OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [README.md] - Blame information for rev 30

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 20 zero_gravi
# [The NEORV32 Processor](https://github.com/stnolting/neorv32) (RISC-V)
2 2 zero_gravi
 
3
[![Build Status](https://travis-ci.com/stnolting/neorv32.svg?branch=master)](https://travis-ci.com/stnolting/neorv32)
4
[![license](https://img.shields.io/github/license/stnolting/neorv32)](https://github.com/stnolting/neorv32/blob/master/LICENSE)
5
[![release](https://img.shields.io/github/v/release/stnolting/neorv32)](https://github.com/stnolting/neorv32/releases)
6
 
7
 
8
## Table of Content
9
 
10
* [Introduction](#Introduction)
11
* [Features](#Features)
12
* [FPGA Implementation Results](#FPGA-Implementation-Results)
13
* [Performance](#Performance)
14 30 zero_gravi
* [Top Entities](#Top-Entities)
15 2 zero_gravi
* [**Getting Started**](#Getting-Started)
16 9 zero_gravi
* [Contribute](#Contribute)
17 2 zero_gravi
* [Legal](#Legal)
18
 
19
 
20
 
21
## Introduction
22
 
23 23 zero_gravi
The NEORV32 Processor is a customizable microcontroller-like system on chip (SoC) that is based
24 22 zero_gravi
on the RISC-V-compliant NEORV32 CPU. The project consists of two main parts:
25 2 zero_gravi
 
26 11 zero_gravi
 
27 27 zero_gravi
### [NEORV32 CPU](#CPU-Features)
28 2 zero_gravi
 
29 22 zero_gravi
The CPU implements an `rv32i RISC-V` core with optional `C`, `E`, `M`, `U`, `Zicsr`, `Zifencei` and
30
`PMP` (physical memory protection) extensions. It passes the official [RISC-V compliance tests](https://github.com/stnolting/neorv32_riscv_compliance)
31
and is compliant to the *Unprivileged ISA Specification [Version 2.2](https://github.com/stnolting/neorv32/blob/master/docs/riscv-privileged.pdf)*
32
and a subset of the *Privileged Architecture Specification [Version 1.12-draft](https://github.com/stnolting/neorv32/blob/master/docs/riscv-spec.pdf)*.
33 2 zero_gravi
 
34 22 zero_gravi
If you do not want to use the NEORV32 Processor setup, you can also use the CPU in
35
stand-alone mode and build your own SoC around it.
36
 
37
 
38 27 zero_gravi
### [NEORV32 Processor](#Processor-Features)
39 22 zero_gravi
 
40
Based on the NEORV32 CPU, the NEORV32 Processor is a full-scale RISC-V microcontroller system
41
that already provides common peripherals like GPIO, serial interfaces, timers, embedded
42
memories and an external bus interface for connectivity and custom extension.
43
All optional features and modules beyond the base CPU can be enabled and configured via
44
[VHDL generics](#Top-Entities).
45
 
46
The processor is intended as ready-to-use auxiliary processor within a larger SoC
47
designs or as stand-alone custom microcontroller. Its top entity can be directly
48
synthesized for any target technology without modifications.
49
 
50
This project comes with a complete software ecosystem that features core
51
libraries for high-level usage of the provided functions and peripherals,
52
makefiles, a runtime environment, several example programs to start with - including a free RTOS demo - and
53
even a builtin bootloader for easy program upload via UART.
54
All software source files provide a doxygen-based documentary (available on [GitHub pages](https://stnolting.github.io/neorv32/files.html)).
55
 
56
 
57 30 zero_gravi
### [How to get started?](#Getting-Started)
58 22 zero_gravi
 
59
The processor is intended to work "out of the box". Just synthesize the
60
[test setup](#Create-a-new-Hardware-Project), upload it to your FPGA board of choice and start playing
61
with the NEORV32. If you do not want to [compile the GCC toolchains](https://github.com/riscv/riscv-gnu-toolchain) by yourself, you can also
62 14 zero_gravi
download [pre-compiled toolchains](https://github.com/stnolting/riscv_gcc_prebuilt) for Linux.
63 2 zero_gravi
 
64 23 zero_gravi
For more information take a look at the [![NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/PDF_32.png) NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf).
65 2 zero_gravi
 
66 20 zero_gravi
This project is hosted on [GitHub](https://github.com/stnolting/neorv32) and [opencores.org](https://opencores.org/projects/neorv32).
67
A not-so-complete project log can be found on [hackaday.io](https://hackaday.io/project/174167-the-neorv32-risc-v-processor).
68
 
69
 
70 15 zero_gravi
###  Key Features
71 2 zero_gravi
 
72 23 zero_gravi
- RISC-V-compliant `rv32i` CPU with optional `C`, `E`, `M`, `U`, `Zicsr`, `Zifencei` and `PMP` (physical memory protection) extensions
73 19 zero_gravi
- GCC-based toolchain ([pre-compiled rv32i and rv32e toolchains available](https://github.com/stnolting/riscv_gcc_prebuilt))
74 15 zero_gravi
- Application compilation based on [GNU makefiles](https://github.com/stnolting/neorv32/blob/master/sw/example/blink_led/makefile)
75
- [Doxygen-based](https://github.com/stnolting/neorv32/blob/master/docs/doxygen_makefile_sw) documentation of the software framework: available on [GitHub pages](https://stnolting.github.io/neorv32/files.html)
76
- Detailed [datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf) (pdf)
77
- Completely described in behavioral, platform-independent VHDL – no primitives, macros, etc.
78
- Fully synchronous design, no latches, no gated clocks
79
- Small hardware footprint and high operating frequency
80
- Highly configurable CPU and processor setup
81 22 zero_gravi
- [FreeRTOS port](https://github.com/stnolting/neorv32/blob/master/sw/example/demo_freeRTOS) available
82 15 zero_gravi
 
83 22 zero_gravi
 
84 2 zero_gravi
### Design Principles
85
 
86
 * From zero to main(): Completely open source and documented.
87
 * Plain VHDL without technology-specific parts like attributes, macros or primitives.
88
 * Easy to use – working out of the box.
89
 * Clean synchronous design, no wacky combinatorial interfaces.
90 23 zero_gravi
 * Be as small as possible – but with a reasonable size-performance tradeoff.
91 2 zero_gravi
 * The processor has to fit in a Lattice iCE40 UltraPlus 5k FPGA running at 20+ MHz.
92
 
93
 
94
### Status
95 3 zero_gravi
 
96 30 zero_gravi
The processor is [synthesizable](#NEORV32-Processor-Exemplary-FPGA-Setups) (tested with *real hardware* using Intel Quartus Prime, Xilinx Vivado and Lattice Radiant/Synplify Pro) and can successfully execute
97
all the [provided example programs](https://github.com/stnolting/neorv32/tree/master/sw/example) including the [CoreMark benchmark](#CoreMark-Benchmark).
98 2 zero_gravi
 
