OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [overview.adoc] - Blame information for rev 62

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
:sectnums:
2
== Overview
3
 
4
The NEORV32footnote:[Pronounced "neo-R-V-thirty-two" or "neo-risc-five-thirty-two" in its long form.] is an open-source
5
RISC-V compatible processor system that is intended as *ready-to-go* auxiliary processor within a larger SoC
6
designs or as stand-alone custom / customizable microcontroller.
7
 
8
The system is highly configurable and provides optional common peripherals like embedded memories,
9
timers, serial interfaces, general purpose IO ports and an external bus interface to connect custom IP like
10
memories, NoCs and other peripherals. On-line and in-system debugging is supported by an OpenOCD/gdb
11
compatible on-chip debugger accessible via JTAG.
12
 
13
The software framework of the processor comes with application makefiles, software libraries for all CPU
14
and processor features, a bootloader, a runtime environment and several example programs – including a port
15
of the CoreMark MCU benchmark and the official RISC-V architecture test suite. RISC-V GCC is used as
16
default toolchain (https://github.com/stnolting/riscv-gcc-prebuilt[prebuilt toolchains are also provided]).
17
 
18
[TIP]
19 61 zero_gravi
Check out the processor's **https://stnolting.github.io/neorv32/ug[online User Guide]**
20
that provides hands-on tutorial to get you started.
21
 
22
[TIP]
23 60 zero_gravi
The project's change log is available in https://github.com/stnolting/neorv32/blob/master/CHANGELOG.md[CHANGELOG.md]
24
in the root directory of the NEORV32 repository. Please also check out the <<_legal>> section.
25
 
26
 
27 61 zero_gravi
**Structure**
28 60 zero_gravi
 
29 61 zero_gravi
* <<_neorv32_processor_soc>>
30
* <<_neorv32_central_processing_unit_cpu>>
31
* <<_on_chip_debugger_ocd>>
32
* <<_software_framework>>
33 60 zero_gravi
 
34 61 zero_gravi
[TIP]
35
Links in this document are <<_overview,highlighted>>.
36 60 zero_gravi
 
37
 
38
 
39 61 zero_gravi
<<<
40
// ####################################################################################################################
41
:sectnums:
42
=== Rationale
43 60 zero_gravi
 
44 61 zero_gravi
**Why did you make this?**
45 60 zero_gravi
 
46 61 zero_gravi
I am fascinated by processor and CPU architecture design: it is the magic frontier where software meets hardware.
47
This project has started as something like a _journey_ into this magic realm to understand how things actually work
48
down on this very low level.
49 60 zero_gravi
 
50 61 zero_gravi
But there is more! When I started to dive into the emerging RISC-V ecosystem I felt overwhelmed by the complexity.
51
As a beginner it is hard to get an overview - especially when you want to setup a minimal platform to tinker with:
52
Which core to use? How to get the right toolchain? What features do I need? How does the booting work? How do I
53
create an actual executable? How to get that into the hardware? How to customize things? **_Where to start???_**
54 60 zero_gravi
 
55 61 zero_gravi
So this project aims to provides a _simple to understand_ and _easy to use_ yet _powerful_ and _flexible_ platform
56
that targets FPGA and RISC-V beginners as well as advanced users. Join me and us on this journey! 🙃
57 60 zero_gravi
 
58
 
59 61 zero_gravi
**Why a _soft_-core processor?**
60 60 zero_gravi
 
61 61 zero_gravi
As a matter of fact soft-core processors _cannot_ compete with discrete or FPGA hard-macro processors in terms
62
of performance, energy and size. But they do fill a niche in FPGA design space. For example, soft-core processors
63
allow to implement the _control flow part_ of certain applications (like communication protocol handling) using
64
software like plain C. This provides high flexibility as software can be easily changed, re-compiled and
65
re-uploaded again.
66 60 zero_gravi
 
67 61 zero_gravi
Furthermore, the concept of flexibility applies to all aspects of a soft-core processor. The user can add
68
_exactly_ the features that are required by the application: additional memories, custom interfaces, specialized
69
IP and even user-defined instructions.
70 60 zero_gravi
 
71
 
72 61 zero_gravi
**Why RISC-V?**
73
 
74
[quote, RISC-V International, https://riscv.org/about/]
75
____
76
RISC-V is a free and open ISA enabling a new era of processor innovation through open standard collaboration.
77
____
78
 
