| 1 |
2 |
zero_gravi |
/*
|
| 2 |
|
|
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
|
| 3 |
|
|
|
| 4 |
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
|
|
you may not use this file except in compliance with the License.
|
| 6 |
|
|
You may obtain a copy of the License at
|
| 7 |
|
|
|
| 8 |
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
|
|
|
| 10 |
|
|
Unless required by applicable law or agreed to in writing, software
|
| 11 |
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
|
|
See the License for the specific language governing permissions and
|
| 14 |
|
|
limitations under the License.
|
| 15 |
|
|
|
| 16 |
|
|
Original Author: Shay Gal-on
|
| 17 |
|
|
|
| 18 |
|
|
Modified for NEORV32 by Stephan Nolting
|
| 19 |
|
|
*/
|
| 20 |
|
|
|
| 21 |
|
|
#include <stdio.h>
|
| 22 |
|
|
#include <stdlib.h>
|
| 23 |
|
|
#include "coremark.h"
|
| 24 |
|
|
#include "core_portme.h"
|
| 25 |
|
|
|
| 26 |
|
|
#if VALIDATION_RUN
|
| 27 |
|
|
volatile ee_s32 seed1_volatile=0x3415;
|
| 28 |
|
|
volatile ee_s32 seed2_volatile=0x3415;
|
| 29 |
|
|
volatile ee_s32 seed3_volatile=0x66;
|
| 30 |
|
|
#endif
|
| 31 |
|
|
#if PERFORMANCE_RUN
|
| 32 |
|
|
volatile ee_s32 seed1_volatile=0x0;
|
| 33 |
|
|
volatile ee_s32 seed2_volatile=0x0;
|
| 34 |
|
|
volatile ee_s32 seed3_volatile=0x66;
|
| 35 |
|
|
#endif
|
| 36 |
|
|
#if PROFILE_RUN
|
| 37 |
|
|
volatile ee_s32 seed1_volatile=0x8;
|
| 38 |
|
|
volatile ee_s32 seed2_volatile=0x8;
|
| 39 |
|
|
volatile ee_s32 seed3_volatile=0x8;
|
| 40 |
|
|
#endif
|
| 41 |
|
|
volatile ee_s32 seed4_volatile=ITERATIONS;
|
| 42 |
|
|
volatile ee_s32 seed5_volatile=0;
|
| 43 |
|
|
/* Porting : Timing functions
|
| 44 |
|
|
How to capture time and convert to seconds must be ported to whatever is supported by the platform.
|
| 45 |
|
|
e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc.
|
| 46 |
|
|
Sample implementation for standard time.h and windows.h definitions included.
|
| 47 |
|
|
*/
|
| 48 |
|
|
/* Define : TIMER_RES_DIVIDER
|
| 49 |
|
|
Divider to trade off timer resolution and total time that can be measured.
|
| 50 |
|
|
|
| 51 |
|
|
Use lower values to increase resolution, but make sure that overflow does not occur.
|
| 52 |
|
|
If there are issues with the return value overflowing, increase this value.
|
| 53 |
|
|
*/
|
| 54 |
|
|
#define NSECS_PER_SEC 20000000
|
| 55 |
|
|
#define CORETIMETYPE clock_t
|
| 56 |
|
|
#define GETMYTIME(_t) (*_t=clock())
|
| 57 |
|
|
#define MYTIMEDIFF(fin,ini) ((fin)-(ini))
|
| 58 |
|
|
#define TIMER_RES_DIVIDER 1
|
| 59 |
|
|
#define SAMPLE_TIME_IMPLEMENTATION 1
|
| 60 |
|
|
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
|
| 61 |
|
|
|
| 62 |
|
|
CORE_TICKS elapsed_cycles; // NEORV32 specific
|
| 63 |
|
|
|
| 64 |
|
|
/** Define Host specific (POSIX), or target specific global time variables. */
|
| 65 |
|
|
//static CORETIMETYPE start_time_val, stop_time_val;
|
| 66 |
|
|
|
| 67 |
|
|
/* Function : start_time
|
| 68 |
|
|
This function will be called right before starting the timed portion of the benchmark.
|
| 69 |
|
|
|
| 70 |
|
|
Implementation may be capturing a system timer (as implemented in the example code)
|
| 71 |
|
|
or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0.
|
| 72 |
|
|
*/
|
| 73 |
|
|
void start_time(void) {
|
| 74 |
12 |
zero_gravi |
elapsed_cycles = 0; // this is time zero
|
| 75 |
|
|
neorv32_cpu_set_mcycle(0);
|
| 76 |
|
|
neorv32_cpu_set_minstret(0);
|
| 77 |
2 |
zero_gravi |
//GETMYTIME(&start_time_val );
|
| 78 |
|
|
}
|
| 79 |
|
|
/* Function : stop_time
|
| 80 |
|
|
This function will be called right after ending the timed portion of the benchmark.
|
| 81 |
|
|
|
| 82 |
|
|
Implementation may be capturing a system timer (as implemented in the example code)
|
| 83 |
|
|
or other system parameters - e.g. reading the current value of cpu cycles counter.
