1 |
318 |
jshamlet |
-- Copyright (c)2023 Jeremy Seth Henry
|
2 |
|
|
-- All rights reserved.
|
3 |
|
|
--
|
4 |
|
|
-- Redistribution and use in source and binary forms, with or without
|
5 |
|
|
-- modification, are permitted provided that the following conditions are met:
|
6 |
|
|
-- * Redistributions of source code must retain the above copyright
|
7 |
|
|
-- notice, this list of conditions and the following disclaimer.
|
8 |
|
|
-- * Redistributions in binary form must reproduce the above copyright
|
9 |
|
|
-- notice, this list of conditions and the following disclaimer in the
|
10 |
|
|
-- documentation and/or other materials provided with the distribution,
|
11 |
|
|
-- where applicable (as part of a user interface, debugging port, etc.)
|
12 |
|
|
--
|
13 |
|
|
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
|
14 |
|
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
15 |
|
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
16 |
|
|
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
|
17 |
|
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
18 |
|
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
19 |
|
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
20 |
|
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
21 |
|
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
22 |
|
|
-- THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
23 |
|
|
--
|
24 |
|
|
-- VHDL units : o8_scale_conv
|
25 |
|
|
-- Description: Performs the operation ACC = [(A*B)/C] + D, returning a 33-bit
|
26 |
|
|
-- value. Optionally converts this value into packed BCD format.
|
27 |
|
|
--
|
28 |
|
|
-- Note1: Operands A,B are 16-bit values. The output from this step is a 32-bit
|
29 |
|
|
-- value, which can be divided by Operand C, with the result added to
|
30 |
|
|
-- Operand D. Both operand C and D are 32-bit values.
|
31 |
|
|
-- Note2: If the operation type is '1', or SIGNED, then operand A,B, and D
|
32 |
|
|
-- will be treated as SIGNED values, while operand C remains UNSIGNED
|
33 |
|
|
-- If the operation type is '0', or UNSIGNED, all operands will be
|
34 |
|
|
-- treated as UNSIGNED values.
|
35 |
|
|
-- Note3: Setting Operand C to 0 or 1 will skip the division step. This
|
36 |
|
|
-- resolves the issue of divide by 0, as 0 will be treated as 1, as
|
37 |
|
|
-- well as saving time if the division isn't required.
|
38 |
|
|
--
|
39 |
|
|
-- Register Map:
|
40 |
|
|
-- Offset Bitfield Description Read/Write
|
41 |
326 |
jshamlet |
-- 0x00 AAAAAAAA Operand A, Lower Byte (RW)
|
42 |
|
|
-- 0x01 AAAAAAAA Operand A, Upper Byte (RW)
|
43 |
|
|
-- 0x02 AAAAAAAA Operand B, Lower Byte (RW)
|
44 |
|
|
-- 0x03 AAAAAAAA Operand B, Upper Byte (RW)
|
45 |
|
|
-- 0x04 AAAAAAAA Operand C, Byte 0 (RW)
|
46 |
|
|
-- 0x05 AAAAAAAA Operand C, Byte 1 (RW)
|
47 |
|
|
-- 0x06 AAAAAAAA Operand C, Byte 2 (RW)
|
48 |
|
|
-- 0x07 AAAAAAAA Operand C, Byte 3 (RW)
|
49 |
|
|
-- 0x08 AAAAAAAA Operand D, Byte 0 (RW)
|
50 |
|
|
-- 0x09 AAAAAAAA Operand D, Byte 1 (RW)
|
51 |
|
|
-- 0x0A AAAAAAAA Operand D, Byte 2 (RW)
|
52 |
|
|
-- 0x0B AAAAAAAA Operand D, Byte 3 (RW)
|
53 |
|
|
--
|
54 |
|
|
-- 0x10 AAAAAAAA Accumulator, Byte 0 (R0)
|
55 |
|
|
-- 0x11 AAAAAAAA Accumulator, Byte 1 (R0)
|
56 |
|
|
-- 0x12 AAAAAAAA Accumulator, Byte 2 (R0)
|
57 |
|
|
-- 0x13 AAAAAAAA Accumulator, Byte 3 (R0)
|
58 |
|
|
-- 0x14 A------- Accumulator, Sign / Bit 32 (R0)
|
59 |
|
|
--
|
60 |
|
|
-- 0x18 AAAAAAAA BCD Data, Digits 1,0 (RO)
|
61 |
|
|
-- 0x19 AAAAAAAA BCD Data, Digits 3,2 (RO)
|
62 |
|
|
-- 0x1A AAAAAAAA BCD Data, Digits 5,4 (RO)
|
63 |
|
|
-- 0x1B AAAAAAAA BCD Data, Digits 7,6 (RO)
|
64 |
|
|
-- 0x1C AAAAAAAA BCD Data, Digits 9,8 (RO)
|
65 |
|
|
-- 0x1D A------- BCD Data, Sign [pos (0), neg (1)] (RO)
|
66 |
|
|
--
|
67 |
|
|
-- 0x1F C-----BA Control/Status (RW)
|
68 |
318 |
jshamlet |
-- A = Operation Type:
|
69 |
|
|
-- Unsigned (0) / Signed (1)
|
70 |
|
|
-- B = BCD conversion (if set) (WR)*
|
71 |
|
|
-- BCD result valid if set (RD)
|
72 |
|
|
-- C = Conversion Status (1 = busy)
|
73 |
|
|
--
|
74 |
|
|
-- Note4: Setting bit 1 TRUE will enable the packed BCD conversion system
|
75 |
|
|
-- at the cost of ~3.5uS per conversion. If the most recent result
|
76 |
|
|
-- was converted, reading this bit will return a '1' to indicate
|
77 |
|
|
-- that the data is "fresh", or matches the raw result data.