79
I love the idea of open-source. **Knowledge can help best if it is freely available.**
80
While open-source has already become quite popular in _software_, hardware projects still need to catch up.
81
Admittedly, there has been quite a development, but mainly in terms of _platforms_ and _applications_ (so
82
schematics, PCBs, etc.). Although processors and CPUs are the heart of almost every digital system, having a true
83
open-source silicon is still a rarity. RISC-V aims to change that. Even it is _just one approach_, it helps paving
84
the road for future development.
85
 
86
Furthermore, I welcome the community aspect of RISC-V. The ISA and everything beyond is developed with direct
87
contact to the community: this includes businesses and professionals but also hobbyist, amateurs and people
88
that are just curious. Everyone can join discussions and contribute to RISC-V in their very own way.
89
 
90
Finally, I really like the RISC-V ISA itself. It aims to be a clean, orthogonal and "intuitive" ISA that
91
resembles with the basic concepts of _RISC_: simple yet effective.
92
 
93
 
94
**Yet another RISC-V core? What makes it special?**
95
 
96
The NEORV32 is not based on another RISC-V core. It was build entirely from ground up (just following the official
97
ISA specs) having a different design goal in mind. The project does not intend to replace certain RISC-V cores or
98
just beat existing ones like https://github.com/SpinalHDL/VexRiscv[VexRISC] in terms of performance or
99
https://github.com/olofk/serv[SERV] in terms of size.
100
 
101
The project aims to provide _another option_ in the RISC-V / soft-core design space with a different performance
102
vs. size trade-off and a different focus: _embrace_ concepts like documentation, platform-independence / portability,
103
RISC-V compatibility, _customization_ and _ease of use_. See the <<_project_key_features>> below.
104
 
105
 
106 60 zero_gravi
// ####################################################################################################################
107
:sectnums:
108
=== Project Key Features
109
 
110 61 zero_gravi
* open-source and documented; including user guides to get started
111
* completely described in behavioral, platform-independent VHDL (yet platform-optimized modules are provided)
112
* fully synchronous design, no latches, no gated clocks
113
* small hardware footprint and high operating frequency for easy integration
114
* **NEORV32 CPU**: 32-bit `rv32i` RISC-V CPU
115
** RISC-V compatibility: passes the official architecture tests
116
** base architecture + privileged architecture (optional) + ISA extensions (optional)
117
** rich set of customization options (ISA extensions, design goal: performance / area (/ energy), ...)
118 62 zero_gravi
** aims to support <<_full_virtualization>> capabilities (CPU _and_ SoC) to increase execution safety
119 61 zero_gravi
** official https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md[RISC-V open source architecture ID]
120
* **NEORV32 Processor (SoC)**: highly-configurable full-scale microcontroller-like processor system
121
** based on the NEORV32 CPU
122
** optional serial interfaces (UARTs, TWI, SPI)
123
** optional timers and counters (WDT, MTIME)
124
** optional general purpose IO and PWM and native NeoPixel (c) compatible smart LED interface
125
** optional embedded memories / caches for data, instructions and bootloader
126
** optional external memory interface (Wishbone / AXI4-Lite) and stream link interface (AXI4-Stream) for custom connectivity
127
** on-chip debugger compatible with OpenOCD and gdb
128 60 zero_gravi
* **Software framework**
129
** GCC-based toolchain - prebuilt toolchains available; application compilation based on GNU makefiles
130
** internal bootloader with serial user interface
131
** core libraries for high-level usage of the provided functions and peripherals
132
** runtime environment and several example programs
133
** doxygen-based documentation of the software framework; a deployed version is available at https://stnolting.github.io/neorv32/sw/files.html
134
** FreeRTOS port + demos available
135
 
136 61 zero_gravi
[TIP]
137
For more in-depth details regarding the feature provided by he hardware see the according sections:
138
<<_neorv32_central_processing_unit_cpu>> and <<_neorv32_processor_soc>>.
139 60 zero_gravi
 
140 61 zero_gravi
 
141 60 zero_gravi
<<<
142
// ####################################################################################################################
143
:sectnums:
144
=== Project Folder Structure
145
 
