OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [soc_cfs.adoc] - Blame information for rev 71

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
<<<
2
:sectnums:
3
==== Custom Functions Subsystem (CFS)
4
 
5
[cols="<3,<3,<4"]
6
[frame="topbot",grid="none"]
7
|=======================
8
| Hardware source file(s): | neorv32_gfs.vhd |
9
| Software driver file(s): | neorv32_gfs.c |
10
|                          | neorv32_gfs.h |
11
| Top entity port:         | `cfs_in_i`  | custom input conduit
12
|                          | `cfs_out_o` | custom output conduit
13
| Configuration generics:  | _IO_CFS_EN_ | implement CFS when _true_
14
|                          | _IO_CFS_CONFIG_ | custom generic conduit
15
|                          | _IO_CFS_IN_SIZE_ | size of `cfs_in_i`
16
|                          | _IO_CFS_OUT_SIZE_ | size of `cfs_out_o`
17
| CPU interrupts:          | fast IRQ channel 1 | CFS interrupt (see <<_processor_interrupts>>)
18
|=======================
19
 
20
**Theory of Operation**
21
 
22 71 zero_gravi
The custom functions subsystem is meant for implementing custom and application-specific logic.
23
The CFS provides up to 32x 32-bit memory-mapped
24
registers (`REG`, see register map below) that can be accessed by the CPU via normal load/store operations.
25 65 zero_gravi
The actual functionality of these register has to be defined by the hardware designer. Furthermore, the CFS
26
provides two IO conduits to implement custom module- or chip-external interfaces.
27 60 zero_gravi
 
28 65 zero_gravi
In contrast to connecting custom hardware accelerators via external memory interfaces (like SPI or the processor's
29
external bus interface), the CFS provide a convenient, low-latency and tightly-coupled extension and
30
customization option.
31 60 zero_gravi
 
32 65 zero_gravi
Just like any other externally-connected IP, logic implemented within the custom functions subsystem can operate
33
_independently_ of the CPU providing true parallel processing capabilities. Potential use cases might include
34
dedicated hardware accelerators for en-/decryption (AES), signal processing (FFT) or AI applications
35
(CNNs) as well as custom IO systems like fast memory interfaces (DDR) and mass storage (SDIO), networking (CAN)
36
or real-time data transport (I2S).
37
 
38 60 zero_gravi
[INFO]
39
Take a look at the template CFS VHDL source file (`rtl/core/neorv32_cfs.vhd`). The file is highly
40
commented to illustrate all aspects that are relevant for implementing custom CFS-based co-processor designs.
41
 
42 65 zero_gravi
 
43 60 zero_gravi
**CFS Software Access**
44
 
45
The CFS memory-mapped registers can be accessed by software using the provided C-language aliases (see
46
register map table below). Note that all interface registers provide 32-bit access data of type `uint32_t`.
47
 
48
[source,c]
49
----
50
// C-code CFS usage example
51 64 zero_gravi
NEORV32_CFS.REG[0] = (uint32_t)some_data_array(i); // write to CFS register 0
52
uint32_t temp = NEORV32_CFS.REG[20]; // read from CFS register 20
53 60 zero_gravi
----
54
 
55 71 zero_gravi
[TIP]
56
A very simple example program that uses the _default_ CFS hardware module can be found in `sw/example/cfs_demo`.
57 65 zero_gravi
 
58 71 zero_gravi
 
59 60 zero_gravi
**CFS Interrupt**
60
 
61 71 zero_gravi
The CFS provides a single high-level-triggered interrupt request signal mapped to the CPU's fast interrupt channel 1.
62 69 zero_gravi
Once triggered, the interrupt becomes pending (if enabled in the `mis` CSR) and has to be explicitly cleared again by setting
63
the according `mip` CSR bit. See section <<_processor_interrupts>> for more information.
64 60 zero_gravi
 
65 65 zero_gravi
 
66 60 zero_gravi
**CFS Configuration Generic**
67
 
68
By default, the CFS provides a single 32-bit `std_(u)logic_vector` configuration generic _IO_CFS_CONFIG_
69
that is available in the processor's top entity. This generic can be used to pass custom configuration options
70 71 zero_gravi
from the top entity directly down to the CFS. The actual definition of the generic and it's usage inside the
71 65 zero_gravi
CFS is left to the hardware designer.
72 60 zero_gravi
 
73 65 zero_gravi
 
74 60 zero_gravi
**CFS Custom IOs**
75
 
76
By default, the CFS also provides two unidirectional input and output conduits `cfs_in_i` and `cfs_out_o`.
77 65 zero_gravi
These signals are directly propagated to the processor's top entity. These conduits can be used to implement
78 71 zero_gravi
application-specific interfaces like memory or peripheral connections. The actual use case of these signals
79 65 zero_gravi
has to be defined by the hardware designer.
80
 
81
The size of the input signal conduit `cfs_in_i` is defined via the top's _IO_CFS_IN_SIZE_ configuration
82
generic (default = 32-bit). The size of the output signal conduit `cfs_out_o` is defined via the top's
83 60 zero_gravi
_IO_CFS_OUT_SIZE_ configuration generic (default = 32-bit). If the custom function subsystem is not implemented
84
(_IO_CFS_EN_ = false) the `cfs_out_o` signal is tied to all-zero.
85
 
86 65 zero_gravi
 
87 64 zero_gravi
.CFS register map (`struct NEORV32_CFS`)
88 60 zero_gravi
[cols="^4,<5,^2,^3,<14"]
89
[options="header",grid="all"]
90
|=======================
91
| Address | Name [C] | Bit(s) | R/W | Function
92 64 zero_gravi
| `0xfffffe00` | `NEORV32_CFS.REG[0]`  |`31:0` | (r)/(w) | custom CFS interface register 0
93
| `0xfffffe04` | `NEORV32_CFS.REG[1]`  |`31:0` | (r)/(w) | custom CFS interface register 1
94
| ...          | ...                   |`31:0` | (r)/(w) | ...
95
| `0xfffffe78` | `NEORV32_CFS.REG[30]` |`31:0` | (r)/(w) | custom CFS interface register 30
96
| `0xfffffe7c` | `NEORV32_CFS.REG[31]` |`31:0` | (r)/(w) | custom CFS interface register 31
97 60 zero_gravi
|=======================

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.