1 |
59 |
zero_gravi |
// #################################################################################################
|
2 |
|
|
// # << NEORV32 - Processor Test Program >> #
|
3 |
|
|
// # ********************************************************************************************* #
|
4 |
|
|
// # BSD 3-Clause License #
|
5 |
|
|
// # #
|
6 |
|
|
// # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
|
7 |
|
|
// # #
|
8 |
|
|
// # Redistribution and use in source and binary forms, with or without modification, are #
|
9 |
|
|
// # permitted provided that the following conditions are met: #
|
10 |
|
|
// # #
|
11 |
|
|
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
12 |
|
|
// # conditions and the following disclaimer. #
|
13 |
|
|
// # #
|
14 |
|
|
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
|
15 |
|
|
// # conditions and the following disclaimer in the documentation and/or other materials #
|
16 |
|
|
// # provided with the distribution. #
|
17 |
|
|
// # #
|
18 |
|
|
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
|
19 |
|
|
// # endorse or promote products derived from this software without specific prior written #
|
20 |
|
|
// # permission. #
|
21 |
|
|
// # #
|
22 |
|
|
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
|
23 |
|
|
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
|
24 |
|
|
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
|
25 |
|
|
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
|
26 |
|
|
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
|
27 |
|
|
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
|
28 |
|
|
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
|
29 |
|
|
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
|
30 |
|
|
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
|
31 |
|
|
// # ********************************************************************************************* #
|
32 |
|
|
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
|
33 |
|
|
// #################################################################################################
|
34 |
|
|
|
35 |
|
|
|
36 |
|
|
/**********************************************************************//**
|
37 |
|
|
* @file processor_check/main.c
|
38 |
|
|
* @author Stephan Nolting
|
39 |
|
|
* @brief CPU/Processor test program.
|
40 |
|
|
**************************************************************************/
|
41 |
|
|
|
42 |
|
|
#include <neorv32.h>
|
43 |
|
|
#include <string.h>
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
/**********************************************************************//**
|
47 |
|
|
* @name User configuration
|
48 |
|
|
**************************************************************************/
|
49 |
|
|
/**@{*/
|
50 |
|
|
/** UART BAUD rate */
|
51 |
|
|
#define BAUD_RATE (19200)
|
52 |
|
|
//** Reachable unaligned address */
|
53 |
|
|
#define ADDR_UNALIGNED (0x00000002)
|
54 |
|
|
//** Unreachable word-aligned address */
|
55 |
|
|
#define ADDR_UNREACHABLE (IO_BASE_ADDRESS-4)
|
56 |
|
|
//** external memory base address */
|
57 |
|
|
#define EXT_MEM_BASE (0xF0000000)
|
58 |
|
|
/**@}*/
|
59 |
|
|
|
60 |
|
|
|
61 |
|
|
// Prototypes
|
62 |
|
|
void sim_irq_trigger(uint32_t sel);
|
63 |
|
|
void global_trap_handler(void);
|
64 |
|
|
void test_ok(void);
|
65 |
|
|
void test_fail(void);
|
66 |
|
|
|
67 |
|
|
// Global variables (also test initialization of global vars here)
|
68 |
|
|
/// Global counter for failing tests
|
69 |
|
|
int cnt_fail = 0;
|
70 |
|
|
/// Global counter for successful tests
|
71 |
|
|
int cnt_ok = 0;
|
72 |
|
|
/// Global counter for total number of tests
|
73 |
|
|
int cnt_test = 0;
|
74 |
|
|
/// Global numbe rof available HPMs
|
75 |
|
|
uint32_t num_hpm_cnts_global = 0;
|
76 |
|
|
|
77 |
|
|
/// Variable to test atomic accessess
|
78 |
|
|
uint32_t atomic_access_addr;
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
/**********************************************************************//**
|
82 |
|
|
* High-level CPU/processor test program.
|
83 |
|
|
*
|
84 |
|
|
* @note Applications has to be compiler with <USER_FLAGS+=-DRUN_CPUTEST>
|
85 |
|
|
*
|
86 |
|
|
* @return Irrelevant.
|
87 |
|
|
**************************************************************************/
|
88 |
|
|
int main() {
|
89 |
|
|
|
90 |
|
|
register uint32_t tmp_a, tmp_b;
|
91 |
|
|
volatile uint32_t dummy_dst __attribute__((unused));
|
92 |
|
|
uint8_t id;
|
93 |
|
|
uint32_t is_simulation = 0;
|
94 |
|
|
|
95 |
|
|
|
96 |
|
|
// init UART at default baud rate, no parity bits, no hw flow control
|
97 |
|
|
neorv32_uart_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE);
|
98 |
|
|
|
99 |
|
|
// Disable processor_check compilation by default
|
100 |
|
|
#ifndef RUN_CHECK
|
101 |
|
|
#warning processor_check HAS NOT BEEN COMPILED! Use >>make USER_FLAGS+=-DRUN_CHECK clean_all exe<< to compile it.
|
102 |
|
|
|
103 |
|
|
// inform the user if you are actually executing this
|
104 |
|
|
neorv32_uart_printf("ERROR! processor_check has not been compiled. Use >>make USER_FLAGS+=-DRUN_CHECK clean_all exe<< to compile it.\n");
|
105 |
|
|
|
106 |
|
|
return 0;
|
107 |
|
|
#endif
|
108 |
|
|
|
109 |
|
|
// check if this is a simulation (using primary UART0)
|
110 |
|
|
if (UART0_CT & (1 << UART_CT_SIM_MODE)) {
|
111 |
|
|
is_simulation = 1;
|
112 |
|
|
}
|
113 |
|
|
else {
|
114 |
|
|
is_simulation = 0;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
// ----------------------------------------------
|
118 |
|
|
// setup RTE
|
119 |
|
|
neorv32_rte_setup(); // this will install a full-detailed debug handler for ALL traps
|
120 |
|
|
// ----------------------------------------------
|
121 |
|
|
|
122 |
|
|
// check available hardware extensions and compare with compiler flags
|
123 |
|
|
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
|
124 |
|
|
|
125 |
|
|
|
126 |
|
|
// intro
|
127 |
|
|
neorv32_uart_printf("\n<< PROCESSOR CHECK >>\n");
|
128 |
|
|
neorv32_uart_printf("build: "__DATE__" "__TIME__"\n");
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
// reset performance counter
|
132 |
|
|
neorv32_cpu_csr_write(CSR_MCYCLEH, 0);
|
133 |
|
|
neorv32_cpu_csr_write(CSR_MCYCLE, 0);
|
134 |
|
|
neorv32_cpu_csr_write(CSR_MINSTRETH, 0);
|
135 |
|
|
neorv32_cpu_csr_write(CSR_MINSTRET, 0);
|
136 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // enable performance counter auto increment (ALL counters)
|
137 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTEREN, 7); // allow access from user-mode code to standard counters only
|
138 |
|
|
|
139 |
|
|
neorv32_mtime_set_time(0);
|
140 |
|
|
// set CMP of machine system timer MTIME to max to prevent an IRQ
|
141 |
|
|
uint64_t mtime_cmp_max = 0xffffffffffffffffULL;
|
142 |
|
|
neorv32_mtime_set_timecmp(mtime_cmp_max);
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
// fancy intro
|
146 |
|
|
// -----------------------------------------------
|
147 |
|
|
// logo
|
148 |
|
|
neorv32_rte_print_logo();
|
149 |
|
|
|
150 |
|
|
// show project credits
|
151 |
|
|
neorv32_rte_print_credits();
|
152 |
|
|
|
153 |
|
|
// show full HW config report
|
154 |
|
|
neorv32_rte_print_hw_config();
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
// configure RTE
|
158 |
|
|
// -----------------------------------------------
|
159 |
|
|
neorv32_uart_printf("\n\nConfiguring NEORV32 RTE... ");
|
160 |
|
|
|
161 |
|
|
int install_err = 0;
|
162 |
|
|
// initialize ALL provided trap handler (overriding the default debug handlers)
|
163 |
|
|
for (id=0; id<NEORV32_RTE_NUM_TRAPS; id++) {
|
164 |
|
|
install_err += neorv32_rte_exception_install(id, global_trap_handler);
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
if (install_err) {
|
168 |
|
|
neorv32_uart_printf("RTE install error (%i)!\n", install_err);
|
169 |
|
|
return 0;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
// enable interrupt sources
|
173 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_MSIE); // machine software interrupt
|
174 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_MTIE); // machine timer interrupt
|
175 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_MEIE); // machine external interrupt
|
176 |
|
|
// enable FAST IRQ sources only where actually needed
|
177 |
|
|
|
178 |
|
|
// test intro
|
179 |
|
|
neorv32_uart_printf("\nStarting tests...\n\n");
|
180 |
|
|
|
181 |
|
|
// enable global interrupts
|
182 |
|
|
neorv32_cpu_eint();
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
// ----------------------------------------------------------
|
186 |
|
|
// Test standard RISC-V performance counter [m]cycle[h]
|
187 |
|
|
// ----------------------------------------------------------
|
188 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
189 |
|
|
neorv32_uart_printf("[%i] [m]instret[h] counter: ", cnt_test);
|
190 |
|
|
|
191 |
|
|
cnt_test++;
|
192 |
|
|
|
193 |
|
|
// make sure counter is enabled
|
194 |
|
|
asm volatile ("csrci %[addr], %[imm]" : : [addr] "i" (CSR_MCOUNTINHIBIT), [imm] "i" (1<<CSR_MCOUNTINHIBIT_CY));
|
195 |
|
|
|
196 |
|
|
// get current cycle counter LOW
|
197 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCYCLE);
|
198 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCYCLE) - tmp_a;
|
199 |
|
|
|
200 |
|
|
// make sure cycle counter has incremented and there was no exception during access
|
201 |
|
|
if ((tmp_a > 0) && (neorv32_cpu_csr_read(CSR_MCAUSE) == 0)) {
|
202 |
|
|
test_ok();
|
203 |
|
|
}
|
204 |
|
|
else {
|
205 |
|
|
test_fail();
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
// ----------------------------------------------------------
|
210 |
|
|
// Test standard RISC-V performance counter [m]instret[h]
|
211 |
|
|
// ----------------------------------------------------------
|
212 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
213 |
|
|
neorv32_uart_printf("[%i] [m]cycle[h] counter: ", cnt_test);
|
214 |
|
|
|
215 |
|
|
cnt_test++;
|
216 |
|
|
|
217 |
|
|
// make sure counter is enabled
|
218 |
|
|
asm volatile ("csrci %[addr], %[imm]" : : [addr] "i" (CSR_MCOUNTINHIBIT), [imm] "i" (1<<CSR_MCOUNTINHIBIT_IR));
|
219 |
|
|
|
220 |
|
|
// get instruction counter LOW
|
221 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_INSTRET);
|
222 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_INSTRET) - tmp_a;
|
223 |
|
|
|
224 |
|
|
// make sure instruction counter has incremented and there was no exception during access
|
225 |
|
|
if ((tmp_a > 0) && (neorv32_cpu_csr_read(CSR_MCAUSE) == 0)) {
|
226 |
|
|
if (tmp_a > 1) {
|
227 |
|
|
neorv32_uart_printf("INSTRET_diff > 1 (%u)!", tmp_a);
|
228 |
|
|
test_fail();
|
229 |
|
|
}
|
230 |
|
|
else {
|
231 |
|
|
test_ok();
|
232 |
|
|
}
|
233 |
|
|
}
|
234 |
|
|
else {
|
235 |
|
|
test_fail();
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
// ----------------------------------------------------------
|
240 |
|
|
// Test mcountinhibt: inhibit auto-inc of [m]cycle
|
241 |
|
|
// ----------------------------------------------------------
|
242 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
243 |
|
|
neorv32_uart_printf("[%i] mcountinhibt.cy CSR: ", cnt_test);
|
244 |
|
|
|
245 |
|
|
cnt_test++;
|
246 |
|
|
|
247 |
|
|
// inhibit [m]cycle CSR
|
248 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT);
|
249 |
|
|
tmp_a |= (1<<CSR_MCOUNTINHIBIT_CY); // inhibit cycle counter auto-increment
|
250 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, tmp_a);
|
251 |
|
|
|
252 |
|
|
// get current cycle counter
|
253 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_CYCLE);
|
254 |
|
|
|
255 |
|
|
// wait some time to have a nice "increment" (there should be NO increment at all!)
