OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [software.adoc] - Blame information for rev 63

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
:sectnums:
2
== Software Framework
3
 
4
To make actual use of the NEORV32 processor, the project comes with a complete software eco-system. This
5
ecosystem is based on the RISC-V port of the GCC GNU Compiler Collection and consists of the following elementary parts:
6
 
7
[cols="<6,<4"]
8
[grid="none"]
9
|=======================
10
| Application/bootloader start-up code | `sw/common/crt0.S`
11
| Application/bootloader linker script | `sw/common/neorv32.ld`
12
| Core hardware driver libraries | `sw/lib/include/` & `sw/lib/source/`
13 62 zero_gravi
| Central makefile | `sw/common/common.mk`
14 60 zero_gravi
| Auxiliary tool for generating NEORV32 executables | `sw/image_gen/`
15
| Default bootloader | `sw/bootloader/bootloader.c`
16
|=======================
17
 
18
Last but not least, the NEORV32 ecosystem provides some example programs for testing the hardware, for
19
illustrating the usage of peripherals and for general getting in touch with the project (`sw/example`).
20
 
21
// ####################################################################################################################
22
:sectnums:
23
=== Compiler Toolchain
24
 
25
The toolchain for this project is based on the free RISC-V GCC-port. You can find the compiler sources and
26
build instructions on the official RISC-V GNU toolchain GitHub page: https://github.com/riscv/riscv-gnutoolchain.
27
 
28
The NEORV32 implements a 32-bit base integer architecture (`rv32i`) and a 32-bit integer and soft-float ABI
29
(ilp32), so make sure you build an according toolchain.
30
 
31
Alternatively, you can download my prebuilt `rv32i/e` toolchains for 64-bit x86 Linux from: https://github.com/stnolting/riscv-gcc-prebuilt
32
 
33
The default toolchain prefix used by the project's makefiles is (can be changed in the makefiles): **`riscv32-unknown-elf`**
34
 
35
[TIP]
36
More information regarding the toolchain (building from scratch or downloading the prebuilt ones)
37 61 zero_gravi
can be found in the user guides' section https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup[Software Toolchain Setup].
38 60 zero_gravi
 
39
 
40
 
41
<<<
42
// ####################################################################################################################
43
:sectnums:
44
=== Core Libraries
45
 
46
The NEORV32 project provides a set of C libraries that allows an easy usage of the processor/CPU features.
47
Just include the main NEORV32 library file in your application's source file(s):
48
 
49
[source,c]
50
----
51
#include 
52
----
53
 
54
Together with the makefile, this will automatically include all the processor's header files located in
55
`sw/lib/include` into your application. The actual source files of the core libraries are located in
56
`sw/lib/source` and are automatically included into the source list of your software project. The following
57
files are currently part of the NEORV32 core library:
58
 
59
[cols="<3,<4,<8"]
60
[options="header",grid="rows"]
61
|=======================
62
| C source file | C header file | Description
63
| -                  | `neorv32.h`            | main NEORV32 definitions and library file
64
| `neorv32_cfs.c`    | `neorv32_cfs.h`        | HW driver (stub)footnote:[This driver file only represents a stub, since the real CFS drivers are defined by the actual CFS implementation.] functions for the custom functions subsystem
65
| `neorv32_cpu.c`    | `neorv32_cpu.h`        | HW driver functions for the NEORV32 **CPU**
66
| `neorv32_gpio.c`   | `neorv32_gpio.h`       | HW driver functions for the **GPIO**
67
| -                  | `neorv32_intrinsics.h` | macros for custom intrinsics/instructions
68
| `neorv32_mtime.c`  | `neorv32_mtime.h`      | HW driver functions for the **MTIME**
69
| `neorv32_neoled.c` | `neorv32_neoled.h`     | HW driver functions for the **NEOLED**
70
| `neorv32_pwm.c`    | `neorv32_pwm.h`        | HW driver functions for the **PWM**
71
| `neorv32_rte.c`    | `neorv32_rte.h`        | NEORV32 **runtime environment** and helpers
72
| `neorv32_spi.c`    | `neorv32_spi.h`        | HW driver functions for the **SPI**
73
| `neorv32_trng.c`   | `neorv32_trng.h`       | HW driver functions for the **TRNG**
74
| `neorv32_twi.c`    | `neorv32_twi.h`        | HW driver functions for the **TWI**
75
| `neorv32_uart.c`   | `neorv32_uart.h`       | HW driver functions for the **UART0** and **UART1**
76
| `neorv32_wdt.c`    | `neorv32_wdt.h`        | HW driver functions for the **WDT**
77
|=======================
78
 
