1 |
198 |
zero_gravi |
-- #################################################################################################
|
2 |
|
|
-- # << NEO430 - Custom Functions Unit >> #
|
3 |
|
|
-- # ********************************************************************************************* #
|
4 |
|
|
-- # This unit is a template for implementing custom functions, which are directly memory-mapped #
|
5 |
|
|
-- # into the CPU's IO address space. The address space of this unit is 16 bytes large. This unit #
|
6 |
|
|
-- # can only be accessed using full word (16-bit) accesses. #
|
7 |
|
|
-- # In the original state, this unit only provides 8 16-bit register, that do not perform any #
|
8 |
|
|
-- # kind of data manipulation. #
|
9 |
|
|
-- # Exemplary applications: Cryptography, complex arithmetic, rocket science, ... #
|
10 |
|
|
-- # ********************************************************************************************* #
|
11 |
|
|
-- # BSD 3-Clause License #
|
12 |
|
|
-- # #
|
13 |
|
|
-- # Copyright (c) 2020, Stephan Nolting. All rights reserved. #
|
14 |
|
|
-- # #
|
15 |
|
|
-- # Redistribution and use in source and binary forms, with or without modification, are #
|
16 |
|
|
-- # permitted provided that the following conditions are met: #
|
17 |
|
|
-- # #
|
18 |
|
|
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
19 |
|
|
-- # conditions and the following disclaimer. #
|
20 |
|
|
-- # #
|
21 |
|
|
-- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
|
22 |
|
|
-- # conditions and the following disclaimer in the documentation and/or other materials #
|
23 |
|
|
-- # provided with the distribution. #
|
24 |
|
|
-- # #
|
25 |
|
|
-- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
|
26 |
|
|
-- # endorse or promote products derived from this software without specific prior written #
|
27 |
|
|
-- # permission. #
|
28 |
|
|
-- # #
|
29 |
|
|
-- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
|
30 |
|
|
-- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
|
31 |
|
|
-- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
|
32 |
|
|
-- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
|
33 |
|
|
-- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
|
34 |
|
|
-- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
|
35 |
|
|
-- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
|
36 |
|
|
-- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
|
37 |
|
|
-- # OF THE POSSIBILITY OF SUCH DAMAGE. #
|
38 |
|
|
-- # ********************************************************************************************* #
|
39 |
|
|
-- # The NEO430 Processor - https://github.com/stnolting/neo430 #
|
40 |
|
|
-- #################################################################################################
|
41 |
|
|
|
42 |
|
|
library ieee;
|
43 |
|
|
use ieee.std_logic_1164.all;
|
44 |
|
|
use ieee.numeric_std.all;
|
45 |
|
|
|
46 |
|
|
library neo430;
|
47 |
|
|
use neo430.neo430_package.all;
|
48 |
|
|
|
49 |
|
|
entity neo430_cfu is
|
50 |
|
|
port (
|
51 |
|
|
-- host access --
|
52 |
|
|
clk_i : in std_ulogic; -- global clock line
|
53 |
|
|
rden_i : in std_ulogic; -- read enable
|
54 |
|
|
wren_i : in std_ulogic; -- write enable
|
55 |
|
|
addr_i : in std_ulogic_vector(15 downto 0); -- address
|
56 |
|
|
data_i : in std_ulogic_vector(15 downto 0); -- data in
|
57 |
|
|
data_o : out std_ulogic_vector(15 downto 0); -- data out
|
58 |
|
|
-- clock generator --
|
59 |
|
|
clkgen_en_o : out std_ulogic; -- enable clock generator
|
60 |
|
|
clkgen_i : in std_ulogic_vector(07 downto 0)
|
61 |
|
|
-- custom IOs --
|
62 |
|
|
-- ...
