OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [overview.adoc] - Blame information for rev 67

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
:sectnums:
2
== Overview
3
 
4
The NEORV32footnote:[Pronounced "neo-R-V-thirty-two" or "neo-risc-five-thirty-two" in its long form.] is an open-source
5
RISC-V compatible processor system that is intended as *ready-to-go* auxiliary processor within a larger SoC
6
designs or as stand-alone custom / customizable microcontroller.
7
 
8
The system is highly configurable and provides optional common peripherals like embedded memories,
9
timers, serial interfaces, general purpose IO ports and an external bus interface to connect custom IP like
10
memories, NoCs and other peripherals. On-line and in-system debugging is supported by an OpenOCD/gdb
11
compatible on-chip debugger accessible via JTAG.
12
 
13 66 zero_gravi
Special focus is paid on **execution safety** to provide defined and predictable behavior at any time.
14
Therefore, the CPU ensures that all memory access are acknowledged and no invalid/malformed instructions
15
are executed. Whenever an unexpected situation occurs, the application code is informed via hardware exceptions.
16
 
17 60 zero_gravi
The software framework of the processor comes with application makefiles, software libraries for all CPU
18 65 zero_gravi
and processor features, a bootloader, a runtime environment and several example programs - including a port
19 60 zero_gravi
of the CoreMark MCU benchmark and the official RISC-V architecture test suite. RISC-V GCC is used as
20
default toolchain (https://github.com/stnolting/riscv-gcc-prebuilt[prebuilt toolchains are also provided]).
21
 
22
[TIP]
23 61 zero_gravi
Check out the processor's **https://stnolting.github.io/neorv32/ug[online User Guide]**
24
that provides hands-on tutorial to get you started.
25
 
26
[TIP]
27 60 zero_gravi
The project's change log is available in https://github.com/stnolting/neorv32/blob/master/CHANGELOG.md[CHANGELOG.md]
28
in the root directory of the NEORV32 repository. Please also check out the <<_legal>> section.
29
 
30
 
31 61 zero_gravi
**Structure**
32 60 zero_gravi
 
33 65 zero_gravi
[start=2]
34 64 zero_gravi
. <<_neorv32_processor_soc>>
35
. <<_neorv32_central_processing_unit_cpu>>
36 65 zero_gravi
. <<_software_framework>>
37 64 zero_gravi
. <<_on_chip_debugger_ocd>>
38 60 zero_gravi
 
39 61 zero_gravi
[TIP]
40
Links in this document are <<_overview,highlighted>>.
41 60 zero_gravi
 
42
 
43
 
44 61 zero_gravi
<<<
45
// ####################################################################################################################
46
:sectnums:
47
=== Rationale
48 60 zero_gravi
 
49 61 zero_gravi
**Why did you make this?**
50 60 zero_gravi
 
51 61 zero_gravi
I am fascinated by processor and CPU architecture design: it is the magic frontier where software meets hardware.
52
This project has started as something like a _journey_ into this magic realm to understand how things actually work
53
down on this very low level.
54 60 zero_gravi
 
55 61 zero_gravi
But there is more! When I started to dive into the emerging RISC-V ecosystem I felt overwhelmed by the complexity.
56
As a beginner it is hard to get an overview - especially when you want to setup a minimal platform to tinker with:
57
Which core to use? How to get the right toolchain? What features do I need? How does the booting work? How do I
58
create an actual executable? How to get that into the hardware? How to customize things? **_Where to start???_**
59 60 zero_gravi
 
60 61 zero_gravi
So this project aims to provides a _simple to understand_ and _easy to use_ yet _powerful_ and _flexible_ platform
61
that targets FPGA and RISC-V beginners as well as advanced users. Join me and us on this journey! 🙃
62 60 zero_gravi
 
63
 
64 61 zero_gravi
**Why a _soft_-core processor?**
65 60 zero_gravi
 
66 61 zero_gravi
As a matter of fact soft-core processors _cannot_ compete with discrete or FPGA hard-macro processors in terms
67
of performance, energy and size. But they do fill a niche in FPGA design space. For example, soft-core processors
68
allow to implement the _control flow part_ of certain applications (like communication protocol handling) using
69
software like plain C. This provides high flexibility as software can be easily changed, re-compiled and
70
re-uploaded again.
71 60 zero_gravi
 