79
.Documentation
80
[TIP]
81
All core library software sources are highly documented using _doxygen_. See section <>.
82
The documentation is automatically built and deployed to GitHub pages by the CI workflow (:https://stnolting.github.io/neorv32/sw/files.html).
83
 
84
 
85
 
86
 
87
<<<
88
// ####################################################################################################################
89
:sectnums:
90
=== Application Makefile
91
 
92 62 zero_gravi
Application compilation is based on a single, centralized **GNU makefiles** `sw/common/common.mk`. Each project in the
93
`sw/example` folder features a makefile that just includes this central makefile. When creating a new project, copy an existing project folder or
94 60 zero_gravi
at least the makefile to your new project folder. I suggest to create new projects also in `sw/example` to keep
95
the file dependencies. Of course, these dependencies can be manually configured via makefiles variables
96
when your project is located somewhere else.
97
 
98 62 zero_gravi
[NOTE]
99 60 zero_gravi
Before you can use the makefiles, you need to install the RISC-V GCC toolchain. Also, you have to add the
100 62 zero_gravi
installation folder of the compiler to your system's `PATH` variable. More information can be found in
101
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup[User Guide: Software Toolchain Setup].
102 60 zero_gravi
 
103
The makefile is invoked by simply executing make in your console:
104
 
105
[source,bash]
106
----
107
neorv32/sw/example/blink_led$ make
108
----
109
 
110
:sectnums:
111
==== Targets
112
 
113 62 zero_gravi
Just executing `make` (or executing `make help`) will show the help menu listing all available targets.
114 60 zero_gravi
 
115 62 zero_gravi
[source,makefile]
116
----
117
$ make
118
<<< NEORV32 Application Makefile >>>
119
Make sure to add the bin folder of RISC-V GCC to your PATH variable.
120
Targets:
121
 help       - show this text
122
 check      - check toolchain
123
 info       - show makefile/toolchain configuration
124
 exe        - compile and generate  executable for upload via bootloader
125
 hex        - compile and generate  executable raw file
126
 install    - compile, generate and install VHDL IMEM boot image (for application)
127 63 zero_gravi
 sim        - in-console simulation using the default testbench and GHDL
128 62 zero_gravi
 all        - exe + hex + install
129
 elf_info   - show ELF layout info
130
 clean      - clean up project
131
 clean_all  - clean up project, core libraries and image generator
132
 bootloader - compile, generate and install VHDL BOOTROM boot image (for bootloader only!)
133
----
134 60 zero_gravi
 
135
 
136
:sectnums:
137
==== Configuration
138
 
139 62 zero_gravi
The compilation flow is configured via variables right at the beginning of the **central**
140
makefile (`sw/common/common.mk`):
141 60 zero_gravi
 
142 62 zero_gravi
[TIP]
143
The makefile configuration variables can be (re-)defined directly when invoking the makefile. For
144
example via `$ make MARCH=-march=rv32ic clean_all exe`. You can also make project-specific definitions
145
of all variables inside the project's actual makefile (e.g., `sw/example/blink_led/makefile`).
146
 
147 60 zero_gravi
[source,makefile]
148
----
149
# *****************************************************************************
150
# USER CONFIGURATION
151
# *****************************************************************************
152
# User's application sources (*.c, *.cpp, *.s, *.S); add additional files here
153
APP_SRC ?= $(wildcard ./*.c) $(wildcard ./*.s) $(wildcard ./*.cpp) $(wildcard ./*.S)
154
# User's application include folders (don't forget the '-I' before each entry)
155
APP_INC ?= -I .
156
# User's application include folders - for assembly files only (don't forget the '-I' before each
157
entry)
158
ASM_INC ?= -I .
159
# Optimization
160
EFFORT ?= -Os
161
# Compiler toolchain
162 62 zero_gravi
RISCV_PREFIX ?= riscv32-unknown-elf-
163 60 zero_gravi
# CPU architecture and ABI
164
MARCH ?= -march=rv32i
165
MABI  ?= -mabi=ilp32
166
# User flags for additional configuration (will be added to compiler flags)
167
USER_FLAGS ?=
168
# Relative or absolute path to the NEORV32 home folder
169
NEORV32_HOME ?= ../../..
170
# *****************************************************************************
171
----
172
 
