OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elf32-arm.c] - Blame information for rev 161

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 khays
/* 32-bit ELF support for ARM
2
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3
   2008, 2009, 2010, 2011  Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include <limits.h>
24
 
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "elf-bfd.h"
29
#include "elf-vxworks.h"
30
#include "elf/arm.h"
31
 
32
/* Return the relocation section associated with NAME.  HTAB is the
33
   bfd's elf32_arm_link_hash_entry.  */
34
#define RELOC_SECTION(HTAB, NAME) \
35
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
 
37
/* Return size of a relocation entry.  HTAB is the bfd's
38
   elf32_arm_link_hash_entry.  */
39
#define RELOC_SIZE(HTAB) \
40
  ((HTAB)->use_rel \
41
   ? sizeof (Elf32_External_Rel) \
42
   : sizeof (Elf32_External_Rela))
43
 
44
/* Return function to swap relocations in.  HTAB is the bfd's
45
   elf32_arm_link_hash_entry.  */
46
#define SWAP_RELOC_IN(HTAB) \
47
  ((HTAB)->use_rel \
48
   ? bfd_elf32_swap_reloc_in \
49
   : bfd_elf32_swap_reloca_in)
50
 
51
/* Return function to swap relocations out.  HTAB is the bfd's
52
   elf32_arm_link_hash_entry.  */
53
#define SWAP_RELOC_OUT(HTAB) \
54
  ((HTAB)->use_rel \
55
   ? bfd_elf32_swap_reloc_out \
56
   : bfd_elf32_swap_reloca_out)
57
 
58
#define elf_info_to_howto               0
59
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
60
 
61
#define ARM_ELF_ABI_VERSION             0
62
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
63
 
64
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65
                                            struct bfd_link_info *link_info,
66
                                            asection *sec,
67
                                            bfd_byte *contents);
68
 
69
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71
   in that slot.  */
72
 
73
static reloc_howto_type elf32_arm_howto_table_1[] =
74
{
75
  /* No relocation.  */
76
  HOWTO (R_ARM_NONE,            /* type */
77
         0,                      /* rightshift */
78
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
79
         0,                      /* bitsize */
80
         FALSE,                 /* pc_relative */
81
         0,                      /* bitpos */
82
         complain_overflow_dont,/* complain_on_overflow */
83
         bfd_elf_generic_reloc, /* special_function */
84
         "R_ARM_NONE",          /* name */
85
         FALSE,                 /* partial_inplace */
86
         0,                      /* src_mask */
87
         0,                      /* dst_mask */
88
         FALSE),                /* pcrel_offset */
89
 
90
  HOWTO (R_ARM_PC24,            /* type */
91
         2,                     /* rightshift */
92
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
93
         24,                    /* bitsize */
94
         TRUE,                  /* pc_relative */
95
         0,                      /* bitpos */
96
         complain_overflow_signed,/* complain_on_overflow */
97
         bfd_elf_generic_reloc, /* special_function */
98
         "R_ARM_PC24",          /* name */
99
         FALSE,                 /* partial_inplace */
100
         0x00ffffff,            /* src_mask */
101
         0x00ffffff,            /* dst_mask */
102
         TRUE),                 /* pcrel_offset */
103
 
104
  /* 32 bit absolute */
105
  HOWTO (R_ARM_ABS32,           /* type */
106
         0,                      /* rightshift */
107
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
108
         32,                    /* bitsize */
109
         FALSE,                 /* pc_relative */
110
         0,                      /* bitpos */
111
         complain_overflow_bitfield,/* complain_on_overflow */
112
         bfd_elf_generic_reloc, /* special_function */
113
         "R_ARM_ABS32",         /* name */
114
         FALSE,                 /* partial_inplace */
115
         0xffffffff,            /* src_mask */
116
         0xffffffff,            /* dst_mask */
117
         FALSE),                /* pcrel_offset */
118
 
119
  /* standard 32bit pc-relative reloc */
120
  HOWTO (R_ARM_REL32,           /* type */
121
         0,                      /* rightshift */
122
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
123
         32,                    /* bitsize */
124
         TRUE,                  /* pc_relative */
125
         0,                      /* bitpos */
126
         complain_overflow_bitfield,/* complain_on_overflow */
127
         bfd_elf_generic_reloc, /* special_function */
128
         "R_ARM_REL32",         /* name */
129
         FALSE,                 /* partial_inplace */
130
         0xffffffff,            /* src_mask */
131
         0xffffffff,            /* dst_mask */
132
         TRUE),                 /* pcrel_offset */
133
 
134
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
136
         0,                      /* rightshift */
137
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
138
         32,                    /* bitsize */
139
         TRUE,                  /* pc_relative */
140
         0,                      /* bitpos */
141
         complain_overflow_dont,/* complain_on_overflow */
142
         bfd_elf_generic_reloc, /* special_function */
143
         "R_ARM_LDR_PC_G0",     /* name */
144
         FALSE,                 /* partial_inplace */
145
         0xffffffff,            /* src_mask */
146
         0xffffffff,            /* dst_mask */
147
         TRUE),                 /* pcrel_offset */
148
 
149
   /* 16 bit absolute */
150
  HOWTO (R_ARM_ABS16,           /* type */
151
         0,                      /* rightshift */
152
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
153
         16,                    /* bitsize */
154
         FALSE,                 /* pc_relative */
155
         0,                      /* bitpos */
156
         complain_overflow_bitfield,/* complain_on_overflow */
157
         bfd_elf_generic_reloc, /* special_function */
158
         "R_ARM_ABS16",         /* name */
159
         FALSE,                 /* partial_inplace */
160
         0x0000ffff,            /* src_mask */
161
         0x0000ffff,            /* dst_mask */
162
         FALSE),                /* pcrel_offset */
163
 
164
  /* 12 bit absolute */
165
  HOWTO (R_ARM_ABS12,           /* type */
166
         0,                      /* rightshift */
167
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
168
         12,                    /* bitsize */
169
         FALSE,                 /* pc_relative */
170
         0,                      /* bitpos */
171
         complain_overflow_bitfield,/* complain_on_overflow */
172
         bfd_elf_generic_reloc, /* special_function */
173
         "R_ARM_ABS12",         /* name */
174
         FALSE,                 /* partial_inplace */
175
         0x00000fff,            /* src_mask */
176
         0x00000fff,            /* dst_mask */
177
         FALSE),                /* pcrel_offset */
178
 
179
  HOWTO (R_ARM_THM_ABS5,        /* type */
180
         6,                     /* rightshift */
181
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
182
         5,                     /* bitsize */
183
         FALSE,                 /* pc_relative */
184
         0,                      /* bitpos */
185
         complain_overflow_bitfield,/* complain_on_overflow */
186
         bfd_elf_generic_reloc, /* special_function */
187
         "R_ARM_THM_ABS5",      /* name */
188
         FALSE,                 /* partial_inplace */
189
         0x000007e0,            /* src_mask */
190
         0x000007e0,            /* dst_mask */
191
         FALSE),                /* pcrel_offset */
192
 
193
  /* 8 bit absolute */
194
  HOWTO (R_ARM_ABS8,            /* type */
195
         0,                      /* rightshift */
196
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
197
         8,                     /* bitsize */
198
         FALSE,                 /* pc_relative */
199
         0,                      /* bitpos */
200
         complain_overflow_bitfield,/* complain_on_overflow */
201
         bfd_elf_generic_reloc, /* special_function */
202
         "R_ARM_ABS8",          /* name */
203
         FALSE,                 /* partial_inplace */
204
         0x000000ff,            /* src_mask */
205
         0x000000ff,            /* dst_mask */
206
         FALSE),                /* pcrel_offset */
207
 
208
  HOWTO (R_ARM_SBREL32,         /* type */
209
         0,                      /* rightshift */
210
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
211
         32,                    /* bitsize */
212
         FALSE,                 /* pc_relative */
213
         0,                      /* bitpos */
214
         complain_overflow_dont,/* complain_on_overflow */
215
         bfd_elf_generic_reloc, /* special_function */
216
         "R_ARM_SBREL32",       /* name */
217
         FALSE,                 /* partial_inplace */
218
         0xffffffff,            /* src_mask */
219
         0xffffffff,            /* dst_mask */
220
         FALSE),                /* pcrel_offset */
221
 
222
  HOWTO (R_ARM_THM_CALL,        /* type */
223
         1,                     /* rightshift */
224
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
225
         24,                    /* bitsize */
226
         TRUE,                  /* pc_relative */
227
         0,                      /* bitpos */
228
         complain_overflow_signed,/* complain_on_overflow */
229
         bfd_elf_generic_reloc, /* special_function */
230
         "R_ARM_THM_CALL",      /* name */
231
         FALSE,                 /* partial_inplace */
232 161 khays
         0x07ff2fff,            /* src_mask */
233
         0x07ff2fff,            /* dst_mask */
234 14 khays
         TRUE),                 /* pcrel_offset */
235
 
236
  HOWTO (R_ARM_THM_PC8,         /* type */
237
         1,                     /* rightshift */
238
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
239
         8,                     /* bitsize */
240
         TRUE,                  /* pc_relative */
241
         0,                      /* bitpos */
242
         complain_overflow_signed,/* complain_on_overflow */
243
         bfd_elf_generic_reloc, /* special_function */
244
         "R_ARM_THM_PC8",       /* name */
245
         FALSE,                 /* partial_inplace */
246
         0x000000ff,            /* src_mask */
247
         0x000000ff,            /* dst_mask */
248
         TRUE),                 /* pcrel_offset */
249
 
250
  HOWTO (R_ARM_BREL_ADJ,        /* type */
251
         1,                     /* rightshift */
252
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
253
         32,                    /* bitsize */
254
         FALSE,                 /* pc_relative */
255
         0,                      /* bitpos */
256
         complain_overflow_signed,/* complain_on_overflow */
257
         bfd_elf_generic_reloc, /* special_function */
258
         "R_ARM_BREL_ADJ",      /* name */
259
         FALSE,                 /* partial_inplace */
260
         0xffffffff,            /* src_mask */
261
         0xffffffff,            /* dst_mask */
262
         FALSE),                /* pcrel_offset */
263
 
264
  HOWTO (R_ARM_TLS_DESC,        /* type */
265
         0,                      /* rightshift */
266
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
267
         32,                    /* bitsize */
268
         FALSE,                 /* pc_relative */
269
         0,                      /* bitpos */
270
         complain_overflow_bitfield,/* complain_on_overflow */
271
         bfd_elf_generic_reloc, /* special_function */
272
         "R_ARM_TLS_DESC",      /* name */
273
         FALSE,                 /* partial_inplace */
274
         0xffffffff,            /* src_mask */
275
         0xffffffff,            /* dst_mask */
276
         FALSE),                /* pcrel_offset */
277
 
278
  HOWTO (R_ARM_THM_SWI8,        /* type */
279
         0,                      /* rightshift */
280
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
281
         0,                      /* bitsize */
282
         FALSE,                 /* pc_relative */
283
         0,                      /* bitpos */
284
         complain_overflow_signed,/* complain_on_overflow */
285
         bfd_elf_generic_reloc, /* special_function */
286
         "R_ARM_SWI8",          /* name */
287
         FALSE,                 /* partial_inplace */
288
         0x00000000,            /* src_mask */
289
         0x00000000,            /* dst_mask */
290
         FALSE),                /* pcrel_offset */
291
 
292
  /* BLX instruction for the ARM.  */
293
  HOWTO (R_ARM_XPC25,           /* type */
294
         2,                     /* rightshift */
295
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
296 161 khays
         24,                    /* bitsize */
297 14 khays
         TRUE,                  /* pc_relative */
298
         0,                      /* bitpos */
299
         complain_overflow_signed,/* complain_on_overflow */
300
         bfd_elf_generic_reloc, /* special_function */
301
         "R_ARM_XPC25",         /* name */
302
         FALSE,                 /* partial_inplace */
303
         0x00ffffff,            /* src_mask */
304
         0x00ffffff,            /* dst_mask */
305
         TRUE),                 /* pcrel_offset */
306
 
307
  /* BLX instruction for the Thumb.  */
308
  HOWTO (R_ARM_THM_XPC22,       /* type */
309
         2,                     /* rightshift */
310
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
311 161 khays
         24,                    /* bitsize */
312 14 khays
         TRUE,                  /* pc_relative */
313
         0,                      /* bitpos */
314
         complain_overflow_signed,/* complain_on_overflow */
315
         bfd_elf_generic_reloc, /* special_function */
316
         "R_ARM_THM_XPC22",     /* name */
317
         FALSE,                 /* partial_inplace */
318 161 khays
         0x07ff2fff,            /* src_mask */
319
         0x07ff2fff,            /* dst_mask */
320 14 khays
         TRUE),                 /* pcrel_offset */
321
 
322
  /* Dynamic TLS relocations.  */
323
 
324
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
325
         0,                     /* rightshift */
326
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
327
         32,                    /* bitsize */
328
         FALSE,                 /* pc_relative */
329
         0,                     /* bitpos */
330
         complain_overflow_bitfield,/* complain_on_overflow */
331
         bfd_elf_generic_reloc, /* special_function */
332
         "R_ARM_TLS_DTPMOD32",  /* name */
333
         TRUE,                  /* partial_inplace */
334
         0xffffffff,            /* src_mask */
335
         0xffffffff,            /* dst_mask */
336
         FALSE),                /* pcrel_offset */
337
 
338
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
339
         0,                     /* rightshift */
340
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
341
         32,                    /* bitsize */
342
         FALSE,                 /* pc_relative */
343
         0,                     /* bitpos */
344
         complain_overflow_bitfield,/* complain_on_overflow */
345
         bfd_elf_generic_reloc, /* special_function */
346
         "R_ARM_TLS_DTPOFF32",  /* name */
347
         TRUE,                  /* partial_inplace */
348
         0xffffffff,            /* src_mask */
349
         0xffffffff,            /* dst_mask */
350
         FALSE),                /* pcrel_offset */
351
 
352
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
353
         0,                     /* rightshift */
354
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
355
         32,                    /* bitsize */
356
         FALSE,                 /* pc_relative */
357
         0,                     /* bitpos */
358
         complain_overflow_bitfield,/* complain_on_overflow */
359
         bfd_elf_generic_reloc, /* special_function */
360
         "R_ARM_TLS_TPOFF32",   /* name */
361
         TRUE,                  /* partial_inplace */
362
         0xffffffff,            /* src_mask */
363
         0xffffffff,            /* dst_mask */
364
         FALSE),                /* pcrel_offset */
365
 
366
  /* Relocs used in ARM Linux */
367
 
368
  HOWTO (R_ARM_COPY,            /* type */
369
         0,                     /* rightshift */
370
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
371
         32,                    /* bitsize */
372
         FALSE,                 /* pc_relative */
373
         0,                     /* bitpos */
374
         complain_overflow_bitfield,/* complain_on_overflow */
375
         bfd_elf_generic_reloc, /* special_function */
376
         "R_ARM_COPY",          /* name */
377
         TRUE,                  /* partial_inplace */
378
         0xffffffff,            /* src_mask */
379
         0xffffffff,            /* dst_mask */
380
         FALSE),                /* pcrel_offset */
381
 
382
  HOWTO (R_ARM_GLOB_DAT,        /* type */
383
         0,                     /* rightshift */
384
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
385
         32,                    /* bitsize */
386
         FALSE,                 /* pc_relative */
387
         0,                     /* bitpos */
388
         complain_overflow_bitfield,/* complain_on_overflow */
389
         bfd_elf_generic_reloc, /* special_function */
390
         "R_ARM_GLOB_DAT",      /* name */
391
         TRUE,                  /* partial_inplace */
392
         0xffffffff,            /* src_mask */
393
         0xffffffff,            /* dst_mask */
394
         FALSE),                /* pcrel_offset */
395
 
396
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
397
         0,                     /* rightshift */
398
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
399
         32,                    /* bitsize */
400
         FALSE,                 /* pc_relative */
401
         0,                     /* bitpos */
402
         complain_overflow_bitfield,/* complain_on_overflow */
403
         bfd_elf_generic_reloc, /* special_function */
404
         "R_ARM_JUMP_SLOT",     /* name */
405
         TRUE,                  /* partial_inplace */
406
         0xffffffff,            /* src_mask */
407
         0xffffffff,            /* dst_mask */
408
         FALSE),                /* pcrel_offset */
409
 
410
  HOWTO (R_ARM_RELATIVE,        /* type */
411
         0,                     /* rightshift */
412
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
413
         32,                    /* bitsize */
414
         FALSE,                 /* pc_relative */
415
         0,                     /* bitpos */
416
         complain_overflow_bitfield,/* complain_on_overflow */
417
         bfd_elf_generic_reloc, /* special_function */
418
         "R_ARM_RELATIVE",      /* name */
419
         TRUE,                  /* partial_inplace */
420
         0xffffffff,            /* src_mask */
421
         0xffffffff,            /* dst_mask */
422
         FALSE),                /* pcrel_offset */
423
 
424
  HOWTO (R_ARM_GOTOFF32,        /* type */
425
         0,                     /* rightshift */
426
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
427
         32,                    /* bitsize */
428
         FALSE,                 /* pc_relative */
429
         0,                     /* bitpos */
430
         complain_overflow_bitfield,/* complain_on_overflow */
431
         bfd_elf_generic_reloc, /* special_function */
432
         "R_ARM_GOTOFF32",      /* name */
433
         TRUE,                  /* partial_inplace */
434
         0xffffffff,            /* src_mask */
435
         0xffffffff,            /* dst_mask */
436
         FALSE),                /* pcrel_offset */
437
 
438
  HOWTO (R_ARM_GOTPC,           /* type */
439
         0,                     /* rightshift */
440
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
441
         32,                    /* bitsize */
442
         TRUE,                  /* pc_relative */
443
         0,                     /* bitpos */
444
         complain_overflow_bitfield,/* complain_on_overflow */
445
         bfd_elf_generic_reloc, /* special_function */
446
         "R_ARM_GOTPC",         /* name */
447
         TRUE,                  /* partial_inplace */
448
         0xffffffff,            /* src_mask */
449
         0xffffffff,            /* dst_mask */
450
         TRUE),                 /* pcrel_offset */
451
 
452
  HOWTO (R_ARM_GOT32,           /* type */
453
         0,                     /* rightshift */
454
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
455
         32,                    /* bitsize */
456
         FALSE,                 /* pc_relative */
457
         0,                     /* bitpos */
458
         complain_overflow_bitfield,/* complain_on_overflow */
459
         bfd_elf_generic_reloc, /* special_function */
460
         "R_ARM_GOT32",         /* name */
461
         TRUE,                  /* partial_inplace */
462
         0xffffffff,            /* src_mask */
463
         0xffffffff,            /* dst_mask */
464
         FALSE),                /* pcrel_offset */
465
 
466
  HOWTO (R_ARM_PLT32,           /* type */
467
         2,                     /* rightshift */
468
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
469
         24,                    /* bitsize */
470
         TRUE,                  /* pc_relative */
471
         0,                     /* bitpos */
472
         complain_overflow_bitfield,/* complain_on_overflow */
473
         bfd_elf_generic_reloc, /* special_function */
474
         "R_ARM_PLT32",         /* name */
475
         FALSE,                 /* partial_inplace */
476
         0x00ffffff,            /* src_mask */
477
         0x00ffffff,            /* dst_mask */
478
         TRUE),                 /* pcrel_offset */
479
 
480
  HOWTO (R_ARM_CALL,            /* type */
481
         2,                     /* rightshift */
482
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
483
         24,                    /* bitsize */
484
         TRUE,                  /* pc_relative */
485
         0,                      /* bitpos */
486
         complain_overflow_signed,/* complain_on_overflow */
487
         bfd_elf_generic_reloc, /* special_function */
488
         "R_ARM_CALL",          /* name */
489
         FALSE,                 /* partial_inplace */
490
         0x00ffffff,            /* src_mask */
491
         0x00ffffff,            /* dst_mask */
492
         TRUE),                 /* pcrel_offset */
493
 
494
  HOWTO (R_ARM_JUMP24,          /* type */
495
         2,                     /* rightshift */
496
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
497
         24,                    /* bitsize */
498
         TRUE,                  /* pc_relative */
499
         0,                      /* bitpos */
500
         complain_overflow_signed,/* complain_on_overflow */
501
         bfd_elf_generic_reloc, /* special_function */
502
         "R_ARM_JUMP24",        /* name */
503
         FALSE,                 /* partial_inplace */
504
         0x00ffffff,            /* src_mask */
505
         0x00ffffff,            /* dst_mask */
506
         TRUE),                 /* pcrel_offset */
507
 
508
  HOWTO (R_ARM_THM_JUMP24,      /* type */
509
         1,                     /* rightshift */
510
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
511
         24,                    /* bitsize */
512
         TRUE,                  /* pc_relative */
513
         0,                      /* bitpos */
514
         complain_overflow_signed,/* complain_on_overflow */
515
         bfd_elf_generic_reloc, /* special_function */
516
         "R_ARM_THM_JUMP24",    /* name */
517
         FALSE,                 /* partial_inplace */
518
         0x07ff2fff,            /* src_mask */
519
         0x07ff2fff,            /* dst_mask */
520
         TRUE),                 /* pcrel_offset */
521
 
522
  HOWTO (R_ARM_BASE_ABS,        /* type */
523
         0,                      /* rightshift */
524
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
525
         32,                    /* bitsize */
526
         FALSE,                 /* pc_relative */
527
         0,                      /* bitpos */
528
         complain_overflow_dont,/* complain_on_overflow */
529
         bfd_elf_generic_reloc, /* special_function */
530
         "R_ARM_BASE_ABS",      /* name */
531
         FALSE,                 /* partial_inplace */
532
         0xffffffff,            /* src_mask */
533
         0xffffffff,            /* dst_mask */
534
         FALSE),                /* pcrel_offset */
535
 
536
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
537
         0,                      /* rightshift */
538
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
539
         12,                    /* bitsize */
540
         TRUE,                  /* pc_relative */
541
         0,                      /* bitpos */
542
         complain_overflow_dont,/* complain_on_overflow */
543
         bfd_elf_generic_reloc, /* special_function */
544
         "R_ARM_ALU_PCREL_7_0", /* name */
545
         FALSE,                 /* partial_inplace */
546
         0x00000fff,            /* src_mask */
547
         0x00000fff,            /* dst_mask */
548
         TRUE),                 /* pcrel_offset */
549
 
550
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
551
         0,                      /* rightshift */
552
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
553
         12,                    /* bitsize */
554
         TRUE,                  /* pc_relative */
555
         8,                     /* bitpos */
556
         complain_overflow_dont,/* complain_on_overflow */
557
         bfd_elf_generic_reloc, /* special_function */
558
         "R_ARM_ALU_PCREL_15_8",/* name */
559
         FALSE,                 /* partial_inplace */
560
         0x00000fff,            /* src_mask */
561
         0x00000fff,            /* dst_mask */
562
         TRUE),                 /* pcrel_offset */
563
 
564
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
565
         0,                      /* rightshift */
566
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
567
         12,                    /* bitsize */
568
         TRUE,                  /* pc_relative */
569
         16,                    /* bitpos */
570
         complain_overflow_dont,/* complain_on_overflow */
571
         bfd_elf_generic_reloc, /* special_function */
572
         "R_ARM_ALU_PCREL_23_15",/* name */
573
         FALSE,                 /* partial_inplace */
574
         0x00000fff,            /* src_mask */
575
         0x00000fff,            /* dst_mask */
576
         TRUE),                 /* pcrel_offset */
577
 
578
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
579
         0,                      /* rightshift */
580
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
581
         12,                    /* bitsize */
582
         FALSE,                 /* pc_relative */
583
         0,                      /* bitpos */
584
         complain_overflow_dont,/* complain_on_overflow */
585
         bfd_elf_generic_reloc, /* special_function */
586
         "R_ARM_LDR_SBREL_11_0",/* name */
587
         FALSE,                 /* partial_inplace */
588
         0x00000fff,            /* src_mask */
589
         0x00000fff,            /* dst_mask */
590
         FALSE),                /* pcrel_offset */
591
 
592
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593
         0,                      /* rightshift */
594
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
595
         8,                     /* bitsize */
596
         FALSE,                 /* pc_relative */
597
         12,                    /* bitpos */
598
         complain_overflow_dont,/* complain_on_overflow */
599
         bfd_elf_generic_reloc, /* special_function */
600
         "R_ARM_ALU_SBREL_19_12",/* name */
601
         FALSE,                 /* partial_inplace */
602
         0x000ff000,            /* src_mask */
603
         0x000ff000,            /* dst_mask */
604
         FALSE),                /* pcrel_offset */
605
 
606
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607
         0,                      /* rightshift */
608
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
609
         8,                     /* bitsize */
610
         FALSE,                 /* pc_relative */
611
         20,                    /* bitpos */
612
         complain_overflow_dont,/* complain_on_overflow */
613
         bfd_elf_generic_reloc, /* special_function */
614
         "R_ARM_ALU_SBREL_27_20",/* name */
615
         FALSE,                 /* partial_inplace */
616
         0x0ff00000,            /* src_mask */
617
         0x0ff00000,            /* dst_mask */
618
         FALSE),                /* pcrel_offset */
619
 
620
  HOWTO (R_ARM_TARGET1,         /* type */
621
         0,                      /* rightshift */
622
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
623
         32,                    /* bitsize */
624
         FALSE,                 /* pc_relative */
625
         0,                      /* bitpos */
626
         complain_overflow_dont,/* complain_on_overflow */
627
         bfd_elf_generic_reloc, /* special_function */
628
         "R_ARM_TARGET1",       /* name */
629
         FALSE,                 /* partial_inplace */
630
         0xffffffff,            /* src_mask */
631
         0xffffffff,            /* dst_mask */
632
         FALSE),                /* pcrel_offset */
633
 
634
  HOWTO (R_ARM_ROSEGREL32,      /* type */
635
         0,                      /* rightshift */
636
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
637
         32,                    /* bitsize */
638
         FALSE,                 /* pc_relative */
639
         0,                      /* bitpos */
640
         complain_overflow_dont,/* complain_on_overflow */
641
         bfd_elf_generic_reloc, /* special_function */
642
         "R_ARM_ROSEGREL32",    /* name */
643
         FALSE,                 /* partial_inplace */
644
         0xffffffff,            /* src_mask */
645
         0xffffffff,            /* dst_mask */
646
         FALSE),                /* pcrel_offset */
647
 
648
  HOWTO (R_ARM_V4BX,            /* type */
649
         0,                      /* rightshift */
650
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
651
         32,                    /* bitsize */
652
         FALSE,                 /* pc_relative */
653
         0,                      /* bitpos */
654
         complain_overflow_dont,/* complain_on_overflow */
655
         bfd_elf_generic_reloc, /* special_function */
656
         "R_ARM_V4BX",          /* name */
657
         FALSE,                 /* partial_inplace */
658
         0xffffffff,            /* src_mask */
659
         0xffffffff,            /* dst_mask */
660
         FALSE),                /* pcrel_offset */
661
 
662
  HOWTO (R_ARM_TARGET2,         /* type */
663
         0,                      /* rightshift */
664
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
665
         32,                    /* bitsize */
666
         FALSE,                 /* pc_relative */
667
         0,                      /* bitpos */
668
         complain_overflow_signed,/* complain_on_overflow */
669
         bfd_elf_generic_reloc, /* special_function */
670
         "R_ARM_TARGET2",       /* name */
671
         FALSE,                 /* partial_inplace */
672
         0xffffffff,            /* src_mask */
673
         0xffffffff,            /* dst_mask */
674
         TRUE),                 /* pcrel_offset */
675
 
676
  HOWTO (R_ARM_PREL31,          /* type */
677
         0,                      /* rightshift */
678
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
679
         31,                    /* bitsize */
680
         TRUE,                  /* pc_relative */
681
         0,                      /* bitpos */
682
         complain_overflow_signed,/* complain_on_overflow */
683
         bfd_elf_generic_reloc, /* special_function */
684
         "R_ARM_PREL31",        /* name */
685
         FALSE,                 /* partial_inplace */
686
         0x7fffffff,            /* src_mask */
687
         0x7fffffff,            /* dst_mask */
688
         TRUE),                 /* pcrel_offset */
689
 
690
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
691
         0,                      /* rightshift */
692
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
693
         16,                    /* bitsize */
694
         FALSE,                 /* pc_relative */
695
         0,                      /* bitpos */
696
         complain_overflow_dont,/* complain_on_overflow */
697
         bfd_elf_generic_reloc, /* special_function */
698
         "R_ARM_MOVW_ABS_NC",   /* name */
699
         FALSE,                 /* partial_inplace */
700
         0x000f0fff,            /* src_mask */
701
         0x000f0fff,            /* dst_mask */
702
         FALSE),                /* pcrel_offset */
703
 
704
  HOWTO (R_ARM_MOVT_ABS,        /* type */
705
         0,                      /* rightshift */
706
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
707
         16,                    /* bitsize */
708
         FALSE,                 /* pc_relative */
709
         0,                      /* bitpos */
710
         complain_overflow_bitfield,/* complain_on_overflow */
711
         bfd_elf_generic_reloc, /* special_function */
712
         "R_ARM_MOVT_ABS",      /* name */
713
         FALSE,                 /* partial_inplace */
714
         0x000f0fff,            /* src_mask */
715
         0x000f0fff,            /* dst_mask */
716
         FALSE),                /* pcrel_offset */
717
 
718
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
719
         0,                      /* rightshift */
720
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
721
         16,                    /* bitsize */
722
         TRUE,                  /* pc_relative */
723
         0,                      /* bitpos */
724
         complain_overflow_dont,/* complain_on_overflow */
725
         bfd_elf_generic_reloc, /* special_function */
726
         "R_ARM_MOVW_PREL_NC",  /* name */
727
         FALSE,                 /* partial_inplace */
728
         0x000f0fff,            /* src_mask */
729
         0x000f0fff,            /* dst_mask */
730
         TRUE),                 /* pcrel_offset */
731
 
732
  HOWTO (R_ARM_MOVT_PREL,       /* type */
733
         0,                      /* rightshift */
734
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
735
         16,                    /* bitsize */
736
         TRUE,                  /* pc_relative */
737
         0,                      /* bitpos */
738
         complain_overflow_bitfield,/* complain_on_overflow */
739
         bfd_elf_generic_reloc, /* special_function */
740
         "R_ARM_MOVT_PREL",     /* name */
741
         FALSE,                 /* partial_inplace */
742
         0x000f0fff,            /* src_mask */
743
         0x000f0fff,            /* dst_mask */
744
         TRUE),                 /* pcrel_offset */
745
 
746
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747
         0,                      /* rightshift */
748
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
749
         16,                    /* bitsize */
750
         FALSE,                 /* pc_relative */
751
         0,                      /* bitpos */
752
         complain_overflow_dont,/* complain_on_overflow */
753
         bfd_elf_generic_reloc, /* special_function */
754
         "R_ARM_THM_MOVW_ABS_NC",/* name */
755
         FALSE,                 /* partial_inplace */
756
         0x040f70ff,            /* src_mask */
757
         0x040f70ff,            /* dst_mask */
758
         FALSE),                /* pcrel_offset */
759
 
760
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
761
         0,                      /* rightshift */
762
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
763
         16,                    /* bitsize */
764
         FALSE,                 /* pc_relative */
765
         0,                      /* bitpos */
766
         complain_overflow_bitfield,/* complain_on_overflow */
767
         bfd_elf_generic_reloc, /* special_function */
768
         "R_ARM_THM_MOVT_ABS",  /* name */
769
         FALSE,                 /* partial_inplace */
770
         0x040f70ff,            /* src_mask */
771
         0x040f70ff,            /* dst_mask */
772
         FALSE),                /* pcrel_offset */
773
 
774
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775
         0,                      /* rightshift */
776
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
777
         16,                    /* bitsize */
778
         TRUE,                  /* pc_relative */
779
         0,                      /* bitpos */
780
         complain_overflow_dont,/* complain_on_overflow */
781
         bfd_elf_generic_reloc, /* special_function */
782
         "R_ARM_THM_MOVW_PREL_NC",/* name */
783
         FALSE,                 /* partial_inplace */
784
         0x040f70ff,            /* src_mask */
785
         0x040f70ff,            /* dst_mask */
786
         TRUE),                 /* pcrel_offset */
787
 
788
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
789
         0,                      /* rightshift */
790
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
791
         16,                    /* bitsize */
792
         TRUE,                  /* pc_relative */
793
         0,                      /* bitpos */
794
         complain_overflow_bitfield,/* complain_on_overflow */
795
         bfd_elf_generic_reloc, /* special_function */
796
         "R_ARM_THM_MOVT_PREL", /* name */
797
         FALSE,                 /* partial_inplace */
798
         0x040f70ff,            /* src_mask */
799
         0x040f70ff,            /* dst_mask */
800
         TRUE),                 /* pcrel_offset */
801
 
802
  HOWTO (R_ARM_THM_JUMP19,      /* type */
803
         1,                     /* rightshift */
804
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
805
         19,                    /* bitsize */
806
         TRUE,                  /* pc_relative */
807
         0,                      /* bitpos */
808
         complain_overflow_signed,/* complain_on_overflow */
809
         bfd_elf_generic_reloc, /* special_function */
810
         "R_ARM_THM_JUMP19",    /* name */
811
         FALSE,                 /* partial_inplace */
812
         0x043f2fff,            /* src_mask */
813
         0x043f2fff,            /* dst_mask */
814
         TRUE),                 /* pcrel_offset */
815
 
816
  HOWTO (R_ARM_THM_JUMP6,       /* type */
817
         1,                     /* rightshift */
818
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
819
         6,                     /* bitsize */
820
         TRUE,                  /* pc_relative */
821
         0,                      /* bitpos */
822
         complain_overflow_unsigned,/* complain_on_overflow */
823
         bfd_elf_generic_reloc, /* special_function */
824
         "R_ARM_THM_JUMP6",     /* name */
825
         FALSE,                 /* partial_inplace */
826
         0x02f8,                /* src_mask */
827
         0x02f8,                /* dst_mask */
828
         TRUE),                 /* pcrel_offset */
829
 
830
  /* These are declared as 13-bit signed relocations because we can
831
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832
     versa.  */
833
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834
         0,                      /* rightshift */
835
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
836
         13,                    /* bitsize */
837
         TRUE,                  /* pc_relative */
838
         0,                      /* bitpos */
839
         complain_overflow_dont,/* complain_on_overflow */
840
         bfd_elf_generic_reloc, /* special_function */
841
         "R_ARM_THM_ALU_PREL_11_0",/* name */
842
         FALSE,                 /* partial_inplace */
843
         0xffffffff,            /* src_mask */
844
         0xffffffff,            /* dst_mask */
845
         TRUE),                 /* pcrel_offset */
846
 
847
  HOWTO (R_ARM_THM_PC12,        /* type */
848
         0,                      /* rightshift */
849
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
850
         13,                    /* bitsize */
851
         TRUE,                  /* pc_relative */
852
         0,                      /* bitpos */
853
         complain_overflow_dont,/* complain_on_overflow */
854
         bfd_elf_generic_reloc, /* special_function */
855
         "R_ARM_THM_PC12",      /* name */
856
         FALSE,                 /* partial_inplace */
857
         0xffffffff,            /* src_mask */
858
         0xffffffff,            /* dst_mask */
859
         TRUE),                 /* pcrel_offset */
860
 
861
  HOWTO (R_ARM_ABS32_NOI,       /* type */
862
         0,                      /* rightshift */
863
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
864
         32,                    /* bitsize */
865
         FALSE,                 /* pc_relative */
866
         0,                      /* bitpos */
867
         complain_overflow_dont,/* complain_on_overflow */
868
         bfd_elf_generic_reloc, /* special_function */
869
         "R_ARM_ABS32_NOI",     /* name */
870
         FALSE,                 /* partial_inplace */
871
         0xffffffff,            /* src_mask */
872
         0xffffffff,            /* dst_mask */
873
         FALSE),                /* pcrel_offset */
874
 
875
  HOWTO (R_ARM_REL32_NOI,       /* type */
876
         0,                      /* rightshift */
877
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
878
         32,                    /* bitsize */
879
         TRUE,                  /* pc_relative */
880
         0,                      /* bitpos */
881
         complain_overflow_dont,/* complain_on_overflow */
882
         bfd_elf_generic_reloc, /* special_function */
883
         "R_ARM_REL32_NOI",     /* name */
884
         FALSE,                 /* partial_inplace */
885
         0xffffffff,            /* src_mask */
886
         0xffffffff,            /* dst_mask */
887
         FALSE),                /* pcrel_offset */
888
 
889
  /* Group relocations.  */
890
 
891
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
892
         0,                      /* rightshift */
893
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
894
         32,                    /* bitsize */
895
         TRUE,                  /* pc_relative */
896
         0,                      /* bitpos */
897
         complain_overflow_dont,/* complain_on_overflow */
898
         bfd_elf_generic_reloc, /* special_function */
899
         "R_ARM_ALU_PC_G0_NC",  /* name */
900
         FALSE,                 /* partial_inplace */
901
         0xffffffff,            /* src_mask */
902
         0xffffffff,            /* dst_mask */
903
         TRUE),                 /* pcrel_offset */
904
 
905
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
906
         0,                      /* rightshift */
907
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
908
         32,                    /* bitsize */
909
         TRUE,                  /* pc_relative */
910
         0,                      /* bitpos */
911
         complain_overflow_dont,/* complain_on_overflow */
912
         bfd_elf_generic_reloc, /* special_function */
913
         "R_ARM_ALU_PC_G0",     /* name */
914
         FALSE,                 /* partial_inplace */
915
         0xffffffff,            /* src_mask */
916
         0xffffffff,            /* dst_mask */
917
         TRUE),                 /* pcrel_offset */
918
 
919
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
920
         0,                      /* rightshift */
921
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
922
         32,                    /* bitsize */
923
         TRUE,                  /* pc_relative */
924
         0,                      /* bitpos */
925
         complain_overflow_dont,/* complain_on_overflow */
926
         bfd_elf_generic_reloc, /* special_function */
927
         "R_ARM_ALU_PC_G1_NC",  /* name */
928
         FALSE,                 /* partial_inplace */
929
         0xffffffff,            /* src_mask */
930
         0xffffffff,            /* dst_mask */
931
         TRUE),                 /* pcrel_offset */
932
 
933
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
934
         0,                      /* rightshift */
935
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
936
         32,                    /* bitsize */
937
         TRUE,                  /* pc_relative */
938
         0,                      /* bitpos */
939
         complain_overflow_dont,/* complain_on_overflow */
940
         bfd_elf_generic_reloc, /* special_function */
941
         "R_ARM_ALU_PC_G1",     /* name */
942
         FALSE,                 /* partial_inplace */
943
         0xffffffff,            /* src_mask */
944
         0xffffffff,            /* dst_mask */
945
         TRUE),                 /* pcrel_offset */
946
 
947
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
948
         0,                      /* rightshift */
949
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
950
         32,                    /* bitsize */
951
         TRUE,                  /* pc_relative */
952
         0,                      /* bitpos */
953
         complain_overflow_dont,/* complain_on_overflow */
954
         bfd_elf_generic_reloc, /* special_function */
955
         "R_ARM_ALU_PC_G2",     /* name */
956
         FALSE,                 /* partial_inplace */
957
         0xffffffff,            /* src_mask */
958
         0xffffffff,            /* dst_mask */
959
         TRUE),                 /* pcrel_offset */
960
 
961
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
962
         0,                      /* rightshift */
963
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
964
         32,                    /* bitsize */
965
         TRUE,                  /* pc_relative */
966
         0,                      /* bitpos */
967
         complain_overflow_dont,/* complain_on_overflow */
968
         bfd_elf_generic_reloc, /* special_function */
969
         "R_ARM_LDR_PC_G1",     /* name */
970
         FALSE,                 /* partial_inplace */
971
         0xffffffff,            /* src_mask */
972
         0xffffffff,            /* dst_mask */
973
         TRUE),                 /* pcrel_offset */
974
 
975
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
976
         0,                      /* rightshift */
977
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
978
         32,                    /* bitsize */
979
         TRUE,                  /* pc_relative */
980
         0,                      /* bitpos */
981
         complain_overflow_dont,/* complain_on_overflow */
982
         bfd_elf_generic_reloc, /* special_function */
983
         "R_ARM_LDR_PC_G2",     /* name */
984
         FALSE,                 /* partial_inplace */
985
         0xffffffff,            /* src_mask */
986
         0xffffffff,            /* dst_mask */
987
         TRUE),                 /* pcrel_offset */
988
 
989
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
990
         0,                      /* rightshift */
991
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
992
         32,                    /* bitsize */
993
         TRUE,                  /* pc_relative */
994
         0,                      /* bitpos */
995
         complain_overflow_dont,/* complain_on_overflow */
996
         bfd_elf_generic_reloc, /* special_function */
997
         "R_ARM_LDRS_PC_G0",    /* name */
998
         FALSE,                 /* partial_inplace */
999
         0xffffffff,            /* src_mask */
1000
         0xffffffff,            /* dst_mask */
1001
         TRUE),                 /* pcrel_offset */
1002
 
1003
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
1004
         0,                      /* rightshift */
1005
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1006
         32,                    /* bitsize */
1007
         TRUE,                  /* pc_relative */
1008
         0,                      /* bitpos */
1009
         complain_overflow_dont,/* complain_on_overflow */
1010
         bfd_elf_generic_reloc, /* special_function */
1011
         "R_ARM_LDRS_PC_G1",    /* name */
1012
         FALSE,                 /* partial_inplace */
1013
         0xffffffff,            /* src_mask */
1014
         0xffffffff,            /* dst_mask */
1015
         TRUE),                 /* pcrel_offset */
1016
 
1017
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
1018
         0,                      /* rightshift */
1019
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1020
         32,                    /* bitsize */
1021
         TRUE,                  /* pc_relative */
1022
         0,                      /* bitpos */
1023
         complain_overflow_dont,/* complain_on_overflow */
1024
         bfd_elf_generic_reloc, /* special_function */
1025
         "R_ARM_LDRS_PC_G2",    /* name */
1026
         FALSE,                 /* partial_inplace */
1027
         0xffffffff,            /* src_mask */
1028
         0xffffffff,            /* dst_mask */
1029
         TRUE),                 /* pcrel_offset */
1030
 
1031
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
1032
         0,                      /* rightshift */
1033
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1034
         32,                    /* bitsize */
1035
         TRUE,                  /* pc_relative */
1036
         0,                      /* bitpos */
1037
         complain_overflow_dont,/* complain_on_overflow */
1038
         bfd_elf_generic_reloc, /* special_function */
1039
         "R_ARM_LDC_PC_G0",     /* name */
1040
         FALSE,                 /* partial_inplace */
1041
         0xffffffff,            /* src_mask */
1042
         0xffffffff,            /* dst_mask */
1043
         TRUE),                 /* pcrel_offset */
1044
 
1045
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
1046
         0,                      /* rightshift */
1047
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1048
         32,                    /* bitsize */
1049
         TRUE,                  /* pc_relative */
1050
         0,                      /* bitpos */
1051
         complain_overflow_dont,/* complain_on_overflow */
1052
         bfd_elf_generic_reloc, /* special_function */
1053
         "R_ARM_LDC_PC_G1",     /* name */
1054
         FALSE,                 /* partial_inplace */
1055
         0xffffffff,            /* src_mask */
1056
         0xffffffff,            /* dst_mask */
1057
         TRUE),                 /* pcrel_offset */
1058
 