99 8 zero_gravi
The processor passes the official `rv32i`, `rv32im`, `rv32imc`, `rv32Zicsr` and `rv32Zifencei` [RISC-V compliance tests](https://github.com/riscv/riscv-compliance).
100 2 zero_gravi
 
101 11 zero_gravi
| Project component                                                               | CI status | Note     |
102
|:--------------------------------------------------------------------------------|:----------|:---------|
103 14 zero_gravi
| [NEORV32 processor](https://github.com/stnolting/neorv32)                       | [![Build Status](https://travis-ci.com/stnolting/neorv32.svg?branch=master)](https://travis-ci.com/stnolting/neorv32) | [![sw doc](https://img.shields.io/badge/SW%20documentation-gh--pages-blue)](https://stnolting.github.io/neorv32/files.html) |
104
| [Pre-built toolchain](https://github.com/stnolting/riscv_gcc_prebuilt)          | [![Build Status](https://travis-ci.com/stnolting/riscv_gcc_prebuilt.svg?branch=master)](https://travis-ci.com/stnolting/riscv_gcc_prebuilt) | |
105
| [RISC-V compliance test](https://github.com/stnolting/neorv32_riscv_compliance) | [![Build Status](https://travis-ci.com/stnolting/neorv32_riscv_compliance.svg?branch=master)](https://travis-ci.com/stnolting/neorv32_riscv_compliance) | |
106 6 zero_gravi
 
107
 
108 9 zero_gravi
### To-Do / Wish List
109 7 zero_gravi
 
110 16 zero_gravi
- Add AXI(-Lite) bridges
111 22 zero_gravi
- Synthesis results (+ wrappers?) for more platforms
112
- Maybe port additional RTOSs (like [Zephyr](https://github.com/zephyrproject-rtos/zephyr) or [RIOT](https://www.riot-os.org))
113
- Implement further CPU extensions:
114
  - Atomic operations (`A`)
115 23 zero_gravi
  - Bitmanipulation operations (`B`), when they are "official"
116 22 zero_gravi
  - Floating-point instructions (`F`)
117
  - ...
118 7 zero_gravi
 
119
 
120 2 zero_gravi
## Features
121
 
122
### Processor Features
123
 
124 11 zero_gravi
![neorv32 Overview](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/neorv32_processor.png)
125
 
126 23 zero_gravi
The NEORV32 Processor provides a full-scale microcontroller-like SoC based on the NEORV32 CPU. The setup
127 26 zero_gravi
is highly customizable via the processor's top generics.
128 2 zero_gravi
 
129 23 zero_gravi
- Optional processor-internal data and instruction memories (**DMEM** / **IMEM**)
130
- Optional internal **Bootloader** with UART console and automatic SPI flash boot option
131
- Optional machine system timer (**MTIME**), RISC-V-compliant
132 30 zero_gravi
- Optional universal asynchronous receiver and transmitter (**UART**) with simulation output option via text.io
133 23 zero_gravi
- Optional 8/16/24/32-bit serial peripheral interface controller (**SPI**) with 8 dedicated chip select lines
134
- Optional two wire serial interface controller (**TWI**), compatible to the I²C standard
135 25 zero_gravi
- Optional general purpose parallel IO port (**GPIO**), 32xOut & 32xIn, with pin-change interrupt
136 23 zero_gravi
- Optional 32-bit external bus interface, Wishbone b4 compliant (**WISHBONE**)
137
- Optional watchdog timer (**WDT**)
138
- Optional PWM controller with 4 channels and 8-bit duty cycle resolution (**PWM**)
139
- Optional GARO-based true random number generator (**TRNG**)
140
- Optional custom functions unit (**CFU**) for tightly-coupled custom co-processors
141
- System configuration information memory to check hardware configuration by software (**SYSINFO**)
142
 
143 2 zero_gravi
### CPU Features
144
 
145 11 zero_gravi
![neorv32 Overview](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/neorv32_cpu.png)
146
 
147
The CPU is [compliant](https://github.com/stnolting/neorv32_riscv_compliance) to the
148 12 zero_gravi
[official RISC-V specifications (2.2)](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/riscv-spec.pdf) including a subset of the
149
[RISC-V privileged architecture specifications (1.12-draft)](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/riscv-spec.pdf).
150 2 zero_gravi
 
151 11 zero_gravi
More information regarding the CPU including a detailed list of the instruction set and the available CSRs can be found in
152
the [![NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/PDF_32.png) NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf).
153
 
154
 
155
**General**:
156 26 zero_gravi
  * Modified Harvard architecture (separate CPU interfaces for data and instructions; NEORV32 processor: Single processor-internal bus via I/D mux)
157 12 zero_gravi
  * Two stages in-order pipeline (FETCH, EXECUTE); each stage uses a multi-cycle processing scheme
158 15 zero_gravi
  * No hardware support of unaligned accesses - they will trigger an exception
159 23 zero_gravi
  * Little-endian byte order
160
  * All reserved or unimplemented instructions will raise an illegal instruction exception
161 15 zero_gravi
  * Privilege levels: `machine` mode, `user` mode (if enabled via `U` extension)
162 11 zero_gravi
 
163
 
164 3 zero_gravi
**RV32I base instruction set** (`I` extension):
165 2 zero_gravi
  * ALU instructions: `LUI` `AUIPC` `ADDI` `SLTI` `SLTIU` `XORI` `ORI` `ANDI` `SLLI` `SRLI` `SRAI` `ADD` `SUB` `SLL` `SLT` `SLTU` `XOR` `SRL` `SRA` `OR` `AND`
166 7 zero_gravi
  * Jump and branch instructions: `JAL` `JALR` `BEQ` `BNE` `BLT` `BGE` `BLTU` `BGEU`
167 2 zero_gravi
  * Memory instructions: `LB` `LH` `LW` `LBU` `LHU` `SB` `SH` `SW`
168 8 zero_gravi
  * System instructions: `ECALL` `EBREAK` `FENCE`
169 2 zero_gravi
 
170 3 zero_gravi
**Compressed instructions** (`C` extension):
171 2 zero_gravi
  * ALU instructions: `C.ADDI4SPN` `C.ADDI` `C.ADD` `C.ADDI16SP` `C.LI` `C.LUI` `C.SLLI` `C.SRLI` `C.SRAI` `C.ANDI` `C.SUB` `C.XOR` `C.OR` `C.AND` `C.MV` `C.NOP`
172 7 zero_gravi
  * Jump and branch instructions: `C.J` `C.JAL` `C.JR` `C.JALR` `C.BEQZ` `C.BNEZ`
173 2 zero_gravi
  * Memory instructions: `C.LW` `C.SW` `C.LWSP` `C.SWSP`
174 25 zero_gravi
  * System instructions: `C.EBREAK` (only with `Zicsr` extension)
175 2 zero_gravi
 