173
[cols="<3,<10"]
174
[grid="none"]
175
|=======================
176
| _APP_SRC_         | The source files of the application (`*.c`, `*.cpp`, `*.S` and `*.s` files are allowed; file of these types in the project folder are automatically added via wildcards). Additional files can be added; separated by white spaces
177
| _APP_INC_         | Include file folders; separated by white spaces; must be defined with `-I` prefix
178
| _ASM_INC_         | Include file folders that are used only for the assembly source files (`*.S`/`*.s`).
179
| _EFFORT_          | Optimization level, optimize for size (`-Os`) is default; legal values: `-O0`, `-O1`, `-O2`, `-O3`, `-Os`
180 62 zero_gravi
| _RISCV_PREFIX_    | The toolchain prefix to be used; follows the naming convention "architecture-vendor-output-"
181
| _MARCH_           | The targetd RISC-V architecture/ISA. Only `rv32` is supported by the NEORV32. Enable compiler support of optional CPU extension by adding the according extension letter (e.g. `rv32im` for _M_ CPU extension). See https://stnolting.github.io/neorv32/ug/#_enabling_risc_v_cpu_extensions[User Guide: Enabling RISC-V CPU Extensions] for more information.
182 60 zero_gravi
| _MABI_            | The default 32-bit integer ABI.
183
| _USER_FLAGS_      | Additional flags that will be forwarded to the compiler tools
184
| _NEORV32_HOME_    | Relative or absolute path to the NEORV32 project home folder. Adapt this if the makefile/project is not in the project's `sw/example folder`.
185
| _COM_PORT_        | Default serial port for executable upload to bootloader.
186
|=======================
187
 
188
:sectnums:
189
==== Default Compiler Flags
190
 
191
The following default compiler flags are used for compiling an application. These flags are defined via the
192
`CC_OPTS` variable. Custom flags can be appended via the `USER_FLAGS` variable to the `CC_OPTS` variable.
193
 
194
[cols="<3,<9"]
195
[grid="none"]
196
|=======================
197
| `-Wall` | Enable all compiler warnings.
198
| `-ffunction-sections` | Put functions and data segment in independent sections. This allows a code optimization as dead code and unused data can be easily removed.
199
| `-nostartfiles` | Do not use the default start code. The makefiles use the NEORV32-specific start-up code instead (`sw/common/crt0.S`).
200
| `-Wl,--gc-sections` | Make the linker perform dead code elimination.
201
| `-lm` | Include/link with `math.h`.
202
| `-lc` | Search for the standard C library when linking.
203
| `-lgcc` | Make sure we have no unresolved references to internal GCC library subroutines.
204
| `-mno-fdiv` | Use builtin software functions for floating-point divisions and square roots (since the according instructions are not supported yet).
205
| `-falign-functions=4` .4+| Force a 32-bit alignment of functions and labels (branch/jump/call targets). This increases performance as it simplifies instruction fetch when using the C extension. As a drawback this will also slightly increase the program code.
206
| `-falign-labels=4`
207
| `-falign-loops=4`
208
| `-falign-jumps=4`
209
|=======================
210
 
211
 
212
 
213
<<<
214
// ####################################################################################################################
215
:sectnums:
216
=== Executable Image Format
217
 
218 61 zero_gravi
In order to generate a file, which can be executed by the processor, all source files have to be compiler, linked
219
and packed into a final _executable_.
220 60 zero_gravi
 
221 61 zero_gravi
:sectnums:
222
==== Linker Script
223
 
224
When all the application sources have been compiled, they need to be _linked_ in order to generate a unified
225
program file. For this purpose the makefile uses the NEORV32-specific linker script `sw/common/neorv32.ld` for
226
linking all object files that were generated during compilation.
227
 
228
The linker script defines three memory _sections_: `rom`, `ram` and `iodev`. Each section provides specific
229
access _attributes_: read access (`r`), write access (`w`) and executable (`x`).
230
 
231
.Linker memory sections - general
232 60 zero_gravi
[cols="<2,^1,<7"]
233
[options="header",grid="rows"]
234
|=======================
235
| Memory section  | Attributes | Description
236 61 zero_gravi
| `ram`           | `rwx`      | Data memory address space (processor-internal/external DMEM)
237
| `rom`           | `rx`       | Instruction memory address space (processor-internal/external IMEM) _or_ internal bootloader ROM
238
| `iodev`         | `rw`       | Processor-internal memory-mapped IO/peripheral devices address space
239 60 zero_gravi
|=======================
240
 
241 61 zero_gravi
These sections are defined right at the beginning of the linker script:
242 60 zero_gravi
 