|
78 |
|
|
-- Setting this bit FALSE will allow a new math operation to occur
|
79 |
|
|
-- WITHOUT altering the last BCD conversion, but will set this bit to
|
80 |
|
|
-- 0 on read to indicate that the BCD value is "stale", or no longer
|
81 |
|
|
-- matches the raw result data.
|
82 |
|
|
--
|
83 |
|
|
-- Revision History
|
84 |
|
|
-- Author Date Change
|
85 |
|
|
------------------ -------- ---------------------------------------------------
|
86 |
|
|
-- Seth Henry 04/10/23 Initial Design
|
87 |
|
|
|
88 |
|
|
library ieee;
|
89 |
|
|
use ieee.std_logic_1164.all;
|
90 |
|
|
use ieee.std_logic_signed.all;
|
91 |
|
|
use ieee.std_logic_arith.all;
|
92 |
|
|
use ieee.std_logic_misc.all;
|
93 |
|
|
|
94 |
|
|
library work;
|
95 |
|
|
use work.open8_pkg.all;
|
96 |
|
|
use work.open8_cfg.all;
|
97 |
|
|
|
98 |
|
|
entity o8_scale_conv is
|
99 |
|
|
generic(
|
100 |
|
|
Address : ADDRESS_TYPE
|
101 |
|
|
);
|
102 |
|
|
port(
|
103 |
|
|
-- Bus IF Interface
|
104 |
|
|
Open8_Bus : in OPEN8_BUS_TYPE;
|
105 |
|
|
Write_Qual : in std_logic;
|
106 |
|
|
Rd_Data : out DATA_TYPE;
|
107 |
|
|
Interrupt : out std_logic
|
108 |
|
|
);
|
109 |
|
|
end entity;
|
110 |
|
|
|
111 |
|
|
architecture behave of o8_scale_conv is
|
112 |
|
|
|
113 |
|
|
-- Bus Interface Signals
|
114 |
|
|
|
115 |
|
|
alias Clock is Open8_Bus.Clock;
|
116 |
|
|
alias Reset is Open8_Bus.Reset;
|
117 |
|
|
alias uSec_Tick is Open8_Bus.uSec_Tick;
|
118 |
|
|
|
119 |
|
|
constant User_Addr : std_logic_vector(15 downto 5) :=
|
120 |
|
|
Address(15 downto 5);
|
121 |
|
|
|
122 |
|
|
alias Comp_Addr is Open8_Bus.Address(15 downto 5);
|
123 |
|
|
signal Addr_Match : std_logic := '0';
|
124 |
|
|
|
125 |
|
|
alias Reg_Sel_d is Open8_Bus.Address(4 downto 0);
|
126 |
|
|
signal Reg_Sel_q : std_logic_vector(4 downto 0) := (others => '0');
|
127 |
|
|
signal Wr_En_d : std_logic := '0';
|
128 |
|
|
signal Wr_En_q : std_logic := '0';
|
129 |
|
|
alias Wr_Data_d is Open8_Bus.Wr_Data;
|
130 |
|
|
signal Wr_Data_q : DATA_TYPE := x"00";
|
131 |
|
|
signal Rd_En_d : std_logic := '0';
|
132 |
|
|
signal Rd_En_q : std_logic := '0';
|
133 |
|
|
|
134 |
|
|
-- Operands A, B, and C are 16-bit with sign-extension, or 17-bit values
|
135 |
|
|
constant OPER_ABC_WIDTH : integer := 17;
|
136 |
|
|
|
137 |
|
|
signal OperandA : signed(OPER_ABC_WIDTH - 1 downto 0) :=
|
138 |
|
|
(others => '0');
|
139 |
|
|
alias OperandA_LB is OperandA(7 downto 0);
|
140 |
|
|
alias OperandA_UB is OperandA(15 downto 8);
|
141 |
|
|
alias OperandA_S is OperandA(15);
|
142 |
|
|
alias OperandA_SX is OperandA(OPER_ABC_WIDTH - 1 downto 16);
|
143 |
|
|
|
144 |
|
|
signal OperandB : signed(OPER_ABC_WIDTH - 1 downto 0) :=
|
145 |
|
|
(others => '0');
|
146 |
|
|
alias OperandB_LB is OperandB(7 downto 0);
|
147 |
|
|
alias OperandB_UB is OperandB(15 downto 8);
|
148 |
|
|
alias OperandB_S is OperandB(15);
|
149 |
|
|
alias OperandB_SX is OperandB(OPER_ABC_WIDTH - 1 downto 16);
|
150 |
|
|
|
151 |
|
|
-- The product will, by definition, be twice as wide as the input operands
|
152 |
|
|
|
153 |
|
|
constant MULT_WIDTH : integer := 2*OPER_ABC_WIDTH;
|
154 |
|