1059
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
1060
         0,                      /* rightshift */
1061
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1062
         32,                    /* bitsize */
1063
         TRUE,                  /* pc_relative */
1064
         0,                      /* bitpos */
1065
         complain_overflow_dont,/* complain_on_overflow */
1066
         bfd_elf_generic_reloc, /* special_function */
1067
         "R_ARM_LDC_PC_G2",     /* name */
1068
         FALSE,                 /* partial_inplace */
1069
         0xffffffff,            /* src_mask */
1070
         0xffffffff,            /* dst_mask */
1071
         TRUE),                 /* pcrel_offset */
1072
 
1073
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
1074
         0,                      /* rightshift */
1075
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1076
         32,                    /* bitsize */
1077
         TRUE,                  /* pc_relative */
1078
         0,                      /* bitpos */
1079
         complain_overflow_dont,/* complain_on_overflow */
1080
         bfd_elf_generic_reloc, /* special_function */
1081
         "R_ARM_ALU_SB_G0_NC",  /* name */
1082
         FALSE,                 /* partial_inplace */
1083
         0xffffffff,            /* src_mask */
1084
         0xffffffff,            /* dst_mask */
1085
         TRUE),                 /* pcrel_offset */
1086
 
1087
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
1088
         0,                      /* rightshift */
1089
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1090
         32,                    /* bitsize */
1091
         TRUE,                  /* pc_relative */
1092
         0,                      /* bitpos */
1093
         complain_overflow_dont,/* complain_on_overflow */
1094
         bfd_elf_generic_reloc, /* special_function */
1095
         "R_ARM_ALU_SB_G0",     /* name */
1096
         FALSE,                 /* partial_inplace */
1097
         0xffffffff,            /* src_mask */
1098
         0xffffffff,            /* dst_mask */
1099
         TRUE),                 /* pcrel_offset */
1100
 
1101
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
1102
         0,                      /* rightshift */
1103
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1104
         32,                    /* bitsize */
1105
         TRUE,                  /* pc_relative */
1106
         0,                      /* bitpos */
1107
         complain_overflow_dont,/* complain_on_overflow */
1108
         bfd_elf_generic_reloc, /* special_function */
1109
         "R_ARM_ALU_SB_G1_NC",  /* name */
1110
         FALSE,                 /* partial_inplace */
1111
         0xffffffff,            /* src_mask */
1112
         0xffffffff,            /* dst_mask */
1113
         TRUE),                 /* pcrel_offset */
1114
 
1115
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
1116
         0,                      /* rightshift */
1117
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1118
         32,                    /* bitsize */
1119
         TRUE,                  /* pc_relative */
1120
         0,                      /* bitpos */
1121
         complain_overflow_dont,/* complain_on_overflow */
1122
         bfd_elf_generic_reloc, /* special_function */
1123
         "R_ARM_ALU_SB_G1",     /* name */
1124
         FALSE,                 /* partial_inplace */
1125
         0xffffffff,            /* src_mask */
1126
         0xffffffff,            /* dst_mask */
1127
         TRUE),                 /* pcrel_offset */
1128
 
1129
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
1130
         0,                      /* rightshift */
1131
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1132
         32,                    /* bitsize */
1133
         TRUE,                  /* pc_relative */
1134
         0,                      /* bitpos */
1135
         complain_overflow_dont,/* complain_on_overflow */
1136
         bfd_elf_generic_reloc, /* special_function */
1137
         "R_ARM_ALU_SB_G2",     /* name */
1138
         FALSE,                 /* partial_inplace */
1139
         0xffffffff,            /* src_mask */
1140
         0xffffffff,            /* dst_mask */
1141
         TRUE),                 /* pcrel_offset */
1142
 
1143
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
1144
         0,                      /* rightshift */
1145
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1146
         32,                    /* bitsize */
1147
         TRUE,                  /* pc_relative */
1148
         0,                      /* bitpos */
1149
         complain_overflow_dont,/* complain_on_overflow */
1150
         bfd_elf_generic_reloc, /* special_function */
1151
         "R_ARM_LDR_SB_G0",     /* name */
1152
         FALSE,                 /* partial_inplace */
1153
         0xffffffff,            /* src_mask */
1154
         0xffffffff,            /* dst_mask */
1155
         TRUE),                 /* pcrel_offset */
1156
 
1157
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
1158
         0,                      /* rightshift */
1159
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1160
         32,                    /* bitsize */
1161
         TRUE,                  /* pc_relative */
1162
         0,                      /* bitpos */
1163
         complain_overflow_dont,/* complain_on_overflow */
1164
         bfd_elf_generic_reloc, /* special_function */
1165
         "R_ARM_LDR_SB_G1",     /* name */
1166
         FALSE,                 /* partial_inplace */
1167
         0xffffffff,            /* src_mask */
1168
         0xffffffff,            /* dst_mask */
1169
         TRUE),                 /* pcrel_offset */
1170
 
1171
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
1172
         0,                      /* rightshift */
1173
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1174
         32,                    /* bitsize */
1175
         TRUE,                  /* pc_relative */
1176
         0,                      /* bitpos */
1177
         complain_overflow_dont,/* complain_on_overflow */
1178
         bfd_elf_generic_reloc, /* special_function */
1179
         "R_ARM_LDR_SB_G2",     /* name */
1180
         FALSE,                 /* partial_inplace */
1181
         0xffffffff,            /* src_mask */
1182
         0xffffffff,            /* dst_mask */
1183
         TRUE),                 /* pcrel_offset */
1184
 
1185
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
1186
         0,                      /* rightshift */
1187
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1188
         32,                    /* bitsize */
1189
         TRUE,                  /* pc_relative */
1190
         0,                      /* bitpos */
1191
         complain_overflow_dont,/* complain_on_overflow */
1192
         bfd_elf_generic_reloc, /* special_function */
1193
         "R_ARM_LDRS_SB_G0",    /* name */
1194
         FALSE,                 /* partial_inplace */
1195
         0xffffffff,            /* src_mask */
1196
         0xffffffff,            /* dst_mask */
1197
         TRUE),                 /* pcrel_offset */
1198
 
1199
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
1200
         0,                      /* rightshift */
1201
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1202
         32,                    /* bitsize */
1203
         TRUE,                  /* pc_relative */
1204
         0,                      /* bitpos */
1205
         complain_overflow_dont,/* complain_on_overflow */
1206
         bfd_elf_generic_reloc, /* special_function */
1207
         "R_ARM_LDRS_SB_G1",    /* name */
1208
         FALSE,                 /* partial_inplace */
1209
         0xffffffff,            /* src_mask */
1210
         0xffffffff,            /* dst_mask */
1211
         TRUE),                 /* pcrel_offset */
1212
 
1213
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
1214
         0,                      /* rightshift */
1215
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1216
         32,                    /* bitsize */
1217
         TRUE,                  /* pc_relative */
1218
         0,                      /* bitpos */
1219
         complain_overflow_dont,/* complain_on_overflow */
1220
         bfd_elf_generic_reloc, /* special_function */
1221
         "R_ARM_LDRS_SB_G2",    /* name */
1222
         FALSE,                 /* partial_inplace */
1223
         0xffffffff,            /* src_mask */
1224
         0xffffffff,            /* dst_mask */
1225
         TRUE),                 /* pcrel_offset */
1226
 
1227
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
1228
         0,                      /* rightshift */
1229
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1230
         32,                    /* bitsize */
1231
         TRUE,                  /* pc_relative */
1232
         0,                      /* bitpos */
1233
         complain_overflow_dont,/* complain_on_overflow */
1234
         bfd_elf_generic_reloc, /* special_function */
1235
         "R_ARM_LDC_SB_G0",     /* name */
1236
         FALSE,                 /* partial_inplace */
1237
         0xffffffff,            /* src_mask */
1238
         0xffffffff,            /* dst_mask */
1239
         TRUE),                 /* pcrel_offset */
1240
 
1241
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
1242
         0,                      /* rightshift */
1243
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1244
         32,                    /* bitsize */
1245
         TRUE,                  /* pc_relative */
1246
         0,                      /* bitpos */
1247
         complain_overflow_dont,/* complain_on_overflow */
1248
         bfd_elf_generic_reloc, /* special_function */
1249
         "R_ARM_LDC_SB_G1",     /* name */
1250
         FALSE,                 /* partial_inplace */
1251
         0xffffffff,            /* src_mask */
1252
         0xffffffff,            /* dst_mask */
1253
         TRUE),                 /* pcrel_offset */
1254
 
1255
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
1256
         0,                      /* rightshift */
1257
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1258
         32,                    /* bitsize */
1259
         TRUE,                  /* pc_relative */
1260
         0,                      /* bitpos */
1261
         complain_overflow_dont,/* complain_on_overflow */
1262
         bfd_elf_generic_reloc, /* special_function */
1263
         "R_ARM_LDC_SB_G2",     /* name */
1264
         FALSE,                 /* partial_inplace */
1265
         0xffffffff,            /* src_mask */
1266
         0xffffffff,            /* dst_mask */
1267
         TRUE),                 /* pcrel_offset */
1268
 
1269
  /* End of group relocations.  */
1270
 
1271
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
1272
         0,                      /* rightshift */
1273
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1274
         16,                    /* bitsize */
1275
         FALSE,                 /* pc_relative */
1276
         0,                      /* bitpos */
1277
         complain_overflow_dont,/* complain_on_overflow */
1278
         bfd_elf_generic_reloc, /* special_function */
1279
         "R_ARM_MOVW_BREL_NC",  /* name */
1280
         FALSE,                 /* partial_inplace */
1281
         0x0000ffff,            /* src_mask */
1282
         0x0000ffff,            /* dst_mask */
1283
         FALSE),                /* pcrel_offset */
1284
 
1285
  HOWTO (R_ARM_MOVT_BREL,       /* type */
1286
         0,                      /* rightshift */
1287
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1288
         16,                    /* bitsize */
1289
         FALSE,                 /* pc_relative */
1290
         0,                      /* bitpos */
1291
         complain_overflow_bitfield,/* complain_on_overflow */
1292
         bfd_elf_generic_reloc, /* special_function */
1293
         "R_ARM_MOVT_BREL",     /* name */
1294
         FALSE,                 /* partial_inplace */
1295
         0x0000ffff,            /* src_mask */
1296
         0x0000ffff,            /* dst_mask */
1297
         FALSE),                /* pcrel_offset */
1298
 
1299
  HOWTO (R_ARM_MOVW_BREL,       /* type */
1300
         0,                      /* rightshift */
1301
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1302
         16,                    /* bitsize */
1303
         FALSE,                 /* pc_relative */
1304
         0,                      /* bitpos */
1305
         complain_overflow_dont,/* complain_on_overflow */
1306
         bfd_elf_generic_reloc, /* special_function */
1307
         "R_ARM_MOVW_BREL",     /* name */
1308
         FALSE,                 /* partial_inplace */
1309
         0x0000ffff,            /* src_mask */
1310
         0x0000ffff,            /* dst_mask */
1311
         FALSE),                /* pcrel_offset */
1312
 
1313
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314
         0,                      /* rightshift */
1315
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1316
         16,                    /* bitsize */
1317
         FALSE,                 /* pc_relative */
1318
         0,                      /* bitpos */
1319
         complain_overflow_dont,/* complain_on_overflow */
1320
         bfd_elf_generic_reloc, /* special_function */
1321
         "R_ARM_THM_MOVW_BREL_NC",/* name */
1322
         FALSE,                 /* partial_inplace */
1323
         0x040f70ff,            /* src_mask */
1324
         0x040f70ff,            /* dst_mask */
1325
         FALSE),                /* pcrel_offset */
1326
 
1327
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
1328
         0,                      /* rightshift */
1329
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1330
         16,                    /* bitsize */
1331
         FALSE,                 /* pc_relative */
1332
         0,                      /* bitpos */
1333
         complain_overflow_bitfield,/* complain_on_overflow */
1334
         bfd_elf_generic_reloc, /* special_function */
1335
         "R_ARM_THM_MOVT_BREL", /* name */
1336
         FALSE,                 /* partial_inplace */
1337
         0x040f70ff,            /* src_mask */
1338
         0x040f70ff,            /* dst_mask */
1339
         FALSE),                /* pcrel_offset */
1340
 
1341
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
1342
         0,                      /* rightshift */
1343
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1344
         16,                    /* bitsize */
1345
         FALSE,                 /* pc_relative */
1346
         0,                      /* bitpos */
1347
         complain_overflow_dont,/* complain_on_overflow */
1348
         bfd_elf_generic_reloc, /* special_function */
1349
         "R_ARM_THM_MOVW_BREL", /* name */
1350
         FALSE,                 /* partial_inplace */
1351
         0x040f70ff,            /* src_mask */
1352
         0x040f70ff,            /* dst_mask */
1353
         FALSE),                /* pcrel_offset */
1354
 
1355
  HOWTO (R_ARM_TLS_GOTDESC,     /* type */
1356
         0,                      /* rightshift */
1357
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1358
         32,                    /* bitsize */
1359
         FALSE,                 /* pc_relative */
1360
         0,                      /* bitpos */
1361
         complain_overflow_bitfield,/* complain_on_overflow */
1362
         NULL,                  /* special_function */
1363
         "R_ARM_TLS_GOTDESC",   /* name */
1364
         TRUE,                  /* partial_inplace */
1365
         0xffffffff,            /* src_mask */
1366
         0xffffffff,            /* dst_mask */
1367
         FALSE),                /* pcrel_offset */
1368
 
1369
  HOWTO (R_ARM_TLS_CALL,        /* type */
1370
         0,                      /* rightshift */
1371
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1372
         24,                    /* bitsize */
1373
         FALSE,                 /* pc_relative */
1374
         0,                      /* bitpos */
1375
         complain_overflow_dont,/* complain_on_overflow */
1376
         bfd_elf_generic_reloc, /* special_function */
1377
         "R_ARM_TLS_CALL",      /* name */
1378
         FALSE,                 /* partial_inplace */
1379
         0x00ffffff,            /* src_mask */
1380
         0x00ffffff,            /* dst_mask */
1381
         FALSE),                /* pcrel_offset */
1382
 
1383
  HOWTO (R_ARM_TLS_DESCSEQ,     /* type */
1384
         0,                      /* rightshift */
1385
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1386
         0,                      /* bitsize */
1387
         FALSE,                 /* pc_relative */
1388
         0,                      /* bitpos */
1389
         complain_overflow_bitfield,/* complain_on_overflow */
1390
         bfd_elf_generic_reloc, /* special_function */
1391
         "R_ARM_TLS_DESCSEQ",   /* name */
1392
         FALSE,                 /* partial_inplace */
1393
         0x00000000,            /* src_mask */
1394
         0x00000000,            /* dst_mask */
1395
         FALSE),                /* pcrel_offset */
1396
 
1397
  HOWTO (R_ARM_THM_TLS_CALL,    /* type */
1398
         0,                      /* rightshift */
1399
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1400
         24,                    /* bitsize */
1401
         FALSE,                 /* pc_relative */
1402
         0,                      /* bitpos */
1403
         complain_overflow_dont,/* complain_on_overflow */
1404
         bfd_elf_generic_reloc, /* special_function */
1405
         "R_ARM_THM_TLS_CALL",  /* name */
1406
         FALSE,                 /* partial_inplace */
1407
         0x07ff07ff,            /* src_mask */
1408
         0x07ff07ff,            /* dst_mask */
1409
         FALSE),                /* pcrel_offset */
1410
 
1411
  HOWTO (R_ARM_PLT32_ABS,       /* type */
1412
         0,                      /* rightshift */
1413
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1414
         32,                    /* bitsize */
1415
         FALSE,                 /* pc_relative */
1416
         0,                      /* bitpos */
1417
         complain_overflow_dont,/* complain_on_overflow */
1418
         bfd_elf_generic_reloc, /* special_function */
1419
         "R_ARM_PLT32_ABS",     /* name */
1420
         FALSE,                 /* partial_inplace */
1421
         0xffffffff,            /* src_mask */
1422
         0xffffffff,            /* dst_mask */
1423
         FALSE),                /* pcrel_offset */
1424
 
1425
  HOWTO (R_ARM_GOT_ABS,         /* type */
1426
         0,                      /* rightshift */
1427
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1428
         32,                    /* bitsize */
1429
         FALSE,                 /* pc_relative */
1430
         0,                      /* bitpos */
1431
         complain_overflow_dont,/* complain_on_overflow */
1432
         bfd_elf_generic_reloc, /* special_function */
1433
         "R_ARM_GOT_ABS",       /* name */
1434
         FALSE,                 /* partial_inplace */
1435
         0xffffffff,            /* src_mask */
1436
         0xffffffff,            /* dst_mask */
1437
         FALSE),                        /* pcrel_offset */
1438
 
1439
  HOWTO (R_ARM_GOT_PREL,        /* type */
1440
         0,                      /* rightshift */
1441
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1442
         32,                    /* bitsize */
1443
         TRUE,                  /* pc_relative */
1444
         0,                      /* bitpos */
1445
         complain_overflow_dont,        /* complain_on_overflow */
1446
         bfd_elf_generic_reloc, /* special_function */
1447
         "R_ARM_GOT_PREL",      /* name */
1448
         FALSE,                 /* partial_inplace */
1449
         0xffffffff,            /* src_mask */
1450
         0xffffffff,            /* dst_mask */
1451
         TRUE),                 /* pcrel_offset */
1452
 
1453
  HOWTO (R_ARM_GOT_BREL12,      /* type */
1454
         0,                      /* rightshift */
1455
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1456
         12,                    /* bitsize */
1457
         FALSE,                 /* pc_relative */
1458
         0,                      /* bitpos */
1459
         complain_overflow_bitfield,/* complain_on_overflow */
1460
         bfd_elf_generic_reloc, /* special_function */
1461
         "R_ARM_GOT_BREL12",    /* name */
1462
         FALSE,                 /* partial_inplace */
1463
         0x00000fff,            /* src_mask */
1464
         0x00000fff,            /* dst_mask */
1465
         FALSE),                /* pcrel_offset */
1466
 
1467
  HOWTO (R_ARM_GOTOFF12,        /* type */
1468
         0,                      /* rightshift */
1469
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1470
         12,                    /* bitsize */
1471
         FALSE,                 /* pc_relative */
1472
         0,                      /* bitpos */
1473
         complain_overflow_bitfield,/* complain_on_overflow */
1474
         bfd_elf_generic_reloc, /* special_function */
1475
         "R_ARM_GOTOFF12",      /* name */
1476
         FALSE,                 /* partial_inplace */
1477
         0x00000fff,            /* src_mask */
1478
         0x00000fff,            /* dst_mask */
1479
         FALSE),                /* pcrel_offset */
1480
 
1481
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1482
 
1483
  /* GNU extension to record C++ vtable member usage */
1484
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1485
         0,                     /* rightshift */
1486
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1487
         0,                     /* bitsize */
1488
         FALSE,                 /* pc_relative */
1489
         0,                     /* bitpos */
1490
         complain_overflow_dont, /* complain_on_overflow */
1491
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1492
         "R_ARM_GNU_VTENTRY",   /* name */
1493
         FALSE,                 /* partial_inplace */
1494
         0,                     /* src_mask */
1495
         0,                     /* dst_mask */
1496
         FALSE),                /* pcrel_offset */
1497
 
1498
  /* GNU extension to record C++ vtable hierarchy */
1499
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500
         0,                     /* rightshift */
1501
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1502
         0,                     /* bitsize */
1503
         FALSE,                 /* pc_relative */
1504
         0,                     /* bitpos */
1505
         complain_overflow_dont, /* complain_on_overflow */
1506
         NULL,                  /* special_function */
1507
         "R_ARM_GNU_VTINHERIT", /* name */
1508
         FALSE,                 /* partial_inplace */
1509
         0,                     /* src_mask */
1510
         0,                     /* dst_mask */
1511
         FALSE),                /* pcrel_offset */
1512
 
1513
  HOWTO (R_ARM_THM_JUMP11,      /* type */
1514
         1,                     /* rightshift */
1515
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1516
         11,                    /* bitsize */
1517
         TRUE,                  /* pc_relative */
1518
         0,                      /* bitpos */
1519
         complain_overflow_signed,      /* complain_on_overflow */
1520
         bfd_elf_generic_reloc, /* special_function */
1521
         "R_ARM_THM_JUMP11",    /* name */
1522
         FALSE,                 /* partial_inplace */
1523
         0x000007ff,            /* src_mask */
1524
         0x000007ff,            /* dst_mask */
1525
         TRUE),                 /* pcrel_offset */
1526
 
1527
  HOWTO (R_ARM_THM_JUMP8,       /* type */
1528
         1,                     /* rightshift */
1529
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1530
         8,                     /* bitsize */
1531
         TRUE,                  /* pc_relative */
1532
         0,                      /* bitpos */
1533
         complain_overflow_signed,      /* complain_on_overflow */
1534
         bfd_elf_generic_reloc, /* special_function */
1535
         "R_ARM_THM_JUMP8",     /* name */
1536
         FALSE,                 /* partial_inplace */
1537
         0x000000ff,            /* src_mask */
1538
         0x000000ff,            /* dst_mask */
1539
         TRUE),                 /* pcrel_offset */
1540
 
1541
  /* TLS relocations */
1542
  HOWTO (R_ARM_TLS_GD32,        /* type */
1543
         0,                     /* rightshift */
1544
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1545
         32,                    /* bitsize */
1546
         FALSE,                 /* pc_relative */
1547
         0,                     /* bitpos */
1548
         complain_overflow_bitfield,/* complain_on_overflow */
1549
         NULL,                  /* special_function */
1550
         "R_ARM_TLS_GD32",      /* name */
1551
         TRUE,                  /* partial_inplace */
1552
         0xffffffff,            /* src_mask */
1553
         0xffffffff,            /* dst_mask */
1554
         FALSE),                /* pcrel_offset */
1555
 
1556
  HOWTO (R_ARM_TLS_LDM32,       /* type */
1557
         0,                     /* rightshift */
1558
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1559
         32,                    /* bitsize */
1560
         FALSE,                 /* pc_relative */
1561
         0,                     /* bitpos */
1562
         complain_overflow_bitfield,/* complain_on_overflow */
1563
         bfd_elf_generic_reloc, /* special_function */
1564
         "R_ARM_TLS_LDM32",     /* name */
1565
         TRUE,                  /* partial_inplace */
1566
         0xffffffff,            /* src_mask */
1567
         0xffffffff,            /* dst_mask */
1568
         FALSE),                /* pcrel_offset */
1569
 
1570
  HOWTO (R_ARM_TLS_LDO32,       /* type */
1571
         0,                     /* rightshift */
1572
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1573
         32,                    /* bitsize */
1574
         FALSE,                 /* pc_relative */
1575
         0,                     /* bitpos */
1576
         complain_overflow_bitfield,/* complain_on_overflow */
1577
         bfd_elf_generic_reloc, /* special_function */
1578
         "R_ARM_TLS_LDO32",     /* name */
1579
         TRUE,                  /* partial_inplace */
1580
         0xffffffff,            /* src_mask */
1581
         0xffffffff,            /* dst_mask */
1582
         FALSE),                /* pcrel_offset */
1583
 
1584
  HOWTO (R_ARM_TLS_IE32,        /* type */
1585
         0,                     /* rightshift */
1586
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1587
         32,                    /* bitsize */
1588
         FALSE,                  /* pc_relative */
1589
         0,                     /* bitpos */
1590
         complain_overflow_bitfield,/* complain_on_overflow */
1591
         NULL,                  /* special_function */
1592
         "R_ARM_TLS_IE32",      /* name */
1593
         TRUE,                  /* partial_inplace */
1594
         0xffffffff,            /* src_mask */
1595
         0xffffffff,            /* dst_mask */
1596
         FALSE),                /* pcrel_offset */
1597
 
1598
  HOWTO (R_ARM_TLS_LE32,        /* type */
1599
         0,                     /* rightshift */
1600
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1601
         32,                    /* bitsize */
1602
         FALSE,                 /* pc_relative */
1603
         0,                     /* bitpos */
1604
         complain_overflow_bitfield,/* complain_on_overflow */
1605
         bfd_elf_generic_reloc, /* special_function */
1606
         "R_ARM_TLS_LE32",      /* name */
1607
         TRUE,                  /* partial_inplace */
1608
         0xffffffff,            /* src_mask */
1609
         0xffffffff,            /* dst_mask */
1610
         FALSE),                /* pcrel_offset */
1611
 
1612
  HOWTO (R_ARM_TLS_LDO12,       /* type */
1613
         0,                      /* rightshift */
1614
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1615
         12,                    /* bitsize */
1616
         FALSE,                 /* pc_relative */
1617
         0,                      /* bitpos */
1618
         complain_overflow_bitfield,/* complain_on_overflow */
1619
         bfd_elf_generic_reloc, /* special_function */
1620
         "R_ARM_TLS_LDO12",     /* name */
1621
         FALSE,                 /* partial_inplace */
1622
         0x00000fff,            /* src_mask */
1623
         0x00000fff,            /* dst_mask */
1624
         FALSE),                /* pcrel_offset */
1625
 
1626
  HOWTO (R_ARM_TLS_LE12,        /* type */
1627
         0,                      /* rightshift */
1628
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1629
         12,                    /* bitsize */
1630
         FALSE,                 /* pc_relative */
1631
         0,                      /* bitpos */
1632
         complain_overflow_bitfield,/* complain_on_overflow */
1633
         bfd_elf_generic_reloc, /* special_function */
1634
         "R_ARM_TLS_LE12",      /* name */
1635
         FALSE,                 /* partial_inplace */
1636
         0x00000fff,            /* src_mask */
1637
         0x00000fff,            /* dst_mask */
1638
         FALSE),                /* pcrel_offset */
1639
 
1640
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
1641
         0,                      /* rightshift */
1642
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1643
         12,                    /* bitsize */
1644
         FALSE,                 /* pc_relative */
1645
         0,                      /* bitpos */
1646
         complain_overflow_bitfield,/* complain_on_overflow */
1647
         bfd_elf_generic_reloc, /* special_function */
1648
         "R_ARM_TLS_IE12GP",    /* name */
1649
         FALSE,                 /* partial_inplace */
1650
         0x00000fff,            /* src_mask */
1651
         0x00000fff,            /* dst_mask */
1652
         FALSE),                /* pcrel_offset */
1653
 
1654
  /* 112-127 private relocations.  */
1655
  EMPTY_HOWTO (112),
1656
  EMPTY_HOWTO (113),
1657
  EMPTY_HOWTO (114),
1658
  EMPTY_HOWTO (115),
1659
  EMPTY_HOWTO (116),
1660
  EMPTY_HOWTO (117),
1661
  EMPTY_HOWTO (118),
1662
  EMPTY_HOWTO (119),
1663
  EMPTY_HOWTO (120),
1664
  EMPTY_HOWTO (121),
1665
  EMPTY_HOWTO (122),
1666
  EMPTY_HOWTO (123),
1667
  EMPTY_HOWTO (124),
1668
  EMPTY_HOWTO (125),
1669
  EMPTY_HOWTO (126),
1670
  EMPTY_HOWTO (127),
1671
 
1672
  /* R_ARM_ME_TOO, obsolete.  */
1673
  EMPTY_HOWTO (128),
1674
 
1675
  HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1676
         0,                      /* rightshift */
1677
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1678
         0,                      /* bitsize */
1679
         FALSE,                 /* pc_relative */
1680
         0,                      /* bitpos */
1681
         complain_overflow_bitfield,/* complain_on_overflow */
1682
         bfd_elf_generic_reloc, /* special_function */
1683
         "R_ARM_THM_TLS_DESCSEQ",/* name */
1684
         FALSE,                 /* partial_inplace */
1685
         0x00000000,            /* src_mask */
1686
         0x00000000,            /* dst_mask */
1687
         FALSE),                /* pcrel_offset */
1688
};
1689
 
1690
/* 160 onwards: */
1691
static reloc_howto_type elf32_arm_howto_table_2[1] =
1692
{
1693
  HOWTO (R_ARM_IRELATIVE,       /* type */
1694
         0,                     /* rightshift */
1695
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1696
         32,                    /* bitsize */
1697
         FALSE,                 /* pc_relative */
1698
         0,                     /* bitpos */
1699
         complain_overflow_bitfield,/* complain_on_overflow */
1700
         bfd_elf_generic_reloc, /* special_function */
1701
         "R_ARM_IRELATIVE",     /* name */
1702
         TRUE,                  /* partial_inplace */
1703
         0xffffffff,            /* src_mask */
1704
         0xffffffff,            /* dst_mask */
1705
         FALSE)                 /* pcrel_offset */
1706
};
1707
 
1708
/* 249-255 extended, currently unused, relocations:  */
1709
static reloc_howto_type elf32_arm_howto_table_3[4] =
1710
{
1711
  HOWTO (R_ARM_RREL32,          /* type */
1712
         0,                      /* rightshift */
1713
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1714
         0,                      /* bitsize */
1715
         FALSE,                 /* pc_relative */
1716
         0,                      /* bitpos */
1717
         complain_overflow_dont,/* complain_on_overflow */
1718
         bfd_elf_generic_reloc, /* special_function */
1719
         "R_ARM_RREL32",        /* name */
1720
         FALSE,                 /* partial_inplace */
1721
         0,                      /* src_mask */
1722
         0,                      /* dst_mask */
1723
         FALSE),                /* pcrel_offset */
1724
 
1725
  HOWTO (R_ARM_RABS32,          /* type */
1726
         0,                      /* rightshift */
1727
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1728
         0,                      /* bitsize */
1729
         FALSE,                 /* pc_relative */
1730
         0,                      /* bitpos */
1731
         complain_overflow_dont,/* complain_on_overflow */
1732
         bfd_elf_generic_reloc, /* special_function */
1733
         "R_ARM_RABS32",        /* name */
1734
         FALSE,                 /* partial_inplace */
1735
         0,                      /* src_mask */
1736
         0,                      /* dst_mask */
1737
         FALSE),                /* pcrel_offset */
1738
 
1739
  HOWTO (R_ARM_RPC24,           /* type */
1740
         0,                      /* rightshift */
1741
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1742
         0,                      /* bitsize */
1743
         FALSE,                 /* pc_relative */
1744
         0,                      /* bitpos */
1745
         complain_overflow_dont,/* complain_on_overflow */
1746
         bfd_elf_generic_reloc, /* special_function */
1747
         "R_ARM_RPC24",         /* name */
1748
         FALSE,                 /* partial_inplace */
1749
         0,                      /* src_mask */
1750
         0,                      /* dst_mask */
1751
         FALSE),                /* pcrel_offset */
1752
 
1753
  HOWTO (R_ARM_RBASE,           /* type */
1754
         0,                      /* rightshift */
1755
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1756
         0,                      /* bitsize */
1757
         FALSE,                 /* pc_relative */
1758
         0,                      /* bitpos */
1759
         complain_overflow_dont,/* complain_on_overflow */
1760
         bfd_elf_generic_reloc, /* special_function */
1761
         "R_ARM_RBASE",         /* name */
1762
         FALSE,                 /* partial_inplace */
1763
         0,                      /* src_mask */
1764
         0,                      /* dst_mask */
1765
         FALSE)                 /* pcrel_offset */
1766
};
1767
 
1768
static reloc_howto_type *
1769
elf32_arm_howto_from_type (unsigned int r_type)
1770
{
1771
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772
    return &elf32_arm_howto_table_1[r_type];
1773
 
1774
  if (r_type == R_ARM_IRELATIVE)
1775
    return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776
 
1777
  if (r_type >= R_ARM_RREL32
1778
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779
    return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780
 
1781
  return NULL;
1782
}
1783
 
1784
static void
1785
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786
                         Elf_Internal_Rela * elf_reloc)
1787
{
1788
  unsigned int r_type;
1789
 
1790
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792
}
1793
 
1794
struct elf32_arm_reloc_map
1795
  {
1796
    bfd_reloc_code_real_type  bfd_reloc_val;
1797
    unsigned char             elf_reloc_val;
1798
  };
1799
 
1800
/* All entries in this list must also be present in elf32_arm_howto_table.  */
1801
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802
  {
1803
    {BFD_RELOC_NONE,                 R_ARM_NONE},
1804
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1805
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
1806
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
1807
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1808
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1809
    {BFD_RELOC_32,                   R_ARM_ABS32},
1810
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1811
    {BFD_RELOC_8,                    R_ARM_ABS8},
1812
    {BFD_RELOC_16,                   R_ARM_ABS16},
1813
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1814
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1815
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1820
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1821
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1822
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1823
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1824
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1825
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1826
    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1827
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1828
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1829
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
1830
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
1831
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
1832
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
1833
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
1834
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1835
    {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
1836
    {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
1837
    {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
1838
    {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
1839
    {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
1840
    {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
1841
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
1842
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
1843
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
1844
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1845
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1846
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1847
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1848
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1849
    {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
1850
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
1851
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
1852
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
1853
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
1854
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
1855
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
1856
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
1857
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
1858
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
1889
  };
1890
 
1891
static reloc_howto_type *
1892
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893
                             bfd_reloc_code_real_type code)
1894
{
1895
  unsigned int i;
1896
 
1897
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900
 
1901
  return NULL;
1902
}
1903
 
1904
static reloc_howto_type *
1905
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906
                             const char *r_name)
1907
{
1908
  unsigned int i;
1909
 
1910
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911
    if (elf32_arm_howto_table_1[i].name != NULL
1912
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913
      return &elf32_arm_howto_table_1[i];
1914
 
1915
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916
    if (elf32_arm_howto_table_2[i].name != NULL
1917
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918
      return &elf32_arm_howto_table_2[i];
1919
 
1920
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921
    if (elf32_arm_howto_table_3[i].name != NULL
1922
        && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923
      return &elf32_arm_howto_table_3[i];
1924
 
1925
  return NULL;
1926
}
1927
 
1928
/* Support for core dump NOTE sections.  */
1929
 
1930
static bfd_boolean
1931
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932
{
1933
  int offset;
1934
  size_t size;
1935
 
1936
  switch (note->descsz)
1937
    {
1938
      default:
1939
        return FALSE;
1940
 
1941
      case 148:         /* Linux/ARM 32-bit.  */
1942
        /* pr_cursig */
1943
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944
 
1945
        /* pr_pid */
1946
        elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947
 
1948
        /* pr_reg */
1949
        offset = 72;
1950
        size = 72;
1951
 
1952
        break;
1953
    }
1954
 
1955
  /* Make a ".reg/999" section.  */
1956
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957
                                          size, note->descpos + offset);
1958
}
1959
 
1960
static bfd_boolean
1961
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962
{
1963
  switch (note->descsz)
1964
    {
1965
      default:
1966
        return FALSE;
1967
 
1968
      case 124:         /* Linux/ARM elf_prpsinfo.  */
1969
        elf_tdata (abfd)->core_program
1970
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971
        elf_tdata (abfd)->core_command
1972
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1973
    }
1974
 
1975
  /* Note that for some reason, a spurious space is tacked
1976
     onto the end of the args in some (at least one anyway)
1977
     implementations, so strip it off if it exists.  */
1978
  {
1979
    char *command = elf_tdata (abfd)->core_command;
1980
    int n = strlen (command);
1981
 
1982
    if (0 < n && command[n - 1] == ' ')
1983
      command[n - 1] = '\0';
1984
  }
1985
 
1986
  return TRUE;
1987
}
1988
 
1989
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
1990
#define TARGET_LITTLE_NAME              "elf32-littlearm"
1991
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
1992
#define TARGET_BIG_NAME                 "elf32-bigarm"
1993
 
1994
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
1995
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
1996
 
1997
typedef unsigned long int insn32;
1998
typedef unsigned short int insn16;
1999
 
2000
/* In lieu of proper flags, assume all EABIv4 or later objects are
2001
   interworkable.  */
2002
#define INTERWORK_FLAG(abfd)  \
2003
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005
  || ((abfd)->flags & BFD_LINKER_CREATED))
2006
 
2007
/* The linker script knows the section names for placement.
2008
   The entry_names are used to do simple name mangling on the stubs.
2009
   Given a function name, and its type, the stub can be found. The
2010
   name can be changed. The only requirement is the %s be present.  */
2011
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
2013
 
2014
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
2016
 
2017
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
2019
 
2020
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
2022
 
2023
#define STUB_ENTRY_NAME   "__%s_veneer"
2024
 
2025
/* The name of the dynamic interpreter.  This is put in the .interp
2026
   section.  */
2027
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
2028
 
2029
static const unsigned long tls_trampoline [] =
2030
  {
2031
    0xe08e0000,         /* add r0, lr, r0 */
2032
    0xe5901004,         /* ldr r1, [r0,#4] */
2033
    0xe12fff11,         /* bx  r1 */
2034
  };
2035
 
2036
static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2037
  {
2038
    0xe52d2004, /*      push    {r2}                    */
2039
    0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]   */
2040
    0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]   */
2041
    0xe79f2002, /* 1:   ldr     r2, [pc, r2]            */
2042
    0xe081100f, /* 2:   add     r1, pc                  */
2043
    0xe12fff12, /*      bx      r2                      */
2044
    0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045
                                + dl_tlsdesc_lazy_resolver(GOT)   */
2046
    0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2047
  };
2048
 
2049
#ifdef FOUR_WORD_PLT
2050
 
2051
/* The first entry in a procedure linkage table looks like
2052
   this.  It is set up so that any shared library function that is
2053
   called before the relocation has been set up calls the dynamic
2054
   linker first.  */
2055
static const bfd_vma elf32_arm_plt0_entry [] =
2056
  {
2057
    0xe52de004,         /* str   lr, [sp, #-4]! */
2058
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
2059
    0xe08fe00e,         /* add   lr, pc, lr     */
2060
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
2061
  };
2062
 
2063
/* Subsequent entries in a procedure linkage table look like
2064
   this.  */
2065
static const bfd_vma elf32_arm_plt_entry [] =
2066
  {
2067
    0xe28fc600,         /* add   ip, pc, #NN    */
2068
    0xe28cca00,         /* add   ip, ip, #NN    */
2069
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
2070
    0x00000000,         /* unused               */
2071
  };
2072
 
2073
#else
2074
 
2075
/* The first entry in a procedure linkage table looks like
2076
   this.  It is set up so that any shared library function that is
2077
   called before the relocation has been set up calls the dynamic
2078
   linker first.  */
2079
static const bfd_vma elf32_arm_plt0_entry [] =
2080
  {
2081
    0xe52de004,         /* str   lr, [sp, #-4]! */
2082
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
2083
    0xe08fe00e,         /* add   lr, pc, lr     */
2084
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
2085
    0x00000000,         /* &GOT[0] - .          */
2086
  };
2087
 
2088
/* Subsequent entries in a procedure linkage table look like
2089
   this.  */
2090
static const bfd_vma elf32_arm_plt_entry [] =
2091
  {
2092
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
2093
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
2094
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
2095
  };
2096
 
2097
#endif
2098
 
2099
/* The format of the first entry in the procedure linkage table
2100
   for a VxWorks executable.  */
2101
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2102
  {
2103
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
2104
    0xe59fc000,         /* ldr    ip,[pc]                       */
2105
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
2106
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
2107
  };
2108
 
2109
/* The format of subsequent entries in a VxWorks executable.  */
2110
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2111
  {
2112
    0xe59fc000,         /* ldr    ip,[pc]                       */
2113
    0xe59cf000,         /* ldr    pc,[ip]                       */
2114
    0x00000000,         /* .long  @got                          */
2115
    0xe59fc000,         /* ldr    ip,[pc]                       */
2116
    0xea000000,         /* b      _PLT                          */
2117
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
2118
  };
2119
 
2120
/* The format of entries in a VxWorks shared library.  */
2121
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2122
  {
2123
    0xe59fc000,         /* ldr    ip,[pc]                       */
2124
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
2125
    0x00000000,         /* .long  @got                          */
2126
    0xe59fc000,         /* ldr    ip,[pc]                       */
2127
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
2128
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
2129
  };
2130
 
2131
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
2132
#define PLT_THUMB_STUB_SIZE 4
2133
static const bfd_vma elf32_arm_plt_thumb_stub [] =
2134
  {
2135
    0x4778,             /* bx pc */
2136
    0x46c0              /* nop   */
2137
  };
2138
 
2139
/* The entries in a PLT when using a DLL-based target with multiple
2140
   address spaces.  */
2141
static const bfd_vma elf32_arm_symbian_plt_entry [] =
2142
  {
2143
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
2144
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2145
  };
2146
 
2147
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2148
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2149
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2150
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2151
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2153
 
2154
enum stub_insn_type
2155
  {
2156
    THUMB16_TYPE = 1,
2157
    THUMB32_TYPE,
2158
    ARM_TYPE,
2159
    DATA_TYPE
2160
  };
2161
 
2162
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2164
   is inserted in arm_build_one_stub().  */
2165
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
2169
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
2171
 
2172
typedef struct
2173
{
2174
  bfd_vma data;
2175
  enum stub_insn_type type;
2176
  unsigned int r_type;
2177
  int reloc_addend;
2178
}  insn_sequence;
2179
 
2180
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181
   to reach the stub if necessary.  */
2182
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2183
  {
2184
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2185
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2186
  };
2187
 
2188
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2189
   available.  */
2190
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2191
  {
2192
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2193
    ARM_INSN(0xe12fff1c),            /* bx    ip */
2194
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2195
  };
2196
 
2197
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2198
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2199
  {
2200
    THUMB16_INSN(0xb401),             /* push {r0} */
2201
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2202
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2203
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2204
    THUMB16_INSN(0x4760),             /* bx   ip */
2205
    THUMB16_INSN(0xbf00),             /* nop */
2206
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2207
  };
2208
 
2209
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2210
   allowed.  */
2211
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2212
  {
2213
    THUMB16_INSN(0x4778),             /* bx   pc */
2214
    THUMB16_INSN(0x46c0),             /* nop */
2215
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2216
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2217
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2218
  };
2219
 
2220
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2221
   available.  */
2222
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2223
  {
2224
    THUMB16_INSN(0x4778),             /* bx   pc */
2225
    THUMB16_INSN(0x46c0),             /* nop   */
2226
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2227
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2228
  };
2229
 
2230
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231
   one, when the destination is close enough.  */
2232
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2233
  {
2234
    THUMB16_INSN(0x4778),             /* bx   pc */
2235
    THUMB16_INSN(0x46c0),             /* nop   */
2236
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2237
  };
2238
 
2239
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2240
   blx to reach the stub if necessary.  */
2241
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2242
  {
2243
    ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
2244
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2245
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2246
  };
2247
 
2248
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2249
   blx to reach the stub if necessary.  We can not add into pc;
2250
   it is not guaranteed to mode switch (different in ARMv6 and
2251
   ARMv7).  */
2252
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2253
  {
2254
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2255
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2256
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2257
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2258
  };
2259
 
2260
/* V4T ARM -> ARM long branch stub, PIC.  */
2261
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2262
  {
2263
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2264
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2265
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2266
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2267
  };
2268
 
2269
/* V4T Thumb -> ARM long branch stub, PIC.  */
2270
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2271
  {
2272
    THUMB16_INSN(0x4778),             /* bx   pc */
2273
    THUMB16_INSN(0x46c0),             /* nop  */
2274
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2275
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2276
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2277
  };
2278
 