|
63 |
|
|
);
|
64 |
|
|
end neo430_cfu;
|
65 |
|
|
|
66 |
|
|
architecture neo430_cfu_rtl of neo430_cfu is
|
67 |
|
|
|
68 |
|
|
-- IO space: module base address --
|
69 |
|
|
constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit
|
70 |
|
|
constant lo_abb_c : natural := index_size_f(cfu_size_c); -- low address boundary bit
|
71 |
|
|
|
72 |
|
|
-- access control --
|
73 |
|
|
signal acc_en : std_ulogic; -- module access enable
|
74 |
|
|
signal addr : std_ulogic_vector(15 downto 0); -- access address
|
75 |
|
|
signal wren : std_ulogic; -- full word write enable
|
76 |
|
|
signal rden : std_ulogic; -- read enable
|
77 |
|
|
|
78 |
|
|
-- accessible regs (8x16-bit) --
|
79 |
|
|
signal cfu_ctrl_reg : std_ulogic_vector(15 downto 0);
|
80 |
|
|
signal user_reg1 : std_ulogic_vector(15 downto 0);
|
81 |
|
|
signal user_reg2 : std_ulogic_vector(15 downto 0);
|
82 |
|
|
signal user_reg3 : std_ulogic_vector(15 downto 0);
|
83 |
|
|
signal user_reg4 : std_ulogic_vector(15 downto 0);
|
84 |
|
|
signal user_reg5 : std_ulogic_vector(15 downto 0);
|
85 |
|
|
signal user_reg6 : std_ulogic_vector(15 downto 0);
|
86 |
|
|
signal user_reg7 : std_ulogic_vector(15 downto 0);
|
87 |
|
|
|
88 |
|
|
begin
|
89 |
|
|
|
90 |
|
|
-- Access Control -----------------------------------------------------------
|
91 |
|
|
-- -----------------------------------------------------------------------------
|
92 |
|
|
-- These assignments are required to check if this unit is accessed at all.
|
93 |
|
|
-- Do NOT modify this for your custom application (unless you really know what you are doing)!
|
94 |
|
|
acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = cfu_base_c(hi_abb_c downto lo_abb_c)) else '0';
|
95 |
|
|
addr <= cfu_base_c(15 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 1) & '0'; -- word aligned
|
96 |
|
|
wren <= acc_en and wren_i;
|
97 |
|
|
rden <= acc_en and rden_i;
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
-- Clock System -------------------------------------------------------------
|
101 |
|
|
-- -----------------------------------------------------------------------------
|
102 |
|
|
-- The top unit implements a clock generator providing 8 "derived clocks"
|
103 |
|
|
-- Actually, these signals must not be used as direct clock signals, but as clock enable signals.
|
104 |
|
|
-- If wou want to drive a system at MAIN_CLK/8 use the following construct:
|
105 |
|
|
|
106 |
|
|
-- if rising_edge(clk_i) then -- Always use the main clock for all clock processes!
|
107 |
|
|
-- if (clkgen_i(clk_div8_c) = '1') then -- the div8 "clock" is actually a clock enable
|
108 |
|
|
-- ...
|
109 |
|
|
-- end if;
|
110 |
|
|
-- end if;
|
111 |
|
|
|
112 |
|
|
-- The following clock divider rates are available:
|
113 |
|
|
-- clkgen_i(clk_div2_c) -> MAIN_CLK/2
|
114 |
|
|
-- clkgen_i(clk_div4_c) -> MAIN_CLK/4
|
115 |
|
|
-- clkgen_i(clk_div8_c) -> MAIN_CLK/8
|
116 |
|
|
-- clkgen_i(clk_div64_c) -> MAIN_CLK/64
|
117 |
|
|
-- clkgen_i(clk_div128_c) -> MAIN_CLK/128
|
118 |
|
|
-- clkgen_i(clk_div1024_c) -> MAIN_CLK/1024
|
119 |
|
|
-- clkgen_i(clk_div2048_c) -> MAIN_CLK/2048
|
120 |
|
|
-- clkgen_i(clk_div4096_c) -> MAIN_CLK/4096
|
121 |
|
|
|
122 |
|
|
-- this signal enabled the generator driving the clkgen_i
|
123 |
|
|
-- set this signal to '0' when you do not need the clkgen_i signal or when your CFU is disabled
|
124 |
|
|
-- to reduce dynamic power consumption
|
125 |
|
|
clkgen_en_o <= '0';
|
126 |
|
|
|
127 |
|
|
|
128 |
|
|
-- Write access -------------------------------------------------------------
|
129 |
|
|
-- -----------------------------------------------------------------------------
|
130 |
|
|
-- Here we are writing to the interface registers of the module. This unit can only be accessed
|
131 |
|
|
-- in full 16-bit word mode!
|
132 |
|
|
-- Please note, that all register of every unit are cleared during the processor boot sequence.
|
133 |
|
|
-- Make cfu_reg0_addr_c the CFU's control register. This register is cleared first during booting.
|
134 |
|
|
-- If the control register is cleared no actions should be taken when writing to other CFU registers.