72 61 zero_gravi
Furthermore, the concept of flexibility applies to all aspects of a soft-core processor. The user can add
73
_exactly_ the features that are required by the application: additional memories, custom interfaces, specialized
74
IP and even user-defined instructions.
75 60 zero_gravi
 
76
 
77 61 zero_gravi
**Why RISC-V?**
78
 
79
[quote, RISC-V International, https://riscv.org/about/]
80
____
81
RISC-V is a free and open ISA enabling a new era of processor innovation through open standard collaboration.
82
____
83
 
84
I love the idea of open-source. **Knowledge can help best if it is freely available.**
85
While open-source has already become quite popular in _software_, hardware projects still need to catch up.
86
Admittedly, there has been quite a development, but mainly in terms of _platforms_ and _applications_ (so
87
schematics, PCBs, etc.). Although processors and CPUs are the heart of almost every digital system, having a true
88
open-source silicon is still a rarity. RISC-V aims to change that. Even it is _just one approach_, it helps paving
89
the road for future development.
90
 
91
Furthermore, I welcome the community aspect of RISC-V. The ISA and everything beyond is developed with direct
92
contact to the community: this includes businesses and professionals but also hobbyist, amateurs and people
93
that are just curious. Everyone can join discussions and contribute to RISC-V in their very own way.
94
 
95
Finally, I really like the RISC-V ISA itself. It aims to be a clean, orthogonal and "intuitive" ISA that
96
resembles with the basic concepts of _RISC_: simple yet effective.
97
 
98
 
99
**Yet another RISC-V core? What makes it special?**
100
 
101
The NEORV32 is not based on another RISC-V core. It was build entirely from ground up (just following the official
102
ISA specs) having a different design goal in mind. The project does not intend to replace certain RISC-V cores or
103
just beat existing ones like https://github.com/SpinalHDL/VexRiscv[VexRISC] in terms of performance or
104
https://github.com/olofk/serv[SERV] in terms of size.
105
 
106
The project aims to provide _another option_ in the RISC-V / soft-core design space with a different performance
107
vs. size trade-off and a different focus: _embrace_ concepts like documentation, platform-independence / portability,
108
RISC-V compatibility, _customization_ and _ease of use_. See the <<_project_key_features>> below.
109
 
110
 
111 60 zero_gravi
// ####################################################################################################################
112
:sectnums:
113
=== Project Key Features
114
 
115 61 zero_gravi
* open-source and documented; including user guides to get started
116
* completely described in behavioral, platform-independent VHDL (yet platform-optimized modules are provided)
117
* fully synchronous design, no latches, no gated clocks
118
* small hardware footprint and high operating frequency for easy integration
119
* **NEORV32 CPU**: 32-bit `rv32i` RISC-V CPU
120
** RISC-V compatibility: passes the official architecture tests
121
** base architecture + privileged architecture (optional) + ISA extensions (optional)
122
** rich set of customization options (ISA extensions, design goal: performance / area (/ energy), ...)
123 62 zero_gravi
** aims to support <<_full_virtualization>> capabilities (CPU _and_ SoC) to increase execution safety
124 61 zero_gravi
** official https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md[RISC-V open source architecture ID]
125
* **NEORV32 Processor (SoC)**: highly-configurable full-scale microcontroller-like processor system
126
** based on the NEORV32 CPU
127
** optional serial interfaces (UARTs, TWI, SPI)
128
** optional timers and counters (WDT, MTIME)
129
** optional general purpose IO and PWM and native NeoPixel (c) compatible smart LED interface
130
** optional embedded memories / caches for data, instructions and bootloader
131
** optional external memory interface (Wishbone / AXI4-Lite) and stream link interface (AXI4-Stream) for custom connectivity
132
** on-chip debugger compatible with OpenOCD and gdb
133 60 zero_gravi
* **Software framework**
134
** GCC-based toolchain - prebuilt toolchains available; application compilation based on GNU makefiles
135
** internal bootloader with serial user interface
136
** core libraries for high-level usage of the provided functions and peripherals
137
** runtime environment and several example programs
138
** doxygen-based documentation of the software framework; a deployed version is available at https://stnolting.github.io/neorv32/sw/files.html
139
** FreeRTOS port + demos available
140
 