243 61 zero_gravi
.Linker memory sections - cut-out from linker script `neorv32.ld`
244
[source,c]
245
----
246
MEMORY
247
{
248
  ram  (rwx) : ORIGIN = 0x80000000, LENGTH = DEFINED(make_bootloader) ? 512 : 8*1024
249
  rom   (rx) : ORIGIN = DEFINED(make_bootloader) ? 0xFFFF0000 : 0x00000000, LENGTH = DEFINED(make_bootloader) ? 32K : 2048M
250
  iodev (rw) : ORIGIN = 0xFFFFFE00, LENGTH = 512
251
}
252
----
253 60 zero_gravi
 
254 61 zero_gravi
Each memory section provides a _base address_ `ORIGIN` and a _size_ `LENGTH`. The base address and size of the `iodev` section is
255
fixed and must not be altered. The base addresses and sizes of the `ram` and `rom` regions correspond to the total available instruction
256
and data memory address space (see section <<_address_space_layout>>).
257 60 zero_gravi
 
258 61 zero_gravi
[IMPORTANT]
259
`ORIGIN` of the `ram` section has to be always identical to the processor's `dspace_base_c` hardware configuration. Additionally,
260
`ORIGIN` of the `rom` section has to be always identical to the processor's `ispace_base_c` hardware configuration.
261
 
262
The sizes of `ram` section has to be equal to the size of the **physical available data instruction memory**. For example, if the processor
263
setup only uses processor-internal DMEM (<<_mem_int_dmem_en>> = _true_ and no external data memory attached) the `LENGTH` parameter of
264
this memory section has to be equal to the size configured by the <<_mem_int_dmem_size>> generic.
265
 
266
The sizes of `rom` section is a little bit more complicated. The default linker script configuration assumes a _maximum_ of 2GB _logical_
267
memory space, which is also the default configuration of the processor's hardware instruction memory address space. This size _does not_ have
268
to reflect the _actual_ physical size of the instruction memory (internal IMEM and/or processor-external memory). It just provides a maximum
269
limit. When uploading new executable via the bootloader, the bootloader itself checks if sufficient _physical_ instruction memory is available.
270
If a new executable is embedded right into the internal-IMEM the synthesis tool will check, if the configured instruction memory size
271
is sufficient (e.g., via the <<_mem_int_imem_size>> generic).
272
 
273
[IMPORTANT]
274
The `rom` region uses a conditional assignment (via the `make_bootloader` symbol) for `ORIGIN` and `LENGTH` that is used to place
275
"normal executable" (i.e. for the IMEM) or "the bootloader image" to their according memories. +
276
 +
277
The `ram` region also uses a conditional assignment (via the `make_bootloader` symbol) for `LENGTH`. When compiling the bootloader
278
(`make_bootloader` symbol is set) the generated bootloader will only use the _first_ 512 bytes of the data address space. This is
279
a fall-back to ensure the bootloader can operate independently of the actual _physical_ data memory size.
280
 
281
The linker maps all the regions from the compiled object files into four final sections: `.text`, `.rodata`, `.data` and `.bss`.
282
These four regions contain everything required for the application to run:
283
 
284
.Linker memory regions
285 60 zero_gravi
[cols="<1,<9"]
286
[options="header",grid="rows"]
287
|=======================
288 62 zero_gravi
| Region    | Description
289 60 zero_gravi
| `.text`   | Executable instructions generated from the start-up code and all application sources.
290
| `.rodata` | Constants (like strings) from the application; also the initial data for initialized variables.
291
| `.data`   | This section is required for the address generation of fixed (= global) variables only.
292
| `.bss`    | This section is required for the address generation of dynamic memory constructs only.
293
|=======================
294
 
295
The `.text` and `.rodata` sections are mapped to processor's instruction memory space and the `.data` and
296 61 zero_gravi
`.bss` sections are mapped to the processor's data memory space. Finally, the `.text`, `.rodata` and `.data`
297
sections are extracted and concatenated into a single file `main.bin`.
298 60 zero_gravi
 
299
 
300 61 zero_gravi
:sectnums:
301
==== Executable Image Generator
302 60 zero_gravi
 
303 61 zero_gravi
The `main.bin` file is packed by the NEORV32 image generator (`sw/image_gen`) to generate the final executable file.
304
 
305
[NOTE]
306
The sources of the image generator are automatically compiled when invoking the makefile.
307
 
308
The image generator can generate three types of executables, selected by a flag when calling the generator:
309
 
310 60 zero_gravi
[cols="<1,<9"]
311
[grid="none"]
312
|=======================
313
| `-app_bin` | Generates an executable binary file `neorv32_exe.bin` (for UART uploading via the bootloader).
314 62 zero_gravi
| `-app_hex` | Generates a plain ASCII hex-char file `neorv32_exe.hex` that can be used to initialize custom (instruction-) memories (in synthesis/simulation).
315 60 zero_gravi
| `-app_img` | Generates an executable VHDL memory initialization image for the processor-internal IMEM. This option generates the `rtl/core/neorv32_application_image.vhd` file.
316
| `-bld_img` | Generates an executable VHDL memory initialization image for the processor-internal BOOT ROM. This option generates the `rtl/core/neorv32_bootloader_image.vhd` file.
317
|=======================
318
 
