| 1 |
2 |
kdv |
[Developer Home][Contents][Search][Contact Us][Support][Intel(r)][Image]
|
| 2 |
|
|
|
| 3 |
|
|
[Application Note]
|
| 4 |
|
|
|
| 5 |
|
|
Using MMX? Instructions in a Fast iDCT
|
| 6 |
|
|
Algorithm for MPEG Decoding
|
| 7 |
|
|
|
| 8 |
|
|
Disclaimer
|
| 9 |
|
|
Information in this document is provided in connection with Intel
|
| 10 |
|
|
products. No license under any patent or copyright is granted expressly
|
| 11 |
|
|
or implied by this publication. Intel assumes no liability whatsoever,
|
| 12 |
|
|
including infringement of any patent or copyright, for sale and use of
|
| 13 |
|
|
Intel products except as provided in Intel's Terms and Conditions of Sale
|
| 14 |
|
|
for such products.
|
| 15 |
|
|
|
| 16 |
|
|
Intel retains the right to make changes to these specifications at any
|
| 17 |
|
|
time, without notice. Microcomputer Products may have minor variations to
|
| 18 |
|
|
their specifications known as errata.
|
| 19 |
|
|
|
| 20 |
|
|
MPEG is an international standard for audio and video compression and
|
| 21 |
|
|
decompression promoted by ISO. Implementations of MPEG CODEC?s or MPEG
|
| 22 |
|
|
enabled platforms may require licenses from various entities, including
|
| 23 |
|
|
Intel Corporation. Intel makes no representation as to the need for
|
| 24 |
|
|
licenses from any entity. No licenses, either express, implied or by
|
| 25 |
|
|
estoppel are granted herein. For information on licensing Intel patents,
|
| 26 |
|
|
please contact Intel.
|
| 27 |
|
|
|
| 28 |
|
|
1.0. INTRODUCTION
|
| 29 |
|
|
* 1.1. MPEG Compression Method
|
| 30 |
|
|
|
| 31 |
|
|
2.0. iDCT ALGORITHM
|
| 32 |
|
|
* 2.1. Selecting a Fast iDCT Algorithm
|
| 33 |
|
|
* 2.2. AAN Algorithm
|
| 34 |
|
|
|
| 35 |
|
|
3.0. AAN ALGORITHM IMPLEMENTED WITH MMX[tm] INSTRUCTIONS
|
| 36 |
|
|
* 3.1. iDCT Routine Interface
|
| 37 |
|
|
* 3.2. Optimization Considerations
|
| 38 |
|
|
|
| 39 |
|
|
4.0. PERFORMANCE GAINS
|
| 40 |
|
|
|
| 41 |
|
|
5.0. REFERENCES
|
| 42 |
|
|
|
| 43 |
|
|
6.0. TWO-DIMENSIONAL IDCT CODE LISTING
|
| 44 |
|
|
|
| 45 |
|
|
1.0. INTRODUCTION
|
| 46 |
|
|
|
| 47 |
|
|
The Intel Architecture (IA) media extensions include single-instruction,
|
| 48 |
|
|
multi-data (SIMD) instructions. This application note presents examples of
|
| 49 |
|
|
code that exploit these instructions. Specifically, this document describes
|
| 50 |
|
|
an implementation of a two-dimensional (2D) inverse Discrete Cosine Transfer
|
| 51 |
|
|
(iDCT) using MMX[tm] instructions. This transformation is widely used in
|
| 52 |
|
|
image compression algorithms; most notably in the Joint Photographic Experts
|
| 53 |
|
|
Group (JPEG) and Motion Picture Experts Group (MPEG) standards.
|
| 54 |
|
|
|
| 55 |
|
|
This document focuses on one iDCT algorithm that provides efficient MPEG
|
| 56 |
|
|
decoding. The implementation of this algorithm in MMX code, listed in
|
| 57 |
|
|
Section 6.0, can be used "as is" according to the guidelines presented in
|
| 58 |
|
|
Section 3.1. However, many iDCT algorithms exist. The reader is encouraged
|
| 59 |
|
|
to consider the alternative ideas and issues presented in this document,
|
| 60 |
|
|
since they have implications for other iDCT algorithms.
|
| 61 |
|
|
|
| 62 |
|
|
MPEG Compression Method
|
| 63 |
|
|
|
| 64 |
|
|
The MPEG compression method has two phases, encoding and decoding.
|
| 65 |
|
|
Multimedia images are first encoded, then transmitted, and finally decoded
|
| 66 |
|
|
back into a sequence of images by the MPEG player.
|
| 67 |
|
|
|
| 68 |
|
|
The encoding process follows these steps:
|
| 69 |
|
|
|
| 70 |
|
|
1. The input data is transformed using a Discrete Cosine Transform (DCT).
|
| 71 |
|
|
2. The resulting DCT coefficients are quantized.
|
| 72 |
|
|
3. The quantized coefficients are packed efficiently using Huffman tables.
|
| 73 |
|
|
|
| 74 |
|
|
During the decoding process, the MPEG player reverses these steps by
|
| 75 |
|
|
unpacking the coefficients, dequantizing them, and applying a 2D iDCT. To
|
| 76 |
|
|
achieve a high number of frames per second, this decoding process must be
|
| 77 |
|
|
very fast. This document concentrates on the iDCT component of the decoding
|
| 78 |
|
|
process.
|
| 79 |
|
|
|
| 80 |
|
|
2.0. iDCT ALGORITHM
|
| 81 |
|
|
|
| 82 |
|
|
The 8x8 two-dimensional iDCT used in MPEG decompression is defined as:
|
| 83 |
|
|
|
| 84 |
|
|
[Image]
|
| 85 |
|
|
|
| 86 |
|
|
where the normalization factors, and are defined as:
|
| 87 |
|
|
|
| 88 |
|
|
alpha () = [Image] = [Image] for = 0
|
| 89 |
|
|
|
| 90 |
|
|
= 1/2 for > 0
|
| 91 |
|
|
|
| 92 |
|
|
Where is either u or v and [Image] is the coefficient matrix.
|
| 93 |
|
|
|
| 94 |
|
|
The solution to this equation contains 64 multiplications and 63 additions
|
| 95 |
|
|
for each element of [Image], for a total of 4096 multiplications and 4032
|
| 96 |
|
|
additions.
|
| 97 |
|
|
|
| 98 |
|
|
The above equation is equivalent to a summation over v, followed by a
|
| 99 |
|
|
summation over u, as follows:
|
| 100 |
|
|
|
| 101 |
|
|
[Image]
|
| 102 |
|
|
|
| 103 |
|
|
This equation is the equivalent to applying a one-dimensional (1D) iDCT
|
| 104 |
|
|
eight times on each column of [Image] and then applying a 1D iDCT on the
|
| 105 |
|
|
rows of the result. Reversing this order by applying a 1D iDCT on the rows
|
| 106 |
|
|
first, and then on the columns, gives the same result.
|
| 107 |
|
|
|
| 108 |
|
|
2.1. Selecting a Fast iDCT Algorithm
|
| 109 |
|
|
|
| 110 |
|
|
Many algorithms have been proposed for efficient calculation of the 2D iDCT.
|
| 111 |
|
|
Some algorithms are based on efficient 1D iDCTs [4]; some rely on direct
|
| 112 |
|
|
analysis of the two-dimensional nature of iDCT [2]; and others combine a 2D
|
| 113 |
|
|
prescale with a very efficient 1D iDCT [1]. Some algorithms even take into
|
| 114 |
|
|
account the zero coefficients used in the MPEG bit streams to construct
|
| 115 |
|
|
statistically efficient iDCT algorithms [3]. Most fast 1D DCT and iDCT
|
| 116 |
|
|
algorithms are variants of Lee's Fast DCT algorithm [6], or are based on
|
| 117 |
|
|
variants of Winograd's FFT [5].
|
| 118 |
|
|
|
| 119 |
|
|
The following algorithms were evaluated for implementation using MMX
|
| 120 |
|
|
instructions:
|
| 121 |
|
|
|
| 122 |
|
|
* Statistic algorithm [3]
|
| 123 |
|
|
* Feig's two-dimensional algorithm [2]
|
| 124 |
|
|
* The LLM algorithm [4]
|
| 125 |
|
|
* The AAN algorithm [1]
|
| 126 |
|
|
|
| 127 |
|
|
In general, statistic algorithms inspect the input data and execute
|
| 128 |
|
|
conditional paths in the control flow. The overhead caused by the data
|
| 129 |
|
|
inspection and the jump instructions would be too expensive when compared to
|
| 130 |
|
|
the speed achievable by other algorithms implemented with MMX instructions.
|
| 131 |
|
|
|
| 132 |
|
|
Although Feig's 2D algorithm [2] reduces the multiplication count, the cost
|
| 133 |
|
|
of multiplication in MMX technology is small, so this reduction is not
|
| 134 |
|
|
critical. Also, the irregular memory-access pattern of this algorithm is not
|
| 135 |
|
|
conducive to efficient implementation using the MMX instruction set.
|
| 136 |
|
|
|
| 137 |
|
|
Both the LLM and AAN algorithms were implemented in MMX assembly code. The
|
| 138 |
|
|
LLM algorithm was implemented using accumulation in 32-bit elements, while
|
| 139 |
|
|
the AAN algorithm used accumulation in 16-bit elements. The resulting LLM
|
| 140 |
|
|
implementation was more accurate, conforming to the iDCT IEEE standard [7].
|
| 141 |
|
|
However, the AAN implementation was much faster. The AAN implementation is
|
| 142 |
|
|
presented in this document.