141 61 zero_gravi
[TIP]
142
For more in-depth details regarding the feature provided by he hardware see the according sections:
143
<<_neorv32_central_processing_unit_cpu>> and <<_neorv32_processor_soc>>.
144 60 zero_gravi
 
145 61 zero_gravi
 
146 60 zero_gravi
<<<
147
// ####################################################################################################################
148
:sectnums:
149
=== Project Folder Structure
150
 
151
...................................
152 63 zero_gravi
neorv32                - Project home folder
153 62 zero_gravi
154 63 zero_gravi
├docs                  - Project documentation
155 66 zero_gravi
│├datasheet            - AsciiDoc sources for the NEORV32 data sheet
156 63 zero_gravi
│├figures              - Figures and logos
157
│├icons                - Misc. symbols
158
│├references           - Data sheets and RISC-V specs.
159 66 zero_gravi
│└userguide            - AsciiDoc sources for the NEORV32 user guide
160 62 zero_gravi
161 63 zero_gravi
├rtl                   - VHDL sources
162
│├core                 - Core sources of the CPU & SoC
163 64 zero_gravi
││└mem                 - SoC-internal memories (default architectures)
164 63 zero_gravi
│├processor_templates  - Pre-configured SoC wrappers
165
│├system_integration   - System wrappers for advanced connectivity
166
│└test_setups          - Minimal test setup "SoCs" used in the User Guide
167 62 zero_gravi
168 63 zero_gravi
├setups                - Example setups for various FPGAs, boards and toolchains
169 61 zero_gravi
│└...
170 62 zero_gravi
171 63 zero_gravi
├sim                   - Simulation files (see User Guide)
172 62 zero_gravi
173 63 zero_gravi
└sw                    - Software framework
174 66 zero_gravi
 ├bootloader           - Sources of the processor-internal bootloader
175
 ├common               - Linker script, crt0.S start-up code and central makefile
176 63 zero_gravi
 ├example              - Various example programs
177 60 zero_gravi
 │└...
178 62 zero_gravi
 ├isa-test
179 63 zero_gravi
 │├riscv-arch-test     - RISC-V spec. compatibility test framework (submodule)
180
 │└port-neorv32        - Port files for the official RISC-V architecture tests
181 66 zero_gravi
 ├ocd_firmware         - Source code for on-chip debugger's "park loop"
182 63 zero_gravi
 ├openocd              - OpenOCD on-chip debugger configuration files
183
 ├image_gen            - Helper program to generate NEORV32 executables
184
 └lib                  - Processor core library
185
  ├include             - Header files (*.h)
186
  └source              - Source files (*.c)
187 60 zero_gravi
...................................
188
 
189
 
190
 
191
<<<
192
// ####################################################################################################################
193
:sectnums:
194
=== VHDL File Hierarchy
195
 
196
All necessary VHDL hardware description files are located in the project's `rtl/core folder`. The top entity
197
of the entire processor including all the required configuration generics is **`neorv32_top.vhd`**.
198
 
199
[IMPORTANT]
200
All core VHDL files from the list below have to be assigned to a new design library named **`neorv32`**. Additional
201
files, like alternative top entities, can be assigned to any library.
202
 