|
256 |
|
|
asm volatile ("nop");
|
257 |
|
|
asm volatile ("nop");
|
258 |
|
|
|
259 |
|
|
tmp_b = neorv32_cpu_csr_read(CSR_CYCLE);
|
260 |
|
|
|
261 |
|
|
// make sure instruction counter has NOT incremented and there was no exception during access
|
262 |
|
|
if ((tmp_a == tmp_b) && (tmp_a != 0) && (neorv32_cpu_csr_read(CSR_MCAUSE) == 0)) {
|
263 |
|
|
test_ok();
|
264 |
|
|
}
|
265 |
|
|
else {
|
266 |
|
|
test_fail();
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
// re-enable [m]cycle CSR
|
270 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT);
|
271 |
|
|
tmp_a &= ~(1<<CSR_MCOUNTINHIBIT_CY); // clear inhibit of cycle counter auto-increment
|
272 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, tmp_a);
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
// ----------------------------------------------------------
|
276 |
|
|
// Test mcounteren: do not allow cycle[h] access from user-mode
|
277 |
|
|
// ----------------------------------------------------------
|
278 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
279 |
|
|
neorv32_uart_printf("[%i] mcounteren.cy CSR: ", cnt_test);
|
280 |
|
|
|
281 |
|
|
// skip if U-mode is not implemented
|
282 |
|
|
if (neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_U_EXT)) {
|
283 |
|
|
cnt_test++;
|
284 |
|
|
|
285 |
|
|
// do not allow user-level code to access cycle[h] CSRs
|
286 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCOUNTEREN);
|
287 |
|
|
tmp_a &= ~(1<<CSR_MCOUNTEREN_CY); // clear access right
|
288 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTEREN, tmp_a);
|
289 |
|
|
|
290 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
291 |
|
|
neorv32_cpu_goto_user_mode();
|
292 |
|
|
{
|
293 |
|
|
// access to cycle CSR is no longer allowed
|
294 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_CYCLE);
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
// make sure there was an illegal instruction trap
|
298 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
299 |
|
|
if (tmp_a == 0) { // make sure user-level code CANNOT read locked CSR content!
|
300 |
|
|
test_ok();
|
301 |
|
|
}
|
302 |
|
|
else {
|
303 |
|
|
test_fail();
|
304 |
|
|
}
|
305 |
|
|
}
|
306 |
|
|
else {
|
307 |
|
|
test_fail();
|
308 |
|
|
}
|
309 |
|
|
}
|
310 |
|
|
else {
|
311 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
// re-allow user-level code to access cycle[h] CSRs
|
316 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCOUNTEREN);
|
317 |
|
|
tmp_a |= (1<<CSR_MCOUNTEREN_CY); // re-allow access right
|
318 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTEREN, tmp_a);
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
// ----------------------------------------------------------
|
322 |
|
|
// Test performance counter: setup as many events and counter as feasible
|
323 |
|
|
// ----------------------------------------------------------
|
324 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
325 |
|
|
neorv32_uart_printf("[%i] Initializing HPMs: ", cnt_test);
|
326 |
|
|
|
327 |
|
|
num_hpm_cnts_global = neorv32_cpu_hpm_get_counters();
|
328 |
|
|
|
329 |
|
|
if (num_hpm_cnts_global != 0) {
|
330 |
|
|
cnt_test++;
|
331 |
|
|
|
332 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT3, 1 << HPMCNT_EVENT_CIR);
|
333 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER4, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT4, 1 << HPMCNT_EVENT_WAIT_IF);
|
334 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER5, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT5, 1 << HPMCNT_EVENT_WAIT_II);
|
335 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER6, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT6, 1 << HPMCNT_EVENT_WAIT_MC);
|
336 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER7, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT7, 1 << HPMCNT_EVENT_LOAD);
|
337 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER8, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT8, 1 << HPMCNT_EVENT_STORE);
|
338 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER9, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT9, 1 << HPMCNT_EVENT_WAIT_LS);
|
339 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER10, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT10, 1 << HPMCNT_EVENT_JUMP);
|
340 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER11, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT11, 1 << HPMCNT_EVENT_BRANCH);
|
341 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER12, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT12, 1 << HPMCNT_EVENT_TBRANCH);
|
342 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER13, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT13, 1 << HPMCNT_EVENT_TRAP);
|
343 |
|
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER14, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT14, 1 << HPMCNT_EVENT_ILLEGAL);
|
344 |
|
|
|
345 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // enable all counters
|
346 |
|
|
|
347 |
|
|
// make sure there was no exception
|
348 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
349 |
|
|
test_ok();
|
350 |
|
|
}
|
351 |
|
|
else {
|
352 |
|
|
test_fail();
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
else {
|
356 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
//// ----------------------------------------------------------
|
361 |
|
|
//// Bus timeout latency estimation
|
362 |
|
|
//// out of order :P
|
363 |
|
|
//// ----------------------------------------------------------
|
364 |
|
|
//neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
365 |
|
|
//neorv32_uart_printf("[%i] Estimating bus time-out latency: ", cnt_test);
|
366 |
|
|
//cnt_test++;
|
367 |
|
|
//
|
368 |
|
|
//// start timing
|
369 |
|
|
//neorv32_cpu_csr_write(CSR_MCYCLE, 0);
|
370 |
|
|
//
|
371 |
|
|
//// make sure there was a timeout
|
372 |
|
|
//if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_S_ACCESS) {
|
373 |
|
|
// neorv32_uart_printf("~%u cycles ", trap_timestamp32-175); // remove trap handler overhead - empiric value ;)
|
374 |
|
|
// test_ok();
|
375 |
|
|
//}
|
376 |
|
|
//else {
|
377 |
|
|
// test_fail();
|
378 |
|
|
//}
|
379 |
|
|
|
380 |
|
|
|
381 |
|
|
// ----------------------------------------------------------
|
382 |
|
|
// External memory interface test
|
383 |
|
|
// ----------------------------------------------------------
|
384 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
385 |
|
|
neorv32_uart_printf("[%i] External memory access (@ 0x%x): ", cnt_test, (uint32_t)EXT_MEM_BASE);
|
386 |
|
|
|
387 |
|
|
if (is_simulation) { // check if this is a simulation
|
388 |
|
|
if (SYSINFO_FEATURES & (1 << SYSINFO_FEATURES_MEM_EXT)) {
|
389 |
|
|
cnt_test++;
|
390 |
|
|
|
391 |
|
|
// create test program in RAM
|
392 |
|
|
static const uint32_t dummy_ext_program[2] __attribute__((aligned(8))) = {
|
393 |
|
|
0x3407D073, // csrwi mscratch, 15
|
394 |
|
|
0x00008067 // ret (32-bit)
|
395 |
|
|
};
|
396 |
|
|
|
397 |
|
|
// copy to external memory
|
398 |
|
|
if (memcpy((void*)EXT_MEM_BASE, (void*)&dummy_ext_program, (size_t)sizeof(dummy_ext_program)) == NULL) {
|
399 |
|
|
test_fail();
|
400 |
|
|
}
|
401 |
|
|
else {
|
402 |
|
|
|
403 |
|
|
// execute program
|
404 |
|
|
tmp_a = (uint32_t)EXT_MEM_BASE; // call the dummy sub program
|
405 |
|
|
asm volatile ("jalr ra, %[input_i]" : : [input_i] "r" (tmp_a));
|
406 |
|
|
|
407 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) { // make sure there was no exception
|
408 |
|
|
if (neorv32_cpu_csr_read(CSR_MSCRATCH) == 15) { // make sure the program was executed in the right way
|
409 |
|
|
test_ok();
|
410 |
|
|
}
|
411 |
|
|
else {
|
412 |
|
|
test_fail();
|
413 |
|
|
}
|
414 |
|
|
}
|
415 |
|
|
else {
|
416 |
|
|
test_fail();
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
else {
|
421 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
422 |
|
|
}
|
423 |
|
|
}
|
424 |
|
|
else {
|
425 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
|
429 |
|
|
//// ----------------------------------------------------------
|
430 |
|
|
//// Test FENCE.I instruction (instruction buffer / i-cache clear & reload)
|
431 |
|
|
//// ----------------------------------------------------------
|
432 |
|
|
//neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
433 |
|
|
//neorv32_uart_printf("[%i] FENCE.I: ", cnt_test);
|
434 |
|
|
//
|
435 |
|
|
//// check if implemented
|
436 |
|
|
//if (neorv32_cpu_csr_read(CSR_MZEXT) & (1 << CSR_MZEXT_ZIFENCEI)) {
|
437 |
|
|
// cnt_test++;
|
438 |
|
|
//
|
439 |
|
|
// asm volatile ("fence.i");
|
440 |
|
|
//
|
441 |
|
|
// // make sure there was no exception (and that the cpu did not crash...)