|
| 143 |
|
|
|
| 144 |
|
|
2.2. AAN Algorithm
|
| 145 |
|
|
|
| 146 |
|
|
The AAN algorithm is a one-dimensional, prescaled DCT/iDCT algorithm. First,
|
| 147 |
|
|
the eight input coefficients are prescaled by eight prescale values, which
|
| 148 |
|
|
requires eight multiplications. Then the algorithm is applied to the
|
| 149 |
|
|
prescaled coefficients, which requires five multiplications and 29 additions
|
| 150 |
|
|
for the transform. Although the 1D AAN algorithm is less efficient than
|
| 151 |
|
|
other 1D algorithms (for example, LLM), when applied to the two-dimensional,
|
| 152 |
|
|
8x8 iDCT, this algorithm takes only 64 multiplications for the prescale, and
|
| 153 |
|
|
80 multiplications and 464 additions for the transform.
|
| 154 |
|
|
|
| 155 |
|
|
3.0. AAN ALGORITHM IMPLEMENTED WITH MMX[tm] INSTRUCTIONS
|
| 156 |
|
|
|
| 157 |
|
|
The AAN implementation described in this document uses 16-bit data elements,
|
| 158 |
|
|
so that four variables can be processed in parallel using packed words. MMX
|
| 159 |
|
|
instructions that operate on packed words read or store four words
|
| 160 |
|
|
contiguously in memory. So, for an 8x8 matrix, half a row can be read or
|
| 161 |
|
|
stored at one time. If the 1D iDCT is applied to the columns of an 8x8
|
| 162 |
|
|
matrix, MMX instructions can operate on four columns at a time. Applying the
|
| 163 |
|
|
1D iDCT to the rows of the matrix is more involved and less efficient.
|
| 164 |
|
|
|
| 165 |
|
|
The AAN algorithm is performed in four steps:
|
| 166 |
|
|
|
| 167 |
|
|
1. Perform an iDCT on the columns of the matrix.
|
| 168 |
|
|
2. Transpose the matrix.
|
| 169 |
|
|
3. Perform a second iDCT.
|
| 170 |
|
|
4. Prescale the input coefficients of the iDCT on the columns of the
|
| 171 |
|
|
transposed matrix, which is equivalent to performing an iDCT on the
|
| 172 |
|
|
rows of the original matrix.
|
| 173 |
|
|
|
| 174 |
|
|
These steps result in a transposed matrix, which would have to be again
|
| 175 |
|
|
transposed to obtain the final result. To prevent this extra step, the input
|
| 176 |
|
|
matrix should be transposed initially. The cost of transposing the input is
|
| 177 |
|
|
negligible, since the matrix is constructed from the Zig-Zag scan [9].
|
| 178 |
|
|
Therefore, the actual implementation follows these steps:
|
| 179 |
|
|
|
| 180 |
|
|
1. Prescale the input coefficients of the transposed input matrix.
|
| 181 |
|
|
2. Perform an iDCT on the columns of the transposed input matrix, which is
|
| 182 |
|
|
equivalent to performing an iDCT on the rows of the final matrix.
|
| 183 |
|
|
3. Transpose the matrix.
|
| 184 |
|
|
4. Perform a second iDCT on the columns of the final matrix.
|
| 185 |
|
|
|
| 186 |
|
|
Another consideration is the limited length of the MMX registers. All the
|
| 187 |
|
|
iDCT algorithms mentioned in Section 3.1 are defined mathematically without
|
| 188 |
|
|
regard to the size of the accumulator or registers. To ensure adequate
|
| 189 |
|
|
precision for operations on 16-bit data elements, the algorithm was analyzed
|
| 190 |
|
|
carefully and appropriate precision was assigned during every intermediate
|
| 191 |
|
|
stage of the calculation.
|
| 192 |
|
|
|
| 193 |
|
|
Precision was controlled using packed shift instructions, which shift all
|
| 194 |
|
|
data elements in a register by the same amount. Shift right instructions
|
| 195 |
|
|
were used to prevent overflow of the most significant bit in each
|
| 196 |
|
|
intermediate step of the calculation.
|
| 197 |
|
|
|
| 198 |
|
|
3.1. iDCT Routine Interface
|
| 199 |
|
|
|
| 200 |
|
|
The iDCT routine is called from within an assembly module. The routine gets
|
| 201 |
|
|
a pointer to an 8x8, 16-bit element matrix; the pointer is located in the
|
| 202 |
|
|
ESI register. The matrix should be aligned on an 8-byte boundary. Each data
|
| 203 |
|
|
element is actually a 12-bit quantity that is left-adjusted, meaning that
|
| 204 |
|
|
the four least significant bits equal zero. The input matrix should be
|
| 205 |
|
|
transposed; otherwise, the output matrix must be transposed. The value 0.5
|
| 206 |
|
|
must be added to the DC value, input matrix element [0][0].
|
| 207 |
|
|
|
| 208 |
|
|
The routine returns the same memory array. Therefore, if the original input
|
| 209 |
|
|
operands are needed (for example, in test mode), they must be copied before
|
| 210 |
|
|
the call to the iDCT routine.
|
| 211 |
|
|
|
| 212 |
|
|
3.2. Optimization Considerations
|
| 213 |
|
|
|
| 214 |
|
|
One standard Pentium® processor optimization technique is code rescheduling
|
| 215 |
|
|
to exploit parallelism in an algorithm. Parallelism in the 2D iDCT was
|
| 216 |
|
|
approached from two directions, as illustrated in Figure 1:
|
| 217 |
|
|
|
| 218 |
|
|
* Within a single 8x8 iDCT
|
| 219 |
|
|
* Between four 8x8 iDCTs.
|
| 220 |
|
|
|
| 221 |
|
|
In the first approach, data is accessed by rows within the matrix. In the
|
| 222 |
|
|
second approach, data from the four matrixes is interleaved to enable
|
| 223 |
|
|
efficient use of the MMX instructions.
|
| 224 |
|
|
|
| 225 |
|
|
Figure 1. Single iDCT vs. Four iDCTs
|
| 226 |
|
|
|
| 227 |
|
|
[Image]
|
| 228 |
|
|
|
| 229 |
|
|
The advantage of the single-iDCT approach is that the interface to an MPEG
|
| 230 |
|
|
player is simpler. Its disadvantages are:
|
| 231 |
|
|
|
| 232 |
|
|
* The matrix must be transposed in order to operate on several rows in
|
| 233 |
|
|
parallel.
|
| 234 |
|
|
* To prevent overflow, packed shift instructions must be used. Since in a
|
| 235 |
|
|
given register, the accuracy of the four data elements varies, the
|
| 236 |
|
|
shift count is determined by the worst case among the four elements.
|
| 237 |
|
|
This results in an extra loss of accuracy.
|
| 238 |
|
|
|
| 239 |
|
|
The advantages of the four-iDCTs approach are:
|
| 240 |
|
|
|
| 241 |
|
|
* Matrix transposition is not required.
|
| 242 |
|
|
* To prevent overflow, packed shift instructions must still be used.
|
| 243 |
|
|
However, since all the data elements in a register have the same
|
| 244 |
|
|
accuracy, there is no extra loss of accuracy to accommodate the worst
|
| 245 |
|
|
case among four elements.
|
| 246 |
|
|
|
| 247 |
|
|
The disadvantage of the single-iDCT approach is that, to take advantage of
|
| 248 |
|
|
the MMX instructions, the input data from the four matrixes must first be
|
| 249 |
|
|
interleaved (see Figure 1). Then, after the transform, the resulting data
|
| 250 |
|
|
must be restored to four 8x8 matrixes.
|
| 251 |
|
|
|
| 252 |
|
|
Because of its simplicity, the single-iDCT approach was chosen. Instruction
|
| 253 |
|
|
scheduling was done manually to ensure optimal performance.
|
| 254 |
|
|
|
| 255 |
|
|
Register use was carefully considered as well. In most cases, intermediate
|
| 256 |
|
|
results were kept in registers; temporary storage to memory was needed in
|
| 257 |
|
|
only a few cases. For example, consider the implementation of the matrix
|
| 258 |
|
|
transpose. The basic operation is the transpose of 4x4 elements [8], as
|
| 259 |
|
|
illustrated in Figure 2.
|
| 260 |
|
|
|
| 261 |
|
|
Figure 2. Matrix Transpose Operation
|
| 262 |
|
|
|
| 263 |
|
|
[Image]
|
| 264 |
|
|
|
| 265 |
|
|
The 8x8 iDCT requires four of these operations. The sequence of these
|
| 266 |
|
|
operations was carefully chosen to save memory stores and loads. First, M4
|
| 267 |
|
|
was transposed, followed by M3. These two results were immediately used to
|
| 268 |
|
|
perform the iDCT on the last four columns. Similarly, M2 was transposed,
|
| 269 |
|
|
followed by M1. These results were used for the iDCT on the first four
|
| 270 |
|
|
columns.
|
| 271 |
|
|
|
| 272 |
|
|
The detailed steps of the matrix transpose algorithm are:
|
| 273 |
|
|
|
| 274 |
|
|
1. Prescale: 16 packed multiplies
|
| 275 |
|
|
2. Column 0: even part
|
| 276 |
|
|
3. Column 0: odd part
|
| 277 |
|
|
4. Column 0: output butterfly
|
| 278 |
|
|
5. Column 1: even part
|
| 279 |
|
|
6. Column 1: odd part
|
| 280 |
|
|
7. Column 1: output butterfly
|
| 281 |
|
|
8. Transpose: M4 part
|
| 282 |
|
|
9. Transpose: M3 part
|
| 283 |
|
|
10. Column 1: even part (after transpose)
|
| 284 |
|
|
11. Column 1: odd part (after transpose)
|
| 285 |
|
|
12. Column 1: output butterfly (after transform)
|
| 286 |
|
|
13. Transpose: M2 parts
|
| 287 |
|
|
14. Transpose: M1 parts
|
| 288 |
|
|
15. Column 0: odd part (after transpose)
|
| 289 |
|
|
16. Column 0: odd part (after transpose)
|
| 290 |
|
|
17. Column 0: output butterfly (after transform)
|
| 291 |
|
|
18. Cleanup
|
| 292 |
|
|
|
| 293 |
|
|
where:
|
| 294 |
|
|
|
| 295 |
|
|
* Column 0 represents the first four columns.