146
...................................
147 62 zero_gravi
neorv32            - Project home folder
148
149
├docs              - Project documentation
150
│├datasheet        - .adoc sources for NEORV32 data sheet
151
│├doxygen_build    - Software framework documentation (generated by doxygen)
152
│├figures          - Figures and logos
153
│├icons            - Misc. symbols
154
│├references       - Data sheets and RISC-V specs.
155
│└src_adoc         - AsciiDoc sources for this document
156
157
├rtl               - VHDL sources
158
│├core             - Core sources of the CPU & SoC
159
│└templates        - Alternate/additional top entities & wrappers
160
│ ├processor       - Processor SoC wrappers
161
│ └system          - System wrappers for advanced connectivity
162
163
├setups            - Example setups for various FPGAs, boards and toolchains
164 61 zero_gravi
│└...
165 62 zero_gravi
166
├sim               - Simulation files (see User Guide)
167
168
└sw                - Software framework
169
 ├bootloader       - Sources and scripts for the NEORV32 internal bootloader
170
 ├common           - Linker script and crt0.S start-up code
171
 ├example          - Various example programs
172 60 zero_gravi
 │└...
173 62 zero_gravi
 ├isa-test
174
 │├riscv-arch-test - RISC-V spec. compatibility test framework (submodule)
175
 │└port-neorv32    - Port files for the official RISC-V architecture tests
176
 ├ocd_firmware     - source code for on-chip debugger's "park loop"
177
 ├openocd          - OpenOCD on-chip debugger configuration files
178
 ├image_gen        - Helper program to generate NEORV32 executables
179
 └lib              - Processor core library
180
  ├include         - Header files (*.h)
181
  └source          - Source files (*.c)
182 60 zero_gravi
...................................
183
 
184
 
185
 
186
<<<
187
// ####################################################################################################################
188
:sectnums:
189
=== VHDL File Hierarchy
190
 
191
All necessary VHDL hardware description files are located in the project's `rtl/core folder`. The top entity
192
of the entire processor including all the required configuration generics is **`neorv32_top.vhd`**.
193
 
194
[IMPORTANT]
195
All core VHDL files from the list below have to be assigned to a new design library named **`neorv32`**. Additional
196
files, like alternative top entities, can be assigned to any library.
197
 
198
...................................
199 61 zero_gravi
neorv32_top.vhd                  - NEORV32 Processor top entity
200
201
├neorv32_fifo.vhd                - General purpose FIFO component
202
├neorv32_package.vhd             - Processor/CPU main VHDL package file
203
204
├neorv32_cpu.vhd                 - NEORV32 CPU top entity
205
│├neorv32_cpu_alu.vhd            - Arithmetic/logic unit
206
││├neorv32_cpu_cp_fpu.vhd        - Floating-point co-processor (Zfinx ext.)
207
││├neorv32_cpu_cp_muldiv.vhd     - Mul/Div co-processor (M extension)
208
││└neorv32_cpu_cp_shifter.vhd    - Bit-shift co-processor
209
│├neorv32_cpu_bus.vhd            - Bus interface + physical memory protection
210
│├neorv32_cpu_control.vhd        - CPU control, exception/IRQ system and CSRs
211
││└neorv32_cpu_decompressor.vhd  - Compressed instructions decoder
212
│└neorv32_cpu_regfile.vhd        - Data register file
213
214
├neorv32_boot_rom.vhd            - Bootloader ROM
215
│└neorv32_bootloader_image.vhd   - Bootloader boot ROM memory image
216
├neorv32_busswitch.vhd           - Processor bus switch for CPU buses (I&D)
217
├neorv32_bus_keeper.vhd          - Processor-internal bus monitor
218
├neorv32_cfs.vhd                 - Custom functions subsystem
219
├neorv32_debug_dm.vhd            - on-chip debugger: debug module
220
├neorv32_debug_dtm.vhd           - on-chip debugger: debug transfer module
221
├neorv32_dmem.vhd                - Processor-internal data memory
222
├neorv32_gpio.vhd                - General purpose input/output port unit
223 62 zero_gravi
├neorv32_icache.vhd              - Processor-internal instruction cache
224 61 zero_gravi
├neorv32_imem.vhd                - Processor-internal instruction memory
225
│└neor32_application_image.vhd   - IMEM application initialization image
226
├neorv32_mtime.vhd               - Machine system timer
227
├neorv32_neoled.vhd              - NeoPixel (TM) compatible smart LED interface
228
├neorv32_pwm.vhd                 - Pulse-width modulation controller
229
├neorv32_spi.vhd                 - Serial peripheral interface controller
230
├neorv32_sysinfo.vhd             - System configuration information memory
231
├neorv32_trng.vhd                - True random number generator
232
├neorv32_twi.vhd                 - Two wire serial interface controller
233
├neorv32_uart.vhd                - Universal async. receiver/transmitter
234
├neorv32_wdt.vhd                 - Watchdog timer
235
├neorv32_wishbone.vhd            - External (Wishbone) bus interface
236
└neorv32_xirq.vhd                - External interrupt controller
237 60 zero_gravi
...................................
238
 