|
442 |
|
|
// if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
443 |
|
|
// test_ok();
|
444 |
|
|
// }
|
445 |
|
|
// else {
|
446 |
|
|
// test_fail();
|
447 |
|
|
// }
|
448 |
|
|
//}
|
449 |
|
|
//else {
|
450 |
|
|
// neorv32_uart_printf("skipped (not implemented)\n");
|
451 |
|
|
//}
|
452 |
|
|
|
453 |
|
|
|
454 |
|
|
// ----------------------------------------------------------
|
455 |
|
|
// Illegal CSR access (CSR not implemented)
|
456 |
|
|
// ----------------------------------------------------------
|
457 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
458 |
|
|
neorv32_uart_printf("[%i] Illegal CSR (0xfff) access: ", cnt_test);
|
459 |
|
|
|
460 |
|
|
cnt_test++;
|
461 |
|
|
|
462 |
|
|
neorv32_cpu_csr_read(0xfff); // CSR 0xfff not implemented
|
463 |
|
|
|
464 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
465 |
|
|
test_ok();
|
466 |
|
|
}
|
467 |
|
|
else {
|
468 |
|
|
test_fail();
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
// ----------------------------------------------------------
|
473 |
|
|
// Write-access to read-only CSR
|
474 |
|
|
// ----------------------------------------------------------
|
475 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
476 |
|
|
neorv32_uart_printf("[%i] Read-only CSR (time) write access: ", cnt_test);
|
477 |
|
|
|
478 |
|
|
cnt_test++;
|
479 |
|
|
|
480 |
|
|
neorv32_cpu_csr_write(CSR_TIME, 0); // time CSR is read-only
|
481 |
|
|
|
482 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
483 |
|
|
test_ok();
|
484 |
|
|
}
|
485 |
|
|
else {
|
486 |
|
|
test_fail();
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
|
490 |
|
|
// ----------------------------------------------------------
|
491 |
|
|
// No "real" CSR write access (because rs1 = r0)
|
492 |
|
|
// ----------------------------------------------------------
|
493 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
494 |
|
|
neorv32_uart_printf("[%i] Read-only CSR (time) no-write (rs1=0) access: ", cnt_test);
|
495 |
|
|
|
496 |
|
|
cnt_test++;
|
497 |
|
|
|
498 |
|
|
// time CSR is read-only, but no actual write is performed because rs1=r0
|
499 |
|
|
// -> should cause no exception
|
500 |
|
|
asm volatile("csrrs zero, time, zero");
|
501 |
|
|
|
502 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
503 |
|
|
test_ok();
|
504 |
|
|
}
|
505 |
|
|
else {
|
506 |
|
|
test_fail();
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
|
510 |
|
|
// ----------------------------------------------------------
|
511 |
|
|
// Test pending interrupt
|
512 |
|
|
// ----------------------------------------------------------
|
513 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
514 |
|
|
neorv32_uart_printf("[%i] Pending IRQ test (from MTIME): ", cnt_test);
|
515 |
|
|
|
516 |
|
|
if (neorv32_mtime_available()) {
|
517 |
|
|
cnt_test++;
|
518 |
|
|
|
519 |
|
|
// disable global interrupts
|
520 |
|
|
neorv32_cpu_dint();
|
521 |
|
|
|
522 |
|
|
// force MTIME IRQ
|
523 |
|
|
neorv32_mtime_set_timecmp(0);
|
524 |
|
|
|
525 |
|
|
// wait some time for the IRQ to arrive the CPU
|
526 |
|
|
asm volatile("nop");
|
527 |
|
|
asm volatile("nop");
|
528 |
|
|
|
529 |
|
|
// no more mtime interrupts
|
530 |
|
|
neorv32_mtime_set_timecmp(-1);
|
531 |
|
|
|
532 |
|
|
// re-enable global interrupts
|
533 |
|
|
neorv32_cpu_eint();
|
534 |
|
|
|
535 |
|
|
|
536 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_MTI) {
|
537 |
|
|
test_ok();
|
538 |
|
|
}
|
539 |
|
|
else {
|
540 |
|
|
test_fail();
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
else {
|
544 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
// ----------------------------------------------------------
|
549 |
|
|
// Unaligned instruction address
|
550 |
|
|
// ----------------------------------------------------------
|
551 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
552 |
|
|
neorv32_uart_printf("[%i] I_ALIGN (instr. alignment) EXC: ", cnt_test);
|
553 |
|
|
|
554 |
|
|
// skip if C-mode is implemented
|
555 |
|
|
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_C_EXT)) == 0) {
|
556 |
|
|
|
557 |
|
|
cnt_test++;
|
558 |
|
|
|
559 |
|
|
// call unaligned address
|
560 |
|
|
((void (*)(void))ADDR_UNALIGNED)();
|
561 |
|
|
|
562 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_MISALIGNED) {
|
563 |
|
|
neorv32_uart_printf("ok\n");
|
564 |
|
|
cnt_ok++;
|
565 |
|
|
}
|
566 |
|
|
else {
|
567 |
|
|
neorv32_uart_printf("fail\n");
|
568 |
|
|
cnt_fail++;
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
else {
|
572 |
|
|
neorv32_uart_printf("skipped (n.a. with C-ext)\n");
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
|
576 |
|
|
// ----------------------------------------------------------
|
577 |
|
|
// Instruction access fault
|
578 |
|
|
// ----------------------------------------------------------
|
579 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
580 |
|
|
neorv32_uart_printf("[%i] I_ACC (instr. bus access) EXC: ", cnt_test);
|
581 |
|
|
cnt_test++;
|
582 |
|
|
|
583 |
|
|
// call unreachable aligned address
|
584 |
|
|
((void (*)(void))ADDR_UNREACHABLE)();
|
585 |
|
|
|
586 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ACCESS) {
|
587 |
|
|
test_ok();
|
588 |
|
|
}
|
589 |
|
|
else {
|
590 |
|
|
test_fail();
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
|
594 |
|
|
// ----------------------------------------------------------
|
595 |
|
|
// Illegal instruction
|
596 |
|
|
// ----------------------------------------------------------
|
597 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
598 |
|
|
neorv32_uart_printf("[%i] I_ILLEG (illegal instr.) EXC: ", cnt_test);
|
599 |
|
|
|
600 |
|
|
cnt_test++;
|
601 |
|
|
|
602 |
|
|
asm volatile ("csrrw zero, 0xfff, zero"); // = 0xfff01073 : CSR 0xfff not implemented -> illegal instruction
|
603 |
|
|
|
604 |
|
|
// make sure this has cause an illegal exception
|
605 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
606 |
|
|
// make sure this is really the instruction that caused the exception
|
607 |
|
|
// for illegal instructions mtval contains the actual instruction word
|
608 |
|
|
if (neorv32_cpu_csr_read(CSR_MTVAL) == 0xfff01073) {
|
609 |
|
|
test_ok();
|
610 |
|
|
}
|
611 |
|
|
else {
|
612 |
|
|
test_fail();
|
613 |
|
|
}
|
614 |
|
|
}
|
615 |
|
|
else {
|
616 |
|
|
test_fail();
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
|
620 |
|
|
// ----------------------------------------------------------
|
621 |
|
|
// Illegal compressed instruction
|
622 |
|
|
// ----------------------------------------------------------
|
623 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
624 |
|
|
neorv32_uart_printf("[%i] CI_ILLEG (illegal compr. instr.) EXC: ", cnt_test);
|
625 |
|
|
|
626 |
|
|
// skip if C-mode is not implemented
|
627 |
|
|
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_C_EXT)) != 0) {
|
628 |
|
|
|
629 |
|
|
cnt_test++;
|
630 |
|
|
|
631 |
|
|
// create test program in RAM
|
632 |
|
|
static const uint32_t dummy_sub_program_ci[2] __attribute__((aligned(8))) = {
|
633 |
|
|
0x00000001, // 2nd: official_illegal_op | 1st: NOP -> illegal instruction exception
|
634 |
|
|
0x00008067 // ret (32-bit)
|
635 |
|
|
};
|
636 |
|
|
|
637 |
|
|
tmp_a = (uint32_t)&dummy_sub_program_ci; // call the dummy sub program
|
638 |
|
|
asm volatile ("jalr ra, %[input_i]" : : [input_i] "r" (tmp_a));
|
639 |
|
|
|
640 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
641 |
|
|
test_ok();
|
642 |
|
|
}
|
643 |
|
|
else {
|
644 |
|
|
test_fail();
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
else {
|
648 |
|
|
neorv32_uart_printf("skipped (n.a. with C-ext)\n");
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
|
652 |
|
|
// ----------------------------------------------------------
|
653 |
|
|
// Breakpoint instruction
|
654 |
|
|
// ----------------------------------------------------------
|
655 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
656 |
|
|
neorv32_uart_printf("[%i] BREAK (break instr.) EXC: ", cnt_test);
|
657 |
|
|
cnt_test++;
|
658 |
|
|
|
659 |
|
|
asm volatile("EBREAK");
|
660 |
|
|
|
661 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_BREAKPOINT) {
|
662 |
|
|
test_ok();
|
663 |
|
|
}
|
664 |
|
|
else {
|
665 |
|
|
test_fail();
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
|
669 |
|
|
// ----------------------------------------------------------
|
670 |
|
|
// Unaligned load address
|
671 |
|
|
// ----------------------------------------------------------
|
672 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
673 |
|
|
neorv32_uart_printf("[%i] L_ALIGN (load addr alignment) EXC: ", cnt_test);
|
674 |
|
|