176 3 zero_gravi
**Embedded CPU version** (`E` extension):
177 2 zero_gravi
  * Reduced register file (only the 16 lowest registers)
178
 
179 3 zero_gravi
**Integer multiplication and division hardware** (`M` extension):
180 2 zero_gravi
  * Multiplication instructions: `MUL` `MULH` `MULHSU` `MULHU`
181
  * Division instructions: `DIV` `DIVU` `REM` `REMU`
182 19 zero_gravi
  * By default, the multiplier and divider cores use an iterative bit-serial processing scheme
183
  * Multiplications can be mapped to DSPs via the `FAST_MUL_EN` generic to increase performance
184 2 zero_gravi
 
185 8 zero_gravi
**Privileged architecture / CSR access** (`Zicsr` extension):
186 2 zero_gravi
  * Privilege levels: `M-mode` (Machine mode)
187
  * CSR access instructions: `CSRRW` `CSRRS` `CSRRC` `CSRRWI` `CSRRSI` `CSRRCI`
188 8 zero_gravi
  * System instructions: `MRET` `WFI`
189 27 zero_gravi
  * Counter CSRs: `cycle` `cycleh` `instret` `instreth` `time` `timeh` `mcycle` `mcycleh` `minstret` `minstreth`
190 30 zero_gravi
  * Machine CSRs: `mstatus` `misa`(read-only!) `mie` `mtvec` `mscratch` `mepc` `mcause` `mtval` `mip` `mvendorid` [`marchid`](https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md) `mimpid` `mhartid` `mzext`(custom)
191 2 zero_gravi
  * Supported exceptions and interrupts:
192
    * Misaligned instruction address
193
    * Instruction access fault
194
    * Illegal instruction
195 4 zero_gravi
    * Breakpoint (via `ebreak` instruction)
196 2 zero_gravi
    * Load address misaligned
197
    * Load access fault
198 4 zero_gravi
    * Store address misaligned
199 2 zero_gravi
    * Store access fault
200 4 zero_gravi
    * Environment call from M-mode (via `ecall` instruction)
201 15 zero_gravi
    * Machine timer interrupt `mti` (via processor's MTIME unit)
202
    * Machine software interrupt `msi` (via external signal)
203
    * Machine external interrupt `mei` (via external signal)
204
    * Four fast interrupt requests (custom extension)
205 2 zero_gravi
 
206 15 zero_gravi
**Privileged architecture / User mode** (`U` extension, requires `Zicsr` extension):
207 16 zero_gravi
  * Privilege levels: `M-mode` (Machine mode) + `U-mode` (User mode)
208 15 zero_gravi
 
209 8 zero_gravi
**Privileged architecture / FENCE.I** (`Zifencei` extension):
210 17 zero_gravi
  * System instructions: `FENCE.I`
211 8 zero_gravi
 
212 18 zero_gravi
**Privileged architecture / Physical memory protection** (`PMP`, requires `Zicsr` extension):
213 23 zero_gravi
  * Additional machine CSRs: `pmpcfg0` `pmpcfg1` `pmpaddr0` `pmpaddr1` `pmpaddr2` `pmpaddr3` `pmpaddr4` `pmpaddr5` `pmpaddr6` `pmpaddr7`
214 2 zero_gravi
 
215 15 zero_gravi
 
216 23 zero_gravi
### Non-RISC-V-Compliant Issues
217
 
218 30 zero_gravi
* `misa` CSR is read-only - no dynamic enabling/disabling of synthesized CPU extensions during runtime; for compatibility: write accesses (in m-mode) are ignored and do not cause an exception
219 23 zero_gravi
* The physical memory protection (**PMP**) only supports `NAPOT` mode, a minimal granularity of 8 bytes and only up to 8 regions
220
 
221
 
222
### NEORV32-Specific CPU Extensions
223
 
224
The NEORV32-specific extensions are always enabled and are indicated via the `X` bit in the `misa` CSR.
225
 
226
* Four *fast interrupt* request channels with according control/status bits in `mie` and `mip` and custom exception codes in `mcause`
227
* `mzext` CSR to check for implemented `Z*` CPU extensions (like `Zifencei`)
228
 
229
 
230
 
231 2 zero_gravi
## FPGA Implementation Results
232
 
233 23 zero_gravi
### NEORV32 CPU
234
 
235
This chapter shows exemplary implementation results of the NEORV32 CPU for an **Intel Cyclone IV EP4CE22F17C6N FPGA** on
236 2 zero_gravi
a DE0-nano board. The design was synthesized using **Intel Quartus Prime Lite 19.1** ("balanced implementation"). The timing
237 4 zero_gravi
information is derived from the Timing Analyzer / Slow 1200mV 0C Model. If not otherwise specified, the default configuration
238 26 zero_gravi
of the CPU's generics is assumed (for example no PMP). No constraints were used at all.
239 2 zero_gravi
 
240 26 zero_gravi
Results generated for hardware version: `1.4.3.3`
241 2 zero_gravi
 
242 26 zero_gravi
| CPU Configuration                      | LEs        | FFs      | Memory bits | DSPs | f_max   |
243
|:---------------------------------------|:----------:|:--------:|:-----------:|:----:|:-------:|
244
| `rv32i`                                |       1033 |      567 |       2048  |    0 | 120 MHz |
245
| `rv32i`   + `u` + `Zicsr` + `Zifencei` |       1778 |      806 |       2048  |    0 | 103 MHz |
246
| `rv32im`  + `u` + `Zicsr` + `Zifencei` |       2389 |     1052 |       2048  |    0 | 102 MHz |
247
| `rv32imc` + `u` + `Zicsr` + `Zifencei` |       2644 |     1053 |       2048  |    0 | 106 MHz |
248
| `rv32emc` + `u` + `Zicsr` + `Zifencei` |       2646 |     1050 |       1024  |    0 | 103 MHz |
249 2 zero_gravi
 
250
 
251 23 zero_gravi
### NEORV32 Processor-Internal Peripherals and Memories
252
 
253 26 zero_gravi
Results generated for hardware version: `1.4.3.3`
254 11 zero_gravi
 