239
 
240
<<<
241
// ####################################################################################################################
242
:sectnums:
243
=== FPGA Implementation Results
244
 
245 62 zero_gravi
This chapter shows _exemplary_ implementation results of the NEORV32 CPU and NEORV32 Processor.
246 60 zero_gravi
 
247
:sectnums:
248
==== CPU
249
 
250
[cols="<2,<8"]
251
[grid="topbot"]
252
|=======================
253 62 zero_gravi
| Hardware version: | `1.5.7.10`
254 60 zero_gravi
| Top entity:       | `rtl/core/neorv32_cpu.vhd`
255
|=======================
256
 
257
[cols="<5,>1,>1,>1,>1,>1"]
258
[options="header",grid="rows"]
259
|=======================
260 62 zero_gravi
| CPU                                        | LEs  | FFs  | MEM bits | DSPs | _f~max~_
261
| `rv32i`                                    |  806 |  359 |     1024 |    0 | 125 MHz
262
| `rv32i_Zicsr`                              | 1729 |  813 |     1024 |    0 | 124 MHz
263
| `rv32im_Zicsr`                             | 2269 | 1055 |     1024 |    0 | 124 MHz
264
| `rv32imc_Zicsr`                            | 2501 | 1070 |     1024 |    0 | 124 MHz
265
| `rv32imac_Zicsr`                           | 2511 | 1074 |     1024 |    0 | 124 MHz
266
| `rv32imacu_Zicsr`                          | 2521 | 1079 |     1024 |    0 | 124 MHz
267
| `rv32imacu_Zicsr_Zifencei`                 | 2522 | 1079 |     1024 |    0 | 122 MHz
268
| `rv32imacu_Zicsr_Zifencei_Zfinx`           | 3807 | 1731 |     1024 |    7 | 116 MHz
269
| `rv32imacu_Zicsr_Zifencei_Zfinx_DebugMode` | 3974 | 1815 |     1024 |    7 | 116 MHz
270 60 zero_gravi
|=======================
271
 
272 62 zero_gravi
[NOTE]
273
No HPM counters and no PMP regions were implemented for generating these results.
274 60 zero_gravi
 
275 62 zero_gravi
[TIP]
276
The CPU provides further options to reduce the area footprint (for example by constraining the CPU-internal
277
counter sizes) or to increase performance (for example by using a barrel-shifter; at cost of extra hardware).
278
See section <<_processor_top_entity_generics>> for more information.
279
 
280
 
281 60 zero_gravi
:sectnums:
282
==== Processor Modules
283
 
284
[cols="<2,<8"]
285
[grid="topbot"]
286
|=======================
287 62 zero_gravi
| Hardware version: | `1.5.7.15`
288 60 zero_gravi
| Top entity:       | `rtl/core/neorv32_top.vhd`
289
|=======================
290
 
291
.Hardware utilization by the processor modules (mandatory core modules in **bold**)
292
[cols="<2,<8,>1,>1,>2,>1"]
293
[options="header",grid="rows"]
294
|=======================
295 62 zero_gravi
| Module        | Description                                           | LEs | FFs | MEM bits | DSPs
296
| Boot ROM      | Bootloader ROM (4kB)                                  |   2 |   1 |    32768 |    0
297
| **BUSKEEPER** | Processor-internal bus monitor                        |   9 |   6 |        0 |    0
298
| **BUSSWITCH** | Bus mux for CPU instr. and data interface             |  63 |   8 |        0 |    0
299 61 zero_gravi
| CFS           | Custom functions subsystemfootnote:[Resource utilization depends on actually implemented custom functionality.] | - | - | - | -
300 62 zero_gravi
| DMEM          | Processor-internal data memory (8kB)                  |  19 |   2 |    65536 |    0
301
| DM            | On-chip debugger - debug module                       | 493 | 240 |        0 |    0
302
| DTM           | On-chip debugger - debug transfer module (JTAG)       | 254 | 218 |        0 |    0
303
| GPIO          | General purpose input/output ports                    | 134 | 161 |        0 |    0
304
| iCACHE        | Instruction cache (1x4 blocks, 256 bytes per block)   | 2 21| 156 |     8192 |    0
305
| IMEM          | Processor-internal instruction memory (16kB)          |  13 |   2 |   131072 |    0
306
| MTIME         | Machine system timer                                  | 319 | 167 |        0 |    0
307
| NEOLED        | Smart LED Interface (NeoPixel/WS28128) [FIFO_depth=1] | 226 | 182 |        0 |    0
308
| SLINK         | Stream link interface (2xRX, 2xTX, FIFO_depth=1)      | 208 | 181 |        0 |    0
309
| PWM           | Pulse_width modulation controller (4 channels)        |  71 |  69 |        0 |    0
310
| SPI           | Serial peripheral interface                           | 148 | 127 |        0 |    0
311
| **SYSINFO**   | System configuration information memory               |  14 |  11 |        0 |    0
312
| TRNG          | True random number generator                          |  89 |  76 |        0 |    0
313
| TWI           | Two-wire interface                                    |  77 |  43 |        0 |    0
314
| UART0/1       | Universal asynchronous receiver/transmitter 0/1       | 183 | 132 |        0 |    0
315
| WDT           | Watchdog timer                                        |  53 |  43 |        0 |    0
316
| WISHBONE      | External memory interface                             | 114 | 110 |        0 |    0
317
| XIRQ          | External interrupt controller (32 channels)           | 241 | 201 |        0 |    0
318 60 zero_gravi
|=======================
319
 