|
signal Product_AB : signed(MULT_WIDTH - 1 downto 0) :=
|
155 |
|
|
(others => '0');
|
156 |
|
|
|
157 |
|
|
-- The divider only needs a single bit for sign extension, so drop one
|
158 |
|
|
-- bit from the multiplier width
|
159 |
|
|
constant DIVIDER_WIDTH : integer := MULT_WIDTH - 1;
|
160 |
|
|
alias Operand_AB is Product_AB(DIVIDER_WIDTH - 1 downto 0);
|
161 |
|
|
|
162 |
|
|
signal OperandC : signed(DIVIDER_WIDTH - 1 downto 0) :=
|
163 |
|
|
(others => '0');
|
164 |
|
|
alias OperandC_B0 is OperandC(7 downto 0);
|
165 |
|
|
alias OperandC_B1 is OperandC(15 downto 8);
|
166 |
|
|
alias OperandC_B2 is OperandC(23 downto 16);
|
167 |
|
|
alias OperandC_B3 is OperandC(31 downto 24);
|
168 |
|
|
alias OperandC_SX is OperandC(DIVIDER_WIDTH - 1 downto 32);
|
169 |
|
|
|
170 |
|
|
signal OperandABC : signed(DIVIDER_WIDTH - 1 downto 0) :=
|
171 |
|
|
(others => '0');
|
172 |
|
|
|
173 |
|
|
signal OperandD : signed(DIVIDER_WIDTH - 1 downto 0) :=
|
174 |
|
|
(others => '0');
|
175 |
|
|
|
176 |
|
|
alias OperandD_B0 is OperandD(7 downto 0);
|
177 |
|
|
alias OperandD_B1 is OperandD(15 downto 8);
|
178 |
|
|
alias OperandD_B2 is OperandD(23 downto 16);
|
179 |
|
|
alias OperandD_B3 is OperandD(31 downto 24);
|
180 |
|
|
alias OperandD_S is OperandD(31);
|
181 |
|
|
alias OperandD_SX is OperandD(DIVIDER_WIDTH - 1 downto 32);
|
182 |
|
|
|
183 |
|
|
signal Accumulator : signed(DIVIDER_WIDTH - 1 downto 0) :=
|
184 |
|
|
(others => '0');
|
185 |
|
|
|
186 |
|
|
alias RAW_Data_B0 is Accumulator(7 downto 0);
|
187 |
|
|
alias RAW_Data_B1 is Accumulator(15 downto 8);
|
188 |
|
|
alias RAW_Data_B2 is Accumulator(23 downto 16);
|
189 |
|
|
alias RAW_Data_B3 is Accumulator(31 downto 24);
|
190 |
|
|
alias RAW_Sign_MSB is Accumulator(32);
|
191 |
|
|
|
192 |
|
|
-- Conversion control signals
|
193 |
|
|
|
194 |
|
|
type CONV_STATES is ( IDLE,
|
195 |
|
|
MULT_WAIT,
|
196 |
|
|
DIV_START, DIV_WAIT, DIV_SKIP,
|
197 |
|
|
ACCUM_WAIT,
|
198 |
|
|
DAA_INIT, DAA_NEGATE,
|
199 |
|
|
DAA_STEP1, DAA_WAIT1,
|
200 |
|
|
DAA_STEP2, DAA_WAIT2,
|
201 |
|
|
DAA_STEP3, DAA_WAIT3,
|
202 |
|
|
DAA_STEP4, DAA_WAIT4,
|
203 |
|
|
DAA_STEP5, DAA_WAIT5,
|
204 |
|
|
DAA_STEP6, DAA_WAIT6,
|
205 |
|
|
DAA_STEP7, DAA_WAIT7,
|
206 |
|
|
DAA_STEP8, DAA_WAIT8,
|
207 |
|
|
DAA_STEP9, DAA_WAIT9,
|
208 |
|
|
DAA_DONE );
|
209 |
|
|
|
210 |
|
|
signal Conv_State : CONV_STATES := IDLE;
|
211 |
|
|
|
212 |
|
|
signal CNV_En : std_logic := '0';
|
213 |
|
|
signal DAA_En : std_logic := '0';
|
214 |
|
|
signal CNV_Busy : std_logic := '0';
|
215 |
|
|
|
216 |
|
|
signal CNV_Mode : std_logic := '0';
|
217 |
|
|
|
218 |
|
|
constant CNV_SIGNED : std_logic := '1';
|
219 |
|
|
constant CNV_UNSIGNED : std_logic := '0';
|
220 |
|
|
|
221 |
|
|
signal CNV_Done : std_logic := '0';
|
222 |
|
|
|
223 |
|
|
-- Decimal adjust / BCD conversion signals
|
224 |
|
|
|
225 |
|
|
signal DAA_Valid : std_logic := '0';
|
226 |
|
|
|
227 |
|
|
constant DAA_ST1_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
228 |
|
|
conv_std_logic_vector(1000000000,DIVIDER_WIDTH);
|
229 |
|
|
|
230 |
|
|
constant DAA_ST2_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