cnt_test++;
|
675 |
|
|
|
676 |
|
|
// load from unaligned address
|
677 |
|
|
asm volatile ("lw zero, %[input_i](zero)" : : [input_i] "i" (ADDR_UNALIGNED));
|
678 |
|
|
|
679 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_L_MISALIGNED) {
|
680 |
|
|
test_ok();
|
681 |
|
|
}
|
682 |
|
|
else {
|
683 |
|
|
test_fail();
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
|
687 |
|
|
// ----------------------------------------------------------
|
688 |
|
|
// Load access fault
|
689 |
|
|
// ----------------------------------------------------------
|
690 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
691 |
|
|
neorv32_uart_printf("[%i] L_ACC (load bus access) EXC: ", cnt_test);
|
692 |
|
|
cnt_test++;
|
693 |
|
|
|
694 |
|
|
// load from unreachable aligned address
|
695 |
|
|
dummy_dst = neorv32_cpu_load_unsigned_word(ADDR_UNREACHABLE);
|
696 |
|
|
|
697 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_L_ACCESS) {
|
698 |
|
|
test_ok();
|
699 |
|
|
}
|
700 |
|
|
else {
|
701 |
|
|
test_fail();
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
|
705 |
|
|
// ----------------------------------------------------------
|
706 |
|
|
// Unaligned store address
|
707 |
|
|
// ----------------------------------------------------------
|
708 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
709 |
|
|
neorv32_uart_printf("[%i] S_ALIGN (store addr alignment) EXC: ", cnt_test);
|
710 |
|
|
cnt_test++;
|
711 |
|
|
|
712 |
|
|
// store to unaligned address
|
713 |
|
|
asm volatile ("sw zero, %[input_i](zero)" : : [input_i] "i" (ADDR_UNALIGNED));
|
714 |
|
|
|
715 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_S_MISALIGNED) {
|
716 |
|
|
test_ok();
|
717 |
|
|
}
|
718 |
|
|
else {
|
719 |
|
|
test_fail();
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
|
723 |
|
|
// ----------------------------------------------------------
|
724 |
|
|
// Store access fault
|
725 |
|
|
// ----------------------------------------------------------
|
726 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
727 |
|
|
neorv32_uart_printf("[%i] S_ACC (store bus access) EXC: ", cnt_test);
|
728 |
|
|
cnt_test++;
|
729 |
|
|
|
730 |
|
|
// store to unreachable aligned address
|
731 |
|
|
neorv32_cpu_store_unsigned_word(ADDR_UNREACHABLE, 0);
|
732 |
|
|
|
733 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_S_ACCESS) {
|
734 |
|
|
test_ok();
|
735 |
|
|
}
|
736 |
|
|
else {
|
737 |
|
|
test_fail();
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
|
741 |
|
|
// ----------------------------------------------------------
|
742 |
|
|
// Environment call from M-mode
|
743 |
|
|
// ----------------------------------------------------------
|
744 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
745 |
|
|
neorv32_uart_printf("[%i] ENVCALL (ecall instr.) from M-mode EXC: ", cnt_test);
|
746 |
|
|
cnt_test++;
|
747 |
|
|
|
748 |
|
|
asm volatile("ECALL");
|
749 |
|
|
|
750 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_MENV_CALL) {
|
751 |
|
|
test_ok();
|
752 |
|
|
}
|
753 |
|
|
else {
|
754 |
|
|
test_fail();
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
|
758 |
|
|
// ----------------------------------------------------------
|
759 |
|
|
// Environment call from U-mode
|
760 |
|
|
// ----------------------------------------------------------
|
761 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
762 |
|
|
neorv32_uart_printf("[%i] ENVCALL (ecall instr.) from U-mode EXC: ", cnt_test);
|
763 |
|
|
|
764 |
|
|
// skip if U-mode is not implemented
|
765 |
|
|
if (neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_U_EXT)) {
|
766 |
|
|
|
767 |
|
|
cnt_test++;
|
768 |
|
|
|
769 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
770 |
|
|
neorv32_cpu_goto_user_mode();
|
771 |
|
|
{
|
772 |
|
|
asm volatile("ECALL");
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_UENV_CALL) {
|
776 |
|
|
test_ok();
|
777 |
|
|
}
|
778 |
|
|
else {
|
779 |
|
|
test_fail();
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
}
|
783 |
|
|
else {
|
784 |
|
|
neorv32_uart_printf("skipped (n.a. without U-ext)\n");
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
|
788 |
|
|
// ----------------------------------------------------------
|
789 |
|
|
// Machine timer interrupt (MTIME)
|
790 |
|
|
// ----------------------------------------------------------
|
791 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
792 |
|
|
neorv32_uart_printf("[%i] MTI (machine timer) IRQ: ", cnt_test);
|
793 |
|
|
|
794 |
|
|
if (neorv32_mtime_available()) {
|
795 |
|
|
cnt_test++;
|
796 |
|
|
|
797 |
|
|
// configure MTIME IRQ (and check overflow form low owrd to high word)
|
798 |
|
|
neorv32_mtime_set_timecmp(-1);
|
799 |
|
|
neorv32_mtime_set_time(0);
|
800 |
|
|
|
801 |
|
|
neorv32_cpu_csr_write(CSR_MIP, 0); // clear all pending IRQs
|
802 |
|
|
|
803 |
|
|
neorv32_mtime_set_timecmp(0x0000000100000000ULL);
|
804 |
|
|
neorv32_mtime_set_time( 0x00000000FFFFFFFEULL);
|
805 |
|
|
|
806 |
|
|
// wait some time for the IRQ to trigger and arrive the CPU
|
807 |
|
|
asm volatile("nop");
|
808 |
|
|
asm volatile("nop");
|
809 |
|
|
asm volatile("nop");
|
810 |
|
|
asm volatile("nop");
|
811 |
|
|
|
812 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_MTI) {
|
813 |
|
|
test_ok();
|
814 |
|
|
}
|
815 |
|
|
else {
|
816 |
|
|
test_fail();
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
// no more mtime interrupts
|
820 |
|
|
neorv32_mtime_set_timecmp(-1);
|
821 |
|
|
}
|
822 |
|
|
else {
|
823 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
|
827 |
|
|
// ----------------------------------------------------------
|
828 |
|
|
// Machine software interrupt (MSI) via testbench
|
829 |
|
|
// ----------------------------------------------------------
|
830 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
831 |
|
|
neorv32_uart_printf("[%i] MSI (via testbench) IRQ: ", cnt_test);
|
832 |
|
|
|
833 |
|
|
if (is_simulation) { // check if this is a simulation
|
834 |
|
|
cnt_test++;
|
835 |
|
|
|
836 |
|
|
// trigger IRQ
|
837 |
|
|
sim_irq_trigger(1 << CSR_MIE_MSIE);
|
838 |
|
|
|
839 |
|
|
// wait some time for the IRQ to arrive the CPU
|
840 |
|
|
asm volatile("nop");
|
841 |
|
|
asm volatile("nop");
|
842 |
|
|
|
843 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_MSI) {
|
844 |
|
|
test_ok();
|
845 |
|
|
}
|
846 |
|
|
else {
|
847 |
|
|
test_fail();
|
848 |
|
|
}
|
849 |
|
|
}
|
850 |
|
|
else {
|
851 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
|
855 |
|
|
// ----------------------------------------------------------
|
856 |
|
|
// Machine external interrupt (MEI) via testbench
|
857 |
|
|
// ----------------------------------------------------------
|
858 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
859 |
|
|
neorv32_uart_printf("[%i] MEI (via testbench) IRQ: ", cnt_test);
|
860 |
|
|
|
861 |
|
|
if (is_simulation) { // check if this is a simulation
|
862 |
|
|
cnt_test++;
|
863 |
|
|
|
864 |
|
|
// trigger IRQ
|
865 |
|
|
sim_irq_trigger(1 << CSR_MIE_MEIE);
|
866 |
|
|
|
867 |
|
|
// wait some time for the IRQ to arrive the CPU
|
868 |
|
|
asm volatile("nop");
|
869 |
|
|
asm volatile("nop");
|
870 |
|
|
|
871 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_MEI) {
|
872 |
|
|
test_ok();
|
873 |
|
|
}
|
874 |
|
|
else {
|
875 |
|
|
test_fail();
|
876 |
|
|
}
|
877 |
|
|
}
|
878 |
|
|
else {
|
879 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
|
883 |
|
|
// ----------------------------------------------------------
|
884 |
|
|
// Non-maskable interrupt (NMI) via testbench
|
885 |
|
|
// ----------------------------------------------------------
|
886 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
887 |
|
|
neorv32_uart_printf("[%i] NMI (via testbench) IRQ: ", cnt_test);
|
888 |
|
|
|
889 |
|
|
if (is_simulation) { // check if this is a simulation
|
890 |
|
|
cnt_test++;
|
891 |
|
|
|
892 |
|
|
// trigger IRQ
|
893 |
|
|
sim_irq_trigger(1 << 0);
|
894 |
|
|
|
895 |
|
|
// wait some time for the IRQ to arrive the CPU
|
896 |
|
|
asm volatile("nop");
|
897 |
|
|
asm volatile("nop");
|
898 |
|
|
|
899 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_NMI) {
|
900 |
|
|
test_ok();
|
901 |
|
|
}
|
902 |
|
|
else {
|
903 |
|
|
test_fail();
|
904 |
|
|
}
|
905 |
|
|
}
|
906 |
|
|
else {
|
907 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
|
911 |
|
|
// ----------------------------------------------------------
|
912 |
|
|
// Fast interrupt channel 0 (WDT)
|
913 |
|
|
// ----------------------------------------------------------
|
914 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
915 |
|
|
neorv32_uart_printf("[%i] FIRQ0 test (via WDT): ", cnt_test);