319 61 zero_gravi
All these options are managed by the makefile. The _normal application_ compilation flow will generate the `neorv32_exe.bin`
320
executable to be upload via UART to the NEORV32 bootloader.
321 60 zero_gravi
 
322 61 zero_gravi
The image generator add a small header to the `neorv32_exe.bin` executable, which consists of three 32-bit words located right at the
323
beginning of the file. The first word of the executable is the signature word and is always `0x4788cafe`. Based on this word the bootloader
324
can identify a valid image file. The next word represents the size in bytes of the actual program
325 60 zero_gravi
image in bytes. A simple "complement" checksum of the actual program image is given by the third word. This
326
provides a simple protection against data transmission or storage errors.
327
 
328
 
329 61 zero_gravi
:sectnums:
330
==== Start-Up Code (crt0)
331 60 zero_gravi
 
332 61 zero_gravi
The CPU and also the processor require a minimal start-up and initialization code to bring the CPU (and the SoC)
333
into a stable and initialized state and to initialize the C runtime environment before the actual application can be executed.
334
This start-up code is located in `sw/common/crt0.S` and is automatically linked _every_ application program
335
and placed right before the actual application code so it gets executed right after reset.
336 60 zero_gravi
 
337 61 zero_gravi
The `crt0.S` start-up performs the following operations:
338 60 zero_gravi
 
339 61 zero_gravi
[start=1]
340
. Initialize all integer registers `x1 - x31` (or jsut `x1 - x15` when using the `E` CPU extension) to a defined value.
341
. Initialize the global pointer `gp` and the stack pointer `sp` according to the `.data` segment layout provided by the linker script.
342
. Initialize all CPU core CSRs and also install a default "dummy" trap handler for _all_ traps. This handler catches all traps during the early boot phase.
343
. Clear IO area: Write zero to all memory-mapped registers within the IO region (`iodev` section). If certain devices have not been implemented, a bus access fault exception will occur. This exception is captured by the dummy trap handler.
344
. Clear the `.bss` section defined by the linker script.
345
. Copy read-only data from the `.text` section to the `.data` section to set initialized variables.
346
. Call the application's `main` function (with _no_ arguments: `argc` = `argv` = 0).
347
. If the `main` function returns `crt0` can call an "after-main handler" (see below)
348
. If there is no after-main handler or after returning from the after-main handler the processor goes to an endless sleep mode (using a simple loop or via the `wfi` instruction if available).
349 60 zero_gravi
 
350 61 zero_gravi
:sectnums:
351
===== After-Main Handler
352
 
353
If the application's `main()` function actually returns, an _after main handler_ can be executed. This handler can be a normal function
354
since the C runtime is still available when executed. If this handler uses any kind of peripheral/IO modules make sure these are
355
already initialized within the application or you have to initialize them _inside_ the handler.
356
 
357
.After-main handler - function prototype
358
[source,c]
359
----
360
int __neorv32_crt0_after_main(int32_t return_code);
361
----
362
 
363
The function has exactly one argument (`return_code`) that provides the _return value_ of the application's main function.
364
For instance, this variable contains _-1_ if the main function returned with `return -1;`. The return value of the
365
`__neorv32_crt0_after_main` function is irrelevant as there is no further "software instance" executed afterwards that can check this.
366
However, the on-chip debugger could still evaluate the return value of the after-main handler.
367
 
368
A simple `printf` can be used to inform the user when the application main function return
369
(this example assumes that UART0 has been already properly configured in the actual application):
370
 
371
.After-main handler - example
372
[source,c]
373
----
374
int __neorv32_crt0_after_main(int32_t return_code) {
375
 
376
  neorv32_uart_printf("Main returned with code: %i\n", return_code);
377
  return 0;
378
}
379
----
380
 
381
 
382 60 zero_gravi
<<<
383
// ####################################################################################################################
384
:sectnums:
385
=== Bootloader
386
 
387 61 zero_gravi
[NOTE]
388
This section illustrated the **default** bootloader from the repository. The bootloader can be customized
389
to target application-specific scenarios. See User Guide section
390
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader[Customizing the Internal Bootloader]
391
for more information.
392 60 zero_gravi
 