231 |
|
|
conv_std_logic_vector(100000000,DIVIDER_WIDTH);
|
232 |
|
|
|
233 |
|
|
constant DAA_ST3_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
234 |
|
|
conv_std_logic_vector(10000000,DIVIDER_WIDTH);
|
235 |
|
|
|
236 |
|
|
constant DAA_ST4_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
237 |
|
|
conv_std_logic_vector(1000000,DIVIDER_WIDTH);
|
238 |
|
|
|
239 |
|
|
constant DAA_ST5_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
240 |
|
|
conv_std_logic_vector(100000,DIVIDER_WIDTH);
|
241 |
|
|
|
242 |
|
|
constant DAA_ST6_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
243 |
|
|
conv_std_logic_vector(10000,DIVIDER_WIDTH);
|
244 |
|
|
|
245 |
|
|
constant DAA_ST7_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
246 |
|
|
conv_std_logic_vector(1000,DIVIDER_WIDTH);
|
247 |
|
|
|
248 |
|
|
constant DAA_ST8_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
249 |
|
|
conv_std_logic_vector(100,DIVIDER_WIDTH);
|
250 |
|
|
|
251 |
|
|
constant DAA_ST9_DIV : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
252 |
|
|
conv_std_logic_vector(10,DIVIDER_WIDTH);
|
253 |
|
|
|
254 |
|
|
signal DAA_Next : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
255 |
|
|
(others => '0');
|
256 |
|
|
|
257 |
|
|
signal DAA_Sign : std_logic := '0';
|
258 |
|
|
|
259 |
|
|
signal DAA_Buffer : std_logic_vector(39 downto 0) := (others => '0');
|
260 |
|
|
|
261 |
|
|
alias DAA_Data_B0 is DAA_Buffer(7 downto 0);
|
262 |
|
|
alias DAA_Data_B1 is DAA_Buffer(15 downto 8);
|
263 |
|
|
alias DAA_Data_B2 is DAA_Buffer(23 downto 16);
|
264 |
|
|
alias DAA_Data_B3 is DAA_Buffer(31 downto 24);
|
265 |
|
|
alias DAA_Data_B4 is DAA_Buffer(39 downto 32);
|
266 |
|
|
|
267 |
|
|
alias DAA_Digit_0 is DAA_Buffer( 3 downto 0);
|
268 |
|
|
alias DAA_Digit_1 is DAA_Buffer( 7 downto 4);
|
269 |
|
|
alias DAA_Digit_2 is DAA_Buffer(11 downto 8);
|
270 |
|
|
alias DAA_Digit_3 is DAA_Buffer(15 downto 12);
|
271 |
|
|
alias DAA_Digit_4 is DAA_Buffer(19 downto 16);
|
272 |
|
|
alias DAA_Digit_5 is DAA_Buffer(23 downto 20);
|
273 |
|
|
alias DAA_Digit_6 is DAA_Buffer(27 downto 24);
|
274 |
|
|
alias DAA_Digit_7 is DAA_Buffer(31 downto 28);
|
275 |
|
|
alias DAA_Digit_8 is DAA_Buffer(35 downto 32);
|
276 |
|
|
alias DAA_Digit_9 is DAA_Buffer(39 downto 36);
|
277 |
|
|
|
278 |
|
|
-- Integer divide unit signals
|
279 |
|
|
|
280 |
|
|
signal Div_Enable : std_logic := '0';
|
281 |
|
|
signal Div_Busy : std_logic := '0';
|
282 |
|
|
|
283 |
|
|
signal Dividend : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
284 |
|
|
(others => '0');
|
285 |
|
|
|
286 |
|
|
signal Divisor : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
287 |
|
|
(others => '0');
|
288 |
|
|
|
289 |
|
|
signal Quotient : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
290 |
|
|
(others => '0');
|
291 |
|
|
|
292 |
|
|
signal Remainder : std_logic_vector(DIVIDER_WIDTH - 1 downto 0) :=
|
293 |
|
|
(others => '0');
|
294 |
|
|
|
295 |
|
|
begin
|
296 |
|
|
|
297 |
|
|
Addr_Match <= '1' when Comp_Addr = User_Addr else '0';
|
298 |
|
|
Wr_En_d <= Addr_Match and Open8_Bus.Wr_En and Write_Qual;