2279
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2280
   architectures.  */
2281
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2282
  {
2283
    THUMB16_INSN(0xb401),             /* push {r0} */
2284
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2285
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2286
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
2287
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2288
    THUMB16_INSN(0x4760),             /* bx   ip */
2289
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2290
  };
2291
 
2292
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2293
   allowed.  */
2294
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2295
  {
2296
    THUMB16_INSN(0x4778),             /* bx   pc */
2297
    THUMB16_INSN(0x46c0),             /* nop */
2298
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2299
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2300
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2301
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2302
  };
2303
 
2304
/* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
2305
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2306
static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2307
{
2308
    ARM_INSN(0xe59f1000),             /* ldr   r1, [pc] */
2309
    ARM_INSN(0xe08ff001),             /* add   pc, pc, r1 */
2310
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2311
};
2312
 
2313
/* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
2314
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2315
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2316
{
2317
    THUMB16_INSN(0x4778),             /* bx   pc */
2318
    THUMB16_INSN(0x46c0),             /* nop */
2319
    ARM_INSN(0xe59f1000),             /* ldr  r1, [pc, #0] */
2320
    ARM_INSN(0xe081f00f),             /* add  pc, r1, pc */
2321
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
2322
};
2323
 
2324
/* Cortex-A8 erratum-workaround stubs.  */
2325
 
2326
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327
   can't use a conditional branch to reach this stub).  */
2328
 
2329
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2330
  {
2331
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2332
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2333
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2334
  };
2335
 
2336
/* Stub used for b.w and bl.w instructions.  */
2337
 
2338
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2339
  {
2340
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2341
  };
2342
 
2343
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2344
  {
2345
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2346
  };
2347
 
2348
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2349
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
2350
   real destination using an ARM-mode branch.  */
2351
 
2352
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2353
  {
2354
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
2355
  };
2356
 
2357
/* Section name for stubs is the associated section name plus this
2358
   string.  */
2359
#define STUB_SUFFIX ".stub"
2360
 
2361
/* One entry per long/short branch stub defined above.  */
2362
#define DEF_STUBS \
2363
  DEF_STUB(long_branch_any_any) \
2364
  DEF_STUB(long_branch_v4t_arm_thumb) \
2365
  DEF_STUB(long_branch_thumb_only) \
2366
  DEF_STUB(long_branch_v4t_thumb_thumb) \
2367
  DEF_STUB(long_branch_v4t_thumb_arm) \
2368
  DEF_STUB(short_branch_v4t_thumb_arm) \
2369
  DEF_STUB(long_branch_any_arm_pic) \
2370
  DEF_STUB(long_branch_any_thumb_pic) \
2371
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374
  DEF_STUB(long_branch_thumb_only_pic) \
2375
  DEF_STUB(long_branch_any_tls_pic) \
2376
  DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377
  DEF_STUB(a8_veneer_b_cond) \
2378
  DEF_STUB(a8_veneer_b) \
2379
  DEF_STUB(a8_veneer_bl) \
2380
  DEF_STUB(a8_veneer_blx)
2381
 
2382
#define DEF_STUB(x) arm_stub_##x,
2383
enum elf32_arm_stub_type {
2384
  arm_stub_none,
2385
  DEF_STUBS
2386
  /* Note the first a8_veneer type */
2387
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2388
};
2389
#undef DEF_STUB
2390
 
2391
typedef struct
2392
{
2393
  const insn_sequence* template_sequence;
2394
  int template_size;
2395
} stub_def;
2396
 
2397
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398
static const stub_def stub_definitions[] = {
2399
  {NULL, 0},
2400
  DEF_STUBS
2401
};
2402
 
2403
struct elf32_arm_stub_hash_entry
2404
{
2405
  /* Base hash table entry structure.  */
2406
  struct bfd_hash_entry root;
2407
 
2408
  /* The stub section.  */
2409
  asection *stub_sec;
2410
 
2411
  /* Offset within stub_sec of the beginning of this stub.  */
2412
  bfd_vma stub_offset;
2413
 
2414
  /* Given the symbol's value and its section we can determine its final
2415
     value when building the stubs (so the stub knows where to jump).  */
2416
  bfd_vma target_value;
2417
  asection *target_section;
2418
 
2419
  /* Offset to apply to relocation referencing target_value.  */
2420
  bfd_vma target_addend;
2421
 
2422
  /* The instruction which caused this stub to be generated (only valid for
2423
     Cortex-A8 erratum workaround stubs at present).  */
2424
  unsigned long orig_insn;
2425
 
2426
  /* The stub type.  */
2427
  enum elf32_arm_stub_type stub_type;
2428
  /* Its encoding size in bytes.  */
2429
  int stub_size;
2430
  /* Its template.  */
2431
  const insn_sequence *stub_template;
2432
  /* The size of the template (number of entries).  */
2433
  int stub_template_size;
2434
 
2435
  /* The symbol table entry, if any, that this was derived from.  */
2436
  struct elf32_arm_link_hash_entry *h;
2437
 
2438
  /* Type of branch.  */
2439
  enum arm_st_branch_type branch_type;
2440
 
2441
  /* Where this stub is being called from, or, in the case of combined
2442
     stub sections, the first input section in the group.  */
2443
  asection *id_sec;
2444
 
2445
  /* The name for the local symbol at the start of this stub.  The
2446
     stub name in the hash table has to be unique; this does not, so
2447
     it can be friendlier.  */
2448
  char *output_name;
2449
};
2450
 
2451
/* Used to build a map of a section.  This is required for mixed-endian
2452
   code/data.  */
2453
 
2454
typedef struct elf32_elf_section_map
2455
{
2456
  bfd_vma vma;
2457
  char type;
2458
}
2459
elf32_arm_section_map;
2460
 
2461
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2462
 
2463
typedef enum
2464
{
2465
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2466
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2467
  VFP11_ERRATUM_ARM_VENEER,
2468
  VFP11_ERRATUM_THUMB_VENEER
2469
}
2470
elf32_vfp11_erratum_type;
2471
 
2472
typedef struct elf32_vfp11_erratum_list
2473
{
2474
  struct elf32_vfp11_erratum_list *next;
2475
  bfd_vma vma;
2476
  union
2477
  {
2478
    struct
2479
    {
2480
      struct elf32_vfp11_erratum_list *veneer;
2481
      unsigned int vfp_insn;
2482
    } b;
2483
    struct
2484
    {
2485
      struct elf32_vfp11_erratum_list *branch;
2486
      unsigned int id;
2487
    } v;
2488
  } u;
2489
  elf32_vfp11_erratum_type type;
2490
}
2491
elf32_vfp11_erratum_list;
2492
 
2493
typedef enum
2494
{
2495
  DELETE_EXIDX_ENTRY,
2496
  INSERT_EXIDX_CANTUNWIND_AT_END
2497
}
2498
arm_unwind_edit_type;
2499
 
2500
/* A (sorted) list of edits to apply to an unwind table.  */
2501
typedef struct arm_unwind_table_edit
2502
{
2503
  arm_unwind_edit_type type;
2504
  /* Note: we sometimes want to insert an unwind entry corresponding to a
2505
     section different from the one we're currently writing out, so record the
2506
     (text) section this edit relates to here.  */
2507
  asection *linked_section;
2508
  unsigned int index;
2509
  struct arm_unwind_table_edit *next;
2510
}
2511
arm_unwind_table_edit;
2512
 
2513
typedef struct _arm_elf_section_data
2514
{
2515
  /* Information about mapping symbols.  */
2516
  struct bfd_elf_section_data elf;
2517
  unsigned int mapcount;
2518
  unsigned int mapsize;
2519
  elf32_arm_section_map *map;
2520
  /* Information about CPU errata.  */
2521
  unsigned int erratumcount;
2522
  elf32_vfp11_erratum_list *erratumlist;
2523
  /* Information about unwind tables.  */
2524
  union
2525
  {
2526
    /* Unwind info attached to a text section.  */
2527
    struct
2528
    {
2529
      asection *arm_exidx_sec;
2530
    } text;
2531
 
2532
    /* Unwind info attached to an .ARM.exidx section.  */
2533
    struct
2534
    {
2535
      arm_unwind_table_edit *unwind_edit_list;
2536
      arm_unwind_table_edit *unwind_edit_tail;
2537
    } exidx;
2538
  } u;
2539
}
2540
_arm_elf_section_data;
2541
 
2542
#define elf32_arm_section_data(sec) \
2543
  ((_arm_elf_section_data *) elf_section_data (sec))
2544
 
2545
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547
   so may be created multiple times: we use an array of these entries whilst
2548
   relaxing which we can refresh easily, then create stubs for each potentially
2549
   erratum-triggering instruction once we've settled on a solution.  */
2550
 
2551
struct a8_erratum_fix {
2552
  bfd *input_bfd;
2553
  asection *section;
2554
  bfd_vma offset;
2555
  bfd_vma addend;
2556
  unsigned long orig_insn;
2557
  char *stub_name;
2558
  enum elf32_arm_stub_type stub_type;
2559
  enum arm_st_branch_type branch_type;
2560
};
2561
 
2562
/* A table of relocs applied to branches which might trigger Cortex-A8
2563
   erratum.  */
2564
 
2565
struct a8_erratum_reloc {
2566
  bfd_vma from;
2567
  bfd_vma destination;
2568
  struct elf32_arm_link_hash_entry *hash;
2569
  const char *sym_name;
2570
  unsigned int r_type;
2571
  enum arm_st_branch_type branch_type;
2572
  bfd_boolean non_a8_stub;
2573
};
2574
 
2575
/* The size of the thread control block.  */
2576
#define TCB_SIZE        8
2577
 
2578
/* ARM-specific information about a PLT entry, over and above the usual
2579
   gotplt_union.  */
2580
struct arm_plt_info {
2581
  /* We reference count Thumb references to a PLT entry separately,
2582
     so that we can emit the Thumb trampoline only if needed.  */
2583
  bfd_signed_vma thumb_refcount;
2584
 
2585
  /* Some references from Thumb code may be eliminated by BL->BLX
2586
     conversion, so record them separately.  */
2587
  bfd_signed_vma maybe_thumb_refcount;
2588
 
2589
  /* How many of the recorded PLT accesses were from non-call relocations.
2590
     This information is useful when deciding whether anything takes the
2591
     address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
2592
     non-call references to the function should resolve directly to the
2593
     real runtime target.  */
2594
  unsigned int noncall_refcount;
2595
 
2596
  /* Since PLT entries have variable size if the Thumb prologue is
2597
     used, we need to record the index into .got.plt instead of
2598
     recomputing it from the PLT offset.  */
2599
  bfd_signed_vma got_offset;
2600
};
2601
 
2602
/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
2603
struct arm_local_iplt_info {
2604
  /* The information that is usually found in the generic ELF part of
2605
     the hash table entry.  */
2606
  union gotplt_union root;
2607
 
2608
  /* The information that is usually found in the ARM-specific part of
2609
     the hash table entry.  */
2610
  struct arm_plt_info arm;
2611
 
2612
  /* A list of all potential dynamic relocations against this symbol.  */
2613
  struct elf_dyn_relocs *dyn_relocs;
2614
};
2615
 
2616
struct elf_arm_obj_tdata
2617
{
2618
  struct elf_obj_tdata root;
2619
 
2620
  /* tls_type for each local got entry.  */
2621
  char *local_got_tls_type;
2622
 
2623
  /* GOTPLT entries for TLS descriptors.  */
2624
  bfd_vma *local_tlsdesc_gotent;
2625
 
2626
  /* Information for local symbols that need entries in .iplt.  */
2627
  struct arm_local_iplt_info **local_iplt;
2628
 
2629
  /* Zero to warn when linking objects with incompatible enum sizes.  */
2630
  int no_enum_size_warning;
2631
 
2632
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2633
  int no_wchar_size_warning;
2634
};
2635
 
2636
#define elf_arm_tdata(bfd) \
2637
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2638
 
2639
#define elf32_arm_local_got_tls_type(bfd) \
2640
  (elf_arm_tdata (bfd)->local_got_tls_type)
2641
 
2642
#define elf32_arm_local_tlsdesc_gotent(bfd) \
2643
  (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2644
 
2645
#define elf32_arm_local_iplt(bfd) \
2646
  (elf_arm_tdata (bfd)->local_iplt)
2647
 
2648
#define is_arm_elf(bfd) \
2649
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650
   && elf_tdata (bfd) != NULL \
2651
   && elf_object_id (bfd) == ARM_ELF_DATA)
2652
 
2653
static bfd_boolean
2654
elf32_arm_mkobject (bfd *abfd)
2655
{
2656
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2657
                                  ARM_ELF_DATA);
2658
}
2659
 
2660
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2661
 
2662
/* Arm ELF linker hash entry.  */
2663
struct elf32_arm_link_hash_entry
2664
  {
2665
    struct elf_link_hash_entry root;
2666
 
2667
    /* Track dynamic relocs copied for this symbol.  */
2668
    struct elf_dyn_relocs *dyn_relocs;
2669
 
2670
    /* ARM-specific PLT information.  */
2671
    struct arm_plt_info plt;
2672
 
2673
#define GOT_UNKNOWN     0
2674
#define GOT_NORMAL      1
2675
#define GOT_TLS_GD      2
2676
#define GOT_TLS_IE      4
2677
#define GOT_TLS_GDESC   8
2678
#define GOT_TLS_GD_ANY_P(type)  ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679
    unsigned int tls_type : 8;
2680
 
2681
    /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
2682
    unsigned int is_iplt : 1;
2683
 
2684
    unsigned int unused : 23;
2685
 
2686
    /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687
       starting at the end of the jump table.  */
2688
    bfd_vma tlsdesc_got;
2689
 
2690
    /* The symbol marking the real symbol location for exported thumb
2691
       symbols with Arm stubs.  */
2692
    struct elf_link_hash_entry *export_glue;
2693
 
2694
   /* A pointer to the most recently used stub hash entry against this
2695
     symbol.  */
2696
    struct elf32_arm_stub_hash_entry *stub_cache;
2697
  };
2698
 
2699
/* Traverse an arm ELF linker hash table.  */
2700
#define elf32_arm_link_hash_traverse(table, func, info)                 \
2701
  (elf_link_hash_traverse                                               \
2702
   (&(table)->root,                                                     \
2703
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
2704
    (info)))
2705
 
2706
/* Get the ARM elf linker hash table from a link_info structure.  */
2707
#define elf32_arm_hash_table(info) \
2708
  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709
  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2710
 
2711
#define arm_stub_hash_lookup(table, string, create, copy) \
2712
  ((struct elf32_arm_stub_hash_entry *) \
2713
   bfd_hash_lookup ((table), (string), (create), (copy)))
2714
 
2715
/* Array to keep track of which stub sections have been created, and
2716
   information on stub grouping.  */
2717
struct map_stub
2718
{
2719
  /* This is the section to which stubs in the group will be
2720
     attached.  */
2721
  asection *link_sec;
2722
  /* The stub section.  */
2723
  asection *stub_sec;
2724
};
2725
 
2726
#define elf32_arm_compute_jump_table_size(htab) \
2727
  ((htab)->next_tls_desc_index * 4)
2728
 
2729
/* ARM ELF linker hash table.  */
2730
struct elf32_arm_link_hash_table
2731
{
2732
  /* The main hash table.  */
2733
  struct elf_link_hash_table root;
2734
 
2735
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2736
  bfd_size_type thumb_glue_size;
2737
 
2738
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2739
  bfd_size_type arm_glue_size;
2740
 
2741
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
2742
  bfd_size_type bx_glue_size;
2743
 
2744
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2745
     veneer has been populated.  */
2746
  bfd_vma bx_glue_offset[15];
2747
 
2748
  /* The size in bytes of the section containing glue for VFP11 erratum
2749
     veneers.  */
2750
  bfd_size_type vfp11_erratum_glue_size;
2751
 
2752
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2753
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754
     elf32_arm_write_section().  */
2755
  struct a8_erratum_fix *a8_erratum_fixes;
2756
  unsigned int num_a8_erratum_fixes;
2757
 
2758
  /* An arbitrary input BFD chosen to hold the glue sections.  */
2759
  bfd * bfd_of_glue_owner;
2760
 
2761
  /* Nonzero to output a BE8 image.  */
2762
  int byteswap_code;
2763
 
2764
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2766
  int target1_is_rel;
2767
 
2768
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
2769
  int target2_reloc;
2770
 
2771
  /* 0 = Ignore R_ARM_V4BX.
2772
     1 = Convert BX to MOV PC.
2773
     2 = Generate v4 interworing stubs.  */
2774
  int fix_v4bx;
2775
 
2776
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2777
  int fix_cortex_a8;
2778
 
2779 161 khays
  /* Whether we should fix the ARM1176 BLX immediate issue.  */
2780
  int fix_arm1176;
2781
 
2782 14 khays
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2783
  int use_blx;
2784
 
2785
  /* What sort of code sequences we should look for which may trigger the
2786
     VFP11 denorm erratum.  */
2787
  bfd_arm_vfp11_fix vfp11_fix;
2788
 
2789
  /* Global counter for the number of fixes we have emitted.  */
2790
  int num_vfp11_fixes;
2791
 
2792
  /* Nonzero to force PIC branch veneers.  */
2793
  int pic_veneer;
2794
 
2795
  /* The number of bytes in the initial entry in the PLT.  */
2796
  bfd_size_type plt_header_size;
2797
 
2798
  /* The number of bytes in the subsequent PLT etries.  */
2799
  bfd_size_type plt_entry_size;
2800
 
2801
  /* True if the target system is VxWorks.  */
2802
  int vxworks_p;
2803
 
2804
  /* True if the target system is Symbian OS.  */
2805
  int symbian_p;
2806
 
2807
  /* True if the target uses REL relocations.  */
2808
  int use_rel;
2809
 
2810
  /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
2811
  bfd_vma next_tls_desc_index;
2812
 
2813
  /* How many R_ARM_TLS_DESC relocations were generated so far.  */
2814
  bfd_vma num_tls_desc;
2815
 
2816
  /* Short-cuts to get to dynamic linker sections.  */
2817
  asection *sdynbss;
2818
  asection *srelbss;
2819
 
2820
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2821
  asection *srelplt2;
2822
 
2823
  /* The offset into splt of the PLT entry for the TLS descriptor
2824
     resolver.  Special values are 0, if not necessary (or not found
2825
     to be necessary yet), and -1 if needed but not determined
2826
     yet.  */
2827
  bfd_vma dt_tlsdesc_plt;
2828
 
2829
  /* The offset into sgot of the GOT entry used by the PLT entry
2830
     above.  */
2831
  bfd_vma dt_tlsdesc_got;
2832
 
2833
  /* Offset in .plt section of tls_arm_trampoline.  */
2834
  bfd_vma tls_trampoline;
2835
 
2836
  /* Data for R_ARM_TLS_LDM32 relocations.  */
2837
  union
2838
  {
2839
    bfd_signed_vma refcount;
2840
    bfd_vma offset;
2841
  } tls_ldm_got;
2842
 
2843
  /* Small local sym cache.  */
2844
  struct sym_cache sym_cache;
2845
 
2846
  /* For convenience in allocate_dynrelocs.  */
2847
  bfd * obfd;
2848
 
2849
  /* The amount of space used by the reserved portion of the sgotplt
2850
     section, plus whatever space is used by the jump slots.  */
2851
  bfd_vma sgotplt_jump_table_size;
2852
 
2853
  /* The stub hash table.  */
2854
  struct bfd_hash_table stub_hash_table;
2855
 
2856
  /* Linker stub bfd.  */
2857
  bfd *stub_bfd;
2858
 
2859
  /* Linker call-backs.  */
2860
  asection * (*add_stub_section) (const char *, asection *);
2861
  void (*layout_sections_again) (void);
2862
 
2863
  /* Array to keep track of which stub sections have been created, and
2864
     information on stub grouping.  */
2865
  struct map_stub *stub_group;
2866
 
2867
  /* Number of elements in stub_group.  */
2868
  int top_id;
2869
 
2870
  /* Assorted information used by elf32_arm_size_stubs.  */
2871
  unsigned int bfd_count;
2872
  int top_index;
2873
  asection **input_list;
2874
};
2875
 
2876
/* Create an entry in an ARM ELF linker hash table.  */
2877
 
2878
static struct bfd_hash_entry *
2879
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2880
                             struct bfd_hash_table * table,
2881
                             const char * string)
2882
{
2883
  struct elf32_arm_link_hash_entry * ret =
2884
    (struct elf32_arm_link_hash_entry *) entry;
2885
 
2886
  /* Allocate the structure if it has not already been allocated by a
2887
     subclass.  */
2888
  if (ret == NULL)
2889
    ret = (struct elf32_arm_link_hash_entry *)
2890
        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2891
  if (ret == NULL)
2892
    return (struct bfd_hash_entry *) ret;
2893
 
2894
  /* Call the allocation method of the superclass.  */
2895
  ret = ((struct elf32_arm_link_hash_entry *)
2896
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2897
                                     table, string));
2898
  if (ret != NULL)
2899
    {
2900
      ret->dyn_relocs = NULL;
2901
      ret->tls_type = GOT_UNKNOWN;
2902
      ret->tlsdesc_got = (bfd_vma) -1;
2903
      ret->plt.thumb_refcount = 0;
2904
      ret->plt.maybe_thumb_refcount = 0;
2905
      ret->plt.noncall_refcount = 0;
2906
      ret->plt.got_offset = -1;
2907
      ret->is_iplt = FALSE;
2908
      ret->export_glue = NULL;
2909
 
2910
      ret->stub_cache = NULL;
2911
    }
2912
 
2913
  return (struct bfd_hash_entry *) ret;
2914
}
2915
 
2916
/* Ensure that we have allocated bookkeeping structures for ABFD's local
2917
   symbols.  */
2918
 
2919
static bfd_boolean
2920
elf32_arm_allocate_local_sym_info (bfd *abfd)
2921
{
2922
  if (elf_local_got_refcounts (abfd) == NULL)
2923
    {
2924
      bfd_size_type num_syms;
2925
      bfd_size_type size;
2926
      char *data;
2927
 
2928
      num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2929
      size = num_syms * (sizeof (bfd_signed_vma)
2930
                         + sizeof (struct arm_local_iplt_info *)
2931
                         + sizeof (bfd_vma)
2932
                         + sizeof (char));
2933
      data = bfd_zalloc (abfd, size);
2934
      if (data == NULL)
2935
        return FALSE;
2936
 
2937
      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2938
      data += num_syms * sizeof (bfd_signed_vma);
2939
 
2940
      elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2941
      data += num_syms * sizeof (struct arm_local_iplt_info *);
2942
 
2943
      elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2944
      data += num_syms * sizeof (bfd_vma);
2945
 
2946
      elf32_arm_local_got_tls_type (abfd) = data;
2947
    }
2948
  return TRUE;
2949
}
2950
 
2951
/* Return the .iplt information for local symbol R_SYMNDX, which belongs
2952
   to input bfd ABFD.  Create the information if it doesn't already exist.
2953
   Return null if an allocation fails.  */
2954
 
2955
static struct arm_local_iplt_info *
2956
elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2957
{
2958
  struct arm_local_iplt_info **ptr;
2959
 
2960
  if (!elf32_arm_allocate_local_sym_info (abfd))
2961
    return NULL;
2962
 
2963
  BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2964
  ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2965
  if (*ptr == NULL)
2966
    *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2967
  return *ptr;
2968
}
2969
 
2970
/* Try to obtain PLT information for the symbol with index R_SYMNDX
2971
   in ABFD's symbol table.  If the symbol is global, H points to its
2972
   hash table entry, otherwise H is null.
2973
 
2974
   Return true if the symbol does have PLT information.  When returning
2975
   true, point *ROOT_PLT at the target-independent reference count/offset
2976
   union and *ARM_PLT at the ARM-specific information.  */
2977
 
2978
static bfd_boolean
2979
elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
2980
                        unsigned long r_symndx, union gotplt_union **root_plt,
2981
                        struct arm_plt_info **arm_plt)
2982
{
2983
  struct arm_local_iplt_info *local_iplt;
2984
 
2985
  if (h != NULL)
2986
    {
2987
      *root_plt = &h->root.plt;
2988
      *arm_plt = &h->plt;
2989
      return TRUE;
2990
    }
2991
 
2992
  if (elf32_arm_local_iplt (abfd) == NULL)
2993
    return FALSE;
2994
 
2995
  local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
2996
  if (local_iplt == NULL)
2997
    return FALSE;
2998
 
2999
  *root_plt = &local_iplt->root;
3000
  *arm_plt = &local_iplt->arm;
3001
  return TRUE;
3002
}
3003
 
3004
/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3005
   before it.  */
3006
 
3007
static bfd_boolean
3008
elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3009
                                  struct arm_plt_info *arm_plt)
3010
{
3011
  struct elf32_arm_link_hash_table *htab;
3012
 
3013
  htab = elf32_arm_hash_table (info);
3014
  return (arm_plt->thumb_refcount != 0
3015
          || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3016
}
3017
 
3018
/* Return a pointer to the head of the dynamic reloc list that should
3019
   be used for local symbol ISYM, which is symbol number R_SYMNDX in
3020
   ABFD's symbol table.  Return null if an error occurs.  */
3021
 
3022
static struct elf_dyn_relocs **
3023
elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3024
                                   Elf_Internal_Sym *isym)
3025
{
3026
  if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3027
    {
3028
      struct arm_local_iplt_info *local_iplt;
3029
 
3030
      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3031
      if (local_iplt == NULL)
3032
        return NULL;
3033
      return &local_iplt->dyn_relocs;
3034
    }
3035
  else
3036
    {
3037
      /* Track dynamic relocs needed for local syms too.
3038
         We really need local syms available to do this
3039
         easily.  Oh well.  */
3040
      asection *s;
3041
      void *vpp;
3042
 
3043
      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3044
      if (s == NULL)
3045
        abort ();
3046
 
3047
      vpp = &elf_section_data (s)->local_dynrel;
3048
      return (struct elf_dyn_relocs **) vpp;
3049
    }
3050
}
3051
 
3052
/* Initialize an entry in the stub hash table.  */
3053
 
3054
static struct bfd_hash_entry *
3055
stub_hash_newfunc (struct bfd_hash_entry *entry,
3056
                   struct bfd_hash_table *table,
3057
                   const char *string)
3058
{
3059
  /* Allocate the structure if it has not already been allocated by a
3060
     subclass.  */
3061
  if (entry == NULL)
3062
    {
3063
      entry = (struct bfd_hash_entry *)
3064
          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3065
      if (entry == NULL)
3066
        return entry;
3067
    }
3068
 
3069
  /* Call the allocation method of the superclass.  */
3070
  entry = bfd_hash_newfunc (entry, table, string);
3071
  if (entry != NULL)
3072
    {
3073
      struct elf32_arm_stub_hash_entry *eh;
3074
 
3075
      /* Initialize the local fields.  */
3076
      eh = (struct elf32_arm_stub_hash_entry *) entry;
3077
      eh->stub_sec = NULL;
3078
      eh->stub_offset = 0;
3079
      eh->target_value = 0;
3080
      eh->target_section = NULL;
3081
      eh->target_addend = 0;
3082
      eh->orig_insn = 0;
3083
      eh->stub_type = arm_stub_none;
3084
      eh->stub_size = 0;
3085
      eh->stub_template = NULL;
3086
      eh->stub_template_size = 0;
3087
      eh->h = NULL;
3088
      eh->id_sec = NULL;
3089
      eh->output_name = NULL;
3090
    }
3091
 
3092
  return entry;
3093
}
3094
 
3095
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3096
   shortcuts to them in our hash table.  */
3097
 
3098
static bfd_boolean
3099
create_got_section (bfd *dynobj, struct bfd_link_info *info)
3100
{
3101
  struct elf32_arm_link_hash_table *htab;
3102
 
3103
  htab = elf32_arm_hash_table (info);
3104
  if (htab == NULL)
3105
    return FALSE;
3106
 
3107
  /* BPABI objects never have a GOT, or associated sections.  */
3108
  if (htab->symbian_p)
3109
    return TRUE;
3110
 
3111
  if (! _bfd_elf_create_got_section (dynobj, info))
3112
    return FALSE;
3113
 
3114
  return TRUE;
3115
}
3116
 
3117
/* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
3118
 
3119
static bfd_boolean
3120
create_ifunc_sections (struct bfd_link_info *info)
3121
{
3122
  struct elf32_arm_link_hash_table *htab;
3123
  const struct elf_backend_data *bed;
3124
  bfd *dynobj;
3125
  asection *s;
3126
  flagword flags;
3127
 
3128
  htab = elf32_arm_hash_table (info);
3129
  dynobj = htab->root.dynobj;
3130
  bed = get_elf_backend_data (dynobj);
3131
  flags = bed->dynamic_sec_flags;
3132
 
3133
  if (htab->root.iplt == NULL)
3134
    {
3135
      s = bfd_make_section_with_flags (dynobj, ".iplt",
3136
                                       flags | SEC_READONLY | SEC_CODE);
3137
      if (s == NULL
3138
          || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3139
        return FALSE;
3140
      htab->root.iplt = s;
3141
    }
3142
 
3143
  if (htab->root.irelplt == NULL)
3144
    {
3145
      s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3146
                                       flags | SEC_READONLY);
3147
      if (s == NULL
3148
          || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3149
        return FALSE;
3150
      htab->root.irelplt = s;
3151
    }
3152
 
3153
  if (htab->root.igotplt == NULL)
3154
    {
3155
      s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3156
      if (s == NULL
3157
          || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3158
        return FALSE;
3159
      htab->root.igotplt = s;
3160
    }
3161
  return TRUE;
3162
}
3163
 
3164
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3165
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3166
   hash table.  */
3167
 
3168
static bfd_boolean
3169
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3170
{
3171
  struct elf32_arm_link_hash_table *htab;
3172
 
3173
  htab = elf32_arm_hash_table (info);
3174
  if (htab == NULL)
3175
    return FALSE;
3176
 
3177
  if (!htab->root.sgot && !create_got_section (dynobj, info))
3178
    return FALSE;
3179
 
3180
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3181
    return FALSE;
3182
 
3183
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3184
  if (!info->shared)
3185
    htab->srelbss = bfd_get_section_by_name (dynobj,
3186
                                             RELOC_SECTION (htab, ".bss"));
3187
 
3188
  if (htab->vxworks_p)
3189
    {
3190
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3191
        return FALSE;
3192
 
3193
      if (info->shared)
3194
        {
3195
          htab->plt_header_size = 0;
3196
          htab->plt_entry_size
3197
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3198
        }
3199
      else
3200
        {
3201
          htab->plt_header_size
3202
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3203
          htab->plt_entry_size
3204
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3205
        }
3206
    }
3207
 
3208
  if (!htab->root.splt
3209
      || !htab->root.srelplt
3210
      || !htab->sdynbss
3211
      || (!info->shared && !htab->srelbss))
3212
    abort ();
3213
 
3214
  return TRUE;
3215
}
3216
 
3217
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
3218
 
3219
static void
3220
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3221
                                struct elf_link_hash_entry *dir,
3222
                                struct elf_link_hash_entry *ind)
3223
{
3224
  struct elf32_arm_link_hash_entry *edir, *eind;
3225
 
3226
  edir = (struct elf32_arm_link_hash_entry *) dir;
3227
  eind = (struct elf32_arm_link_hash_entry *) ind;
3228
 
3229
  if (eind->dyn_relocs != NULL)
3230
    {
3231
      if (edir->dyn_relocs != NULL)
3232
        {
3233
          struct elf_dyn_relocs **pp;
3234
          struct elf_dyn_relocs *p;
3235
 
3236
          /* Add reloc counts against the indirect sym to the direct sym
3237
             list.  Merge any entries against the same section.  */
3238
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3239
            {
3240
              struct elf_dyn_relocs *q;
3241
 
3242
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
3243
                if (q->sec == p->sec)
3244
                  {
3245
                    q->pc_count += p->pc_count;
3246
                    q->count += p->count;
3247
                    *pp = p->next;
3248
                    break;
3249
                  }
3250
              if (q == NULL)
3251
                pp = &p->next;
3252
            }
3253
          *pp = edir->dyn_relocs;
3254
        }
3255
 
3256
      edir->dyn_relocs = eind->dyn_relocs;
3257
      eind->dyn_relocs = NULL;
3258
    }
3259
 
3260
  if (ind->root.type == bfd_link_hash_indirect)
3261
    {
3262
      /* Copy over PLT info.  */
3263
      edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3264
      eind->plt.thumb_refcount = 0;
3265
      edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3266
      eind->plt.maybe_thumb_refcount = 0;
3267
      edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3268
      eind->plt.noncall_refcount = 0;
3269
 
3270
      /* We should only allocate a function to .iplt once the final
3271
         symbol information is known.  */
3272
      BFD_ASSERT (!eind->is_iplt);
3273
 
3274
      if (dir->got.refcount <= 0)
3275
        {
3276
          edir->tls_type = eind->tls_type;
3277
          eind->tls_type = GOT_UNKNOWN;
3278
        }
3279
    }
3280
 
3281
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3282
}
3283
 
3284
/* Create an ARM elf linker hash table.  */
3285
 
3286
static struct bfd_link_hash_table *
3287
elf32_arm_link_hash_table_create (bfd *abfd)
3288
{
3289
  struct elf32_arm_link_hash_table *ret;
3290
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3291
 
3292
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3293
  if (ret == NULL)
3294
    return NULL;
3295
 
3296
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3297
                                      elf32_arm_link_hash_newfunc,
3298
                                      sizeof (struct elf32_arm_link_hash_entry),
3299
                                      ARM_ELF_DATA))
3300
    {
3301
      free (ret);
3302
      return NULL;
3303
    }
3304
 
3305
  ret->sdynbss = NULL;
3306
  ret->srelbss = NULL;
3307
  ret->srelplt2 = NULL;
3308
  ret->dt_tlsdesc_plt = 0;
3309
  ret->dt_tlsdesc_got = 0;
3310
  ret->tls_trampoline = 0;
3311
  ret->next_tls_desc_index = 0;
3312
  ret->num_tls_desc = 0;
3313
  ret->thumb_glue_size = 0;
3314
  ret->arm_glue_size = 0;
3315
  ret->bx_glue_size = 0;
3316
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3317
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3318
  ret->vfp11_erratum_glue_size = 0;
3319
  ret->num_vfp11_fixes = 0;
3320
  ret->fix_cortex_a8 = 0;
3321 161 khays
  ret->fix_arm1176 = 0;
3322 14 khays
  ret->bfd_of_glue_owner = NULL;
3323
  ret->byteswap_code = 0;
3324
  ret->target1_is_rel = 0;
3325
  ret->target2_reloc = R_ARM_NONE;
3326
#ifdef FOUR_WORD_PLT
3327
  ret->plt_header_size = 16;
3328
  ret->plt_entry_size = 16;
3329
#else
3330
  ret->plt_header_size = 20;
3331
  ret->plt_entry_size = 12;
3332
#endif
3333
  ret->fix_v4bx = 0;
3334
  ret->use_blx = 0;
3335
  ret->vxworks_p = 0;
3336
  ret->symbian_p = 0;
3337
  ret->use_rel = 1;
3338
  ret->sym_cache.abfd = NULL;
3339
  ret->obfd = abfd;
3340
  ret->tls_ldm_got.refcount = 0;
3341
  ret->stub_bfd = NULL;
3342
  ret->add_stub_section = NULL;
3343
  ret->layout_sections_again = NULL;
3344
  ret->stub_group = NULL;
3345
  ret->top_id = 0;
3346
  ret->bfd_count = 0;
3347
  ret->top_index = 0;
3348
  ret->input_list = NULL;
3349
 
3350
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3351
                            sizeof (struct elf32_arm_stub_hash_entry)))
3352
    {
3353
      free (ret);
3354
      return NULL;
3355
    }
3356
 
3357
  return &ret->root.root;
3358
}
3359
 
3360
/* Free the derived linker hash table.  */
3361
 
3362
static void
3363
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3364
{
3365
  struct elf32_arm_link_hash_table *ret
3366
    = (struct elf32_arm_link_hash_table *) hash;
3367
 
3368
  bfd_hash_table_free (&ret->stub_hash_table);
3369
  _bfd_generic_link_hash_table_free (hash);
3370
}
3371
 
3372
/* Determine if we're dealing with a Thumb only architecture.  */
3373
 
3374
static bfd_boolean
3375
using_thumb_only (struct elf32_arm_link_hash_table *globals)
3376
{
3377
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3378
                                       Tag_CPU_arch);
3379
  int profile;
3380
 
3381
  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3382
    return TRUE;
3383
 
3384
  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3385
    return FALSE;
3386
 
3387
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388
                                      Tag_CPU_arch_profile);
3389
 
3390
  return profile == 'M';
3391
}
3392
 
3393
/* Determine if we're dealing with a Thumb-2 object.  */
3394
 
3395
static bfd_boolean
3396
using_thumb2 (struct elf32_arm_link_hash_table *globals)
3397
{
3398
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3399
                                       Tag_CPU_arch);
3400
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3401
}
3402
 
3403
/* Determine what kind of NOPs are available.  */
3404
 
3405
static bfd_boolean
3406
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3407
{
3408
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3409
                                             Tag_CPU_arch);
3410
  return arch == TAG_CPU_ARCH_V6T2
3411
         || arch == TAG_CPU_ARCH_V6K
3412
         || arch == TAG_CPU_ARCH_V7
3413
         || arch == TAG_CPU_ARCH_V7E_M;
3414
}
3415
 
3416
static bfd_boolean
3417
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3418
{
3419
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3420
                                             Tag_CPU_arch);
3421
  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3422
          || arch == TAG_CPU_ARCH_V7E_M);
3423
}
3424
 
3425
static bfd_boolean
3426
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3427
{
3428
  switch (stub_type)
3429
    {
3430
    case arm_stub_long_branch_thumb_only:
3431
    case arm_stub_long_branch_v4t_thumb_arm:
3432
    case arm_stub_short_branch_v4t_thumb_arm:
3433
    case arm_stub_long_branch_v4t_thumb_arm_pic:
3434
    case arm_stub_long_branch_v4t_thumb_tls_pic:
3435
    case arm_stub_long_branch_thumb_only_pic:
3436
      return TRUE;
3437
    case arm_stub_none:
3438
      BFD_FAIL ();
3439
      return FALSE;
3440
      break;
3441
    default:
3442
      return FALSE;
3443
    }
3444
}
3445
 
3446
/* Determine the type of stub needed, if any, for a call.  */
3447
 
3448
static enum elf32_arm_stub_type
3449
arm_type_of_stub (struct bfd_link_info *info,
3450
                  asection *input_sec,
3451
                  const Elf_Internal_Rela *rel,
3452
                  unsigned char st_type,
3453
                  enum arm_st_branch_type *actual_branch_type,
3454
                  struct elf32_arm_link_hash_entry *hash,
3455
                  bfd_vma destination,
3456
                  asection *sym_sec,
3457
                  bfd *input_bfd,
3458
                  const char *name)
3459
{
3460
  bfd_vma location;
3461
  bfd_signed_vma branch_offset;
3462
  unsigned int r_type;
3463
  struct elf32_arm_link_hash_table * globals;
3464
  int thumb2;
3465
  int thumb_only;
3466
  enum elf32_arm_stub_type stub_type = arm_stub_none;
3467
  int use_plt = 0;
3468
  enum arm_st_branch_type branch_type = *actual_branch_type;
3469
  union gotplt_union *root_plt;
3470
  struct arm_plt_info *arm_plt;
3471
 
3472
  if (branch_type == ST_BRANCH_LONG)
3473
    return stub_type;
3474
 
3475
  globals = elf32_arm_hash_table (info);
3476
  if (globals == NULL)
3477
    return stub_type;
3478
 
3479
  thumb_only = using_thumb_only (globals);
3480
 
3481
  thumb2 = using_thumb2 (globals);
3482
 
3483
  /* Determine where the call point is.  */
3484
  location = (input_sec->output_offset
3485
              + input_sec->output_section->vma
3486
              + rel->r_offset);
3487
 
3488
  r_type = ELF32_R_TYPE (rel->r_info);
3489
 
3490
  /* For TLS call relocs, it is the caller's responsibility to provide
3491
     the address of the appropriate trampoline.  */
3492
  if (r_type != R_ARM_TLS_CALL
3493
      && r_type != R_ARM_THM_TLS_CALL
3494
      && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3495
                                 &root_plt, &arm_plt)
3496
      && root_plt->offset != (bfd_vma) -1)
3497
    {
3498
      asection *splt;
3499
 
3500
      if (hash == NULL || hash->is_iplt)
3501
        splt = globals->root.iplt;
3502
      else
3503
        splt = globals->root.splt;
3504
      if (splt != NULL)
3505
        {
3506
          use_plt = 1;
3507
 
3508
          /* Note when dealing with PLT entries: the main PLT stub is in
3509
             ARM mode, so if the branch is in Thumb mode, another
3510
             Thumb->ARM stub will be inserted later just before the ARM
3511
             PLT stub. We don't take this extra distance into account
3512
             here, because if a long branch stub is needed, we'll add a
3513
             Thumb->Arm one and branch directly to the ARM PLT entry
3514
             because it avoids spreading offset corrections in several
3515
             places.  */
3516
 
3517
          destination = (splt->output_section->vma
3518
                         + splt->output_offset
3519
                         + root_plt->offset);
3520
          st_type = STT_FUNC;
3521
          branch_type = ST_BRANCH_TO_ARM;
3522
        }
3523
    }
3524
  /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
3525
  BFD_ASSERT (st_type != STT_GNU_IFUNC);
3526
 
3527
  branch_offset = (bfd_signed_vma)(destination - location);
3528
 
3529
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3530
      || r_type == R_ARM_THM_TLS_CALL)
3531
    {
3532
      /* Handle cases where:
3533
         - this call goes too far (different Thumb/Thumb2 max
3534
           distance)
3535
         - it's a Thumb->Arm call and blx is not available, or it's a
3536
           Thumb->Arm branch (not bl). A stub is needed in this case,
3537
           but only if this call is not through a PLT entry. Indeed,
3538
           PLT stubs handle mode switching already.
3539
      */
3540
      if ((!thumb2
3541
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3542
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3543
          || (thumb2
3544
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3545
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3546
          || (branch_type == ST_BRANCH_TO_ARM
3547
              && (((r_type == R_ARM_THM_CALL
3548
                    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3549
                  || (r_type == R_ARM_THM_JUMP24))
3550
              && !use_plt))
3551
        {
3552
          if (branch_type == ST_BRANCH_TO_THUMB)
3553
            {
3554
              /* Thumb to thumb.  */
3555
              if (!thumb_only)
3556
                {
3557
                  stub_type = (info->shared | globals->pic_veneer)
3558
                    /* PIC stubs.  */
3559
                    ? ((globals->use_blx
3560
                        && (r_type ==R_ARM_THM_CALL))
3561
                       /* V5T and above. Stub starts with ARM code, so
3562
                          we must be able to switch mode before
3563
                          reaching it, which is only possible for 'bl'
3564
                          (ie R_ARM_THM_CALL relocation).  */
3565
                       ? arm_stub_long_branch_any_thumb_pic
3566
                       /* On V4T, use Thumb code only.  */
3567
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3568
 