|
| 296 |
|
|
* Even part calculates the part of the iDCT that uses even-indexed
|
| 297 |
|
|
elements.
|
| 298 |
|
|
* Odd part calculates the part of the iDCT that uses odd-indexed
|
| 299 |
|
|
elements.
|
| 300 |
|
|
* Output butterfly generates the 1D iDCT using the results of the even
|
| 301 |
|
|
and odd parts.
|
| 302 |
|
|
|
| 303 |
|
|
During the rescheduling process, instructions from one block were moved to
|
| 304 |
|
|
the previous block whenever an empty slot could be filled. This reordering
|
| 305 |
|
|
is marked by comments in the code listed in Section 6.0.
|
| 306 |
|
|
|
| 307 |
|
|
4.0. PERFORMANCE GAINS
|
| 308 |
|
|
|
| 309 |
|
|
The cycle count for this implementation of the AAN algorithm, using MMX
|
| 310 |
|
|
instructions, is 240 clocks. A direct comparison of this implementation with
|
| 311 |
|
|
a scalar implementation of the AAN algorithm would be misleading, since the
|
| 312 |
|
|
AAN algorithm is not the fastest scalar implementation of an iDCT. However,
|
| 313 |
|
|
the implementation presented here is estimated to be 3 to 3.5 times faster
|
| 314 |
|
|
than the general performance of scalar iDCT algorithms.
|
| 315 |
|
|
|
| 316 |
|
|
5.0. REFERENCES
|
| 317 |
|
|
|
| 318 |
|
|
1. Arai, Y., T. Agui, and M. Nakajima, (1988). A Fast DCT-SQ Scheme for
|
| 319 |
|
|
Images; Trans IEICE, 71, pp. 1095-1097.
|
| 320 |
|
|
2. Feig E., and S. Winograd, (1992). Fast Algorithms for Discrete Cosine
|
| 321 |
|
|
Transform, IEEE Trans. Signal Proc., 40, pp. 2174-2193.
|
| 322 |
|
|
3. Hung, A.C., and Thy Meng, (1994). A Fast Statistical Inverse Discrete
|
| 323 |
|
|
cosine Transform for Image Compression, SPIE/IS&Teletronic Imaging
|
| 324 |
|
|
,2187 , pp. 196-205.
|
| 325 |
|
|
4. Loeffler, C., A. Ligtenberg, and C. S. Moschytz, (1989). Practical Fast
|
| 326 |
|
|
1D DCT Algorithm with Eleven Multiplications, Proc. ICASSP 1989, pp.
|
| 327 |
|
|
988-991.
|
| 328 |
|
|
5. Winograd S. (1976). On Computing the Discrete Fourier Transform, IBM
|
| 329 |
|
|
Res. Rep, RC-6291.
|
| 330 |
|
|
6. Lee, B. A New Algorithm to Compute the Discrete Cosine Transform, IEEE
|
| 331 |
|
|
Trans. Signal Proc., Dec/84, pp. 1243-1245.
|
| 332 |
|
|
7. IEEE standard specification for the implementation of 8x8 iDCT IEEE std
|
| 333 |
|
|
1180-1990
|
| 334 |
|
|
8. MPEG standard, Coding of Moving Pictures, ISO/IEC DIS 11172.
|
| 335 |
|
|
|
| 336 |
|
|
6.0. TWO-DIMENSIONAL IDCT CODE LISTING
|
| 337 |
|
|
|
| 338 |
|
|
; esi - input and output data pointer
|
| 339 |
|
|
; the input data is tranposed and each 16 bit element in the 8x8 matrix
|
| 340 |
|
|
;is left aligned:
|
| 341 |
|
|
; for example in 11...1110000 format
|
| 342 |
|
|
; If the iDCT is of I macroblock then 0.5 needs to be added to the
|
| 343 |
|
|
;DC Component
|
| 344 |
|
|
; (element[0][0] of the matrix)
|
| 345 |
|
|
|
| 346 |
|
|
.nolist
|
| 347 |
|
|
include iammx.inc ; IAMMX Emulator Macros
|
| 348 |
|
|
MMWORD TEXTEQU
|
| 349 |
|
|
.list
|
| 350 |
|
|
|
| 351 |
|
|
.586
|
| 352 |
|
|
.model flat
|
| 353 |
|
|
|
| 354 |
|
|
_DATA SEGMENT PARA PUBLIC USE32 'DATA'
|
| 355 |
|
|
x0005000200010001 DQ 0005000200010001h
|
| 356 |
|
|
x0040000000000000 DQ 40000000000000h
|
| 357 |
|
|
x5a825a825a825a82 DW 5a82h, 5a82h, 5a82h, 5a82h ; 23170
|
| 358 |
|
|
x539f539f539f539f DW 539fh, 539fh, 539fh, 539fh ; 21407
|
| 359 |
|
|
x4546454645464546 DW 4546h, 4546h, 4546h, 4546h ; 17734
|
| 360 |
|
|
x61f861f861f861f8 DW 61f8h, 61f8h, 61f8h, 61f8h ; 25080
|
| 361 |
|
|
scratch1 DQ 0
|
| 362 |
|
|
scratch3 DQ 0
|
| 363 |
|
|
scratch5 DQ 0
|
| 364 |
|
|
scratch7 DQ 0
|
| 365 |
|
|
; for debug only
|
| 366 |
|
|
x0 DQ 0
|
| 367 |
|
|
|
| 368 |
|
|
preSC DW 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520
|
| 369 |
|
|
DW 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270
|
| 370 |
|
|
DW 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906
|
| 371 |
|
|
DW 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315
|
| 372 |
|
|
DW 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520
|
| 373 |
|
|
DW 12873, 17855, 16819, 15137, 25746, 20228, 13933, 7103
|
| 374 |
|
|
DW 17734, 24598, 23170, 20853, 17734, 13933, 9597, 4892
|
| 375 |
|
|
DW 18081, 25080, 23624, 21261, 18081, 14206, 9785, 4988
|
| 376 |
|
|
|
| 377 |
|
|
_DATA ENDS
|
| 378 |
|
|
|
| 379 |
|
|
_TEXT SEGMENT PARA PUBLIC USE32 'CODE'
|
| 380 |
|
|
|
| 381 |
|
|
COMMENT ^
|
| 382 |
|
|
void idct8x8aan (
|
| 383 |
|
|
int16 *src_result);
|
| 384 |
|
|
^
|
| 385 |
|
|
public _idct8x8aan
|
| 386 |
|
|
_idct8x8aan proc near
|
| 387 |
|
|
|
| 388 |
|
|
push ebp
|
| 389 |
|
|
lea ecx, [preSC]
|
| 390 |
|
|
|
| 391 |
|
|
mov ebp, esp
|
| 392 |
|
|
push esi
|
| 393 |
|
|
|
| 394 |
|
|
mov esi, DWORD PTR [ebp+8] ; source
|
| 395 |
|
|
;slot
|
| 396 |
|
|
|
| 397 |
|
|
; column 0: even part
|
| 398 |
|
|
; use V4, V12, V0, V8 to produce V22..V25
|
| 399 |
|
|
movq mm0, mmword ptr [ecx+8*12] ; maybe the first mul can be done together
|
| 400 |
|
|
; with the dequantization in iHuff module ?