|
299 |
|
|
Rd_En_d <= Addr_Match and Open8_Bus.Rd_En;
|
300 |
|
|
|
301 |
|
|
reg_proc: process( Clock, Reset )
|
302 |
|
|
begin
|
303 |
|
|
if( Reset = Reset_Level )then
|
304 |
|
|
Reg_Sel_q <= (others => '0');
|
305 |
|
|
Wr_En_q <= '0';
|
306 |
|
|
Wr_Data_q <= x"00";
|
307 |
|
|
Rd_En_q <= '0';
|
308 |
|
|
Rd_Data <= OPEN8_NULLBUS;
|
309 |
|
|
|
310 |
|
|
OperandA <= (others => '0');
|
311 |
|
|
OperandB <= (others => '0');
|
312 |
|
|
OperandC <= (others => '0');
|
313 |
|
|
OperandD <= (others => '0');
|
314 |
|
|
|
315 |
|
|
CNV_En <= '0';
|
316 |
|
|
DAA_En <= '0';
|
317 |
|
|
CNV_Mode <= '0';
|
318 |
|
|
CNV_Busy <= '0';
|
319 |
|
|
|
320 |
|
|
Interrupt <= '0';
|
321 |
|
|
|
322 |
|
|
elsif( rising_edge(Clock) )then
|
323 |
|
|
Reg_Sel_q <= Reg_Sel_d;
|
324 |
|
|
|
325 |
|
|
Wr_En_q <= Wr_En_d;
|
326 |
|
|
Wr_Data_q <= Wr_Data_d;
|
327 |
|
|
|
328 |
|
|
CNV_En <= '0';
|
329 |
|
|
|
330 |
|
|
if( Wr_En_q = '1' )then
|
331 |
|
|
case( Reg_Sel_q )is
|
332 |
|
|
when "00000" =>
|
333 |
|
|
OperandA_LB <= signed(Wr_Data_q);
|
334 |
|
|
when "00001" =>
|
335 |
|
|
OperandA_UB <= signed(Wr_Data_q);
|
336 |
|
|
when "00010" =>
|
337 |
|
|
OperandB_LB <= signed(Wr_Data_q);
|
338 |
|
|
when "00011" =>
|
339 |
|
|
OperandB_UB <= signed(Wr_Data_q);
|
340 |
|
|
when "00100" =>
|
341 |
|
|
OperandC_B0 <= signed(Wr_Data_q);
|
342 |
|
|
when "00101" =>
|
343 |
|
|
OperandC_B1 <= signed(Wr_Data_q);
|
344 |
|
|
when "00110" =>
|
345 |
|
|
OperandC_B2 <= signed(Wr_Data_q);
|
346 |
|
|
when "00111" =>
|
347 |
|
|
OperandC_B3 <= signed(Wr_Data_q);
|
348 |
|
|
when "01000" =>
|
349 |
|
|
OperandD_B0 <= signed(Wr_Data_q);
|
350 |
|
|
when "01001" =>
|
351 |
|
|
OperandD_B1 <= signed(Wr_Data_q);
|
352 |
|
|
when "01010" =>
|
353 |
|
|
OperandD_B2 <= signed(Wr_Data_q);
|
354 |
|
|
when "01011" =>
|
355 |
|
|
OperandD_B3 <= signed(Wr_Data_q);
|
356 |
|
|
|
357 |
|
|
when "11111" =>
|
358 |
|
|
CNV_Mode <= Wr_Data_q(0);
|
359 |
|
|
DAA_En <= Wr_Data_q(1);
|
360 |
|
|
CNV_En <= '1';
|
361 |
|
|
CNV_Busy <= '1';
|
362 |
|
|
when others => null;
|
363 |
|
|
end case;
|
364 |
|
|
end if;
|
365 |
|
|
|
366 |
|
|
Interrupt <= '0';
|
367 |
|
|
if( CNV_Done = '1' )then
|
368 |
|
|
CNV_Busy <= '0';
|
369 |
|
|
Interrupt <= '1';
|
370 |
|
|
end if;
|
371 |
|
|
|
372 |
|
|
OperandA_SX <= (others => '0');
|
373 |
|
|
OperandB_SX <= (others => '0');
|
374 |
|
|
OperandC_SX <= (others => '0');
|
375 |
|
|
OperandD_SX <= (others => '0');
|
376 |
|
|
|
377 |
|
|
if( CNV_Mode = CNV_SIGNED )then
|
378 |
|
|
OperandA_SX <= (others => OperandA_S);
|
379 |
|
|
OperandB_SX <= (others => OperandB_S);
|
380 |
|
|
OperandD_SX <= (others => OperandD_S);
|
381 |
|
|
end if;
|
382 |
|
|
|
383 |
|
|
Rd_En_q <= Rd_En_d;
|
384 |
|
|
Rd_Data <= OPEN8_NULLBUS;
|
385 |
|
|
if( Rd_En_q = '1' )then
|
386 |
|
|
case( Reg_Sel_q )is
|
387 |
|
|
-- Input operands
|
388 |
|
|
when "00000" =>
|
389 |
|
|
Rd_Data <= std_logic_vector(OperandA_LB);
|
390 |
|
|
when "00001" =>
|
391 |
|
|
Rd_Data <= std_logic_vector(OperandA_UB);
|
392 |
|
|
when "00010" =>
|
393 |
|
|
Rd_Data <= std_logic_vector(OperandB_LB);
|
394 |
|