3569
                    /* non-PIC stubs.  */
3570
                    : ((globals->use_blx
3571
                        && (r_type ==R_ARM_THM_CALL))
3572
                       /* V5T and above.  */
3573
                       ? arm_stub_long_branch_any_any
3574
                       /* V4T.  */
3575
                       : arm_stub_long_branch_v4t_thumb_thumb);
3576
                }
3577
              else
3578
                {
3579
                  stub_type = (info->shared | globals->pic_veneer)
3580
                    /* PIC stub.  */
3581
                    ? arm_stub_long_branch_thumb_only_pic
3582
                    /* non-PIC stub.  */
3583
                    : arm_stub_long_branch_thumb_only;
3584
                }
3585
            }
3586
          else
3587
            {
3588
              /* Thumb to arm.  */
3589
              if (sym_sec != NULL
3590
                  && sym_sec->owner != NULL
3591
                  && !INTERWORK_FLAG (sym_sec->owner))
3592
                {
3593
                  (*_bfd_error_handler)
3594
                    (_("%B(%s): warning: interworking not enabled.\n"
3595
                       "  first occurrence: %B: Thumb call to ARM"),
3596
                     sym_sec->owner, input_bfd, name);
3597
                }
3598
 
3599
              stub_type =
3600
                (info->shared | globals->pic_veneer)
3601
                /* PIC stubs.  */
3602
                ? (r_type == R_ARM_THM_TLS_CALL
3603
                   /* TLS PIC stubs */
3604
                   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3605
                      : arm_stub_long_branch_v4t_thumb_tls_pic)
3606
                   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3607
                      /* V5T PIC and above.  */
3608
                      ? arm_stub_long_branch_any_arm_pic
3609
                      /* V4T PIC stub.  */
3610
                      : arm_stub_long_branch_v4t_thumb_arm_pic))
3611
 
3612
                /* non-PIC stubs.  */
3613
                : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3614
                   /* V5T and above.  */
3615
                   ? arm_stub_long_branch_any_any
3616
                   /* V4T.  */
3617
                   : arm_stub_long_branch_v4t_thumb_arm);
3618
 
3619
              /* Handle v4t short branches.  */
3620
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3621
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3622
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3623
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
3624
            }
3625
        }
3626
    }
3627
  else if (r_type == R_ARM_CALL
3628
           || r_type == R_ARM_JUMP24
3629
           || r_type == R_ARM_PLT32
3630
           || r_type == R_ARM_TLS_CALL)
3631
    {
3632
      if (branch_type == ST_BRANCH_TO_THUMB)
3633
        {
3634
          /* Arm to thumb.  */
3635
 
3636
          if (sym_sec != NULL
3637
              && sym_sec->owner != NULL
3638
              && !INTERWORK_FLAG (sym_sec->owner))
3639
            {
3640
              (*_bfd_error_handler)
3641
                (_("%B(%s): warning: interworking not enabled.\n"
3642
                   "  first occurrence: %B: ARM call to Thumb"),
3643
                 sym_sec->owner, input_bfd, name);
3644
            }
3645
 
3646
          /* We have an extra 2-bytes reach because of
3647
             the mode change (bit 24 (H) of BLX encoding).  */
3648
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3649
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3650
              || (r_type == R_ARM_CALL && !globals->use_blx)
3651
              || (r_type == R_ARM_JUMP24)
3652
              || (r_type == R_ARM_PLT32))
3653
            {
3654
              stub_type = (info->shared | globals->pic_veneer)
3655
                /* PIC stubs.  */
3656
                ? ((globals->use_blx)
3657
                   /* V5T and above.  */
3658
                   ? arm_stub_long_branch_any_thumb_pic
3659
                   /* V4T stub.  */
3660
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
3661
 
3662
                /* non-PIC stubs.  */
3663
                : ((globals->use_blx)
3664
                   /* V5T and above.  */
3665
                   ? arm_stub_long_branch_any_any
3666
                   /* V4T.  */
3667
                   : arm_stub_long_branch_v4t_arm_thumb);
3668
            }
3669
        }
3670
      else
3671
        {
3672
          /* Arm to arm.  */
3673
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3674
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3675
            {
3676
              stub_type =
3677
                (info->shared | globals->pic_veneer)
3678
                /* PIC stubs.  */
3679
                ? (r_type == R_ARM_TLS_CALL
3680
                   /* TLS PIC Stub */
3681
                   ? arm_stub_long_branch_any_tls_pic
3682
                   : arm_stub_long_branch_any_arm_pic)
3683
                /* non-PIC stubs.  */
3684
                : arm_stub_long_branch_any_any;
3685
            }
3686
        }
3687
    }
3688
 
3689
  /* If a stub is needed, record the actual destination type.  */
3690
  if (stub_type != arm_stub_none)
3691
    *actual_branch_type = branch_type;
3692
 
3693
  return stub_type;
3694
}
3695
 
3696
/* Build a name for an entry in the stub hash table.  */
3697
 
3698
static char *
3699
elf32_arm_stub_name (const asection *input_section,
3700
                     const asection *sym_sec,
3701
                     const struct elf32_arm_link_hash_entry *hash,
3702
                     const Elf_Internal_Rela *rel,
3703
                     enum elf32_arm_stub_type stub_type)
3704
{
3705
  char *stub_name;
3706
  bfd_size_type len;
3707
 
3708
  if (hash)
3709
    {
3710
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3711
      stub_name = (char *) bfd_malloc (len);
3712
      if (stub_name != NULL)
3713
        sprintf (stub_name, "%08x_%s+%x_%d",
3714
                 input_section->id & 0xffffffff,
3715
                 hash->root.root.root.string,
3716
                 (int) rel->r_addend & 0xffffffff,
3717
                 (int) stub_type);
3718
    }
3719
  else
3720
    {
3721
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3722
      stub_name = (char *) bfd_malloc (len);
3723
      if (stub_name != NULL)
3724
        sprintf (stub_name, "%08x_%x:%x+%x_%d",
3725
                 input_section->id & 0xffffffff,
3726
                 sym_sec->id & 0xffffffff,
3727
                 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3728
                 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3729
                 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3730
                 (int) rel->r_addend & 0xffffffff,
3731
                 (int) stub_type);
3732
    }
3733
 
3734
  return stub_name;
3735
}
3736
 
3737
/* Look up an entry in the stub hash.  Stub entries are cached because
3738
   creating the stub name takes a bit of time.  */
3739
 
3740
static struct elf32_arm_stub_hash_entry *
3741
elf32_arm_get_stub_entry (const asection *input_section,
3742
                          const asection *sym_sec,
3743
                          struct elf_link_hash_entry *hash,
3744
                          const Elf_Internal_Rela *rel,
3745
                          struct elf32_arm_link_hash_table *htab,
3746
                          enum elf32_arm_stub_type stub_type)
3747
{
3748
  struct elf32_arm_stub_hash_entry *stub_entry;
3749
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3750
  const asection *id_sec;
3751
 
3752
  if ((input_section->flags & SEC_CODE) == 0)
3753
    return NULL;
3754
 
3755
  /* If this input section is part of a group of sections sharing one
3756
     stub section, then use the id of the first section in the group.
3757
     Stub names need to include a section id, as there may well be
3758
     more than one stub used to reach say, printf, and we need to
3759
     distinguish between them.  */
3760
  id_sec = htab->stub_group[input_section->id].link_sec;
3761
 
3762
  if (h != NULL && h->stub_cache != NULL
3763
      && h->stub_cache->h == h
3764
      && h->stub_cache->id_sec == id_sec
3765
      && h->stub_cache->stub_type == stub_type)
3766
    {
3767
      stub_entry = h->stub_cache;
3768
    }
3769
  else
3770
    {
3771
      char *stub_name;
3772
 
3773
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3774
      if (stub_name == NULL)
3775
        return NULL;
3776
 
3777
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3778
                                        stub_name, FALSE, FALSE);
3779
      if (h != NULL)
3780
        h->stub_cache = stub_entry;
3781
 
3782
      free (stub_name);
3783
    }
3784
 
3785
  return stub_entry;
3786
}
3787
 
3788
/* Find or create a stub section.  Returns a pointer to the stub section, and
3789
   the section to which the stub section will be attached (in *LINK_SEC_P).
3790
   LINK_SEC_P may be NULL.  */
3791
 
3792
static asection *
3793
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3794
                                   struct elf32_arm_link_hash_table *htab)
3795
{
3796
  asection *link_sec;
3797
  asection *stub_sec;
3798
 
3799
  link_sec = htab->stub_group[section->id].link_sec;
3800
  stub_sec = htab->stub_group[section->id].stub_sec;
3801
  if (stub_sec == NULL)
3802
    {
3803
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
3804
      if (stub_sec == NULL)
3805
        {
3806
          size_t namelen;
3807
          bfd_size_type len;
3808
          char *s_name;
3809
 
3810
          namelen = strlen (link_sec->name);
3811
          len = namelen + sizeof (STUB_SUFFIX);
3812
          s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3813
          if (s_name == NULL)
3814
            return NULL;
3815
 
3816
          memcpy (s_name, link_sec->name, namelen);
3817
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3818
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3819
          if (stub_sec == NULL)
3820
            return NULL;
3821
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
3822
        }
3823
      htab->stub_group[section->id].stub_sec = stub_sec;
3824
    }
3825
 
3826
  if (link_sec_p)
3827
    *link_sec_p = link_sec;
3828
 
3829
  return stub_sec;
3830
}
3831
 
3832
/* Add a new stub entry to the stub hash.  Not all fields of the new
3833
   stub entry are initialised.  */
3834
 
3835
static struct elf32_arm_stub_hash_entry *
3836
elf32_arm_add_stub (const char *stub_name,
3837
                    asection *section,
3838
                    struct elf32_arm_link_hash_table *htab)
3839
{
3840
  asection *link_sec;
3841
  asection *stub_sec;
3842
  struct elf32_arm_stub_hash_entry *stub_entry;
3843
 
3844
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3845
  if (stub_sec == NULL)
3846
    return NULL;
3847
 
3848
  /* Enter this entry into the linker stub hash table.  */
3849
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3850
                                     TRUE, FALSE);
3851
  if (stub_entry == NULL)
3852
    {
3853
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3854
                             section->owner,
3855
                             stub_name);
3856
      return NULL;
3857
    }
3858
 
3859
  stub_entry->stub_sec = stub_sec;
3860
  stub_entry->stub_offset = 0;
3861
  stub_entry->id_sec = link_sec;
3862
 
3863
  return stub_entry;
3864
}
3865
 
3866
/* Store an Arm insn into an output section not processed by
3867
   elf32_arm_write_section.  */
3868
 
3869
static void
3870
put_arm_insn (struct elf32_arm_link_hash_table * htab,
3871
              bfd * output_bfd, bfd_vma val, void * ptr)
3872
{
3873
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3874
    bfd_putl32 (val, ptr);
3875
  else
3876
    bfd_putb32 (val, ptr);
3877
}
3878
 
3879
/* Store a 16-bit Thumb insn into an output section not processed by
3880
   elf32_arm_write_section.  */
3881
 
3882
static void
3883
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3884
                bfd * output_bfd, bfd_vma val, void * ptr)
3885
{
3886
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3887
    bfd_putl16 (val, ptr);
3888
  else
3889
    bfd_putb16 (val, ptr);
3890
}
3891
 
3892
/* If it's possible to change R_TYPE to a more efficient access
3893
   model, return the new reloc type.  */
3894
 
3895
static unsigned
3896
elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3897
                          struct elf_link_hash_entry *h)
3898
{
3899
  int is_local = (h == NULL);
3900
 
3901
  if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3902
    return r_type;
3903
 
3904
  /* We do not support relaxations for Old TLS models.  */
3905
  switch (r_type)
3906
    {
3907
    case R_ARM_TLS_GOTDESC:
3908
    case R_ARM_TLS_CALL:
3909
    case R_ARM_THM_TLS_CALL:
3910
    case R_ARM_TLS_DESCSEQ:
3911
    case R_ARM_THM_TLS_DESCSEQ:
3912
      return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3913
    }
3914
 
3915
  return r_type;
3916
}
3917
 
3918
static bfd_reloc_status_type elf32_arm_final_link_relocate
3919
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3920
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3921
   const char *, unsigned char, enum arm_st_branch_type,
3922
   struct elf_link_hash_entry *, bfd_boolean *, char **);
3923
 
3924
static unsigned int
3925
arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3926
{
3927
  switch (stub_type)
3928
    {
3929
    case arm_stub_a8_veneer_b_cond:
3930
    case arm_stub_a8_veneer_b:
3931
    case arm_stub_a8_veneer_bl:
3932
      return 2;
3933
 
3934
    case arm_stub_long_branch_any_any:
3935
    case arm_stub_long_branch_v4t_arm_thumb:
3936
    case arm_stub_long_branch_thumb_only:
3937
    case arm_stub_long_branch_v4t_thumb_thumb:
3938
    case arm_stub_long_branch_v4t_thumb_arm:
3939
    case arm_stub_short_branch_v4t_thumb_arm:
3940
    case arm_stub_long_branch_any_arm_pic:
3941
    case arm_stub_long_branch_any_thumb_pic:
3942
    case arm_stub_long_branch_v4t_thumb_thumb_pic:
3943
    case arm_stub_long_branch_v4t_arm_thumb_pic:
3944
    case arm_stub_long_branch_v4t_thumb_arm_pic:
3945
    case arm_stub_long_branch_thumb_only_pic:
3946
    case arm_stub_long_branch_any_tls_pic:
3947
    case arm_stub_long_branch_v4t_thumb_tls_pic:
3948
    case arm_stub_a8_veneer_blx:
3949
      return 4;
3950
 
3951
    default:
3952
      abort ();  /* Should be unreachable.  */
3953
    }
3954
}
3955
 
3956
static bfd_boolean
3957
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3958
                    void * in_arg)
3959
{
3960
#define MAXRELOCS 2
3961
  struct elf32_arm_stub_hash_entry *stub_entry;
3962
  struct elf32_arm_link_hash_table *globals;
3963
  struct bfd_link_info *info;
3964
  asection *stub_sec;
3965
  bfd *stub_bfd;
3966
  bfd_byte *loc;
3967
  bfd_vma sym_value;
3968
  int template_size;
3969
  int size;
3970
  const insn_sequence *template_sequence;
3971
  int i;
3972
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3973
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
3974
  int nrelocs = 0;
3975
 
3976
  /* Massage our args to the form they really have.  */
3977
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3978
  info = (struct bfd_link_info *) in_arg;
3979
 
3980
  globals = elf32_arm_hash_table (info);
3981
  if (globals == NULL)
3982
    return FALSE;
3983
 
3984
  stub_sec = stub_entry->stub_sec;
3985
 
3986
  if ((globals->fix_cortex_a8 < 0)
3987
      != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3988
    /* We have to do less-strictly-aligned fixes last.  */
3989
    return TRUE;
3990
 
3991
  /* Make a note of the offset within the stubs for this entry.  */
3992
  stub_entry->stub_offset = stub_sec->size;
3993
  loc = stub_sec->contents + stub_entry->stub_offset;
3994
 
3995
  stub_bfd = stub_sec->owner;
3996
 
3997
  /* This is the address of the stub destination.  */
3998
  sym_value = (stub_entry->target_value
3999
               + stub_entry->target_section->output_offset
4000
               + stub_entry->target_section->output_section->vma);
4001
 
4002
  template_sequence = stub_entry->stub_template;
4003
  template_size = stub_entry->stub_template_size;
4004
 
4005
  size = 0;
4006
  for (i = 0; i < template_size; i++)
4007
    {
4008
      switch (template_sequence[i].type)
4009
        {
4010
        case THUMB16_TYPE:
4011
          {
4012
            bfd_vma data = (bfd_vma) template_sequence[i].data;
4013
            if (template_sequence[i].reloc_addend != 0)
4014
              {
4015
                /* We've borrowed the reloc_addend field to mean we should
4016
                   insert a condition code into this (Thumb-1 branch)
4017
                   instruction.  See THUMB16_BCOND_INSN.  */
4018
                BFD_ASSERT ((data & 0xff00) == 0xd000);
4019
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4020
              }
4021
            bfd_put_16 (stub_bfd, data, loc + size);
4022
            size += 2;
4023
          }
4024
          break;
4025
 
4026
        case THUMB32_TYPE:
4027
          bfd_put_16 (stub_bfd,
4028
                      (template_sequence[i].data >> 16) & 0xffff,
4029
                      loc + size);
4030
          bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4031
                      loc + size + 2);
4032
          if (template_sequence[i].r_type != R_ARM_NONE)
4033
            {
4034
              stub_reloc_idx[nrelocs] = i;
4035
              stub_reloc_offset[nrelocs++] = size;
4036
            }
4037
          size += 4;
4038
          break;
4039
 
4040
        case ARM_TYPE:
4041
          bfd_put_32 (stub_bfd, template_sequence[i].data,
4042
                      loc + size);
4043
          /* Handle cases where the target is encoded within the
4044
             instruction.  */
4045
          if (template_sequence[i].r_type == R_ARM_JUMP24)
4046
            {
4047
              stub_reloc_idx[nrelocs] = i;
4048
              stub_reloc_offset[nrelocs++] = size;
4049
            }
4050
          size += 4;
4051
          break;
4052
 
4053
        case DATA_TYPE:
4054
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4055
          stub_reloc_idx[nrelocs] = i;
4056
          stub_reloc_offset[nrelocs++] = size;
4057
          size += 4;
4058
          break;
4059
 
4060
        default:
4061
          BFD_FAIL ();
4062
          return FALSE;
4063
        }
4064
    }
4065
 
4066
  stub_sec->size += size;
4067
 
4068
  /* Stub size has already been computed in arm_size_one_stub. Check
4069
     consistency.  */
4070
  BFD_ASSERT (size == stub_entry->stub_size);
4071
 
4072
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
4073
  if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4074
    sym_value |= 1;
4075
 
4076
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
4077
     in each stub.  */
4078
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4079
 
4080
  for (i = 0; i < nrelocs; i++)
4081
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4082
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4083
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4084
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4085
      {
4086
        Elf_Internal_Rela rel;
4087
        bfd_boolean unresolved_reloc;
4088
        char *error_message;
4089
        enum arm_st_branch_type branch_type
4090
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4091
             ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4092
        bfd_vma points_to = sym_value + stub_entry->target_addend;
4093
 
4094
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4095
        rel.r_info = ELF32_R_INFO (0,
4096
                                   template_sequence[stub_reloc_idx[i]].r_type);
4097
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4098
 
4099
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4100
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4101
             template should refer back to the instruction after the original
4102
             branch.  */
4103
          points_to = sym_value;
4104
 
4105
        /* There may be unintended consequences if this is not true.  */
4106
        BFD_ASSERT (stub_entry->h == NULL);
4107
 
4108
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
4109
           properly.  We should probably use this function unconditionally,
4110
           rather than only for certain relocations listed in the enclosing
4111
           conditional, for the sake of consistency.  */
4112
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4113
            (template_sequence[stub_reloc_idx[i]].r_type),
4114
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4115
          points_to, info, stub_entry->target_section, "", STT_FUNC,
4116
          branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4117
          &unresolved_reloc, &error_message);
4118
      }
4119
    else
4120
      {
4121
        Elf_Internal_Rela rel;
4122
        bfd_boolean unresolved_reloc;
4123
        char *error_message;
4124
        bfd_vma points_to = sym_value + stub_entry->target_addend
4125
          + template_sequence[stub_reloc_idx[i]].reloc_addend;
4126
 
4127
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4128
        rel.r_info = ELF32_R_INFO (0,
4129
                                   template_sequence[stub_reloc_idx[i]].r_type);
4130
        rel.r_addend = 0;
4131
 
4132
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4133
            (template_sequence[stub_reloc_idx[i]].r_type),
4134
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4135
          points_to, info, stub_entry->target_section, "", STT_FUNC,
4136
          stub_entry->branch_type,
4137
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4138
          &error_message);
4139
      }
4140
 
4141
  return TRUE;
4142
#undef MAXRELOCS
4143
}
4144
 
4145
/* Calculate the template, template size and instruction size for a stub.
4146
   Return value is the instruction size.  */
4147
 
4148
static unsigned int
4149
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4150
                             const insn_sequence **stub_template,
4151
                             int *stub_template_size)
4152
{
4153
  const insn_sequence *template_sequence = NULL;
4154
  int template_size = 0, i;
4155
  unsigned int size;
4156
 
4157
  template_sequence = stub_definitions[stub_type].template_sequence;
4158
  if (stub_template)
4159
    *stub_template = template_sequence;
4160
 
4161
  template_size = stub_definitions[stub_type].template_size;
4162
  if (stub_template_size)
4163
    *stub_template_size = template_size;
4164
 
4165
  size = 0;
4166
  for (i = 0; i < template_size; i++)
4167
    {
4168
      switch (template_sequence[i].type)
4169
        {
4170
        case THUMB16_TYPE:
4171
          size += 2;
4172
          break;
4173
 
4174
        case ARM_TYPE:
4175
        case THUMB32_TYPE:
4176
        case DATA_TYPE:
4177
          size += 4;
4178
          break;
4179
 
4180
        default:
4181
          BFD_FAIL ();
4182
          return 0;
4183
        }
4184
    }
4185
 
4186
  return size;
4187
}
4188
 
4189
/* As above, but don't actually build the stub.  Just bump offset so
4190
   we know stub section sizes.  */
4191
 
4192
static bfd_boolean
4193
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4194
                   void *in_arg ATTRIBUTE_UNUSED)
4195
{
4196
  struct elf32_arm_stub_hash_entry *stub_entry;
4197
  const insn_sequence *template_sequence;
4198
  int template_size, size;
4199
 
4200
  /* Massage our args to the form they really have.  */
4201
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4202
 
4203
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4204
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4205
 
4206
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4207
                                      &template_size);
4208
 
4209
  stub_entry->stub_size = size;
4210
  stub_entry->stub_template = template_sequence;
4211
  stub_entry->stub_template_size = template_size;
4212
 
4213
  size = (size + 7) & ~7;
4214
  stub_entry->stub_sec->size += size;
4215
 
4216
  return TRUE;
4217
}
4218
 
4219
/* External entry points for sizing and building linker stubs.  */
4220
 
4221
/* Set up various things so that we can make a list of input sections
4222
   for each output section included in the link.  Returns -1 on error,
4223
 
4224
 
4225
int
4226
elf32_arm_setup_section_lists (bfd *output_bfd,
4227
                               struct bfd_link_info *info)
4228
{
4229
  bfd *input_bfd;
4230
  unsigned int bfd_count;
4231
  int top_id, top_index;
4232
  asection *section;
4233
  asection **input_list, **list;
4234
  bfd_size_type amt;
4235
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4236
 
4237
  if (htab == NULL)
4238
    return 0;
4239
  if (! is_elf_hash_table (htab))
4240
    return 0;
4241
 
4242
  /* Count the number of input BFDs and find the top input section id.  */
4243
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4244
       input_bfd != NULL;
4245
       input_bfd = input_bfd->link_next)
4246
    {
4247
      bfd_count += 1;
4248
      for (section = input_bfd->sections;
4249
           section != NULL;
4250
           section = section->next)
4251
        {
4252
          if (top_id < section->id)
4253
            top_id = section->id;
4254
        }
4255
    }
4256
  htab->bfd_count = bfd_count;
4257
 
4258
  amt = sizeof (struct map_stub) * (top_id + 1);
4259
  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4260
  if (htab->stub_group == NULL)
4261
    return -1;
4262
  htab->top_id = top_id;
4263
 
4264
  /* We can't use output_bfd->section_count here to find the top output
4265
     section index as some sections may have been removed, and
4266
     _bfd_strip_section_from_output doesn't renumber the indices.  */
4267
  for (section = output_bfd->sections, top_index = 0;
4268
       section != NULL;
4269
       section = section->next)
4270
    {
4271
      if (top_index < section->index)
4272
        top_index = section->index;
4273
    }
4274
 
4275
  htab->top_index = top_index;
4276
  amt = sizeof (asection *) * (top_index + 1);
4277
  input_list = (asection **) bfd_malloc (amt);
4278
  htab->input_list = input_list;
4279
  if (input_list == NULL)
4280
    return -1;
4281
 
4282
  /* For sections we aren't interested in, mark their entries with a
4283
     value we can check later.  */
4284
  list = input_list + top_index;
4285
  do
4286
    *list = bfd_abs_section_ptr;
4287
  while (list-- != input_list);
4288
 
4289
  for (section = output_bfd->sections;
4290
       section != NULL;
4291
       section = section->next)
4292
    {
4293
      if ((section->flags & SEC_CODE) != 0)
4294
        input_list[section->index] = NULL;
4295
    }
4296
 
4297
  return 1;
4298
}
4299
 
4300
/* The linker repeatedly calls this function for each input section,
4301
   in the order that input sections are linked into output sections.
4302
   Build lists of input sections to determine groupings between which
4303
   we may insert linker stubs.  */
4304
 
4305
void
4306
elf32_arm_next_input_section (struct bfd_link_info *info,
4307
                              asection *isec)
4308
{
4309
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4310
 
4311
  if (htab == NULL)
4312
    return;
4313
 
4314
  if (isec->output_section->index <= htab->top_index)
4315
    {
4316
      asection **list = htab->input_list + isec->output_section->index;
4317
 
4318
      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4319
        {
4320
          /* Steal the link_sec pointer for our list.  */
4321
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4322
          /* This happens to make the list in reverse order,
4323
             which we reverse later.  */
4324
          PREV_SEC (isec) = *list;
4325
          *list = isec;
4326
        }
4327
    }
4328
}
4329
 
4330
/* See whether we can group stub sections together.  Grouping stub
4331
   sections may result in fewer stubs.  More importantly, we need to
4332
   put all .init* and .fini* stubs at the end of the .init or
4333
   .fini output sections respectively, because glibc splits the
4334
   _init and _fini functions into multiple parts.  Putting a stub in
4335
   the middle of a function is not a good idea.  */
4336
 
4337
static void
4338
group_sections (struct elf32_arm_link_hash_table *htab,
4339
                bfd_size_type stub_group_size,
4340
                bfd_boolean stubs_always_after_branch)
4341
{
4342
  asection **list = htab->input_list;
4343
 
4344
  do
4345
    {
4346
      asection *tail = *list;
4347
      asection *head;
4348
 
4349
      if (tail == bfd_abs_section_ptr)
4350
        continue;
4351
 
4352
      /* Reverse the list: we must avoid placing stubs at the
4353
         beginning of the section because the beginning of the text
4354
         section may be required for an interrupt vector in bare metal
4355
         code.  */
4356
#define NEXT_SEC PREV_SEC
4357
      head = NULL;
4358
      while (tail != NULL)
4359
        {
4360
          /* Pop from tail.  */
4361
          asection *item = tail;
4362
          tail = PREV_SEC (item);
4363
 
4364
          /* Push on head.  */
4365
          NEXT_SEC (item) = head;
4366
          head = item;
4367
        }
4368
 
4369
      while (head != NULL)
4370
        {
4371
          asection *curr;
4372
          asection *next;
4373
          bfd_vma stub_group_start = head->output_offset;
4374
          bfd_vma end_of_next;
4375
 
4376
          curr = head;
4377
          while (NEXT_SEC (curr) != NULL)
4378
            {
4379
              next = NEXT_SEC (curr);
4380
              end_of_next = next->output_offset + next->size;
4381
              if (end_of_next - stub_group_start >= stub_group_size)
4382
                /* End of NEXT is too far from start, so stop.  */
4383
                break;
4384
              /* Add NEXT to the group.  */
4385
              curr = next;
4386
            }
4387
 
4388
          /* OK, the size from the start to the start of CURR is less
4389
             than stub_group_size and thus can be handled by one stub
4390
             section.  (Or the head section is itself larger than
4391
             stub_group_size, in which case we may be toast.)
4392
             We should really be keeping track of the total size of
4393
             stubs added here, as stubs contribute to the final output
4394
             section size.  */
4395
          do
4396
            {
4397
              next = NEXT_SEC (head);
4398
              /* Set up this stub group.  */
4399
              htab->stub_group[head->id].link_sec = curr;
4400
            }
4401
          while (head != curr && (head = next) != NULL);
4402
 
4403
          /* But wait, there's more!  Input sections up to stub_group_size
4404
             bytes after the stub section can be handled by it too.  */
4405
          if (!stubs_always_after_branch)
4406
            {
4407
              stub_group_start = curr->output_offset + curr->size;
4408
 
4409
              while (next != NULL)
4410
                {
4411
                  end_of_next = next->output_offset + next->size;
4412
                  if (end_of_next - stub_group_start >= stub_group_size)
4413
                    /* End of NEXT is too far from stubs, so stop.  */
4414
                    break;
4415
                  /* Add NEXT to the stub group.  */
4416
                  head = next;
4417
                  next = NEXT_SEC (head);
4418
                  htab->stub_group[head->id].link_sec = curr;
4419
                }
4420
            }
4421
          head = next;
4422
        }
4423
    }
4424
  while (list++ != htab->input_list + htab->top_index);
4425
 
4426
  free (htab->input_list);
4427
#undef PREV_SEC
4428
#undef NEXT_SEC
4429
}
4430
 
4431
/* Comparison function for sorting/searching relocations relating to Cortex-A8
4432
   erratum fix.  */
4433
 
4434
static int
4435
a8_reloc_compare (const void *a, const void *b)
4436
{
4437
  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4438
  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4439
 
4440
  if (ra->from < rb->from)
4441
    return -1;
4442
  else if (ra->from > rb->from)
4443
    return 1;
4444
  else
4445
    return 0;
4446
}
4447
 
4448
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4449
                                                    const char *, char **);
4450
 
4451
/* Helper function to scan code for sequences which might trigger the Cortex-A8
4452
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
4453
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
4454
   otherwise.  */
4455
 
4456
static bfd_boolean
4457
cortex_a8_erratum_scan (bfd *input_bfd,
4458
                        struct bfd_link_info *info,
4459
                        struct a8_erratum_fix **a8_fixes_p,
4460
                        unsigned int *num_a8_fixes_p,
4461
                        unsigned int *a8_fix_table_size_p,
4462
                        struct a8_erratum_reloc *a8_relocs,
4463
                        unsigned int num_a8_relocs,
4464
                        unsigned prev_num_a8_fixes,
4465
                        bfd_boolean *stub_changed_p)
4466
{
4467
  asection *section;
4468
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4469
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4470
  unsigned int num_a8_fixes = *num_a8_fixes_p;
4471
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4472
 
4473
  if (htab == NULL)
4474
    return FALSE;
4475
 
4476
  for (section = input_bfd->sections;
4477
       section != NULL;
4478
       section = section->next)
4479
    {
4480
      bfd_byte *contents = NULL;
4481
      struct _arm_elf_section_data *sec_data;
4482
      unsigned int span;
4483
      bfd_vma base_vma;
4484
 
4485
      if (elf_section_type (section) != SHT_PROGBITS
4486
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4487
          || (section->flags & SEC_EXCLUDE) != 0
4488
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4489
          || (section->output_section == bfd_abs_section_ptr))
4490
        continue;
4491
 
4492
      base_vma = section->output_section->vma + section->output_offset;
4493
 
4494
      if (elf_section_data (section)->this_hdr.contents != NULL)
4495
        contents = elf_section_data (section)->this_hdr.contents;
4496
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4497
        return TRUE;
4498
 
4499
      sec_data = elf32_arm_section_data (section);
4500
 
4501
      for (span = 0; span < sec_data->mapcount; span++)
4502
        {
4503
          unsigned int span_start = sec_data->map[span].vma;
4504
          unsigned int span_end = (span == sec_data->mapcount - 1)
4505
            ? section->size : sec_data->map[span + 1].vma;
4506
          unsigned int i;
4507
          char span_type = sec_data->map[span].type;
4508
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4509
 
4510
          if (span_type != 't')
4511
            continue;
4512
 
4513
          /* Span is entirely within a single 4KB region: skip scanning.  */
4514
          if (((base_vma + span_start) & ~0xfff)
4515
              == ((base_vma + span_end) & ~0xfff))
4516
            continue;
4517
 
4518
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4519
 
4520
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
4521
               * The branch target is in the same 4KB region as the
4522
                 first half of the branch.
4523
               * The instruction before the branch is a 32-bit
4524
                 length non-branch instruction.  */
4525
          for (i = span_start; i < span_end;)
4526
            {
4527
              unsigned int insn = bfd_getl16 (&contents[i]);
4528
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4529
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4530
 
4531
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4532
                insn_32bit = TRUE;
4533
 
4534
              if (insn_32bit)
4535
                {
4536
                  /* Load the rest of the insn (in manual-friendly order).  */
4537
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4538
 
4539
                  /* Encoding T4: B<c>.W.  */
4540
                  is_b = (insn & 0xf800d000) == 0xf0009000;
4541
                  /* Encoding T1: BL<c>.W.  */
4542
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
4543
                  /* Encoding T2: BLX<c>.W.  */
4544
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
4545
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4546
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
4547
                           && (insn & 0x07f00000) != 0x03800000;
4548
                }
4549
 
4550
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4551
 
4552
              if (((base_vma + i) & 0xfff) == 0xffe
4553
                  && insn_32bit
4554
                  && is_32bit_branch
4555
                  && last_was_32bit
4556
                  && ! last_was_branch)
4557
                {
4558
                  bfd_signed_vma offset = 0;
4559
                  bfd_boolean force_target_arm = FALSE;
4560
                  bfd_boolean force_target_thumb = FALSE;
4561
                  bfd_vma target;
4562
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
4563
                  struct a8_erratum_reloc key, *found;
4564
                  bfd_boolean use_plt = FALSE;
4565
 
4566
                  key.from = base_vma + i;
4567
                  found = (struct a8_erratum_reloc *)
4568
                      bsearch (&key, a8_relocs, num_a8_relocs,
4569
                               sizeof (struct a8_erratum_reloc),
4570
                               &a8_reloc_compare);
4571
 
4572
                  if (found)
4573
                    {
4574
                      char *error_message = NULL;
4575
                      struct elf_link_hash_entry *entry;
4576
 
4577
                      /* We don't care about the error returned from this
4578
                         function, only if there is glue or not.  */
4579
                      entry = find_thumb_glue (info, found->sym_name,
4580
                                               &error_message);
4581
 
4582
                      if (entry)
4583
                        found->non_a8_stub = TRUE;
4584
 
4585
                      /* Keep a simpler condition, for the sake of clarity.  */
4586
                      if (htab->root.splt != NULL && found->hash != NULL
4587
                          && found->hash->root.plt.offset != (bfd_vma) -1)
4588
                        use_plt = TRUE;
4589
 
4590
                      if (found->r_type == R_ARM_THM_CALL)
4591
                        {
4592
                          if (found->branch_type == ST_BRANCH_TO_ARM
4593
                              || use_plt)
4594
                            force_target_arm = TRUE;
4595
                          else
4596
                            force_target_thumb = TRUE;
4597
                        }
4598
                    }
4599
 
4600
                  /* Check if we have an offending branch instruction.  */
4601
 
4602
                  if (found && found->non_a8_stub)
4603
                    /* We've already made a stub for this instruction, e.g.
4604
                       it's a long branch or a Thumb->ARM stub.  Assume that
4605
                       stub will suffice to work around the A8 erratum (see
4606
                       setting of always_after_branch above).  */
4607
                    ;
4608
                  else if (is_bcc)
4609
                    {
4610
                      offset = (insn & 0x7ff) << 1;
4611
                      offset |= (insn & 0x3f0000) >> 4;
4612
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
4613
                      offset |= (insn & 0x800) ? 0x80000 : 0;
4614
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4615
                      if (offset & 0x100000)
4616
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
4617
                      stub_type = arm_stub_a8_veneer_b_cond;
4618
                    }
4619
                  else if (is_b || is_bl || is_blx)
4620
                    {
4621
                      int s = (insn & 0x4000000) != 0;
4622
                      int j1 = (insn & 0x2000) != 0;
4623
                      int j2 = (insn & 0x800) != 0;
4624
                      int i1 = !(j1 ^ s);
4625
                      int i2 = !(j2 ^ s);
4626
 
4627
                      offset = (insn & 0x7ff) << 1;
4628
                      offset |= (insn & 0x3ff0000) >> 4;
4629
                      offset |= i2 << 22;
4630
                      offset |= i1 << 23;
4631
                      offset |= s << 24;
4632
                      if (offset & 0x1000000)
4633
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
4634
 
4635
                      if (is_blx)
4636
                        offset &= ~ ((bfd_signed_vma) 3);
4637
 
4638
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4639
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4640
                    }
4641
 
4642
                  if (stub_type != arm_stub_none)
4643
                    {
4644
                      bfd_vma pc_for_insn = base_vma + i + 4;
4645
 
4646
                      /* The original instruction is a BL, but the target is
4647
                         an ARM instruction.  If we were not making a stub,
4648
                         the BL would have been converted to a BLX.  Use the
4649
                         BLX stub instead in that case.  */
4650
                      if (htab->use_blx && force_target_arm
4651
                          && stub_type == arm_stub_a8_veneer_bl)
4652
                        {
4653
                          stub_type = arm_stub_a8_veneer_blx;
4654
                          is_blx = TRUE;
4655
                          is_bl = FALSE;
4656
                        }
4657
                      /* Conversely, if the original instruction was
4658
                         BLX but the target is Thumb mode, use the BL
4659
                         stub.  */
4660
                      else if (force_target_thumb
4661
                               && stub_type == arm_stub_a8_veneer_blx)
4662
                        {
4663
                          stub_type = arm_stub_a8_veneer_bl;
4664
                          is_blx = FALSE;
4665
                          is_bl = TRUE;
4666
                        }
4667
 
4668
                      if (is_blx)
4669
                        pc_for_insn &= ~ ((bfd_vma) 3);
4670
 
4671
                      /* If we found a relocation, use the proper destination,
4672
                         not the offset in the (unrelocated) instruction.
4673
                         Note this is always done if we switched the stub type
4674
                         above.  */
4675
                      if (found)
4676
                        offset =
4677
                          (bfd_signed_vma) (found->destination - pc_for_insn);
4678
 
4679
                      /* If the stub will use a Thumb-mode branch to a
4680
                         PLT target, redirect it to the preceding Thumb
4681
                         entry point.  */
4682
                      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4683
                        offset -= PLT_THUMB_STUB_SIZE;
4684
 
4685
                      target = pc_for_insn + offset;
4686
 
4687
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
4688
                         take the different PC value (+8 instead of +4) into
4689
                         account.  */
4690
                      if (stub_type == arm_stub_a8_veneer_blx)
4691
                        offset += 4;
4692
 
4693
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4694
                        {
4695
                          char *stub_name = NULL;
4696
 
4697
                          if (num_a8_fixes == a8_fix_table_size)
4698
                            {
4699
                              a8_fix_table_size *= 2;
4700
                              a8_fixes = (struct a8_erratum_fix *)
4701
                                  bfd_realloc (a8_fixes,
4702
                                               sizeof (struct a8_erratum_fix)
4703
                                               * a8_fix_table_size);
4704
                            }
4705
 
4706
                          if (num_a8_fixes < prev_num_a8_fixes)
4707
                            {
4708
                              /* If we're doing a subsequent scan,
4709
                                 check if we've found the same fix as
4710
                                 before, and try and reuse the stub
4711
                                 name.  */
4712
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
4713
                              if ((a8_fixes[num_a8_fixes].section != section)
4714
                                  || (a8_fixes[num_a8_fixes].offset != i))
4715
                                {
4716
                                  free (stub_name);
4717
                                  stub_name = NULL;
4718
                                  *stub_changed_p = TRUE;
4719
                                }
4720
                            }
4721
 
4722
                          if (!stub_name)
4723
                            {
4724
                              stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4725
                              if (stub_name != NULL)
4726
                                sprintf (stub_name, "%x:%x", section->id, i);
4727
                            }
4728
 
4729
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4730
                          a8_fixes[num_a8_fixes].section = section;
4731
                          a8_fixes[num_a8_fixes].offset = i;
4732
                          a8_fixes[num_a8_fixes].addend = offset;
4733
                          a8_fixes[num_a8_fixes].orig_insn = insn;
4734
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
4735
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
4736
                          a8_fixes[num_a8_fixes].branch_type =
4737
                            is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4738
 
4739
                          num_a8_fixes++;
4740
                        }
4741
                    }
4742
                }
4743
 
4744
              i += insn_32bit ? 4 : 2;
4745
              last_was_32bit = insn_32bit;
4746
              last_was_branch = is_32bit_branch;
4747
            }
4748
        }
4749
 
4750
      if (elf_section_data (section)->this_hdr.contents == NULL)
4751
        free (contents);
4752
    }
4753
 
4754
  *a8_fixes_p = a8_fixes;
4755
  *num_a8_fixes_p = num_a8_fixes;
4756
  *a8_fix_table_size_p = a8_fix_table_size;
4757
 
4758
  return FALSE;
4759
}
4760
 
4761
/* Determine and set the size of the stub section for a final link.
4762
 
4763
   The basic idea here is to examine all the relocations looking for
4764
   PC-relative calls to a target that is unreachable with a "bl"
4765
   instruction.  */
4766
 
4767
bfd_boolean
4768
elf32_arm_size_stubs (bfd *output_bfd,
4769
                      bfd *stub_bfd,
4770
                      struct bfd_link_info *info,
4771
                      bfd_signed_vma group_size,
4772
                      asection * (*add_stub_section) (const char *, asection *),
4773
                      void (*layout_sections_again) (void))
4774
{
4775
  bfd_size_type stub_group_size;
4776
  bfd_boolean stubs_always_after_branch;
4777
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4778
  struct a8_erratum_fix *a8_fixes = NULL;
4779
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4780
  struct a8_erratum_reloc *a8_relocs = NULL;
4781
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4782
 
4783
  if (htab == NULL)
4784
    return FALSE;
4785
 
4786
  if (htab->fix_cortex_a8)
4787
    {
4788
      a8_fixes = (struct a8_erratum_fix *)
4789
          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4790
      a8_relocs = (struct a8_erratum_reloc *)
4791
          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4792
    }
4793
 
4794
  /* Propagate mach to stub bfd, because it may not have been
4795
     finalized when we created stub_bfd.  */
4796
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4797
                     bfd_get_mach (output_bfd));
4798
 
4799
  /* Stash our params away.  */
4800
  htab->stub_bfd = stub_bfd;
4801
  htab->add_stub_section = add_stub_section;
4802
  htab->layout_sections_again = layout_sections_again;
4803
  stubs_always_after_branch = group_size < 0;
4804
 
4805
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4806
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
4807
     crude way of enforcing that.  */
4808
  if (htab->fix_cortex_a8)
4809
    stubs_always_after_branch = 1;
4810
 
4811
  if (group_size < 0)
4812
    stub_group_size = -group_size;
4813
  else
4814
    stub_group_size = group_size;
4815
 
4816
  if (stub_group_size == 1)
4817
    {
4818
      /* Default values.  */
4819
      /* Thumb branch range is +-4MB has to be used as the default
4820
         maximum size (a given section can contain both ARM and Thumb
4821
         code, so the worst case has to be taken into account).
4822
 
