OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [VHDL/] [o8_hd44780_4b.vhd] - Blame information for rev 215

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 194 jshamlet
-- Copyright (c)2013, 2020 Jeremy Seth Henry
2
-- All rights reserved.
3
--
4
-- Redistribution and use in source and binary forms, with or without
5
-- modification, are permitted provided that the following conditions are met:
6
--     * Redistributions of source code must retain the above copyright
7
--       notice, this list of conditions and the following disclaimer.
8
--     * Redistributions in binary form must reproduce the above copyright
9
--       notice, this list of conditions and the following disclaimer in the
10
--       documentation and/or other materials provided with the distribution,
11
--       where applicable (as part of a user interface, debugging port, etc.)
12
--
13
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
14
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
17
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
20
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22
-- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23
--
24 175 jshamlet
-- VHDL Entity: o8_hd44780_4b
25
-- Description: Provides low-level access to a "standard" character LCD using
26
--               the ST/HD44780(U) control ASIC wired in reduced (4-bit) mode.
27
--              All low-level timing of the control signals are handled by this
28
--               module, allowing client firmware to use a simple register
29
--               interface to program the LCD panel.
30
--              Init routine initializes the display and displays a single
31
--               character to demonstrate correct function, then listens for
32
--               user data on its external interface.
33 213 jshamlet
--
34
-- Register Map
35
-- Address  Function
36
-- Offset  Bitfield Description                        Read/Write
37
-- 0x0     AAAAAAAA LCD Register Write                 (Write-only)
38
-- 0x1     AAAAAAAA LCD Data Write                     (Write-only)
39
-- 0x2     AAAAAAAA LCD Contrast                       (Read-Write)
40
-- 0x3     AAAAAAAA LCD Backlight                      (Read-Write)
41
--
42
--------------------------------------------------------------------------------
43
-- LCD Controller
44
--------------------------------------------------------------------------------
45
--
46
-- LCD Instruction Set
47
-- Instruction             RS  RW  D7  D6  D5  D4  D3  D2  D1  D0  Time
48
------------------------------------------------------------------------
49
-- Clear Display         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.52mS
50
-- Return Home           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | x | 1.52mS
51
-- Entry Mode            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ID| S |   37uS
52
-- Display Pwr           | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |   37uS
53
-- Cursor/Display Shift  | 0 | 0 | 0 | 0 | 0 | 1 | SC| RL| x | x |   37uS
54
-- Function Set          | 0 | 0 | 0 | 0 | 1 | DL| N | F | x | x |   37uS
55
-- Set CGRAM Address     | 0 | 0 | 0 | 1 | A | A | A | A | A | A |   37uS
56
-- Set DDRAM Address     | 0 | 0 | 1 | A | A | A | A | A | A | A |   37uS
57 175 jshamlet
 
58 213 jshamlet
-- Notes:
59
-- ID = Increment/Decrement DDRAM Address (1 = increment, 0 = decrement)
60
-- S  = Shift Enable (1 = Shift display according to ID, 0 = Don't shift)
61
-- D  = Display On/Off (1 = on, 0 = off)
62
-- C  = Cursor On/Off  (1 = on, 0 = off)
63
-- B  = Cursor Blink   (1 = block cursor, 0 = underline cursor)
64
-- SC / RL = Shift Cursor/Display Right/Left (see data sheet - not needed for init)
65
-- F  = Font (0 = 5x8, 1 = 5x11) Ignored on 2-line displays (N = 1)
66
-- N  = Number of Lines (0 = 1 lines, 1 = 2 lines)
67
-- DL = Data Length (0 = 4-bit bus, 1 = 8-bit bus) This is fixed at 1 in this module
68
-- A  = Address (see data sheet for usage)
69
--
70
-- Revision History
71
-- Author          Date     Change
72
------------------ -------- ---------------------------------------------------
73
-- Seth Henry      01/22/13 Design Start
74
-- Seth Henry      04/10/20 Code & comment cleanup
75
 
76 175 jshamlet
library ieee;
77
use ieee.std_logic_1164.all;
78
use ieee.std_logic_unsigned.all;
79
use ieee.std_logic_arith.all;
80
 