|
when "00011" =>
|
395 |
|
|
Rd_Data <= std_logic_vector(OperandB_UB);
|
396 |
|
|
when "00100" =>
|
397 |
|
|
Rd_Data <= std_logic_vector(OperandC_B0);
|
398 |
|
|
when "00101" =>
|
399 |
|
|
Rd_Data <= std_logic_vector(OperandC_B1);
|
400 |
|
|
when "00110" =>
|
401 |
|
|
Rd_Data <= std_logic_vector(OperandC_B2);
|
402 |
|
|
when "00111" =>
|
403 |
|
|
Rd_Data <= std_logic_vector(OperandC_B3);
|
404 |
|
|
when "01000" =>
|
405 |
|
|
Rd_Data <= std_logic_vector(OperandD_B0);
|
406 |
|
|
when "01001" =>
|
407 |
|
|
Rd_Data <= std_logic_vector(OperandD_B1);
|
408 |
|
|
when "01010" =>
|
409 |
|
|
Rd_Data <= std_logic_vector(OperandD_B2);
|
410 |
|
|
when "01011" =>
|
411 |
|
|
Rd_Data <= std_logic_vector(OperandD_B3);
|
412 |
|
|
|
413 |
|
|
-- Raw results
|
414 |
|
|
when "10000" =>
|
415 |
|
|
Rd_Data <= std_logic_vector(RAW_Data_B0);
|
416 |
|
|
when "10001" =>
|
417 |
|
|
Rd_Data <= std_logic_vector(RAW_Data_B1);
|
418 |
|
|
when "10010" =>
|
419 |
|
|
Rd_Data <= std_logic_vector(RAW_Data_B2);
|
420 |
|
|
when "10011" =>
|
421 |
|
|
Rd_Data <= std_logic_vector(RAW_Data_B3);
|
422 |
|
|
when "10100" =>
|
423 |
|
|
Rd_Data(7) <= RAW_Sign_MSB;
|
424 |
|
|
|
425 |
|
|
-- BCD Conversion
|
426 |
|
|
when "11000" =>
|
427 |
|
|
Rd_Data <= DAA_Data_B0;
|
428 |
|
|
when "11001" =>
|
429 |
|
|
Rd_Data <= DAA_Data_B1;
|
430 |
|
|
when "11010" =>
|
431 |
|
|
Rd_Data <= DAA_Data_B2;
|
432 |
|
|
when "11011" =>
|
433 |
|
|
Rd_Data <= DAA_Data_B3;
|
434 |
|
|
when "11100" =>
|
435 |
|
|
Rd_Data <= DAA_Data_B4;
|
436 |
|
|
when "11101" =>
|
437 |
|
|
Rd_Data(7) <= DAA_Sign;
|
438 |
|
|
|
439 |
|
|
-- Control/Status
|
440 |
|
|
when "11111" =>
|
441 |
|
|
Rd_Data(0) <= CNV_Mode;
|
442 |
|
|
Rd_Data(1) <= DAA_Valid;
|
443 |
|
|
Rd_Data(7) <= CNV_Busy;
|
444 |
|
|
when others => null;
|
445 |
|
|
end case;
|
446 |
|
|
end if;
|
447 |
|
|
|
448 |
|
|
end if;
|
449 |
|
|
end process;
|
450 |
|
|
|
451 |
|
|
Conversion_FSM_proc: process( Clock, Reset )
|
452 |
|
|
begin
|
453 |
|
|
if( Reset = Reset_Level )then
|
454 |
|
|
Conv_State <= IDLE;
|
455 |
|
|
Div_Enable <= '0';
|
456 |
|
|
Dividend <= (others => '0');
|
457 |
|
|
Divisor <= (others => '0');
|
458 |
|
|
OperandABC <= (others => '0');
|
459 |
|
|
Accumulator <= (others => '0');
|
460 |
|
|
DAA_Sign <= '0';
|
461 |
|
|
DAA_Buffer <= (others => '0');
|
462 |
|
|
DAA_Next <= (others => '0');
|
463 |
|
|
CNV_Done <= '0';
|
464 |
|
|
elsif( rising_edge(Clock) )then
|
465 |
|
|
|
466 |
|
|
Div_Enable <= '0';
|
467 |
|
|
CNV_Done <= '0';
|
468 |
|
|
|
469 |
|
|
case Conv_State is
|
470 |
|
|
when IDLE =>
|
471 |
|
|
if( CNV_En = '1' )then
|
472 |
|
|
Conv_State <= MULT_WAIT;
|
473 |
|
|
end if;
|
474 |
|
|
|
475 |
|
|
when MULT_WAIT =>
|
476 |
|
|
-- Skip division if the operand is < 2
|
477 |
|
|
Conv_State <= DIV_SKIP;
|
478 |
|
|
if( OperandC > 1 )then
|
479 |
|
|
Conv_State <= DIV_START;
|
480 |
|
|
end if;
|
481 |
|
|
|
482 |
|
|
when DIV_START =>
|
483 |
|
|
Div_Enable <= '1';
|
484 |
|
|
Dividend <= std_logic_vector(Operand_AB);
|
485 |
|
|
Divisor <= std_logic_vector(OperandC);
|
486 |
|
|
if( Div_Busy = '1' )then
|
487 |
|
|