4823
         This value is 24K less than that, which allows for 2025
4824
         12-byte stubs.  If we exceed that, then we will fail to link.
4825
         The user will have to relink with an explicit group size
4826
         option.  */
4827
      stub_group_size = 4170000;
4828
    }
4829
 
4830
  group_sections (htab, stub_group_size, stubs_always_after_branch);
4831
 
4832
  /* If we're applying the cortex A8 fix, we need to determine the
4833
     program header size now, because we cannot change it later --
4834
     that could alter section placements.  Notice the A8 erratum fix
4835
     ends up requiring the section addresses to remain unchanged
4836
     modulo the page size.  That's something we cannot represent
4837
     inside BFD, and we don't want to force the section alignment to
4838
     be the page size.  */
4839
  if (htab->fix_cortex_a8)
4840
    (*htab->layout_sections_again) ();
4841
 
4842
  while (1)
4843
    {
4844
      bfd *input_bfd;
4845
      unsigned int bfd_indx;
4846
      asection *stub_sec;
4847
      bfd_boolean stub_changed = FALSE;
4848
      unsigned prev_num_a8_fixes = num_a8_fixes;
4849
 
4850
      num_a8_fixes = 0;
4851
      for (input_bfd = info->input_bfds, bfd_indx = 0;
4852
           input_bfd != NULL;
4853
           input_bfd = input_bfd->link_next, bfd_indx++)
4854
        {
4855
          Elf_Internal_Shdr *symtab_hdr;
4856
          asection *section;
4857
          Elf_Internal_Sym *local_syms = NULL;
4858
 
4859
          num_a8_relocs = 0;
4860
 
4861
          /* We'll need the symbol table in a second.  */
4862
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4863
          if (symtab_hdr->sh_info == 0)
4864
            continue;
4865
 
4866
          /* Walk over each section attached to the input bfd.  */
4867
          for (section = input_bfd->sections;
4868
               section != NULL;
4869
               section = section->next)
4870
            {
4871
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4872
 
4873
              /* If there aren't any relocs, then there's nothing more
4874
                 to do.  */
4875
              if ((section->flags & SEC_RELOC) == 0
4876
                  || section->reloc_count == 0
4877
                  || (section->flags & SEC_CODE) == 0)
4878
                continue;
4879
 
4880
              /* If this section is a link-once section that will be
4881
                 discarded, then don't create any stubs.  */
4882
              if (section->output_section == NULL
4883
                  || section->output_section->owner != output_bfd)
4884
                continue;
4885
 
4886
              /* Get the relocs.  */
4887
              internal_relocs
4888
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4889
                                             NULL, info->keep_memory);
4890
              if (internal_relocs == NULL)
4891
                goto error_ret_free_local;
4892
 
4893
              /* Now examine each relocation.  */
4894
              irela = internal_relocs;
4895
              irelaend = irela + section->reloc_count;
4896
              for (; irela < irelaend; irela++)
4897
                {
4898
                  unsigned int r_type, r_indx;
4899
                  enum elf32_arm_stub_type stub_type;
4900
                  struct elf32_arm_stub_hash_entry *stub_entry;
4901
                  asection *sym_sec;
4902
                  bfd_vma sym_value;
4903
                  bfd_vma destination;
4904
                  struct elf32_arm_link_hash_entry *hash;
4905
                  const char *sym_name;
4906
                  char *stub_name;
4907
                  const asection *id_sec;
4908
                  unsigned char st_type;
4909
                  enum arm_st_branch_type branch_type;
4910
                  bfd_boolean created_stub = FALSE;
4911
 
4912
                  r_type = ELF32_R_TYPE (irela->r_info);
4913
                  r_indx = ELF32_R_SYM (irela->r_info);
4914
 
4915
                  if (r_type >= (unsigned int) R_ARM_max)
4916
                    {
4917
                      bfd_set_error (bfd_error_bad_value);
4918
                    error_ret_free_internal:
4919
                      if (elf_section_data (section)->relocs == NULL)
4920
                        free (internal_relocs);
4921
                      goto error_ret_free_local;
4922
                    }
4923
 
4924
                  hash = NULL;
4925
                  if (r_indx >= symtab_hdr->sh_info)
4926
                    hash = elf32_arm_hash_entry
4927
                      (elf_sym_hashes (input_bfd)
4928
                       [r_indx - symtab_hdr->sh_info]);
4929
 
4930
                  /* Only look for stubs on branch instructions, or
4931
                     non-relaxed TLSCALL  */
4932
                  if ((r_type != (unsigned int) R_ARM_CALL)
4933
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
4934
                      && (r_type != (unsigned int) R_ARM_JUMP24)
4935
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4936
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
4937
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4938
                      && (r_type != (unsigned int) R_ARM_PLT32)
4939
                      && !((r_type == (unsigned int) R_ARM_TLS_CALL
4940
                            || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4941
                           && r_type == elf32_arm_tls_transition
4942
                               (info, r_type, &hash->root)
4943
                           && ((hash ? hash->tls_type
4944
                                : (elf32_arm_local_got_tls_type
4945
                                   (input_bfd)[r_indx]))
4946
                               & GOT_TLS_GDESC) != 0))
4947
                    continue;
4948
 
4949
                  /* Now determine the call target, its name, value,
4950
                     section.  */
4951
                  sym_sec = NULL;
4952
                  sym_value = 0;
4953
                  destination = 0;
4954
                  sym_name = NULL;
4955
 
4956
                  if (r_type == (unsigned int) R_ARM_TLS_CALL
4957
                      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4958
                    {
4959
                      /* A non-relaxed TLS call.  The target is the
4960
                         plt-resident trampoline and nothing to do
4961
                         with the symbol.  */
4962
                      BFD_ASSERT (htab->tls_trampoline > 0);
4963
                      sym_sec = htab->root.splt;
4964
                      sym_value = htab->tls_trampoline;
4965
                      hash = 0;
4966
                      st_type = STT_FUNC;
4967
                      branch_type = ST_BRANCH_TO_ARM;
4968
                    }
4969
                  else if (!hash)
4970
                    {
4971
                      /* It's a local symbol.  */
4972
                      Elf_Internal_Sym *sym;
4973
 
4974
                      if (local_syms == NULL)
4975
                        {
4976
                          local_syms
4977
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
4978
                          if (local_syms == NULL)
4979
                            local_syms
4980
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4981
                                                      symtab_hdr->sh_info, 0,
4982
                                                      NULL, NULL, NULL);
4983
                          if (local_syms == NULL)
4984
                            goto error_ret_free_internal;
4985
                        }
4986
 
4987
                      sym = local_syms + r_indx;
4988
                      if (sym->st_shndx == SHN_UNDEF)
4989
                        sym_sec = bfd_und_section_ptr;
4990
                      else if (sym->st_shndx == SHN_ABS)
4991
                        sym_sec = bfd_abs_section_ptr;
4992
                      else if (sym->st_shndx == SHN_COMMON)
4993
                        sym_sec = bfd_com_section_ptr;
4994
                      else
4995
                        sym_sec =
4996
                          bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4997
 
4998
                      if (!sym_sec)
4999
                        /* This is an undefined symbol.  It can never
5000
                           be resolved. */
5001
                        continue;
5002
 
5003
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5004
                        sym_value = sym->st_value;
5005
                      destination = (sym_value + irela->r_addend
5006
                                     + sym_sec->output_offset
5007
                                     + sym_sec->output_section->vma);
5008
                      st_type = ELF_ST_TYPE (sym->st_info);
5009
                      branch_type = ARM_SYM_BRANCH_TYPE (sym);
5010
                      sym_name
5011
                        = bfd_elf_string_from_elf_section (input_bfd,
5012
                                                           symtab_hdr->sh_link,
5013
                                                           sym->st_name);
5014
                    }
5015
                  else
5016
                    {
5017
                      /* It's an external symbol.  */
5018
                      while (hash->root.root.type == bfd_link_hash_indirect
5019
                             || hash->root.root.type == bfd_link_hash_warning)
5020
                        hash = ((struct elf32_arm_link_hash_entry *)
5021
                                hash->root.root.u.i.link);
5022
 
5023
                      if (hash->root.root.type == bfd_link_hash_defined
5024
                          || hash->root.root.type == bfd_link_hash_defweak)
5025
                        {
5026
                          sym_sec = hash->root.root.u.def.section;
5027
                          sym_value = hash->root.root.u.def.value;
5028
 
5029
                          struct elf32_arm_link_hash_table *globals =
5030
                                                  elf32_arm_hash_table (info);
5031
 
5032
                          /* For a destination in a shared library,
5033
                             use the PLT stub as target address to
5034
                             decide whether a branch stub is
5035
                             needed.  */
5036
                          if (globals != NULL
5037
                              && globals->root.splt != NULL
5038
                              && hash != NULL
5039
                              && hash->root.plt.offset != (bfd_vma) -1)
5040
                            {
5041
                              sym_sec = globals->root.splt;
5042
                              sym_value = hash->root.plt.offset;
5043
                              if (sym_sec->output_section != NULL)
5044
                                destination = (sym_value
5045
                                               + sym_sec->output_offset
5046
                                               + sym_sec->output_section->vma);
5047
                            }
5048
                          else if (sym_sec->output_section != NULL)
5049
                            destination = (sym_value + irela->r_addend
5050
                                           + sym_sec->output_offset
5051
                                           + sym_sec->output_section->vma);
5052
                        }
5053
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
5054
                               || (hash->root.root.type == bfd_link_hash_undefweak))
5055
                        {
5056
                          /* For a shared library, use the PLT stub as
5057
                             target address to decide whether a long
5058
                             branch stub is needed.
5059
                             For absolute code, they cannot be handled.  */
5060
                          struct elf32_arm_link_hash_table *globals =
5061
                            elf32_arm_hash_table (info);
5062
 
5063
                          if (globals != NULL
5064
                              && globals->root.splt != NULL
5065
                              && hash != NULL
5066
                              && hash->root.plt.offset != (bfd_vma) -1)
5067
                            {
5068
                              sym_sec = globals->root.splt;
5069
                              sym_value = hash->root.plt.offset;
5070
                              if (sym_sec->output_section != NULL)
5071
                                destination = (sym_value
5072
                                               + sym_sec->output_offset
5073
                                               + sym_sec->output_section->vma);
5074
                            }
5075
                          else
5076
                            continue;
5077
                        }
5078
                      else
5079
                        {
5080
                          bfd_set_error (bfd_error_bad_value);
5081
                          goto error_ret_free_internal;
5082
                        }
5083
                      st_type = hash->root.type;
5084
                      branch_type = hash->root.target_internal;
5085
                      sym_name = hash->root.root.root.string;
5086
                    }
5087
 
5088
                  do
5089
                    {
5090
                      /* Determine what (if any) linker stub is needed.  */
5091
                      stub_type = arm_type_of_stub (info, section, irela,
5092
                                                    st_type, &branch_type,
5093
                                                    hash, destination, sym_sec,
5094
                                                    input_bfd, sym_name);
5095
                      if (stub_type == arm_stub_none)
5096
                        break;
5097
 
5098
                      /* Support for grouping stub sections.  */
5099
                      id_sec = htab->stub_group[section->id].link_sec;
5100
 
5101
                      /* Get the name of this stub.  */
5102
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5103
                                                       irela, stub_type);
5104
                      if (!stub_name)
5105
                        goto error_ret_free_internal;
5106
 
5107
                      /* We've either created a stub for this reloc already,
5108
                         or we are about to.  */
5109
                      created_stub = TRUE;
5110
 
5111
                      stub_entry = arm_stub_hash_lookup
5112
                                     (&htab->stub_hash_table, stub_name,
5113
                                      FALSE, FALSE);
5114
                      if (stub_entry != NULL)
5115
                        {
5116
                          /* The proper stub has already been created.  */
5117
                          free (stub_name);
5118
                          stub_entry->target_value = sym_value;
5119
                          break;
5120
                        }
5121
 
5122
                      stub_entry = elf32_arm_add_stub (stub_name, section,
5123
                                                       htab);
5124
                      if (stub_entry == NULL)
5125
                        {
5126
                          free (stub_name);
5127
                          goto error_ret_free_internal;
5128
                        }
5129
 
5130
                      stub_entry->target_value = sym_value;
5131
                      stub_entry->target_section = sym_sec;
5132
                      stub_entry->stub_type = stub_type;
5133
                      stub_entry->h = hash;
5134
                      stub_entry->branch_type = branch_type;
5135
 
5136
                      if (sym_name == NULL)
5137
                        sym_name = "unnamed";
5138
                      stub_entry->output_name = (char *)
5139
                          bfd_alloc (htab->stub_bfd,
5140
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5141
                                     + strlen (sym_name));
5142
                      if (stub_entry->output_name == NULL)
5143
                        {
5144
                          free (stub_name);
5145
                          goto error_ret_free_internal;
5146
                        }
5147
 
5148
                      /* For historical reasons, use the existing names for
5149
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
5150
                      if ((r_type == (unsigned int) R_ARM_THM_CALL
5151
                           || r_type == (unsigned int) R_ARM_THM_JUMP24)
5152
                          && branch_type == ST_BRANCH_TO_ARM)
5153
                        sprintf (stub_entry->output_name,
5154
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5155
                      else if ((r_type == (unsigned int) R_ARM_CALL
5156
                               || r_type == (unsigned int) R_ARM_JUMP24)
5157
                               && branch_type == ST_BRANCH_TO_THUMB)
5158
                        sprintf (stub_entry->output_name,
5159
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5160
                      else
5161
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5162
                                 sym_name);
5163
 
5164
                      stub_changed = TRUE;
5165
                    }
5166
                  while (0);
5167
 
5168
                  /* Look for relocations which might trigger Cortex-A8
5169
                     erratum.  */
5170
                  if (htab->fix_cortex_a8
5171
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
5172
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
5173
                          || r_type == (unsigned int) R_ARM_THM_CALL
5174
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
5175
                    {
5176
                      bfd_vma from = section->output_section->vma
5177
                                     + section->output_offset
5178
                                     + irela->r_offset;
5179
 
5180
                      if ((from & 0xfff) == 0xffe)
5181
                        {
5182
                          /* Found a candidate.  Note we haven't checked the
5183
                             destination is within 4K here: if we do so (and
5184
                             don't create an entry in a8_relocs) we can't tell
5185
                             that a branch should have been relocated when
5186
                             scanning later.  */
5187
                          if (num_a8_relocs == a8_reloc_table_size)
5188
                            {
5189
                              a8_reloc_table_size *= 2;
5190
                              a8_relocs = (struct a8_erratum_reloc *)
5191
                                  bfd_realloc (a8_relocs,
5192
                                               sizeof (struct a8_erratum_reloc)
5193
                                               * a8_reloc_table_size);
5194
                            }
5195
 
5196
                          a8_relocs[num_a8_relocs].from = from;
5197
                          a8_relocs[num_a8_relocs].destination = destination;
5198
                          a8_relocs[num_a8_relocs].r_type = r_type;
5199
                          a8_relocs[num_a8_relocs].branch_type = branch_type;
5200
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
5201
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5202
                          a8_relocs[num_a8_relocs].hash = hash;
5203
 
5204
                          num_a8_relocs++;
5205
                        }
5206
                    }
5207
                }
5208
 
5209
              /* We're done with the internal relocs, free them.  */
5210
              if (elf_section_data (section)->relocs == NULL)
5211
                free (internal_relocs);
5212
            }
5213
 
5214
          if (htab->fix_cortex_a8)
5215
            {
5216
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
5217
              qsort (a8_relocs, num_a8_relocs,
5218
                     sizeof (struct a8_erratum_reloc),
5219
                     &a8_reloc_compare);
5220
 
5221
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
5222
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5223
                                          &num_a8_fixes, &a8_fix_table_size,
5224
                                          a8_relocs, num_a8_relocs,
5225
                                          prev_num_a8_fixes, &stub_changed)
5226
                  != 0)
5227
                goto error_ret_free_local;
5228
            }
5229
        }
5230
 
5231
      if (prev_num_a8_fixes != num_a8_fixes)
5232
        stub_changed = TRUE;
5233
 
5234
      if (!stub_changed)
5235
        break;
5236
 
5237
      /* OK, we've added some stubs.  Find out the new size of the
5238
         stub sections.  */
5239
      for (stub_sec = htab->stub_bfd->sections;
5240
           stub_sec != NULL;
5241
           stub_sec = stub_sec->next)
5242
        {
5243
          /* Ignore non-stub sections.  */
5244
          if (!strstr (stub_sec->name, STUB_SUFFIX))
5245
            continue;
5246
 
5247
          stub_sec->size = 0;
5248
        }
5249
 
5250
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5251
 
5252
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
5253
      if (htab->fix_cortex_a8)
5254
        for (i = 0; i < num_a8_fixes; i++)
5255
          {
5256
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5257
                         a8_fixes[i].section, htab);
5258
 
5259
            if (stub_sec == NULL)
5260
              goto error_ret_free_local;
5261
 
5262
            stub_sec->size
5263
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5264
                                              NULL);
5265
          }
5266
 
5267
 
5268
      /* Ask the linker to do its stuff.  */
5269
      (*htab->layout_sections_again) ();
5270
    }
5271
 
5272
  /* Add stubs for Cortex-A8 erratum fixes now.  */
5273
  if (htab->fix_cortex_a8)
5274
    {
5275
      for (i = 0; i < num_a8_fixes; i++)
5276
        {
5277
          struct elf32_arm_stub_hash_entry *stub_entry;
5278
          char *stub_name = a8_fixes[i].stub_name;
5279
          asection *section = a8_fixes[i].section;
5280
          unsigned int section_id = a8_fixes[i].section->id;
5281
          asection *link_sec = htab->stub_group[section_id].link_sec;
5282
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
5283
          const insn_sequence *template_sequence;
5284
          int template_size, size = 0;
5285
 
5286
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5287
                                             TRUE, FALSE);
5288
          if (stub_entry == NULL)
5289
            {
5290
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5291
                                     section->owner,
5292
                                     stub_name);
5293
              return FALSE;
5294
            }
5295
 
5296
          stub_entry->stub_sec = stub_sec;
5297
          stub_entry->stub_offset = 0;
5298
          stub_entry->id_sec = link_sec;
5299
          stub_entry->stub_type = a8_fixes[i].stub_type;
5300
          stub_entry->target_section = a8_fixes[i].section;
5301
          stub_entry->target_value = a8_fixes[i].offset;
5302
          stub_entry->target_addend = a8_fixes[i].addend;
5303
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
5304
          stub_entry->branch_type = a8_fixes[i].branch_type;
5305
 
5306
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
5307
                                              &template_sequence,
5308
                                              &template_size);
5309
 
5310
          stub_entry->stub_size = size;
5311
          stub_entry->stub_template = template_sequence;
5312
          stub_entry->stub_template_size = template_size;
5313
        }
5314
 
5315
      /* Stash the Cortex-A8 erratum fix array for use later in
5316
         elf32_arm_write_section().  */
5317
      htab->a8_erratum_fixes = a8_fixes;
5318
      htab->num_a8_erratum_fixes = num_a8_fixes;
5319
    }
5320
  else
5321
    {
5322
      htab->a8_erratum_fixes = NULL;
5323
      htab->num_a8_erratum_fixes = 0;
5324
    }
5325
  return TRUE;
5326
 
5327
 error_ret_free_local:
5328
  return FALSE;
5329
}
5330
 
5331
/* Build all the stubs associated with the current output file.  The
5332
   stubs are kept in a hash table attached to the main linker hash
5333
   table.  We also set up the .plt entries for statically linked PIC
5334
   functions here.  This function is called via arm_elf_finish in the
5335
   linker.  */
5336
 
5337
bfd_boolean
5338
elf32_arm_build_stubs (struct bfd_link_info *info)
5339
{
5340
  asection *stub_sec;
5341
  struct bfd_hash_table *table;
5342
  struct elf32_arm_link_hash_table *htab;
5343
 
5344
  htab = elf32_arm_hash_table (info);
5345
  if (htab == NULL)
5346
    return FALSE;
5347
 
5348
  for (stub_sec = htab->stub_bfd->sections;
5349
       stub_sec != NULL;
5350
       stub_sec = stub_sec->next)
5351
    {
5352
      bfd_size_type size;
5353
 
5354
      /* Ignore non-stub sections.  */
5355
      if (!strstr (stub_sec->name, STUB_SUFFIX))
5356
        continue;
5357
 
5358
      /* Allocate memory to hold the linker stubs.  */
5359
      size = stub_sec->size;
5360
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5361
      if (stub_sec->contents == NULL && size != 0)
5362
        return FALSE;
5363
      stub_sec->size = 0;
5364
    }
5365
 
5366
  /* Build the stubs as directed by the stub hash table.  */
5367
  table = &htab->stub_hash_table;
5368
  bfd_hash_traverse (table, arm_build_one_stub, info);
5369
  if (htab->fix_cortex_a8)
5370
    {
5371
      /* Place the cortex a8 stubs last.  */
5372
      htab->fix_cortex_a8 = -1;
5373
      bfd_hash_traverse (table, arm_build_one_stub, info);
5374
    }
5375
 
5376
  return TRUE;
5377
}
5378
 
5379
/* Locate the Thumb encoded calling stub for NAME.  */
5380
 
5381
static struct elf_link_hash_entry *
5382
find_thumb_glue (struct bfd_link_info *link_info,
5383
                 const char *name,
5384
                 char **error_message)
5385
{
5386
  char *tmp_name;
5387
  struct elf_link_hash_entry *hash;
5388
  struct elf32_arm_link_hash_table *hash_table;
5389
 
5390
  /* We need a pointer to the armelf specific hash table.  */
5391
  hash_table = elf32_arm_hash_table (link_info);
5392
  if (hash_table == NULL)
5393
    return NULL;
5394
 
5395
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5396
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5397
 
5398
  BFD_ASSERT (tmp_name);
5399
 
5400
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5401
 
5402
  hash = elf_link_hash_lookup
5403
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5404
 
5405
  if (hash == NULL
5406
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5407
                   tmp_name, name) == -1)
5408
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5409
 
5410
  free (tmp_name);
5411
 
5412
  return hash;
5413
}
5414
 
5415
/* Locate the ARM encoded calling stub for NAME.  */
5416
 
5417
static struct elf_link_hash_entry *
5418
find_arm_glue (struct bfd_link_info *link_info,
5419
               const char *name,
5420
               char **error_message)
5421
{
5422
  char *tmp_name;
5423
  struct elf_link_hash_entry *myh;
5424
  struct elf32_arm_link_hash_table *hash_table;
5425
 
5426
  /* We need a pointer to the elfarm specific hash table.  */
5427
  hash_table = elf32_arm_hash_table (link_info);
5428
  if (hash_table == NULL)
5429
    return NULL;
5430
 
5431
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5432
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5433
 
5434
  BFD_ASSERT (tmp_name);
5435
 
5436
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5437
 
5438
  myh = elf_link_hash_lookup
5439
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5440
 
5441
  if (myh == NULL
5442
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5443
                   tmp_name, name) == -1)
5444
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5445
 
5446
  free (tmp_name);
5447
 
5448
  return myh;
5449
}
5450
 
5451
/* ARM->Thumb glue (static images):
5452
 
5453
   .arm
5454
   __func_from_arm:
5455
   ldr r12, __func_addr
5456
   bx  r12
5457
   __func_addr:
5458
   .word func    @ behave as if you saw a ARM_32 reloc.
5459
 
5460
   (v5t static images)
5461
   .arm
5462
   __func_from_arm:
5463
   ldr pc, __func_addr
5464
   __func_addr:
5465
   .word func    @ behave as if you saw a ARM_32 reloc.
5466
 
5467
   (relocatable images)
5468
   .arm
5469
   __func_from_arm:
5470
   ldr r12, __func_offset
5471
   add r12, r12, pc
5472
   bx  r12
5473
   __func_offset:
5474
   .word func - .   */
5475
 
5476
#define ARM2THUMB_STATIC_GLUE_SIZE 12
5477
static const insn32 a2t1_ldr_insn = 0xe59fc000;
5478
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5479
static const insn32 a2t3_func_addr_insn = 0x00000001;
5480
 
5481
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5482
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5483
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5484
 
5485
#define ARM2THUMB_PIC_GLUE_SIZE 16
5486
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5487
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5488
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5489
 
5490
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
5491
 
5492
     .thumb                             .thumb
5493
     .align 2                           .align 2
5494
 __func_from_thumb:                 __func_from_thumb:
5495
     bx pc                              push {r6, lr}
5496
     nop                                ldr  r6, __func_addr
5497
     .arm                               mov  lr, pc
5498
     b func                             bx   r6
5499
                                        .arm
5500
                                    ;; back_to_thumb
5501
                                        ldmia r13! {r6, lr}
5502
                                        bx    lr
5503
                                    __func_addr:
5504
                                        .word        func  */
5505
 
5506
#define THUMB2ARM_GLUE_SIZE 8
5507
static const insn16 t2a1_bx_pc_insn = 0x4778;
5508
static const insn16 t2a2_noop_insn = 0x46c0;
5509
static const insn32 t2a3_b_insn = 0xea000000;
5510
 
5511
#define VFP11_ERRATUM_VENEER_SIZE 8
5512
 
5513
#define ARM_BX_VENEER_SIZE 12
5514
static const insn32 armbx1_tst_insn = 0xe3100001;
5515
static const insn32 armbx2_moveq_insn = 0x01a0f000;
5516
static const insn32 armbx3_bx_insn = 0xe12fff10;
5517
 
5518
#ifndef ELFARM_NABI_C_INCLUDED
5519
static void
5520
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5521
{
5522
  asection * s;
5523
  bfd_byte * contents;
5524
 
5525
  if (size == 0)
5526
    {
5527
      /* Do not include empty glue sections in the output.  */
5528
      if (abfd != NULL)
5529
        {
5530
          s = bfd_get_section_by_name (abfd, name);
5531
          if (s != NULL)
5532
            s->flags |= SEC_EXCLUDE;
5533
        }
5534
      return;
5535
    }
5536
 
5537
  BFD_ASSERT (abfd != NULL);
5538
 
5539
  s = bfd_get_section_by_name (abfd, name);
5540
  BFD_ASSERT (s != NULL);
5541
 
5542
  contents = (bfd_byte *) bfd_alloc (abfd, size);
5543
 
5544
  BFD_ASSERT (s->size == size);
5545
  s->contents = contents;
5546
}
5547
 
5548
bfd_boolean
5549
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5550
{
5551
  struct elf32_arm_link_hash_table * globals;
5552
 
5553
  globals = elf32_arm_hash_table (info);
5554
  BFD_ASSERT (globals != NULL);
5555
 
5556
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5557
                                   globals->arm_glue_size,
5558
                                   ARM2THUMB_GLUE_SECTION_NAME);
5559
 
5560
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5561
                                   globals->thumb_glue_size,
5562
                                   THUMB2ARM_GLUE_SECTION_NAME);
5563
 
5564
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5565
                                   globals->vfp11_erratum_glue_size,
5566
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
5567
 
5568
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5569
                                   globals->bx_glue_size,
5570
                                   ARM_BX_GLUE_SECTION_NAME);
5571
 
5572
  return TRUE;
5573
}
5574
 
5575
/* Allocate space and symbols for calling a Thumb function from Arm mode.
5576
   returns the symbol identifying the stub.  */
5577
 
5578
static struct elf_link_hash_entry *
5579
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5580
                          struct elf_link_hash_entry * h)
5581
{
5582
  const char * name = h->root.root.string;
5583
  asection * s;
5584
  char * tmp_name;
5585
  struct elf_link_hash_entry * myh;
5586
  struct bfd_link_hash_entry * bh;
5587
  struct elf32_arm_link_hash_table * globals;
5588
  bfd_vma val;
5589
  bfd_size_type size;
5590
 
5591
  globals = elf32_arm_hash_table (link_info);
5592
  BFD_ASSERT (globals != NULL);
5593
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5594
 
5595
  s = bfd_get_section_by_name
5596
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5597
 
5598
  BFD_ASSERT (s != NULL);
5599
 
5600
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5601
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5602
 
5603
  BFD_ASSERT (tmp_name);
5604
 
5605
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5606
 
5607
  myh = elf_link_hash_lookup
5608
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5609
 
5610
  if (myh != NULL)
5611
    {
5612
      /* We've already seen this guy.  */
5613
      free (tmp_name);
5614
      return myh;
5615
    }
5616
 
5617
  /* The only trick here is using hash_table->arm_glue_size as the value.
5618
     Even though the section isn't allocated yet, this is where we will be
5619
     putting it.  The +1 on the value marks that the stub has not been
5620
     output yet - not that it is a Thumb function.  */
5621
  bh = NULL;
5622
  val = globals->arm_glue_size + 1;
5623
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5624
                                    tmp_name, BSF_GLOBAL, s, val,
5625
                                    NULL, TRUE, FALSE, &bh);
5626
 
5627
  myh = (struct elf_link_hash_entry *) bh;
5628
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5629
  myh->forced_local = 1;
5630
 
5631
  free (tmp_name);
5632
 
5633
  if (link_info->shared || globals->root.is_relocatable_executable
5634
      || globals->pic_veneer)
5635
    size = ARM2THUMB_PIC_GLUE_SIZE;
5636
  else if (globals->use_blx)
5637
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5638
  else
5639
    size = ARM2THUMB_STATIC_GLUE_SIZE;
5640
 
5641
  s->size += size;
5642
  globals->arm_glue_size += size;
5643
 
5644
  return myh;
5645
}
5646
 
5647
/* Allocate space for ARMv4 BX veneers.  */
5648
 
5649
static void
5650
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5651
{
5652
  asection * s;
5653
  struct elf32_arm_link_hash_table *globals;
5654
  char *tmp_name;
5655
  struct elf_link_hash_entry *myh;
5656
  struct bfd_link_hash_entry *bh;
5657
  bfd_vma val;
5658
 
5659
  /* BX PC does not need a veneer.  */
5660
  if (reg == 15)
5661
    return;
5662
 
5663
  globals = elf32_arm_hash_table (link_info);
5664
  BFD_ASSERT (globals != NULL);
5665
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5666
 
5667
  /* Check if this veneer has already been allocated.  */
5668
  if (globals->bx_glue_offset[reg])
5669
    return;
5670
 
5671
  s = bfd_get_section_by_name
5672
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5673
 
5674
  BFD_ASSERT (s != NULL);
5675
 
5676
  /* Add symbol for veneer.  */
5677
  tmp_name = (char *)
5678
      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5679
 
5680
  BFD_ASSERT (tmp_name);
5681
 
5682
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5683
 
5684
  myh = elf_link_hash_lookup
5685
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5686
 
5687
  BFD_ASSERT (myh == NULL);
5688
 
5689
  bh = NULL;
5690
  val = globals->bx_glue_size;
5691
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5692
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5693
                                    NULL, TRUE, FALSE, &bh);
5694
 
5695
  myh = (struct elf_link_hash_entry *) bh;
5696
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5697
  myh->forced_local = 1;
5698
 
5699
  s->size += ARM_BX_VENEER_SIZE;
5700
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5701
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5702
}
5703
 
5704
 
5705
/* Add an entry to the code/data map for section SEC.  */
5706
 
5707
static void
5708
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5709
{
5710
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5711
  unsigned int newidx;
5712
 
5713
  if (sec_data->map == NULL)
5714
    {
5715
      sec_data->map = (elf32_arm_section_map *)
5716
          bfd_malloc (sizeof (elf32_arm_section_map));
5717
      sec_data->mapcount = 0;
5718
      sec_data->mapsize = 1;
5719
    }
5720
 
5721
  newidx = sec_data->mapcount++;
5722
 
5723
  if (sec_data->mapcount > sec_data->mapsize)
5724
    {
5725
      sec_data->mapsize *= 2;
5726
      sec_data->map = (elf32_arm_section_map *)
5727
          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5728
                               * sizeof (elf32_arm_section_map));
5729
    }
5730
 
5731
  if (sec_data->map)
5732
    {
5733
      sec_data->map[newidx].vma = vma;
5734
      sec_data->map[newidx].type = type;
5735
    }
5736
}
5737
 
5738
 
5739
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5740
   veneers are handled for now.  */
5741
 
5742
static bfd_vma
5743
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5744
                             elf32_vfp11_erratum_list *branch,
5745
                             bfd *branch_bfd,
5746
                             asection *branch_sec,
5747
                             unsigned int offset)
5748
{
5749
  asection *s;
5750
  struct elf32_arm_link_hash_table *hash_table;
5751
  char *tmp_name;
5752
  struct elf_link_hash_entry *myh;
5753
  struct bfd_link_hash_entry *bh;
5754
  bfd_vma val;
5755
  struct _arm_elf_section_data *sec_data;
5756
  elf32_vfp11_erratum_list *newerr;
5757
 
5758
  hash_table = elf32_arm_hash_table (link_info);
5759
  BFD_ASSERT (hash_table != NULL);
5760
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5761
 
5762
  s = bfd_get_section_by_name
5763
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5764
 
5765
  sec_data = elf32_arm_section_data (s);
5766
 
5767
  BFD_ASSERT (s != NULL);
5768
 
5769
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5770
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5771
 
5772
  BFD_ASSERT (tmp_name);
5773
 
5774
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5775
           hash_table->num_vfp11_fixes);
5776
 
5777
  myh = elf_link_hash_lookup
5778
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5779
 
5780
  BFD_ASSERT (myh == NULL);
5781
 
5782
  bh = NULL;
5783
  val = hash_table->vfp11_erratum_glue_size;
5784
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5785
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5786
                                    NULL, TRUE, FALSE, &bh);
5787
 
5788
  myh = (struct elf_link_hash_entry *) bh;
5789
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5790
  myh->forced_local = 1;
5791
 
5792
  /* Link veneer back to calling location.  */
5793
  sec_data->erratumcount += 1;
5794
  newerr = (elf32_vfp11_erratum_list *)
5795
      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5796
 
5797
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
5798
  newerr->vma = -1;
5799
  newerr->u.v.branch = branch;
5800
  newerr->u.v.id = hash_table->num_vfp11_fixes;
5801
  branch->u.b.veneer = newerr;
5802
 
5803
  newerr->next = sec_data->erratumlist;
5804
  sec_data->erratumlist = newerr;
5805
 
5806
  /* A symbol for the return from the veneer.  */
5807
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5808
           hash_table->num_vfp11_fixes);
5809
 
5810
  myh = elf_link_hash_lookup
5811
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5812
 
5813
  if (myh != NULL)
5814
    abort ();
5815
 
5816
  bh = NULL;
5817
  val = offset + 4;
5818
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5819
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
5820
 
5821
  myh = (struct elf_link_hash_entry *) bh;
5822
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5823
  myh->forced_local = 1;
5824
 
5825
  free (tmp_name);
5826
 
5827
  /* Generate a mapping symbol for the veneer section, and explicitly add an
5828
     entry for that symbol to the code/data map for the section.  */
5829
  if (hash_table->vfp11_erratum_glue_size == 0)
5830
    {
5831
      bh = NULL;
5832
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5833
         ever requires this erratum fix.  */
5834
      _bfd_generic_link_add_one_symbol (link_info,
5835
                                        hash_table->bfd_of_glue_owner, "$a",
5836
                                        BSF_LOCAL, s, 0, NULL,
5837
                                        TRUE, FALSE, &bh);
5838
 
5839
      myh = (struct elf_link_hash_entry *) bh;
5840
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5841
      myh->forced_local = 1;
5842
 
5843
      /* The elf32_arm_init_maps function only cares about symbols from input
5844
         BFDs.  We must make a note of this generated mapping symbol
5845
         ourselves so that code byteswapping works properly in
5846
         elf32_arm_write_section.  */
5847
      elf32_arm_section_map_add (s, 'a', 0);
5848
    }
5849
 
5850
  s->size += VFP11_ERRATUM_VENEER_SIZE;
5851
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5852
  hash_table->num_vfp11_fixes++;
5853
 
5854
  /* The offset of the veneer.  */
5855
  return val;
5856
}
5857
 
5858
#define ARM_GLUE_SECTION_FLAGS \
5859
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5860
   | SEC_READONLY | SEC_LINKER_CREATED)
5861
 
5862
/* Create a fake section for use by the ARM backend of the linker.  */
5863
 
5864
static bfd_boolean
5865
arm_make_glue_section (bfd * abfd, const char * name)
5866
{
5867
  asection * sec;
5868
 
5869
  sec = bfd_get_section_by_name (abfd, name);
5870
  if (sec != NULL)
5871
    /* Already made.  */
5872
    return TRUE;
5873
 
5874
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5875
 
5876
  if (sec == NULL
5877
      || !bfd_set_section_alignment (abfd, sec, 2))
5878
    return FALSE;
5879
 
5880
  /* Set the gc mark to prevent the section from being removed by garbage
5881
     collection, despite the fact that no relocs refer to this section.  */
5882
  sec->gc_mark = 1;
5883
 
5884
  return TRUE;
5885
}
5886
 
5887
/* Add the glue sections to ABFD.  This function is called from the
5888
   linker scripts in ld/emultempl/{armelf}.em.  */
5889
 
5890
bfd_boolean
5891
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5892
                                        struct bfd_link_info *info)
5893
{
5894
  /* If we are only performing a partial
5895
     link do not bother adding the glue.  */
5896
  if (info->relocatable)
5897
    return TRUE;
5898
 
5899
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5900
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5901
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5902
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5903
}
5904
 
5905
/* Select a BFD to be used to hold the sections used by the glue code.
5906
   This function is called from the linker scripts in ld/emultempl/
5907
   {armelf/pe}.em.  */
5908
 
5909
bfd_boolean
5910
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5911
{
5912
  struct elf32_arm_link_hash_table *globals;
5913
 
5914
  /* If we are only performing a partial link
5915
     do not bother getting a bfd to hold the glue.  */
5916
  if (info->relocatable)
5917
    return TRUE;
5918
 
5919
  /* Make sure we don't attach the glue sections to a dynamic object.  */
5920
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
5921
 
5922
  globals = elf32_arm_hash_table (info);
5923
  BFD_ASSERT (globals != NULL);
5924
 
5925
  if (globals->bfd_of_glue_owner != NULL)
5926
    return TRUE;
5927
 
5928
  /* Save the bfd for later use.  */
5929
  globals->bfd_of_glue_owner = abfd;
5930
 
5931
  return TRUE;
5932
}
5933
 
5934
static void
5935
check_use_blx (struct elf32_arm_link_hash_table *globals)
5936
{
5937 161 khays
  int cpu_arch;
5938
 
5939
  cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5940
                                       Tag_CPU_arch);
5941
 
5942
  if (globals->fix_arm1176)
5943
    {
5944
      if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
5945
        globals->use_blx = 1;
5946
    }
5947
  else
5948
    {
5949
      if (cpu_arch > TAG_CPU_ARCH_V4T)
5950
        globals->use_blx = 1;
5951
    }
5952 14 khays
}
5953
 
5954
bfd_boolean
5955
bfd_elf32_arm_process_before_allocation (bfd *abfd,
5956
                                         struct bfd_link_info *link_info)
5957
{
5958
  Elf_Internal_Shdr *symtab_hdr;
5959
  Elf_Internal_Rela *internal_relocs = NULL;
5960
  Elf_Internal_Rela *irel, *irelend;
5961
  bfd_byte *contents = NULL;
5962
 
5963
  asection *sec;
5964
  struct elf32_arm_link_hash_table *globals;
5965
 
5966
  /* If we are only performing a partial link do not bother
5967
     to construct any glue.  */
5968
  if (link_info->relocatable)
5969
    return TRUE;
5970
 
5971
  /* Here we have a bfd that is to be included on the link.  We have a
5972
     hook to do reloc rummaging, before section sizes are nailed down.  */
5973
  globals = elf32_arm_hash_table (link_info);
5974
  BFD_ASSERT (globals != NULL);
5975
 
5976
  check_use_blx (globals);
5977
 
5978
  if (globals->byteswap_code && !bfd_big_endian (abfd))
5979
    {
5980
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5981
                          abfd);
5982
      return FALSE;
5983
    }
5984
 
5985
  /* PR 5398: If we have not decided to include any loadable sections in
5986
     the output then we will not have a glue owner bfd.  This is OK, it
5987
     just means that there is nothing else for us to do here.  */
5988
  if (globals->bfd_of_glue_owner == NULL)
5989
    return TRUE;
5990
 
5991
  /* Rummage around all the relocs and map the glue vectors.  */
5992
  sec = abfd->sections;
5993
 
5994
  if (sec == NULL)
5995
    return TRUE;
5996
 
5997
  for (; sec != NULL; sec = sec->next)
5998
    {
5999
      if (sec->reloc_count == 0)
6000
        continue;
6001
 
6002
      if ((sec->flags & SEC_EXCLUDE) != 0)
6003
        continue;
6004
 
6005
      symtab_hdr = & elf_symtab_hdr (abfd);
6006
 
6007
      /* Load the relocs.  */
6008
      internal_relocs
6009
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6010
 
6011
      if (internal_relocs == NULL)
6012
        goto error_return;
6013
 
6014
      irelend = internal_relocs + sec->reloc_count;
6015
      for (irel = internal_relocs; irel < irelend; irel++)
6016
        {
6017
          long r_type;
6018
          unsigned long r_index;
6019
 
6020
          struct elf_link_hash_entry *h;
6021
 
6022
          r_type = ELF32_R_TYPE (irel->r_info);
6023
          r_index = ELF32_R_SYM (irel->r_info);
6024
 
6025
          /* These are the only relocation types we care about.  */
6026
          if (   r_type != R_ARM_PC24
6027
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6028
            continue;
6029
 
6030
          /* Get the section contents if we haven't done so already.  */
6031
          if (contents == NULL)
6032
            {
6033
              /* Get cached copy if it exists.  */
6034
              if (elf_section_data (sec)->this_hdr.contents != NULL)
6035
                contents = elf_section_data (sec)->this_hdr.contents;
6036
              else
6037
                {
6038
                  /* Go get them off disk.  */
6039
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6040
                    goto error_return;
6041
                }
6042
            }
6043
 
6044
          if (r_type == R_ARM_V4BX)
6045
            {
6046
              int reg;
6047
 
6048
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6049
              record_arm_bx_glue (link_info, reg);
6050
              continue;
6051
            }
6052
 
6053
          /* If the relocation is not against a symbol it cannot concern us.  */
6054
          h = NULL;
6055
 
6056
          /* We don't care about local symbols.  */
6057
          if (r_index < symtab_hdr->sh_info)
6058
            continue;
6059
 
6060
          /* This is an external symbol.  */
6061
          r_index -= symtab_hdr->sh_info;
6062
          h = (struct elf_link_hash_entry *)
6063
            elf_sym_hashes (abfd)[r_index];
6064
 
6065
          /* If the relocation is against a static symbol it must be within
6066
             the current section and so cannot be a cross ARM/Thumb relocation.  */
6067
          if (h == NULL)
6068
            continue;
6069
 
6070
          /* If the call will go through a PLT entry then we do not need
6071
             glue.  */
6072
          if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6073
            continue;
6074
 
6075
          switch (r_type)
6076
            {
6077
            case R_ARM_PC24:
6078
              /* This one is a call from arm code.  We need to look up
6079
                 the target of the call.  If it is a thumb target, we
6080
                 insert glue.  */
6081
              if (h->target_internal == ST_BRANCH_TO_THUMB)
6082
                record_arm_to_thumb_glue (link_info, h);
6083
              break;
6084
 