|
| 401 |
|
|
;slot
|
| 402 |
|
|
|
| 403 |
|
|
pmulhw mm0, mmword ptr [esi+8*12] ; V12
|
| 404 |
|
|
;slot
|
| 405 |
|
|
|
| 406 |
|
|
movq mm1, mmword ptr [ecx+8*4]
|
| 407 |
|
|
;slot
|
| 408 |
|
|
|
| 409 |
|
|
pmulhw mm1, mmword ptr [esi+8*4] ; V4
|
| 410 |
|
|
;slot
|
| 411 |
|
|
|
| 412 |
|
|
movq mm3, mmword ptr [ecx+8*0]
|
| 413 |
|
|
psraw mm0, 1 ; t64=t66
|
| 414 |
|
|
|
| 415 |
|
|
pmulhw mm3, mmword ptr [esi+8*0] ; V0
|
| 416 |
|
|
;slot
|
| 417 |
|
|
|
| 418 |
|
|
movq mm5, mmword ptr [ecx+8*8] ; duplicate V4
|
| 419 |
|
|
movq mm2, mm1 ; added 11/1/96
|
| 420 |
|
|
|
| 421 |
|
|
pmulhw mm5, mmword ptr [esi+8*8] ; V8
|
| 422 |
|
|
psubsw mm1, mm0 ; V16
|
| 423 |
|
|
|
| 424 |
|
|
pmulhw mm1, mmword ptr x5a825a825a825a82 ; 23170 ->V18
|
| 425 |
|
|
paddsw mm2, mm0 ; V17
|
| 426 |
|
|
|
| 427 |
|
|
movq mm0, mm2 ; duplicate V17
|
| 428 |
|
|
psraw mm2, 1 ; t75=t82
|
| 429 |
|
|
|
| 430 |
|
|
psraw mm0, 2 ; t72
|
| 431 |
|
|
movq mm4, mm3 ; duplicate V0
|
| 432 |
|
|
|
| 433 |
|
|
paddsw mm3, mm5 ; V19
|
| 434 |
|
|
psubsw mm4, mm5 ; V20 ;mm5 free
|
| 435 |
|
|
|
| 436 |
|
|
;moved from the block below
|
| 437 |
|
|
movq mm7, mmword ptr [ecx+8*10]
|
| 438 |
|
|
psraw mm3, 1 ; t74=t81
|
| 439 |
|
|
|
| 440 |
|
|
movq mm6, mm3 ; duplicate t74=t81
|
| 441 |
|
|
psraw mm4, 2 ; t77=t79
|
| 442 |
|
|
|
| 443 |
|
|
psubsw mm1, mm0 ; V21 ; mm0 free
|
| 444 |
|
|
paddsw mm3, mm2 ; V22
|
| 445 |
|
|
|
| 446 |
|
|
movq mm5, mm1 ; duplicate V21
|
| 447 |
|
|
paddsw mm1, mm4 ; V23
|
| 448 |
|
|
|
| 449 |
|
|
movq mmword ptr [esi+8*4], mm3 ; V22
|
| 450 |
|
|
psubsw mm4, mm5 ; V24; mm5 free
|
| 451 |
|
|
|
| 452 |
|
|
movq mmword ptr [esi+8*12], mm1 ; V23
|
| 453 |
|
|
psubsw mm6, mm2 ; V25; mm2 free
|
| 454 |
|
|
|
| 455 |
|
|
movq mmword ptr [esi+8*0], mm4 ; V24
|
| 456 |
|
|
;slot
|
| 457 |
|
|
|
| 458 |
|
|
; keep mm6 alive all along the next block
|
| 459 |
|
|
;movq mmword ptr [esi+8*8], mm6 ; V25
|
| 460 |
|
|
|
| 461 |
|
|
; column 0: odd part
|
| 462 |
|
|
; use V2, V6, V10, V14 to produce V31, V39, V40, V41
|
| 463 |
|
|
|
| 464 |
|
|
;moved above
|
| 465 |
|
|
;movq mm7, mmword ptr [ecx+8*10]
|
| 466 |
|
|
|
| 467 |
|
|
pmulhw mm7, mmword ptr [esi+8*10] ; V10
|
| 468 |
|
|
;slot
|
| 469 |
|
|
|
| 470 |
|
|
movq mm0, mmword ptr [ecx+8*6]
|
| 471 |
|
|
;slot
|
| 472 |
|
|
|
| 473 |
|
|
pmulhw mm0, mmword ptr [esi+8*6] ; V6
|
| 474 |
|
|
;slot
|
| 475 |
|
|
|
| 476 |
|
|
movq mm5, mmword ptr [ecx+8*2]
|
| 477 |
|
|
movq mm3, mm7 ; duplicate V10
|
| 478 |
|
|
|
| 479 |
|
|
pmulhw mm5, mmword ptr [esi+8*2] ; V2
|
| 480 |
|
|
;slot
|
| 481 |
|
|
|
| 482 |
|
|
movq mm4, mmword ptr [ecx+8*14]
|
| 483 |
|
|
psubsw mm7, mm0 ; V26
|
| 484 |
|
|
|
| 485 |
|
|
pmulhw mm4, mmword ptr [esi+8*14] ; V14
|
| 486 |
|
|
paddsw mm3, mm0 ; V29 ; free mm0
|
| 487 |
|
|
|
| 488 |
|
|
movq mm1, mm7 ; duplicate V26
|
| 489 |
|
|
psraw mm3, 1 ; t91=t94
|
| 490 |
|
|
|
| 491 |
|
|
pmulhw mm7, mmword ptr x539f539f539f539f ; V33
|
| 492 |
|
|
psraw mm1, 1 ; t96
|
| 493 |
|
|
|
| 494 |
|
|
movq mm0, mm5 ; duplicate V2
|
| 495 |
|
|
psraw mm4, 2 ; t85=t87
|
| 496 |
|
|
|
| 497 |
|
|
paddsw mm5, mm4 ; V27
|
| 498 |
|
|
psubsw mm0, mm4 ; V28 ; free mm4
|
| 499 |
|
|
|
| 500 |
|
|
movq mm2, mm0 ; duplicate V28
|
| 501 |
|
|
psraw mm5, 1 ; t90=t93
|
| 502 |
|
|
|
| 503 |
|
|
pmulhw mm0, mmword ptr x4546454645464546 ; V35
|
| 504 |
|
|
psraw mm2, 1 ; t97
|
| 505 |
|
|
|
| 506 |
|
|
movq mm4, mm5 ; duplicate t90=t93
|
| 507 |
|
|
psubsw mm1, mm2 ; V32 ; free mm2
|
| 508 |
|
|
|
| 509 |
|
|
pmulhw mm1, mmword ptr x61f861f861f861f8 ; V36
|
| 510 |
|
|
psllw mm7, 1 ; t107
|
| 511 |
|
|
|
| 512 |
|
|
paddsw mm5, mm3 ; V31
|
| 513 |
|
|
psubsw mm4, mm3 ; V30 ; free mm3
|
| 514 |
|
|
|
| 515 |
|
|
pmulhw mm4, mmword ptr x5a825a825a825a82 ; V34
|
| 516 |
|
|
nop ;slot
|
| 517 |
|
|
|
| 518 |
|
|
psubsw mm0, mm1 ; V38
|
| 519 |
|
|
psubsw mm1, mm7 ; V37 ; free mm7
|
| 520 |
|
|
|
| 521 |
|
|
psllw mm1, 1 ; t114
|
| 522 |
|
|
;move from the next block
|
| 523 |
|
|
movq mm3, mm6 ; duplicate V25
|
| 524 |
|
|
|
| 525 |
|
|
;move from the next block
|
| 526 |
|
|
movq mm7, mmword ptr [esi+8*4] ; V22
|
| 527 |
|
|
psllw mm0, 1 ; t110
|
| 528 |
|
|
|
| 529 |
|
|
psubsw mm0, mm5 ; V39 (mm5 still needed for next block)
|
| 530 |
|
|
psllw mm4, 2 ; t112
|
| 531 |
|
|
|
| 532 |
|
|
;move from the next block
|
| 533 |
|
|
movq mm2, mmword ptr [esi+8*12] ; V23
|
| 534 |
|
|
psubsw mm4, mm0 ; V40
|
| 535 |
|
|
|
| 536 |
|
|
paddsw mm1, mm4 ; V41; free mm0
|
| 537 |
|
|
;move from the next block
|
| 538 |
|
|
psllw mm2, 1 ; t117=t125
|
| 539 |
|
|
|
| 540 |
|
|
; column 0: output butterfly
|
| 541 |
|
|
;move above
|
| 542 |
|
|
;movq mm3, mm6 ; duplicate V25
|
| 543 |
|
|
;movq mm7, mmword ptr [esi+8*4] ; V22
|
| 544 |
|
|
;movq mm2, mmword ptr [esi+8*12] ; V23
|
| 545 |
|
|
;psllw mm2, 1 ; t117=t125
|
| 546 |
|
|
|
| 547 |
|
|
psubsw mm6, mm1 ; tm6
|
| 548 |
|
|
paddsw mm3, mm1 ; tm8; free mm1
|
| 549 |
|
|
|
| 550 |
|
|
movq mm1, mm7 ; duplicate V22
|
| 551 |
|
|
paddsw mm7, mm5 ; tm0
|
| 552 |
|
|
|
| 553 |
|
|
movq mmword ptr [esi+8*8], mm3 ; tm8; free mm3
|
| 554 |
|
|
psubsw mm1, mm5 ; tm14; free mm5
|
| 555 |
|
|
|
| 556 |
|
|
movq mmword ptr [esi+8*6], mm6 ; tm6; free mm6
|
| 557 |
|
|
movq mm3, mm2 ; duplicate t117=t125
|
| 558 |
|
|
|
| 559 |
|
|
movq mm6, mmword ptr [esi+8*0] ; V24
|
| 560 |
|
|
paddsw mm2, mm0 ; tm2
|
| 561 |
|
|
|
| 562 |
|
|
movq mmword ptr [esi+8*0], mm7 ; tm0; free mm7
|
| 563 |
|
|
psubsw mm3, mm0 ; tm12; free mm0
|
| 564 |
|
|
|
| 565 |
|
|
movq mmword ptr [esi+8*14], mm1 ; tm14; free mm1
|
| 566 |
|
|
psllw mm6, 1 ; t119=t123
|
| 567 |
|
|
|
| 568 |
|
|
movq mmword ptr [esi+8*2], mm2 ; tm2; free mm2
|
| 569 |
|
|
movq mm0, mm6 ; duplicate t119=t123
|
| 570 |
|
|
|
| 571 |
|
|
movq mmword ptr [esi+8*12], mm3 ; tm12; free mm3
|
| 572 |
|
|
paddsw mm6, mm4 ; tm4
|
| 573 |
|
|
|
| 574 |
|
|
;moved from next block
|
| 575 |
|
|
movq mm1, mmword ptr [ecx+8*5]
|
| 576 |
|
|
psubsw mm0, mm4 ; tm10; free mm4
|
| 577 |
|
|
|
| 578 |
|
|
