OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [VHDL/] [o8_hd44780_8b.vhd] - Blame information for rev 215

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 194 jshamlet
-- Copyright (c)2013, 2020 Jeremy Seth Henry
2
-- All rights reserved.
3
--
4
-- Redistribution and use in source and binary forms, with or without
5
-- modification, are permitted provided that the following conditions are met:
6
--     * Redistributions of source code must retain the above copyright
7
--       notice, this list of conditions and the following disclaimer.
8
--     * Redistributions in binary form must reproduce the above copyright
9
--       notice, this list of conditions and the following disclaimer in the
10
--       documentation and/or other materials provided with the distribution,
11
--       where applicable (as part of a user interface, debugging port, etc.)
12
--
13
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
14
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
17
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
20
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 213 jshamlet
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22
-- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 194 jshamlet
--
24 175 jshamlet
-- VHDL Entity: o8_hd44780_8b
25
-- Description: Provides low-level access to a "standard" character LCD using
26
--               the ST/HD44780(U) control ASIC wired in full (8-bit) mode.
27 213 jshamlet
--              All low-level timing of the control signals are handled by
28
--               this module, allowing client firmware to use a simple
29
--               register interface to program the LCD panel.
30 175 jshamlet
--              Init routine initializes the display and displays a single
31
--               character to demonstrate correct function, then listens for
32
--               user data on its external interface.
33 213 jshamlet
--
34
-- Register Map
35
-- Address  Function
36
-- Offset  Bitfield Description                        Read/Write
37
-- 0x0     AAAAAAAA LCD Register Write                 (Write-only)
38
-- 0x1     AAAAAAAA LCD Data Write                     (Write-only)
39
-- 0x2     AAAAAAAA LCD Contrast                       (Read-Write)
40
-- 0x3     AAAAAAAA LCD Backlight                      (Read-Write)
41
--
42
--------------------------------------------------------------------------------
43
-- LCD Controller
44
--------------------------------------------------------------------------------
45
--
46
-- LCD Instruction Set
47
-- Instruction             RS  RW  D7  D6  D5  D4  D3  D2  D1  D0  Time
48
------------------------------------------------------------------------
49
-- Clear Display         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.52mS
50
-- Return Home           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | x | 1.52mS
51
-- Entry Mode            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ID| S |   37uS
52
-- Display Pwr           | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |   37uS
53
-- Cursor/Display Shift  | 0 | 0 | 0 | 0 | 0 | 1 | SC| RL| x | x |   37uS
54
-- Function Set          | 0 | 0 | 0 | 0 | 1 | DL| N | F | x | x |   37uS
55
-- Set CGRAM Address     | 0 | 0 | 0 | 1 | A | A | A | A | A | A |   37uS
56
-- Set DDRAM Address     | 0 | 0 | 1 | A | A | A | A | A | A | A |   37uS
57 175 jshamlet
 
58 213 jshamlet
-- Notes:
59
-- ID = Increment/Decrement DDRAM Address (1 = increment, 0 = decrement)
60
-- S  = Shift Enable (1 = Shift display according to ID, 0 = Don't shift)
61
-- D  = Display On/Off (1 = on, 0 = off)
62
-- C  = Cursor On/Off  (1 = on, 0 = off)
63
-- B  = Cursor Blink   (1 = block cursor, 0 = underline cursor)
64
-- SC / RL = Shift Cursor/Display Right/Left (see data sheet - not needed for init)
65
-- F  = Font (0 = 5x8, 1 = 5x11) Ignored on 2-line displays (N = 1)
66
-- N  = Number of Lines (0 = 1 lines, 1 = 2 lines)
67
-- DL = Data Length (0 = 4-bit bus, 1 = 8-bit bus) This is fixed at 1 in this module
68
-- A  = Address (see data sheet for usage)
69
--
70
-- Revision History
71
-- Author          Date     Change
72
------------------ -------- ---------------------------------------------------
73
-- Seth Henry      01/22/13 Design Start
74
-- Seth Henry      04/10/20 Code & comment cleanup
75
 