6085
            default:
6086
              abort ();
6087
            }
6088
        }
6089
 
6090
      if (contents != NULL
6091
          && elf_section_data (sec)->this_hdr.contents != contents)
6092
        free (contents);
6093
      contents = NULL;
6094
 
6095
      if (internal_relocs != NULL
6096
          && elf_section_data (sec)->relocs != internal_relocs)
6097
        free (internal_relocs);
6098
      internal_relocs = NULL;
6099
    }
6100
 
6101
  return TRUE;
6102
 
6103
error_return:
6104
  if (contents != NULL
6105
      && elf_section_data (sec)->this_hdr.contents != contents)
6106
    free (contents);
6107
  if (internal_relocs != NULL
6108
      && elf_section_data (sec)->relocs != internal_relocs)
6109
    free (internal_relocs);
6110
 
6111
  return FALSE;
6112
}
6113
#endif
6114
 
6115
 
6116
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
6117
 
6118
void
6119
bfd_elf32_arm_init_maps (bfd *abfd)
6120
{
6121
  Elf_Internal_Sym *isymbuf;
6122
  Elf_Internal_Shdr *hdr;
6123
  unsigned int i, localsyms;
6124
 
6125
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
6126
  if (! is_arm_elf (abfd))
6127
    return;
6128
 
6129
  if ((abfd->flags & DYNAMIC) != 0)
6130
    return;
6131
 
6132
  hdr = & elf_symtab_hdr (abfd);
6133
  localsyms = hdr->sh_info;
6134
 
6135
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6136
     should contain the number of local symbols, which should come before any
6137
     global symbols.  Mapping symbols are always local.  */
6138
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6139
                                  NULL);
6140
 
6141
  /* No internal symbols read?  Skip this BFD.  */
6142
  if (isymbuf == NULL)
6143
    return;
6144
 
6145
  for (i = 0; i < localsyms; i++)
6146
    {
6147
      Elf_Internal_Sym *isym = &isymbuf[i];
6148
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6149
      const char *name;
6150
 
6151
      if (sec != NULL
6152
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6153
        {
6154
          name = bfd_elf_string_from_elf_section (abfd,
6155
            hdr->sh_link, isym->st_name);
6156
 
6157
          if (bfd_is_arm_special_symbol_name (name,
6158
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6159
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
6160
        }
6161
    }
6162
}
6163
 
6164
 
6165
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6166
   say what they wanted.  */
6167
 
6168
void
6169
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6170
{
6171
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6172
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6173
 
6174
  if (globals == NULL)
6175
    return;
6176
 
6177
  if (globals->fix_cortex_a8 == -1)
6178
    {
6179
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
6180
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6181
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
6182
              || out_attr[Tag_CPU_arch_profile].i == 0))
6183
        globals->fix_cortex_a8 = 1;
6184
      else
6185
        globals->fix_cortex_a8 = 0;
6186
    }
6187
}
6188
 
6189
 
6190
void
6191
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6192
{
6193
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6194
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6195
 
6196
  if (globals == NULL)
6197
    return;
6198
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
6199
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6200
    {
6201
      switch (globals->vfp11_fix)
6202
        {
6203
        case BFD_ARM_VFP11_FIX_DEFAULT:
6204
        case BFD_ARM_VFP11_FIX_NONE:
6205
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6206
          break;
6207
 
6208
        default:
6209
          /* Give a warning, but do as the user requests anyway.  */
6210
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6211
            "workaround is not necessary for target architecture"), obfd);
6212
        }
6213
    }
6214
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6215
    /* For earlier architectures, we might need the workaround, but do not
6216
       enable it by default.  If users is running with broken hardware, they
6217
       must enable the erratum fix explicitly.  */
6218
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6219
}
6220
 
6221
 
6222
enum bfd_arm_vfp11_pipe
6223
{
6224
  VFP11_FMAC,
6225
  VFP11_LS,
6226
  VFP11_DS,
6227
  VFP11_BAD
6228
};
6229
 
6230
/* Return a VFP register number.  This is encoded as RX:X for single-precision
6231
   registers, or X:RX for double-precision registers, where RX is the group of
6232
   four bits in the instruction encoding and X is the single extension bit.
6233
   RX and X fields are specified using their lowest (starting) bit.  The return
6234
   value is:
6235
 
6236
     0...31: single-precision registers s0...s31
6237
     32...63: double-precision registers d0...d31.
6238
 
6239
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
6240
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
6241
 
6242
static unsigned int
6243
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6244
                     unsigned int x)
6245
{
6246
  if (is_double)
6247
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6248
  else
6249
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6250
}
6251
 
6252
/* Set bits in *WMASK according to a register number REG as encoded by
6253
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
6254
 
6255
static void
6256
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6257
{
6258
  if (reg < 32)
6259
    *wmask |= 1 << reg;
6260
  else if (reg < 48)
6261
    *wmask |= 3 << ((reg - 32) * 2);
6262
}
6263
 
6264
/* Return TRUE if WMASK overwrites anything in REGS.  */
6265
 
6266
static bfd_boolean
6267
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6268
{
6269
  int i;
6270
 
6271
  for (i = 0; i < numregs; i++)
6272
    {
6273
      unsigned int reg = regs[i];
6274
 
6275
      if (reg < 32 && (wmask & (1 << reg)) != 0)
6276
        return TRUE;
6277
 
6278
      reg -= 32;
6279
 
6280
      if (reg >= 16)
6281
        continue;
6282
 
6283
      if ((wmask & (3 << (reg * 2))) != 0)
6284
        return TRUE;
6285
    }
6286
 
6287
  return FALSE;
6288
}
6289
 
6290
/* In this function, we're interested in two things: finding input registers
6291
   for VFP data-processing instructions, and finding the set of registers which
6292
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
6293
   hold the written set, so FLDM etc. are easy to deal with (we're only
6294
   interested in 32 SP registers or 16 dp registers, due to the VFP version
6295
   implemented by the chip in question).  DP registers are marked by setting
6296
   both SP registers in the write mask).  */
6297
 
6298
static enum bfd_arm_vfp11_pipe
6299
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6300
                           int *numregs)
6301
{
6302
  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6303
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6304
 
6305
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
6306
    {
6307
      unsigned int pqrs;
6308
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6309
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6310
 
6311
      pqrs = ((insn & 0x00800000) >> 20)
6312
           | ((insn & 0x00300000) >> 19)
6313
           | ((insn & 0x00000040) >> 6);
6314
 
6315
      switch (pqrs)
6316
        {
6317
        case 0: /* fmac[sd].  */
6318
        case 1: /* fnmac[sd].  */
6319
        case 2: /* fmsc[sd].  */
6320
        case 3: /* fnmsc[sd].  */
6321
          vpipe = VFP11_FMAC;
6322
          bfd_arm_vfp11_write_mask (destmask, fd);
6323
          regs[0] = fd;
6324
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
6325
          regs[2] = fm;
6326
          *numregs = 3;
6327
          break;
6328
 
6329
        case 4: /* fmul[sd].  */
6330
        case 5: /* fnmul[sd].  */
6331
        case 6: /* fadd[sd].  */
6332
        case 7: /* fsub[sd].  */
6333
          vpipe = VFP11_FMAC;
6334
          goto vfp_binop;
6335
 
6336
        case 8: /* fdiv[sd].  */
6337
          vpipe = VFP11_DS;
6338
          vfp_binop:
6339
          bfd_arm_vfp11_write_mask (destmask, fd);
6340
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
6341
          regs[1] = fm;
6342
          *numregs = 2;
6343
          break;
6344
 
6345
        case 15: /* extended opcode.  */
6346
          {
6347
            unsigned int extn = ((insn >> 15) & 0x1e)
6348
                              | ((insn >> 7) & 1);
6349
 
6350
            switch (extn)
6351
              {
6352
              case 0: /* fcpy[sd].  */
6353
              case 1: /* fabs[sd].  */
6354
              case 2: /* fneg[sd].  */
6355
              case 8: /* fcmp[sd].  */
6356
              case 9: /* fcmpe[sd].  */
6357
              case 10: /* fcmpz[sd].  */
6358
              case 11: /* fcmpez[sd].  */
6359
              case 16: /* fuito[sd].  */
6360
              case 17: /* fsito[sd].  */
6361
              case 24: /* ftoui[sd].  */
6362
              case 25: /* ftouiz[sd].  */
6363
              case 26: /* ftosi[sd].  */
6364
              case 27: /* ftosiz[sd].  */
6365
                /* These instructions will not bounce due to underflow.  */
6366
                *numregs = 0;
6367
                vpipe = VFP11_FMAC;
6368
                break;
6369
 
6370
              case 3: /* fsqrt[sd].  */
6371
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
6372
                   registers to cause the erratum in previous instructions.  */
6373
                bfd_arm_vfp11_write_mask (destmask, fd);
6374
                vpipe = VFP11_DS;
6375
                break;
6376
 
6377
              case 15: /* fcvt{ds,sd}.  */
6378
                {
6379
                  int rnum = 0;
6380
 
6381
                  bfd_arm_vfp11_write_mask (destmask, fd);
6382
 
6383
                  /* Only FCVTSD can underflow.  */
6384
                  if ((insn & 0x100) != 0)
6385
                    regs[rnum++] = fm;
6386
 
6387
                  *numregs = rnum;
6388
 
6389
                  vpipe = VFP11_FMAC;
6390
                }
6391
                break;
6392
 
6393
              default:
6394
                return VFP11_BAD;
6395
              }
6396
          }
6397
          break;
6398
 
6399
        default:
6400
          return VFP11_BAD;
6401
        }
6402
    }
6403
  /* Two-register transfer.  */
6404
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6405
    {
6406
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6407
 
6408
      if ((insn & 0x100000) == 0)
6409
        {
6410
          if (is_double)
6411
            bfd_arm_vfp11_write_mask (destmask, fm);
6412
          else
6413
            {
6414
              bfd_arm_vfp11_write_mask (destmask, fm);
6415
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
6416
            }
6417
        }
6418
 
6419
      vpipe = VFP11_LS;
6420
    }
6421
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
6422
    {
6423
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6424
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6425
 
6426
      switch (puw)
6427
        {
6428
        case 0: /* Two-reg transfer.  We should catch these above.  */
6429
          abort ();
6430
 
6431
        case 2: /* fldm[sdx].  */
6432
        case 3:
6433
        case 5:
6434
          {
6435
            unsigned int i, offset = insn & 0xff;
6436
 
6437
            if (is_double)
6438
              offset >>= 1;
6439
 
6440
            for (i = fd; i < fd + offset; i++)
6441
              bfd_arm_vfp11_write_mask (destmask, i);
6442
          }
6443
          break;
6444
 
6445
        case 4: /* fld[sd].  */
6446
        case 6:
6447
          bfd_arm_vfp11_write_mask (destmask, fd);
6448
          break;
6449
 
6450
        default:
6451
          return VFP11_BAD;
6452
        }
6453
 
6454
      vpipe = VFP11_LS;
6455
    }
6456
  /* Single-register transfer. Note L==0.  */
6457
  else if ((insn & 0x0f100e10) == 0x0e000a10)
6458
    {
6459
      unsigned int opcode = (insn >> 21) & 7;
6460
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6461
 
6462
      switch (opcode)
6463
        {
6464
        case 0: /* fmsr/fmdlr.  */
6465
        case 1: /* fmdhr.  */
6466
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
6467
             destination register.  I don't know if this is exactly right,
6468
             but it is the conservative choice.  */
6469
          bfd_arm_vfp11_write_mask (destmask, fn);
6470
          break;
6471
 
6472
        case 7: /* fmxr.  */
6473
          break;
6474
        }
6475
 
6476
      vpipe = VFP11_LS;
6477
    }
6478
 
6479
  return vpipe;
6480
}
6481
 
6482
 
6483
static int elf32_arm_compare_mapping (const void * a, const void * b);
6484
 
6485
 
6486
/* Look for potentially-troublesome code sequences which might trigger the
6487
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
6488
   (available from ARM) for details of the erratum.  A short version is
6489
   described in ld.texinfo.  */
6490
 
6491
bfd_boolean
6492
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6493
{
6494
  asection *sec;
6495
  bfd_byte *contents = NULL;
6496
  int state = 0;
6497
  int regs[3], numregs = 0;
6498
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6499
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6500
 
6501
  if (globals == NULL)
6502
    return FALSE;
6503
 
6504
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6505
     The states transition as follows:
6506
 
6507
 
6508
           A VFP FMAC-pipeline instruction has been seen. Fill
6509
           regs[0]..regs[numregs-1] with its input operands. Remember this
6510
           instruction in 'first_fmac'.
6511
 
6512
       1 -> 2
6513
           Any instruction, except for a VFP instruction which overwrites
6514
           regs[*].
6515
 
6516
       1 -> 3 [ -> 0 ]  or
6517
       2 -> 3 [ -> 0 ]
6518
           A VFP instruction has been seen which overwrites any of regs[*].
6519
           We must make a veneer!  Reset state to 0 before examining next
6520
           instruction.
6521
 
6522
       2 -> 0
6523
           If we fail to match anything in state 2, reset to state 0 and reset
6524
           the instruction pointer to the instruction after 'first_fmac'.
6525
 
6526
     If the VFP11 vector mode is in use, there must be at least two unrelated
6527
     instructions between anti-dependent VFP11 instructions to properly avoid
6528
     triggering the erratum, hence the use of the extra state 1.  */
6529
 
6530
  /* If we are only performing a partial link do not bother
6531
     to construct any glue.  */
6532
  if (link_info->relocatable)
6533
    return TRUE;
6534
 
6535
  /* Skip if this bfd does not correspond to an ELF image.  */
6536
  if (! is_arm_elf (abfd))
6537
    return TRUE;
6538
 
6539
  /* We should have chosen a fix type by the time we get here.  */
6540
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6541
 
6542
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6543
    return TRUE;
6544
 
6545
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6546
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6547
    return TRUE;
6548
 
6549
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6550
    {
6551
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6552
      struct _arm_elf_section_data *sec_data;
6553
 
6554
      /* If we don't have executable progbits, we're not interested in this
6555
         section.  Also skip if section is to be excluded.  */
6556
      if (elf_section_type (sec) != SHT_PROGBITS
6557
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6558
          || (sec->flags & SEC_EXCLUDE) != 0
6559
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6560
          || sec->output_section == bfd_abs_section_ptr
6561
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6562
        continue;
6563
 
6564
      sec_data = elf32_arm_section_data (sec);
6565
 
6566
      if (sec_data->mapcount == 0)
6567
        continue;
6568
 
6569
      if (elf_section_data (sec)->this_hdr.contents != NULL)
6570
        contents = elf_section_data (sec)->this_hdr.contents;
6571
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6572
        goto error_return;
6573
 
6574
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6575
             elf32_arm_compare_mapping);
6576
 
6577
      for (span = 0; span < sec_data->mapcount; span++)
6578
        {
6579
          unsigned int span_start = sec_data->map[span].vma;
6580
          unsigned int span_end = (span == sec_data->mapcount - 1)
6581
                                  ? sec->size : sec_data->map[span + 1].vma;
6582
          char span_type = sec_data->map[span].type;
6583
 
6584
          /* FIXME: Only ARM mode is supported at present.  We may need to
6585
             support Thumb-2 mode also at some point.  */
6586
          if (span_type != 'a')
6587
            continue;
6588
 
6589
          for (i = span_start; i < span_end;)
6590
            {
6591
              unsigned int next_i = i + 4;
6592
              unsigned int insn = bfd_big_endian (abfd)
6593
                ? (contents[i] << 24)
6594
                  | (contents[i + 1] << 16)
6595
                  | (contents[i + 2] << 8)
6596
                  | contents[i + 3]
6597
                : (contents[i + 3] << 24)
6598
                  | (contents[i + 2] << 16)
6599
                  | (contents[i + 1] << 8)
6600
                  | contents[i];
6601
              unsigned int writemask = 0;
6602
              enum bfd_arm_vfp11_pipe vpipe;
6603
 
6604
              switch (state)
6605
                {
6606
                case 0:
6607
                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6608
                                                    &numregs);
6609
                  /* I'm assuming the VFP11 erratum can trigger with denorm
6610
                     operands on either the FMAC or the DS pipeline. This might
6611
                     lead to slightly overenthusiastic veneer insertion.  */
6612
                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6613
                    {
6614
                      state = use_vector ? 1 : 2;
6615
                      first_fmac = i;
6616
                      veneer_of_insn = insn;
6617
                    }
6618
                  break;
6619
 
6620
                case 1:
6621
                  {
6622
                    int other_regs[3], other_numregs;
6623
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6624
                                                      other_regs,
6625
                                                      &other_numregs);
6626
                    if (vpipe != VFP11_BAD
6627
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6628
                                                         numregs))
6629
                      state = 3;
6630
                    else
6631
                      state = 2;
6632
                  }
6633
                  break;
6634
 
6635
                case 2:
6636
                  {
6637
                    int other_regs[3], other_numregs;
6638
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6639
                                                      other_regs,
6640
                                                      &other_numregs);
6641
                    if (vpipe != VFP11_BAD
6642
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6643
                                                         numregs))
6644
                      state = 3;
6645
                    else
6646
                      {
6647
                        state = 0;
6648
                        next_i = first_fmac + 4;
6649
                      }
6650
                  }
6651
                  break;
6652
 
6653
                case 3:
6654
                  abort ();  /* Should be unreachable.  */
6655
                }
6656
 
6657
              if (state == 3)
6658
                {
6659
                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6660
                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6661
 
6662
                  elf32_arm_section_data (sec)->erratumcount += 1;
6663
 
6664
                  newerr->u.b.vfp_insn = veneer_of_insn;
6665
 
6666
                  switch (span_type)
6667
                    {
6668
                    case 'a':
6669
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6670
                      break;
6671
 
6672
                    default:
6673
                      abort ();
6674
                    }
6675
 
6676
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6677
                                               first_fmac);
6678
 
6679
                  newerr->vma = -1;
6680
 
6681
                  newerr->next = sec_data->erratumlist;
6682
                  sec_data->erratumlist = newerr;
6683
 
6684
                  state = 0;
6685
                }
6686
 
6687
              i = next_i;
6688
            }
6689
        }
6690
 
6691
      if (contents != NULL
6692
          && elf_section_data (sec)->this_hdr.contents != contents)
6693
        free (contents);
6694
      contents = NULL;
6695
    }
6696
 
6697
  return TRUE;
6698
 
6699
error_return:
6700
  if (contents != NULL
6701
      && elf_section_data (sec)->this_hdr.contents != contents)
6702
    free (contents);
6703
 
6704
  return FALSE;
6705
}
6706
 
6707
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6708
   after sections have been laid out, using specially-named symbols.  */
6709
 
6710
void
6711
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6712
                                          struct bfd_link_info *link_info)
6713
{
6714
  asection *sec;
6715
  struct elf32_arm_link_hash_table *globals;
6716
  char *tmp_name;
6717
 
6718
  if (link_info->relocatable)
6719
    return;
6720
 
6721
  /* Skip if this bfd does not correspond to an ELF image.  */
6722
  if (! is_arm_elf (abfd))
6723
    return;
6724
 
6725
  globals = elf32_arm_hash_table (link_info);
6726
  if (globals == NULL)
6727
    return;
6728
 
6729
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6730
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6731
 
6732
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6733
    {
6734
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6735
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6736
 
6737
      for (; errnode != NULL; errnode = errnode->next)
6738
        {
6739
          struct elf_link_hash_entry *myh;
6740
          bfd_vma vma;
6741
 
6742
          switch (errnode->type)
6743
            {
6744
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6745
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6746
              /* Find veneer symbol.  */
6747
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6748
                       errnode->u.b.veneer->u.v.id);
6749
 
6750
              myh = elf_link_hash_lookup
6751
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6752
 
6753
              if (myh == NULL)
6754
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6755
                                         "`%s'"), abfd, tmp_name);
6756
 
6757
              vma = myh->root.u.def.section->output_section->vma
6758
                    + myh->root.u.def.section->output_offset
6759
                    + myh->root.u.def.value;
6760
 
6761
              errnode->u.b.veneer->vma = vma;
6762
              break;
6763
 
6764
            case VFP11_ERRATUM_ARM_VENEER:
6765
            case VFP11_ERRATUM_THUMB_VENEER:
6766
              /* Find return location.  */
6767
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6768
                       errnode->u.v.id);
6769
 
6770
              myh = elf_link_hash_lookup
6771
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6772
 
6773
              if (myh == NULL)
6774
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6775
                                         "`%s'"), abfd, tmp_name);
6776
 
6777
              vma = myh->root.u.def.section->output_section->vma
6778
                    + myh->root.u.def.section->output_offset
6779
                    + myh->root.u.def.value;
6780
 
6781
              errnode->u.v.branch->vma = vma;
6782
              break;
6783
 
6784
            default:
6785
              abort ();
6786
            }
6787
        }
6788
    }
6789
 
6790
  free (tmp_name);
6791
}
6792
 
6793
 
6794
/* Set target relocation values needed during linking.  */
6795
 
6796
void
6797
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6798
                                 struct bfd_link_info *link_info,
6799
                                 int target1_is_rel,
6800
                                 char * target2_type,
6801
                                 int fix_v4bx,
6802
                                 int use_blx,
6803
                                 bfd_arm_vfp11_fix vfp11_fix,
6804
                                 int no_enum_warn, int no_wchar_warn,
6805 161 khays
                                 int pic_veneer, int fix_cortex_a8,
6806
                                 int fix_arm1176)
6807 14 khays
{
6808
  struct elf32_arm_link_hash_table *globals;
6809
 
6810
  globals = elf32_arm_hash_table (link_info);
6811
  if (globals == NULL)
6812
    return;
6813
 
6814
  globals->target1_is_rel = target1_is_rel;
6815
  if (strcmp (target2_type, "rel") == 0)
6816
    globals->target2_reloc = R_ARM_REL32;
6817
  else if (strcmp (target2_type, "abs") == 0)
6818
    globals->target2_reloc = R_ARM_ABS32;
6819
  else if (strcmp (target2_type, "got-rel") == 0)
6820
    globals->target2_reloc = R_ARM_GOT_PREL;
6821
  else
6822
    {
6823
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6824
                          target2_type);
6825
    }
6826
  globals->fix_v4bx = fix_v4bx;
6827
  globals->use_blx |= use_blx;
6828
  globals->vfp11_fix = vfp11_fix;
6829
  globals->pic_veneer = pic_veneer;
6830
  globals->fix_cortex_a8 = fix_cortex_a8;
6831 161 khays
  globals->fix_arm1176 = fix_arm1176;
6832 14 khays
 
6833
  BFD_ASSERT (is_arm_elf (output_bfd));
6834
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6835
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6836
}
6837
 
6838
/* Replace the target offset of a Thumb bl or b.w instruction.  */
6839
 
6840
static void
6841
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6842
{
6843
  bfd_vma upper;
6844
  bfd_vma lower;
6845
  int reloc_sign;
6846
 
6847
  BFD_ASSERT ((offset & 1) == 0);
6848
 
6849
  upper = bfd_get_16 (abfd, insn);
6850
  lower = bfd_get_16 (abfd, insn + 2);
6851
  reloc_sign = (offset < 0) ? 1 : 0;
6852
  upper = (upper & ~(bfd_vma) 0x7ff)
6853
          | ((offset >> 12) & 0x3ff)
6854
          | (reloc_sign << 10);
6855
  lower = (lower & ~(bfd_vma) 0x2fff)
6856
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6857
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6858
          | ((offset >> 1) & 0x7ff);
6859
  bfd_put_16 (abfd, upper, insn);
6860
  bfd_put_16 (abfd, lower, insn + 2);
6861
}
6862
 
6863
/* Thumb code calling an ARM function.  */
6864
 
6865
static int
6866
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6867
                         const char *           name,
6868
                         bfd *                  input_bfd,
6869
                         bfd *                  output_bfd,
6870
                         asection *             input_section,
6871
                         bfd_byte *             hit_data,
6872
                         asection *             sym_sec,
6873
                         bfd_vma                offset,
6874
                         bfd_signed_vma         addend,
6875
                         bfd_vma                val,
6876
                         char **error_message)
6877
{
6878
  asection * s = 0;
6879
  bfd_vma my_offset;
6880
  long int ret_offset;
6881
  struct elf_link_hash_entry * myh;
6882
  struct elf32_arm_link_hash_table * globals;
6883
 
6884
  myh = find_thumb_glue (info, name, error_message);
6885
  if (myh == NULL)
6886
    return FALSE;
6887
 
6888
  globals = elf32_arm_hash_table (info);
6889
  BFD_ASSERT (globals != NULL);
6890
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6891
 
6892
  my_offset = myh->root.u.def.value;
6893
 
6894
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6895
                               THUMB2ARM_GLUE_SECTION_NAME);
6896
 
6897
  BFD_ASSERT (s != NULL);
6898
  BFD_ASSERT (s->contents != NULL);
6899
  BFD_ASSERT (s->output_section != NULL);
6900
 
6901
  if ((my_offset & 0x01) == 0x01)
6902
    {
6903
      if (sym_sec != NULL
6904
          && sym_sec->owner != NULL
6905
          && !INTERWORK_FLAG (sym_sec->owner))
6906
        {
6907
          (*_bfd_error_handler)
6908
            (_("%B(%s): warning: interworking not enabled.\n"
6909
               "  first occurrence: %B: thumb call to arm"),
6910
             sym_sec->owner, input_bfd, name);
6911
 
6912
          return FALSE;
6913
        }
6914
 
6915
      --my_offset;
6916
      myh->root.u.def.value = my_offset;
6917
 
6918
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6919
                      s->contents + my_offset);
6920
 
6921
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6922
                      s->contents + my_offset + 2);
6923
 
6924
      ret_offset =
6925
        /* Address of destination of the stub.  */
6926
        ((bfd_signed_vma) val)
6927
        - ((bfd_signed_vma)
6928
           /* Offset from the start of the current section
6929
              to the start of the stubs.  */
6930
           (s->output_offset
6931
            /* Offset of the start of this stub from the start of the stubs.  */
6932
            + my_offset
6933
            /* Address of the start of the current section.  */
6934
            + s->output_section->vma)
6935
           /* The branch instruction is 4 bytes into the stub.  */
6936
           + 4
6937
           /* ARM branches work from the pc of the instruction + 8.  */
6938
           + 8);
6939
 
6940
      put_arm_insn (globals, output_bfd,
6941
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6942
                    s->contents + my_offset + 4);
6943
    }
6944
 
6945
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6946
 
6947
  /* Now go back and fix up the original BL insn to point to here.  */
6948
  ret_offset =
6949
    /* Address of where the stub is located.  */
6950
    (s->output_section->vma + s->output_offset + my_offset)
6951
     /* Address of where the BL is located.  */
6952
    - (input_section->output_section->vma + input_section->output_offset
6953
       + offset)
6954
    /* Addend in the relocation.  */
6955
    - addend
6956
    /* Biassing for PC-relative addressing.  */
6957
    - 8;
6958
 
6959
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6960
 
6961
  return TRUE;
6962
}
6963
 
6964
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
6965
 
6966
static struct elf_link_hash_entry *
6967
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6968
                             const char *           name,
6969
                             bfd *                  input_bfd,
6970
                             bfd *                  output_bfd,
6971
                             asection *             sym_sec,
6972
                             bfd_vma                val,
6973
                             asection *             s,
6974
                             char **                error_message)
6975
{
6976
  bfd_vma my_offset;
6977
  long int ret_offset;
6978
  struct elf_link_hash_entry * myh;
6979
  struct elf32_arm_link_hash_table * globals;
6980
 
6981
  myh = find_arm_glue (info, name, error_message);
6982
  if (myh == NULL)
6983
    return NULL;
6984
 
6985
  globals = elf32_arm_hash_table (info);
6986
  BFD_ASSERT (globals != NULL);
6987
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6988
 
6989
  my_offset = myh->root.u.def.value;
6990
 
6991
  if ((my_offset & 0x01) == 0x01)
6992
    {
6993
      if (sym_sec != NULL
6994
          && sym_sec->owner != NULL
6995
          && !INTERWORK_FLAG (sym_sec->owner))
6996
        {
6997
          (*_bfd_error_handler)
6998
            (_("%B(%s): warning: interworking not enabled.\n"
6999
               "  first occurrence: %B: arm call to thumb"),
7000
             sym_sec->owner, input_bfd, name);
7001
        }
7002
 
7003
      --my_offset;
7004
      myh->root.u.def.value = my_offset;
7005
 
7006
      if (info->shared || globals->root.is_relocatable_executable
7007
          || globals->pic_veneer)
7008
        {
7009
          /* For relocatable objects we can't use absolute addresses,
7010
             so construct the address from a relative offset.  */
7011
          /* TODO: If the offset is small it's probably worth
7012
             constructing the address with adds.  */
7013
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7014
                        s->contents + my_offset);
7015
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7016
                        s->contents + my_offset + 4);
7017
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7018
                        s->contents + my_offset + 8);
7019
          /* Adjust the offset by 4 for the position of the add,
7020
             and 8 for the pipeline offset.  */
7021
          ret_offset = (val - (s->output_offset
7022
                               + s->output_section->vma
7023
                               + my_offset + 12))
7024
                       | 1;
7025
          bfd_put_32 (output_bfd, ret_offset,
7026
                      s->contents + my_offset + 12);
7027
        }
7028
      else if (globals->use_blx)
7029
        {
7030
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7031
                        s->contents + my_offset);
7032
 
7033
          /* It's a thumb address.  Add the low order bit.  */
7034
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7035
                      s->contents + my_offset + 4);
7036
        }
7037
      else
7038
        {
7039
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7040
                        s->contents + my_offset);
7041
 
7042
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7043
                        s->contents + my_offset + 4);
7044
 
7045
          /* It's a thumb address.  Add the low order bit.  */
7046
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7047
                      s->contents + my_offset + 8);
7048
 
7049
          my_offset += 12;
7050
        }
7051
    }
7052
 
7053
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
7054
 
7055
  return myh;
7056
}
7057
 
7058
/* Arm code calling a Thumb function.  */
7059
 
7060
static int
7061
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7062
                         const char *           name,
7063
                         bfd *                  input_bfd,
7064
                         bfd *                  output_bfd,
7065
                         asection *             input_section,
7066
                         bfd_byte *             hit_data,
7067
                         asection *             sym_sec,
7068
                         bfd_vma                offset,
7069
                         bfd_signed_vma         addend,
7070
                         bfd_vma                val,
7071
                         char **error_message)
7072
{
7073
  unsigned long int tmp;
7074
  bfd_vma my_offset;
7075
  asection * s;
7076
  long int ret_offset;
7077
  struct elf_link_hash_entry * myh;
7078
  struct elf32_arm_link_hash_table * globals;
7079
 
7080
  globals = elf32_arm_hash_table (info);
7081
  BFD_ASSERT (globals != NULL);
7082
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7083
 
7084
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7085
                               ARM2THUMB_GLUE_SECTION_NAME);
7086
  BFD_ASSERT (s != NULL);
7087
  BFD_ASSERT (s->contents != NULL);
7088
  BFD_ASSERT (s->output_section != NULL);
7089
 
7090
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7091
                                     sym_sec, val, s, error_message);
7092
  if (!myh)
7093
    return FALSE;
7094
 
7095
  my_offset = myh->root.u.def.value;
7096
  tmp = bfd_get_32 (input_bfd, hit_data);
7097
  tmp = tmp & 0xFF000000;
7098
 
7099
  /* Somehow these are both 4 too far, so subtract 8.  */
7100
  ret_offset = (s->output_offset
7101
                + my_offset
7102
                + s->output_section->vma
7103
                - (input_section->output_offset
7104
                   + input_section->output_section->vma
7105
                   + offset + addend)
7106
                - 8);
7107
 
7108
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7109
 
7110
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7111
 
7112
  return TRUE;
7113
}
7114
 
7115
/* Populate Arm stub for an exported Thumb function.  */
7116
 
7117
static bfd_boolean
7118
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7119
{
7120
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
7121
  asection * s;
7122
  struct elf_link_hash_entry * myh;
7123
  struct elf32_arm_link_hash_entry *eh;
7124
  struct elf32_arm_link_hash_table * globals;
7125
  asection *sec;
7126
  bfd_vma val;
7127
  char *error_message;
7128
 
7129
  eh = elf32_arm_hash_entry (h);
7130
  /* Allocate stubs for exported Thumb functions on v4t.  */
7131
  if (eh->export_glue == NULL)
7132
    return TRUE;
7133
 
7134
  globals = elf32_arm_hash_table (info);
7135
  BFD_ASSERT (globals != NULL);
7136
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7137
 
7138
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7139
                               ARM2THUMB_GLUE_SECTION_NAME);
7140
  BFD_ASSERT (s != NULL);
7141
  BFD_ASSERT (s->contents != NULL);
7142
  BFD_ASSERT (s->output_section != NULL);
7143
 
7144
  sec = eh->export_glue->root.u.def.section;
7145
 
7146
  BFD_ASSERT (sec->output_section != NULL);
7147
 
7148
  val = eh->export_glue->root.u.def.value + sec->output_offset
7149
        + sec->output_section->vma;
7150
 
7151
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7152
                                     h->root.u.def.section->owner,
7153
                                     globals->obfd, sec, val, s,
7154
                                     &error_message);
7155
  BFD_ASSERT (myh);
7156
  return TRUE;
7157
}
7158
 
7159
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
7160
 
7161
static bfd_vma
7162
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7163
{
7164
  bfd_byte *p;
7165
  bfd_vma glue_addr;
7166
  asection *s;
7167
  struct elf32_arm_link_hash_table *globals;
7168
 
7169
  globals = elf32_arm_hash_table (info);
7170
  BFD_ASSERT (globals != NULL);
7171
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7172
 
7173
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7174
                               ARM_BX_GLUE_SECTION_NAME);
7175
  BFD_ASSERT (s != NULL);
7176
  BFD_ASSERT (s->contents != NULL);
7177
  BFD_ASSERT (s->output_section != NULL);
7178
 
7179
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7180
 
7181
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7182
 
7183
  if ((globals->bx_glue_offset[reg] & 1) == 0)
7184
    {
7185
      p = s->contents + glue_addr;
7186
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7187
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7188
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7189
      globals->bx_glue_offset[reg] |= 1;
7190
    }
7191
 
7192
  return glue_addr + s->output_section->vma + s->output_offset;
7193
}
7194
 
7195
/* Generate Arm stubs for exported Thumb symbols.  */
7196
static void
7197
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7198
                                  struct bfd_link_info *link_info)
7199
{
7200
  struct elf32_arm_link_hash_table * globals;
7201
 
7202
  if (link_info == NULL)
7203
    /* Ignore this if we are not called by the ELF backend linker.  */
7204
    return;
7205
 
7206
  globals = elf32_arm_hash_table (link_info);
7207
  if (globals == NULL)
7208
    return;
7209
 
7210
  /* If blx is available then exported Thumb symbols are OK and there is
7211
     nothing to do.  */
7212
  if (globals->use_blx)
7213
    return;
7214
 
7215
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7216
                          link_info);
7217
}
7218
 
7219
/* Reserve space for COUNT dynamic relocations in relocation selection
7220
   SRELOC.  */
7221
 
7222
static void
7223
elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7224
                              bfd_size_type count)
7225
{
7226
  struct elf32_arm_link_hash_table *htab;
7227
 
7228
  htab = elf32_arm_hash_table (info);
7229
  BFD_ASSERT (htab->root.dynamic_sections_created);
7230
  if (sreloc == NULL)
7231
    abort ();
7232
  sreloc->size += RELOC_SIZE (htab) * count;
7233
}
7234
 
7235
/* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
7236
   dynamic, the relocations should go in SRELOC, otherwise they should
7237
   go in the special .rel.iplt section.  */
7238
 
7239
static void
7240
elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7241
                            bfd_size_type count)
7242
{
7243
  struct elf32_arm_link_hash_table *htab;
7244
 
7245
  htab = elf32_arm_hash_table (info);
7246
  if (!htab->root.dynamic_sections_created)
7247
    htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7248
  else
7249
    {
7250
      BFD_ASSERT (sreloc != NULL);
7251
      sreloc->size += RELOC_SIZE (htab) * count;
7252
    }
7253
}
7254
 
7255
/* Add relocation REL to the end of relocation section SRELOC.  */
7256
 
7257
static void
7258
elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7259
                        asection *sreloc, Elf_Internal_Rela *rel)
7260
{
7261
  bfd_byte *loc;
7262
  struct elf32_arm_link_hash_table *htab;
7263
 
7264
  htab = elf32_arm_hash_table (info);
7265
  if (!htab->root.dynamic_sections_created
7266
      && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7267
    sreloc = htab->root.irelplt;
7268
  if (sreloc == NULL)
7269
    abort ();
7270
  loc = sreloc->contents;
7271
  loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7272
  if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7273
    abort ();
7274
  SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7275
}
7276
 
7277
/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7278
   IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7279
   to .plt.  */
7280
 
7281
static void
7282
elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7283
                              bfd_boolean is_iplt_entry,
7284
                              union gotplt_union *root_plt,
7285
                              struct arm_plt_info *arm_plt)
7286
{
7287
  struct elf32_arm_link_hash_table *htab;
7288
  asection *splt;
7289
  asection *sgotplt;
7290
 
7291
  htab = elf32_arm_hash_table (info);
7292
 
7293
  if (is_iplt_entry)
7294
    {
7295
      splt = htab->root.iplt;
7296
      sgotplt = htab->root.igotplt;
7297
 
7298
      /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
7299
      elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7300
    }
7301
  else
7302
    {
7303
      splt = htab->root.splt;
7304
      sgotplt = htab->root.sgotplt;
7305
 
7306
      /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
7307
      elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7308
 
7309
      /* If this is the first .plt entry, make room for the special
7310
         first entry.  */
7311
      if (splt->size == 0)
7312
        splt->size += htab->plt_header_size;
7313
    }
7314
 
7315
  /* Allocate the PLT entry itself, including any leading Thumb stub.  */
7316
  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7317
    splt->size += PLT_THUMB_STUB_SIZE;
7318
  root_plt->offset = splt->size;
7319
  splt->size += htab->plt_entry_size;
7320
 
7321
  if (!htab->symbian_p)
7322
    {
7323
      /* We also need to make an entry in the .got.plt section, which
7324
         will be placed in the .got section by the linker script.  */
7325
      arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7326
      sgotplt->size += 4;
7327
    }
7328
}
7329
 
7330
/* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
7331
   the entry lives in .iplt and resolves to (*SYM_VALUE)().
7332
   Otherwise, DYNINDX is the index of the symbol in the dynamic
7333
   symbol table and SYM_VALUE is undefined.
7334
 
7335
   ROOT_PLT points to the offset of the PLT entry from the start of its
7336
   section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
7337
   bookkeeping information.  */
7338
 
7339
static void
7340
elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7341
                              union gotplt_union *root_plt,
7342
                              struct arm_plt_info *arm_plt,
7343
                              int dynindx, bfd_vma sym_value)
7344
{
7345
  struct elf32_arm_link_hash_table *htab;
7346
  asection *sgot;
7347
  asection *splt;
7348
  asection *srel;
7349
  bfd_byte *loc;
7350
  bfd_vma plt_index;
7351
  Elf_Internal_Rela rel;
7352
  bfd_vma plt_header_size;
7353
  bfd_vma got_header_size;
7354
 
7355
  htab = elf32_arm_hash_table (info);
7356
 
7357
  /* Pick the appropriate sections and sizes.  */
7358
  if (dynindx == -1)
7359
    {
7360
      splt = htab->root.iplt;
7361
      sgot = htab->root.igotplt;
7362
      srel = htab->root.irelplt;
7363
 
7364
      /* There are no reserved entries in .igot.plt, and no special
7365
         first entry in .iplt.  */
7366
      got_header_size = 0;
7367
      plt_header_size = 0;
7368
    }
7369
  else
7370
    {
7371
      splt = htab->root.splt;
7372
      sgot = htab->root.sgotplt;
7373
      srel = htab->root.srelplt;
7374
 
7375
      got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7376
      plt_header_size = htab->plt_header_size;
7377
    }
7378
  BFD_ASSERT (splt != NULL && srel != NULL);
7379
 
7380
  /* Fill in the entry in the procedure linkage table.  */
7381
  if (htab->symbian_p)
7382
    {
7383
      BFD_ASSERT (dynindx >= 0);
7384
      put_arm_insn (htab, output_bfd,
7385
                    elf32_arm_symbian_plt_entry[0],
7386
                    splt->contents + root_plt->offset);
7387
      bfd_put_32 (output_bfd,
7388
                  elf32_arm_symbian_plt_entry[1],
7389
                  splt->contents + root_plt->offset + 4);
7390
 
7391
      /* Fill in the entry in the .rel.plt section.  */
7392
      rel.r_offset = (splt->output_section->vma
7393
                      + splt->output_offset
7394
                      + root_plt->offset + 4);
7395
      rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7396
 
7397
      /* Get the index in the procedure linkage table which
7398
         corresponds to this symbol.  This is the index of this symbol
7399
         in all the symbols for which we are making plt entries.  The
7400
         first entry in the procedure linkage table is reserved.  */
7401
      plt_index = ((root_plt->offset - plt_header_size)
7402
                   / htab->plt_entry_size);
7403
    }
7404
  else
7405
    {
7406
      bfd_vma got_offset, got_address, plt_address;
7407
      bfd_vma got_displacement, initial_got_entry;
7408
      bfd_byte * ptr;
7409
 
7410
      BFD_ASSERT (sgot != NULL);
7411
 
7412
      /* Get the offset into the .(i)got.plt table of the entry that
7413
         corresponds to this function.  */
7414
      got_offset = (arm_plt->got_offset & -2);
7415
 
7416
      /* Get the index in the procedure linkage table which
7417
         corresponds to this symbol.  This is the index of this symbol
7418
         in all the symbols for which we are making plt entries.
7419
         After the reserved .got.plt entries, all symbols appear in
7420
         the same order as in .plt.  */
7421
      plt_index = (got_offset - got_header_size) / 4;
7422
 
7423
      /* Calculate the address of the GOT entry.  */
7424
      got_address = (sgot->output_section->vma
7425
                     + sgot->output_offset
7426
                     + got_offset);
7427
 
7428
      /* ...and the address of the PLT entry.  */
7429
      plt_address = (splt->output_section->vma
7430
                     + splt->output_offset
7431
                     + root_plt->offset);
7432
 
7433
      ptr = splt->contents + root_plt->offset;
7434
      if (htab->vxworks_p && info->shared)
7435
        {
7436
          unsigned int i;
7437
          bfd_vma val;
7438
 
7439
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7440
            {
7441
              val = elf32_arm_vxworks_shared_plt_entry[i];
7442
              if (i == 2)
7443
                val |= got_address - sgot->output_section->vma;
7444
              if (i == 5)
7445
                val |= plt_index * RELOC_SIZE (htab);
7446
              if (i == 2 || i == 5)
7447
                bfd_put_32 (output_bfd, val, ptr);
7448
              else
7449
                put_arm_insn (htab, output_bfd, val, ptr);
7450
            }
7451
        }
7452
      else if (htab->vxworks_p)
7453
        {
7454
          unsigned int i;
7455
          bfd_vma val;
7456
 