|
916 |
|
|
|
917 |
|
|
if (neorv32_wdt_available()) {
|
918 |
|
|
cnt_test++;
|
919 |
|
|
|
920 |
|
|
// enable fast interrupt
|
921 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ0E);
|
922 |
|
|
|
923 |
|
|
// configure WDT
|
924 |
|
|
neorv32_wdt_setup(CLK_PRSC_4096, 0, 1); // highest clock prescaler, trigger IRQ on timeout, lock access
|
925 |
|
|
WDT_CT = 0; // try to deactivate WDT (should fail as access is loced)
|
926 |
|
|
neorv32_wdt_force(); // force watchdog into action
|
927 |
|
|
|
928 |
|
|
// wait some time for the IRQ to arrive the CPU
|
929 |
|
|
asm volatile("nop");
|
930 |
|
|
asm volatile("nop");
|
931 |
|
|
|
932 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_0) {
|
933 |
|
|
test_ok();
|
934 |
|
|
}
|
935 |
|
|
else {
|
936 |
|
|
test_fail();
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
// no more WDT interrupts
|
940 |
|
|
neorv32_wdt_disable();
|
941 |
|
|
|
942 |
|
|
// disable fast interrupt
|
943 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ0E);
|
944 |
|
|
}
|
945 |
|
|
else {
|
946 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
947 |
|
|
}
|
948 |
|
|
|
949 |
|
|
|
950 |
|
|
// ----------------------------------------------------------
|
951 |
|
|
// Fast interrupt channel 1 (CFS)
|
952 |
|
|
// ----------------------------------------------------------
|
953 |
|
|
neorv32_uart_printf("[%i] FIRQ1 test (via CFS): ", cnt_test);
|
954 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
955 |
|
|
|
956 |
|
|
|
957 |
|
|
// ----------------------------------------------------------
|
958 |
|
|
// Fast interrupt channel 2 (UART0.RX)
|
959 |
|
|
// ----------------------------------------------------------
|
960 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
961 |
|
|
neorv32_uart_printf("[%i] FIRQ2 test (via UART0.RX): ", cnt_test);
|
962 |
|
|
|
963 |
|
|
if (is_simulation) { // check if this is a simulation
|
964 |
|
|
cnt_test++;
|
965 |
|
|
|
966 |
|
|
// enable fast interrupt
|
967 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ2E);
|
968 |
|
|
|
969 |
|
|
// wait for UART0 to finish transmitting
|
970 |
|
|
while(neorv32_uart_tx_busy());
|
971 |
|
|
|
972 |
|
|
// backup current UART0 configuration
|
973 |
|
|
tmp_a = UART0_CT;
|
974 |
|
|
|
975 |
|
|
// disable UART0 sim_mode if it is enabled
|
976 |
|
|
UART0_CT &= ~(1 << UART_CT_SIM_MODE);
|
977 |
|
|
|
978 |
|
|
// trigger UART0 RX IRQ
|
979 |
|
|
// the default test bench connects UART0.TXD_O to UART0_RXD_I
|
980 |
|
|
UART0_DATA = 0; // we need to access the raw HW here, since >UART0_SIM_MODE< might be active
|
981 |
|
|
|
982 |
|
|
// wait for UART0 to finish transmitting
|
983 |
|
|
while(neorv32_uart_tx_busy());
|
984 |
|
|
|
985 |
|
|
// wait some time for the IRQ to arrive the CPU
|
986 |
|
|
asm volatile("nop");
|
987 |
|
|
asm volatile("nop");
|
988 |
|
|
|
989 |
|
|
// re-enable UART0 sim_mode if it was enabled
|
990 |
|
|
UART0_CT = tmp_a;
|
991 |
|
|
|
992 |
|
|
// disable fast interrupt
|
993 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ2E);
|
994 |
|
|
|
995 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_2) {
|
996 |
|
|
test_ok();
|
997 |
|
|
}
|
998 |
|
|
else {
|
999 |
|
|
test_fail();
|
1000 |
|
|
}
|
1001 |
|
|
}
|
1002 |
|
|
else {
|
1003 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
|
1007 |
|
|
// ----------------------------------------------------------
|
1008 |
|
|
// Fast interrupt channel 3 (UART0.TX)
|
1009 |
|
|
// ----------------------------------------------------------
|
1010 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1011 |
|
|
neorv32_uart_printf("[%i] FIRQ3 test (via UART0.TX): ", cnt_test);
|
1012 |
|
|
|
1013 |
|
|
cnt_test++;
|
1014 |
|
|
|
1015 |
|
|
// UART0 TX interrupt enable
|
1016 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ3E);
|
1017 |
|
|
|
1018 |
|
|
// wait for UART0 to finish transmitting
|
1019 |
|
|
while(neorv32_uart_tx_busy());
|
1020 |
|
|
|
1021 |
|
|
// backup current UART0 configuration
|
1022 |
|
|
tmp_a = UART0_CT;
|
1023 |
|
|
|
1024 |
|
|
// disable UART0 sim_mode if it is enabled
|
1025 |
|
|
UART0_CT &= ~(1 << UART_CT_SIM_MODE);
|
1026 |
|
|
|
1027 |
|
|
// trigger UART0 TX IRQ
|
1028 |
|
|
UART0_DATA = 0; // we need to access the raw HW here, since >UART0_SIM_MODE< might be active
|
1029 |
|
|
|
1030 |
|
|
// wait for UART to finish transmitting
|
1031 |
|
|
while(neorv32_uart_tx_busy());
|
1032 |
|
|
|
1033 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1034 |
|
|
asm volatile("nop");
|
1035 |
|
|
asm volatile("nop");
|
1036 |
|
|
|
1037 |
|
|
// re-enable UART sim_mode if it was enabled
|
1038 |
|
|
UART0_CT = tmp_a;
|
1039 |
|
|
|
1040 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ3E);
|
1041 |
|
|
|
1042 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_3) {
|
1043 |
|
|
test_ok();
|
1044 |
|
|
}
|
1045 |
|
|
else {
|
1046 |
|
|
test_fail();
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
|
1050 |
|
|
// ----------------------------------------------------------
|
1051 |
|
|
// Fast interrupt channel 4 (UART1.RX)
|
1052 |
|
|
// ----------------------------------------------------------
|
1053 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1054 |
|
|
neorv32_uart_printf("[%i] FIRQ4 test (via UART1.RX): ", cnt_test);
|
1055 |
|
|
|
1056 |
|
|
if ((neorv32_uart1_available()) && (is_simulation)) { // UART1 available and we are in a simulation
|
1057 |
|
|
cnt_test++;
|
1058 |
|
|
|
1059 |
|
|
// UART1 RX interrupt enable
|
1060 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ4E);
|
1061 |
|
|
|
1062 |
|
|
// initialize UART1
|
1063 |
|
|
UART1_CT = 0;
|
1064 |
|
|
tmp_a = UART0_CT; // copy configuration from UART0
|
1065 |
|
|
tmp_a &= ~(1 << UART_CT_SIM_MODE); // make sure sim_mode is disabled
|
1066 |
|
|
UART1_CT = tmp_a;
|
1067 |
|
|
|
1068 |
|
|
// trigger UART1 RX IRQ
|
1069 |
|
|
UART1_DATA = 0;
|
1070 |
|
|
|
1071 |
|
|
// wait for UART1 to finish transmitting
|
1072 |
|
|
while(neorv32_uart1_tx_busy());
|
1073 |
|
|
|
1074 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1075 |
|
|
asm volatile("nop");
|
1076 |
|
|
asm volatile("nop");
|
1077 |
|
|
|
1078 |
|
|
// disable UART1
|
1079 |
|
|
UART1_CT = 0;
|
1080 |
|
|
|
1081 |
|
|
// disable fast interrupt
|
1082 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ4E);
|
1083 |
|
|
|
1084 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_4) {
|
1085 |
|
|
test_ok();
|
1086 |
|
|
}
|
1087 |
|
|
else {
|
1088 |
|
|
test_fail();
|
1089 |
|
|
}
|
1090 |
|
|
}
|
1091 |
|
|
else {
|
1092 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
|
1096 |
|
|
// ----------------------------------------------------------
|
1097 |
|
|
// Fast interrupt channel 5 (UART1.TX)
|
1098 |
|
|
// ----------------------------------------------------------
|
1099 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1100 |
|
|
neorv32_uart_printf("[%i] FIRQ5 test (via UART1.TX): ", cnt_test);
|
1101 |
|
|
|
1102 |
|
|
if (neorv32_uart1_available()) {
|
1103 |
|
|
cnt_test++;
|
1104 |
|
|
|
1105 |
|
|
// UART1 RX interrupt enable
|
1106 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ5E);
|
1107 |
|
|
|
1108 |
|
|
// initialize UART1
|
1109 |
|
|
UART1_CT = 0;
|
1110 |
|
|
tmp_a = UART0_CT; // copy configuration from UART0
|
1111 |
|
|
tmp_a &= ~(1 << UART_CT_SIM_MODE); // make sure sim_mode is disabled
|
1112 |
|
|
UART1_CT = tmp_a;
|
1113 |
|
|
|
1114 |
|
|
// trigger UART1 TX IRQ
|
1115 |
|
|
UART1_DATA = 0;
|
1116 |
|
|
|
1117 |
|
|
// wait for UART1 to finish transmitting
|
1118 |
|
|
while(neorv32_uart1_tx_busy());
|
1119 |
|
|
|
1120 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1121 |
|
|
asm volatile("nop");
|
1122 |
|
|
asm volatile("nop");
|
1123 |
|
|
|
1124 |
|
|
// disable UART1
|
1125 |
|
|
UART1_CT = 0;
|
1126 |
|
|
|
1127 |
|
|
// disable fast interrupt
|
1128 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ5E);
|
1129 |
|
|
|
1130 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_5) {
|
1131 |
|
|
test_ok();
|
1132 |
|
|
}
|
1133 |
|
|
else {
|
1134 |
|
|
test_fail();
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
else {
|
1138 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
|
1142 |
|
|
// ----------------------------------------------------------
|
1143 |
|
|
// Fast interrupt channel 6 (SPI)
|
1144 |
|
|
// ----------------------------------------------------------
|
1145 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1146 |
|
|
neorv32_uart_printf("[%i] FIRQ6 test (via SPI): ", cnt_test);
|
1147 |
|
|
|
1148 |
|
|
if (neorv32_spi_available()) {
|
1149 |
|
|
cnt_test++;
|
1150 |
|
|
|
1151 |
|
|
// enable fast interrupt