393 61 zero_gravi
The default NEORV32 bootloader (source code `sw/bootloader/bootloader.c`) provides a build-in firmware that
394
allows to upload new application executables via UART at every time and to optionally store/boot them to/from
395
an external SPI flash. It features a simple "automatic boot" feature that will try to fetch an executable
396
from SPI flash if there is _no_ UART user interaction. This allows to build processor setup with
397
non-volatile application storage, which can be updated at any time.
398 60 zero_gravi
 
399 61 zero_gravi
The bootloader is only implemented if the <<_int_bootloader_en>> generic is _true_. This will
400
select the <<_indirect_boot>> boot configuration.
401 60 zero_gravi
 
402 61 zero_gravi
.Hardware requirements of the _default_ NEORV32 bootloader
403 60 zero_gravi
[IMPORTANT]
404 61 zero_gravi
**REQUIRED**: The bootloader requires the CSR access CPU extension (<<_cpu_extension_riscv_zicsr>> generic is _true_)
405
and at least 512 bytes of data memory (processor-internal DMEM or external DMEM). +
406
 +
407
_RECOMMENDED_: For user interaction via UART (like uploading executables) the primary UART (UART0) has to be
408
implemented (<<_io_uart0_en>> generic is _true_). Without UART the bootloader does not make much sense. However, auto-boot
409
via SPI is still supported but the bootloader should be customized (see User Guide) for this purpose. +
410
 +
411
_OPTIONAL_: The default bootloader uses bit 0 of the GPIO output port as "heart beat" and status LED if the
412
GPIO controller is implemented (<<_io_gpio_en>> generic is _true_). +
413
 +
414
_OPTIONAL_: The MTIME machine timer (<<_io_mtime_en>> generic is _true_) and the SPI controller
415
(<<_io_spi_en>> generic is _true_) are required in order to use the bootloader's auto-boot feature
416
(automatic boot from external SPI flash if there is no user interaction via UART).
417 60 zero_gravi
 
418
To interact with the bootloader, connect the primary UART (UART0) signals (`uart0_txd_o` and
419
`uart0_rxd_o`) of the processor's top entity via a serial port (-adapter) to your computer (hardware flow control is
420
not used so the according interface signals can be ignored.), configure your
421 62 zero_gravi
terminal program using the following settings and perform a reset of the processor.
422 60 zero_gravi
 
423
Terminal console settings (`19200-8-N-1`):
424
 
425
* 19200 Baud
426
* 8 data bits
427
* no parity bit
428
* 1 stop bit
429
* newline on `\r\n` (carriage return, newline)
430
* no transfer protocol / control flow protocol - just the raw byte stuff
431
 
432
The bootloader uses the LSB of the top entity's `gpio_o` output port as high-active status LED (all other
433
output pin are set to low level by the bootloader). After reset, this LED will start blinking at ~2Hz and the
434
following intro screen should show up in your terminal:
435
 
436
[source]
437
----
438
<< NEORV32 Bootloader >>
439
 
440
BLDV: Mar 23 2021
441
HWV:  0x01050208
442
CLK:  0x05F5E100
443
MISA: 0x40901105
444
ZEXT: 0x00000023
445
PROC: 0x0EFF0037
446
IMEM: 0x00004000 bytes @ 0x00000000
447
DMEM: 0x00002000 bytes @ 0x80000000
448
 
449
Autoboot in 8s. Press key to abort.
450
----
451
 
452
This start-up screen also gives some brief information about the bootloader and several system configuration parameters:
453
 
454
[cols="<2,<15"]
455
[grid="none"]
456
|=======================
457
| `BLDV` | Bootloader version (built date).
458
| `HWV`  | Processor hardware version (from the `mimpid` CSR) in BCD format (example: `0x01040606` = v1.4.6.6).
459
| `CLK`  | Processor clock speed in Hz (via the SYSINFO module, from the _CLOCK_FREQUENCY_ generic).
460
| `MISA` | CPU extensions (from the `misa` CSR).
461 63 zero_gravi
| `ZEXT` | CPU sub-extensions (via the _SYSINFO_CPU_ register in the SYSINFO module)
462
| `PROC` | Processor configuration (via the _SYSINFO_FEATURES_ register in the SYSINFO module / from the IO_* and MEM_* configuration generics).
463 60 zero_gravi
| `IMEM` | IMEM memory base address and size in byte (from the _MEM_INT_IMEM_SIZE_ generic).
464
| `DMEM` | DMEM memory base address and size in byte (from the _MEM_INT_DMEM_SIZE_ generic).
465
|=======================
466
 