7457
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7458
            {
7459
              val = elf32_arm_vxworks_exec_plt_entry[i];
7460
              if (i == 2)
7461
                val |= got_address;
7462
              if (i == 4)
7463
                val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7464
              if (i == 5)
7465
                val |= plt_index * RELOC_SIZE (htab);
7466
              if (i == 2 || i == 5)
7467
                bfd_put_32 (output_bfd, val, ptr);
7468
              else
7469
                put_arm_insn (htab, output_bfd, val, ptr);
7470
            }
7471
 
7472
          loc = (htab->srelplt2->contents
7473
                 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7474
 
7475
          /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7476
             referencing the GOT for this PLT entry.  */
7477
          rel.r_offset = plt_address + 8;
7478
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7479
          rel.r_addend = got_offset;
7480
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7481
          loc += RELOC_SIZE (htab);
7482
 
7483
          /* Create the R_ARM_ABS32 relocation referencing the
7484
             beginning of the PLT for this GOT entry.  */
7485
          rel.r_offset = got_address;
7486
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7487
          rel.r_addend = 0;
7488
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7489
        }
7490
      else
7491
        {
7492
          /* Calculate the displacement between the PLT slot and the
7493
             entry in the GOT.  The eight-byte offset accounts for the
7494
             value produced by adding to pc in the first instruction
7495
             of the PLT stub.  */
7496
          got_displacement = got_address - (plt_address + 8);
7497
 
7498
          BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7499
 
7500
          if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7501
            {
7502
              put_thumb_insn (htab, output_bfd,
7503
                              elf32_arm_plt_thumb_stub[0], ptr - 4);
7504
              put_thumb_insn (htab, output_bfd,
7505
                              elf32_arm_plt_thumb_stub[1], ptr - 2);
7506
            }
7507
 
7508
          put_arm_insn (htab, output_bfd,
7509
                        elf32_arm_plt_entry[0]
7510
                        | ((got_displacement & 0x0ff00000) >> 20),
7511
                        ptr + 0);
7512
          put_arm_insn (htab, output_bfd,
7513
                        elf32_arm_plt_entry[1]
7514
                        | ((got_displacement & 0x000ff000) >> 12),
7515
                        ptr+ 4);
7516
          put_arm_insn (htab, output_bfd,
7517
                        elf32_arm_plt_entry[2]
7518
                        | (got_displacement & 0x00000fff),
7519
                        ptr + 8);
7520
#ifdef FOUR_WORD_PLT
7521
          bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7522
#endif
7523
        }
7524
 
7525
      /* Fill in the entry in the .rel(a).(i)plt section.  */
7526
      rel.r_offset = got_address;
7527
      rel.r_addend = 0;
7528
      if (dynindx == -1)
7529
        {
7530
          /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7531
             The dynamic linker or static executable then calls SYM_VALUE
7532
             to determine the correct run-time value of the .igot.plt entry.  */
7533
          rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7534
          initial_got_entry = sym_value;
7535
        }
7536
      else
7537
        {
7538
          rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7539
          initial_got_entry = (splt->output_section->vma
7540
                               + splt->output_offset);
7541
        }
7542
 
7543
      /* Fill in the entry in the global offset table.  */
7544
      bfd_put_32 (output_bfd, initial_got_entry,
7545
                  sgot->contents + got_offset);
7546
    }
7547
 
7548
  loc = srel->contents + plt_index * RELOC_SIZE (htab);
7549
  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7550
}
7551
 
7552
/* Some relocations map to different relocations depending on the
7553
   target.  Return the real relocation.  */
7554
 
7555
static int
7556
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7557
                     int r_type)
7558
{
7559
  switch (r_type)
7560
    {
7561
    case R_ARM_TARGET1:
7562
      if (globals->target1_is_rel)
7563
        return R_ARM_REL32;
7564
      else
7565
        return R_ARM_ABS32;
7566
 
7567
    case R_ARM_TARGET2:
7568
      return globals->target2_reloc;
7569
 
7570
    default:
7571
      return r_type;
7572
    }
7573
}
7574
 
7575
/* Return the base VMA address which should be subtracted from real addresses
7576
   when resolving @dtpoff relocation.
7577
   This is PT_TLS segment p_vaddr.  */
7578
 
7579
static bfd_vma
7580
dtpoff_base (struct bfd_link_info *info)
7581
{
7582
  /* If tls_sec is NULL, we should have signalled an error already.  */
7583
  if (elf_hash_table (info)->tls_sec == NULL)
7584
    return 0;
7585
  return elf_hash_table (info)->tls_sec->vma;
7586
}
7587
 
7588
/* Return the relocation value for @tpoff relocation
7589
   if STT_TLS virtual address is ADDRESS.  */
7590
 
7591
static bfd_vma
7592
tpoff (struct bfd_link_info *info, bfd_vma address)
7593
{
7594
  struct elf_link_hash_table *htab = elf_hash_table (info);
7595
  bfd_vma base;
7596
 
7597
  /* If tls_sec is NULL, we should have signalled an error already.  */
7598
  if (htab->tls_sec == NULL)
7599
    return 0;
7600
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7601
  return address - htab->tls_sec->vma + base;
7602
}
7603
 
7604
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7605
   VALUE is the relocation value.  */
7606
 
7607
static bfd_reloc_status_type
7608
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7609
{
7610
  if (value > 0xfff)
7611
    return bfd_reloc_overflow;
7612
 
7613
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
7614
  bfd_put_32 (abfd, value, data);
7615
  return bfd_reloc_ok;
7616
}
7617
 
7618
/* Handle TLS relaxations.  Relaxing is possible for symbols that use
7619
   R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7620
   R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7621
 
7622
   Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7623
   is to then call final_link_relocate.  Return other values in the
7624
   case of error.
7625
 
7626
   FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7627
   the pre-relaxed code.  It would be nice if the relocs were updated
7628
   to match the optimization.   */
7629
 
7630
static bfd_reloc_status_type
7631
elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7632
                     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7633
                     Elf_Internal_Rela *rel, unsigned long is_local)
7634
{
7635
  unsigned long insn;
7636
 
7637
  switch (ELF32_R_TYPE (rel->r_info))
7638
    {
7639
    default:
7640
      return bfd_reloc_notsupported;
7641
 
7642
    case R_ARM_TLS_GOTDESC:
7643
      if (is_local)
7644
        insn = 0;
7645
      else
7646
        {
7647
          insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7648
          if (insn & 1)
7649
            insn -= 5; /* THUMB */
7650
          else
7651
            insn -= 8; /* ARM */
7652
        }
7653
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7654
      return bfd_reloc_continue;
7655
 
7656
    case R_ARM_THM_TLS_DESCSEQ:
7657
      /* Thumb insn.  */
7658
      insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7659
      if ((insn & 0xff78) == 0x4478)      /* add rx, pc */
7660
        {
7661
          if (is_local)
7662
            /* nop */
7663
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7664
        }
7665
      else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
7666
        {
7667
          if (is_local)
7668
            /* nop */
7669
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7670
          else
7671
            /* ldr rx,[ry] */
7672
            bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7673
        }
7674
      else if ((insn & 0xff87) == 0x4780)  /* blx rx */
7675
        {
7676
          if (is_local)
7677
            /* nop */
7678
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7679
          else
7680
            /* mov r0, rx */
7681
            bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7682
                        contents + rel->r_offset);
7683
        }
7684
      else
7685
        {
7686
          if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7687
            /* It's a 32 bit instruction, fetch the rest of it for
7688
               error generation.  */
7689
            insn = (insn << 16)
7690
              | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7691
          (*_bfd_error_handler)
7692
            (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7693
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7694
          return bfd_reloc_notsupported;
7695
        }
7696
      break;
7697
 
7698
    case R_ARM_TLS_DESCSEQ:
7699
      /* arm insn.  */
7700
      insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7701
      if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7702
        {
7703
          if (is_local)
7704
            /* mov rx, ry */
7705
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7706
                        contents + rel->r_offset);
7707
        }
7708
      else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7709
        {
7710
          if (is_local)
7711
            /* nop */
7712
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7713
          else
7714
            /* ldr rx,[ry] */
7715
            bfd_put_32 (input_bfd, insn & 0xfffff000,
7716
                        contents + rel->r_offset);
7717
        }
7718
      else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7719
        {
7720
          if (is_local)
7721
            /* nop */
7722
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7723
          else
7724
            /* mov r0, rx */
7725
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7726
                        contents + rel->r_offset);
7727
        }
7728
      else
7729
        {
7730
          (*_bfd_error_handler)
7731
            (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7732
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7733
          return bfd_reloc_notsupported;
7734
        }
7735
      break;
7736
 
7737
    case R_ARM_TLS_CALL:
7738
      /* GD->IE relaxation, turn the instruction into 'nop' or
7739
         'ldr r0, [pc,r0]'  */
7740
      insn = is_local ? 0xe1a00000 : 0xe79f0000;
7741
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7742
      break;
7743
 
7744
    case R_ARM_THM_TLS_CALL:
7745
      /* GD->IE relaxation */
7746
      if (!is_local)
7747
        /* add r0,pc; ldr r0, [r0]  */
7748
        insn = 0x44786800;
7749
      else if (arch_has_thumb2_nop (globals))
7750
        /* nop.w */
7751
        insn = 0xf3af8000;
7752
      else
7753
        /* nop; nop */
7754
        insn = 0xbf00bf00;
7755
 
7756
      bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7757
      bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7758
      break;
7759
    }
7760
  return bfd_reloc_ok;
7761
}
7762
 
7763
/* For a given value of n, calculate the value of G_n as required to
7764
   deal with group relocations.  We return it in the form of an
7765
   encoded constant-and-rotation, together with the final residual.  If n is
7766
   specified as less than zero, then final_residual is filled with the
7767
   input value and no further action is performed.  */
7768
 
7769
static bfd_vma
7770
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7771
{
7772
  int current_n;
7773
  bfd_vma g_n;
7774
  bfd_vma encoded_g_n = 0;
7775
  bfd_vma residual = value; /* Also known as Y_n.  */
7776
 
7777
  for (current_n = 0; current_n <= n; current_n++)
7778
    {
7779
      int shift;
7780
 
7781
      /* Calculate which part of the value to mask.  */
7782
      if (residual == 0)
7783
        shift = 0;
7784
      else
7785
        {
7786
          int msb;
7787
 
7788
          /* Determine the most significant bit in the residual and
7789
             align the resulting value to a 2-bit boundary.  */
7790
          for (msb = 30; msb >= 0; msb -= 2)
7791
            if (residual & (3 << msb))
7792
              break;
7793
 
7794
          /* The desired shift is now (msb - 6), or zero, whichever
7795
             is the greater.  */
7796
          shift = msb - 6;
7797
          if (shift < 0)
7798
            shift = 0;
7799
        }
7800
 
7801
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
7802
      g_n = residual & (0xff << shift);
7803
      encoded_g_n = (g_n >> shift)
7804
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7805
 
7806
      /* Calculate the residual for the next time around.  */
7807
      residual &= ~g_n;
7808
    }
7809
 
7810
  *final_residual = residual;
7811
 
7812
  return encoded_g_n;
7813
}
7814
 
7815
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
7816
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
7817
 
7818
static int
7819
identify_add_or_sub (bfd_vma insn)
7820
{
7821
  int opcode = insn & 0x1e00000;
7822
 
7823
  if (opcode == 1 << 23) /* ADD */
7824
    return 1;
7825
 
7826
  if (opcode == 1 << 22) /* SUB */
7827
    return -1;
7828
 
7829
  return 0;
7830
}
7831
 
7832
/* Perform a relocation as part of a final link.  */
7833
 
7834
static bfd_reloc_status_type
7835
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
7836
                               bfd *                        input_bfd,
7837
                               bfd *                        output_bfd,
7838
                               asection *                   input_section,
7839
                               bfd_byte *                   contents,
7840
                               Elf_Internal_Rela *          rel,
7841
                               bfd_vma                      value,
7842
                               struct bfd_link_info *       info,
7843
                               asection *                   sym_sec,
7844
                               const char *                 sym_name,
7845
                               unsigned char                st_type,
7846
                               enum arm_st_branch_type      branch_type,
7847
                               struct elf_link_hash_entry * h,
7848
                               bfd_boolean *                unresolved_reloc_p,
7849
                               char **                      error_message)
7850
{
7851
  unsigned long                 r_type = howto->type;
7852
  unsigned long                 r_symndx;
7853
  bfd_byte *                    hit_data = contents + rel->r_offset;
7854
  bfd_vma *                     local_got_offsets;
7855
  bfd_vma *                     local_tlsdesc_gotents;
7856
  asection *                    sgot;
7857
  asection *                    splt;
7858
  asection *                    sreloc = NULL;
7859
  asection *                    srelgot;
7860
  bfd_vma                       addend;
7861
  bfd_signed_vma                signed_addend;
7862
  unsigned char                 dynreloc_st_type;
7863
  bfd_vma                       dynreloc_value;
7864
  struct elf32_arm_link_hash_table * globals;
7865
  struct elf32_arm_link_hash_entry *eh;
7866
  union gotplt_union           *root_plt;
7867
  struct arm_plt_info          *arm_plt;
7868
  bfd_vma                       plt_offset;
7869
  bfd_vma                       gotplt_offset;
7870
  bfd_boolean                   has_iplt_entry;
7871
 
7872
  globals = elf32_arm_hash_table (info);
7873
  if (globals == NULL)
7874
    return bfd_reloc_notsupported;
7875
 
7876
  BFD_ASSERT (is_arm_elf (input_bfd));
7877
 
7878
  /* Some relocation types map to different relocations depending on the
7879
     target.  We pick the right one here.  */
7880
  r_type = arm_real_reloc_type (globals, r_type);
7881
 
7882
  /* It is possible to have linker relaxations on some TLS access
7883
     models.  Update our information here.  */
7884
  r_type = elf32_arm_tls_transition (info, r_type, h);
7885
 
7886
  if (r_type != howto->type)
7887
    howto = elf32_arm_howto_from_type (r_type);
7888
 
7889
  /* If the start address has been set, then set the EF_ARM_HASENTRY
7890
     flag.  Setting this more than once is redundant, but the cost is
7891
     not too high, and it keeps the code simple.
7892
 
7893
     The test is done  here, rather than somewhere else, because the
7894
     start address is only set just before the final link commences.
7895
 
7896
     Note - if the user deliberately sets a start address of 0, the
7897
     flag will not be set.  */
7898
  if (bfd_get_start_address (output_bfd) != 0)
7899
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7900
 
7901
  eh = (struct elf32_arm_link_hash_entry *) h;
7902
  sgot = globals->root.sgot;
7903
  local_got_offsets = elf_local_got_offsets (input_bfd);
7904
  local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7905
 
7906
  if (globals->root.dynamic_sections_created)
7907
    srelgot = globals->root.srelgot;
7908
  else
7909
    srelgot = NULL;
7910
 
7911
  r_symndx = ELF32_R_SYM (rel->r_info);
7912
 
7913
  if (globals->use_rel)
7914
    {
7915
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7916
 
7917
      if (addend & ((howto->src_mask + 1) >> 1))
7918
        {
7919
          signed_addend = -1;
7920
          signed_addend &= ~ howto->src_mask;
7921
          signed_addend |= addend;
7922
        }
7923
      else
7924
        signed_addend = addend;
7925
    }
7926
  else
7927
    addend = signed_addend = rel->r_addend;
7928
 
7929
  /* Record the symbol information that should be used in dynamic
7930
     relocations.  */
7931
  dynreloc_st_type = st_type;
7932
  dynreloc_value = value;
7933
  if (branch_type == ST_BRANCH_TO_THUMB)
7934
    dynreloc_value |= 1;
7935
 
7936
  /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
7937
     VALUE appropriately for relocations that we resolve at link time.  */
7938
  has_iplt_entry = FALSE;
7939
  if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7940
      && root_plt->offset != (bfd_vma) -1)
7941
    {
7942
      plt_offset = root_plt->offset;
7943
      gotplt_offset = arm_plt->got_offset;
7944
 
7945
      if (h == NULL || eh->is_iplt)
7946
        {
7947
          has_iplt_entry = TRUE;
7948
          splt = globals->root.iplt;
7949
 
7950
          /* Populate .iplt entries here, because not all of them will
7951
             be seen by finish_dynamic_symbol.  The lower bit is set if
7952
             we have already populated the entry.  */
7953
          if (plt_offset & 1)
7954
            plt_offset--;
7955
          else
7956
            {
7957
              elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7958
                                            -1, dynreloc_value);
7959
              root_plt->offset |= 1;
7960
            }
7961
 
7962
          /* Static relocations always resolve to the .iplt entry.  */
7963
          st_type = STT_FUNC;
7964
          value = (splt->output_section->vma
7965
                   + splt->output_offset
7966
                   + plt_offset);
7967
          branch_type = ST_BRANCH_TO_ARM;
7968
 
7969
          /* If there are non-call relocations that resolve to the .iplt
7970
             entry, then all dynamic ones must too.  */
7971
          if (arm_plt->noncall_refcount != 0)
7972
            {
7973
              dynreloc_st_type = st_type;
7974
              dynreloc_value = value;
7975
            }
7976
        }
7977
      else
7978
        /* We populate the .plt entry in finish_dynamic_symbol.  */
7979
        splt = globals->root.splt;
7980
    }
7981
  else
7982
    {
7983
      splt = NULL;
7984
      plt_offset = (bfd_vma) -1;
7985
      gotplt_offset = (bfd_vma) -1;
7986
    }
7987
 
7988
  switch (r_type)
7989
    {
7990
    case R_ARM_NONE:
7991
      /* We don't need to find a value for this symbol.  It's just a
7992
         marker.  */
7993
      *unresolved_reloc_p = FALSE;
7994
      return bfd_reloc_ok;
7995
 
7996
    case R_ARM_ABS12:
7997
      if (!globals->vxworks_p)
7998
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7999
 
8000
    case R_ARM_PC24:
8001
    case R_ARM_ABS32:
8002
    case R_ARM_ABS32_NOI:
8003
    case R_ARM_REL32:
8004
    case R_ARM_REL32_NOI:
8005
    case R_ARM_CALL:
8006
    case R_ARM_JUMP24:
8007
    case R_ARM_XPC25:
8008
    case R_ARM_PREL31:
8009
    case R_ARM_PLT32:
8010
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
8011
         will use the symbol's value, which may point to a PLT entry, but we
8012
         don't need to handle that here.  If we created a PLT entry, all
8013
         branches in this object should go to it, except if the PLT is too
8014
         far away, in which case a long branch stub should be inserted.  */
8015
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8016
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8017
           && r_type != R_ARM_CALL
8018
           && r_type != R_ARM_JUMP24
8019
           && r_type != R_ARM_PLT32)
8020
          && plt_offset != (bfd_vma) -1)
8021
        {
8022
          /* If we've created a .plt section, and assigned a PLT entry
8023
             to this function, it must either be a STT_GNU_IFUNC reference
8024
             or not be known to bind locally.  In other cases, we should
8025
             have cleared the PLT entry by now.  */
8026
          BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8027
 
8028
          value = (splt->output_section->vma
8029
                   + splt->output_offset
8030
                   + plt_offset);
8031
          *unresolved_reloc_p = FALSE;
8032
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
8033
                                           contents, rel->r_offset, value,
8034
                                           rel->r_addend);
8035
        }
8036
 
8037
      /* When generating a shared object or relocatable executable, these
8038
         relocations are copied into the output file to be resolved at
8039
         run time.  */
8040
      if ((info->shared || globals->root.is_relocatable_executable)
8041
          && (input_section->flags & SEC_ALLOC)
8042
          && !(globals->vxworks_p
8043
               && strcmp (input_section->output_section->name,
8044
                          ".tls_vars") == 0)
8045
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8046
              || !SYMBOL_CALLS_LOCAL (info, h))
8047
          && (!strstr (input_section->name, STUB_SUFFIX))
8048
          && (h == NULL
8049
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8050
              || h->root.type != bfd_link_hash_undefweak)
8051
          && r_type != R_ARM_PC24
8052
          && r_type != R_ARM_CALL
8053
          && r_type != R_ARM_JUMP24
8054
          && r_type != R_ARM_PREL31
8055
          && r_type != R_ARM_PLT32)
8056
        {
8057
          Elf_Internal_Rela outrel;
8058
          bfd_boolean skip, relocate;
8059
 
8060
          *unresolved_reloc_p = FALSE;
8061
 
8062
          if (sreloc == NULL && globals->root.dynamic_sections_created)
8063
            {
8064
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8065
                                                           ! globals->use_rel);
8066
 
8067
              if (sreloc == NULL)
8068
                return bfd_reloc_notsupported;
8069
            }
8070
 
8071
          skip = FALSE;
8072
          relocate = FALSE;
8073
 
8074
          outrel.r_addend = addend;
8075
          outrel.r_offset =
8076
            _bfd_elf_section_offset (output_bfd, info, input_section,
8077
                                     rel->r_offset);
8078
          if (outrel.r_offset == (bfd_vma) -1)
8079
            skip = TRUE;
8080
          else if (outrel.r_offset == (bfd_vma) -2)
8081
            skip = TRUE, relocate = TRUE;
8082
          outrel.r_offset += (input_section->output_section->vma
8083
                              + input_section->output_offset);
8084
 
8085
          if (skip)
8086
            memset (&outrel, 0, sizeof outrel);
8087
          else if (h != NULL
8088
                   && h->dynindx != -1
8089
                   && (!info->shared
8090
                       || !info->symbolic
8091
                       || !h->def_regular))
8092
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8093
          else
8094
            {
8095
              int symbol;
8096
 
8097
              /* This symbol is local, or marked to become local.  */
8098
              BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8099
              if (globals->symbian_p)
8100
                {
8101
                  asection *osec;
8102
 
8103
                  /* On Symbian OS, the data segment and text segement
8104
                     can be relocated independently.  Therefore, we
8105
                     must indicate the segment to which this
8106
                     relocation is relative.  The BPABI allows us to
8107
                     use any symbol in the right segment; we just use
8108
                     the section symbol as it is convenient.  (We
8109
                     cannot use the symbol given by "h" directly as it
8110
                     will not appear in the dynamic symbol table.)
8111
 
8112
                     Note that the dynamic linker ignores the section
8113
                     symbol value, so we don't subtract osec->vma
8114
                     from the emitted reloc addend.  */
8115
                  if (sym_sec)
8116
                    osec = sym_sec->output_section;
8117
                  else
8118
                    osec = input_section->output_section;
8119
                  symbol = elf_section_data (osec)->dynindx;
8120
                  if (symbol == 0)
8121
                    {
8122
                      struct elf_link_hash_table *htab = elf_hash_table (info);
8123
 
8124
                      if ((osec->flags & SEC_READONLY) == 0
8125
                          && htab->data_index_section != NULL)
8126
                        osec = htab->data_index_section;
8127
                      else
8128
                        osec = htab->text_index_section;
8129
                      symbol = elf_section_data (osec)->dynindx;
8130
                    }
8131
                  BFD_ASSERT (symbol != 0);
8132
                }
8133
              else
8134
                /* On SVR4-ish systems, the dynamic loader cannot
8135
                   relocate the text and data segments independently,
8136
                   so the symbol does not matter.  */
8137
                symbol = 0;
8138
              if (dynreloc_st_type == STT_GNU_IFUNC)
8139
                /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8140
                   to the .iplt entry.  Instead, every non-call reference
8141
                   must use an R_ARM_IRELATIVE relocation to obtain the
8142
                   correct run-time address.  */
8143
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8144
              else
8145
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8146
              if (globals->use_rel)
8147
                relocate = TRUE;
8148
              else
8149
                outrel.r_addend += dynreloc_value;
8150
            }
8151
 
8152
          elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8153
 
8154
          /* If this reloc is against an external symbol, we do not want to
8155
             fiddle with the addend.  Otherwise, we need to include the symbol
8156
             value so that it becomes an addend for the dynamic reloc.  */
8157
          if (! relocate)
8158
            return bfd_reloc_ok;
8159
 
8160
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
8161
                                           contents, rel->r_offset,
8162
                                           dynreloc_value, (bfd_vma) 0);
8163
        }
8164
      else switch (r_type)
8165
        {
8166
        case R_ARM_ABS12:
8167
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8168
 
8169
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
8170
        case R_ARM_CALL:
8171
        case R_ARM_JUMP24:
8172
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
8173
        case R_ARM_PLT32:
8174
          {
8175
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8176
 
8177
          if (r_type == R_ARM_XPC25)
8178
            {
8179
              /* Check for Arm calling Arm function.  */
8180
              /* FIXME: Should we translate the instruction into a BL
8181
                 instruction instead ?  */
8182
              if (branch_type != ST_BRANCH_TO_THUMB)
8183
                (*_bfd_error_handler)
8184
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8185
                   input_bfd,
8186
                   h ? h->root.root.string : "(local)");
8187
            }
8188
          else if (r_type == R_ARM_PC24)
8189
            {
8190
              /* Check for Arm calling Thumb function.  */
8191
              if (branch_type == ST_BRANCH_TO_THUMB)
8192
                {
8193
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8194
                                               output_bfd, input_section,
8195
                                               hit_data, sym_sec, rel->r_offset,
8196
                                               signed_addend, value,
8197
                                               error_message))
8198
                    return bfd_reloc_ok;
8199
                  else
8200
                    return bfd_reloc_dangerous;
8201
                }
8202
            }
8203
 
8204
          /* Check if a stub has to be inserted because the
8205
             destination is too far or we are changing mode.  */
8206
          if (   r_type == R_ARM_CALL
8207
              || r_type == R_ARM_JUMP24
8208
              || r_type == R_ARM_PLT32)
8209
            {
8210
              enum elf32_arm_stub_type stub_type = arm_stub_none;
8211
              struct elf32_arm_link_hash_entry *hash;
8212
 
8213
              hash = (struct elf32_arm_link_hash_entry *) h;
8214
              stub_type = arm_type_of_stub (info, input_section, rel,
8215
                                            st_type, &branch_type,
8216
                                            hash, value, sym_sec,
8217
                                            input_bfd, sym_name);
8218
 
8219
              if (stub_type != arm_stub_none)
8220
                {
8221
                  /* The target is out of reach, so redirect the
8222
                     branch to the local stub for this function.  */
8223
 
8224
                  stub_entry = elf32_arm_get_stub_entry (input_section,
8225
                                                         sym_sec, h,
8226
                                                         rel, globals,
8227
                                                         stub_type);
8228
                  if (stub_entry != NULL)
8229
                    value = (stub_entry->stub_offset
8230
                             + stub_entry->stub_sec->output_offset
8231
                             + stub_entry->stub_sec->output_section->vma);
8232
                }
8233
              else
8234
                {
8235
                  /* If the call goes through a PLT entry, make sure to
8236
                     check distance to the right destination address.  */
8237
                  if (plt_offset != (bfd_vma) -1)
8238
                    {
8239
                      value = (splt->output_section->vma
8240
                               + splt->output_offset
8241
                               + plt_offset);
8242
                      *unresolved_reloc_p = FALSE;
8243
                      /* The PLT entry is in ARM mode, regardless of the
8244
                         target function.  */
8245
                      branch_type = ST_BRANCH_TO_ARM;
8246
                    }
8247
                }
8248
            }
8249
 
8250
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8251
             where:
8252
              S is the address of the symbol in the relocation.
8253
              P is address of the instruction being relocated.
8254
              A is the addend (extracted from the instruction) in bytes.
8255
 
8256
             S is held in 'value'.
8257
             P is the base address of the section containing the
8258
               instruction plus the offset of the reloc into that
8259
               section, ie:
8260
                 (input_section->output_section->vma +
8261
                  input_section->output_offset +
8262
                  rel->r_offset).
8263
             A is the addend, converted into bytes, ie:
8264
                 (signed_addend * 4)
8265
 
8266
             Note: None of these operations have knowledge of the pipeline
8267
             size of the processor, thus it is up to the assembler to
8268
             encode this information into the addend.  */
8269
          value -= (input_section->output_section->vma
8270
                    + input_section->output_offset);
8271
          value -= rel->r_offset;
8272
          if (globals->use_rel)
8273
            value += (signed_addend << howto->size);
8274
          else
8275
            /* RELA addends do not have to be adjusted by howto->size.  */
8276
            value += signed_addend;
8277
 
8278
          signed_addend = value;
8279
          signed_addend >>= howto->rightshift;
8280
 
8281
          /* A branch to an undefined weak symbol is turned into a jump to
8282
             the next instruction unless a PLT entry will be created.
8283
             Do the same for local undefined symbols (but not for STN_UNDEF).
8284
             The jump to the next instruction is optimized as a NOP depending
8285
             on the architecture.  */
8286
          if (h ? (h->root.type == bfd_link_hash_undefweak
8287
                   && plt_offset == (bfd_vma) -1)
8288
              : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8289
            {
8290
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8291
 
8292
              if (arch_has_arm_nop (globals))
8293
                value |= 0x0320f000;
8294
              else
8295
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
8296
            }
8297
          else
8298
            {
8299
              /* Perform a signed range check.  */
8300
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
8301
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8302
                return bfd_reloc_overflow;
8303
 
8304
              addend = (value & 2);
8305
 
8306
              value = (signed_addend & howto->dst_mask)
8307
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8308
 
8309
              if (r_type == R_ARM_CALL)
8310
                {
8311
                  /* Set the H bit in the BLX instruction.  */
8312
                  if (branch_type == ST_BRANCH_TO_THUMB)
8313
                    {
8314
                      if (addend)
8315
                        value |= (1 << 24);
8316
                      else
8317
                        value &= ~(bfd_vma)(1 << 24);
8318
                    }
8319
 
8320
                  /* Select the correct instruction (BL or BLX).  */
8321
                  /* Only if we are not handling a BL to a stub. In this
8322
                     case, mode switching is performed by the stub.  */
8323
                  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8324
                    value |= (1 << 28);
8325
                  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8326
                    {
8327
                      value &= ~(bfd_vma)(1 << 28);
8328
                      value |= (1 << 24);
8329
                    }
8330
                }
8331
            }
8332
          }
8333
          break;
8334
 
8335
        case R_ARM_ABS32:
8336
          value += addend;
8337
          if (branch_type == ST_BRANCH_TO_THUMB)
8338
            value |= 1;
8339
          break;
8340
 
8341
        case R_ARM_ABS32_NOI:
8342
          value += addend;
8343
          break;
8344
 
8345
        case R_ARM_REL32:
8346
          value += addend;
8347
          if (branch_type == ST_BRANCH_TO_THUMB)
8348
            value |= 1;
8349
          value -= (input_section->output_section->vma
8350
                    + input_section->output_offset + rel->r_offset);
8351
          break;
8352
 
8353
        case R_ARM_REL32_NOI:
8354
          value += addend;
8355
          value -= (input_section->output_section->vma
8356
                    + input_section->output_offset + rel->r_offset);
8357
          break;
8358
 
8359
        case R_ARM_PREL31:
8360
          value -= (input_section->output_section->vma
8361
                    + input_section->output_offset + rel->r_offset);
8362
          value += signed_addend;
8363
          if (! h || h->root.type != bfd_link_hash_undefweak)
8364
            {
8365
              /* Check for overflow.  */
8366
              if ((value ^ (value >> 1)) & (1 << 30))
8367
                return bfd_reloc_overflow;
8368
            }
8369
          value &= 0x7fffffff;
8370
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8371
          if (branch_type == ST_BRANCH_TO_THUMB)
8372
            value |= 1;
8373
          break;
8374
        }
8375
 
8376
      bfd_put_32 (input_bfd, value, hit_data);
8377
      return bfd_reloc_ok;
8378
 
8379
    case R_ARM_ABS8:
8380
      value += addend;
8381
 
8382
      /* There is no way to tell whether the user intended to use a signed or
8383
         unsigned addend.  When checking for overflow we accept either,
8384
         as specified by the AAELF.  */
8385
      if ((long) value > 0xff || (long) value < -0x80)
8386
        return bfd_reloc_overflow;
8387
 
8388
      bfd_put_8 (input_bfd, value, hit_data);
8389
      return bfd_reloc_ok;
8390
 
8391
    case R_ARM_ABS16:
8392
      value += addend;
8393
 
8394
      /* See comment for R_ARM_ABS8.  */
8395
      if ((long) value > 0xffff || (long) value < -0x8000)
8396
        return bfd_reloc_overflow;
8397
 
8398
      bfd_put_16 (input_bfd, value, hit_data);
8399
      return bfd_reloc_ok;
8400
 
8401
    case R_ARM_THM_ABS5:
8402
      /* Support ldr and str instructions for the thumb.  */
8403
      if (globals->use_rel)
8404
        {
8405
          /* Need to refetch addend.  */
8406
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8407
          /* ??? Need to determine shift amount from operand size.  */
8408
          addend >>= howto->rightshift;
8409
        }
8410
      value += addend;
8411
 
8412
      /* ??? Isn't value unsigned?  */
8413
      if ((long) value > 0x1f || (long) value < -0x10)
8414
        return bfd_reloc_overflow;
8415
 
8416
      /* ??? Value needs to be properly shifted into place first.  */
8417
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8418
      bfd_put_16 (input_bfd, value, hit_data);
8419
      return bfd_reloc_ok;
8420
 
8421
    case R_ARM_THM_ALU_PREL_11_0:
8422
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
8423
      {
8424
        bfd_vma insn;
8425
        bfd_signed_vma relocation;
8426
 
8427
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8428
             | bfd_get_16 (input_bfd, hit_data + 2);
8429
 
8430
        if (globals->use_rel)
8431
          {
8432
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8433
                          | ((insn & (1 << 26)) >> 15);
8434
            if (insn & 0xf00000)
8435
              signed_addend = -signed_addend;
8436
          }
8437
 
8438
        relocation = value + signed_addend;
8439
        relocation -= (input_section->output_section->vma
8440
                       + input_section->output_offset
8441
                       + rel->r_offset);
8442
 
8443
        value = abs (relocation);
8444
 
8445
        if (value >= 0x1000)
8446
          return bfd_reloc_overflow;
8447
 
8448
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
8449
             | ((value & 0x700) << 4)
8450
             | ((value & 0x800) << 15);
8451
        if (relocation < 0)
8452
          insn |= 0xa00000;
8453
 
8454
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8455
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8456
 
8457
        return bfd_reloc_ok;
8458
      }
8459
 
8460
    case R_ARM_THM_PC8:
8461
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
8462
         but it is supported for compatibility with third party libraries
8463
         generated by other compilers, specifically the ARM/IAR.  */
8464
      {
8465
        bfd_vma insn;
8466
        bfd_signed_vma relocation;
8467
 
8468
        insn = bfd_get_16 (input_bfd, hit_data);
8469
 
8470
        if (globals->use_rel)
8471
          addend = (insn & 0x00ff) << 2;
8472
 
8473
        relocation = value + addend;
8474
        relocation -= (input_section->output_section->vma
8475
                       + input_section->output_offset
8476
                       + rel->r_offset);
8477
 
8478
        value = abs (relocation);
8479
 
8480
        /* We do not check for overflow of this reloc.  Although strictly
8481
           speaking this is incorrect, it appears to be necessary in order
8482
           to work with IAR generated relocs.  Since GCC and GAS do not
8483
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8484
           a problem for them.  */
8485
        value &= 0x3fc;
8486
 
8487
        insn = (insn & 0xff00) | (value >> 2);
8488
 
8489
        bfd_put_16 (input_bfd, insn, hit_data);
8490
 
8491
        return bfd_reloc_ok;
8492
      }
8493
 
8494
    case R_ARM_THM_PC12:
8495
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
8496
      {
8497
        bfd_vma insn;
8498
        bfd_signed_vma relocation;
8499
 
8500
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8501
             | bfd_get_16 (input_bfd, hit_data + 2);
8502
 
8503
        if (globals->use_rel)
8504
          {
8505
            signed_addend = insn & 0xfff;
8506
            if (!(insn & (1 << 23)))
8507
              signed_addend = -signed_addend;
8508
          }
8509
 
8510
        relocation = value + signed_addend;
8511
        relocation -= (input_section->output_section->vma
8512
                       + input_section->output_offset
8513
                       + rel->r_offset);
8514
 
8515
        value = abs (relocation);
8516
 
8517
        if (value >= 0x1000)
8518
          return bfd_reloc_overflow;
8519
 
8520
        insn = (insn & 0xff7ff000) | value;
8521
        if (relocation >= 0)
8522
          insn |= (1 << 23);
8523
 
8524
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8525
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8526
 
8527
        return bfd_reloc_ok;
8528
      }
8529
 
8530
    case R_ARM_THM_XPC22:
8531
    case R_ARM_THM_CALL:
8532
    case R_ARM_THM_JUMP24:
8533
      /* Thumb BL (branch long instruction).  */
8534
      {
8535
        bfd_vma relocation;
8536
        bfd_vma reloc_sign;
8537
        bfd_boolean overflow = FALSE;
8538
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8539
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8540
        bfd_signed_vma reloc_signed_max;
8541
        bfd_signed_vma reloc_signed_min;
8542
        bfd_vma check;
8543
        bfd_signed_vma signed_check;
8544
        int bitsize;
8545
        const int thumb2 = using_thumb2 (globals);
8546
 
8547
        /* A branch to an undefined weak symbol is turned into a jump to
8548
           the next instruction unless a PLT entry will be created.
8549
           The jump to the next instruction is optimized as a NOP.W for
8550
           Thumb-2 enabled architectures.  */
8551
        if (h && h->root.type == bfd_link_hash_undefweak
8552
            && plt_offset == (bfd_vma) -1)
8553
          {
8554
            if (arch_has_thumb2_nop (globals))
8555
              {
8556
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
8557
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8558
              }
8559
            else
8560
              {
8561
                bfd_put_16 (input_bfd, 0xe000, hit_data);
8562
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8563
              }
8564
            return bfd_reloc_ok;
8565
          }
8566
 
8567
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
8568
           with Thumb-1) involving the J1 and J2 bits.  */
8569
        if (globals->use_rel)
8570
          {
8571
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8572
            bfd_vma upper = upper_insn & 0x3ff;
8573
            bfd_vma lower = lower_insn & 0x7ff;
8574
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8575
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8576
            bfd_vma i1 = j1 ^ s ? 0 : 1;
8577
            bfd_vma i2 = j2 ^ s ? 0 : 1;
8578
 
8579
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8580
            /* Sign extend.  */
8581
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8582
 
8583
            signed_addend = addend;
8584
          }
8585
 
8586
        if (r_type == R_ARM_THM_XPC22)
8587
          {
8588
            /* Check for Thumb to Thumb call.  */
8589
            /* FIXME: Should we translate the instruction into a BL
8590
               instruction instead ?  */
8591
            if (branch_type == ST_BRANCH_TO_THUMB)
8592
              (*_bfd_error_handler)
8593
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8594
                 input_bfd,
8595
                 h ? h->root.root.string : "(local)");
8596
          }
8597
        else
8598
          {
8599
            /* If it is not a call to Thumb, assume call to Arm.
8600
               If it is a call relative to a section name, then it is not a
8601
               function call at all, but rather a long jump.  Calls through
8602
               the PLT do not require stubs.  */
8603
            if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8604
              {
8605
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
8606
                  {
8607
                    /* Convert BL to BLX.  */
8608
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
8609
                  }
8610
                else if ((   r_type != R_ARM_THM_CALL)
8611
                         && (r_type != R_ARM_THM_JUMP24))
8612
                  {
8613
                    if (elf32_thumb_to_arm_stub
8614
                        (info, sym_name, input_bfd, output_bfd, input_section,
8615
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
8616
                         error_message))
8617
                      return bfd_reloc_ok;
8618
                    else
8619
                      return bfd_reloc_dangerous;
8620
                  }
8621
              }
8622
            else if (branch_type == ST_BRANCH_TO_THUMB
8623
                     && globals->use_blx
8624
                     && r_type == R_ARM_THM_CALL)
8625
              {
8626
                /* Make sure this is a BL.  */
8627
                lower_insn |= 0x1800;
8628
              }
8629
          }
8630
 
8631
        enum elf32_arm_stub_type stub_type = arm_stub_none;
8632
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8633
          {
8634
            /* Check if a stub has to be inserted because the destination
8635
               is too far.  */
8636
            struct elf32_arm_stub_hash_entry *stub_entry;
8637
            struct elf32_arm_link_hash_entry *hash;
8638
 
8639
            hash = (struct elf32_arm_link_hash_entry *) h;
8640
 
8641
            stub_type = arm_type_of_stub (info, input_section, rel,
8642
                                          st_type, &branch_type,
8643
                                          hash, value, sym_sec,
8644
                                          input_bfd, sym_name);
8645
 
8646
            if (stub_type != arm_stub_none)
8647
              {
8648
                /* The target is out of reach or we are changing modes, so
8649
                   redirect the branch to the local stub for this
8650
                   function.  */
8651
                stub_entry = elf32_arm_get_stub_entry (input_section,
8652
                                                       sym_sec, h,
8653
                                                       rel, globals,
8654
                                                       stub_type);
8655
                if (stub_entry != NULL)
8656
                  value = (stub_entry->stub_offset
8657
                           + stub_entry->stub_sec->output_offset
8658
                           + stub_entry->stub_sec->output_section->vma);
8659
 
8660
                /* If this call becomes a call to Arm, force BLX.  */
8661
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8662
                  {
8663
                    if ((stub_entry
8664
                         && !arm_stub_is_thumb (stub_entry->stub_type))
8665
                        || branch_type != ST_BRANCH_TO_THUMB)
8666
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
8667
                  }
8668
              }
8669
          }
8670
 
8671
        /* Handle calls via the PLT.  */
8672
        if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8673
          {
8674
            value = (splt->output_section->vma
8675
                     + splt->output_offset
8676
                     + plt_offset);
8677
 
8678
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
8679
              {
8680
                /* If the Thumb BLX instruction is available, convert
8681
                   the BL to a BLX instruction to call the ARM-mode
8682
                   PLT entry.  */
8683
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
8684
                branch_type = ST_BRANCH_TO_ARM;
8685
              }
8686
            else
8687
              {
8688
                /* Target the Thumb stub before the ARM PLT entry.  */
8689
                value -= PLT_THUMB_STUB_SIZE;
8690
                branch_type = ST_BRANCH_TO_THUMB;
8691
              }
8692
            *unresolved_reloc_p = FALSE;
8693
          }
8694
 
8695
        relocation = value + signed_addend;
8696
 
8697
        relocation -= (input_section->output_section->vma
8698
                       + input_section->output_offset
8699
                       + rel->r_offset);
8700
 
8701
        check = relocation >> howto->rightshift;
8702
 
8703
        /* If this is a signed value, the rightshift just dropped
8704
           leading 1 bits (assuming twos complement).  */
8705
        if ((bfd_signed_vma) relocation >= 0)
8706
          signed_check = check;
8707
        else
8708
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8709
 
8710
        /* Calculate the permissable maximum and minimum values for
8711
           this relocation according to whether we're relocating for
8712
           Thumb-2 or not.  */
8713
        bitsize = howto->bitsize;
8714
        if (!thumb2)
8715
          bitsize -= 2;
8716
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
8717
        reloc_signed_min = ~reloc_signed_max;
8718
 
8719
        /* Assumes two's complement.  */
8720
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8721
          overflow = TRUE;
8722
 