|
1152 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ6E);
|
1153 |
|
|
|
1154 |
|
|
// configure SPI
|
1155 |
|
|
neorv32_spi_setup(CLK_PRSC_2, 0, 0);
|
1156 |
|
|
|
1157 |
|
|
// trigger SPI IRQ
|
1158 |
|
|
neorv32_spi_trans(0);
|
1159 |
|
|
while(neorv32_spi_busy()); // wait for current transfer to finish
|
1160 |
|
|
|
1161 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1162 |
|
|
asm volatile("nop");
|
1163 |
|
|
asm volatile("nop");
|
1164 |
|
|
|
1165 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_6) {
|
1166 |
|
|
test_ok();
|
1167 |
|
|
}
|
1168 |
|
|
else {
|
1169 |
|
|
test_fail();
|
1170 |
|
|
}
|
1171 |
|
|
|
1172 |
|
|
// disable SPI
|
1173 |
|
|
neorv32_spi_disable();
|
1174 |
|
|
|
1175 |
|
|
// disable fast interrupt
|
1176 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ6E);
|
1177 |
|
|
}
|
1178 |
|
|
else {
|
1179 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
|
1183 |
|
|
// ----------------------------------------------------------
|
1184 |
|
|
// Fast interrupt channel 7 (TWI)
|
1185 |
|
|
// ----------------------------------------------------------
|
1186 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1187 |
|
|
neorv32_uart_printf("[%i] FIRQ7 test (via TWI): ", cnt_test);
|
1188 |
|
|
|
1189 |
|
|
if (neorv32_twi_available()) {
|
1190 |
|
|
cnt_test++;
|
1191 |
|
|
|
1192 |
|
|
// configure TWI, fastest clock, no peripheral clock stretching
|
1193 |
|
|
neorv32_twi_setup(CLK_PRSC_2, 0);
|
1194 |
|
|
|
1195 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ7E);
|
1196 |
|
|
|
1197 |
|
|
// trigger TWI IRQ
|
1198 |
|
|
neorv32_twi_generate_start();
|
1199 |
|
|
neorv32_twi_trans(0);
|
1200 |
|
|
neorv32_twi_generate_stop();
|
1201 |
|
|
|
1202 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1203 |
|
|
asm volatile("nop");
|
1204 |
|
|
asm volatile("nop");
|
1205 |
|
|
|
1206 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_7) {
|
1207 |
|
|
test_ok();
|
1208 |
|
|
}
|
1209 |
|
|
else {
|
1210 |
|
|
test_fail();
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
// disable TWI
|
1214 |
|
|
neorv32_twi_disable();
|
1215 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ7E);
|
1216 |
|
|
}
|
1217 |
|
|
else {
|
1218 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
|
1222 |
|
|
// ----------------------------------------------------------
|
1223 |
|
|
// Fast interrupt channel 8 (GPIO)
|
1224 |
|
|
// ----------------------------------------------------------
|
1225 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1226 |
|
|
neorv32_uart_printf("[%i] FIRQ8 test (via GPIO): ", cnt_test);
|
1227 |
|
|
|
1228 |
|
|
if (is_simulation) { // check if this is a simulation
|
1229 |
|
|
if (neorv32_gpio_available()) {
|
1230 |
|
|
cnt_test++;
|
1231 |
|
|
|
1232 |
|
|
// clear output port
|
1233 |
|
|
neorv32_gpio_port_set(0);
|
1234 |
|
|
|
1235 |
|
|
neorv32_cpu_irq_enable(CSR_MIE_FIRQ8E);
|
1236 |
|
|
|
1237 |
|
|
// configure GPIO.in(31) for pin-change IRQ
|
1238 |
|
|
neorv32_gpio_pin_change_config(0x80000000);
|
1239 |
|
|
|
1240 |
|
|
// trigger pin-change IRQ by setting GPIO.out(31)
|
1241 |
|
|
// the testbench connects GPIO.out => GPIO.in
|
1242 |
|
|
neorv32_gpio_pin_set(31);
|
1243 |
|
|
|
1244 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1245 |
|
|
asm volatile("nop");
|
1246 |
|
|
asm volatile("nop");
|
1247 |
|
|
|
1248 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_FIRQ_8) {
|
1249 |
|
|
test_ok();
|
1250 |
|
|
}
|
1251 |
|
|
else {
|
1252 |
|
|
test_fail();
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
// disable GPIO pin-change IRQ
|
1256 |
|
|
neorv32_gpio_pin_change_config(0);
|
1257 |
|
|
|
1258 |
|
|
// clear output port
|
1259 |
|
|
neorv32_gpio_port_set(0);
|
1260 |
|
|
neorv32_cpu_irq_disable(CSR_MIE_FIRQ8E);
|
1261 |
|
|
}
|
1262 |
|
|
else {
|
1263 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1264 |
|
|
}
|
1265 |
|
|
}
|
1266 |
|
|
else {
|
1267 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
|
1271 |
|
|
// ----------------------------------------------------------
|
1272 |
|
|
// Fast interrupt channel 9 (reserved)
|
1273 |
|
|
// ----------------------------------------------------------
|
1274 |
|
|
neorv32_uart_printf("[%i] FIRQ9: ", cnt_test);
|
1275 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1276 |
|
|
|
1277 |
|
|
|
1278 |
|
|
// ----------------------------------------------------------
|
1279 |
|
|
// Fast interrupt channel 10..15 (SoC fast IRQ 0..5)
|
1280 |
|
|
// ----------------------------------------------------------
|
1281 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1282 |
|
|
neorv32_uart_printf("[%i] FIRQ10..15 (SoC fast IRQ 0..5; via testbench): ", cnt_test);
|
1283 |
|
|
|
1284 |
|
|
if (is_simulation) { // check if this is a simulation
|
1285 |
|
|
|
1286 |
|
|
cnt_test++;
|
1287 |
|
|
|
1288 |
|
|
// enable SOC FIRQs
|
1289 |
|
|
for (id=CSR_MIE_FIRQ10E; id<=CSR_MIE_FIRQ15E; id++) {
|
1290 |
|
|
neorv32_cpu_irq_enable(id);
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
// trigger all SoC Fast interrupts at once
|
1294 |
|
|
neorv32_cpu_dint(); // do not fire yet!
|
1295 |
|
|
sim_irq_trigger((1 << CSR_MIE_FIRQ10E) | (1 << CSR_MIE_FIRQ11E) | (1 << CSR_MIE_FIRQ12E) | (1 << CSR_MIE_FIRQ13E) | (1 << CSR_MIE_FIRQ14E) | (1 << CSR_MIE_FIRQ15E));
|
1296 |
|
|
|
1297 |
|
|
// wait some time for the IRQ to arrive the CPU
|
1298 |
|
|
asm volatile("nop");
|
1299 |
|
|
asm volatile("nop");
|
1300 |
|
|
|
1301 |
|
|
// make sure all SoC FIRQs have been triggered
|
1302 |
|
|
tmp_a = (1 << CSR_MIP_FIRQ10P) | (1 << CSR_MIP_FIRQ11P) | (1 << CSR_MIP_FIRQ12P) | (1 << CSR_MIP_FIRQ13P) | (1 << CSR_MIP_FIRQ14P) | (1 << CSR_MIP_FIRQ15P);
|
1303 |
|
|
|
1304 |
|
|
if (neorv32_cpu_csr_read(CSR_MIP) == tmp_a) {
|
1305 |
|
|
neorv32_cpu_eint(); // allow IRQs to fire again
|
1306 |
|
|
asm volatile ("nop");
|
1307 |
|
|
asm volatile ("nop"); // irq should kick in HERE
|
1308 |
|
|
|
1309 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MCAUSE);
|
1310 |
|
|
if ((tmp_a >= TRAP_CODE_FIRQ_8) && (tmp_a <= TRAP_CODE_FIRQ_15)) {
|
1311 |
|
|
test_ok();
|
1312 |
|
|
}
|
1313 |
|
|
else {
|
1314 |
|
|
test_fail();
|
1315 |
|
|
}
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
// disable SOC FIRQs
|
1319 |
|
|
for (id=CSR_MIE_FIRQ10E; id<=CSR_MIE_FIRQ15E; id++) {
|
1320 |
|
|
neorv32_cpu_irq_disable(id);
|
1321 |
|
|
}
|
1322 |
|
|
}
|
1323 |
|
|
else {
|
1324 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
neorv32_cpu_eint(); // re-enable IRQs globally
|
1328 |
|
|
|
1329 |
|
|
|
1330 |
|
|
// ----------------------------------------------------------
|
1331 |
|
|
// Test WFI ("sleep") instructions, wakeup via MTIME
|
1332 |
|
|
// ----------------------------------------------------------
|
1333 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1334 |
|
|
neorv32_uart_printf("[%i] WFI (sleep instruction) test (wake-up via MTIME): ", cnt_test);
|
1335 |
|
|
|
1336 |
|
|
if (neorv32_mtime_available()) {
|
1337 |
|
|
cnt_test++;
|
1338 |
|
|
|
1339 |
|
|
// program wake-up timer
|
1340 |
|
|
neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + 1000);
|
1341 |
|
|
|
1342 |
|
|
// put CPU into sleep mode
|
1343 |
|
|
asm volatile ("wfi");
|
1344 |
|
|
|
1345 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) != TRAP_CODE_MTI) {
|
1346 |
|
|
test_fail();
|
1347 |
|
|
}
|
1348 |
|
|
else {
|
1349 |
|
|
test_ok();
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
// no more mtime interrupts
|
1353 |
|
|
neorv32_mtime_set_timecmp(-1);
|
1354 |
|
|
}
|
1355 |
|
|
else {
|
1356 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1357 |
|
|
}
|
1358 |
|
|
|
1359 |
|
|
|
1360 |
|
|
// ----------------------------------------------------------
|
1361 |
|
|
// Test invalid CSR access in user mode
|
1362 |
|
|
// ----------------------------------------------------------
|
1363 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1364 |
|
|
neorv32_uart_printf("[%i] Invalid CSR access (mstatus) from user mode: ", cnt_test);
|
1365 |
|
|
|
1366 |
|
|
// skip if U-mode is not implemented
|
1367 |
|
|
if (neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_U_EXT)) {
|
1368 |
|
|
|
1369 |
|
|
cnt_test++;
|
1370 |
|
|
|
1371 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
1372 |
|
|
neorv32_cpu_goto_user_mode();
|
1373 |
|
|
{
|
1374 |
|
|
// access to misa not allowed for user-level programs
|
1375 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_MISA);
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_I_ILLEGAL) {
|
1379 |
|
|
if (tmp_a == 0) { // make sure user-level code CANNOT read machine-level CSR content!