81
library work;
82
use work.open8_pkg.all;
83
 
84
entity o8_hd44780_4b is
85
generic(
86
  Use_Contrast          : boolean;
87
  Default_Contrast      : std_logic_vector(7 downto 0);
88
  Use_Backlight         : boolean;
89
  Default_Brightness    : std_logic_vector(7 downto 0);
90
  Address               : ADDRESS_TYPE;
91
  Reset_Level           : std_logic;
92
  Sys_Freq              : real
93
);
94
port(
95
  Clock                 : in  std_logic;
96
  Reset                 : in  std_logic;
97
  --
98
  uSec_Tick             : in  std_logic;
99
  --
100
  Bus_Address           : in  ADDRESS_TYPE;
101
  Wr_Enable             : in  std_logic;
102
  Wr_Data               : in  DATA_TYPE;
103
  Rd_Enable             : in  std_logic;
104
  Rd_Data               : out DATA_TYPE;
105
  Interrupt             : out std_logic;
106
  --
107
  LCD_E                 : out std_logic;
108
  LCD_RW                : out std_logic;
109
  LCD_RS                : out std_logic;
110
  LCD_D                 : out std_logic_vector(7 downto 4);
111
  LCD_CN                : out std_logic;
112
  LCD_BL                : out std_logic
113
);
114
end entity;
115
 
116
architecture behave of o8_hd44780_4b is
117
 
118
  constant User_Addr    : std_logic_vector(15 downto 2)
119
                          := Address(15 downto 2);
120
  alias  Comp_Addr      is Bus_Address(15 downto 2);
121 213 jshamlet
  signal Addr_Match     : std_logic := '0';
122 175 jshamlet
 
123
  alias  Reg_Addr        is Bus_Address(1 downto 0);
124 213 jshamlet
  signal Reg_Addr_q     : std_logic_vector(1 downto 0) := (others => '0');
125 175 jshamlet
 
126 213 jshamlet
  signal Wr_En          : std_logic := '0';
127
  signal Wr_Data_q      : DATA_TYPE := x"00";
128
  signal Rd_En          : std_logic := '0';
129 175 jshamlet
 
130 213 jshamlet
  signal Reg_Valid      : std_logic := '0';
131
  signal Reg_Sel        : std_logic := '0';
132
  signal Reg_Data       : std_logic_vector(7 downto 0) := x"00";
133 175 jshamlet
 
134 213 jshamlet
  signal Tx_Ready       : std_logic := '0';
135 175 jshamlet
 
136
  constant LCD_CONFIG1  : std_logic_vector(7 downto 4) := x"3";  -- Init to 4-bit mode
137
  constant LCD_CONFIG2  : std_logic_vector(7 downto 0) := x"28"; -- Set 4-bit, 2-line mode
138
  constant LCD_CONFIG3  : std_logic_vector(7 downto 0) := x"0C"; -- Turn display on, no cursor
139
  constant LCD_CONFIG4  : std_logic_vector(7 downto 0) := x"01"; -- Clear display
140
  constant LCD_CONFIG5  : std_logic_vector(7 downto 0) := x"06"; -- Positive increment, no shift
141
  constant LCD_CONFIG6  : std_logic_vector(7 downto 0) := x"2A"; -- Print a "*"
142
  constant LCD_CONFIG7  : std_logic_vector(7 downto 0) := x"02"; -- Reset the cursor
143
 
144 213 jshamlet
  signal init_count     : std_logic_vector(2 downto 0) := (others => '0');
145 175 jshamlet
 
146
  constant INIT_40MS    : integer := 40000;
147
  constant INIT_BITS    : integer := ceil_log2(INIT_40MS);
148
  constant INIT_DELAY   : std_logic_vector(INIT_BITS-1 downto 0) :=
149
                          conv_std_logic_vector(INIT_40MS,INIT_BITS);
150
 
151
-- For "long" instructions, such as clear display and return home, we need to wait for more
152
--  than 1.52mS. Experimentally, 2mS seems to work ideally, and for init this isn't an issue
153
  constant CLDSP_2MS    : integer := 2000;
154
  constant CLDSP_DELAY  : std_logic_vector(INIT_BITS-1 downto 0) :=
155
                          conv_std_logic_vector(CLDSP_2MS,INIT_BITS);
156
 