;moved from next block
|
| 579 |
|
|
pmulhw mm1, mmword ptr [esi+8*5] ; V5
|
| 580 |
|
|
;slot
|
| 581 |
|
|
|
| 582 |
|
|
movq mmword ptr [esi+8*4], mm6 ; tm4; free mm6
|
| 583 |
|
|
;slot
|
| 584 |
|
|
|
| 585 |
|
|
movq mmword ptr [esi+8*10], mm0 ; tm10; free mm0
|
| 586 |
|
|
;slot
|
| 587 |
|
|
|
| 588 |
|
|
; column 1: even part
|
| 589 |
|
|
; use V5, V13, V1, V9 to produce V56..V59
|
| 590 |
|
|
;moved to prev block
|
| 591 |
|
|
;movq mm1, mmword ptr [ecx+8*5]
|
| 592 |
|
|
;pmulhw mm1, mmword ptr [esi+8*5] ; V5
|
| 593 |
|
|
|
| 594 |
|
|
movq mm7, mmword ptr [ecx+8*13]
|
| 595 |
|
|
psllw mm1, 1 ; t128=t130
|
| 596 |
|
|
|
| 597 |
|
|
pmulhw mm7, mmword ptr [esi+8*13] ; V13
|
| 598 |
|
|
movq mm2, mm1 ; duplicate t128=t130
|
| 599 |
|
|
|
| 600 |
|
|
movq mm3, mmword ptr [ecx+8*1]
|
| 601 |
|
|
;slot
|
| 602 |
|
|
|
| 603 |
|
|
pmulhw mm3, mmword ptr [esi+8*1] ; V1
|
| 604 |
|
|
;slot
|
| 605 |
|
|
|
| 606 |
|
|
movq mm5, mmword ptr [ecx+8*9]
|
| 607 |
|
|
psubsw mm1, mm7 ; V50
|
| 608 |
|
|
|
| 609 |
|
|
pmulhw mm5, mmword ptr [esi+8*9] ; V9
|
| 610 |
|
|
paddsw mm2, mm7 ; V51
|
| 611 |
|
|
|
| 612 |
|
|
pmulhw mm1, mmword ptr x5a825a825a825a82 ; 23170 ->V52
|
| 613 |
|
|
movq mm6, mm2 ; duplicate V51
|
| 614 |
|
|
|
| 615 |
|
|
psraw mm2, 1 ; t138=t144
|
| 616 |
|
|
movq mm4, mm3 ; duplicate V1
|
| 617 |
|
|
|
| 618 |
|
|
psraw mm6, 2 ; t136
|
| 619 |
|
|
paddsw mm3, mm5 ; V53
|
| 620 |
|
|
|
| 621 |
|
|
psubsw mm4, mm5 ; V54 ;mm5 free
|
| 622 |
|
|
movq mm7, mm3 ; duplicate V53
|
| 623 |
|
|
|
| 624 |
|
|
;moved from next block
|
| 625 |
|
|
movq mm0, mmword ptr [ecx+8*11]
|
| 626 |
|
|
psraw mm4, 1 ; t140=t142
|
| 627 |
|
|
|
| 628 |
|
|
psubsw mm1, mm6 ; V55 ; mm6 free
|
| 629 |
|
|
paddsw mm3, mm2 ; V56
|
| 630 |
|
|
|
| 631 |
|
|
movq mm5, mm4 ; duplicate t140=t142
|
| 632 |
|
|
paddsw mm4, mm1 ; V57
|
| 633 |
|
|
|
| 634 |
|
|
movq mmword ptr [esi+8*5], mm3 ; V56
|
| 635 |
|
|
psubsw mm5, mm1 ; V58; mm1 free
|
| 636 |
|
|
|
| 637 |
|
|
movq mmword ptr [esi+8*13], mm4 ; V57
|
| 638 |
|
|
psubsw mm7, mm2 ; V59; mm2 free
|
| 639 |
|
|
|
| 640 |
|
|
movq mmword ptr [esi+8*9], mm5 ; V58
|
| 641 |
|
|
;slot
|
| 642 |
|
|
|
| 643 |
|
|
; keep mm7 alive all along the next block
|
| 644 |
|
|
;movq mmword ptr [esi+8*1], mm7 ; V59
|
| 645 |
|
|
|
| 646 |
|
|
;moved above
|
| 647 |
|
|
;movq mm0, mmword ptr [ecx+8*11]
|
| 648 |
|
|
|
| 649 |
|
|
pmulhw mm0, mmword ptr [esi+8*11] ; V11
|
| 650 |
|
|
;slot
|
| 651 |
|
|
|
| 652 |
|
|
movq mm6, mmword ptr [ecx+8*7]
|
| 653 |
|
|
;slot
|
| 654 |
|
|
|
| 655 |
|
|
pmulhw mm6, mmword ptr [esi+8*7] ; V7
|
| 656 |
|
|
;slot
|
| 657 |
|
|
|
| 658 |
|
|
movq mm4, mmword ptr [ecx+8*15]
|
| 659 |
|
|
movq mm3, mm0 ; duplicate V11
|
| 660 |
|
|
|
| 661 |
|
|
pmulhw mm4, mmword ptr [esi+8*15] ; V15
|
| 662 |
|
|
;slot
|
| 663 |
|
|
|
| 664 |
|
|
movq mm5, mmword ptr [ecx+8*3]
|
| 665 |
|
|
psllw mm6,1 ; t146=t152
|
| 666 |
|
|
|
| 667 |
|
|
pmulhw mm5, mmword ptr [esi+8*3] ; V3
|
| 668 |
|
|
paddsw mm0, mm6 ; V63
|
| 669 |
|
|
|
| 670 |
|
|
; note that V15 computation has a correction step:
|
| 671 |
|
|
; this is a 'magic' constant that rebiases the results to be closer to the expected result
|
| 672 |
|
|
; this magic constant can be refined to reduce the error even more
|
| 673 |
|
|
; by doing the correction step in a later stage when the number is actually multiplied by 16
|
| 674 |
|
|
|
| 675 |
|
|
paddw mm4, mmword ptr x0005000200010001
|
| 676 |
|
|
psubsw mm3, mm6 ; V60 ; free mm6
|
| 677 |
|
|
|
| 678 |
|
|
psraw mm0, 1 ; t154=t156
|
| 679 |
|
|
movq mm1, mm3 ; duplicate V60
|
| 680 |
|
|
|
| 681 |
|
|
pmulhw mm1, mmword ptr x539f539f539f539f ; V67
|
| 682 |
|
|
movq mm6, mm5 ; duplicate V3
|
| 683 |
|
|
|
| 684 |
|
|
psraw mm4, 2 ; t148=t150
|
| 685 |
|
|
;slot
|
| 686 |
|
|
|
| 687 |
|
|
paddsw mm5, mm4 ; V61
|
| 688 |
|
|
psubsw mm6, mm4 ; V62 ; free mm4
|
| 689 |
|
|
|
| 690 |
|
|
movq mm4, mm5 ; duplicate V61
|
| 691 |
|
|
psllw mm1, 1 ; t169
|
| 692 |
|
|
|
| 693 |
|
|
paddsw mm5, mm0 ; V65 -> result
|
| 694 |
|
|
psubsw mm4, mm0 ; V64 ; free mm0
|
| 695 |
|
|
|
| 696 |
|
|
pmulhw mm4, mmword ptr x5a825a825a825a82 ; V68
|
| 697 |
|
|
psraw mm3, 1 ; t158
|
| 698 |
|
|
|
| 699 |
|
|
psubsw mm3, mm6 ; V66
|
| 700 |
|
|
movq mm2, mm5 ; duplicate V65
|
| 701 |
|
|
|
| 702 |
|
|
pmulhw mm3, mmword ptr x61f861f861f861f8 ; V70
|
| 703 |
|
|
psllw mm6, 1 ; t165
|
| 704 |
|
|
|
| 705 |
|
|
pmulhw mm6, mmword ptr x4546454645464546 ; V69
|
| 706 |
|
|
psraw mm2, 1 ; t172
|
| 707 |
|
|
|
| 708 |
|
|
;moved from next block
|
| 709 |
|
|
movq mm0, mmword ptr [esi+8*5] ; V56
|
| 710 |
|
|
psllw mm4, 1 ; t174
|
| 711 |
|
|
|
| 712 |
|
|
;moved from next block
|
| 713 |
|
|
psraw mm0, 1 ; t177=t188
|
| 714 |
|
|
nop ; slot
|
| 715 |
|
|
|
| 716 |
|
|
psubsw mm6, mm3 ; V72
|
| 717 |
|
|
psubsw mm3, mm1 ; V71 ; free mm1
|
| 718 |
|
|
|
| 719 |
|
|
psubsw mm6, mm2 ; V73 ; free mm2
|
| 720 |
|
|
;moved from next block
|
| 721 |
|
|
psraw mm5, 1 ; t178=t189
|
| 722 |
|
|
|
| 723 |
|
|
psubsw mm4, mm6 ; V74
|
| 724 |
|
|
;moved from next block
|
| 725 |
|
|
movq mm1, mm0 ; duplicate t177=t188
|
| 726 |
|
|
|
| 727 |
|
|
paddsw mm3, mm4 ; V75
|
| 728 |
|
|
;moved from next block
|
| 729 |
|
|
paddsw mm0, mm5 ; tm1
|
| 730 |
|
|
|
| 731 |
|
|
;location
|
| 732 |
|
|
; 5 - V56
|
| 733 |
|
|
; 13 - V57
|
| 734 |
|
|
; 9 - V58
|
| 735 |
|
|
; X - V59, mm7
|
| 736 |
|
|
; X - V65, mm5
|
| 737 |
|
|
; X - V73, mm6
|
| 738 |
|
|
; X - V74, mm4
|
| 739 |
|
|
; X - V75, mm3
|
| 740 |
|
|
; free mm0, mm1 & mm2
|
| 741 |
|
|
;move above
|
| 742 |
|
|
;movq mm0, mmword ptr [esi+8*5] ; V56
|
| 743 |
|
|
;psllw mm0, 1 ; t177=t188 ! new !!
|
| 744 |
|
|
;psllw mm5, 1 ; t178=t189 ! new !!
|
| 745 |
|
|
;movq mm1, mm0 ; duplicate t177=t188
|
| 746 |
|
|
;paddsw mm0, mm5 ; tm1
|
| 747 |
|
|
|
| 748 |
|
|
movq mm2, mmword ptr [esi+8*13] ; V57
|
| 749 |
|
|
psubsw mm1, mm5 ; tm15; free mm5
|
| 750 |
|
|
|
| 751 |
|
|
movq mmword ptr [esi+8*1], mm0 ; tm1; free mm0
|
| 752 |
|
|
psraw mm7, 1 ; t182=t184 ! new !!
