1 |
55 |
zero_gravi |
// #################################################################################################
|
2 |
|
|
// # << NEORV32 - RISC-V Single-Precision Floating-Point 'Zfinx' Extension Verification Program >> #
|
3 |
|
|
// # ********************************************************************************************* #
|
4 |
|
|
// # BSD 3-Clause License #
|
5 |
|
|
// # #
|
6 |
|
|
// # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
|
7 |
|
|
// # #
|
8 |
|
|
// # Redistribution and use in source and binary forms, with or without modification, are #
|
9 |
|
|
// # permitted provided that the following conditions are met: #
|
10 |
|
|
// # #
|
11 |
|
|
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
12 |
|
|
// # conditions and the following disclaimer. #
|
13 |
|
|
// # #
|
14 |
|
|
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
|
15 |
|
|
// # conditions and the following disclaimer in the documentation and/or other materials #
|
16 |
|
|
// # provided with the distribution. #
|
17 |
|
|
// # #
|
18 |
|
|
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
|
19 |
|
|
// # endorse or promote products derived from this software without specific prior written #
|
20 |
|
|
// # permission. #
|
21 |
|
|
// # #
|
22 |
|
|
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
|
23 |
|
|
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
|
24 |
|
|
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
|
25 |
|
|
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
|
26 |
|
|
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
|
27 |
|
|
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
|
28 |
|
|
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
|
29 |
|
|
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
|
30 |
|
|
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
|
31 |
|
|
// # ********************************************************************************************* #
|
32 |
|
|
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
|
33 |
|
|
// #################################################################################################
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
/**********************************************************************//**
|
37 |
|
|
* @file floating_point_test/main.c
|
38 |
|
|
* @author Stephan Nolting
|
39 |
|
|
* @brief Verification program for the NEORV32 'Zfinx' extension (floating-point in x registers) using pseudo-random data as input; compares results from hardware against pure-sw reference functions.
|
40 |
|
|
**************************************************************************/
|
41 |
|
|
|
42 |
|
|
#include <neorv32.h>
|
43 |
|
|
#include <float.h>
|
44 |
|
|
#include <math.h>
|
45 |
|
|
#include "neorv32_zfinx_extension_intrinsics.h"
|
46 |
|
|
|
47 |
|
|
#ifdef NAN
|
48 |
|
|
/* NAN is supported */
|
49 |
|
|
#else
|
50 |
|
|
#warning NAN macro not supported!
|
51 |
|
|
#endif
|
52 |
|
|
#ifdef INFINITY
|
53 |
|
|
/* INFINITY is supported */
|
54 |
|
|
#else
|
55 |
|
|
#warning INFINITY macro not supported!
|
56 |
|
|
#endif
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
/**********************************************************************//**
|
60 |
|
|
* @name User configuration
|
61 |
|
|
**************************************************************************/
|
62 |
|
|
/**@{*/
|
63 |
|
|
/** UART BAUD rate */
|
64 |
|
|
#define BAUD_RATE (19200)
|
65 |
|
|
//** Number of test cases for each instruction */
|
66 |
|
|
#define NUM_TEST_CASES (1000000)
|
67 |
|
|
//** Silent mode (only show actual errors when != 0) */
|
68 |
|
|
#define SILENT_MODE (1)
|
69 |
|
|
//** Run conversion tests when != 0 */
|
70 |
|
|
#define RUN_CONV_TESTS (1)
|
71 |
|
|
//** Run add/sub tests when != 0 */
|
72 |
|
|
#define RUN_ADDSUB_TESTS (1)
|
73 |
|
|
//** Run multiplication tests when != 0 */
|
74 |
|
|
#define RUN_MUL_TESTS (1)
|
75 |
|
|
//** Run min/max tests when != 0 */
|
76 |
|
|
#define RUN_MINMAX_TESTS (1)
|
77 |
|
|
//** Run comparison tests when != 0 */
|
78 |
|
|
#define RUN_COMPARE_TESTS (1)
|
79 |
|
|
//** Run sign-injection tests when != 0 */
|
80 |
|
|
#define RUN_SGNINJ_TESTS (1)
|
81 |
|
|
//** Run classify tests when != 0 */
|
82 |
|
|
#define RUN_CLASSIFY_TESTS (1)
|
83 |
|
|
//** Run unsupported instructions tests when != 0 */
|
84 |
|
|
#define RUN_UNAVAIL_TESTS (1)
|
85 |
56 |
zero_gravi |
//** Run average instruction execution time test when != 0 */
|
86 |
|
|
#define RUN_TIMING_TESTS (0)
|
87 |
55 |
zero_gravi |
/**@}*/
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
// Prototypes
|
91 |
|
|
uint32_t get_test_vector(void);
|
92 |
|
|
uint32_t xorshift32(void);
|
93 |
|
|
uint32_t verify_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res);
|
94 |
|
|
void print_report(uint32_t num_err);
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
/**********************************************************************//**
|
98 |
|
|
* Main function; test all available operations of the NEORV32 'Zfinx' extensions using bit floating-point hardware intrinsics and software-only reference functions (emulation).
|
99 |
|
|
*
|
100 |
|
|
* @note This program requires the Zfinx CPU extension.