157
 -- For some reason, we are required to wait 80uS before checking the busy flag, despite
158
 --  most instructions completing in 37uS. No clue as to why, but it works
159
  constant BUSY_50US    : integer := 50;
160
  constant BUSY_DELAY   : std_logic_vector(INIT_BITS-1 downto 0) :=
161
                          conv_std_logic_vector(BUSY_50US-1, INIT_BITS);
162
 
163
  signal busy_timer     : std_logic_vector(INIT_BITS-1 downto 0);
164
 
165
  constant SNH_600NS    : integer := integer(Sys_Freq * 0.000000600);
166
  constant SNH_BITS     : integer := ceil_log2(SNH_600NS);
167
  constant SNH_DELAY    : std_logic_vector(SNH_BITS-1 downto 0) :=
168
                          conv_std_logic_vector(SNH_600NS-1, SNH_BITS);
169
 
170 213 jshamlet
  signal io_timer       : std_logic_vector(SNH_BITS - 1 downto 0) :=
171
                          (others => '0');
172 175 jshamlet
 
173
  type IO_STATES is (INIT, PWR_WAIT, INIT_S1, INIT_H1,
174
                     INIT_WAIT, FN_JUMP, IDLE,
175 213 jshamlet
                                                   WR_PREP, WR_SETUP_UB, WR_HOLD_UB, WR_SETUP_LB, WR_HOLD_LB,
176 175 jshamlet
                     BUSY_PREP, BUSY_WAIT,
177
                     ISSUE_INT );
178
 
179 213 jshamlet
  signal io_state       : IO_STATES := INIT;
180 175 jshamlet
 
181 213 jshamlet
  signal LCD_Data       : std_logic_vector(7 downto 0) := x"00";
182
  signal LCD_Addr       : std_logic := '0';
183 175 jshamlet
 
184
--------------------------------------------------------------------------------
185 213 jshamlet
-- Backlight & Contrast signals
186 175 jshamlet
--------------------------------------------------------------------------------
187
 
188
  -- Do not adjust alone! DELTA constants must be
189
  --  changed as well.
190
  constant DAC_Width    : integer := 8;
191
 
192
  constant DELTA_1_I    : integer := 1;
193
  constant DELTA_2_I    : integer := 5;
194
  constant DELTA_3_I    : integer := 25;
195
  constant DELTA_4_I    : integer := 75;
196
  constant DELTA_5_I    : integer := 125;
197
  constant DELTA_6_I    : integer := 195;
198
 
199
  constant DELTA_1      : std_logic_vector(DAC_Width-1 downto 0) :=
200
                           conv_std_logic_vector(DELTA_1_I, DAC_Width);
201
  constant DELTA_2      : std_logic_vector(DAC_Width-1 downto 0) :=
202
                           conv_std_logic_vector(DELTA_2_I, DAC_Width);
203
  constant DELTA_3      : std_logic_vector(DAC_Width-1 downto 0) :=
204
                           conv_std_logic_vector(DELTA_3_I, DAC_Width);
205
  constant DELTA_4      : std_logic_vector(DAC_Width-1 downto 0) :=
206
                           conv_std_logic_vector(DELTA_4_I, DAC_Width);
207
  constant DELTA_5      : std_logic_vector(DAC_Width-1 downto 0) :=
208
                           conv_std_logic_vector(DELTA_5_I, DAC_Width);
209
  constant DELTA_6      : std_logic_vector(DAC_Width-1 downto 0) :=
210
                           conv_std_logic_vector(DELTA_6_I, DAC_Width);
211
 
212
  constant MAX_PERIOD   : integer := 2**DAC_Width;
213
  constant DIV_WIDTH    : integer := DAC_Width * 2;
214
 
215
  constant PADJ_1_I     : integer := DELTA_1_I * MAX_PERIOD;
216
  constant PADJ_2_I     : integer := DELTA_2_I * MAX_PERIOD;
217
  constant PADJ_3_I     : integer := DELTA_3_I * MAX_PERIOD;
218
  constant PADJ_4_I     : integer := DELTA_4_I * MAX_PERIOD;
219
  constant PADJ_5_I     : integer := DELTA_5_I * MAX_PERIOD;
220
  constant PADJ_6_I     : integer := DELTA_6_I * MAX_PERIOD;
221
 