Conv_State <= DIV_WAIT;
|
488 |
|
|
end if;
|
489 |
|
|
|
490 |
|
|
when DIV_WAIT =>
|
491 |
|
|
if( Div_Busy = '0' )then
|
492 |
|
|
OperandABC <= signed(Quotient);
|
493 |
|
|
Conv_State <= ACCUM_WAIT;
|
494 |
|
|
end if;
|
495 |
|
|
|
496 |
|
|
when DIV_SKIP =>
|
497 |
|
|
OperandABC <= Operand_AB;
|
498 |
|
|
Conv_State <= ACCUM_WAIT;
|
499 |
|
|
|
500 |
|
|
when ACCUM_WAIT =>
|
501 |
|
|
Conv_State <= DAA_INIT;
|
502 |
|
|
if( DAA_En = '0' )then
|
503 |
|
|
DAA_Valid <= '0';
|
504 |
|
|
CNV_Done <= '1';
|
505 |
|
|
Conv_State <= IDLE;
|
506 |
|
|
end if;
|
507 |
|
|
|
508 |
|
|
when DAA_INIT =>
|
509 |
|
|
DAA_Sign <= '0';
|
510 |
|
|
DAA_Next <= std_logic_vector(Accumulator);
|
511 |
|
|
Conv_State <= DAA_STEP1;
|
512 |
|
|
if( RAW_Sign_MSB = '1' and CNV_Mode = CNV_SIGNED )then
|
513 |
|
|
Conv_State <= DAA_NEGATE;
|
514 |
|
|
end if;
|
515 |
|
|
|
516 |
|
|
when DAA_NEGATE =>
|
517 |
|
|
DAA_Sign <= '1';
|
518 |
|
|
DAA_Next <= (not DAA_Next) + 1;
|
519 |
|
|
Conv_State <= DAA_STEP1;
|
520 |
|
|
|
521 |
|
|
when DAA_STEP1 =>
|
522 |
|
|
Dividend <= DAA_Next;
|
523 |
|
|
Divisor <= DAA_ST1_DIV;
|
524 |
|
|
Div_Enable <= '1';
|
525 |
|
|
if( DIV_Busy = '1' )then
|
526 |
|
|
Conv_State <= DAA_WAIT1;
|
527 |
|
|
end if;
|
528 |
|
|
|
529 |
|
|
when DAA_WAIT1 =>
|
530 |
|
|
if( DIV_Busy = '0' )then
|
531 |
|
|
DAA_Digit_9 <= Quotient(3 downto 0);
|
532 |
|
|
DAA_Next <= Remainder;
|
533 |
|
|
Conv_State <= DAA_STEP2;
|
534 |
|
|
end if;
|
535 |
|
|
|
536 |
|
|
when DAA_STEP2 =>
|
537 |
|
|
Dividend <= DAA_Next;
|
538 |
|
|
Divisor <= DAA_ST2_DIV;
|
539 |
|
|
Div_Enable <= '1';
|
540 |
|
|
if( DIV_Busy = '1' )then
|
541 |
|
|
Conv_State <= DAA_WAIT2;
|
542 |
|
|
end if;
|
543 |
|
|
|
544 |
|
|
when DAA_WAIT2 =>
|
545 |
|
|
if( DIV_Busy = '0' )then
|
546 |
|
|
DAA_Digit_8 <= Quotient(3 downto 0);
|
547 |
|
|
DAA_Next <= Remainder;
|
548 |
|
|
Conv_State <= DAA_STEP3;
|
549 |
|
|
end if;
|
550 |
|
|
|
551 |
|
|
when DAA_STEP3 =>
|
552 |
|
|
Dividend <= DAA_Next;
|
553 |
|
|
Divisor <= DAA_ST3_DIV;
|
554 |
|
|
Div_Enable <= '1';
|
555 |
|
|
if( DIV_Busy = '1' )then
|
556 |
|
|
Conv_State <= DAA_WAIT3;
|
557 |
|
|
end if;
|
558 |
|
|
|
559 |
|
|
when DAA_WAIT3 =>
|
560 |
|
|
if( DIV_Busy = '0' )then
|
561 |
|
|
DAA_Digit_7 <= Quotient(3 downto 0);
|
562 |
|
|
DAA_Next <= Remainder;
|
563 |
|
|
Conv_State <= DAA_STEP4;
|
564 |
|
|
end if;
|
565 |
|
|
|
566 |
|
|
when DAA_STEP4 =>
|
567 |
|
|
Dividend <= DAA_Next;
|
568 |
|
|
Divisor <= DAA_ST4_DIV;
|
569 |
|
|
Div_Enable <= '1';
|
570 |
|
|
if( DIV_Busy = '1' )then
|
571 |
|
|
Conv_State <= DAA_WAIT4;
|
572 |
|
|
end if;
|
573 |
|
|
|
574 |
|
|
when DAA_WAIT4 =>
|
575 |
|
|
if( DIV_Busy = '0' )then
|
576 |
|
|
DAA_Digit_6 <= Quotient(3 downto 0);
|
577 |
|
|
DAA_Next <= Remainder;
|
578 |
|
|
Conv_State <= DAA_STEP5;
|
579 |
|
|
end if;
|
580 |
|
|
|
581 |
|
|
when DAA_STEP5 =>
|
582 |
|
|
Dividend <= DAA_Next;
|
583 |
|
|
Divisor <= DAA_ST5_DIV;
|
584 |
|
|
Div_Enable <= '1';
|
585 |
|
|
if( DIV_Busy = '1' )then
|
586 |
|
|
Conv_State <= DAA_WAIT5;
|
587 |
|
|
end if;
|
588 |
|
|
|
589 |
|
|
when DAA_WAIT5 =>
|
590 |
|
|