|
1380 |
|
|
test_ok();
|
1381 |
|
|
}
|
1382 |
|
|
else {
|
1383 |
|
|
test_fail();
|
1384 |
|
|
}
|
1385 |
|
|
}
|
1386 |
|
|
else {
|
1387 |
|
|
test_fail();
|
1388 |
|
|
}
|
1389 |
|
|
|
1390 |
|
|
}
|
1391 |
|
|
else {
|
1392 |
|
|
neorv32_uart_printf("skipped (n.a. without U-ext)\n");
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
|
1396 |
|
|
// ----------------------------------------------------------
|
1397 |
|
|
// Test RTE debug trap handler
|
1398 |
|
|
// ----------------------------------------------------------
|
1399 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1400 |
|
|
neorv32_uart_printf("[%i] RTE (runtime env.) debug trap handler: ", cnt_test);
|
1401 |
|
|
|
1402 |
|
|
cnt_test++;
|
1403 |
|
|
|
1404 |
|
|
// uninstall custom handler and use default RTE debug handler
|
1405 |
|
|
neorv32_rte_exception_uninstall(RTE_TRAP_I_ILLEGAL);
|
1406 |
|
|
|
1407 |
|
|
// trigger illegal instruction exception
|
1408 |
|
|
neorv32_cpu_csr_read(0xfff); // CSR not available
|
1409 |
|
|
|
1410 |
|
|
neorv32_uart_printf(" ");
|
1411 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) != 0) {
|
1412 |
|
|
test_ok();
|
1413 |
|
|
}
|
1414 |
|
|
else {
|
1415 |
|
|
test_fail();
|
1416 |
|
|
neorv32_uart_printf("answer: 0x%x", neorv32_cpu_csr_read(CSR_MCAUSE));
|
1417 |
|
|
}
|
1418 |
|
|
|
1419 |
|
|
// restore original handler
|
1420 |
|
|
neorv32_rte_exception_install(RTE_TRAP_I_ILLEGAL, global_trap_handler);
|
1421 |
|
|
|
1422 |
|
|
|
1423 |
|
|
// ----------------------------------------------------------
|
1424 |
|
|
// Test physical memory protection
|
1425 |
|
|
// ----------------------------------------------------------
|
1426 |
|
|
neorv32_uart_printf("[%i] PMP - Physical memory protection: ", cnt_test);
|
1427 |
|
|
|
1428 |
|
|
// check if PMP is implemented
|
1429 |
|
|
if (neorv32_cpu_pmp_get_num_regions() != 0) {
|
1430 |
|
|
|
1431 |
|
|
// Create PMP protected region
|
1432 |
|
|
// ---------------------------------------------
|
1433 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1434 |
|
|
cnt_test++;
|
1435 |
|
|
|
1436 |
|
|
// find out mininmal region size (granulartiy)
|
1437 |
|
|
tmp_b = neorv32_cpu_pmp_get_granularity();
|
1438 |
|
|
|
1439 |
|
|
tmp_a = SYSINFO_DSPACE_BASE; // base address of protected region
|
1440 |
|
|
neorv32_uart_printf("Creating protected page (NAPOT, [!X,!W,R], %u bytes) @ 0x%x: ", tmp_b, tmp_a);
|
1441 |
|
|
|
1442 |
|
|
// configure
|
1443 |
|
|
int pmp_return = neorv32_cpu_pmp_configure_region(0, tmp_a, tmp_b, 0b00011001); // NAPOT, read permission, NO write and NO execute permissions
|
1444 |
|
|
|
1445 |
|
|
if ((pmp_return == 0) && (neorv32_cpu_csr_read(CSR_MCAUSE) == 0)) {
|
1446 |
|
|
test_ok();
|
1447 |
|
|
}
|
1448 |
|
|
else {
|
1449 |
|
|
test_fail();
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
|
1453 |
|
|
// ------ EXECUTE: should fail ------
|
1454 |
|
|
neorv32_uart_printf("[%i] PMP: U-mode [!X,!W,R] execute: ", cnt_test);
|
1455 |
|
|
cnt_test++;
|
1456 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1457 |
|
|
|
1458 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
1459 |
|
|
neorv32_cpu_goto_user_mode();
|
1460 |
|
|
{
|
1461 |
|
|
asm volatile ("jalr ra, %[input_i]" : : [input_i] "r" (tmp_a)); // call address to execute -> should fail
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
1465 |
|
|
// switch back to machine mode (if not allready)
|
1466 |
|
|
asm volatile ("ecall");
|
1467 |
|
|
|
1468 |
|
|
test_fail();
|
1469 |
|
|
}
|
1470 |
|
|
else {
|
1471 |
|
|
// switch back to machine mode (if not allready)
|
1472 |
|
|
asm volatile ("ecall");
|
1473 |
|
|
|
1474 |
|
|
test_ok();
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
|
1478 |
|
|
// ------ LOAD: should work ------
|
1479 |
|
|
neorv32_uart_printf("[%i] PMP: U-mode [!X,!W,R] read: ", cnt_test);
|
1480 |
|
|
cnt_test++;
|
1481 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1482 |
|
|
|
1483 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
1484 |
|
|
neorv32_cpu_goto_user_mode();
|
1485 |
|
|
{
|
1486 |
|
|
asm volatile ("lw zero, 0(%[input_i])" : : [input_i] "r" (tmp_a)); // load access -> should work
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
1490 |
|
|
// switch back to machine mode (if not allready)
|
1491 |
|
|
asm volatile ("ecall");
|
1492 |
|
|
|
1493 |
|
|
test_ok();
|
1494 |
|
|
}
|
1495 |
|
|
else {
|
1496 |
|
|
// switch back to machine mode (if not allready)
|
1497 |
|
|
asm volatile ("ecall");
|
1498 |
|
|
|
1499 |
|
|
test_fail();
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
|
1503 |
|
|
// ------ STORE: should fail ------
|
1504 |
|
|
neorv32_uart_printf("[%i] PMP: U-mode [!X,!W,R] write: ", cnt_test);
|
1505 |
|
|
cnt_test++;
|
1506 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1507 |
|
|
|
1508 |
|
|
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
|
1509 |
|
|
neorv32_cpu_goto_user_mode();
|
1510 |
|
|
{
|
1511 |
|
|
asm volatile ("sw zero, 0(%[input_i])" : : [input_i] "r" (tmp_a)); // store access -> should fail
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == TRAP_CODE_S_ACCESS) {
|
1515 |
|
|
// switch back to machine mode (if not allready)
|
1516 |
|
|
asm volatile ("ecall");
|
1517 |
|
|
|
1518 |
|
|
test_ok();
|
1519 |
|
|
}
|
1520 |
|
|
else {
|
1521 |
|
|
// switch back to machine mode (if not allready)
|
1522 |
|
|
asm volatile ("ecall");
|
1523 |
|
|
|
1524 |
|
|
test_fail();
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
|
1528 |
|
|
// ------ Lock test - pmpcfg0.0 / pmpaddr0 ------
|
1529 |
|
|
neorv32_uart_printf("[%i] PMP: Entry [mode=off] lock: ", cnt_test);
|
1530 |
|
|
cnt_test++;
|
1531 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1532 |
|
|
|
1533 |
|
|
neorv32_cpu_csr_write(CSR_PMPCFG0, 0b10000001); // locked, but entry is deactivated (mode = off)
|
1534 |
|
|
|
1535 |
|
|
// make sure a locked cfg cannot be written
|
1536 |
|
|
tmp_a = neorv32_cpu_csr_read(CSR_PMPCFG0);
|
1537 |
|
|
neorv32_cpu_csr_write(CSR_PMPCFG0, 0b00011001); // try to re-write CFG content
|
1538 |
|
|
|
1539 |
|
|
tmp_b = neorv32_cpu_csr_read(CSR_PMPADDR0);
|
1540 |
|
|
neorv32_cpu_csr_write(CSR_PMPADDR0, 0xABABCDCD); // try to re-write ADDR content
|
1541 |
|
|
|
1542 |
|
|
if ((tmp_a != neorv32_cpu_csr_read(CSR_PMPCFG0)) || (tmp_b != neorv32_cpu_csr_read(CSR_PMPADDR0)) || (neorv32_cpu_csr_read(CSR_MCAUSE) != 0)) {
|
1543 |
|
|
test_fail();
|
1544 |
|
|
}
|
1545 |
|
|
else {
|
1546 |
|
|
test_ok();
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
}
|
1550 |
|
|
else {
|
1551 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
|
1555 |
|
|
// ----------------------------------------------------------
|
1556 |
|
|
// Test atomic LR/SC operation - should succeed
|
1557 |
|
|
// ----------------------------------------------------------
|
1558 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1559 |
|
|
neorv32_uart_printf("[%i] Atomic access (LR+SC succeeding access): ", cnt_test);
|
1560 |
|
|
|
1561 |
|
|
#ifdef __riscv_atomic
|
1562 |
|
|
// skip if A-mode is not implemented
|
1563 |
|
|
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_A_EXT)) != 0) {
|
1564 |
|
|
|
1565 |
|
|
cnt_test++;
|
1566 |
|
|
|
1567 |
|
|
neorv32_cpu_store_unsigned_word((uint32_t)&atomic_access_addr, 0x11223344);
|
1568 |
|
|
|
1569 |
|
|
tmp_a = neorv32_cpu_load_reservate_word((uint32_t)&atomic_access_addr); // make reservation
|
1570 |
|
|
asm volatile ("nop");
|
1571 |
|
|
tmp_b = neorv32_cpu_store_conditional((uint32_t)&atomic_access_addr, 0x22446688);
|
1572 |
|
|
|
1573 |
|
|
// atomic access
|
1574 |
|
|
if ((tmp_b == 0) && // status: success
|
1575 |
|
|
(tmp_a == 0x11223344) && // correct data read
|
1576 |
|
|
(neorv32_cpu_load_unsigned_word((uint32_t)&atomic_access_addr) == 0x22446688) && // correct data write
|
1577 |
|
|
(neorv32_cpu_csr_read(CSR_MCAUSE) == 0)) { // no exception triggered
|
1578 |
|
|
test_ok();
|
1579 |
|
|
}
|
1580 |
|
|
else {
|
1581 |
|
|
test_fail();
|
1582 |
|
|
}
|
1583 |
|
|
}
|
1584 |
|
|
else {
|
1585 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1586 |
|
|
}
|
1587 |
|
|
#else
|
1588 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1589 |