76 175 jshamlet
library ieee;
77
use ieee.std_logic_1164.all;
78
use ieee.std_logic_unsigned.all;
79
use ieee.std_logic_arith.all;
80
 
81
library work;
82
use work.open8_pkg.all;
83
 
84
entity o8_hd44780_8b is
85
generic(
86
  Use_Contrast          : boolean;
87
  Default_Contrast      : std_logic_vector(7 downto 0);
88
  Use_Backlight         : boolean;
89
  Default_Brightness    : std_logic_vector(7 downto 0);
90
  Address               : ADDRESS_TYPE;
91
  Reset_Level           : std_logic;
92
  Sys_Freq              : real
93
);
94
port(
95
  Clock                 : in  std_logic;
96
  Reset                 : in  std_logic;
97
  uSec_Tick             : in  std_logic;
98
  --
99
  Bus_Address           : in  ADDRESS_TYPE;
100
  Wr_Enable             : in  std_logic;
101
  Wr_Data               : in  DATA_TYPE;
102
  Rd_Enable             : in  std_logic;
103
  Rd_Data               : out DATA_TYPE;
104
  Interrupt             : out std_logic;
105
  --
106
  LCD_E                 : out std_logic;
107
  LCD_RW                : out std_logic;
108
  LCD_RS                : out std_logic;
109
  LCD_D                 : out std_logic_vector(7 downto 0);
110
  LCD_CN                : out std_logic;
111
  LCD_BL                : out std_logic
112
);
113
end entity;
114
 
115
architecture behave of o8_hd44780_8b is
116
 
117
  constant User_Addr    : std_logic_vector(15 downto 2)
118
                          := Address(15 downto 2);
119
  alias  Comp_Addr      is Bus_Address(15 downto 2);
120 191 jshamlet
  signal Addr_Match     : std_logic := '0';
121 175 jshamlet
 
122
  alias  Reg_Addr        is Bus_Address(1 downto 0);
123 191 jshamlet
  signal Reg_Addr_q     : std_logic_vector(1 downto 0) := (others => '0');
124 175 jshamlet
 
125 191 jshamlet
  signal Wr_En          : std_logic := '0';
126
  signal Wr_Data_q      : DATA_TYPE := x"00";
127
  signal Rd_En          : std_logic := '0';
128 175 jshamlet
 
129 191 jshamlet
  signal Reg_Valid      : std_logic := '0';
130
  signal Reg_Sel        : std_logic := '0';
131
  signal Reg_Data       : DATA_TYPE := x"00";
132 175 jshamlet
 
133 213 jshamlet
  signal Tx_Ready       : std_logic := '0';
134 175 jshamlet
 
135
  constant LCD_CONFIG1  : std_logic_vector(7 downto 0) := x"38"; -- Set 4-bit, 2-line mode
136
  constant LCD_CONFIG2  : std_logic_vector(7 downto 0) := x"0C"; -- Turn display on, no cursor
137
  constant LCD_CONFIG3  : std_logic_vector(7 downto 0) := x"01"; -- Clear display
138
  constant LCD_CONFIG4  : std_logic_vector(7 downto 0) := x"06"; -- Positive increment, no shift
139
  constant LCD_CONFIG5  : std_logic_vector(7 downto 0) := x"2A"; -- Print a "*"
140
  constant LCD_CONFIG6  : std_logic_vector(7 downto 0) := x"02"; -- Reset the cursor
141
 
142 191 jshamlet
  signal init_count     : std_logic_vector(2 downto 0) := (others => '0');
143 175 jshamlet
 
144
  constant INIT_40MS    : integer := 40000;
145
  constant INIT_BITS    : integer := ceil_log2(INIT_40MS);
146
  constant INIT_DELAY   : std_logic_vector(INIT_BITS-1 downto 0) :=
147
                          conv_std_logic_vector(INIT_40MS,INIT_BITS);
148
 