if( DIV_Busy = '0' )then
|
591 |
|
|
DAA_Digit_5 <= Quotient(3 downto 0);
|
592 |
|
|
DAA_Next <= Remainder;
|
593 |
|
|
Conv_State <= DAA_STEP6;
|
594 |
|
|
end if;
|
595 |
|
|
|
596 |
|
|
when DAA_STEP6 =>
|
597 |
|
|
Dividend <= DAA_Next;
|
598 |
|
|
Divisor <= DAA_ST6_DIV;
|
599 |
|
|
Div_Enable <= '1';
|
600 |
|
|
if( DIV_Busy = '1' )then
|
601 |
|
|
Conv_State <= DAA_WAIT6;
|
602 |
|
|
end if;
|
603 |
|
|
|
604 |
|
|
when DAA_WAIT6 =>
|
605 |
|
|
if( DIV_Busy = '0' )then
|
606 |
|
|
DAA_Digit_4 <= Quotient(3 downto 0);
|
607 |
|
|
DAA_Next <= Remainder;
|
608 |
|
|
Conv_State <= DAA_STEP7;
|
609 |
|
|
end if;
|
610 |
|
|
|
611 |
|
|
when DAA_STEP7 =>
|
612 |
|
|
Dividend <= DAA_Next;
|
613 |
|
|
Divisor <= DAA_ST7_DIV;
|
614 |
|
|
Div_Enable <= '1';
|
615 |
|
|
if( DIV_Busy = '1' )then
|
616 |
|
|
Conv_State <= DAA_WAIT7;
|
617 |
|
|
end if;
|
618 |
|
|
|
619 |
|
|
when DAA_WAIT7 =>
|
620 |
|
|
if( DIV_Busy = '0' )then
|
621 |
|
|
DAA_Digit_3 <= Quotient(3 downto 0);
|
622 |
|
|
DAA_Next <= Remainder;
|
623 |
|
|
Conv_State <= DAA_STEP8;
|
624 |
|
|
end if;
|
625 |
|
|
|
626 |
|
|
when DAA_STEP8 =>
|
627 |
|
|
Dividend <= DAA_Next;
|
628 |
|
|
Divisor <= DAA_ST8_DIV;
|
629 |
|
|
Div_Enable <= '1';
|
630 |
|
|
if( DIV_Busy = '1' )then
|
631 |
|
|
Conv_State <= DAA_WAIT8;
|
632 |
|
|
end if;
|
633 |
|
|
|
634 |
|
|
when DAA_WAIT8 =>
|
635 |
|
|
if( DIV_Busy = '0' )then
|
636 |
|
|
DAA_Digit_2 <= Quotient(3 downto 0);
|
637 |
|
|
DAA_Next <= Remainder;
|
638 |
|
|
Conv_State <= DAA_STEP9;
|
639 |
|
|
end if;
|
640 |
|
|
|
641 |
|
|
when DAA_STEP9 =>
|
642 |
|
|
Dividend <= DAA_Next;
|
643 |
|
|
Divisor <= DAA_ST9_DIV;
|
644 |
|
|
Div_Enable <= '1';
|
645 |
|
|
if( DIV_Busy = '1' )then
|
646 |
|
|
Conv_State <= DAA_WAIT9;
|
647 |
|
|
end if;
|
648 |
|
|
|
649 |
|
|
when DAA_WAIT9 =>
|
650 |
|
|
if( DIV_Busy = '0' )then
|
651 |
|
|
DAA_Digit_1 <= Quotient(3 downto 0);
|
652 |
|
|
DAA_Digit_0 <= Remainder(3 downto 0);
|
653 |
|
|
Conv_State <= DAA_DONE;
|
654 |
|
|
end if;
|
655 |
|
|
|
656 |
|
|
when DAA_DONE =>
|
657 |
|
|
DAA_Valid <= '1';
|
658 |
|
|
CNV_Done <= '1';
|
659 |
|
|
Conv_State <= IDLE;
|
660 |
|
|
|
661 |
|
|
when others => null;
|
662 |
|
|
end case;
|
663 |
|
|
|
664 |
|
|
Product_AB <= OperandA * OperandB;
|
665 |
|
|
Accumulator <= OperandABC + OperandD;
|
666 |
|
|
|
667 |
|
|
end if;
|
668 |
|
|
end process;
|
669 |
|
|
|
670 |
|
|
-- Mult_proc: process( Clock)
|
671 |
|
|
-- begin
|
672 |
|
|
-- if( rising_edge(Clock) )then
|
673 |
|
|
-- Product_AB <= OperandA * OperandB;
|
674 |
|
|
-- end if;
|
675 |
|
|
-- end process;
|
676 |
|
|
|
677 |
|
|
U_DIV : entity work.intdiv
|
678 |
|
|
generic map(
|
679 |
|
|
Div_Width => DIVIDER_WIDTH,
|
680 |
|
|
Reset_Level => Reset_Level
|
681 |
|
|
)
|
682 |
|
|
port map(
|
683 |
|
|
Clock => Clock,
|
684 |
|
|
Reset => Reset,
|
685 |
|
|
--
|
686 |
|
|
Enable => Div_Enable,
|
687 |
|
|
Busy => Div_Busy,
|
688 |
|
|
--
|
689 |
|
|
Dividend => Dividend,
|
690 |
|
|
Divisor => Divisor,
|
691 |
|
|
Quotient => Quotient,
|
692 |
|
|
Remainder => Remainder
|
693 |
|
|
);
|
694 |
|
|
|
695 |
|
|
end architecture;
|