|
101 |
|
|
*
|
102 |
60 |
zero_gravi |
* @return 0 if execution was successful
|
103 |
55 |
zero_gravi |
**************************************************************************/
|
104 |
|
|
int main() {
|
105 |
|
|
|
106 |
|
|
uint32_t err_cnt = 0;
|
107 |
|
|
uint32_t err_cnt_total = 0;
|
108 |
|
|
uint32_t test_cnt = 0;
|
109 |
|
|
uint32_t i = 0;
|
110 |
|
|
float_conv_t opa;
|
111 |
|
|
float_conv_t opb;
|
112 |
|
|
float_conv_t res_hw;
|
113 |
|
|
float_conv_t res_sw;
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
// init primary UART
|
117 |
|
|
neorv32_uart_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE);
|
118 |
|
|
|
119 |
|
|
// capture all exceptions and give debug info via UART
|
120 |
|
|
neorv32_rte_setup();
|
121 |
|
|
|
122 |
|
|
// check available hardware extensions and compare with compiler flags
|
123 |
|
|
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
|
124 |
|
|
|
125 |
|
|
// check if Zfinx extension is implemented at all
|
126 |
60 |
zero_gravi |
if (neorv32_cpu_check_zext(CSR_MZEXT_ZFINX) == 0) {
|
127 |
55 |
zero_gravi |
neorv32_uart_print("Error! <Zfinx> extension not synthesized!\n");
|
128 |
60 |
zero_gravi |
return 1;
|
129 |
55 |
zero_gravi |
}
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
// Disable compilation by default
|
133 |
60 |
zero_gravi |
#ifndef RUN_CHECK
|
134 |
|
|
#warning Program HAS NOT BEEN COMPILED! Use >>make USER_FLAGS+=-DRUN_CHECK clean_all exe<< to compile it.
|
135 |
55 |
zero_gravi |
|
136 |
|
|
// inform the user if you are actually executing this
|
137 |
60 |
zero_gravi |
neorv32_uart_printf("ERROR! Program has not been compiled. Use >>make USER_FLAGS+=-DRUN_CHECK clean_all exe<< to compile it.\n");
|
138 |
55 |
zero_gravi |
|
139 |
60 |
zero_gravi |
return 1;
|
140 |
55 |
zero_gravi |
#endif
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
// intro
|
144 |
|
|
neorv32_uart_printf("<<< Zfinx extension test >>>\n");
|
145 |
|
|
#if (SILENT_MODE != 0)
|
146 |
|
|
neorv32_uart_printf("SILENT_MODE enabled (only showing actual errors)\n");
|
147 |
|
|
#endif
|
148 |
56 |
zero_gravi |
neorv32_uart_printf("Test cases per instruction: %u\n", (uint32_t)NUM_TEST_CASES);
|
149 |
|
|
neorv32_uart_printf("NOTE: The NEORV32 FPU does not support subnormal numbers yet. Subnormal numbers are flushed to zero.\n\n");
|
150 |
55 |
zero_gravi |
|
151 |
62 |
zero_gravi |
// enable FPU extension
|
152 |
|
|
uint32_t mstatus = neorv32_cpu_csr_read(CSR_MSTATUS);
|
153 |
|
|
mstatus |= 1 << CSR_MSTATUS_FS_L; // state = initial
|
154 |
|
|
neorv32_cpu_csr_write(CSR_MSTATUS, mstatus);
|
155 |
55 |
zero_gravi |
|
156 |
|
|
// clear exception status word
|
157 |
62 |
zero_gravi |
neorv32_cpu_csr_write(CSR_FFLAGS, 0); // real hardware
|
158 |
55 |
zero_gravi |
feclearexcept(FE_ALL_EXCEPT); // software runtime (GCC floating-point emulation)
|
159 |
|
|
|
160 |
|
|
|
161 |
|
|
// ----------------------------------------------------------------------------
|
162 |
|
|
// Conversion Tests
|
163 |
|
|
// ----------------------------------------------------------------------------
|
164 |
|
|
|
165 |
|
|
#if (RUN_CONV_TESTS != 0)
|
166 |
|
|
neorv32_uart_printf("\n#%u: FCVT.S.WU (unsigned integer to float)...\n", test_cnt);
|
167 |
|
|
err_cnt = 0;
|
168 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
169 |
|
|
opa.binary_value = get_test_vector();
|
170 |
|
|
res_hw.float_value = riscv_intrinsic_fcvt_swu(opa.binary_value);
|
171 |
|
|
res_sw.float_value = riscv_emulate_fcvt_swu(opa.binary_value);
|
172 |
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
173 |
|
|
}
|
174 |
|
|
print_report(err_cnt);
|
175 |
|
|
err_cnt_total += err_cnt;
|
176 |
|
|
test_cnt++;
|
177 |
|
|
|
178 |
|
|
neorv32_uart_printf("\n#%u: FCVT.S.W (signed integer to float)...\n", test_cnt);
|
179 |
|
|
err_cnt = 0;
|
180 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
181 |
|
|
opa.binary_value = get_test_vector();
|
182 |
|
|
res_hw.float_value = riscv_intrinsic_fcvt_sw((int32_t)opa.binary_value);
|
183 |
|
|
res_sw.float_value = riscv_emulate_fcvt_sw((int32_t)opa.binary_value);
|
184 |
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
185 |
|
|
}
|
186 |
|
|
print_report(err_cnt);
|
187 |
|
|
err_cnt_total += err_cnt;
|
188 |
|
|
test_cnt++;
|
189 |
|
|
|
190 |
|
|
neorv32_uart_printf("\n#%u: FCVT.WU.S (float to unsigned integer)...\n", test_cnt);
|
191 |
|
|
err_cnt = 0;
|
192 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
193 |
|
|
opa.binary_value = get_test_vector();
|
194 |
|
|
res_hw.binary_value = riscv_intrinsic_fcvt_wus(opa.float_value);
|
195 |
|
|
res_sw.binary_value = riscv_emulate_fcvt_wus(opa.float_value);
|
196 |
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
197 |
|
|
}
|
198 |
|
|
print_report(err_cnt);
|
199 |
|
|
err_cnt_total += err_cnt;
|
200 |
|
|
test_cnt++;
|
201 |
|
|
|
202 |
|
|
neorv32_uart_printf("\n#%u: FCVT.W.S (float to signed integer)...\n", test_cnt);
|
203 |
|
|
err_cnt = 0;
|
204 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
205 |
|
|
opa.binary_value = get_test_vector();
|
206 |
|
|
res_hw.binary_value = (uint32_t)riscv_intrinsic_fcvt_ws(opa.float_value);