149
-- For "long" instructions, such as clear display and return home, we need to wait for more
150
--  than 1.52mS. Experimentally, 2mS seems to work ideally, and for init this isn't an issue
151
  constant CLDSP_2MS    : integer := 2000;
152
  constant CLDSP_DELAY  : std_logic_vector(INIT_BITS-1 downto 0) :=
153
                          conv_std_logic_vector(CLDSP_2MS,INIT_BITS);
154
 
155
 -- For some reason, we are required to wait 80uS before checking the busy flag, despite
156
 --  most instructions completing in 37uS. No clue as to why, but it works
157
  constant BUSY_50US    : integer := 50;
158
  constant BUSY_DELAY   : std_logic_vector(INIT_BITS-1 downto 0) :=
159
                          conv_std_logic_vector(BUSY_50US-1, INIT_BITS);
160
 
161 191 jshamlet
  signal busy_timer     : std_logic_vector(INIT_BITS-1 downto 0) := (others => '0');
162 175 jshamlet
 
163
  constant SNH_600NS    : integer := integer(Sys_Freq * 0.000000600);
164
  constant SNH_BITS     : integer := ceil_log2(SNH_600NS);
165
  constant SNH_DELAY    : std_logic_vector(SNH_BITS-1 downto 0) :=
166
                          conv_std_logic_vector(SNH_600NS-1, SNH_BITS);
167
 
168 191 jshamlet
  signal io_timer       : std_logic_vector(SNH_BITS - 1 downto 0) := (others => '0');
169 175 jshamlet
 
170
  type IO_STATES is (INIT, FN_JUMP, IDLE,
171
                     WR_PREP, WR_SETUP, WR_HOLD,
172
                     BUSY_PREP, BUSY_WAIT,
173
                     ISSUE_INT );
174
  signal io_state       : IO_STATES;
175
 
176 191 jshamlet
  signal LCD_Data       : std_logic_vector(7 downto 0) := x"00";
177
  signal LCD_Addr       : std_logic := '0';
178 175 jshamlet
 
179
--------------------------------------------------------------------------------
180
-- Backlight & Contrast signals
181
--------------------------------------------------------------------------------
182
 
183
  -- Do not adjust alone! DELTA constants must be
184
  --  changed as well.
185
  constant DAC_Width    : integer := 8;
186
 
187
  constant DELTA_1_I    : integer := 1;
188
  constant DELTA_2_I    : integer := 5;
189
  constant DELTA_3_I    : integer := 25;
190
  constant DELTA_4_I    : integer := 75;
191
  constant DELTA_5_I    : integer := 125;
192
  constant DELTA_6_I    : integer := 195;
193
 
194
  constant DELTA_1      : std_logic_vector(DAC_Width-1 downto 0) :=
195
                           conv_std_logic_vector(DELTA_1_I, DAC_Width);
196
  constant DELTA_2      : std_logic_vector(DAC_Width-1 downto 0) :=
197
                           conv_std_logic_vector(DELTA_2_I, DAC_Width);
198
  constant DELTA_3      : std_logic_vector(DAC_Width-1 downto 0) :=
199
                           conv_std_logic_vector(DELTA_3_I, DAC_Width);
200
  constant DELTA_4      : std_logic_vector(DAC_Width-1 downto 0) :=
201
                           conv_std_logic_vector(DELTA_4_I, DAC_Width);
202
  constant DELTA_5      : std_logic_vector(DAC_Width-1 downto 0) :=
203
                           conv_std_logic_vector(DELTA_5_I, DAC_Width);
204
  constant DELTA_6      : std_logic_vector(DAC_Width-1 downto 0) :=
205
                           conv_std_logic_vector(DELTA_6_I, DAC_Width);
206
 