255 25 zero_gravi
| Module    | Description                                          | LEs | FFs | Memory bits | DSPs |
256
|:----------|:-----------------------------------------------------|:---:|:---:|:-----------:|:----:|
257 26 zero_gravi
| BOOT ROM  | Bootloader ROM (default 4kB)                         |   3 |   1 |      32 768 |    0 |
258
| BUSSWITCH | Mux for CPU I & D interfaces                         |  59 |   8 |           0 |    0 |
259 25 zero_gravi
| CFU       | Custom functions unit                                |   - |   - |           - |    - |
260 26 zero_gravi
| DMEM      | Processor-internal data memory (default 8kB)         |  13 |   2 |      65 536 |    0 |
261
| GPIO      | General purpose input/output ports                   |  69 |  65 |           0 |    0 |
262
| IMEM      | Processor-internal instruction memory (default 16kb) |   9 |   2 |     131 072 |    0 |
263
| MTIME     | Machine system timer                                 | 281 | 166 |           0 |    0 |
264 25 zero_gravi
| PWM       | Pulse-width modulation controller                    |  72 |  69 |           0 |    0 |
265 26 zero_gravi
| SPI       | Serial peripheral interface                          | 189 | 125 |           0 |    0 |
266 25 zero_gravi
| SYSINFO   | System configuration information memory              |  10 |   9 |           0 |    0 |
267 26 zero_gravi
| TRNG      | True random number generator                         | 175 | 132 |           0 |    0 |
268
| TWI       | Two-wire interface                                   |  72 |  44 |           0 |    0 |
269
| UART      | Universal asynchronous receiver/transmitter          | 175 | 132 |           0 |    0 |
270
| WDT       | Watchdog timer                                       |  60 |  45 |           0 |    0 |
271 2 zero_gravi
 
272
 
273 23 zero_gravi
### NEORV32 Processor - Exemplary FPGA Setups
274 6 zero_gravi
 
275 23 zero_gravi
Exemplary processor implementation results for different FPGA platforms. The processor setup uses *all provided peripherals* (but not the _CFU_),
276
no external memory interface and only internal instruction and data memories. IMEM uses 16kB and DMEM uses 8kB memory space. The setup's top entity connects most of the
277 11 zero_gravi
processor's [top entity](https://github.com/stnolting/neorv32/blob/master/rtl/core/neorv32_top.vhd) signals
278 12 zero_gravi
to FPGA pins - except for the Wishbone bus and the interrupt signals.
279 6 zero_gravi
 
280 26 zero_gravi
Results generated for hardware version: `1.4.3.3`
281 6 zero_gravi
 
282 26 zero_gravi
| Vendor  | FPGA                              | Board            | Toolchain                  | Strategy | CPU Configuration                              | LUT / LE   | FF / REG   | DSP    | Memory Bits  | BRAM / EBR | SPRAM    | Frequency     |
283
|:--------|:----------------------------------|:-----------------|:---------------------------|:-------- |:-----------------------------------------------|:-----------|:-----------|:-------|:-------------|:-----------|:---------|--------------:|
284
| Intel   | Cyclone IV `EP4CE22F17C6N`        | Terasic DE0-Nano | Quartus Prime Lite 19.1    | balanced | `rv32imc` + `u` + `Zicsr` + `Zifencei` + `PMP` | 4120 (18%) | 1944  (9%) | 0 (0%) | 231424 (38%) |          - |        - |       103 MHz |
285
| Lattice | iCE40 UltraPlus `iCE40UP5K-SG48I` | Upduino v2.0     | Radiant 2.1 (Synplify Pro) | default  | `rv32ic`  + `u` + `Zicsr` + `Zifencei`         | 4288 (81%) | 1693 (32%) | 0 (0%) |            - |   12 (40%) | 4 (100%) |  *c* 22.5 MHz |
286
| Xilinx  | Artix-7 `XC7A35TICSG324-1L`       | Arty A7-35T      | Vivado 2019.2              | default  | `rv32imc` + `u` + `Zicsr` + `Zifencei` + `PMP` | 2385 (11%) | 2008  (5%) | 0 (0%) |            - |    8 (16%) |        - |   *c* 100 MHz |
287 2 zero_gravi
 
288 23 zero_gravi
**_Notes_**
289 20 zero_gravi
* The Lattice iCE40 UltraPlus setup uses the FPGA's SPRAM memory primitives for the internal IMEM and DMEM (each 64kb).
290 12 zero_gravi
The FPGA-specific memory components can be found in [`rtl/fpga_specific`](https://github.com/stnolting/neorv32/blob/master/rtl/fpga_specific/lattice_ice40up).
291
* The clock frequencies marked with a "c" are constrained clocks. The remaining ones are _f_max_ results from the place and route timing reports.
292 11 zero_gravi
* The Upduino and the Arty board have on-board SPI flash memories for storing the FPGA configuration. These device can also be used by the default NEORV32
293
bootloader to store and automatically boot an application program after reset (both tested successfully).
294 22 zero_gravi
* The setups with `PMP` implement 2 regions with a minimal granularity of 32kB.
295 2 zero_gravi
 
296 22 zero_gravi
 
297
 
298 2 zero_gravi
## Performance
299
 
300
### CoreMark Benchmark
301
 
302
The [CoreMark CPU benchmark](https://www.eembc.org/coremark) was executed on the NEORV32 and is available in the
303
[sw/example/coremark](https://github.com/stnolting/neorv32/blob/master/sw/example/coremark) project folder. This benchmark
304
tests the capabilities of a CPU itself rather than the functions provided by the whole system / SoC.
305
 
306 22 zero_gravi
Results generated for hardware version: `1.3.7.3`
307 2 zero_gravi
 
308
~~~
309
**Configuration**
310 12 zero_gravi
Hardware:    32kB IMEM, 16kB DMEM, 100MHz clock
311
CoreMark:    2000 iterations, MEM_METHOD is MEM_STACK
312 28 zero_gravi
Compiler:    RISCV32-GCC 10.1.0 (rv32i)
313 12 zero_gravi
Peripherals: UART for printing the results
314 2 zero_gravi
~~~
315
 
316 22 zero_gravi
| CPU                    | Executable Size | Optimization | CoreMark Score | CoreMarks/MHz |
317
|:-----------------------|:---------------:|:------------:|:--------------:|:-------------:|
318
| `rv32i`                |    26 748 bytes |        `-O3` |          28.98 |        0.2898 |
319
| `rv32im`               |    25 580 bytes |        `-O3` |          60.60 |        0.6060 |
320
| `rv32imc`              |    19 636 bytes |        `-O3` |          62.50 |        0.6250 |
321
| `rv32imc` + _FAST_MUL_ |    19 636 bytes |        `-O3` |          76.92 |        0.7692 |
322 2 zero_gravi
 
323 20 zero_gravi
The _FAST_MUL_ configuration uses DSPs for the multiplier of the `M` extension (enabled via the `FAST_MUL_EN` generic).
324 2 zero_gravi
 
325 22 zero_gravi
 
326 2 zero_gravi
### Instruction Cycles
327
 
328 11 zero_gravi
The NEORV32 CPU is based on a two-stages pipelined architecutre. Each stage uses a multi-cycle processing scheme. Hence,
329 9 zero_gravi
each instruction requires several clock cycles to execute (2 cycles for ALU operations, ..., 40 cycles for divisions).
330
The average CPI (cycles per instruction) depends on the instruction mix of a specific applications and also on the available
331 2 zero_gravi
CPU extensions.
332
 