|
207 |
|
|
res_sw.binary_value = (uint32_t)riscv_emulate_fcvt_ws(opa.float_value);
|
208 |
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
209 |
|
|
}
|
210 |
|
|
print_report(err_cnt);
|
211 |
|
|
err_cnt_total += err_cnt;
|
212 |
|
|
test_cnt++;
|
213 |
|
|
#endif
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
// ----------------------------------------------------------------------------
|
217 |
|
|
// Add/Sub Tests
|
218 |
|
|
// ----------------------------------------------------------------------------
|
219 |
|
|
|
220 |
|
|
#if (RUN_ADDSUB_TESTS != 0)
|
221 |
|
|
neorv32_uart_printf("\n#%u: FADD.S (addition)...\n", test_cnt);
|
222 |
|
|
err_cnt = 0;
|
223 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
224 |
|
|
opa.binary_value = get_test_vector();
|
225 |
|
|
opb.binary_value = get_test_vector();
|
226 |
|
|
res_hw.float_value = riscv_intrinsic_fadds(opa.float_value, opb.float_value);
|
227 |
|
|
res_sw.float_value = riscv_emulate_fadds(opa.float_value, opb.float_value);
|
228 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
229 |
|
|
}
|
230 |
|
|
print_report(err_cnt);
|
231 |
|
|
err_cnt_total += err_cnt;
|
232 |
|
|
test_cnt++;
|
233 |
|
|
|
234 |
|
|
neorv32_uart_printf("\n#%u: FSUB.S (subtraction)...\n", test_cnt);
|
235 |
|
|
err_cnt = 0;
|
236 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
237 |
|
|
opa.binary_value = get_test_vector();
|
238 |
|
|
opb.binary_value = get_test_vector();
|
239 |
|
|
res_hw.float_value = riscv_intrinsic_fsubs(opa.float_value, opb.float_value);
|
240 |
|
|
res_sw.float_value = riscv_emulate_fsubs(opa.float_value, opb.float_value);
|
241 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
242 |
|
|
}
|
243 |
|
|
print_report(err_cnt);
|
244 |
|
|
err_cnt_total += err_cnt;
|
245 |
|
|
test_cnt++;
|
246 |
|
|
#endif
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
// ----------------------------------------------------------------------------
|
250 |
|
|
// Multiplication Tests
|
251 |
|
|
// ----------------------------------------------------------------------------
|
252 |
|
|
|
253 |
|
|
#if (RUN_MUL_TESTS != 0)
|
254 |
|
|
neorv32_uart_printf("\n#%u: FMUL.S (multiplication)...\n", test_cnt);
|
255 |
|
|
err_cnt = 0;
|
256 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
257 |
|
|
opa.binary_value = get_test_vector();
|
258 |
|
|
opb.binary_value = get_test_vector();
|
259 |
|
|
res_hw.float_value = riscv_intrinsic_fmuls(opa.float_value, opb.float_value);
|
260 |
|
|
res_sw.float_value = riscv_emulate_fmuls(opa.float_value, opb.float_value);
|
261 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
262 |
|
|
}
|
263 |
|
|
print_report(err_cnt);
|
264 |
|
|
err_cnt_total += err_cnt;
|
265 |
|
|
test_cnt++;
|
266 |
|
|
#endif
|
267 |
|
|
|
268 |
|
|
|
269 |
|
|
// ----------------------------------------------------------------------------
|
270 |
|
|
// Min/Max Tests
|
271 |
|
|
// ----------------------------------------------------------------------------
|
272 |
|
|
|
273 |
|
|
#if (RUN_MINMAX_TESTS != 0)
|
274 |
|
|
neorv32_uart_printf("\n#%u: FMIN.S (select minimum)...\n", test_cnt);
|
275 |
|
|
err_cnt = 0;
|
276 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
277 |
|
|
opa.binary_value = get_test_vector();
|
278 |
|
|
opb.binary_value = get_test_vector();
|
279 |
|
|
res_hw.float_value = riscv_intrinsic_fmins(opa.float_value, opb.float_value);
|
280 |
|
|
res_sw.float_value = riscv_emulate_fmins(opa.float_value, opb.float_value);
|
281 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
282 |
|
|
}
|
283 |
|
|
print_report(err_cnt);
|
284 |
|
|
err_cnt_total += err_cnt;
|
285 |
|
|
test_cnt++;
|
286 |
|
|
|
287 |
|
|
neorv32_uart_printf("\n#%u: FMAX.S (select maximum)...\n", test_cnt);
|
288 |
|
|
err_cnt = 0;
|
289 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
290 |
|
|
opa.binary_value = get_test_vector();
|
291 |
|
|
opb.binary_value = get_test_vector();
|
292 |
|
|
res_hw.float_value = riscv_intrinsic_fmaxs(opa.float_value, opb.float_value);
|
293 |
|
|
res_sw.float_value = riscv_emulate_fmaxs(opa.float_value, opb.float_value);
|
294 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
295 |
|
|
}
|
296 |
|
|
print_report(err_cnt);
|
297 |
|
|
err_cnt_total += err_cnt;
|
298 |
|
|
test_cnt++;
|
299 |
|
|
#endif
|
300 |
|
|
|
301 |
|
|
|
302 |
|
|
// ----------------------------------------------------------------------------
|
303 |
|
|
// Comparison Tests
|
304 |
|
|
// ----------------------------------------------------------------------------
|
305 |
|
|
|
306 |
|
|
#if (RUN_COMPARE_TESTS != 0)
|
307 |
|
|
neorv32_uart_printf("\n#%u: FEQ.S (compare if equal)...\n", test_cnt);
|
308 |
|
|
err_cnt = 0;
|
309 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
310 |
|
|
opa.binary_value = get_test_vector();
|
311 |
|
|
opb.binary_value = get_test_vector();
|
312 |
|
|
res_hw.binary_value = riscv_intrinsic_feqs(opa.float_value, opb.float_value);
|
313 |
|
|
res_sw.binary_value = riscv_emulate_feqs(opa.float_value, opb.float_value);
|
314 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