207
  constant MAX_PERIOD   : integer := 2**DAC_Width;
208
  constant DIV_WIDTH    : integer := DAC_Width * 2;
209
 
210
  constant PADJ_1_I     : integer := DELTA_1_I * MAX_PERIOD;
211
  constant PADJ_2_I     : integer := DELTA_2_I * MAX_PERIOD;
212
  constant PADJ_3_I     : integer := DELTA_3_I * MAX_PERIOD;
213
  constant PADJ_4_I     : integer := DELTA_4_I * MAX_PERIOD;
214
  constant PADJ_5_I     : integer := DELTA_5_I * MAX_PERIOD;
215
  constant PADJ_6_I     : integer := DELTA_6_I * MAX_PERIOD;
216
 
217
  constant PADJ_1       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
218
                           conv_std_logic_vector(PADJ_1_I,DIV_WIDTH);
219
  constant PADJ_2       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
220
                           conv_std_logic_vector(PADJ_2_I,DIV_WIDTH);
221
  constant PADJ_3       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
222
                           conv_std_logic_vector(PADJ_3_I,DIV_WIDTH);
223
  constant PADJ_4       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
224
                           conv_std_logic_vector(PADJ_4_I,DIV_WIDTH);
225
  constant PADJ_5       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
226
                           conv_std_logic_vector(PADJ_5_I,DIV_WIDTH);
227
  constant PADJ_6       : std_logic_vector(DIV_WIDTH-1 downto 0) :=
228
                           conv_std_logic_vector(PADJ_6_I,DIV_WIDTH);
229
 
230
  constant CB           : integer := ceil_log2(DIV_WIDTH);
231
 
232 191 jshamlet
  signal LCD_Contrast   : std_logic_vector(7 downto 0) := x"00";
233 175 jshamlet
 
234 191 jshamlet
  signal CN_DACin_q     : std_logic_vector(DAC_WIDTH-1 downto 0) := (others => '0');
235 175 jshamlet
 
236 191 jshamlet
  signal CN_Divisor     : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
237
  signal CN_Dividend    : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
238 175 jshamlet
 
239 191 jshamlet
  signal CN_q           : std_logic_vector(DIV_WIDTH*2-1 downto 0) := (others => '0');
240
  signal CN_diff        : std_logic_vector(DIV_WIDTH downto 0) := (others => '0');
241 175 jshamlet
 
242 191 jshamlet
  signal CN_count       : std_logic_vector(CB-1 downto 0) := (others => '0');
243 175 jshamlet
 
244 191 jshamlet
  signal CN_Next_Wdt    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
245
  signal CN_Next_Per    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
246 175 jshamlet
 
247 191 jshamlet
  signal CN_PWM_Wdt     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
248
  signal CN_PWM_Per     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
249 175 jshamlet
 
250 191 jshamlet
  signal CN_Wdt_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
251
  signal CN_Per_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
252 175 jshamlet
 
253 191 jshamlet
  signal LCD_Bright     : std_logic_vector(7 downto 0) := (others => '0');
254 175 jshamlet
 
255 191 jshamlet
  signal BL_DACin_q     : std_logic_vector(DAC_WIDTH-1 downto 0) := (others => '0');
256 175 jshamlet
 
257 191 jshamlet
  signal BL_Divisor     : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
258
  signal BL_Dividend    : std_logic_vector(DIV_WIDTH-1 downto 0) := (others => '0');
259 175 jshamlet
 
260 191 jshamlet
  signal BL_q           : std_logic_vector(DIV_WIDTH*2-1 downto 0) := (others => '0');
261
  signal BL_diff        : std_logic_vector(DIV_WIDTH downto 0) := (others => '0');
262 175 jshamlet
 
263 191 jshamlet
  signal BL_count       : std_logic_vector(CB-1 downto 0) := (others => '0');
264 175 jshamlet
 
265 191 jshamlet
  signal BL_Next_Wdt    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
266
  signal BL_Next_Per    : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
267 175 jshamlet
 