333
Please note that the CPU-internal shifter (e.g. for the `SLL` instruction) as well as the multiplier and divider of the
334
`M` extension use a bit-serial approach and require several cycles for completion.
335
 
336 6 zero_gravi
The following table shows the performance results for successfully running 2000 CoreMark
337 9 zero_gravi
iterations, which reflects a pretty good "real-life" work load. The average CPI is computed by
338 12 zero_gravi
dividing the total number of required clock cycles (only the timed core to avoid distortion due to IO wait cycles; sampled via the `cycle[h]` CSRs)
339 19 zero_gravi
by the number of executed instructions (`instret[h]` CSRs). The executables were generated using optimization `-O3`.
340 2 zero_gravi
 
341 22 zero_gravi
Results generated for hardware version: `1.3.7.3`
342 2 zero_gravi
 
343 22 zero_gravi
| CPU                    | Required Clock Cycles | Executed Instructions | Average CPI |
344
|:-----------------------|----------------------:|----------------------:|:-----------:|
345
| `rv32i`                |         6 955 817 507 |         1 468 927 290 |        4.73 |
346
| `rv32im`               |         3 376 961 507 |           601 565 750 |        5.61 |
347
| `rv32imc`              |         3 274 832 513 |           601 565 964 |        5.44 |
348
| `rv32imc` + _FAST_MUL_ |         2 689 845 200 |           601 565 890 |        4.47 |
349 2 zero_gravi
 
350 20 zero_gravi
The _FAST_MUL_ configuration uses DSPs for the multiplier of the `M` extension (enabled via the `FAST_MUL_EN` generic).
351 2 zero_gravi
 
352 12 zero_gravi
 
353 22 zero_gravi
 
354 14 zero_gravi
## Top Entities
355 2 zero_gravi
 
356 30 zero_gravi
The top entity of the **NEORV32 Processor** is [**neorv32_top.vhd**](https://github.com/stnolting/neorv32/blob/master/rtl/core/neorv32_top.vhd) (from `rtl/core`).
357 2 zero_gravi
Just instantiate this file in your project and you are ready to go! All signals of this top entity are of type *std_ulogic* or *std_ulogic_vector*, respectively
358
(except for the TWI signals, which are of type *std_logic*).
359
 
360 30 zero_gravi
The top entity of the **NEORV32 CPU** is [**neorv32_cpu.vhd**](https://github.com/stnolting/neorv32/blob/master/rtl/core/neorv32_cpu.vhd) (from `rtl/core`).
361 16 zero_gravi
All signals of this top entity are of type *std_ulogic* or *std_ulogic_vector*, respectively.
362 14 zero_gravi
 
363
Use the generics to configure the processor/CPU according to your needs. Each generic is initilized with the default configuration.
364 23 zero_gravi
Detailed information regarding the signals and configuration generics can be found in
365
the [NEORV32 documentary](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf).
366 2 zero_gravi
 
367 30 zero_gravi
Alternative top entities, like the simplified ["hello world" test setup](#Create-a-new-Hardware-Project) or CPU/Processor
368
wrappers with resolved port signal types (i.e. *std_logic*), can be found in [`rtl/top_templates`](https://github.com/stnolting/neorv32/blob/master/rtl/top_templates).
369 14 zero_gravi
 
370 22 zero_gravi
 
371 26 zero_gravi
### NEORV32 CPU
372 23 zero_gravi
 
373
```vhdl
374
entity neorv32_cpu is
375
  generic (
376
    -- General --
377
    HW_THREAD_ID                 : std_ulogic_vector(31 downto 0):= (others => '0'); -- hardware thread id
378
    CPU_BOOT_ADDR                : std_ulogic_vector(31 downto 0):= (others => '0'); -- cpu boot address
379
    -- RISC-V CPU Extensions --
380
    CPU_EXTENSION_RISCV_C        : boolean := false; -- implement compressed extension?
381
    CPU_EXTENSION_RISCV_E        : boolean := false; -- implement embedded RF extension?
382
    CPU_EXTENSION_RISCV_M        : boolean := false; -- implement muld/div extension?
383
    CPU_EXTENSION_RISCV_U        : boolean := false; -- implement user mode extension?
384
    CPU_EXTENSION_RISCV_Zicsr    : boolean := true;  -- implement CSR system?
385
    CPU_EXTENSION_RISCV_Zifencei : boolean := true;  -- implement instruction stream sync.?
386
    -- Extension Options --
387
    FAST_MUL_EN                  : boolean := false; -- use DSPs for M extension's multiplier
388
    -- Physical Memory Protection (PMP) --
389
    PMP_USE                      : boolean := false; -- implement PMP?
390
    PMP_NUM_REGIONS              : natural := 4;     -- number of regions (max 8)
391 30 zero_gravi
    PMP_GRANULARITY              : natural := 14     -- minimal region granularity (1=8B, 2=16B, 3=32B, ...) default is 64k
392 23 zero_gravi
  );
393
  port (
394
    -- global control --
395
    clk_i          : in  std_ulogic := '0'; -- global clock, rising edge
396
    rstn_i         : in  std_ulogic := '0'; -- global reset, low-active, async
397
    -- instruction bus interface --
398
    i_bus_addr_o   : out std_ulogic_vector(data_width_c-1 downto 0); -- bus access address
399
    i_bus_rdata_i  : in  std_ulogic_vector(data_width_c-1 downto 0) := (others => '0'); -- bus read data
400
    i_bus_wdata_o  : out std_ulogic_vector(data_width_c-1 downto 0); -- bus write data
401
    i_bus_ben_o    : out std_ulogic_vector(03 downto 0); -- byte enable
402
    i_bus_we_o     : out std_ulogic; -- write enable
403
    i_bus_re_o     : out std_ulogic; -- read enable
404
    i_bus_cancel_o : out std_ulogic; -- cancel current bus transaction
405
    i_bus_ack_i    : in  std_ulogic := '0'; -- bus transfer acknowledge
406
    i_bus_err_i    : in  std_ulogic := '0'; -- bus transfer error
407
    i_bus_fence_o  : out std_ulogic; -- executed FENCEI operation
408
    -- data bus interface --
409
    d_bus_addr_o   : out std_ulogic_vector(data_width_c-1 downto 0); -- bus access address
410
    d_bus_rdata_i  : in  std_ulogic_vector(data_width_c-1 downto 0) := (others => '0'); -- bus read data
411
    d_bus_wdata_o  : out std_ulogic_vector(data_width_c-1 downto 0); -- bus write data
412
    d_bus_ben_o    : out std_ulogic_vector(03 downto 0); -- byte enable
413
    d_bus_we_o     : out std_ulogic; -- write enable
414
    d_bus_re_o     : out std_ulogic; -- read enable
415
    d_bus_cancel_o : out std_ulogic; -- cancel current bus transaction
416
    d_bus_ack_i    : in  std_ulogic := '0'; -- bus transfer acknowledge
417
    d_bus_err_i    : in  std_ulogic := '0'; -- bus transfer error
418
    d_bus_fence_o  : out std_ulogic; -- executed FENCE operation
419
    -- system time input from MTIME --
420
    time_i         : in  std_ulogic_vector(63 downto 0) := (others => '0'); -- current system time
421
    -- interrupts (risc-v compliant) --
422
    msw_irq_i      : in  std_ulogic := '0'; -- machine software interrupt
423
    mext_irq_i     : in  std_ulogic := '0'; -- machine external interrupt
424
    mtime_irq_i    : in  std_ulogic := '0'; -- machine timer interrupt
425
    -- fast interrupts (custom) --
426
    firq_i         : in  std_ulogic_vector(3 downto 0) := (others => '0')
427
  );
428
end neorv32_cpu;
429
```
430
 