222
  constant PADJ_1       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
223
                           conv_std_logic_vector(PADJ_1_I,DIV_WIDTH);
224
  constant PADJ_2       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
225
                           conv_std_logic_vector(PADJ_2_I,DIV_WIDTH);
226
  constant PADJ_3       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
227
                           conv_std_logic_vector(PADJ_3_I,DIV_WIDTH);
228
  constant PADJ_4       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
229
                           conv_std_logic_vector(PADJ_4_I,DIV_WIDTH);
230
  constant PADJ_5       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
231
                           conv_std_logic_vector(PADJ_5_I,DIV_WIDTH);
232
  constant PADJ_6       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
233
                           conv_std_logic_vector(PADJ_6_I,DIV_WIDTH);
234
 
235
  constant CB           : integer := ceil_log2(DIV_WIDTH);
236
 
237 213 jshamlet
  signal LCD_Contrast   : std_logic_vector(7 downto 0) := x"00";
238 175 jshamlet
 
239 213 jshamlet
  signal CN_DACin_q     : std_logic_vector(DAC_WIDTH-1 downto 0) := (others => '0');
240 175 jshamlet
 
241 213 jshamlet
  signal CN_Divisor     : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
242
  signal CN_Dividend    : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
243 175 jshamlet
 
244 213 jshamlet
  signal CN_q           : std_logic_vector(DIV_WIDTH*2-1 downto 0) := (others => '0');
245
  signal CN_diff        : std_logic_vector(DIV_WIDTH downto 0) := (others => '0');
246 175 jshamlet
 
247 213 jshamlet
  signal CN_count       : std_logic_vector(CB-1 downto 0) := (others => '0');
248 175 jshamlet
 
249 213 jshamlet
  signal CN_Next_Wdt    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
250
  signal CN_Next_Per    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
251 175 jshamlet
 
252 213 jshamlet
  signal CN_PWM_Wdt     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
253
  signal CN_PWM_Per     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
254 175 jshamlet
 
255 213 jshamlet
  signal CN_Wdt_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
256
  signal CN_Per_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
257 175 jshamlet
 
258 213 jshamlet
  signal LCD_Bright     : std_logic_vector(7 downto 0) := (others => '0');
259 175 jshamlet
 
260 213 jshamlet
  signal BL_DACin_q     : std_logic_vector(DAC_WIDTH-1 downto 0) := (others => '0');
261 175 jshamlet
 
262 213 jshamlet
  signal BL_Divisor     : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
263
  signal BL_Dividend    : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
264 175 jshamlet
 
265 213 jshamlet
  signal BL_q           : std_logic_vector(DIV_WIDTH*2-1 downto 0) := (others => '0');
266
  signal BL_diff        : std_logic_vector(DIV_WIDTH downto 0) := (others => '0');
267 175 jshamlet
 
268 213 jshamlet
  signal BL_count       : std_logic_vector(CB-1 downto 0) := (others => '0');
269 175 jshamlet
 
270 213 jshamlet
  signal BL_Next_Wdt    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
271
  signal BL_Next_Per    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
272 175 jshamlet
 
273 213 jshamlet
  signal BL_PWM_Wdt     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
274
  signal BL_PWM_Per     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
275 175 jshamlet
 
276 213 jshamlet
  signal BL_Wdt_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
277
  signal BL_Per_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
278
 
279 175 jshamlet
begin
280
 
281
--------------------------------------------------------------------------------
282
-- Open8 Register interface
283
--------------------------------------------------------------------------------
284
 
285
  Addr_Match            <= '1' when Comp_Addr = User_Addr else '0';
286
 
287
  io_reg: process( Clock, Reset )
288
  begin
289
    if( Reset = Reset_Level )then
290
      Reg_Addr_q        <= (others => '0');
291
      Wr_Data_q         <= (others => '0');
292
      Wr_En             <= '0';
293
      Rd_En             <= '0';
294 191 jshamlet
      Rd_Data           <= OPEN8_NULLBUS;
295 175 jshamlet
 