268 191 jshamlet
  signal BL_PWM_Wdt     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
269
  signal BL_PWM_Per     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
270 175 jshamlet
 
271 191 jshamlet
  signal BL_Wdt_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
272
  signal BL_Per_Ctr     : std_logic_vector(DAC_Width-1 downto 0) := (others => '0');
273 175 jshamlet
 
274
begin
275
 
276
--------------------------------------------------------------------------------
277
-- Open8 Register interface
278
--------------------------------------------------------------------------------
279
 
280
  Addr_Match            <= '1' when Comp_Addr = User_Addr else '0';
281
 
282
  io_reg: process( Clock, Reset )
283
  begin
284
    if( Reset = Reset_Level )then
285
      Reg_Addr_q        <= (others => '0');
286
      Wr_Data_q         <= (others => '0');
287
      Wr_En             <= '0';
288
      Rd_En             <= '0';
289 191 jshamlet
      Rd_Data           <= OPEN8_NULLBUS;
290 175 jshamlet
 
291
      Reg_Valid         <= '0';
292
      Reg_Sel           <= '0';
293
      Reg_Data          <= x"00";
294
 
295
      LCD_Contrast      <= Default_Contrast;
296
      LCD_Bright        <= Default_Brightness;
297
    elsif( rising_edge( Clock ) )then
298
      Reg_Addr_q        <= Reg_Addr;
299
 
300
      Wr_Data_q         <= Wr_Data;
301
      Wr_En             <= Addr_Match and Wr_Enable;
302
 
303
      Reg_Valid         <= '0';
304
 
305
      if( Wr_En = '1' )then
306
        case( Reg_Addr_q )is
307
          when "00" | "01" =>
308
            Reg_Valid   <= '1';
309
            Reg_Sel     <= Reg_Addr_q(0);
310
            Reg_Data    <= Wr_Data_q;
311
          when "10" =>
312
            LCD_Contrast<= Wr_Data_q;
313
          when "11" =>
314
            LCD_Bright  <= Wr_Data_q;
315
          when others => null;
316
        end case;
317
      end if;
318
 
319 191 jshamlet
      Rd_Data           <= OPEN8_NULLBUS;
320 175 jshamlet
      Rd_En             <= Addr_Match and Rd_Enable;
321
      if( Rd_En = '1' )then
322
        case( Reg_Addr_q )is
323
          when "00" | "01" =>
324
            Rd_Data(7)  <= Tx_Ready;
325
          when "10" =>
326
            Rd_Data     <= LCD_Contrast;
327
          when "11" =>
328
            Rd_Data     <= LCD_Bright;
329
          when others => null;
330
        end case;
331
      end if;
332
    end if;
333
  end process;
334
 
335
--------------------------------------------------------------------------------
336
-- LCD and Register logic
337
--------------------------------------------------------------------------------
338
 
339
  LCD_RW                <= '0'; -- Permanently wire the RW line low
340
 
341
  LCD_IO: process( Clock, Reset )
342
  begin
343
    if( Reset = Reset_Level )then
344
      io_state          <= INIT;
345
      init_count        <= (others => '0');
346
      io_timer          <= (others => '0');
347
      busy_timer        <= (others => '0');
348
      LCD_Data          <= (others => '0');
349
      LCD_Addr          <= '0';
350
      LCD_E             <= '0';
351
      LCD_RS            <= '0';
352
      LCD_D             <= (others => '0');
353
      Tx_Ready          <= '0';
354
      Interrupt         <= '0';
355
    elsif( rising_edge(Clock) )then
356
      LCD_E             <= '0';
357
      LCD_RS            <= '0';
358
      LCD_D             <= (others => '0');
359
      Tx_Ready          <= '0';
360
      Interrupt         <= '0';
361
      io_timer          <= io_timer - 1;
362
      busy_timer        <= busy_timer - uSec_Tick;
363
      case( io_state )is
364
 