|
|
#endif
|
1590 |
|
|
|
1591 |
|
|
|
1592 |
|
|
// ----------------------------------------------------------
|
1593 |
|
|
// Test atomic LR/SC operation - should fail
|
1594 |
|
|
// ----------------------------------------------------------
|
1595 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1596 |
|
|
neorv32_uart_printf("[%i] Atomic access (LR+SC failing access 1): ", cnt_test);
|
1597 |
|
|
|
1598 |
|
|
#ifdef __riscv_atomic
|
1599 |
|
|
// skip if A-mode is not implemented
|
1600 |
|
|
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_A_EXT)) != 0) {
|
1601 |
|
|
|
1602 |
|
|
cnt_test++;
|
1603 |
|
|
|
1604 |
|
|
neorv32_cpu_store_unsigned_word((uint32_t)&atomic_access_addr, 0xAABBCCDD);
|
1605 |
|
|
|
1606 |
|
|
// atomic access
|
1607 |
|
|
tmp_a = neorv32_cpu_load_reservate_word((uint32_t)&atomic_access_addr); // make reservation
|
1608 |
|
|
neorv32_cpu_store_unsigned_word((uint32_t)&atomic_access_addr, 0xDEADDEAD); // destroy reservation
|
1609 |
|
|
tmp_b = neorv32_cpu_store_conditional((uint32_t)&atomic_access_addr, 0x22446688);
|
1610 |
|
|
|
1611 |
|
|
if ((tmp_b != 0) && // status: fail
|
1612 |
|
|
(tmp_a == 0xAABBCCDD) && // correct data read
|
1613 |
|
|
(neorv32_cpu_load_unsigned_word((uint32_t)&atomic_access_addr) == 0xDEADDEAD)) { // correct data write
|
1614 |
|
|
test_ok();
|
1615 |
|
|
}
|
1616 |
|
|
else {
|
1617 |
|
|
test_fail();
|
1618 |
|
|
}
|
1619 |
|
|
}
|
1620 |
|
|
else {
|
1621 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1622 |
|
|
}
|
1623 |
|
|
#else
|
1624 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1625 |
|
|
#endif
|
1626 |
|
|
|
1627 |
|
|
|
1628 |
|
|
// ----------------------------------------------------------
|
1629 |
|
|
// Test atomic LR/SC operation - should fail
|
1630 |
|
|
// ----------------------------------------------------------
|
1631 |
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
1632 |
|
|
neorv32_uart_printf("[%i] Atomic access (LR+SC failing access 2): ", cnt_test);
|
1633 |
|
|
|
1634 |
|
|
#ifdef __riscv_atomic
|
1635 |
|
|
// skip if A-mode is not implemented
|
1636 |
|
|
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CSR_MISA_A_EXT)) != 0) {
|
1637 |
|
|
|
1638 |
|
|
cnt_test++;
|
1639 |
|
|
|
1640 |
|
|
neorv32_cpu_store_unsigned_word((uint32_t)&atomic_access_addr, 0x12341234);
|
1641 |
|
|
|
1642 |
|
|
// atomic access
|
1643 |
|
|
tmp_a = neorv32_cpu_load_reservate_word((uint32_t)&atomic_access_addr); // make reservation
|
1644 |
|
|
asm volatile ("ecall"); // destroy reservation via trap (simulate a context switch)
|
1645 |
|
|
tmp_b = neorv32_cpu_store_conditional((uint32_t)&atomic_access_addr, 0xDEADBEEF);
|
1646 |
|
|
|
1647 |
|
|
if ((tmp_b != 0) && // status: fail
|
1648 |
|
|
(tmp_a == 0x12341234) && // correct data read
|
1649 |
|
|
(neorv32_cpu_load_unsigned_word((uint32_t)&atomic_access_addr) == 0x12341234)) { // correct data write
|
1650 |
|
|
test_ok();
|
1651 |
|
|
}
|
1652 |
|
|
else {
|
1653 |
|
|
test_fail();
|
1654 |
|
|
}
|
1655 |
|
|
}
|
1656 |
|
|
else {
|
1657 |
|
|
neorv32_uart_printf("skipped (on real HW)\n");
|
1658 |
|
|
}
|
1659 |
|
|
#else
|
1660 |
|
|
neorv32_uart_printf("skipped (not implemented)\n");
|
1661 |
|
|
#endif
|
1662 |
|
|
|
1663 |
|
|
|
1664 |
|
|
// ----------------------------------------------------------
|
1665 |
|
|
// HPM reports
|
1666 |
|
|
// ----------------------------------------------------------
|
1667 |
|
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, -1); // stop all counters
|
1668 |
|
|
neorv32_uart_printf("\n\n-- HPM reports LOW (%u HPMs available) --\n", num_hpm_cnts_global);
|
1669 |
|
|
neorv32_uart_printf("#IR - Total number of instr.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_INSTRET)); // = "HPM_0"
|
1670 |
|
|
//neorv32_uart_printf("#TM - Current system time: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_TIME)); // = "HPM_1"
|
1671 |
|
|
neorv32_uart_printf("#CY - Total number of clk cyc.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_CYCLE)); // = "HPM_2"
|
1672 |
|
|
neorv32_uart_printf("#03 - Retired compr. instr.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER3));
|
1673 |
|
|
neorv32_uart_printf("#04 - I-fetch wait cyc.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER4));
|
1674 |
|
|
neorv32_uart_printf("#05 - I-issue wait cyc.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER5));
|
1675 |
|
|
neorv32_uart_printf("#06 - Multi-cyc. ALU wait cyc.: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER6));
|
1676 |
|
|
neorv32_uart_printf("#07 - Load operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER7));
|
1677 |
|
|
neorv32_uart_printf("#08 - Store operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER8));
|
1678 |
|
|
neorv32_uart_printf("#09 - Load/store wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER9));
|
1679 |
|
|
neorv32_uart_printf("#10 - Unconditional jumps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER10));
|
1680 |
|
|
neorv32_uart_printf("#11 - Cond. branches (total): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER11));
|
1681 |
|
|
neorv32_uart_printf("#12 - Cond. branches (taken): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER12));
|
1682 |
|
|
neorv32_uart_printf("#13 - Entered traps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER13));
|
1683 |
|
|
neorv32_uart_printf("#14 - Illegal operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER14));
|
1684 |
|
|
|
1685 |
|
|
|
1686 |
|
|
// ----------------------------------------------------------
|
1687 |
|
|
// Final test reports
|
1688 |
|
|
// ----------------------------------------------------------
|
1689 |
|
|
neorv32_uart_printf("\n\nTest results:\nOK: %i/%i\nFAILED: %i/%i\n\n", cnt_ok, cnt_test, cnt_fail, cnt_test);
|
1690 |
|
|
|
1691 |
|
|
// final result
|
1692 |
|
|
if (cnt_fail == 0) {
|
1693 |
|
|
neorv32_uart_printf("%c[1m[CPU TEST COMPLETED SUCCESSFULLY!]%c[0m\n", 27, 27);
|
1694 |
|
|
}
|
1695 |
|
|
else {
|
1696 |
|
|
neorv32_uart_printf("%c[1m[CPU TEST FAILED!]%c[0m\n", 27, 27);
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
return 0;
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
|
1703 |
|
|
/**********************************************************************//**
|
1704 |
|
|
* Simulation-based function to trigger CPU interrupts (MSI, MEI, FIRQ4..7).
|
1705 |
|
|
*
|
1706 |
|
|
* @param[in] sel IRQ select mask (bit positions according to #NEORV32_CSR_MIE_enum).
|
1707 |
|
|
**************************************************************************/
|
1708 |
|
|
void sim_irq_trigger(uint32_t sel) {
|
1709 |
|
|
|
1710 |
|
|
*(IO_REG32 (0xFF000000)) = sel;
|
1711 |
|
|
}
|
1712 |
|
|
|
1713 |
|
|
|
1714 |
|
|
/**********************************************************************//**
|
1715 |
|
|
* Trap handler for ALL exceptions/interrupts.
|
1716 |
|
|
**************************************************************************/
|
1717 |
|
|
void global_trap_handler(void) {
|
1718 |
|
|
|
1719 |
|
|
// hack: always come back in MACHINE MODE
|
1720 |
|
|
register uint32_t mask = (1<<CSR_MSTATUS_MPP_H) | (1<<CSR_MSTATUS_MPP_L);
|
1721 |
|
|
asm volatile ("csrrs zero, mstatus, %[input_j]" : : [input_j] "r" (mask));
|
1722 |
|
|
}
|
1723 |
|
|
|
1724 |
|
|
|
1725 |
|
|
/**********************************************************************//**
|
1726 |
|
|
* Test results helper function: Shows "[ok]" and increments global cnt_ok
|
1727 |
|
|
**************************************************************************/
|
1728 |
|
|
void test_ok(void) {
|
1729 |
|
|
|
1730 |
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
1731 |
|
|
cnt_ok++;
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
|
1735 |
|
|
/**********************************************************************//**
|
1736 |
|
|
* Test results helper function: Shows "[FAILED]" and increments global cnt_fail
|
1737 |
|
|
**************************************************************************/
|
1738 |
|
|
void test_fail(void) {
|
1739 |
|
|
|
1740 |
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
1741 |
|
|
cnt_fail++;
|
1742 |
|
|
}
|