|
135 |
|
|
wr_access: process(clk_i)
|
136 |
|
|
begin
|
137 |
|
|
if rising_edge(clk_i) then
|
138 |
|
|
-- write access to user registers --
|
139 |
|
|
if (wren = '1') then -- valid write access
|
140 |
|
|
-- use full-parallel IFs instead of a CASE to prevent some EDA tools from complaining (GHDL)
|
141 |
|
|
if (addr = cfu_reg0_addr_c) then
|
142 |
|
|
cfu_ctrl_reg <= data_i;
|
143 |
|
|
end if;
|
144 |
|
|
if (addr = cfu_reg1_addr_c) then
|
145 |
|
|
user_reg1 <= data_i;
|
146 |
|
|
end if;
|
147 |
|
|
if (addr = cfu_reg2_addr_c) then
|
148 |
|
|
user_reg2 <= data_i;
|
149 |
|
|
end if;
|
150 |
|
|
if (addr = cfu_reg3_addr_c) then
|
151 |
|
|
user_reg3 <= data_i;
|
152 |
|
|
end if;
|
153 |
|
|
if (addr = cfu_reg4_addr_c) then
|
154 |
|
|
user_reg4 <= data_i;
|
155 |
|
|
end if;
|
156 |
|
|
if (addr = cfu_reg5_addr_c) then
|
157 |
|
|
user_reg5 <= data_i;
|
158 |
|
|
end if;
|
159 |
|
|
if (addr = cfu_reg6_addr_c) then
|
160 |
|
|
user_reg6 <= data_i;
|
161 |
|
|
end if;
|
162 |
|
|
if (addr = cfu_reg7_addr_c) then
|
163 |
|
|
user_reg7 <= data_i;
|
164 |
|
|
end if;
|
165 |
|
|
end if;
|
166 |
|
|
end if;
|
167 |
|
|
end process wr_access;
|
168 |
|
|
|
169 |
|
|
-- >>> UNIT HARDWARE RESET <<< --
|
170 |
|
|
-- The IO devices DO NOT feature a dedicated reset signal, so make sure your CFU does not require a defined initial state.
|
171 |
|
|
-- If you really require a defined initial state, implement a software reset by implementing a control register with an
|
172 |
|
|
-- enable bit, which resets all internal states when cleared.
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
-- Read access --------------------------------------------------------------
|
176 |
|
|
-- -----------------------------------------------------------------------------
|
177 |
|
|
-- This is the read access process. Data must be asserted synchronously to the output data bus
|
178 |
|
|
-- and thus, with exactly 1 cycle delay. The units always output a full 16-bit word, no matter if we want to
|
179 |
|
|
-- read 8- or 16-bit. For actual 8-bit read accesses the corresponding byte is selected in the
|
180 |
|
|
-- hardware of the CPU core.
|
181 |
|
|
rd_access: process(clk_i)
|
182 |
|
|
begin
|
183 |
|
|
if rising_edge(clk_i) then
|
184 |
|
|
data_o <= (others => '0'); -- this is crucial for the final OR-ing of all IO device's outputs
|
185 |
|
|
if (rden = '1') then -- valid read access
|
186 |
|
|
-- use IFs instead of a CASE to prevent some EDA tools from complaining (GHDL)
|
187 |
|
|
if (addr = cfu_reg0_addr_c) then
|
188 |
|
|
data_o <= cfu_ctrl_reg;
|
189 |
|
|
elsif (addr = cfu_reg1_addr_c) then
|
190 |
|
|
data_o <= user_reg1;
|
191 |
|
|
elsif (addr = cfu_reg2_addr_c) then
|
192 |
|
|
data_o <= user_reg2;
|
193 |
|
|
elsif (addr = cfu_reg3_addr_c) then
|
194 |
|
|
data_o <= user_reg3;
|
195 |
|
|
elsif (addr = cfu_reg4_addr_c) then
|
196 |
|
|
data_o <= user_reg4;
|
197 |
|
|
elsif (addr = cfu_reg5_addr_c) then
|
198 |
|
|
data_o <= user_reg5;
|
199 |
|
|
elsif (addr = cfu_reg6_addr_c) then
|
200 |
|
|
data_o <= user_reg6;
|
201 |
|
|
elsif (addr = cfu_reg7_addr_c) then
|
202 |
|
|
data_o <= user_reg7;
|
203 |
|
|
else
|
204 |
|
|
data_o <= (others => '0');
|
205 |
|
|
end if;
|
206 |
|
|
end if;
|
207 |
|
|
end if;
|
208 |
|
|
end process rd_access;
|
209 |
|
|
|
210 |
|
|
|
211 |
|
|
end neo430_cfu_rtl;
|