320
 
321
<<<
322
:sectnums:
323
==== Exemplary Setups
324
 
325 61 zero_gravi
Check out the `setups` folder (@GitHub: https://github.com/stnolting/neorv32/tree/master/setups),
326
which provides several demo setups for various FPGA boards and toolchains.
327 60 zero_gravi
 
328
 
329
<<<
330
// ####################################################################################################################
331
:sectnums:
332
=== CPU Performance
333
 
334 62 zero_gravi
The performance of the NEORV32 was tested and evaluated using the https://www.eembc.org/coremark/[Core Mark CPU benchmark].
335
This benchmark focuses on testing the capabilities of the CPU core itself rather than the performance of the whole
336
system. The according sources can be found in the `sw/example/coremark` folder.
337 60 zero_gravi
 
338
The resulting CoreMark score is defined as CoreMark iterations per second.
339
The execution time is determined via the RISC-V `[m]cycle[h]` CSRs. The relative CoreMark score is
340
defined as CoreMark score divided by the CPU's clock frequency in MHz.
341
 
342 62 zero_gravi
.Configuration
343 60 zero_gravi
[cols="<2,<8"]
344
[grid="topbot"]
345
|=======================
346 62 zero_gravi
| HW version:     | `1.5.7.10`
347
| Hardware:       | 32kB int. IMEM, 16kB int. DMEM, no caches, 100MHz clock
348
| CoreMark:       | 2000 iterations, MEM_METHOD is MEM_STACK
349
| Compiler:       | RISCV32-GCC 10.2.0
350
| Compiler flags: | default, see makefile
351 60 zero_gravi
|=======================
352
 
353
.CoreMark results
354 62 zero_gravi
[cols="<4,^1,^1,^1"]
355 60 zero_gravi
[options="header",grid="rows"]
356
|=======================
357 62 zero_gravi
| CPU                                            | CoreMark Score | CoreMarks/Mhz | Average CPI
358
| _small_ (`rv32i_Zicsr`)                        |          33.89 | **0.3389**    | **4.04**
359
| _medium_ (`rv32imc_Zicsr`)                     |          62.50 | **0.6250**    | **5.34**
360
| _performance_(`rv32imc_Zicsr` + perf. options) |          95.23 | **0.9523**    | **3.54**
361 60 zero_gravi
|=======================
362
 
363
[NOTE]
364 62 zero_gravi
The "_performance_" CPU configuration uses the <<_fast_mul_en>> and <<_fast_shift_en>> options.
365 60 zero_gravi
 
366 62 zero_gravi
[NOTE]
367 60 zero_gravi
The NEORV32 CPU is based on a multi-cycle architecture. Each instruction is executed in a sequence of
368 62 zero_gravi
several consecutive micro operations.
369 60 zero_gravi
 
370 62 zero_gravi
[NOTE]
371 60 zero_gravi
The average CPI (cycles per instruction) depends on the instruction mix of a specific applications and also on
372 62 zero_gravi
the available CPU extensions. The average CPI is computed by dividing the total number of required clock cycles
373
(only the timed core to avoid distortion due to IO wait cycles) by the number of executed instructions
374
(`[m]instret[h]` CSRs).
375 60 zero_gravi
 
376
[TIP]
377
More information regarding the execution time of each implemented instruction can be found in
378
chapter <<_instruction_timing>>.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.