|
| 753 |
|
|
|
| 754 |
|
|
;save the store as used directly in the transpose
|
| 755 |
|
|
;movq mmword ptr [esi+8*15], mm1 ; tm15; free mm1
|
| 756 |
|
|
movq mm5, mm7 ; duplicate t182=t184
|
| 757 |
|
|
psubsw mm7, mm3 ; tm7
|
| 758 |
|
|
|
| 759 |
|
|
paddsw mm5, mm3 ; tm9; free mm3
|
| 760 |
|
|
;slot
|
| 761 |
|
|
|
| 762 |
|
|
movq mm0, mmword ptr [esi+8*9] ; V58
|
| 763 |
|
|
movq mm3, mm2 ; duplicate V57
|
| 764 |
|
|
|
| 765 |
|
|
movq mmword ptr [esi+8*7], mm7 ; tm7; free mm7
|
| 766 |
|
|
psubsw mm3, mm6 ; tm13
|
| 767 |
|
|
|
| 768 |
|
|
paddsw mm2, mm6 ; tm3 ; free mm6
|
| 769 |
|
|
; moved up from the transpose
|
| 770 |
|
|
movq mm7, mm3
|
| 771 |
|
|
|
| 772 |
|
|
; moved up from the transpose
|
| 773 |
|
|
punpcklwd mm3, mm1
|
| 774 |
|
|
movq mm6, mm0 ; duplicate V58
|
| 775 |
|
|
|
| 776 |
|
|
movq mmword ptr [esi+8*3], mm2 ; tm3; free mm2
|
| 777 |
|
|
paddsw mm0, mm4 ; tm5
|
| 778 |
|
|
|
| 779 |
|
|
psubsw mm6, mm4 ; tm11; free mm4
|
| 780 |
|
|
; moved up from the transpose
|
| 781 |
|
|
punpckhwd mm7, mm1
|
| 782 |
|
|
|
| 783 |
|
|
movq mmword ptr [esi+8*5], mm0 ; tm5; free mm0
|
| 784 |
|
|
; moved up from the transpose
|
| 785 |
|
|
movq mm2, mm5
|
| 786 |
|
|
|
| 787 |
|
|
; transpose - M4 part
|
| 788 |
|
|
; --------- ---------
|
| 789 |
|
|
; | M1 | M2 | | M1'| M3'|
|
| 790 |
|
|
; --------- --> ---------
|
| 791 |
|
|
; | M3 | M4 | | M2'| M4'|
|
| 792 |
|
|
; --------- ---------
|
| 793 |
|
|
; Two alternatives: use full mmword approach so the following code can be
|
| 794 |
|
|
; scheduled before the transpose is done without stores, or use the faster
|
| 795 |
|
|
; half mmword stores (when possible)
|
| 796 |
|
|
|
| 797 |
|
|
movdf dword ptr [esi+8*9+4], mm3 ; MS part of tmt9
|
| 798 |
|
|
punpcklwd mm5, mm6
|
| 799 |
|
|
|
| 800 |
|
|
movdf dword ptr [esi+8*13+4], mm7 ; MS part of tmt13
|
| 801 |
|
|
punpckhwd mm2, mm6
|
| 802 |
|
|
|
| 803 |
|
|
movdf dword ptr [esi+8*9], mm5 ; LS part of tmt9
|
| 804 |
|
|
punpckhdq mm5, mm3 ; free mm3
|
| 805 |
|
|
|
| 806 |
|
|
movdf dword ptr [esi+8*13], mm2 ; LS part of tmt13
|
| 807 |
|
|
punpckhdq mm2, mm7 ; free mm7
|
| 808 |
|
|
|
| 809 |
|
|
; moved up from the M3 transpose
|
| 810 |
|
|
movq mm0, mmword ptr [esi+8*8]
|
| 811 |
|
|
;slot
|
| 812 |
|
|
|
| 813 |
|
|
; moved up from the M3 transpose
|
| 814 |
|
|
movq mm1, mmword ptr [esi+8*10]
|
| 815 |
|
|
; moved up from the M3 transpose
|
| 816 |
|
|
movq mm3, mm0
|
| 817 |
|
|
|
| 818 |
|
|
; shuffle the rest of the data, and write it with 2 mmword writes
|
| 819 |
|
|
movq mmword ptr [esi+8*11], mm5 ; tmt11
|
| 820 |
|
|
; moved up from the M3 transpose
|
| 821 |
|
|
punpcklwd mm0, mm1
|
| 822 |
|
|
|
| 823 |
|
|
movq mmword ptr [esi+8*15], mm2 ; tmt15
|
| 824 |
|
|
; moved up from the M3 transpose
|
| 825 |
|
|
punpckhwd mm3, mm1
|
| 826 |
|
|
|
| 827 |
|
|
; transpose - M3 part
|
| 828 |
|
|
|
| 829 |
|
|
; moved up to previous code section
|
| 830 |
|
|
;movq mm0, mmword ptr [esi+8*8]
|
| 831 |
|
|
;movq mm1, mmword ptr [esi+8*10]
|
| 832 |
|
|
;movq mm3, mm0
|
| 833 |
|
|
;punpcklwd mm0, mm1
|
| 834 |
|
|
;punpckhwd mm3, mm1
|
| 835 |
|
|
|
| 836 |
|
|
movq mm6, mmword ptr [esi+8*12]
|
| 837 |
|
|
;slot
|
| 838 |
|
|
|
| 839 |
|
|
movq mm4, mmword ptr [esi+8*14]
|
| 840 |
|
|
movq mm2, mm6
|
| 841 |
|
|
|
| 842 |
|
|
; shuffle the data and write out the lower parts of the transposed in 4 dwords
|
| 843 |
|
|
punpcklwd mm6, mm4
|
| 844 |
|
|
movq mm1, mm0
|
| 845 |
|
|
|
| 846 |
|
|
punpckhdq mm1, mm6
|
| 847 |
|
|
movq mm7, mm3
|
| 848 |
|
|
|
| 849 |
|
|
punpckhwd mm2, mm4 ; free mm4
|
| 850 |
|
|
;slot
|
| 851 |
|
|
|
| 852 |
|
|
punpckldq mm0, mm6 ; free mm6
|
| 853 |
|
|
;slot
|
| 854 |
|
|
|
| 855 |
|
|
;moved from next block
|
| 856 |
|
|
movq mm4, mmword ptr [esi+8*13] ; tmt13
|
| 857 |
|
|
punpckldq mm3, mm2
|
| 858 |
|
|
|
| 859 |
|
|
punpckhdq mm7, mm2 ; free mm2
|
| 860 |
|
|
;moved from next block
|
| 861 |
|
|
movq mm5, mm3 ; duplicate tmt5
|
| 862 |
|
|
|
| 863 |
|
|
; column 1: even part (after transpose)
|
| 864 |
|
|
|
| 865 |
|
|
;moved above
|
| 866 |
|
|
;movq mm5, mm3 ; duplicate tmt5
|
| 867 |
|
|
;movq mm4, mmword ptr [esi+8*13] ; tmt13
|
| 868 |
|
|
|
| 869 |
|
|
psubsw mm3, mm4 ; V134
|
| 870 |
|
|
;slot
|
| 871 |
|
|
|
| 872 |
|
|
pmulhw mm3, mmword ptr x5a825a825a825a82 ; 23170 ->V136
|
| 873 |
|
|
;slot
|
| 874 |
|
|
|
| 875 |
|
|
movq mm6, mmword ptr [esi+8*9] ; tmt9
|
| 876 |
|
|
paddsw mm5, mm4 ; V135 ; mm4 free
|
| 877 |
|
|
|
| 878 |
|
|
movq mm4, mm0 ; duplicate tmt1
|
| 879 |
|
|
paddsw mm0, mm6 ; V137
|
| 880 |
|
|
|
| 881 |
|
|
psubsw mm4, mm6 ; V138 ; mm6 free
|
| 882 |
|
|
psllw mm3, 2 ; t290
|
| 883 |
|
|
psubsw mm3, mm5 ; V139
|
| 884 |
|
|
movq mm6, mm0 ; duplicate V137
|
| 885 |
|
|
|
| 886 |
|
|
paddsw mm0, mm5 ; V140
|
| 887 |
|
|
movq mm2, mm4 ; duplicate V138
|
| 888 |
|
|
|
| 889 |
|
|
paddsw mm2, mm3 ; V141
|
| 890 |
|
|
psubsw mm4, mm3 ; V142 ; mm3 free
|
| 891 |
|
|
|
| 892 |
|
|
movq mmword ptr [esi+8*9], mm0 ; V140
|
| 893 |
|
|
psubsw mm6, mm5 ; V143 ; mm5 free
|
| 894 |
|
|
|
| 895 |
|
|
;moved from next block
|
| 896 |
|
|
movq mm0, mmword ptr[esi+8*11] ; tmt11
|
| 897 |
|
|
;slot
|
| 898 |
|
|
|
| 899 |
|
|
movq mmword ptr [esi+8*13], mm2 ; V141
|
| 900 |
|
|
;moved from next block
|
| 901 |
|
|
movq mm2, mm0 ; duplicate tmt11
|
| 902 |
|
|
|
| 903 |
|
|
; column 1: odd part (after transpose)
|
| 904 |
|
|
|
| 905 |
|
|
;moved up to the prev block
|
| 906 |
|
|
;movq mm0, mmword ptr[esi+8*11] ; tmt11
|
| 907 |
|
|
;movq mm2, mm0 ; duplicate tmt11
|
| 908 |
|
|
|
| 909 |
|
|
movq mm5, mmword ptr[esi+8*15] ; tmt15
|
| 910 |
|
|
psubsw mm0, mm7 ; V144
|
| 911 |
|
|
|
| 912 |
|
|
movq mm3, mm0 ; duplicate V144