203
...................................
204 61 zero_gravi
neorv32_top.vhd                  - NEORV32 Processor top entity
205
206
├neorv32_fifo.vhd                - General purpose FIFO component
207
├neorv32_package.vhd             - Processor/CPU main VHDL package file
208
209
├neorv32_cpu.vhd                 - NEORV32 CPU top entity
210
│├neorv32_cpu_alu.vhd            - Arithmetic/logic unit
211 63 zero_gravi
││├neorv32_cpu_cp_bitmanip.vhd   - Bit-manipulation co-processor (B ext.)
212 61 zero_gravi
││├neorv32_cpu_cp_fpu.vhd        - Floating-point co-processor (Zfinx ext.)
213
││├neorv32_cpu_cp_muldiv.vhd     - Mul/Div co-processor (M extension)
214
││└neorv32_cpu_cp_shifter.vhd    - Bit-shift co-processor
215
│├neorv32_cpu_bus.vhd            - Bus interface + physical memory protection
216
│├neorv32_cpu_control.vhd        - CPU control, exception/IRQ system and CSRs
217
││└neorv32_cpu_decompressor.vhd  - Compressed instructions decoder
218
│└neorv32_cpu_regfile.vhd        - Data register file
219
220
├neorv32_boot_rom.vhd            - Bootloader ROM
221
│└neorv32_bootloader_image.vhd   - Bootloader boot ROM memory image
222
├neorv32_busswitch.vhd           - Processor bus switch for CPU buses (I&D)
223
├neorv32_bus_keeper.vhd          - Processor-internal bus monitor
224
├neorv32_cfs.vhd                 - Custom functions subsystem
225
├neorv32_debug_dm.vhd            - on-chip debugger: debug module
226
├neorv32_debug_dtm.vhd           - on-chip debugger: debug transfer module
227 64 zero_gravi
├neorv32_dmem.entity.vhd         - Processor-internal data memory (entity-only!)
228 61 zero_gravi
├neorv32_gpio.vhd                - General purpose input/output port unit
229 67 zero_gravi
├neorv32_gptmr.vhd               - General purpose 32-bit timer
230 62 zero_gravi
├neorv32_icache.vhd              - Processor-internal instruction cache
231 64 zero_gravi
├neorv32_imem.entity.vhd         - Processor-internal instruction memory (entity-only!)
232 61 zero_gravi
│└neor32_application_image.vhd   - IMEM application initialization image
233
├neorv32_mtime.vhd               - Machine system timer
234
├neorv32_neoled.vhd              - NeoPixel (TM) compatible smart LED interface
235
├neorv32_pwm.vhd                 - Pulse-width modulation controller
236 67 zero_gravi
├neorv32_slink.vhd               - Stream link controller
237 61 zero_gravi
├neorv32_spi.vhd                 - Serial peripheral interface controller
238
├neorv32_sysinfo.vhd             - System configuration information memory
239
├neorv32_trng.vhd                - True random number generator
240
├neorv32_twi.vhd                 - Two wire serial interface controller
241
├neorv32_uart.vhd                - Universal async. receiver/transmitter
242
├neorv32_wdt.vhd                 - Watchdog timer
243
├neorv32_wishbone.vhd            - External (Wishbone) bus interface
244 67 zero_gravi
├neorv32_xirq.vhd                - External interrupt controller
245 64 zero_gravi
246
├mem/neorv32_dmem.default.vhd    - _Default_ data memory (architecture-only!)
247
└mem/neorv32_imem.default.vhd    - _Default_ instruction memory (architecture-only!)
248 60 zero_gravi
...................................
249
 
250 64 zero_gravi
[NOTE]
251
The processor-internal instruction and data memories (IMEM and DMEM) are split into two design files each:
252
a plain entity definition (`neorv32_*mem.entity.vhd`) and the actual architecture definition
253
(`mem/neorv32_*mem.default.vhd`). The **default** architecture definitions from `rtl/core/mem` provide a _generic_ and
254
_platform independent_ memory design that (should) infers embedded memory blocks. You can replace/modify the architecture
255
source file in order to use platform-specific features (like advanced memory resources) or to improve technology mapping
256
and/or timing.
257 60 zero_gravi
 
258 64 zero_gravi
 
259 60 zero_gravi
<<<
260
// ####################################################################################################################
261
:sectnums:
262
=== FPGA Implementation Results
263
 
264 62 zero_gravi
This chapter shows _exemplary_ implementation results of the NEORV32 CPU and NEORV32 Processor.
265 60 zero_gravi
 
266
:sectnums:
267
==== CPU
268
 
269
[cols="<2,<8"]
270
[grid="topbot"]
271
|=======================
272 62 zero_gravi
| Hardware version: | `1.5.7.10`
273 60 zero_gravi
| Top entity:       | `rtl/core/neorv32_cpu.vhd`
274
|=======================
275
 