315 |
|
|
}
|
316 |
|
|
print_report(err_cnt);
|
317 |
|
|
err_cnt_total += err_cnt;
|
318 |
|
|
test_cnt++;
|
319 |
|
|
|
320 |
|
|
neorv32_uart_printf("\n#%u: FLT.S (compare if less-than)...\n", test_cnt);
|
321 |
|
|
err_cnt = 0;
|
322 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
323 |
|
|
opa.binary_value = get_test_vector();
|
324 |
|
|
opb.binary_value = get_test_vector();
|
325 |
|
|
res_hw.binary_value = riscv_intrinsic_flts(opa.float_value, opb.float_value);
|
326 |
|
|
res_sw.binary_value = riscv_emulate_flts(opa.float_value, opb.float_value);
|
327 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
328 |
|
|
}
|
329 |
|
|
print_report(err_cnt);
|
330 |
|
|
err_cnt_total += err_cnt;
|
331 |
|
|
test_cnt++;
|
332 |
|
|
|
333 |
|
|
neorv32_uart_printf("\n#%u: FLE.S (compare if less-than-or-equal)...\n", test_cnt);
|
334 |
|
|
err_cnt = 0;
|
335 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
336 |
|
|
opa.binary_value = get_test_vector();
|
337 |
|
|
opb.binary_value = get_test_vector();
|
338 |
|
|
res_hw.binary_value = riscv_intrinsic_fles(opa.float_value, opb.float_value);
|
339 |
|
|
res_sw.binary_value = riscv_emulate_fles(opa.float_value, opb.float_value);
|
340 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
341 |
|
|
}
|
342 |
|
|
print_report(err_cnt);
|
343 |
|
|
err_cnt_total += err_cnt;
|
344 |
|
|
test_cnt++;
|
345 |
|
|
#endif
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
// ----------------------------------------------------------------------------
|
349 |
|
|
// Sign-Injection Tests
|
350 |
|
|
// ----------------------------------------------------------------------------
|
351 |
|
|
|
352 |
|
|
#if (RUN_SGNINJ_TESTS != 0)
|
353 |
|
|
neorv32_uart_printf("\n#%u: FSGNJ.S (sign-injection)...\n", test_cnt);
|
354 |
|
|
err_cnt = 0;
|
355 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
356 |
|
|
opa.binary_value = get_test_vector();
|
357 |
|
|
opb.binary_value = get_test_vector();
|
358 |
|
|
res_hw.float_value = riscv_intrinsic_fsgnjs(opa.float_value, opb.float_value);
|
359 |
|
|
res_sw.float_value = riscv_emulate_fsgnjs(opa.float_value, opb.float_value);
|
360 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
361 |
|
|
}
|
362 |
|
|
print_report(err_cnt);
|
363 |
|
|
err_cnt_total += err_cnt;
|
364 |
|
|
test_cnt++;
|
365 |
|
|
|
366 |
|
|
neorv32_uart_printf("\n#%u: FSGNJN.S (sign-injection NOT)...\n", test_cnt);
|
367 |
|
|
err_cnt = 0;
|
368 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
369 |
|
|
opa.binary_value = get_test_vector();
|
370 |
|
|
opb.binary_value = get_test_vector();
|
371 |
|
|
res_hw.float_value = riscv_intrinsic_fsgnjns(opa.float_value, opb.float_value);
|
372 |
|
|
res_sw.float_value = riscv_emulate_fsgnjns(opa.float_value, opb.float_value);
|
373 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
374 |
|
|
}
|
375 |
|
|
print_report(err_cnt);
|
376 |
|
|
err_cnt_total += err_cnt;
|
377 |
|
|
test_cnt++;
|
378 |
|
|
|
379 |
|
|
neorv32_uart_printf("\n#%u: FSGNJX.S (sign-injection XOR)...\n", test_cnt);
|
380 |
|
|
err_cnt = 0;
|
381 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
382 |
|
|
opa.binary_value = get_test_vector();
|
383 |
|
|
opb.binary_value = get_test_vector();
|
384 |
|
|
res_hw.float_value = riscv_intrinsic_fsgnjxs(opa.float_value, opb.float_value);
|
385 |
|
|
res_sw.float_value = riscv_emulate_fsgnjxs(opa.float_value, opb.float_value);
|
386 |
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
387 |
|
|
}
|
388 |
|
|
print_report(err_cnt);
|
389 |
|
|
err_cnt_total += err_cnt;
|
390 |
|
|
test_cnt++;
|
391 |
|
|
#endif
|
392 |
|
|
|
393 |
|
|
|
394 |
|
|
// ----------------------------------------------------------------------------
|
395 |
|
|
// Classify Tests
|
396 |
|
|
// ----------------------------------------------------------------------------
|
397 |
|
|
|
398 |
|
|
#if (RUN_CLASSIFY_TESTS != 0)
|
399 |
|
|
neorv32_uart_printf("\n#%u: FCLASS.S (classify)...\n", test_cnt);
|
400 |
|
|
err_cnt = 0;
|
401 |
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
402 |
|
|
opa.binary_value = get_test_vector();
|
403 |
|
|
res_hw.binary_value = riscv_intrinsic_fclasss(opa.float_value);
|
404 |
|
|
res_sw.binary_value = riscv_emulate_fclasss(opa.float_value);
|
405 |
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
406 |
|
|
}
|
407 |
|
|
print_report(err_cnt);
|
408 |
|
|
err_cnt_total += err_cnt;
|
409 |
|
|
test_cnt++;
|
410 |
|
|
#endif
|
411 |
|
|
|
412 |
|
|
|
413 |
|
|
// ----------------------------------------------------------------------------
|
414 |
|
|
// UNSUPPORTED Instructions Tests - Execution should raise illegal instruction exception
|
415 |
|
|
// ----------------------------------------------------------------------------
|
416 |
|
|
|
417 |
|
|
#if (RUN_UNAVAIL_TESTS != 0)
|
418 |
|
|
neorv32_uart_printf("\n# unsupported FDIV.S (division) [illegal instruction]...\n");
|
419 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
420 |
|
|
opa.binary_value = get_test_vector();
|
421 |
|
|
opb.binary_value = get_test_vector();
|
422 |
|
|
riscv_intrinsic_fdivs(opa.float_value, opb.float_value);