431
 
432 26 zero_gravi
### NEORV32 Processor
433 14 zero_gravi
 
434 2 zero_gravi
```vhdl
435
entity neorv32_top is
436
  generic (
437
    -- General --
438 12 zero_gravi
    CLOCK_FREQUENCY              : natural := 0;      -- clock frequency of clk_i in Hz
439 8 zero_gravi
    BOOTLOADER_USE               : boolean := true;   -- implement processor-internal bootloader?
440 12 zero_gravi
    USER_CODE                    : std_ulogic_vector(31 downto 0) := x"00000000"; -- custom user code
441 2 zero_gravi
    -- RISC-V CPU Extensions --
442 14 zero_gravi
    CPU_EXTENSION_RISCV_C        : boolean := false;  -- implement compressed extension?
443 8 zero_gravi
    CPU_EXTENSION_RISCV_E        : boolean := false;  -- implement embedded RF extension?
444 14 zero_gravi
    CPU_EXTENSION_RISCV_M        : boolean := false;  -- implement muld/div extension?
445 15 zero_gravi
    CPU_EXTENSION_RISCV_U        : boolean := false;  -- implement user mode extension?
446 8 zero_gravi
    CPU_EXTENSION_RISCV_Zicsr    : boolean := true;   -- implement CSR system?
447
    CPU_EXTENSION_RISCV_Zifencei : boolean := true;   -- implement instruction stream sync.?
448 19 zero_gravi
    -- Extension Options --
449
    FAST_MUL_EN                  : boolean := false; -- use DSPs for M extension's multiplier
450 15 zero_gravi
    -- Physical Memory Protection (PMP) --
451 19 zero_gravi
    PMP_USE                      : boolean := false; -- implement PMP?
452
    PMP_NUM_REGIONS              : natural := 4;     -- number of regions (max 8)
453 23 zero_gravi
    PMP_GRANULARITY              : natural := 14;    -- minimal region granularity (1=8B, 2=16B, 3=32B, ...) default is 64kB
454
    -- Internal Instruction memory --
455 14 zero_gravi
    MEM_INT_IMEM_USE             : boolean := true;   -- implement processor-internal instruction memory
456 8 zero_gravi
    MEM_INT_IMEM_SIZE            : natural := 16*1024; -- size of processor-internal instruction memory in bytes
457 14 zero_gravi
    MEM_INT_IMEM_ROM             : boolean := false;  -- implement processor-internal instruction memory as ROM
458 23 zero_gravi
    -- Internal Data memory --
459 8 zero_gravi
    MEM_INT_DMEM_USE             : boolean := true;   -- implement processor-internal data memory
460
    MEM_INT_DMEM_SIZE            : natural := 8*1024; -- size of processor-internal data memory in bytes
461 23 zero_gravi
    -- External memory interface --
462 8 zero_gravi
    MEM_EXT_USE                  : boolean := false;  -- implement external memory bus interface?
463
    MEM_EXT_REG_STAGES           : natural := 2;      -- number of interface register stages (0,1,2)
464 2 zero_gravi
    -- Processor peripherals --
465 8 zero_gravi
    IO_GPIO_USE                  : boolean := true;   -- implement general purpose input/output port unit (GPIO)?
466
    IO_MTIME_USE                 : boolean := true;   -- implement machine system timer (MTIME)?
467
    IO_UART_USE                  : boolean := true;   -- implement universal asynchronous receiver/transmitter (UART)?
468
    IO_SPI_USE                   : boolean := true;   -- implement serial peripheral interface (SPI)?
469
    IO_TWI_USE                   : boolean := true;   -- implement two-wire interface (TWI)?
470
    IO_PWM_USE                   : boolean := true;   -- implement pulse-width modulation unit (PWM)?
471
    IO_WDT_USE                   : boolean := true;   -- implement watch dog timer (WDT)?
472
    IO_TRNG_USE                  : boolean := false;  -- implement true random number generator (TRNG)?
473 23 zero_gravi
    IO_CFU_USE                   : boolean := false   -- implement custom functions unit (CFU)?
474 2 zero_gravi
  );
475
  port (
476
    -- Global control --
477 14 zero_gravi
    clk_i      : in  std_ulogic := '0'; -- global clock, rising edge
478
    rstn_i     : in  std_ulogic := '0'; -- global reset, low-active, async
479 2 zero_gravi
    -- Wishbone bus interface (available if MEM_EXT_USE = true) --
480 14 zero_gravi
    wb_adr_o   : out std_ulogic_vector(31 downto 0); -- address
481
    wb_dat_i   : in  std_ulogic_vector(31 downto 0) := (others => '0'); -- read data
482
    wb_dat_o   : out std_ulogic_vector(31 downto 0); -- write data
483
    wb_we_o    : out std_ulogic; -- read/write
484
    wb_sel_o   : out std_ulogic_vector(03 downto 0); -- byte enable
485
    wb_stb_o   : out std_ulogic; -- strobe
486
    wb_cyc_o   : out std_ulogic; -- valid cycle
487
    wb_ack_i   : in  std_ulogic := '0'; -- transfer acknowledge
488
    wb_err_i   : in  std_ulogic := '0'; -- transfer error
489 12 zero_gravi
    -- Advanced memory control signals (available if MEM_EXT_USE = true) --
490 14 zero_gravi
    fence_o    : out std_ulogic; -- indicates an executed FENCE operation
491
    fencei_o   : out std_ulogic; -- indicates an executed FENCEI operation
492 2 zero_gravi
    -- GPIO (available if IO_GPIO_USE = true) --
493 22 zero_gravi
    gpio_o     : out std_ulogic_vector(31 downto 0); -- parallel output
494
    gpio_i     : in  std_ulogic_vector(31 downto 0) := (others => '0'); -- parallel input
495 2 zero_gravi
    -- UART (available if IO_UART_USE = true) --
496 14 zero_gravi
    uart_txd_o : out std_ulogic; -- UART send data
497
    uart_rxd_i : in  std_ulogic := '0'; -- UART receive data
498 2 zero_gravi
    -- SPI (available if IO_SPI_USE = true) --
499 14 zero_gravi
    spi_sck_o  : out std_ulogic; -- SPI serial clock
500
    spi_sdo_o  : out std_ulogic; -- controller data out, peripheral data in
501
    spi_sdi_i  : in  std_ulogic := '0'; -- controller data in, peripheral data out
502
    spi_csn_o  : out std_ulogic_vector(07 downto 0); -- SPI CS
503 2 zero_gravi
    -- TWI (available if IO_TWI_USE = true) --
504 14 zero_gravi
    twi_sda_io : inout std_logic := 'H'; -- twi serial data line
505
    twi_scl_io : inout std_logic := 'H'; -- twi serial clock line
506 2 zero_gravi
    -- PWM (available if IO_PWM_USE = true) --
507 14 zero_gravi
    pwm_o      : out std_ulogic_vector(03 downto 0); -- pwm channels
508
    -- Interrupts --
509
    msw_irq_i  : in  std_ulogic := '0'; -- machine software interrupt
510
    mext_irq_i : in  std_ulogic := '0'  -- machine external interrupt
511 2 zero_gravi
  );
512
end neorv32_top;
513
```
514
 