296
      Reg_Valid         <= '0';
297
      Reg_Sel           <= '0';
298
      Reg_Data          <= x"00";
299
 
300
      LCD_Contrast      <= Default_Contrast;
301
      LCD_Bright        <= Default_Brightness;
302
    elsif( rising_edge( Clock ) )then
303
      Reg_Addr_q        <= Reg_Addr;
304
 
305
      Wr_Data_q         <= Wr_Data;
306
      Wr_En             <= Addr_Match and Wr_Enable;
307
 
308
      Reg_Valid         <= '0';
309
 
310
      if( Wr_En = '1' )then
311
        case( Reg_Addr_q )is
312
          when "00" | "01" =>
313
            Reg_Valid   <= '1';
314
            Reg_Sel     <= Reg_Addr_q(0);
315
            Reg_Data    <= Wr_Data_q;
316
          when "10" =>
317
            LCD_Contrast<= Wr_Data_q;
318
          when "11" =>
319
            LCD_Bright  <= Wr_Data_q;
320
          when others => null;
321
        end case;
322
      end if;
323
 
324 191 jshamlet
      Rd_Data           <= OPEN8_NULLBUS;
325 175 jshamlet
      Rd_En             <= Addr_Match and Rd_Enable;
326
      if( Rd_En = '1' )then
327
        case( Reg_Addr_q )is
328
          when "00" | "01" =>
329
            Rd_Data(7)  <= Tx_Ready;
330
          when "10" =>
331
            Rd_Data     <= LCD_Contrast;
332
          when "11" =>
333
            Rd_Data     <= LCD_Bright;
334
          when others => null;
335
        end case;
336
      end if;
337
    end if;
338
  end process;
339
 
340
--------------------------------------------------------------------------------
341
-- LCD and Register logic
342
--------------------------------------------------------------------------------
343
 
344
  LCD_RW                <= '0'; -- Permanently wire the RW line low
345
 
346
  LCD_IO: process( Clock, Reset )
347
  begin
348
    if( Reset = Reset_Level )then
349
      io_state          <= INIT;
350
      init_count        <= (others => '0');
351
      io_timer          <= (others => '0');
352
      busy_timer        <= (others => '0');
353
      LCD_Data          <= (others => '0');
354
      LCD_Addr          <= '0';
355
      LCD_E             <= '0';
356
      LCD_RS            <= '0';
357
      LCD_D             <= (others => '0');
358
      Tx_Ready          <= '0';
359
      Interrupt         <= '0';
360
    elsif( rising_edge(Clock) )then
361
      LCD_E             <= '0';
362
      LCD_RS            <= '0';
363
      LCD_D             <= (others => '0');
364
      Tx_Ready          <= '0';
365
      Interrupt         <= '0';
366
      io_timer          <= io_timer - 1;
367
      busy_timer        <= busy_timer - uSec_Tick;
368
      case( io_state )is
369
 
370
        when INIT =>
371
          busy_timer    <= INIT_DELAY;
372
          init_count    <= (others => '1');
373
          io_state      <= PWR_WAIT;
374
 
375
        -- We wait for at least 40mS before continuing initalization.
376
        when PWR_WAIT =>
377
          if( busy_timer = 0 )then
378
            io_timer    <= SNH_DELAY;
379
            io_state    <= INIT_S1;
380
          end if;
381
 
382
        -- We write out the first init byte as if we were using an 8-bit
383
        --  data bus, with a single cycle. This is an exception, and the
384
        --  rest of the commands are sent using 2-cycle transfers.
385
        when INIT_S1 =>
386
          LCD_D         <= LCD_CONFIG1;
387
          LCD_E         <= '1';
388
          if( io_timer = 0 )then
389
            io_timer    <= SNH_DELAY;
390
            io_state    <= INIT_H1;
391
          end if;
392
 
393
        when INIT_H1 =>
394
          LCD_D         <= LCD_CONFIG1;
395
          if( io_timer = 0 )then
396
            busy_timer  <= BUSY_DELAY;
397
            io_state    <= INIT_WAIT;
398
          end if;
399
 
400
        when INIT_WAIT =>
401
          if( busy_timer = 0 )then
402
            io_state    <= FN_JUMP;
403
          end if;
404
 