|
| 84 |
|
|
*/
|
| 85 |
|
|
void stop_time(void) {
|
| 86 |
|
|
//GETMYTIME(&stop_time_val );
|
| 87 |
|
|
}
|
| 88 |
|
|
/* Function : get_time
|
| 89 |
|
|
Return an abstract "ticks" number that signifies time on the system.
|
| 90 |
|
|
|
| 91 |
|
|
Actual value returned may be cpu cycles, milliseconds or any other value,
|
| 92 |
|
|
as long as it can be converted to seconds by <time_in_secs>.
|
| 93 |
|
|
This methodology is taken to accomodate any hardware or simulated platform.
|
| 94 |
|
|
The sample implementation returns millisecs by default,
|
| 95 |
|
|
and the resolution is controlled by <TIMER_RES_DIVIDER>
|
| 96 |
|
|
*/
|
| 97 |
|
|
CORE_TICKS get_time(void) {
|
| 98 |
12 |
zero_gravi |
CORE_TICKS elapsed = ((CORE_TICKS)neorv32_cpu_get_cycle()) - elapsed_cycles;
|
| 99 |
2 |
zero_gravi |
elapsed_cycles = elapsed;
|
| 100 |
|
|
//CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
|
| 101 |
|
|
return elapsed;
|
| 102 |
|
|
}
|
| 103 |
|
|
/* Function : time_in_secs
|
| 104 |
|
|
Convert the value returned by get_time to seconds.
|
| 105 |
|
|
|
| 106 |
|
|
The <secs_ret> type is used to accomodate systems with no support for floating point.
|
| 107 |
|
|
Default implementation implemented by the EE_TICKS_PER_SEC macro above.
|
| 108 |
|
|
*/
|
| 109 |
|
|
secs_ret time_in_secs(CORE_TICKS ticks) {
|
| 110 |
|
|
//secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
|
| 111 |
12 |
zero_gravi |
secs_ret retval=(secs_ret)(ticks / SYSINFO_CLK);
|
| 112 |
2 |
zero_gravi |
return retval;
|
| 113 |
|
|
}
|
| 114 |
|
|
|
| 115 |
|
|
ee_u32 default_num_contexts=1;
|
| 116 |
|
|
|
| 117 |
|
|
/* Function : portable_init
|
| 118 |
|
|
Target specific initialization code
|
| 119 |
|
|
Test for some common mistakes.
|
| 120 |
|
|
*/
|
| 121 |
|
|
void portable_init(core_portable *p, int *argc, char *argv[])
|
| 122 |
|
|
{
|
| 123 |
|
|
// no interrupts, thanks
|
| 124 |
|
|
neorv32_cpu_dint();
|
| 125 |
|
|
|
| 126 |
|
|
// capture all exceptions and give debug information
|
| 127 |
|
|
neorv32_rte_enable_debug_mode();
|
| 128 |
|
|
|
| 129 |
|
|
// setup neorv32 UART
|
| 130 |
|
|
neorv32_uart_setup(BAUD_RATE, 0, 0);
|
| 131 |
|
|
|
| 132 |
12 |
zero_gravi |
neorv32_uart_printf("NEORV32: Processor running at %u Hz\n", (uint32_t)SYSINFO_CLK);
|
| 133 |
2 |
zero_gravi |
neorv32_uart_printf("NEORV32: Executing coremark (%u iterations). This may take some time...\n\n", (uint32_t)ITERATIONS);
|
| 134 |
|
|
|
| 135 |
|
|
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) {
|
| 136 |
|
|
ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n");
|
| 137 |
|
|
}
|
| 138 |
|
|
if (sizeof(ee_u32) != 4) {
|
| 139 |
|
|
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
|
| 140 |
|
|
}
|
| 141 |
|
|
p->portable_id=1;
|
| 142 |
|
|
}
|
| 143 |
|
|
/* Function : portable_fini
|
| 144 |
|
|
Target specific final code
|
| 145 |
|
|
*/
|
| 146 |
|
|
void portable_fini(core_portable *p)
|
| 147 |
|
|
{
|
| 148 |
|
|
p->portable_id=0;
|
| 149 |
|
|
|
| 150 |
|
|
// show executed instructions, required cycles and resulting average CPI
|
| 151 |
|
|
union {
|
| 152 |
|
|
uint64_t uint64;
|
| 153 |
|
|
uint32_t uint32[sizeof(uint64_t)/2];
|
| 154 |
|
|
} exe_instructions, exe_time;
|
| 155 |
|
|
|
| 156 |
|
|
exe_time.uint64 = (uint64_t)elapsed_cycles;
|
| 157 |
12 |
zero_gravi |
exe_instructions.uint64 = neorv32_cpu_get_instret();
|
| 158 |
2 |
zero_gravi |
|
| 159 |
12 |
zero_gravi |
neorv32_uart_printf("\nNEORV32: Executed instructions 0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
|
| 160 |
|
|
neorv32_uart_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
|
| 161 |
2 |
zero_gravi |
|
| 162 |
12 |
zero_gravi |
uint64_t average_cpi = exe_time.uint64 / exe_instructions.uint64;
|
| 163 |
2 |
zero_gravi |
neorv32_uart_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi);
|
| 164 |
|
|
}
|