365
        when INIT =>
366
          busy_timer    <= INIT_DELAY;
367
          init_count    <= (others => '1');
368
          io_state      <= BUSY_WAIT;
369
 
370
        when FN_JUMP =>
371
          io_state      <= WR_PREP;
372
          case( init_count )is
373
            when "000" =>
374
              io_state  <= IDLE;
375
            when "001" =>
376
              LCD_Addr  <= '0';
377
              LCD_Data  <= LCD_CONFIG6; -- Reset the Cursor
378
            when "010" =>
379
              LCD_Addr  <= '1';         -- Print a "*", and
380
              LCD_Data  <= LCD_CONFIG5; --  set RS to 1
381
            when "011" =>
382
              LCD_Data  <= LCD_CONFIG4; -- Entry mode
383
            when "100" =>
384
              LCD_Data  <= LCD_CONFIG3; -- Clear Display
385
            when "101" =>
386
              LCD_Data  <= LCD_CONFIG2; -- Display control
387
            when "110" | "111" =>
388
              LCD_Addr  <= '0';
389
              LCD_Data  <= LCD_CONFIG1; -- Function set
390
            when others => null;
391
          end case;
392
 
393
        when IDLE =>
394
          Tx_Ready      <= '1';
395
          if( Reg_Valid = '1' )then
396
            LCD_Addr    <= Reg_Sel;
397
            LCD_Data    <= Reg_Data;
398
            io_state    <= WR_PREP;
399
          end if;
400
 
401
        when WR_PREP =>
402
          io_timer      <= SNH_DELAY;
403
          io_state      <= WR_SETUP;
404
 
405
        when WR_SETUP =>
406
          LCD_RS        <= LCD_Addr;
407
          LCD_D         <= LCD_Data;
408
          LCD_E         <= '1';
409
          if( io_timer = 0 )then
410
            io_timer    <= SNH_DELAY;
411
            io_state    <= WR_HOLD;
412
          end if;
413
 
414
        when WR_HOLD =>
415
          LCD_RS        <= LCD_Addr;
416
          LCD_D         <= LCD_Data;
417
          if( io_timer = 0 )then
418
            LCD_E       <= '0';
419
            io_state    <= BUSY_PREP;
420
          end if;
421
 
422
        when BUSY_PREP =>
423
          busy_timer    <= BUSY_DELAY;
424
          if( LCD_Addr = '0' and LCD_Data < 4 )then
425
            busy_timer  <= CLDSP_DELAY;
426
          end if;
427
          io_state      <= BUSY_WAIT;
428
 
429
        when BUSY_WAIT =>
430
          if( busy_timer = 0 )then
431
            io_state    <= ISSUE_INT;
432
            if( init_count > 0 )then
433
              init_count<= init_count - 1;
434
              io_state  <= FN_JUMP;
435
            end if;
436
          end if;
437
 
438
        when ISSUE_INT =>
439
          Interrupt     <= '1';
440
          io_state      <= IDLE;
441
 
442
        when others => null;
443
 
444
      end case;
445
 
446
    end if;
447
  end process;
448
 
449
--------------------------------------------------------------------------------
450
-- Contrast control logic (optional)
451
--------------------------------------------------------------------------------
452
 
453
Contrast_Disabled: if( not Use_Contrast )generate
454
  LCD_CN                <= '0';
455
end generate;
456
 
457
Contrast_Enabled: if( Use_Contrast )generate
458
 
459
  CN_diff               <= ('0' & CN_q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
460
                           ('0' & CN_Divisor);
461
 