405
        when FN_JUMP =>
406
          io_state      <= WR_PREP;
407
          case( init_count )is
408
            when "000" =>
409
              io_state  <= IDLE;
410
            when "001" =>
411
              LCD_Addr  <= '0';
412
              LCD_Data  <= LCD_CONFIG7; -- Reset the Cursor
413
            when "010" =>
414
              LCD_Addr  <= '1';         -- Print a "*", and
415
              LCD_Data  <= LCD_CONFIG6; --  set RS to 1
416
            when "011" =>
417
              LCD_Data  <= LCD_CONFIG5; -- Entry mode
418
            when "100" =>
419
              LCD_Data  <= LCD_CONFIG4; -- Clear Display
420
            when "101" =>
421
              LCD_Data  <= LCD_CONFIG3; -- Display control
422
            when "110" | "111" =>
423
              LCD_Addr  <= '0';
424
              LCD_Data  <= LCD_CONFIG2; -- Function set
425
            when others => null;
426
          end case;
427
 
428
        when IDLE =>
429
          Tx_Ready      <= '1';
430
          if( Reg_Valid = '1' )then
431
            LCD_Addr    <= Reg_Sel;
432
            LCD_Data    <= Reg_Data;
433
            io_state    <= WR_PREP;
434
          end if;
435
 
436
        when WR_PREP =>
437
          io_timer      <= SNH_DELAY;
438
          io_state      <= WR_SETUP_UB;
439
 
440
        when WR_SETUP_UB =>
441
          LCD_RS        <= LCD_Addr;
442
          LCD_D         <= LCD_Data(7 downto 4);
443
          LCD_E         <= '1';
444
          if( io_timer = 0 )then
445
            io_timer    <= SNH_DELAY;
446
            io_state    <= WR_HOLD_UB;
447
          end if;
448
 
449
        when WR_HOLD_UB =>
450
          LCD_RS        <= LCD_Addr;
451
          LCD_D         <= LCD_Data(7 downto 4);
452
          if( io_timer = 0 )then
453
            LCD_E       <= '0';
454
            io_timer    <= SNH_DELAY;
455
            io_state    <= WR_SETUP_LB;
456
          end if;
457
 
458
        when WR_SETUP_LB =>
459
          LCD_RS        <= LCD_Addr;
460
          LCD_D         <= LCD_Data(3 downto 0);
461
          LCD_E         <= '1';
462
          if( io_timer = 0 )then
463
            io_timer    <= SNH_DELAY;
464
            io_state    <= WR_HOLD_LB;
465
          end if;
466
 
467
        when WR_HOLD_LB =>
468
          LCD_RS        <= LCD_Addr;
469
          LCD_D         <= LCD_Data(3 downto 0);
470
          if( io_timer = 0 )then
471
            io_state    <= BUSY_WAIT;
472
          end if;
473
 
474
        when BUSY_PREP =>
475
          busy_timer    <= BUSY_DELAY;
476
          if( LCD_Addr = '0' and LCD_Data < 4 )then
477
            busy_timer  <= CLDSP_DELAY;
478
          end if;
479
          io_state      <= BUSY_WAIT;
480
 
481
        when BUSY_WAIT =>
482
          if( busy_timer = 0 )then
483
            io_state    <= ISSUE_INT;
484
            if( init_count > 0 )then
485
              init_count<= init_count - 1;
486
              io_state  <= FN_JUMP;
487
            end if;
488
          end if;
489
 
490
        when ISSUE_INT =>
491
          Interrupt     <= '1';
492
          io_state      <= IDLE;
493
 
494
        when others => null;
495
 
496
      end case;
497
 
498
    end if;
499
  end process;
500
 
501
--------------------------------------------------------------------------------
502
-- Contrast control logic (optional)
503
--------------------------------------------------------------------------------
504
 
505
Contrast_Disabled: if( not Use_Contrast )generate
506
  LCD_CN                <= '0';
507
end generate;
508
 
509
Contrast_Enabled: if( Use_Contrast )generate
510
 
511
  CN_diff               <= ('0' & CN_q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
512
                           ('0' & CN_Divisor);
513
 