515 22 zero_gravi
 
516 2 zero_gravi
 
517
## Getting Started
518
 
519
This overview is just a short excerpt from the *Let's Get It Started* section of the NEORV32 documentary:
520
 
521
[![NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/PDF_32.png) NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf)
522
 
523
 
524 14 zero_gravi
### Toolchain
525 2 zero_gravi
 
526
At first you need the **RISC-V GCC toolchain**. You can either [download the sources](https://github.com/riscv/riscv-gnu-toolchain)
527
and build the toolchain by yourself, or you can download a prebuilt one and install it.
528
 
529 14 zero_gravi
:warning: Keep in mind that – for instance – a `rv32imc` toolchain only provides library code compiled with compressed and
530
`mul`/`div` instructions! Hence, this code cannot be executed (without emulation) on an architecture without these extensions!
531 2 zero_gravi
 
532 23 zero_gravi
To build the toolchain by yourself, follow the official [build instructions](https://github.com/riscv/riscv-gnu-toolchain).
533 14 zero_gravi
Make sure to use the `ilp32` or `ilp32e` ABI.
534 2 zero_gravi
 
535 15 zero_gravi
**Alternatively**, you can download a prebuilt toolchain. I have uploaded the toolchains I am using to GitHub. These toolchains
536
were compiled on a 64-bit x86 Ubuntu 20.04 LTS (Ubuntu on Windows, actually). Download the toolchain of choice:
537 2 zero_gravi
 
538
[https://github.com/stnolting/riscv_gcc_prebuilt](https://github.com/stnolting/riscv_gcc_prebuilt)
539
 
540
 
541 22 zero_gravi
### Dowload the NEORV32 Project
542 2 zero_gravi
 
543 23 zero_gravi
Get the sources of the NEORV32 Processor project. The simplest way is using `git clone` (suggested for easy project updates via `git pull`):
544 12 zero_gravi
 
545 2 zero_gravi
    $ git clone https://github.com/stnolting/neorv32.git
546
 
547 23 zero_gravi
Alternatively, you can either download a specific [release](https://github.com/stnolting/neorv32/releases) or get the most recent version
548
of this project as [`*.zip` file](https://github.com/stnolting/neorv32/archive/master.zip).
549 2 zero_gravi
 
550 22 zero_gravi
 
551
### Create a new Hardware Project
552
 
553 23 zero_gravi
Create a new project with your FPGA design tool of choice. Add all the `*.vhd` files from the [`rtl/core`](https://github.com/stnolting/neorv32/blob/master/rtl)
554
folder to this project. Make sure to add these files to a **new design library** called `neorv32`.
555
 
556 11 zero_gravi
You can either instantiate the [processor's top entity](https://github.com/stnolting/neorv32#top-entity) in your own project or you
557
can use a simple [test setup](https://github.com/stnolting/neorv32/blob/master/rtl/top_templates/neorv32_test_setup.vhd) (from the project's
558
[`rtl/top_templates`](https://github.com/stnolting/neorv32/blob/master/rtl/top_templates) folder) as top entity.
559 2 zero_gravi
 
560 23 zero_gravi
This test setup instantiates the processor and implements most of the peripherals and some ISA extensions. Only the UART lines, clock, reset and some GPIO output sginals are
561 25 zero_gravi
propagated as actual entity signals. Basically, it is a FPGA "hello world" example:
562 23 zero_gravi
 
563 2 zero_gravi
```vhdl
564 9 zero_gravi
  entity neorv32_test_setup is
565
    port (
566
      -- Global control --
567
      clk_i      : in  std_ulogic := '0'; -- global clock, rising edge
568
      rstn_i     : in  std_ulogic := '0'; -- global reset, low-active, async
569
      -- GPIO --
570
      gpio_o     : out std_ulogic_vector(7 downto 0); -- parallel output
571
      -- UART --
572
      uart_txd_o : out std_ulogic; -- UART send data
573
      uart_rxd_i : in  std_ulogic := '0' -- UART receive data
574
    );
575
  end neorv32_test_setup;
576 2 zero_gravi
```
577
 
578
 
579 23 zero_gravi
### Check the Toolchain
580 2 zero_gravi
 
581 11 zero_gravi
Make sure `GNU Make` and a native `GCC` compiler are installed. To test the installation of the RISC-V toolchain navigate to an example project like
582 2 zero_gravi
`sw/example/blink_led` and run:
583
 
584
    neorv32/sw/example/blink_led$ make check
585
 
586 23 zero_gravi
 
587
### Compiling an Example Program
588
 
589 9 zero_gravi
The NEORV32 project includes some [example programs](https://github.com/stnolting/neorv32/tree/master/sw/example) from
590
which you can start your own application. Simply compile one of these projects. This will create a NEORV32
591 23 zero_gravi
*executable* `neorv32_exe.bin` in the same folder:
592 2 zero_gravi
 
593 23 zero_gravi
    neorv32/sw/example/blink_led$ make clean_all exe
594 2 zero_gravi
 
595 23 zero_gravi
 
596
### Upload the Executable via the Bootloader
597
 
598
Connect your FPGA board via UART to your computer and open the according port to interface with the NEORV32 bootloader. The bootloader
599 2 zero_gravi
uses the following default UART configuration:
600
 