|
| 913 |
|
|
paddsw mm2, mm7 ; V147 ; free mm7
|
| 914 |
|
|
|
| 915 |
|
|
pmulhw mm0, mmword ptr x539f539f539f539f ; 21407-> V151
|
| 916 |
|
|
movq mm7, mm1 ; duplicate tmt3
|
| 917 |
|
|
|
| 918 |
|
|
paddsw mm7, mm5 ; V145
|
| 919 |
|
|
psubsw mm1, mm5 ; V146 ; free mm5
|
| 920 |
|
|
|
| 921 |
|
|
psubsw mm3, mm1 ; V150
|
| 922 |
|
|
movq mm5, mm7 ; duplicate V145
|
| 923 |
|
|
|
| 924 |
|
|
pmulhw mm1, mmword ptr x4546454645464546 ; 17734-> V153
|
| 925 |
|
|
psubsw mm5, mm2 ; V148
|
| 926 |
|
|
|
| 927 |
|
|
pmulhw mm3, mmword ptr x61f861f861f861f8 ; 25080-> V154
|
| 928 |
|
|
psllw mm0, 2 ; t311
|
| 929 |
|
|
|
| 930 |
|
|
pmulhw mm5, mmword ptr x5a825a825a825a82 ; 23170-> V152
|
| 931 |
|
|
paddsw mm7, mm2 ; V149 ; free mm2
|
| 932 |
|
|
|
| 933 |
|
|
psllw mm1, 1 ; t313
|
| 934 |
|
|
nop ; slot
|
| 935 |
|
|
|
| 936 |
|
|
;without the nop above - freeze here for one clock
|
| 937 |
|
|
;the nop cleans the mess a little bit
|
| 938 |
|
|
movq mm2, mm3 ; duplicate V154
|
| 939 |
|
|
psubsw mm3, mm0 ; V155 ; free mm0
|
| 940 |
|
|
|
| 941 |
|
|
psubsw mm1, mm2 ; V156 ; free mm2
|
| 942 |
|
|
;moved from the next block
|
| 943 |
|
|
movq mm2, mm6 ; duplicate V143
|
| 944 |
|
|
|
| 945 |
|
|
;moved from the next block
|
| 946 |
|
|
movq mm0, mmword ptr[esi+8*13] ; V141
|
| 947 |
|
|
psllw mm1, 1 ; t315
|
| 948 |
|
|
|
| 949 |
|
|
psubsw mm1, mm7 ; V157 (keep V149)
|
| 950 |
|
|
psllw mm5, 2 ; t317
|
| 951 |
|
|
|
| 952 |
|
|
psubsw mm5, mm1 ; V158
|
| 953 |
|
|
psllw mm3, 1 ; t319
|
| 954 |
|
|
|
| 955 |
|
|
paddsw mm3, mm5 ; V159
|
| 956 |
|
|
;slot
|
| 957 |
|
|
|
| 958 |
|
|
; column 1: output butterfly (after transform)
|
| 959 |
|
|
;moved to the prev block
|
| 960 |
|
|
;movq mm2, mm6 ; duplicate V143
|
| 961 |
|
|
;movq mm0, mmword ptr[esi+8*13] ; V141
|
| 962 |
|
|
|
| 963 |
|
|
psubsw mm2, mm3 ; V163
|
| 964 |
|
|
paddsw mm6, mm3 ; V164 ; free mm3
|
| 965 |
|
|
|
| 966 |
|
|
movq mm3, mm4 ; duplicate V142
|
| 967 |
|
|
psubsw mm4, mm5 ; V165 ; free mm5
|
| 968 |
|
|
|
| 969 |
|
|
movq mmword ptr scratch7, mm2 ; out7
|
| 970 |
|
|
psraw mm6, 4
|
| 971 |
|
|
|
| 972 |
|
|
psraw mm4, 4
|
| 973 |
|
|
paddsw mm3, mm5 ; V162
|
| 974 |
|
|
|
| 975 |
|
|
movq mm2, mmword ptr[esi+8*9] ; V140
|
| 976 |
|
|
movq mm5, mm0 ; duplicate V141
|
| 977 |
|
|
|
| 978 |
|
|
;in order not to perculate this line up, we read [esi+8*9] very near to this location
|
| 979 |
|
|
movq mmword ptr [esi+8*9], mm6 ; out9
|
| 980 |
|
|
paddsw mm0, mm1 ; V161
|
| 981 |
|
|
|
| 982 |
|
|
movq mmword ptr scratch5, mm3 ; out5
|
| 983 |
|
|
psubsw mm5, mm1 ; V166 ; free mm1
|
| 984 |
|
|
|
| 985 |
|
|
movq mmword ptr[esi+8*11], mm4 ; out11
|
| 986 |
|
|
psraw mm5, 4
|
| 987 |
|
|
|
| 988 |
|
|
movq mmword ptr scratch3, mm0 ; out3
|
| 989 |
|
|
movq mm4, mm2 ; duplicate V140
|
| 990 |
|
|
|
| 991 |
|
|
movq mmword ptr[esi+8*13], mm5 ; out13
|
| 992 |
|
|
paddsw mm2, mm7 ; V160
|
| 993 |
|
|
|
| 994 |
|
|
;moved from the next block
|
| 995 |
|
|
movq mm0, mmword ptr [esi+8*1]
|
| 996 |
|
|
psubsw mm4, mm7 ; V167 ; free mm7
|
| 997 |
|
|
|
| 998 |
|
|
;moved from the next block
|
| 999 |
|
|
movq mm7, mmword ptr [esi+8*3]
|
| 1000 |
|
|
psraw mm4, 4
|
| 1001 |
|
|
|
| 1002 |
|
|
movq mmword ptr scratch1, mm2 ; out1
|
| 1003 |
|
|
;moved from the next block
|
| 1004 |
|
|
movq mm1, mm0
|
| 1005 |
|
|
|
| 1006 |
|
|
movq mmword ptr[esi+8*15], mm4 ; out15
|
| 1007 |
|
|
;moved from the next block
|
| 1008 |
|
|
punpcklwd mm0, mm7
|
| 1009 |
|
|
|
| 1010 |
|
|
; transpose - M2 parts
|
| 1011 |
|
|
;moved up to the prev block
|
| 1012 |
|
|
;movq mm0, mmword ptr [esi+8*1]
|
| 1013 |
|
|
;movq mm7, mmword ptr [esi+8*3]
|
| 1014 |
|
|
;movq mm1, mm0
|
| 1015 |
|
|
;punpcklwd mm0, mm7
|
| 1016 |
|
|
|
| 1017 |
|
|
movq mm5, mmword ptr [esi+8*5]
|
| 1018 |
|
|
punpckhwd mm1, mm7
|
| 1019 |
|
|
|
| 1020 |
|
|
movq mm4, mmword ptr [esi+8*7]
|
| 1021 |
|
|
movq mm3, mm5
|
| 1022 |
|
|
|
| 1023 |
|
|
; shuffle the data and write out the lower parts of the trasposed in 4 dwords
|
| 1024 |
|
|
movdf dword ptr [esi+8*8], mm0 ; LS part of tmt8
|
| 1025 |
|
|
punpcklwd mm5, mm4
|
| 1026 |
|
|
|
| 1027 |
|
|
movdf dword ptr [esi+8*12], mm1 ; LS part of tmt12
|
| 1028 |
|
|
punpckhwd mm3, mm4
|
| 1029 |
|
|
|
| 1030 |
|
|
movdf dword ptr [esi+8*8+4], mm5 ; MS part of tmt8
|
| 1031 |
|
|
punpckhdq mm0, mm5 ; tmt10
|
| 1032 |
|
|
|
| 1033 |
|
|
movdf dword ptr [esi+8*12+4], mm3 ; MS part of tmt12
|
| 1034 |
|
|
punpckhdq mm1, mm3 ; tmt14
|
| 1035 |
|
|
|
| 1036 |
|
|
; transpose - M1 parts
|
| 1037 |
|
|
movq mm7, mmword ptr [esi]
|
| 1038 |
|
|
;slot
|
| 1039 |
|
|
|
| 1040 |
|
|
movq mm2, mmword ptr [esi+8*2]
|
| 1041 |
|
|
movq mm6, mm7
|
| 1042 |
|
|
|
| 1043 |
|
|
movq mm5, mmword ptr [esi+8*4]
|
| 1044 |
|
|
punpcklwd mm7, mm2
|
| 1045 |
|
|
|
| 1046 |
|
|
movq mm4, mmword ptr [esi+8*6]
|
| 1047 |
|
|
punpckhwd mm6, mm2 ; free mm2
|
| 1048 |
|
|
|
| 1049 |
|
|
movq mm3, mm5
|
| 1050 |
|
|
punpcklwd mm5, mm4
|
| 1051 |
|
|
|
| 1052 |
|
|
punpckhwd mm3, mm4 ; free mm4
|
| 1053 |
|
|
movq mm2, mm7
|
| 1054 |
|
|
|
| 1055 |
|
|
movq mm4, mm6
|
| 1056 |
|
|
punpckldq mm7, mm5 ; tmt0
|
| 1057 |
|
|
|
| 1058 |
|
|
punpckhdq mm2, mm5 ; tmt2 ; free mm5
|
| 1059 |
|
|
;slot
|
| 1060 |
|
|
|
| 1061 |
|
|
; shuffle the rest of the data, and write it with 2 mmword writes
|
| 1062 |
|
|
punpckldq mm6, mm3 ; tmt4
|
| 1063 |
|
|
;move from next block
|
| 1064 |
|
|
movq mm5, mm2 ; duplicate tmt2
|
| 1065 |
|
|
|
| 1066 |
|
|
punpckhdq mm4, mm3 ; tmt6 ; free mm3
|
| 1067 |
|
|
;move from next block
|
| 1068 |
|
|
movq mm3, mm0 ; duplicate tmt10
|
| 1069 |
|
|
|
| 1070 |
|
|
; column 0: odd part (after transpose)
|
| 1071 |
|
|
;moved up to prev block
|
| 1072 |