514 213 jshamlet
  CN_Dividend<= PADJ_2 when CN_DACin_q >= DELTA_2_I and CN_DACin_q < DELTA_3_I else
515
                PADJ_3 when CN_DACin_q >= DELTA_3_I and CN_DACin_q < DELTA_4_I else
516
                PADJ_4 when CN_DACin_q >= DELTA_4_I and CN_DACin_q < DELTA_5_I else
517
                PADJ_5 when CN_DACin_q >= DELTA_5_I and CN_DACin_q < DELTA_6_I else
518
                PADJ_6 when CN_DACin_q >= DELTA_6_I else
519 175 jshamlet
                PADJ_1;
520
 
521 213 jshamlet
  CN_Next_Wdt<= DELTA_1 when CN_DACin_q >= DELTA_1_I and CN_DACin_q < DELTA_2_I else
522
                DELTA_2 when CN_DACin_q >= DELTA_2_I and CN_DACin_q < DELTA_3_I else
523
                DELTA_3 when CN_DACin_q >= DELTA_3_I and CN_DACin_q < DELTA_4_I else
524
                DELTA_4 when CN_DACin_q >= DELTA_4_I and CN_DACin_q < DELTA_5_I else
525
                DELTA_5 when CN_DACin_q >= DELTA_5_I and CN_DACin_q < DELTA_6_I else
526
                DELTA_6 when CN_DACin_q >= DELTA_6_I else
527 175 jshamlet
                (others => '0');
528
 
529
  CN_Next_Per           <= BL_q(7 downto 0) - 1;
530
 
531
  CN_vDSM_proc: process( Clock, Reset )
532
  begin
533
    if( Reset = Reset_Level )then
534
      CN_q              <= (others => '0');
535
      CN_count          <= (others => '1');
536
      CN_Divisor        <= (others => '0');
537 213 jshamlet
      CN_DACin_q        <= (others => '0');
538 175 jshamlet
      CN_PWM_Wdt        <= (others => '0');
539
      CN_PWM_Per        <= (others => '0');
540
      CN_Per_Ctr        <= (others => '0');
541
      CN_Wdt_Ctr        <= (others => '0');
542
      LCD_CN            <= '0';
543
    elsif( rising_edge(Clock) )then
544
      CN_q              <= CN_diff(DIV_WIDTH-1 downto 0) &
545
                           CN_q(DIV_WIDTH-2 downto 0) & '1';
546
      if( CN_diff(DIV_WIDTH) = '1' )then
547
        CN_q            <= CN_q(DIV_WIDTH*2-2 downto 0) & '0';
548
      end if;
549
 
550
      CN_count          <= CN_count + 1;
551
      if( CN_count = DIV_WIDTH )then
552
        CN_PWM_Wdt      <= CN_Next_Wdt;
553
        CN_PWM_Per      <= CN_Next_Per;
554 213 jshamlet
        CN_DACin_q      <= LCD_Contrast;
555 175 jshamlet
        CN_Divisor      <= (others => '0');
556 213 jshamlet
        CN_Divisor(DAC_Width-1 downto 0) <= CN_DACin_q;
557 175 jshamlet
        CN_q            <= conv_std_logic_vector(0,DIV_WIDTH) & CN_Dividend;
558
        CN_count        <= (others => '0');
559
      end if;
560
 
561
      CN_Per_Ctr        <= CN_Per_Ctr - 1;
562
      CN_Wdt_Ctr        <= CN_Wdt_Ctr - 1;
563
 
564
      LCD_CN            <= '1';
565
      if( CN_Wdt_Ctr = 0 )then
566
        LCD_CN          <= '0';
567
        CN_Wdt_Ctr      <= (others => '0');
568
      end if;
569
 
570
      if( CN_Per_Ctr = 0 )then
571
        CN_Per_Ctr      <= CN_PWM_Per;
572
        CN_Wdt_Ctr      <= CN_PWM_Wdt;
573
      end if;
574
 
575
    end if;
576
  end process;
577
end generate;
578
 
579
--------------------------------------------------------------------------------
580
-- Backlight control logic (optional)
581
--------------------------------------------------------------------------------
582
 