462
  CN_Dividend<= PADJ_2 when CN_DACin_q >= DELTA_2_I and CN_DACin_q < DELTA_3_I else
463
                PADJ_3 when CN_DACin_q >= DELTA_3_I and CN_DACin_q < DELTA_4_I else
464
                PADJ_4 when CN_DACin_q >= DELTA_4_I and CN_DACin_q < DELTA_5_I else
465
                PADJ_5 when CN_DACin_q >= DELTA_5_I and CN_DACin_q < DELTA_6_I else
466
                PADJ_6 when CN_DACin_q >= DELTA_6_I else
467
                PADJ_1;
468
 
469
  CN_Next_Wdt<= DELTA_1 when CN_DACin_q >= DELTA_1_I and CN_DACin_q < DELTA_2_I else
470
                DELTA_2 when CN_DACin_q >= DELTA_2_I and CN_DACin_q < DELTA_3_I else
471
                DELTA_3 when CN_DACin_q >= DELTA_3_I and CN_DACin_q < DELTA_4_I else
472
                DELTA_4 when CN_DACin_q >= DELTA_4_I and CN_DACin_q < DELTA_5_I else
473
                DELTA_5 when CN_DACin_q >= DELTA_5_I and CN_DACin_q < DELTA_6_I else
474
                DELTA_6 when CN_DACin_q >= DELTA_6_I else
475
                (others => '0');
476
 
477
  CN_Next_Per           <= BL_q(7 downto 0) - 1;
478
 
479
  CN_vDSM_proc: process( Clock, Reset )
480
  begin
481
    if( Reset = Reset_Level )then
482
      CN_q              <= (others => '0');
483
      CN_count          <= (others => '1');
484
      CN_Divisor        <= (others => '0');
485
      CN_DACin_q        <= (others => '0');
486
      CN_PWM_Wdt        <= (others => '0');
487
      CN_PWM_Per        <= (others => '0');
488
      CN_Per_Ctr        <= (others => '0');
489
      CN_Wdt_Ctr        <= (others => '0');
490
      LCD_CN            <= '0';
491
    elsif( rising_edge(Clock) )then
492
      CN_q              <= CN_diff(DIV_WIDTH-1 downto 0) &
493
                           CN_q(DIV_WIDTH-2 downto 0) & '1';
494
      if( CN_diff(DIV_WIDTH) = '1' )then
495
        CN_q            <= CN_q(DIV_WIDTH*2-2 downto 0) & '0';
496
      end if;
497
 
498
      CN_count          <= CN_count + 1;
499
      if( CN_count = DIV_WIDTH )then
500
        CN_PWM_Wdt      <= CN_Next_Wdt;
501
        CN_PWM_Per      <= CN_Next_Per;
502
        CN_DACin_q      <= LCD_Contrast;
503
        CN_Divisor      <= (others => '0');
504
        CN_Divisor(DAC_Width-1 downto 0) <= CN_DACin_q;
505
        CN_q            <= conv_std_logic_vector(0,DIV_WIDTH) & CN_Dividend;
506
        CN_count        <= (others => '0');
507
      end if;
508
 
509
      CN_Per_Ctr        <= CN_Per_Ctr - 1;
510
      CN_Wdt_Ctr        <= CN_Wdt_Ctr - 1;
511
 
512
      LCD_CN            <= '1';
513
      if( CN_Wdt_Ctr = 0 )then
514
        LCD_CN          <= '0';
515
        CN_Wdt_Ctr      <= (others => '0');
516
      end if;
517
 
518
      if( CN_Per_Ctr = 0 )then
519
        CN_Per_Ctr      <= CN_PWM_Per;
520
        CN_Wdt_Ctr      <= CN_PWM_Wdt;
521
      end if;
522
 
523
    end if;
524
  end process;
525
end generate;
526
 
527
--------------------------------------------------------------------------------
528
-- Backlight control logic (optional)
529
--------------------------------------------------------------------------------
530
 
531
Backlight_Disabled: if( not Use_Backlight )generate
532
  LCD_BL                <= '0';
533
end generate;
534
 
535
Backlight_Enabled: if( Use_Backlight )generate
536
 
537
  BL_diff               <= ('0' & BL_q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
538
                           ('0' & BL_Divisor);
539
 