|
423 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
424 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
425 |
|
|
err_cnt_total++;
|
426 |
|
|
}
|
427 |
|
|
else {
|
428 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
neorv32_uart_printf("\n# unsupported FSQRT.S (square root) [illegal instruction]...\n");
|
432 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
433 |
|
|
opa.binary_value = get_test_vector();
|
434 |
|
|
opb.binary_value = get_test_vector();
|
435 |
|
|
riscv_intrinsic_fsqrts(opa.float_value);
|
436 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
437 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
438 |
|
|
err_cnt_total++;
|
439 |
|
|
}
|
440 |
|
|
else {
|
441 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
neorv32_uart_printf("\n# unsupported FMADD.S (fused multiply-add) [illegal instruction]...\n");
|
445 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
446 |
|
|
opa.binary_value = get_test_vector();
|
447 |
|
|
opb.binary_value = get_test_vector();
|
448 |
|
|
riscv_intrinsic_fmadds(opa.float_value, opb.float_value, -opa.float_value);
|
449 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
450 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
451 |
|
|
err_cnt_total++;
|
452 |
|
|
}
|
453 |
|
|
else {
|
454 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
neorv32_uart_printf("\n# unsupported FMSUB.S (fused multiply-sub) [illegal instruction]...\n");
|
458 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
459 |
|
|
opa.binary_value = get_test_vector();
|
460 |
|
|
opb.binary_value = get_test_vector();
|
461 |
|
|
riscv_intrinsic_fmsubs(opa.float_value, opb.float_value, -opa.float_value);
|
462 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
463 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
464 |
|
|
err_cnt_total++;
|
465 |
|
|
}
|
466 |
|
|
else {
|
467 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
neorv32_uart_printf("\n# unsupported FNMSUB.S (fused negated multiply-sub) [illegal instruction]...\n");
|
471 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
472 |
|
|
opa.binary_value = get_test_vector();
|
473 |
|
|
opb.binary_value = get_test_vector();
|
474 |
|
|
riscv_intrinsic_fnmadds(opa.float_value, opb.float_value, -opa.float_value);
|
475 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
476 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
477 |
|
|
err_cnt_total++;
|
478 |
|
|
}
|
479 |
|
|
else {
|
480 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
neorv32_uart_printf("\n# unsupported FNMADD.S (fused negated multiply-add) [illegal instruction]...\n");
|
484 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
485 |
|
|
opa.binary_value = get_test_vector();
|
486 |
|
|
opb.binary_value = get_test_vector();
|
487 |
|
|
riscv_intrinsic_fnmadds(opa.float_value, opb.float_value, -opa.float_value);
|
488 |
56 |
zero_gravi |
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_I_ILLEGAL) {
|
489 |
55 |
zero_gravi |
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
490 |
|
|
err_cnt_total++;
|
491 |
|
|
}
|
492 |
|
|
else {
|
493 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
494 |
|
|
}
|
495 |
|
|
#endif
|
496 |
|
|
|
497 |
|
|
|
498 |
56 |
zero_gravi |
// ----------------------------------------------------------------------------
|
499 |
|
|
// Instruction execution timing test
|
500 |
|
|
// ----------------------------------------------------------------------------
|
501 |
|
|
|
502 |
|
|
#if (RUN_TIMING_TESTS != 0)
|
503 |
|
|
|
504 |
|
|
uint32_t time_start, time_sw, time_hw;
|
505 |
|
|
const uint32_t num_runs = 4096;
|
506 |
|
|
|
507 |
|
|
neorv32_uart_printf("\nAverage execution time tests (%u runs)\n", num_runs);
|
508 |
|
|
|
509 |
|
|
|
510 |
|
|
// signed integer to float
|
511 |
|
|
neorv32_uart_printf("FCVT.S.W: ");
|
512 |
|
|
time_sw = 0;
|
513 |
|
|
time_hw = 0;
|
514 |
|
|
err_cnt = 0;
|
515 |
|
|
for (i=0; i<num_runs; i++) {
|
516 |
|
|
opa.binary_value = get_test_vector();
|
517 |
|
|
|
518 |
|
|
// hardware execution time
|
519 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
520 |
|
|
{
|
521 |
|
|
res_hw.float_value = riscv_intrinsic_fcvt_sw((int32_t)opa.binary_value);
|
522 |
|
|
}
|
523 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
524 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
525 |
|
|
|
526 |
|
|
// software (emulation) execution time
|
527 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
528 |
|
|
{
|
529 |
|
|
res_sw.float_value = riscv_emulate_fcvt_sw((int32_t)opa.binary_value);
|
530 |
|
|
}
|
531 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
532 |
|
|
|
533 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
534 |
|
|
err_cnt++;
|
535 |
|
|
}
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
if (err_cnt == 0) {
|
539 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
540 |
|
|
}
|
541 |
|
|
else {
|
542 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
543 |
|
|
err_cnt_total++;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
|
547 |
|
|
// float to signed integer
|
548 |
|
|