|
|
;movq mm3, mm0 ; duplicate tmt10
|
| 1073 |
|
|
;movq mm5, mm2 ; duplicate tmt2
|
| 1074 |
|
|
|
| 1075 |
|
|
psubsw mm0, mm4 ; V110
|
| 1076 |
|
|
paddsw mm3, mm4 ; V113 ; free mm4
|
| 1077 |
|
|
|
| 1078 |
|
|
movq mm4, mm0 ; duplicate V110
|
| 1079 |
|
|
paddsw mm2, mm1 ; V111
|
| 1080 |
|
|
|
| 1081 |
|
|
pmulhw mm0, mmword ptr x539f539f539f539f ; 21407-> V117
|
| 1082 |
|
|
psubsw mm5, mm1 ; V112 ; free mm1
|
| 1083 |
|
|
|
| 1084 |
|
|
psubsw mm4, mm5 ; V116
|
| 1085 |
|
|
movq mm1, mm2 ; duplicate V111
|
| 1086 |
|
|
|
| 1087 |
|
|
pmulhw mm5, mmword ptr x4546454645464546 ; 17734-> V119
|
| 1088 |
|
|
psubsw mm2, mm3 ; V114
|
| 1089 |
|
|
|
| 1090 |
|
|
pmulhw mm4, mmword ptr x61f861f861f861f8 ; 25080-> V120
|
| 1091 |
|
|
paddsw mm1, mm3 ; V115 ; free mm3
|
| 1092 |
|
|
|
| 1093 |
|
|
pmulhw mm2, mmword ptr x5a825a825a825a82 ; 23170-> V118
|
| 1094 |
|
|
psllw mm0, 2 ; t266
|
| 1095 |
|
|
|
| 1096 |
|
|
movq mmword ptr[esi+8*0], mm1 ; save V115
|
| 1097 |
|
|
psllw mm5, 1 ; t268
|
| 1098 |
|
|
|
| 1099 |
|
|
psubsw mm5, mm4 ; V122
|
| 1100 |
|
|
psubsw mm4, mm0 ; V121 ; free mm0
|
| 1101 |
|
|
|
| 1102 |
|
|
psllw mm5, 1 ; t270
|
| 1103 |
|
|
;slot
|
| 1104 |
|
|
|
| 1105 |
|
|
psubsw mm5, mm1 ; V123 ; free mm1
|
| 1106 |
|
|
psllw mm2, 2 ; t272
|
| 1107 |
|
|
|
| 1108 |
|
|
psubsw mm2, mm5 ; V124 (keep V123)
|
| 1109 |
|
|
psllw mm4, 1 ; t274
|
| 1110 |
|
|
|
| 1111 |
|
|
movq mmword ptr[esi+8*2], mm5 ; save V123 ; free mm5
|
| 1112 |
|
|
paddsw mm4, mm2 ; V125 (keep V124)
|
| 1113 |
|
|
|
| 1114 |
|
|
; column 0: even part (after transpose)
|
| 1115 |
|
|
movq mm0, mmword ptr[esi+8*12] ; tmt12
|
| 1116 |
|
|
movq mm3, mm6 ; duplicate tmt4
|
| 1117 |
|
|
|
| 1118 |
|
|
psubsw mm6, mm0 ; V100
|
| 1119 |
|
|
paddsw mm3, mm0 ; V101 ; free mm0
|
| 1120 |
|
|
|
| 1121 |
|
|
pmulhw mm6, mmword ptr x5a825a825a825a82 ; 23170 ->V102
|
| 1122 |
|
|
movq mm5, mm7 ; duplicate tmt0
|
| 1123 |
|
|
|
| 1124 |
|
|
movq mm1, mmword ptr[esi+8*8] ; tmt8
|
| 1125 |
|
|
;slot
|
| 1126 |
|
|
|
| 1127 |
|
|
paddsw mm7, mm1 ; V103
|
| 1128 |
|
|
psubsw mm5, mm1 ; V104 ; free mm1
|
| 1129 |
|
|
|
| 1130 |
|
|
movq mm0, mm7 ; duplicate V103
|
| 1131 |
|
|
psllw mm6, 2 ; t245
|
| 1132 |
|
|
|
| 1133 |
|
|
paddsw mm7, mm3 ; V106
|
| 1134 |
|
|
movq mm1, mm5 ; duplicate V104
|
| 1135 |
|
|
|
| 1136 |
|
|
psubsw mm6, mm3 ; V105
|
| 1137 |
|
|
psubsw mm0, mm3 ; V109; free mm3
|
| 1138 |
|
|
|
| 1139 |
|
|
paddsw mm5, mm6 ; V107
|
| 1140 |
|
|
psubsw mm1, mm6 ; V108 ; free mm6
|
| 1141 |
|
|
|
| 1142 |
|
|
; column 0: output butterfly (after transform)
|
| 1143 |
|
|
movq mm3, mm1 ; duplicate V108
|
| 1144 |
|
|
paddsw mm1, mm2 ; out4
|
| 1145 |
|
|
|
| 1146 |
|
|
psraw mm1, 4
|
| 1147 |
|
|
psubsw mm3, mm2 ; out10 ; free mm2
|
| 1148 |
|
|
|
| 1149 |
|
|
psraw mm3, 4
|
| 1150 |
|
|
movq mm6, mm0 ; duplicate V109
|
| 1151 |
|
|
|
| 1152 |
|
|
movq mmword ptr[esi+8*4], mm1 ; out4 ; free mm1
|
| 1153 |
|
|
psubsw mm0, mm4 ; out6
|
| 1154 |
|
|
|
| 1155 |
|
|
movq mmword ptr[esi+8*10], mm3 ; out10 ; free mm3
|
| 1156 |
|
|
psraw mm0, 4
|
| 1157 |
|
|
|
| 1158 |
|
|
paddsw mm6, mm4 ; out8 ; free mm4
|
| 1159 |
|
|
movq mm1, mm7 ; duplicate V106
|
| 1160 |
|
|
|
| 1161 |
|
|
movq mmword ptr[esi+8*6], mm0 ; out6 ; free mm0
|
| 1162 |
|
|
psraw mm6, 4
|
| 1163 |
|
|
|
| 1164 |
|
|
movq mm4, mmword ptr[esi+8*0] ; V115
|
| 1165 |
|
|
;slot
|
| 1166 |
|
|
|
| 1167 |
|
|
movq mmword ptr[esi+8*8], mm6 ; out8 ; free mm6
|
| 1168 |
|
|
movq mm2, mm5 ; duplicate V107
|
| 1169 |
|
|
|
| 1170 |
|
|
movq mm3, mmword ptr[esi+8*2] ; V123
|
| 1171 |
|
|
paddsw mm7, mm4 ; out0
|
| 1172 |
|
|
|
| 1173 |
|
|
;moved up from next block
|
| 1174 |
|
|
movq mm0, mmword ptr scratch3
|
| 1175 |
|
|
psraw mm7, 4
|
| 1176 |
|
|
|
| 1177 |
|
|
;moved up from next block
|
| 1178 |
|
|
movq mm6, mmword ptr scratch5
|
| 1179 |
|
|
psubsw mm1, mm4 ; out14 ; free mm4
|
| 1180 |
|
|
|
| 1181 |
|
|
paddsw mm5, mm3 ; out2
|
| 1182 |
|
|
psraw mm1, 4
|
| 1183 |
|
|
|
| 1184 |
|
|
movq mmword ptr[esi], mm7 ; out0 ; free mm7
|
| 1185 |
|
|
psraw mm5, 4
|
| 1186 |
|
|
|
| 1187 |
|
|
movq mmword ptr[esi+8*14], mm1 ; out14 ; free mm1
|
| 1188 |
|
|
psubsw mm2, mm3 ; out12 ; free mm3
|
| 1189 |
|
|
|
| 1190 |
|
|
movq mmword ptr[esi+8*2], mm5 ; out2 ; free mm5
|
| 1191 |
|
|
psraw mm2, 4
|
| 1192 |
|
|
|
| 1193 |
|
|
;moved up to the prev block
|
| 1194 |
|
|
movq mm4, mmword ptr scratch7
|
| 1195 |
|
|
;moved up to the prev block
|
| 1196 |
|
|
psraw mm0, 4
|
| 1197 |
|
|
|
| 1198 |
|
|
movq mmword ptr[esi+8*12], mm2 ; out12 ; free mm2
|
| 1199 |
|
|
;moved up to the prev block
|
| 1200 |
|
|
psraw mm6, 4
|
| 1201 |
|
|
|
| 1202 |
|
|
;move back the data to its correct place
|
| 1203 |
|
|
;moved up to the prev block
|
| 1204 |
|
|
;movq mm0, mmword ptr scratch3
|
| 1205 |
|
|
;movq mm6, mmword ptr scratch5
|
| 1206 |
|
|
;movq mm4, mmword ptr scratch7
|
| 1207 |
|
|
;psraw mm0, 4
|
| 1208 |
|
|
;psraw mm6, 4
|
| 1209 |
|
|
|
| 1210 |
|
|
movq mm1, mmword ptr scratch1
|
| 1211 |
|
|
psraw mm4, 4
|
| 1212 |
|
|
|
| 1213 |
|
|
movq mmword ptr [esi+8*3], mm0 ; out3
|
| 1214 |
|
|
psraw mm1, 4
|
| 1215 |
|
|
|
| 1216 |
|
|
movq mmword ptr [esi+8*5], mm6 ; out5
|
| 1217 |
|
|
;slot
|
| 1218 |
|
|
|
| 1219 |
|
|
movq mmword ptr [esi+8*7], mm4 ; out7
|
| 1220 |
|
|
;slot
|
| 1221 |
|
|
|
| 1222 |
|
|
movq mmword ptr [esi+8*1], mm1 ; out1
|
| 1223 |
|
|
;slot
|
| 1224 |
|
|
|
| 1225 |
|
|
emms
|
| 1226 |
|
|
|
| 1227 |
|
|
pop esi
|
| 1228 |
|
|
pop ebp
|
| 1229 |
|
|
|
| 1230 |
|
|
ret 0
|
| 1231 |
|
|
|
| 1232 |
|
|
_idct8x8aan ENDP
|
| 1233 |
|
|
_TEXT ENDS
|
| 1234 |
|
|
|
| 1235 |
|
|
END
|
| 1236 |
|
|
|
| 1237 |
|
|
* Legal Information © 1998 Intel Corporation
|