540
  BL_Dividend<= PADJ_2 when BL_DACin_q >= DELTA_2_I and BL_DACin_q < DELTA_3_I else
541
                PADJ_3 when BL_DACin_q >= DELTA_3_I and BL_DACin_q < DELTA_4_I else
542
                PADJ_4 when BL_DACin_q >= DELTA_4_I and BL_DACin_q < DELTA_5_I else
543
                PADJ_5 when BL_DACin_q >= DELTA_5_I and BL_DACin_q < DELTA_6_I else
544
                PADJ_6 when BL_DACin_q >= DELTA_6_I else
545
                PADJ_1;
546
 
547
  BL_Next_Wdt<= DELTA_1 when BL_DACin_q >= DELTA_1_I and BL_DACin_q < DELTA_2_I else
548
                DELTA_2 when BL_DACin_q >= DELTA_2_I and BL_DACin_q < DELTA_3_I else
549
                DELTA_3 when BL_DACin_q >= DELTA_3_I and BL_DACin_q < DELTA_4_I else
550
                DELTA_4 when BL_DACin_q >= DELTA_4_I and BL_DACin_q < DELTA_5_I else
551
                DELTA_5 when BL_DACin_q >= DELTA_5_I and BL_DACin_q < DELTA_6_I else
552
                DELTA_6 when BL_DACin_q >= DELTA_6_I else
553
                (others => '0');
554
 
555
  BL_Next_Per           <= BL_q(7 downto 0) - 1;
556
 
557
  BL_vDSM_proc: process( Clock, Reset )
558
  begin
559
    if( Reset = Reset_Level )then
560
      BL_q              <= (others => '0');
561
      BL_count          <= (others => '1');
562
      BL_Divisor        <= (others => '0');
563
      BL_DACin_q        <= (others => '0');
564
      BL_PWM_Wdt        <= (others => '0');
565
      BL_PWM_Per        <= (others => '0');
566
      BL_Per_Ctr        <= (others => '0');
567
      BL_Wdt_Ctr        <= (others => '0');
568
      LCD_BL            <= '0';
569
    elsif( rising_edge(Clock) )then
570
      BL_q              <= BL_diff(DIV_WIDTH-1 downto 0) &
571
                           BL_q(DIV_WIDTH-2 downto 0) & '1';
572
      if( BL_diff(DIV_WIDTH) = '1' )then
573
        BL_q            <= BL_q(DIV_WIDTH*2-2 downto 0) & '0';
574
      end if;
575
 
576
      BL_count          <= BL_count + 1;
577
      if( BL_count = DIV_WIDTH )then
578
        BL_PWM_Wdt      <= BL_Next_Wdt;
579
        BL_PWM_Per      <= BL_Next_Per;
580
        BL_DACin_q      <= LCD_Bright;
581
        BL_Divisor      <= (others => '0');
582
        BL_Divisor(DAC_Width-1 downto 0) <= BL_DACin_q;
583
        BL_q            <= conv_std_logic_vector(0,DIV_WIDTH) & BL_Dividend;
584
        BL_count        <= (others => '0');
585
      end if;
586
 
587
      BL_Per_Ctr        <= BL_Per_Ctr - 1;
588
      BL_Wdt_Ctr        <= BL_Wdt_Ctr - 1;
589
 
590
      LCD_BL            <= '1';
591
      if( BL_Wdt_Ctr = 0 )then
592
        LCD_BL          <= '0';
593
        BL_Wdt_Ctr      <= (others => '0');
594
      end if;
595
 
596
      if( BL_Per_Ctr = 0 )then
597
        BL_Per_Ctr      <= BL_PWM_Per;
598
        BL_Wdt_Ctr      <= BL_PWM_Wdt;
599
      end if;
600
 
601
    end if;
602
  end process;
603
 
604
end generate;
605
 
606
end architecture;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.