neorv32_uart_printf("FCVT.W.S: ");
|
549 |
|
|
time_sw = 0;
|
550 |
|
|
time_hw = 0;
|
551 |
|
|
err_cnt = 0;
|
552 |
|
|
for (i=0; i<num_runs; i++) {
|
553 |
|
|
opa.binary_value = get_test_vector();
|
554 |
|
|
|
555 |
|
|
// hardware execution time
|
556 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
557 |
|
|
{
|
558 |
|
|
res_hw.binary_value = (uint32_t)riscv_intrinsic_fcvt_ws(opa.float_value);
|
559 |
|
|
}
|
560 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
561 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
562 |
|
|
|
563 |
|
|
// software (emulation) execution time
|
564 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
565 |
|
|
{
|
566 |
|
|
res_sw.binary_value = (uint32_t)riscv_emulate_fcvt_ws(opa.float_value);
|
567 |
|
|
}
|
568 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
569 |
|
|
|
570 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
571 |
|
|
err_cnt++;
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
if (err_cnt == 0) {
|
576 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
577 |
|
|
}
|
578 |
|
|
else {
|
579 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
580 |
|
|
err_cnt_total++;
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
|
584 |
|
|
// addition
|
585 |
|
|
neorv32_uart_printf("FADD.S: ");
|
586 |
|
|
time_sw = 0;
|
587 |
|
|
time_hw = 0;
|
588 |
|
|
err_cnt = 0;
|
589 |
|
|
for (i=0; i<num_runs; i++) {
|
590 |
|
|
opa.binary_value = get_test_vector();
|
591 |
|
|
opb.binary_value = get_test_vector();
|
592 |
|
|
|
593 |
|
|
// hardware execution time
|
594 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
595 |
|
|
{
|
596 |
|
|
res_hw.float_value = riscv_intrinsic_fadds(opa.float_value, opb.float_value);
|
597 |
|
|
}
|
598 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
599 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
600 |
|
|
|
601 |
|
|
// software (emulation) execution time
|
602 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
603 |
|
|
{
|
604 |
|
|
res_sw.float_value = riscv_emulate_fadds(opa.float_value, opb.float_value);
|
605 |
|
|
}
|
606 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
607 |
|
|
|
608 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
609 |
|
|
err_cnt++;
|
610 |
|
|
}
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
if (err_cnt == 0) {
|
614 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
615 |
|
|
}
|
616 |
|
|
else {
|
617 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
618 |
|
|
err_cnt_total++;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
// subtraction
|
623 |
|
|
neorv32_uart_printf("FSUB.S: ");
|
624 |
|
|
time_sw = 0;
|
625 |
|
|
time_hw = 0;
|
626 |
|
|
err_cnt = 0;
|
627 |
|
|
for (i=0; i<num_runs; i++) {
|
628 |
|
|
opa.binary_value = get_test_vector();
|
629 |
|
|
opb.binary_value = get_test_vector();
|
630 |
|
|
|
631 |
|
|
// hardware execution time
|
632 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
633 |
|
|
{
|
634 |
|
|
res_hw.float_value = riscv_intrinsic_fsubs(opa.float_value, opb.float_value);
|
635 |
|
|
}
|
636 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
637 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
638 |
|
|
|
639 |
|
|
// software (emulation) execution time
|
640 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
641 |
|
|
{
|
642 |
|
|
res_sw.float_value = riscv_emulate_fsubs(opa.float_value, opb.float_value);
|
643 |
|
|
}
|
644 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
645 |
|
|
|
646 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
647 |
|
|
err_cnt++;
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
if (err_cnt == 0) {
|
652 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
653 |
|
|
}
|
654 |
|
|
else {
|
655 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
656 |
|
|
err_cnt_total++;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
// multiplication
|
661 |
|
|
neorv32_uart_printf("FMUL.S: ");
|
662 |
|
|
time_sw = 0;
|
663 |
|
|
time_hw = 0;
|
664 |
|
|
err_cnt = 0;
|
665 |
|
|
for (i=0; i<num_runs; i++) {
|
666 |
|
|
opa.binary_value = get_test_vector();
|
667 |
|
|
opb.binary_value = get_test_vector();
|
668 |
|
|
|
669 |
|
|
// hardware execution time
|
670 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
671 |
|
|
{
|
672 |
|
|
res_hw.float_value = riscv_intrinsic_fmuls(opa.float_value, opb.float_value);
|
673 |
|
|
}
|
674 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
675 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
676 |
|
|
|
677 |
|
|
// software (emulation) execution time
|
678 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
679 |
|
|
{
|
680 |
|
|
res_sw.float_value = riscv_emulate_fmuls(opa.float_value, opb.float_value);
|
681 |
|
|
}
|
682 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
683 |
|
|
|
684 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
685 |
|
|
err_cnt++;
|
686 |
|
|
}
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
if (err_cnt == 0) {
|
690 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
691 |
|
|
}
|
692 |
|
|
else {
|
693 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
694 |
|
|
