
|
---- and-or modify it under the terms of the GNU Lesser General ----
|
34 |
|
|
---- Public License as published by the Free Software Foundation; ----
|
35 |
|
|
---- either version 2.1 of the License, or (at your option) any ----
|
36 |
|
|
---- later version. ----
|
37 |
|
|
---- ----
|
38 |
|
|
---- This source is distributed in the hope that it will be ----
|
39 |
|
|
---- useful, but WITHOUT ANY WARRANTY; without even the implied ----
|
40 |
|
|
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ----
|
41 |
|
|
---- PURPOSE. See the GNU Lesser General Public License for more ----
|
42 |
|
|
---- details. ----
|
43 |
|
|
---- ----
|
44 |
|
|
---- You should have received a copy of the GNU Lesser General ----
|
45 |
|
|
---- Public License along with this source; if not, download it ----
|
46 |
|
|
---- from http://www.opencores.org/lgpl.shtml ----
|
47 |
|
|
---- ----
|
48 |
|
|
-----------------------------------------------------------------------
|
49 |
|
|
library IEEE;
|
50 |
|
|
use work.properties.ALL;
|
51 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
52 |
|
|
|
53 |
|
|
-- Uncomment the following library declaration if using
|
54 |
|
|
-- arithmetic functions with Signed or Unsigned values
|
55 |
|
|
--use IEEE.NUMERIC_STD.ALL;
|
56 |
|
|
|
57 |
|
|
-- Uncomment the following library declaration if instantiating
|
58 |
|
|
-- any Xilinx primitives in this code.
|
59 |
|
|
--library UNISIM;
|
60 |
|
|
--use UNISIM.VComponents.all;
|
61 |
|
|
|
62 |
|
|
entity ModExp is
|
63 |
|
|
generic (
|
64 |
|
|
word_size : integer := WORD_LENGTH;
|
65 |
|
|
word_binary : integer := WORD_INTEGER
|
66 |
|
|
);
|
67 |
|
|
Port (
|
68 |
|
|
input : in STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
69 |
|
|
ctrl : in STD_LOGIC_VECTOR(2 downto 0);
|
70 |
|
|
clk : in STD_LOGIC;
|
71 |
|
|
reset : in STD_LOGIC;
|
72 |
|
|
data_in_ready : in STD_LOGIC;
|
73 |
|
|
ready : out STD_LOGIC;
|
74 |
|
|
output : out STD_LOGIC_VECTOR(word_size - 1 downto 0)
|
75 |
|
|
);
|
76 |
|
|
end ModExp;
|
77 |
|
|
|
78 |
|
|
architecture Behavioral of ModExp is
|
79 |
|
|
|
80 |
|
|
-- Montgomery modular multiplier component
|
81 |
|
|
component ModularMultiplierIterative is
|
82 |
|
|
generic (
|
83 |
|
|
word_size : integer := WORD_LENGTH
|
84 |
|
|
);
|
85 |
|
|
port (
|
86 |
|
|
A : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- multiplicand
|
87 |
|
|
B : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- multiplier
|
88 |
|
|
M : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- modulus
|
89 |
|
|
start : in STD_LOGIC;
|
90 |
|
|
product : out STD_LOGIC_VECTOR(word_size - 1 downto 0); -- product
|
91 |
|
|
ready : out STD_LOGIC;
|
92 |
|
|
clk : in STD_LOGIC
|
93 |
|
|
);
|
94 |
|
|
end component ModularMultiplierIterative;
|
95 |
|
|
|
96 |
|
|
-- Block memory component generated through ISE
|
97 |
|
|
-- It is used like multiple cell register
|
98 |
|
|
COMPONENT blockMemory
|
99 |
|
|
PORT (
|
100 |
|
|
clka : in STD_LOGIC;
|
101 |
|
|
rsta : in STD_LOGIC;
|
102 |
|
|
wea : in STD_LOGIC_VECTOR(0 DOWNTO 0);
|
103 |
|
|
addra : in STD_LOGIC_VECTOR(3 DOWNTO 0);
|
104 |
|
|
dina : in STD_LOGIC_VECTOR(word_size - 1 DOWNTO 0);
|
105 |
|
|
douta : out STD_LOGIC_VECTOR(word_size - 1 DOWNTO 0)
|
106 |
|
|
);
|
107 |
|
|
END COMPONENT;
|
108 |
|
|