467
Now you have 8 seconds to press any key. Otherwise, the bootloader starts the auto boot sequence. When
468
you press any key within the 8 seconds, the actual bootloader user console starts:
469
 
470
[source]
471
----
472
<< NEORV32 Bootloader >>
473
 
474
BLDV: Mar 23 2021
475
HWV:  0x01050208
476
CLK:  0x05F5E100
477
USER: 0x10000DE0
478
MISA: 0x40901105
479
ZEXT: 0x00000023
480
PROC: 0x0EFF0037
481
IMEM: 0x00004000 bytes @ 0x00000000
482
DMEM: 0x00002000 bytes @ 0x80000000
483
 
484
Autoboot in 8s. Press key to abort.
485
Aborted.
486
 
487
Available commands:
488
h: Help
489
r: Restart
490
u: Upload
491
s: Store to flash
492
l: Load from flash
493
e: Execute
494
CMD:>
495
----
496
 
497
The auto-boot countdown is stopped and now you can enter a command from the list to perform the
498
corresponding operation:
499
 
500
* `h`: Show the help text (again)
501
* `r`: Restart the bootloader and the auto-boot sequence
502
* `u`: Upload new program executable (`neorv32_exe.bin`) via UART into the instruction memory
503
* `s`: Store executable to SPI flash at `spi_csn_o(0)`
504
* `l`: Load executable from SPI flash at `spi_csn_o(0)`
505
* `e`: Start the application, which is currently stored in the instruction memory (IMEM)
506
 
507
A new executable can be uploaded via UART by executing the `u` command. After that, the executable can be directly
508
executed via the `e` command. To store the recently uploaded executable to an attached SPI flash press `s`. To
509
directly load an executable from the SPI flash press `l`. The bootloader and the auto-boot sequence can be
510
manually restarted via the `r` command.
511
 
512
[TIP]
513
The CPU is in machine level privilege mode after reset. When the bootloader boots an application,
514
this application is also started in machine level privilege mode.
515
 
516 61 zero_gravi
[TIP]
517
For detailed information on using an SPI flash for application storage see User Guide section
518
https://stnolting.github.io/neorv32/ug/#_programming_an_external_spi_flash_via_the_bootloader[Programming an External SPI Flash via the Bootloader].
519 60 zero_gravi
 
520
 
521
:sectnums:
522
==== Auto Boot Sequence
523 61 zero_gravi
When you reset the NEORV32 processor, the bootloader waits 8 seconds for a UART console input before it
524 60 zero_gravi
starts the automatic boot sequence. This sequence tries to fetch a valid boot image from the external SPI
525 61 zero_gravi
flash, connected to SPI chip select `spi_csn_o(0)`. If a valid boot image is found that can be successfully
526
transferred into the instruction memory, it is automatically started. If no SPI flash is detected or if there
527
is no valid boot image found, and error code will be shown.
528 60 zero_gravi
 
529
 
530
:sectnums:
531
==== Bootloader Error Codes
532
 
533
If something goes wrong during bootloader operation, an error code is shown. In this case the processor
534
stalls, a bell command and one of the following error codes are send to the terminal, the bootloader status
535 61 zero_gravi
LED is permanently activated and the system must be manually reset.
536 60 zero_gravi
 
537
[cols="<2,<13"]
538
[grid="rows"]
539
|=======================
540 62 zero_gravi
| **`ERROR_0`** | If you try to transfer an invalid executable (via UART or from the external SPI flash), this error message shows up. There might be a transfer protocol configuration error in the terminal program. Also, if no SPI flash was found during an auto-boot attempt, this message will be displayed.
541
| **`ERROR_1`** | Your program is way too big for the internal processor’s instructions memory. Increase the memory size or reduce your application code.
542 60 zero_gravi
| **`ERROR_2`** | This indicates a checksum error. Something went wrong during the transfer of the program image (upload via UART or loading from the external SPI flash). If the error was caused by a UART upload, just try it again. When the error was generated during a flash access, the stored image might be corrupted.
543
| **`ERROR_3`** | This error occurs if the attached SPI flash cannot be accessed. Make sure you have the right type of flash and that it is properly connected to the NEORV32 SPI port using chip select #0.
544
|=======================
545
 
546
 
547
 
548
<<<
549
// ####################################################################################################################
550
:sectnums:
551
=== NEORV32 Runtime Environment
552
 
553
The NEORV32 provides a minimal runtime environment (RTE) that takes care of a stable
554
and _safe_ execution environment by handling _all_ traps (including interrupts).
555
 
556
[NOTE]
557
Using the RTE is **optional**. The RTE provides a simple and comfortable way of delegating traps while making sure that all traps (even though they are not
558
explicitly used by the application) are handled correctly. Performance-optimized applications or embedded operating systems should not use the RTE for delegating traps.
559
 