276
[cols="<5,>1,>1,>1,>1,>1"]
277
[options="header",grid="rows"]
278
|=======================
279 66 zero_gravi
| CPU                                               | LEs  | FFs  | MEM bits | DSPs | _f~max~_
280
| `rv32i`                                           |  806 |  359 |     1024 |    0 | 125 MHz
281
| `rv32i_Zicsr_Zicntr`                              | 1729 |  813 |     1024 |    0 | 124 MHz
282
| `rv32im_Zicsr_Zicntr`                             | 2269 | 1055 |     1024 |    0 | 124 MHz
283
| `rv32imc_Zicsr_Zicntr`                            | 2501 | 1070 |     1024 |    0 | 124 MHz
284
| `rv32imac_Zicsr_Zicntr`                           | 2511 | 1074 |     1024 |    0 | 124 MHz
285
| `rv32imacu_Zicsr_Zicntr`                          | 2521 | 1079 |     1024 |    0 | 124 MHz
286
| `rv32imacu_Zicsr_Zicntr_Zifencei`                 | 2522 | 1079 |     1024 |    0 | 122 MHz
287
| `rv32imacu_Zicsr_Zicntr_Zifencei_Zfinx`           | 3807 | 1731 |     1024 |    7 | 116 MHz
288
| `rv32imacu_Zicsr_Zicntr_Zifencei_Zfinx_DebugMode` | 3974 | 1815 |     1024 |    7 | 116 MHz
289 60 zero_gravi
|=======================
290
 
291 62 zero_gravi
[NOTE]
292
No HPM counters and no PMP regions were implemented for generating these results.
293 60 zero_gravi
 
294 62 zero_gravi
[TIP]
295
The CPU provides further options to reduce the area footprint (for example by constraining the CPU-internal
296
counter sizes) or to increase performance (for example by using a barrel-shifter; at cost of extra hardware).
297 63 zero_gravi
See section <<_processor_top_entity_generics>> for more information. Also, take a look at the User Guide section
298
https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration[Application-Specific Processor Configuration].
299 62 zero_gravi
 
300
 
301 60 zero_gravi
:sectnums:
302
==== Processor Modules
303
 
304
[cols="<2,<8"]
305
[grid="topbot"]
306
|=======================
307 62 zero_gravi
| Hardware version: | `1.5.7.15`
308 60 zero_gravi
| Top entity:       | `rtl/core/neorv32_top.vhd`
309
|=======================
310
 
311
.Hardware utilization by the processor modules (mandatory core modules in **bold**)
312
[cols="<2,<8,>1,>1,>2,>1"]
313
[options="header",grid="rows"]
314
|=======================
315 62 zero_gravi
| Module        | Description                                           | LEs | FFs | MEM bits | DSPs
316
| Boot ROM      | Bootloader ROM (4kB)                                  |   2 |   1 |    32768 |    0
317
| **BUSKEEPER** | Processor-internal bus monitor                        |   9 |   6 |        0 |    0
318
| **BUSSWITCH** | Bus mux for CPU instr. and data interface             |  63 |   8 |        0 |    0
319 61 zero_gravi
| CFS           | Custom functions subsystemfootnote:[Resource utilization depends on actually implemented custom functionality.] | - | - | - | -
320 62 zero_gravi
| DMEM          | Processor-internal data memory (8kB)                  |  19 |   2 |    65536 |    0
321
| DM            | On-chip debugger - debug module                       | 493 | 240 |        0 |    0
322
| DTM           | On-chip debugger - debug transfer module (JTAG)       | 254 | 218 |        0 |    0
323
| GPIO          | General purpose input/output ports                    | 134 | 161 |        0 |    0
324
| iCACHE        | Instruction cache (1x4 blocks, 256 bytes per block)   | 2 21| 156 |     8192 |    0
325
| IMEM          | Processor-internal instruction memory (16kB)          |  13 |   2 |   131072 |    0
326
| MTIME         | Machine system timer                                  | 319 | 167 |        0 |    0
327
| NEOLED        | Smart LED Interface (NeoPixel/WS28128) [FIFO_depth=1] | 226 | 182 |        0 |    0
328
| SLINK         | Stream link interface (2xRX, 2xTX, FIFO_depth=1)      | 208 | 181 |        0 |    0
329
| PWM           | Pulse_width modulation controller (4 channels)        |  71 |  69 |        0 |    0
330
| SPI           | Serial peripheral interface                           | 148 | 127 |        0 |    0
331
| **SYSINFO**   | System configuration information memory               |  14 |  11 |        0 |    0
332
| TRNG          | True random number generator                          |  89 |  76 |        0 |    0
333
| TWI           | Two-wire interface                                    |  77 |  43 |        0 |    0
334
| UART0/1       | Universal asynchronous receiver/transmitter 0/1       | 183 | 132 |        0 |    0
335
| WDT           | Watchdog timer                                        |  53 |  43 |        0 |    0
336
| WISHBONE      | External memory interface                             | 114 | 110 |        0 |    0
337
| XIRQ          | External interrupt controller (32 channels)           | 241 | 201 |        0 |    0
338 67 zero_gravi
| GPTMR         | General Purpose Timer                                 | 153 | 107 |        0 |    0
339 60 zero_gravi
|=======================
340
 