err_cnt_total++;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
|
698 |
|
|
// Max
|
699 |
|
|
neorv32_uart_printf("FMAX.S: ");
|
700 |
|
|
time_sw = 0;
|
701 |
|
|
time_hw = 0;
|
702 |
|
|
err_cnt = 0;
|
703 |
|
|
for (i=0; i<num_runs; i++) {
|
704 |
|
|
opa.binary_value = get_test_vector();
|
705 |
|
|
opb.binary_value = get_test_vector();
|
706 |
|
|
|
707 |
|
|
// hardware execution time
|
708 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
709 |
|
|
{
|
710 |
|
|
res_hw.float_value = riscv_intrinsic_fmaxs(opa.float_value, opb.float_value);
|
711 |
|
|
}
|
712 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
713 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
714 |
|
|
|
715 |
|
|
// software (emulation) execution time
|
716 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
717 |
|
|
{
|
718 |
|
|
res_sw.float_value = riscv_emulate_fmaxs(opa.float_value, opb.float_value);
|
719 |
|
|
}
|
720 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
721 |
|
|
|
722 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
723 |
|
|
err_cnt++;
|
724 |
|
|
}
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
if (err_cnt == 0) {
|
728 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
729 |
|
|
}
|
730 |
|
|
else {
|
731 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
732 |
|
|
err_cnt_total++;
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
|
736 |
|
|
// Comparison
|
737 |
|
|
neorv32_uart_printf("FLE.S: ");
|
738 |
|
|
time_sw = 0;
|
739 |
|
|
time_hw = 0;
|
740 |
|
|
err_cnt = 0;
|
741 |
|
|
for (i=0; i<num_runs; i++) {
|
742 |
|
|
opa.binary_value = get_test_vector();
|
743 |
|
|
opb.binary_value = get_test_vector();
|
744 |
|
|
|
745 |
|
|
// hardware execution time
|
746 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
747 |
|
|
{
|
748 |
|
|
res_hw.float_value = riscv_intrinsic_fles(opa.float_value, opb.float_value);
|
749 |
|
|
}
|
750 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
751 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
752 |
|
|
|
753 |
|
|
// software (emulation) execution time
|
754 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
755 |
|
|
{
|
756 |
|
|
res_sw.float_value = riscv_emulate_fles(opa.float_value, opb.float_value);
|
757 |
|
|
}
|
758 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
759 |
|
|
|
760 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
761 |
|
|
err_cnt++;
|
762 |
|
|
}
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
if (err_cnt == 0) {
|
766 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
767 |
|
|
}
|
768 |
|
|
else {
|
769 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
770 |
|
|
err_cnt_total++;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
|
774 |
|
|
// Sign-injection
|
775 |
|
|
neorv32_uart_printf("FSGNJX.S: ");
|
776 |
|
|
time_sw = 0;
|
777 |
|
|
time_hw = 0;
|
778 |
|
|
err_cnt = 0;
|
779 |
|
|
for (i=0; i<num_runs; i++) {
|
780 |
|
|
opa.binary_value = get_test_vector();
|
781 |
|
|
opb.binary_value = get_test_vector();
|
782 |
|
|
|
783 |
|
|
// hardware execution time
|
784 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
785 |
|
|
{
|
786 |
|
|
res_hw.float_value = riscv_intrinsic_fsgnjxs(opa.float_value, opb.float_value);
|
787 |
|
|
}
|
788 |
|
|
time_hw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
789 |
|
|
time_hw -= 4; // remove the 2 dummy instructions
|
790 |
|
|
|
791 |
|
|
// software (emulation) execution time
|
792 |
|
|
time_start = neorv32_cpu_csr_read(CSR_CYCLE);
|
793 |
|
|
{
|
794 |
|
|
res_sw.float_value = riscv_emulate_fsgnjxs(opa.float_value, opb.float_value);
|
795 |
|
|
}
|
796 |
|
|
time_sw += neorv32_cpu_csr_read(CSR_CYCLE) - time_start;
|
797 |
|
|
|
798 |
|
|
if (res_sw.binary_value != res_hw.binary_value) {
|
799 |
|
|
err_cnt++;
|
800 |
|
|
}
|
801 |
|
|
}
|
802 |
|
|
|
803 |
|
|
if (err_cnt == 0) {
|
804 |
|
|
neorv32_uart_printf("cycles[SW] = %u vs. cycles[HW] = %u\n", time_sw/num_runs, time_hw/num_runs);
|
805 |
|
|
}
|
806 |
|
|
else {
|
807 |
|
|
neorv32_uart_printf("%c[1m[TEST FAILED!]%c[0m\n", 27, 27);
|
808 |
|
|
err_cnt_total++;
|
809 |
|
|
}
|
810 |
|
|
#endif
|
811 |
|
|
|
812 |
|
|
|
813 |
|
|
// ----------------------------------------------------------------------------
|
814 |
|
|
// Final report
|
815 |
|
|
// ----------------------------------------------------------------------------
|
816 |
|
|
|
817 |
55 |
zero_gravi |
if (err_cnt_total != 0) {
|
818 |
|
|
neorv32_uart_printf("\n%c[1m[ZFINX EXTENSION VERIFICATION FAILED!]%c[0m\n", 27, 27);
|
819 |
|
|
neorv32_uart_printf("%u errors in %u test cases\n", err_cnt_total, test_cnt*(uint32_t)NUM_TEST_CASES);
|
820 |
60 |
zero_gravi |
return 1;
|
821 |
55 |
zero_gravi |
}
|
822 |
|
|
else {
|
823 |
|
|
neorv32_uart_printf("\n%c[1m[Zfinx extension verification successful!]%c[0m\n", 27, 27);
|
824 |
60 |
zero_gravi |
return 0;
|
825 |
55 |
zero_gravi |
}
|
826 |
|
|
|
827 |
|
|
}
|
828 |
|
|
|
829 |
|
|
|
830 |
|
|
/**********************************************************************//**
|
831 |
|
|
* Generate 32-bit test data (including special values like INFINITY every now and then).