560
When execution enters the application's `main` function, the actual runtime environment is responsible for catching all implemented exceptions
561
and interrupts. To activate the NEORV32 RTE execute the following function:
562
 
563
[source,c]
564
----
565
void neorv32_rte_setup(void);
566
----
567
 
568
This setup initializes the `mtvec` CSR, which provides the base entry point for all trap
569
handlers. The address stored to this register reflects the first-level exception handler provided by the
570
NEORV32 RTE. Whenever an exception or interrupt is triggered, this first-level handler is called.
571
 
572
The first-level handler performs a complete context save, analyzes the source of the exception/interrupt and
573
calls the according second-level exception handler, which actually takes care of the exception/interrupt
574
handling. For this, the RTE manages a private look-up table to store the addresses of the according trap
575
handlers.
576
 
577
After the initial setup of the RTE, each entry in the trap handler's look-up table is initialized with a debug
578
handler, that outputs detailed hardware information via the **primary UART (UART0)** when triggered. This
579
is intended as a fall-back for debugging or for accidentally-triggered exceptions/interrupts.
580
For instance, an illegal instruction exception catched by the RTE debug handler might look like this in the UART0 output:
581
 
582
[source]
583
----
584
 Illegal instruction @0x000002d6, MTVAL=0x00001537 
585
----
586
 
587
To install the **actual application's trap handlers** the NEORV32 RTE provides functions for installing and
588
un-installing trap handler for each implemented exception/interrupt source.
589
 
590
[source,c]
591
----
592
int neorv32_rte_exception_install(uint8_t id, void (*handler)(void));
593
----
594
 
595
[cols="<5,<12"]
596
[options="header",grid="rows"]
597
|=======================
598
| ID name [C] | Description / trap causing entry
599
| `RTE_TRAP_I_MISALIGNED` | instruction address misaligned
600
| `RTE_TRAP_I_ACCESS`     | instruction (bus) access fault
601
| `RTE_TRAP_I_ILLEGAL`    | illegal instruction
602
| `RTE_TRAP_BREAKPOINT`   | breakpoint (`ebreak` instruction)
603
| `RTE_TRAP_L_MISALIGNED` | load address misaligned
604
| `RTE_TRAP_L_ACCESS`     | load (bus) access fault
605
| `RTE_TRAP_S_MISALIGNED` | store address misaligned
606
| `RTE_TRAP_S_ACCESS`     | store (bus) access fault
607
| `RTE_TRAP_MENV_CALL`    | environment call from machine mode (`ecall` instruction)
608
| `RTE_TRAP_UENV_CALL`    | environment call from user mode (`ecall` instruction)
609
| `RTE_TRAP_MTI`          | machine timer interrupt
610
| `RTE_TRAP_MEI`          | machine external interrupt
611
| `RTE_TRAP_MSI`          | machine software interrupt
612
| `RTE_TRAP_FIRQ_0` : `RTE_TRAP_FIRQ_15` | fast interrupt channel 0..15
613
|=======================
614
 
615
When installing a custom handler function for any of these exception/interrupts, make sure the function uses
616
**no attributes** (especially no interrupt attribute!), has no arguments and no return value like in the following
617
example:
618
 
619
[source,c]
620
----
621
void handler_xyz(void) {
622
 
623
  // handle exception/interrupt...
624
}
625
----
626
 
627
[WARNING]
628
Do NOT use the `((interrupt))` attribute for the application exception handler functions! This
629
will place an `mret` instruction to the end of it making it impossible to return to the first-level
630
exception handler of the RTE, which will cause stack corruption.
631
 
632
Example: Installation of the MTIME interrupt handler:
633
 
634
[source,c]
635
----
636
neorv32_rte_exception_install(EXC_MTI, handler_xyz);
637
----
638
 
639
To remove a previously installed exception handler call the according un-install function from the NEORV32
640
runtime environment. This will replace the previously installed handler by the initial debug handler, so even
641
un-installed exceptions and interrupts are further captured.
642
 
643
[source,c]
644
----
645
int neorv32_rte_exception_uninstall(uint8_t id);
646
----
647
 
648
Example: Removing the MTIME interrupt handler:
649
 
650
[source,c]
651
----
652
neorv32_rte_exception_uninstall(EXC_MTI);
653
----
654
 
655
[TIP]
656
More information regarding the NEORV32 runtime environment can be found in the doxygen
657
software documentation (also available online at https://stnolting.github.io/neorv32/sw/files.html[GitHub pages]).

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.