601
- 19200 Baud
602
- 8 data bits
603
- 1 stop bit
604
- No parity bits
605
- No transmission / flow control protocol (raw bytes only)
606 23 zero_gravi
- Newline on `\r\n` (carriage return & newline) - also for sent data
607 2 zero_gravi
 
608 23 zero_gravi
Use the bootloader console to upload the `neorv32_exe.bin` executable and run your application image.
609 2 zero_gravi
 
610 9 zero_gravi
```
611
  << NEORV32 Bootloader >>
612
 
613
  BLDV: Jul  6 2020
614
  HWV:  1.0.1.0
615
  CLK:  0x0134FD90 Hz
616 13 zero_gravi
  USER: 0x0001CE40
617 9 zero_gravi
  MISA: 0x42801104
618 27 zero_gravi
  PROC: 0x03FF0035
619 9 zero_gravi
  IMEM: 0x00010000 bytes @ 0x00000000
620
  DMEM: 0x00010000 bytes @ 0x80000000
621
 
622
  Autoboot in 8s. Press key to abort.
623
  Aborted.
624
 
625
  Available CMDs:
626
   h: Help
627
   r: Restart
628
   u: Upload
629
   s: Store to flash
630
   l: Load from flash
631
   e: Execute
632
  CMD:> u
633
  Awaiting neorv32_exe.bin... OK
634
  CMD:> e
635
  Booting...
636
 
637
  Blinking LED demo program
638
```
639 2 zero_gravi
 
640 9 zero_gravi
Going further: Take a look at the _Let's Get It Started!_ chapter of the [![NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/PDF_32.png) NEORV32 datasheet](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/NEORV32.pdf).
641 2 zero_gravi
 
642
 
643
 
644 9 zero_gravi
## Contribute
645 2 zero_gravi
 
646 9 zero_gravi
I'm always thankful for help! So if you have any questions, bug reports, ideas or if you want to give some kind of feedback, feel free
647 23 zero_gravi
to [open a new issue](https://github.com/stnolting/neorv32/issues) or directly [drop me a line](mailto:stnolting@gmail.com).
648 2 zero_gravi
 
649 22 zero_gravi
If you'd like to contribute:
650
 
651 23 zero_gravi
1. [Fork](https://github.com/stnolting/neorv32/fork) this repository and clone the fork
652
2. Create a feature branch in your fork: `git checkout -b awesome_new_feature_branch`
653
3. Create a new remote for the upstream repo: `git remote add https://github.com/stnolting/neorv32`
654
3. Commit your modifications: `git commit -m "Awesome new feature!"`
655
4. Push to the branch: `git push origin awesome_new_feature_branch`
656 22 zero_gravi
5. Create a new [pull request](https://github.com/stnolting/neorv32/pulls)
657
 
658 9 zero_gravi
Please also check out the project's [code of conduct](https://github.com/stnolting/neorv32/tree/master/CODE_OF_CONDUCT.md).
659 2 zero_gravi
 
660
 
661 9 zero_gravi
 
662 11 zero_gravi
## Legal
663 2 zero_gravi
 
664 12 zero_gravi
This project is released under the BSD 3-Clause license. No copyright infringement intended.
665 11 zero_gravi
Other implied or used projects might have different licensing - see their documentation to get more information.
666
 
667
#### Citation
668
 
669 26 zero_gravi
If you are using the NEORV32 Processor/CPU in some kind of publication, please cite it as follows:
670 2 zero_gravi
 
671 26 zero_gravi
> S. Nolting, "The NEORV32 Processor/CPU", github.com/stnolting/neorv32
672 2 zero_gravi
 
673 9 zero_gravi
#### BSD 3-Clause License
674 2 zero_gravi
 
675
Copyright (c) 2020, Stephan Nolting. All rights reserved.
676
 
677
Redistribution and use in source and binary forms, with or without modification, are
678
permitted provided that the following conditions are met:
679
 
680
1. Redistributions of source code must retain the above copyright notice, this list of
681
conditions and the following disclaimer.
682
2. Redistributions in binary form must reproduce the above copyright notice, this list of
683
conditions and the following disclaimer in the documentation and/or other materials
684
provided with the distribution.
685
3. Neither the name of the copyright holder nor the names of its contributors may be used to
686
endorse or promote products derived from this software without specific prior written
687
permission.
688
 
689
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
690
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
691
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
692
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
693
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
694
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
695
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
696
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
697
OF THE POSSIBILITY OF SUCH DAMAGE.
698
 
699
 
700 9 zero_gravi
#### Limitation of Liability for External Links
701
 
702
Our website contains links to the websites of third parties („external links“). As the
703
content of these websites is not under our control, we cannot assume any liability for
704
such external content. In all cases, the provider of information of the linked websites
705
is liable for the content and accuracy of the information provided. At the point in time
706
when the links were placed, no infringements of the law were recognisable to us. As soon
707
as an infringement of the law becomes known to us, we will immediately remove the
708
link in question.
709
 
710
 
711 11 zero_gravi
#### Proprietary  Notice
712 9 zero_gravi
 
713 2 zero_gravi
"Artix" and "Vivado" are trademarks of Xilinx Inc.
714
 
715 11 zero_gravi
"Cyclone", "Quartus Prime", "Quartus Prime Lite" and "Avalon Bus" are trademarks of Intel Corporation.
716 2 zero_gravi
 
717 11 zero_gravi
"Artix" and "Vivado" are trademarks of Xilinx, Inc.
718
 
719 2 zero_gravi
"iCE40", "UltraPlus" and "Lattice Radiant" are trademarks of Lattice Semiconductor Corporation.
720
 
721 13 zero_gravi
"AXI" and "AXI-Lite" are trademarks of Arm Holdings plc.
722 2 zero_gravi
 
723
 
724 22 zero_gravi
 
725 18 zero_gravi
## Acknowledgements
726 9 zero_gravi
 
727 18 zero_gravi
[![RISC-V](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/riscv_logo.png)](https://riscv.org/)
728
 
729 23 zero_gravi
[RISC-V](https://riscv.org/) - Instruction Sets Want To Be Free!
730 11 zero_gravi
 
731 2 zero_gravi
[![Continous Integration provided by Travis CI](https://travis-ci.com/images/logos/TravisCI-Full-Color.png)](https://travis-ci.com/stnolting/neorv32)
732
 
733
Continous integration provided by [Travis CI](https://travis-ci.com/stnolting/neorv32) and powered by [GHDL](https://github.com/ghdl/ghdl).
734
 
735
 
736
![Open Source Hardware Logo https://www.oshwa.org](https://raw.githubusercontent.com/stnolting/neorv32/master/docs/figures/oshw_logo.png)
737
 
738
This project is not affiliated with or endorsed by the Open Source Initiative (https://www.oshwa.org / https://opensource.org).
739
 
740
 
741 14 zero_gravi
 
742 6 zero_gravi
Made with :coffee: in Hannover, Germany.

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.