583
Backlight_Disabled: if( not Use_Backlight )generate
584
  LCD_BL                <= '0';
585
end generate;
586
 
587
Backlight_Enabled: if( Use_Backlight )generate
588
 
589
  BL_diff               <= ('0' & BL_q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
590
                           ('0' & BL_Divisor);
591
 
592 213 jshamlet
  BL_Dividend<= PADJ_2 when BL_DACin_q >= DELTA_2_I and BL_DACin_q < DELTA_3_I else
593
                PADJ_3 when BL_DACin_q >= DELTA_3_I and BL_DACin_q < DELTA_4_I else
594
                PADJ_4 when BL_DACin_q >= DELTA_4_I and BL_DACin_q < DELTA_5_I else
595
                PADJ_5 when BL_DACin_q >= DELTA_5_I and BL_DACin_q < DELTA_6_I else
596
                PADJ_6 when BL_DACin_q >= DELTA_6_I else
597 175 jshamlet
                PADJ_1;
598
 
599 213 jshamlet
  BL_Next_Wdt<= DELTA_1 when BL_DACin_q >= DELTA_1_I and BL_DACin_q < DELTA_2_I else
600
                DELTA_2 when BL_DACin_q >= DELTA_2_I and BL_DACin_q < DELTA_3_I else
601
                DELTA_3 when BL_DACin_q >= DELTA_3_I and BL_DACin_q < DELTA_4_I else
602
                DELTA_4 when BL_DACin_q >= DELTA_4_I and BL_DACin_q < DELTA_5_I else
603
                DELTA_5 when BL_DACin_q >= DELTA_5_I and BL_DACin_q < DELTA_6_I else
604
                DELTA_6 when BL_DACin_q >= DELTA_6_I else
605 175 jshamlet
                (others => '0');
606
 
607
  BL_Next_Per           <= BL_q(7 downto 0) - 1;
608
 
609
  BL_vDSM_proc: process( Clock, Reset )
610
  begin
611
    if( Reset = Reset_Level )then
612
      BL_q              <= (others => '0');
613
      BL_count          <= (others => '1');
614
      BL_Divisor        <= (others => '0');
615 213 jshamlet
      BL_DACin_q        <= (others => '0');
616 175 jshamlet
      BL_PWM_Wdt        <= (others => '0');
617
      BL_PWM_Per        <= (others => '0');
618
      BL_Per_Ctr        <= (others => '0');
619
      BL_Wdt_Ctr        <= (others => '0');
620
      LCD_BL            <= '0';
621
    elsif( rising_edge(Clock) )then
622
      BL_q              <= BL_diff(DIV_WIDTH-1 downto 0) &
623
                           BL_q(DIV_WIDTH-2 downto 0) & '1';
624
      if( BL_diff(DIV_WIDTH) = '1' )then
625
        BL_q            <= BL_q(DIV_WIDTH*2-2 downto 0) & '0';
626
      end if;
627
 
628
      BL_count          <= BL_count + 1;
629
      if( BL_count = DIV_WIDTH )then
630
        BL_PWM_Wdt      <= BL_Next_Wdt;
631
        BL_PWM_Per      <= BL_Next_Per;
632 213 jshamlet
        BL_DACin_q      <= LCD_Bright;
633 175 jshamlet
        BL_Divisor      <= (others => '0');
634 213 jshamlet
        BL_Divisor(DAC_Width-1 downto 0) <= BL_DACin_q;
635 175 jshamlet
        BL_q            <= conv_std_logic_vector(0,DIV_WIDTH) & BL_Dividend;
636
        BL_count        <= (others => '0');
637
      end if;
638
 
639
      BL_Per_Ctr        <= BL_Per_Ctr - 1;
640
      BL_Wdt_Ctr        <= BL_Wdt_Ctr - 1;
641
 
642
      LCD_BL            <= '1';
643
      if( BL_Wdt_Ctr = 0 )then
644
        LCD_BL          <= '0';
645
        BL_Wdt_Ctr      <= (others => '0');
646
      end if;
647
 
648
      if( BL_Per_Ctr = 0 )then
649
        BL_Per_Ctr      <= BL_PWM_Per;
650
        BL_Wdt_Ctr      <= BL_PWM_Wdt;
651
      end if;
652
 
653
    end if;
654
  end process;
655
 
656
end generate;
657
 
658
end architecture;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.