|
109 |
|
|
-- Register
|
110 |
|
|
component Reg is
|
111 |
|
|
generic(
|
112 |
|
|
word_size : integer := WORD_LENGTH
|
113 |
|
|
);
|
114 |
|
|
port(
|
115 |
|
|
input : in STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
116 |
|
|
output : out STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
117 |
|
|
enable : in STD_LOGIC;
|
118 |
|
|
clk : in STD_LOGIC;
|
119 |
|
|
reset : in STD_LOGIC
|
120 |
|
|
);
|
121 |
|
|
end component Reg;
|
122 |
|
|
|
123 |
|
|
-- Multiplexer
|
124 |
|
|
component MontMult4inMux is
|
125 |
|
|
generic (
|
126 |
|
|
word_size : integer := WORD_LENGTH - 1
|
127 |
|
|
);
|
128 |
|
|
port (
|
129 |
|
|
ctrl : in STD_LOGIC_VECTOR(1 downto 0);
|
130 |
|
|
zero : in STD_LOGIC_VECTOR(word_size downto 0);
|
131 |
|
|
M : in STD_LOGIC_VECTOR(word_size downto 0);
|
132 |
|
|
Y : in STD_LOGIC_VECTOR(word_size downto 0);
|
133 |
|
|
YplusM : in STD_LOGIC_VECTOR(word_size downto 0);
|
134 |
|
|
output : out STD_LOGIC_VECTOR(word_size downto 0)
|
135 |
|
|
);
|
136 |
|
|
end component MontMult4inMux;
|
137 |
|
|
|
138 |
|
|
-- State machine
|
139 |
|
|
component ModExpSM is
|
140 |
|
|
generic(
|
141 |
|
|
word_size : integer := WORD_LENGTH;
|
142 |
|
|
word_binary : integer := WORD_INTEGER
|
143 |
|
|
);
|
144 |
|
|
port (
|
145 |
|
|
data_in_ready : in STD_LOGIC;
|
146 |
|
|
clk : in STD_LOGIC;
|
147 |
|
|
exp_ctrl : in STD_LOGIC_VECTOR(2 downto 0);
|
148 |
|
|
reset : in STD_LOGIC;
|
149 |
|
|
in_mux_control : out STD_LOGIC_VECTOR(1 downto 0);
|
150 |
|
|
-- finalizer end status
|
151 |
|
|
ready : out STD_LOGIC;
|
152 |
|
|
-- control for multiplier
|
153 |
|
|
modMultStart : out STD_LOGIC;
|
154 |
|
|
modMultReady : in STD_LOGIC;
|
155 |
|
|
-- control for memory and registers
|
156 |
|
|
addr_dataA : out STD_LOGIC_VECTOR(3 downto 0);
|
157 |
|
|
addr_dataB : out STD_LOGIC_VECTOR(3 downto 0);
|
158 |
|
|
regData_EnA : out STD_LOGIC_VECTOR(0 downto 0);
|
159 |
|
|
regData_EnB : out STD_LOGIC_VECTOR(0 downto 0);
|
160 |
|
|
regData_EnC : out STD_LOGIC;
|
161 |
|
|
regData_EnExponent : out STD_LOGIC;
|
162 |
|
|
ExponentData : in STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
163 |
|
|
memory_reset : out STD_LOGIC
|
164 |
|
|
);
|
165 |
|
|
end component ModExpSM;
|
166 |
|
|
|
167 |
|
|
-- data registers signals
|
168 |
|
|
signal addr_dataA : STD_LOGIC_VECTOR(3 downto 0);
|
169 |
|
|
signal addr_dataB : STD_LOGIC_VECTOR(3 downto 0);
|
170 |
|
|
|
171 |
|
|
signal memDataLoadA : STD_LOGIC_VECTOR(0 downto 0);
|
172 |
|
|
signal memDataLoadB : STD_LOGIC_VECTOR(0 downto 0);
|
173 |
|
|
signal memDataLoadC : STD_LOGIC;
|
174 |
|
|
signal memDataLoadExponent : STD_LOGIC;
|
175 |
|
|
|
176 |
|
|
signal memDataA : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
177 |
|
|
signal memDataB : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
178 |
|
|
signal memDataC : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
179 |
|
|
signal memDataExponent : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
180 |
|
|
signal memoryIn : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
181 |
|
|
|
182 |
|
|
signal in_mux_control : STD_LOGIC_VECTOR(1 downto 0);
|
183 |
|
|
|
184 |
|
|
-- signal for multiplier
|
185 |
|
|
signal multStart : STD_LOGIC;
|
186 |
|
|
signal multReady : STD_LOGIC;
|
187 |
|
|