|
832 |
|
|
*
|
833 |
|
|
* @return Test data (32-bit).
|
834 |
|
|
**************************************************************************/
|
835 |
|
|
uint32_t get_test_vector(void) {
|
836 |
|
|
|
837 |
|
|
float_conv_t tmp;
|
838 |
|
|
|
839 |
|
|
// generate special value "every" ~256th time this function is called
|
840 |
|
|
if ((xorshift32() & 0xff) == 0xff) {
|
841 |
|
|
|
842 |
|
|
switch((xorshift32() >> 10) & 0x3) { // random decision which special value we are taking
|
843 |
|
|
case 0: tmp.float_value = +INFINITY; break;
|
844 |
|
|
case 1: tmp.float_value = -INFINITY; break;
|
845 |
|
|
case 2: tmp.float_value = +0.0f; break;
|
846 |
|
|
case 3: tmp.float_value = -0.0f; break;
|
847 |
|
|
case 4: tmp.binary_value = 0x7fffffff; break;
|
848 |
|
|
case 5: tmp.binary_value = 0xffffffff; break;
|
849 |
|
|
case 6: tmp.float_value = NAN; break;
|
850 |
|
|
case 7: tmp.float_value = NAN; break; // FIXME signaling_NAN?
|
851 |
|
|
default: tmp.float_value = NAN; break;
|
852 |
|
|
}
|
853 |
|
|
}
|
854 |
|
|
else {
|
855 |
|
|
tmp.binary_value = xorshift32();
|
856 |
|
|
}
|
857 |
|
|
|
858 |
|
|
return tmp.binary_value;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
|
862 |
|
|
/**********************************************************************//**
|
863 |
|
|
* PSEUDO-RANDOM number generator.
|
864 |
|
|
*
|
865 |
|
|
* @return Random data (32-bit).
|
866 |
|
|
**************************************************************************/
|
867 |
|
|
uint32_t xorshift32(void) {
|
868 |
|
|
|
869 |
|
|
static uint32_t x32 = 314159265;
|
870 |
|
|
|
871 |
|
|
x32 ^= x32 << 13;
|
872 |
|
|
x32 ^= x32 >> 17;
|
873 |
|
|
x32 ^= x32 << 5;
|
874 |
|
|
|
875 |
|
|
return x32;
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
|
879 |
|
|
/**********************************************************************//**
|
880 |
|
|
* Verify results (software reference vs. actual hardware).
|
881 |
|
|
*
|
882 |
|
|
* @param[in] num Test case number
|
883 |
|
|
* @param[in] opa Operand 1
|
884 |
|
|
* @param[in] opb Operand 2
|
885 |
|
|
* @param[in] ref Software reference
|
886 |
|
|
* @param[in] res Actual results from hardware
|
887 |
|
|
* @return zero if results are equal.
|
888 |
|
|
**************************************************************************/
|
889 |
|
|
uint32_t verify_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res) {
|
890 |
|
|
|
891 |
|
|
#if (SILENT_MODE == 0)
|
892 |
|
|
neorv32_uart_printf("%u: opa = 0x%x, opb = 0x%x : ref[SW] = 0x%x vs. res[HW] = 0x%x ", num, opa, opb, ref, res);
|
893 |
|
|
#endif
|
894 |
|
|
|
895 |
|
|
if (ref != res) {
|
896 |
|
|
#if (SILENT_MODE != 0)
|
897 |
|
|
neorv32_uart_printf("%u: opa = 0x%x, opb = 0x%x : ref[SW] = 0x%x vs. res[HW] = 0x%x ", num, opa, opb, ref, res);
|
898 |
|
|
#endif
|
899 |
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
900 |
|
|
return 1;
|
901 |
|
|
}
|
902 |
|
|
else {
|
903 |
|
|
#if (SILENT_MODE == 0)
|
904 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
905 |
|
|
#endif
|
906 |
|
|
return 0;
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
|
911 |
|
|
/**********************************************************************//**
|
912 |
|
|
* Print test report.
|
913 |
|
|
*
|
914 |
|
|
* @param[in] num_err Number or errors in this test.
|
915 |
|
|
**************************************************************************/
|
916 |
|
|
void print_report(uint32_t num_err) {
|
917 |
|
|
|
918 |
|
|
neorv32_uart_printf("Errors: %u/%u ", num_err, (uint32_t)NUM_TEST_CASES);
|
919 |
|
|
|
920 |
|
|
if (num_err == 0) {
|
921 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
922 |
|
|
}
|
923 |
|
|
else {
|
924 |
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
925 |
|
|
}
|
926 |
|
|
}
|