341
 
342
<<<
343
:sectnums:
344
==== Exemplary Setups
345
 
346 61 zero_gravi
Check out the `setups` folder (@GitHub: https://github.com/stnolting/neorv32/tree/master/setups),
347
which provides several demo setups for various FPGA boards and toolchains.
348 60 zero_gravi
 
349
 
350
<<<
351
// ####################################################################################################################
352
:sectnums:
353
=== CPU Performance
354
 
355 62 zero_gravi
The performance of the NEORV32 was tested and evaluated using the https://www.eembc.org/coremark/[Core Mark CPU benchmark].
356
This benchmark focuses on testing the capabilities of the CPU core itself rather than the performance of the whole
357
system. The according sources can be found in the `sw/example/coremark` folder.
358 60 zero_gravi
 
359 63 zero_gravi
.Dhrystone
360
[TIP]
361
A _simple_ port of the Dhrystone benchmark is also available in `sw/example/dhrystone`.
362
 
363 60 zero_gravi
The resulting CoreMark score is defined as CoreMark iterations per second.
364
The execution time is determined via the RISC-V `[m]cycle[h]` CSRs. The relative CoreMark score is
365
defined as CoreMark score divided by the CPU's clock frequency in MHz.
366
 
367 62 zero_gravi
.Configuration
368 60 zero_gravi
[cols="<2,<8"]
369
[grid="topbot"]
370
|=======================
371 62 zero_gravi
| HW version:     | `1.5.7.10`
372
| Hardware:       | 32kB int. IMEM, 16kB int. DMEM, no caches, 100MHz clock
373
| CoreMark:       | 2000 iterations, MEM_METHOD is MEM_STACK
374
| Compiler:       | RISCV32-GCC 10.2.0
375
| Compiler flags: | default, see makefile
376 60 zero_gravi
|=======================
377
 
378
.CoreMark results
379 62 zero_gravi
[cols="<4,^1,^1,^1"]
380 60 zero_gravi
[options="header",grid="rows"]
381
|=======================
382 66 zero_gravi
| CPU                                             | CoreMark Score | CoreMarks/MHz | Average CPI
383
| _small_ (`rv32i_Zicsr`)                         |          33.89 | **0.3389**    | **4.04**
384
| _medium_ (`rv32imc_Zicsr`)                      |          62.50 | **0.6250**    | **5.34**
385
| _performance_ (`rv32imc_Zicsr` + perf. options) |          95.23 | **0.9523**    | **3.54**
386 60 zero_gravi
|=======================
387
 
388
[NOTE]
389 62 zero_gravi
The "_performance_" CPU configuration uses the <<_fast_mul_en>> and <<_fast_shift_en>> options.
390 60 zero_gravi
 
391 62 zero_gravi
[NOTE]
392 60 zero_gravi
The NEORV32 CPU is based on a multi-cycle architecture. Each instruction is executed in a sequence of
393 62 zero_gravi
several consecutive micro operations.
394 60 zero_gravi
 
395 62 zero_gravi
[NOTE]
396 60 zero_gravi
The average CPI (cycles per instruction) depends on the instruction mix of a specific applications and also on
397 62 zero_gravi
the available CPU extensions. The average CPI is computed by dividing the total number of required clock cycles
398
(only the timed core to avoid distortion due to IO wait cycles) by the number of executed instructions
399
(`[m]instret[h]` CSRs).
400 60 zero_gravi
 
401
[TIP]
402
More information regarding the execution time of each implemented instruction can be found in
403
chapter <<_instruction_timing>>.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.