signal modMultToBuffer : STD_LOGIC_VECTOR(word_size - 1 downto 0);
|
188 |
|
|
|
189 |
|
|
signal zero : STD_LOGIC_VECTOR(word_size - 1 downto 0) := (others => '0');
|
190 |
|
|
signal one : STD_LOGIC_VECTOR(word_size - 1 downto 0) := (0 => '1', others => '0');
|
191 |
|
|
|
192 |
|
|
signal memory_reset : STD_LOGIC;
|
193 |
|
|
|
194 |
|
|
begin
|
195 |
|
|
-- connections between components
|
196 |
|
|
zero <= (others => '0');
|
197 |
|
|
one <= (0 => '1', others => '0');
|
198 |
|
|
|
199 |
|
|
-- Montgomery modular multiplier component
|
200 |
|
|
modMult : ModularMultiplierIterative
|
201 |
|
|
port map (
|
202 |
|
|
A => memDataA,
|
203 |
|
|
B => memDataB,
|
204 |
|
|
M => memDataC,
|
205 |
|
|
start => multStart,
|
206 |
|
|
product => modMultToBuffer,
|
207 |
|
|
ready => multReady,
|
208 |
|
|
clk => clk
|
209 |
|
|
);
|
210 |
|
|
|
211 |
|
|
-- Multiplexer
|
212 |
|
|
mux : MontMult4inMux
|
213 |
|
|
port map (
|
214 |
|
|
ctrl => in_mux_control,
|
215 |
|
|
zero => zero,
|
216 |
|
|
M => one,
|
217 |
|
|
Y => modMultToBuffer,
|
218 |
|
|
YplusM => input,
|
219 |
|
|
output => memoryIn
|
220 |
|
|
);
|
221 |
|
|
|
222 |
|
|
-- Block memory for the first input of the multiplier
|
223 |
|
|
memoryA : blockMemory
|
224 |
|
|
port map (
|
225 |
|
|
clka => clk,
|
226 |
|
|
rsta => memory_reset,
|
227 |
|
|
wea => memDataLoadA,
|
228 |
|
|
addra => addr_dataA,
|
229 |
|
|
dina => memoryIn,
|
230 |
|
|
douta => memDataA
|
231 |
|
|
);
|
232 |
|
|
|
233 |
|
|
-- Block memory for the second input of the multiplier
|
234 |
|
|
memoryB : blockMemory
|
235 |
|
|
port map (
|
236 |
|
|
clka => clk,
|
237 |
|
|
rsta => memory_reset,
|
238 |
|
|
wea => memDataLoadB,
|
239 |
|
|
addra => addr_dataB,
|
240 |
|
|
dina => memoryIn,
|
241 |
|
|
douta => memDataB
|
242 |
|
|
);
|
243 |
|
|
|
244 |
|
|
-- Register for the modulus for the multiplier
|
245 |
|
|
memoryModulus : Reg
|
246 |
|
|
port map (
|
247 |
|
|
input => memoryIn,
|
248 |
|
|
output => memDataC,
|
249 |
|
|
enable => memDataLoadC,
|
250 |
|
|
clk => clk,
|
251 |
|
|
reset => memory_reset
|
252 |
|
|
);
|
253 |
|
|
|
254 |
|
|
-- Register for the exponent - it feeds also the state machine for the control of the exponentiation process
|
255 |
|
|
memoryExponent : Reg
|
256 |
|
|
port map (
|
257 |
|
|
input => memoryIn,
|
258 |
|
|
output => memDataExponent,
|
259 |
|
|
enable => memDataLoadExponent,
|
260 |
|
|
clk => clk,
|
261 |
|
|
reset => memory_reset
|
262 |
|
|
);
|
263 |
|
|
|
264 |
|
|
-- State machine of the Montgomery modular exponentiator
|
265 |
|
|
stateMachine : ModExpSM
|
266 |
|
|
port map(
|
267 |
|
|
data_in_ready => data_in_ready,
|
268 |
|
|
clk => clk,
|
269 |
|
|
exp_ctrl => ctrl,
|
270 |
|
|
reset => reset,
|
271 |
|
|
in_mux_control => in_mux_control,
|
272 |
|
|
ready => ready,
|
273 |
|
|
modMultStart => multStart,
|
274 |
|
|
modMultReady => multReady,
|
275 |
|
|
addr_dataA => addr_dataA,
|
276 |
|
|
addr_dataB => addr_dataB,
|
277 |
|
|
regData_EnA => memDataLoadA,
|
278 |
|
|
regData_EnB => memDataLoadB,
|
279 |
|
|
regData_EnC => memDataLoadC,
|
280 |
|
|
regData_EnExponent => memDataLoadExponent,
|
281 |
|
|
ExponentData => memDataExponent,
|
282 |
|
|
memory_reset => memory_reset
|
283 |
|
|
);
|
284 |
|
|
|
285 |
|
|
output <= memDataA;
|
286 |
|
|
|
287 |
|
|
end Behavioral;
|