8723
        if ((lower_insn & 0x5000) == 0x4000)
8724
          /* For a BLX instruction, make sure that the relocation is rounded up
8725
             to a word boundary.  This follows the semantics of the instruction
8726
             which specifies that bit 1 of the target address will come from bit
8727
             1 of the base address.  */
8728
          relocation = (relocation + 2) & ~ 3;
8729
 
8730
        /* Put RELOCATION back into the insn.  Assumes two's complement.
8731
           We use the Thumb-2 encoding, which is safe even if dealing with
8732
           a Thumb-1 instruction by virtue of our overflow check above.  */
8733
        reloc_sign = (signed_check < 0) ? 1 : 0;
8734
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8735
                     | ((relocation >> 12) & 0x3ff)
8736
                     | (reloc_sign << 10);
8737
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8738
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8739
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8740
                     | ((relocation >> 1) & 0x7ff);
8741
 
8742
        /* Put the relocated value back in the object file:  */
8743
        bfd_put_16 (input_bfd, upper_insn, hit_data);
8744
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8745
 
8746
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8747
      }
8748
      break;
8749
 
8750
    case R_ARM_THM_JUMP19:
8751
      /* Thumb32 conditional branch instruction.  */
8752
      {
8753
        bfd_vma relocation;
8754
        bfd_boolean overflow = FALSE;
8755
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8756
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8757
        bfd_signed_vma reloc_signed_max = 0xffffe;
8758
        bfd_signed_vma reloc_signed_min = -0x100000;
8759
        bfd_signed_vma signed_check;
8760
 
8761
        /* Need to refetch the addend, reconstruct the top three bits,
8762
           and squish the two 11 bit pieces together.  */
8763
        if (globals->use_rel)
8764
          {
8765
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
8766
            bfd_vma upper = (upper_insn & 0x003f);
8767
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
8768
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
8769
            bfd_vma lower = (lower_insn & 0x07ff);
8770
 
8771
            upper |= J1 << 6;
8772
            upper |= J2 << 7;
8773
            upper |= (!S) << 8;
8774
            upper -= 0x0100; /* Sign extend.  */
8775
 
8776
            addend = (upper << 12) | (lower << 1);
8777
            signed_addend = addend;
8778
          }
8779
 
8780
        /* Handle calls via the PLT.  */
8781
        if (plt_offset != (bfd_vma) -1)
8782
          {
8783
            value = (splt->output_section->vma
8784
                     + splt->output_offset
8785
                     + plt_offset);
8786
            /* Target the Thumb stub before the ARM PLT entry.  */
8787
            value -= PLT_THUMB_STUB_SIZE;
8788
            *unresolved_reloc_p = FALSE;
8789
          }
8790
 
8791
        /* ??? Should handle interworking?  GCC might someday try to
8792
           use this for tail calls.  */
8793
 
8794
        relocation = value + signed_addend;
8795
        relocation -= (input_section->output_section->vma
8796
                       + input_section->output_offset
8797
                       + rel->r_offset);
8798
        signed_check = (bfd_signed_vma) relocation;
8799
 
8800
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8801
          overflow = TRUE;
8802
 
8803
        /* Put RELOCATION back into the insn.  */
8804
        {
8805
          bfd_vma S  = (relocation & 0x00100000) >> 20;
8806
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
8807
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
8808
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
8809
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
8810
 
8811
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8812
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8813
        }
8814
 
8815
        /* Put the relocated value back in the object file:  */
8816
        bfd_put_16 (input_bfd, upper_insn, hit_data);
8817
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8818
 
8819
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8820
      }
8821
 
8822
    case R_ARM_THM_JUMP11:
8823
    case R_ARM_THM_JUMP8:
8824
    case R_ARM_THM_JUMP6:
8825
      /* Thumb B (branch) instruction).  */
8826
      {
8827
        bfd_signed_vma relocation;
8828
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8829
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8830
        bfd_signed_vma signed_check;
8831
 
8832
        /* CZB cannot jump backward.  */
8833
        if (r_type == R_ARM_THM_JUMP6)
8834
          reloc_signed_min = 0;
8835
 
8836
        if (globals->use_rel)
8837
          {
8838
            /* Need to refetch addend.  */
8839
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8840
            if (addend & ((howto->src_mask + 1) >> 1))
8841
              {
8842
                signed_addend = -1;
8843
                signed_addend &= ~ howto->src_mask;
8844
                signed_addend |= addend;
8845
              }
8846
            else
8847
              signed_addend = addend;
8848
            /* The value in the insn has been right shifted.  We need to
8849
               undo this, so that we can perform the address calculation
8850
               in terms of bytes.  */
8851
            signed_addend <<= howto->rightshift;
8852
          }
8853
        relocation = value + signed_addend;
8854
 
8855
        relocation -= (input_section->output_section->vma
8856
                       + input_section->output_offset
8857
                       + rel->r_offset);
8858
 
8859
        relocation >>= howto->rightshift;
8860
        signed_check = relocation;
8861
 
8862
        if (r_type == R_ARM_THM_JUMP6)
8863
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8864
        else
8865
          relocation &= howto->dst_mask;
8866
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8867
 
8868
        bfd_put_16 (input_bfd, relocation, hit_data);
8869
 
8870
        /* Assumes two's complement.  */
8871
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8872
          return bfd_reloc_overflow;
8873
 
8874
        return bfd_reloc_ok;
8875
      }
8876
 
8877
    case R_ARM_ALU_PCREL7_0:
8878
    case R_ARM_ALU_PCREL15_8:
8879
    case R_ARM_ALU_PCREL23_15:
8880
      {
8881
        bfd_vma insn;
8882
        bfd_vma relocation;
8883
 
8884
        insn = bfd_get_32 (input_bfd, hit_data);
8885
        if (globals->use_rel)
8886
          {
8887
            /* Extract the addend.  */
8888
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8889
            signed_addend = addend;
8890
          }
8891
        relocation = value + signed_addend;
8892
 
8893
        relocation -= (input_section->output_section->vma
8894
                       + input_section->output_offset
8895
                       + rel->r_offset);
8896
        insn = (insn & ~0xfff)
8897
               | ((howto->bitpos << 7) & 0xf00)
8898
               | ((relocation >> howto->bitpos) & 0xff);
8899
        bfd_put_32 (input_bfd, value, hit_data);
8900
      }
8901
      return bfd_reloc_ok;
8902
 
8903
    case R_ARM_GNU_VTINHERIT:
8904
    case R_ARM_GNU_VTENTRY:
8905
      return bfd_reloc_ok;
8906
 
8907
    case R_ARM_GOTOFF32:
8908
      /* Relocation is relative to the start of the
8909
         global offset table.  */
8910
 
8911
      BFD_ASSERT (sgot != NULL);
8912
      if (sgot == NULL)
8913
        return bfd_reloc_notsupported;
8914
 
8915
      /* If we are addressing a Thumb function, we need to adjust the
8916
         address by one, so that attempts to call the function pointer will
8917
         correctly interpret it as Thumb code.  */
8918
      if (branch_type == ST_BRANCH_TO_THUMB)
8919
        value += 1;
8920
 
8921
      /* Note that sgot->output_offset is not involved in this
8922
         calculation.  We always want the start of .got.  If we
8923
         define _GLOBAL_OFFSET_TABLE in a different way, as is
8924
         permitted by the ABI, we might have to change this
8925
         calculation.  */
8926
      value -= sgot->output_section->vma;
8927
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8928
                                       contents, rel->r_offset, value,
8929
                                       rel->r_addend);
8930
 
8931
    case R_ARM_GOTPC:
8932
      /* Use global offset table as symbol value.  */
8933
      BFD_ASSERT (sgot != NULL);
8934
 
8935
      if (sgot == NULL)
8936
        return bfd_reloc_notsupported;
8937
 
8938
      *unresolved_reloc_p = FALSE;
8939
      value = sgot->output_section->vma;
8940
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
8941
                                       contents, rel->r_offset, value,
8942
                                       rel->r_addend);
8943
 
8944
    case R_ARM_GOT32:
8945
    case R_ARM_GOT_PREL:
8946
      /* Relocation is to the entry for this symbol in the
8947
         global offset table.  */
8948
      if (sgot == NULL)
8949
        return bfd_reloc_notsupported;
8950
 
8951
      if (dynreloc_st_type == STT_GNU_IFUNC
8952
          && plt_offset != (bfd_vma) -1
8953
          && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8954
        {
8955
          /* We have a relocation against a locally-binding STT_GNU_IFUNC
8956
             symbol, and the relocation resolves directly to the runtime
8957
             target rather than to the .iplt entry.  This means that any
8958
             .got entry would be the same value as the .igot.plt entry,
8959
             so there's no point creating both.  */
8960
          sgot = globals->root.igotplt;
8961
          value = sgot->output_offset + gotplt_offset;
8962
        }
8963
      else if (h != NULL)
8964
        {
8965
          bfd_vma off;
8966
 
8967
          off = h->got.offset;
8968
          BFD_ASSERT (off != (bfd_vma) -1);
8969
          if ((off & 1) != 0)
8970
            {
8971
              /* We have already processsed one GOT relocation against
8972
                 this symbol.  */
8973
              off &= ~1;
8974
              if (globals->root.dynamic_sections_created
8975
                  && !SYMBOL_REFERENCES_LOCAL (info, h))
8976
                *unresolved_reloc_p = FALSE;
8977
            }
8978
          else
8979
            {
8980
              Elf_Internal_Rela outrel;
8981
 
8982
              if (!SYMBOL_REFERENCES_LOCAL (info, h))
8983
                {
8984
                  /* If the symbol doesn't resolve locally in a static
8985
                     object, we have an undefined reference.  If the
8986
                     symbol doesn't resolve locally in a dynamic object,
8987
                     it should be resolved by the dynamic linker.  */
8988
                  if (globals->root.dynamic_sections_created)
8989
                    {
8990
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8991
                      *unresolved_reloc_p = FALSE;
8992
                    }
8993
                  else
8994
                    outrel.r_info = 0;
8995
                  outrel.r_addend = 0;
8996
                }
8997
              else
8998
                {
8999
                  if (dynreloc_st_type == STT_GNU_IFUNC)
9000
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9001
                  else if (info->shared)
9002
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9003
                  else
9004
                    outrel.r_info = 0;
9005
                  outrel.r_addend = dynreloc_value;
9006
                }
9007
 
9008
              /* The GOT entry is initialized to zero by default.
9009
                 See if we should install a different value.  */
9010
              if (outrel.r_addend != 0
9011
                  && (outrel.r_info == 0 || globals->use_rel))
9012
                {
9013
                  bfd_put_32 (output_bfd, outrel.r_addend,
9014
                              sgot->contents + off);
9015
                  outrel.r_addend = 0;
9016
                }
9017
 
9018
              if (outrel.r_info != 0)
9019
                {
9020
                  outrel.r_offset = (sgot->output_section->vma
9021
                                     + sgot->output_offset
9022
                                     + off);
9023
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9024
                }
9025
              h->got.offset |= 1;
9026
            }
9027
          value = sgot->output_offset + off;
9028
        }
9029
      else
9030
        {
9031
          bfd_vma off;
9032
 
9033
          BFD_ASSERT (local_got_offsets != NULL &&
9034
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
9035
 
9036
          off = local_got_offsets[r_symndx];
9037
 
9038
          /* The offset must always be a multiple of 4.  We use the
9039
             least significant bit to record whether we have already
9040
             generated the necessary reloc.  */
9041
          if ((off & 1) != 0)
9042
            off &= ~1;
9043
          else
9044
            {
9045
              if (globals->use_rel)
9046
                bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9047
 
9048
              if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9049
                {
9050
                  Elf_Internal_Rela outrel;
9051
 
9052
                  outrel.r_addend = addend + dynreloc_value;
9053
                  outrel.r_offset = (sgot->output_section->vma
9054
                                     + sgot->output_offset
9055
                                     + off);
9056
                  if (dynreloc_st_type == STT_GNU_IFUNC)
9057
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9058
                  else
9059
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9060
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9061
                }
9062
 
9063
              local_got_offsets[r_symndx] |= 1;
9064
            }
9065
 
9066
          value = sgot->output_offset + off;
9067
        }
9068
      if (r_type != R_ARM_GOT32)
9069
        value += sgot->output_section->vma;
9070
 
9071
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9072
                                       contents, rel->r_offset, value,
9073
                                       rel->r_addend);
9074
 
9075
    case R_ARM_TLS_LDO32:
9076
      value = value - dtpoff_base (info);
9077
 
9078
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9079
                                       contents, rel->r_offset, value,
9080
                                       rel->r_addend);
9081
 
9082
    case R_ARM_TLS_LDM32:
9083
      {
9084
        bfd_vma off;
9085
 
9086
        if (sgot == NULL)
9087
          abort ();
9088
 
9089
        off = globals->tls_ldm_got.offset;
9090
 
9091
        if ((off & 1) != 0)
9092
          off &= ~1;
9093
        else
9094
          {
9095
            /* If we don't know the module number, create a relocation
9096
               for it.  */
9097
            if (info->shared)
9098
              {
9099
                Elf_Internal_Rela outrel;
9100
 
9101
                if (srelgot == NULL)
9102
                  abort ();
9103
 
9104
                outrel.r_addend = 0;
9105
                outrel.r_offset = (sgot->output_section->vma
9106
                                   + sgot->output_offset + off);
9107
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9108
 
9109
                if (globals->use_rel)
9110
                  bfd_put_32 (output_bfd, outrel.r_addend,
9111
                              sgot->contents + off);
9112
 
9113
                elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9114
              }
9115
            else
9116
              bfd_put_32 (output_bfd, 1, sgot->contents + off);
9117
 
9118
            globals->tls_ldm_got.offset |= 1;
9119
          }
9120
 
9121
        value = sgot->output_section->vma + sgot->output_offset + off
9122
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9123
 
9124
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
9125
                                         contents, rel->r_offset, value,
9126
                                         rel->r_addend);
9127
      }
9128
 
9129
    case R_ARM_TLS_CALL:
9130
    case R_ARM_THM_TLS_CALL:
9131
    case R_ARM_TLS_GD32:
9132
    case R_ARM_TLS_IE32:
9133
    case R_ARM_TLS_GOTDESC:
9134
    case R_ARM_TLS_DESCSEQ:
9135
    case R_ARM_THM_TLS_DESCSEQ:
9136
      {
9137
        bfd_vma off, offplt;
9138
        int indx = 0;
9139
        char tls_type;
9140
 
9141
        BFD_ASSERT (sgot != NULL);
9142
 
9143
        if (h != NULL)
9144
          {
9145
            bfd_boolean dyn;
9146
            dyn = globals->root.dynamic_sections_created;
9147
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9148
                && (!info->shared
9149
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
9150
              {
9151
                *unresolved_reloc_p = FALSE;
9152
                indx = h->dynindx;
9153
              }
9154
            off = h->got.offset;
9155
            offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9156
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9157
          }
9158
        else
9159
          {
9160
            BFD_ASSERT (local_got_offsets != NULL);
9161
            off = local_got_offsets[r_symndx];
9162
            offplt = local_tlsdesc_gotents[r_symndx];
9163
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9164
          }
9165
 
9166
        /* Linker relaxations happens from one of the
9167
           R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
9168
        if (ELF32_R_TYPE(rel->r_info) != r_type)
9169
          tls_type = GOT_TLS_IE;
9170
 
9171
        BFD_ASSERT (tls_type != GOT_UNKNOWN);
9172
 
9173
        if ((off & 1) != 0)
9174
          off &= ~1;
9175
        else
9176
          {
9177
            bfd_boolean need_relocs = FALSE;
9178
            Elf_Internal_Rela outrel;
9179
            int cur_off = off;
9180
 
9181
            /* The GOT entries have not been initialized yet.  Do it
9182
               now, and emit any relocations.  If both an IE GOT and a
9183
               GD GOT are necessary, we emit the GD first.  */
9184
 
9185
            if ((info->shared || indx != 0)
9186
                && (h == NULL
9187
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9188
                    || h->root.type != bfd_link_hash_undefweak))
9189
              {
9190
                need_relocs = TRUE;
9191
                BFD_ASSERT (srelgot != NULL);
9192
              }
9193
 
9194
            if (tls_type & GOT_TLS_GDESC)
9195
              {
9196
                bfd_byte *loc;
9197
 
9198
                /* We should have relaxed, unless this is an undefined
9199
                   weak symbol.  */
9200
                BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9201
                            || info->shared);
9202
                BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9203
                            <= globals->root.sgotplt->size);
9204
 
9205
                outrel.r_addend = 0;
9206
                outrel.r_offset = (globals->root.sgotplt->output_section->vma
9207
                                   + globals->root.sgotplt->output_offset
9208
                                   + offplt
9209
                                   + globals->sgotplt_jump_table_size);
9210
 
9211
                outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9212
                sreloc = globals->root.srelplt;
9213
                loc = sreloc->contents;
9214
                loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9215
                BFD_ASSERT (loc + RELOC_SIZE (globals)
9216
                           <= sreloc->contents + sreloc->size);
9217
 
9218
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9219
 
9220
                /* For globals, the first word in the relocation gets
9221
                   the relocation index and the top bit set, or zero,
9222
                   if we're binding now.  For locals, it gets the
9223
                   symbol's offset in the tls section.  */
9224
                bfd_put_32 (output_bfd,
9225
                            !h ? value - elf_hash_table (info)->tls_sec->vma
9226
                            : info->flags & DF_BIND_NOW ? 0
9227
                            : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9228
                            globals->root.sgotplt->contents + offplt +
9229
                            globals->sgotplt_jump_table_size);
9230
 
9231
                /* Second word in the relocation is always zero.  */
9232
                bfd_put_32 (output_bfd, 0,
9233
                            globals->root.sgotplt->contents + offplt +
9234
                            globals->sgotplt_jump_table_size + 4);
9235
              }
9236
            if (tls_type & GOT_TLS_GD)
9237
              {
9238
                if (need_relocs)
9239
                  {
9240
                    outrel.r_addend = 0;
9241
                    outrel.r_offset = (sgot->output_section->vma
9242
                                       + sgot->output_offset
9243
                                       + cur_off);
9244
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9245
 
9246
                    if (globals->use_rel)
9247
                      bfd_put_32 (output_bfd, outrel.r_addend,
9248
                                  sgot->contents + cur_off);
9249
 
9250
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9251
 
9252
                    if (indx == 0)
9253
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
9254
                                  sgot->contents + cur_off + 4);
9255
                    else
9256
                      {
9257
                        outrel.r_addend = 0;
9258
                        outrel.r_info = ELF32_R_INFO (indx,
9259
                                                      R_ARM_TLS_DTPOFF32);
9260
                        outrel.r_offset += 4;
9261
 
9262
                        if (globals->use_rel)
9263
                          bfd_put_32 (output_bfd, outrel.r_addend,
9264
                                      sgot->contents + cur_off + 4);
9265
 
9266
                        elf32_arm_add_dynreloc (output_bfd, info,
9267
                                                srelgot, &outrel);
9268
                      }
9269
                  }
9270
                else
9271
                  {
9272
                    /* If we are not emitting relocations for a
9273
                       general dynamic reference, then we must be in a
9274
                       static link or an executable link with the
9275
                       symbol binding locally.  Mark it as belonging
9276
                       to module 1, the executable.  */
9277
                    bfd_put_32 (output_bfd, 1,
9278
                                sgot->contents + cur_off);
9279
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
9280
                                sgot->contents + cur_off + 4);
9281
                  }
9282
 
9283
                cur_off += 8;
9284
              }
9285
 
9286
            if (tls_type & GOT_TLS_IE)
9287
              {
9288
                if (need_relocs)
9289
                  {
9290
                    if (indx == 0)
9291
                      outrel.r_addend = value - dtpoff_base (info);
9292
                    else
9293
                      outrel.r_addend = 0;
9294
                    outrel.r_offset = (sgot->output_section->vma
9295
                                       + sgot->output_offset
9296
                                       + cur_off);
9297
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9298
 
9299
                    if (globals->use_rel)
9300
                      bfd_put_32 (output_bfd, outrel.r_addend,
9301
                                  sgot->contents + cur_off);
9302
 
9303
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9304
                  }
9305
                else
9306
                  bfd_put_32 (output_bfd, tpoff (info, value),
9307
                              sgot->contents + cur_off);
9308
                cur_off += 4;
9309
              }
9310
 
9311
            if (h != NULL)
9312
              h->got.offset |= 1;
9313
            else
9314
              local_got_offsets[r_symndx] |= 1;
9315
          }
9316
 
9317
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9318
          off += 8;
9319
        else if (tls_type & GOT_TLS_GDESC)
9320
          off = offplt;
9321
 
9322
        if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9323
            || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9324
          {
9325
            bfd_signed_vma offset;
9326
            /* TLS stubs are arm mode.  The original symbol is a
9327
               data object, so branch_type is bogus.  */
9328
            branch_type = ST_BRANCH_TO_ARM;
9329
            enum elf32_arm_stub_type stub_type
9330
              = arm_type_of_stub (info, input_section, rel,
9331
                                  st_type, &branch_type,
9332
                                  (struct elf32_arm_link_hash_entry *)h,
9333
                                  globals->tls_trampoline, globals->root.splt,
9334
                                  input_bfd, sym_name);
9335
 
9336
            if (stub_type != arm_stub_none)
9337
              {
9338
                struct elf32_arm_stub_hash_entry *stub_entry
9339
                  = elf32_arm_get_stub_entry
9340
                  (input_section, globals->root.splt, 0, rel,
9341
                   globals, stub_type);
9342
                offset = (stub_entry->stub_offset
9343
                          + stub_entry->stub_sec->output_offset
9344
                          + stub_entry->stub_sec->output_section->vma);
9345
              }
9346
            else
9347
              offset = (globals->root.splt->output_section->vma
9348
                        + globals->root.splt->output_offset
9349
                        + globals->tls_trampoline);
9350
 
9351
            if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9352
              {
9353
                unsigned long inst;
9354
 
9355
                offset -= (input_section->output_section->vma +
9356
                           input_section->output_offset + rel->r_offset + 8);
9357
 
9358
                inst = offset >> 2;
9359
                inst &= 0x00ffffff;
9360
                value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9361
              }
9362
            else
9363
              {
9364
                /* Thumb blx encodes the offset in a complicated
9365
                   fashion.  */
9366
                unsigned upper_insn, lower_insn;
9367
                unsigned neg;
9368
 
9369
                offset -= (input_section->output_section->vma +
9370
                           input_section->output_offset
9371
                           + rel->r_offset + 4);
9372
 
9373
                if (stub_type != arm_stub_none
9374
                    && arm_stub_is_thumb (stub_type))
9375
                  {
9376
                    lower_insn = 0xd000;
9377
                  }
9378
                else
9379
                  {
9380
                    lower_insn = 0xc000;
9381
                    /* Round up the offset to a word boundary */
9382
                    offset = (offset + 2) & ~2;
9383
                  }
9384
 
9385
                neg = offset < 0;
9386
                upper_insn = (0xf000
9387
                              | ((offset >> 12) & 0x3ff)
9388
                              | (neg << 10));
9389
                lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9390
                              | (((!((offset >> 22) & 1)) ^ neg) << 11)
9391
                              | ((offset >> 1) & 0x7ff);
9392
                bfd_put_16 (input_bfd, upper_insn, hit_data);
9393
                bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9394
                return bfd_reloc_ok;
9395
              }
9396
          }
9397
        /* These relocations needs special care, as besides the fact
9398
           they point somewhere in .gotplt, the addend must be
9399
           adjusted accordingly depending on the type of instruction
9400
           we refer to */
9401
        else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9402
          {
9403
            unsigned long data, insn;
9404
            unsigned thumb;
9405
 
9406
            data = bfd_get_32 (input_bfd, hit_data);
9407
            thumb = data & 1;
9408
            data &= ~1u;
9409
 
9410
            if (thumb)
9411
              {
9412
                insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9413
                if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9414
                  insn = (insn << 16)
9415
                    | bfd_get_16 (input_bfd,
9416
                                  contents + rel->r_offset - data + 2);
9417
                if ((insn & 0xf800c000) == 0xf000c000)
9418
                  /* bl/blx */
9419
                  value = -6;
9420
                else if ((insn & 0xffffff00) == 0x4400)
9421
                  /* add */
9422
                  value = -5;
9423
                else
9424
                  {
9425
                    (*_bfd_error_handler)
9426
                      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9427
                       input_bfd, input_section,
9428
                       (unsigned long)rel->r_offset, insn);
9429
                    return bfd_reloc_notsupported;
9430
                  }
9431
              }
9432
            else
9433
              {
9434
                insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9435
 
9436
                switch (insn >> 24)
9437
                  {
9438
                  case 0xeb:  /* bl */
9439
                  case 0xfa:  /* blx */
9440
                    value = -4;
9441
                    break;
9442
 
9443
                  case 0xe0:    /* add */
9444
                    value = -8;
9445
                    break;
9446
 
9447
                  default:
9448
                    (*_bfd_error_handler)
9449
                      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9450
                       input_bfd, input_section,
9451
                       (unsigned long)rel->r_offset, insn);
9452
                    return bfd_reloc_notsupported;
9453
                  }
9454
              }
9455
 
9456
            value += ((globals->root.sgotplt->output_section->vma
9457
                       + globals->root.sgotplt->output_offset + off)
9458
                      - (input_section->output_section->vma
9459
                         + input_section->output_offset
9460
                         + rel->r_offset)
9461
                      + globals->sgotplt_jump_table_size);
9462
          }
9463
        else
9464
          value = ((globals->root.sgot->output_section->vma
9465
                    + globals->root.sgot->output_offset + off)
9466
                   - (input_section->output_section->vma
9467
                      + input_section->output_offset + rel->r_offset));
9468
 
9469
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
9470
                                         contents, rel->r_offset, value,
9471
                                         rel->r_addend);
9472
      }
9473
 
9474
    case R_ARM_TLS_LE32:
9475 161 khays
      if (info->shared && !info->pie)
9476 14 khays
        {
9477
          (*_bfd_error_handler)
9478
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9479
             input_bfd, input_section,
9480
             (long) rel->r_offset, howto->name);
9481
          return (bfd_reloc_status_type) FALSE;
9482
        }
9483
      else
9484
        value = tpoff (info, value);
9485
 
9486
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9487
                                       contents, rel->r_offset, value,
9488
                                       rel->r_addend);
9489
 
9490
    case R_ARM_V4BX:
9491
      if (globals->fix_v4bx)
9492
        {
9493
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9494
 
9495
          /* Ensure that we have a BX instruction.  */
9496
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9497
 
9498
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9499
            {
9500
              /* Branch to veneer.  */
9501
              bfd_vma glue_addr;
9502
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9503
              glue_addr -= input_section->output_section->vma
9504
                           + input_section->output_offset
9505
                           + rel->r_offset + 8;
9506
              insn = (insn & 0xf0000000) | 0x0a000000
9507
                     | ((glue_addr >> 2) & 0x00ffffff);
9508
            }
9509
          else
9510
            {
9511
              /* Preserve Rm (lowest four bits) and the condition code
9512
                 (highest four bits). Other bits encode MOV PC,Rm.  */
9513
              insn = (insn & 0xf000000f) | 0x01a0f000;
9514
            }
9515
 
9516
          bfd_put_32 (input_bfd, insn, hit_data);
9517
        }
9518
      return bfd_reloc_ok;
9519
 
9520
    case R_ARM_MOVW_ABS_NC:
9521
    case R_ARM_MOVT_ABS:
9522
    case R_ARM_MOVW_PREL_NC:
9523
    case R_ARM_MOVT_PREL:
9524
    /* Until we properly support segment-base-relative addressing then
9525
       we assume the segment base to be zero, as for the group relocations.
9526
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9527
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
9528
    case R_ARM_MOVW_BREL_NC:
9529
    case R_ARM_MOVW_BREL:
9530
    case R_ARM_MOVT_BREL:
9531
      {
9532
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9533
 
9534
        if (globals->use_rel)
9535
          {
9536
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9537
            signed_addend = (addend ^ 0x8000) - 0x8000;
9538
          }
9539
 
9540
        value += signed_addend;
9541
 
9542
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9543
          value -= (input_section->output_section->vma
9544
                    + input_section->output_offset + rel->r_offset);
9545
 
9546
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9547
          return bfd_reloc_overflow;
9548
 
9549
        if (branch_type == ST_BRANCH_TO_THUMB)
9550
          value |= 1;
9551
 
9552
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9553
            || r_type == R_ARM_MOVT_BREL)
9554
          value >>= 16;
9555
 
9556
        insn &= 0xfff0f000;
9557
        insn |= value & 0xfff;
9558
        insn |= (value & 0xf000) << 4;
9559
        bfd_put_32 (input_bfd, insn, hit_data);
9560
      }
9561
      return bfd_reloc_ok;
9562
 
9563
    case R_ARM_THM_MOVW_ABS_NC:
9564
    case R_ARM_THM_MOVT_ABS:
9565
    case R_ARM_THM_MOVW_PREL_NC:
9566
    case R_ARM_THM_MOVT_PREL:
9567
    /* Until we properly support segment-base-relative addressing then
9568
       we assume the segment base to be zero, as for the above relocations.
9569
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9570
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9571
       as R_ARM_THM_MOVT_ABS.  */
9572
    case R_ARM_THM_MOVW_BREL_NC:
9573
    case R_ARM_THM_MOVW_BREL:
9574
    case R_ARM_THM_MOVT_BREL:
9575
      {
9576
        bfd_vma insn;
9577
 
9578
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
9579
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
9580
 
9581
        if (globals->use_rel)
9582
          {
9583
            addend = ((insn >> 4)  & 0xf000)
9584
                   | ((insn >> 15) & 0x0800)
9585
                   | ((insn >> 4)  & 0x0700)
9586
                   | (insn         & 0x00ff);
9587
            signed_addend = (addend ^ 0x8000) - 0x8000;
9588
          }
9589
 
9590
        value += signed_addend;
9591
 
9592
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9593
          value -= (input_section->output_section->vma
9594
                    + input_section->output_offset + rel->r_offset);
9595
 
9596
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9597
          return bfd_reloc_overflow;
9598
 
9599
        if (branch_type == ST_BRANCH_TO_THUMB)
9600
          value |= 1;
9601
 
9602
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9603
            || r_type == R_ARM_THM_MOVT_BREL)
9604
          value >>= 16;
9605
 
9606
        insn &= 0xfbf08f00;
9607
        insn |= (value & 0xf000) << 4;
9608
        insn |= (value & 0x0800) << 15;
9609
        insn |= (value & 0x0700) << 4;
9610
        insn |= (value & 0x00ff);
9611
 
9612
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
9613
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9614
      }
9615
      return bfd_reloc_ok;
9616
 
9617
    case R_ARM_ALU_PC_G0_NC:
9618
    case R_ARM_ALU_PC_G1_NC:
9619
    case R_ARM_ALU_PC_G0:
9620
    case R_ARM_ALU_PC_G1:
9621
    case R_ARM_ALU_PC_G2:
9622
    case R_ARM_ALU_SB_G0_NC:
9623
    case R_ARM_ALU_SB_G1_NC:
9624
    case R_ARM_ALU_SB_G0:
9625
    case R_ARM_ALU_SB_G1:
9626
    case R_ARM_ALU_SB_G2:
9627
      {
9628
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9629
        bfd_vma pc = input_section->output_section->vma
9630
                     + input_section->output_offset + rel->r_offset;
9631
        /* sb should be the origin of the *segment* containing the symbol.
9632
           It is not clear how to obtain this OS-dependent value, so we
9633
           make an arbitrary choice of zero.  */
9634
        bfd_vma sb = 0;
9635
        bfd_vma residual;
9636
        bfd_vma g_n;
9637
        bfd_signed_vma signed_value;
9638
        int group = 0;
9639
 
9640
        /* Determine which group of bits to select.  */
9641
        switch (r_type)
9642
          {
9643
          case R_ARM_ALU_PC_G0_NC:
9644
          case R_ARM_ALU_PC_G0:
9645
          case R_ARM_ALU_SB_G0_NC:
9646
          case R_ARM_ALU_SB_G0:
9647
            group = 0;
9648
            break;
9649
 
9650
          case R_ARM_ALU_PC_G1_NC:
9651
          case R_ARM_ALU_PC_G1:
9652
          case R_ARM_ALU_SB_G1_NC:
9653
          case R_ARM_ALU_SB_G1:
9654
            group = 1;
9655
            break;
9656
 
9657
          case R_ARM_ALU_PC_G2:
9658
          case R_ARM_ALU_SB_G2:
9659
            group = 2;
9660
            break;
9661
 
9662
          default:
9663
            abort ();
9664
          }
9665
 
9666
        /* If REL, extract the addend from the insn.  If RELA, it will
9667
           have already been fetched for us.  */
9668
        if (globals->use_rel)
9669
          {
9670
            int negative;
9671
            bfd_vma constant = insn & 0xff;
9672
            bfd_vma rotation = (insn & 0xf00) >> 8;
9673
 
9674
            if (rotation == 0)
9675
              signed_addend = constant;
9676
            else
9677
              {
9678
                /* Compensate for the fact that in the instruction, the
9679
                   rotation is stored in multiples of 2 bits.  */
9680
                rotation *= 2;
9681
 
9682
                /* Rotate "constant" right by "rotation" bits.  */
9683
                signed_addend = (constant >> rotation) |
9684
                                (constant << (8 * sizeof (bfd_vma) - rotation));
9685
              }
9686
 
9687
            /* Determine if the instruction is an ADD or a SUB.
9688
               (For REL, this determines the sign of the addend.)  */
9689
            negative = identify_add_or_sub (insn);
9690
            if (negative == 0)
9691
              {
9692
                (*_bfd_error_handler)
9693
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9694
                  input_bfd, input_section,
9695
                  (long) rel->r_offset, howto->name);
9696
                return bfd_reloc_overflow;
9697
              }
9698
 
9699
            signed_addend *= negative;
9700
          }
9701
 
9702
        /* Compute the value (X) to go in the place.  */
9703
        if (r_type == R_ARM_ALU_PC_G0_NC
9704
            || r_type == R_ARM_ALU_PC_G1_NC
9705
            || r_type == R_ARM_ALU_PC_G0
9706
            || r_type == R_ARM_ALU_PC_G1
9707
            || r_type == R_ARM_ALU_PC_G2)
9708
          /* PC relative.  */
9709
          signed_value = value - pc + signed_addend;
9710
        else
9711
          /* Section base relative.  */
9712
          signed_value = value - sb + signed_addend;
9713
 
9714
        /* If the target symbol is a Thumb function, then set the
9715
           Thumb bit in the address.  */
9716
        if (branch_type == ST_BRANCH_TO_THUMB)
9717
          signed_value |= 1;
9718
 
9719
        /* Calculate the value of the relevant G_n, in encoded
9720
           constant-with-rotation format.  */
9721
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
9722
                                          &residual);
9723
 
9724
        /* Check for overflow if required.  */
9725
        if ((r_type == R_ARM_ALU_PC_G0
9726
             || r_type == R_ARM_ALU_PC_G1
9727
             || r_type == R_ARM_ALU_PC_G2
9728
             || r_type == R_ARM_ALU_SB_G0
9729
             || r_type == R_ARM_ALU_SB_G1
9730
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9731
          {
9732
            (*_bfd_error_handler)
9733
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9734
              input_bfd, input_section,
9735
              (long) rel->r_offset, abs (signed_value), howto->name);
9736
            return bfd_reloc_overflow;
9737
          }
9738
 
9739
        /* Mask out the value and the ADD/SUB part of the opcode; take care
9740
           not to destroy the S bit.  */
9741
        insn &= 0xff1ff000;
9742
 
9743
        /* Set the opcode according to whether the value to go in the
9744
           place is negative.  */
9745
        if (signed_value < 0)
9746
          insn |= 1 << 22;
9747
        else
9748
          insn |= 1 << 23;
9749
 
9750
        /* Encode the offset.  */
9751
        insn |= g_n;
9752
 
9753
        bfd_put_32 (input_bfd, insn, hit_data);
9754
      }
9755
      return bfd_reloc_ok;
9756
 
9757
    case R_ARM_LDR_PC_G0:
9758
    case R_ARM_LDR_PC_G1:
9759
    case R_ARM_LDR_PC_G2:
9760
    case R_ARM_LDR_SB_G0:
9761
    case R_ARM_LDR_SB_G1:
9762
    case R_ARM_LDR_SB_G2:
9763
      {
9764
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9765
        bfd_vma pc = input_section->output_section->vma
9766
                     + input_section->output_offset + rel->r_offset;
9767
        bfd_vma sb = 0; /* See note above.  */
9768
        bfd_vma residual;
9769
        bfd_signed_vma signed_value;
9770
        int group = 0;
9771
 
9772
        /* Determine which groups of bits to calculate.  */
9773
        switch (r_type)
9774
          {
9775
          case R_ARM_LDR_PC_G0:
9776
          case R_ARM_LDR_SB_G0:
9777
            group = 0;
9778
            break;
9779
 
9780
          case R_ARM_LDR_PC_G1:
9781
          case R_ARM_LDR_SB_G1:
9782
            group = 1;
9783
            break;
9784
 
9785
          case R_ARM_LDR_PC_G2:
9786
          case R_ARM_LDR_SB_G2:
9787
            group = 2;
9788
            break;
9789
 
9790
          default:
9791
            abort ();
9792
          }
9793
 
9794
        /* If REL, extract the addend from the insn.  If RELA, it will
9795
           have already been fetched for us.  */
9796
        if (globals->use_rel)
9797
          {
9798
            int negative = (insn & (1 << 23)) ? 1 : -1;
9799
            signed_addend = negative * (insn & 0xfff);
9800
          }
9801
 
9802
        /* Compute the value (X) to go in the place.  */
9803
        if (r_type == R_ARM_LDR_PC_G0
9804
            || r_type == R_ARM_LDR_PC_G1
9805
            || r_type == R_ARM_LDR_PC_G2)
9806
          /* PC relative.  */
9807
          signed_value = value - pc + signed_addend;
9808
        else
9809
          /* Section base relative.  */
9810
          signed_value = value - sb + signed_addend;
9811
 
9812
        /* Calculate the value of the relevant G_{n-1} to obtain
9813
           the residual at that stage.  */
9814
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9815
 
9816
        /* Check for overflow.  */
9817
        if (residual >= 0x1000)
9818
          {
9819
            (*_bfd_error_handler)
9820
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9821
              input_bfd, input_section,
9822
              (long) rel->r_offset, abs (signed_value), howto->name);
9823
            return bfd_reloc_overflow;
9824
          }
9825
 
9826
        /* Mask out the value and U bit.  */
9827
        insn &= 0xff7ff000;
9828
 
9829
        /* Set the U bit if the value to go in the place is non-negative.  */
9830
        if (signed_value >= 0)
9831
          insn |= 1 << 23;
9832
 
9833
        /* Encode the offset.  */
9834
        insn |= residual;
9835
 
9836
        bfd_put_32 (input_bfd, insn, hit_data);
9837
      }
9838
      return bfd_reloc_ok;
9839
 
9840
    case R_ARM_LDRS_PC_G0:
9841
    case R_ARM_LDRS_PC_G1:
9842
    case R_ARM_LDRS_PC_G2:
9843
    case R_ARM_LDRS_SB_G0:
9844
    case R_ARM_LDRS_SB_G1:
9845
    case R_ARM_LDRS_SB_G2:
9846
      {
9847
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9848
        bfd_vma pc = input_section->output_section->vma
9849
                     + input_section->output_offset + rel->r_offset;
9850
        bfd_vma sb = 0; /* See note above.  */
9851
        bfd_vma residual;
9852
        bfd_signed_vma signed_value;
9853
        int group = 0;
9854
 
9855
        /* Determine which groups of bits to calculate.  */
9856
        switch (r_type)
9857
          {
9858
          case R_ARM_LDRS_PC_G0:
9859
          case R_ARM_LDRS_SB_G0:
9860
            group = 0;
9861
            break;
9862
 
9863
          case R_ARM_LDRS_PC_G1:
9864
          case R_ARM_LDRS_SB_G1:
9865
            group = 1;
9866
            break;
9867
 
9868
          case R_ARM_LDRS_PC_G2:
9869
          case R_ARM_LDRS_SB_G2:
9870
            group = 2;
9871
            break;
9872
 
9873
          default:
9874
            abort ();
9875
          }
9876
 
9877
        /* If REL, extract the addend from the insn.  If RELA, it will
9878
           have already been fetched for us.  */
9879
        if (globals->use_rel)
9880
          {
9881
            int negative = (insn & (1 << 23)) ? 1 : -1;
9882
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9883
          }
9884
 
9885
        /* Compute the value (X) to go in the place.  */
9886
        if (r_type == R_ARM_LDRS_PC_G0
9887
            || r_type == R_ARM_LDRS_PC_G1
9888
            || r_type == R_ARM_LDRS_PC_G2)
9889
          /* PC relative.  */
9890
          signed_value = value - pc + signed_addend;
9891
        else
9892
          /* Section base relative.  */
9893
          signed_value = value - sb + signed_addend;
9894
 
9895
        /* Calculate the value of the relevant G_{n-1} to obtain
9896
           the residual at that stage.  */
9897
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9898
 
9899
        /* Check for overflow.  */
9900
        if (residual >= 0x100)
9901
          {
9902
            (*_bfd_error_handler)
9903
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9904
              input_bfd, input_section,
9905
              (long) rel->r_offset, abs (signed_value), howto->name);
9906
            return bfd_reloc_overflow;
9907
          }
9908
 
9909
        /* Mask out the value and U bit.  */
9910
        insn &= 0xff7ff0f0;
9911
 
9912
        /* Set the U bit if the value to go in the place is non-negative.  */
9913
        if (signed_value >= 0)
9914
          insn |= 1 << 23;
9915
 
9916
        /* Encode the offset.  */
9917
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9918
 
9919
        bfd_put_32 (input_bfd, insn, hit_data);
9920
      }
9921
      return bfd_reloc_ok;
9922
 
9923
    case R_ARM_LDC_PC_G0:
9924
    case R_ARM_LDC_PC_G1:
9925
    case R_ARM_LDC_PC_G2:
9926
    case R_ARM_LDC_SB_G0:
9927
    case R_ARM_LDC_SB_G1:
9928
    case R_ARM_LDC_SB_G2:
9929
      {
9930
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9931
        bfd_vma pc = input_section->output_section->vma
9932
                     + input_section->output_offset + rel->r_offset;
9933
        bfd_vma sb = 0; /* See note above.  */
9934
        bfd_vma residual;
9935
        bfd_signed_vma signed_value;
9936
        int group = 0;
9937
 
9938
        /* Determine which groups of bits to calculate.  */
9939
        switch (r_type)
9940
          {
9941
          case R_ARM_LDC_PC_G0:
9942
          case R_ARM_LDC_SB_G0:
9943
            group = 0;
9944
            break;
9945
 
9946
          case R_ARM_LDC_PC_G1:
9947
          case R_ARM_LDC_SB_G1:
9948
            group = 1;
9949
            break;
9950
 
9951
          case R_ARM_LDC_PC_G2:
9952
          case R_ARM_LDC_SB_G2:
9953
            group = 2;
9954
            break;
9955
 
9956
          default:
9957
            abort ();
9958
          }
9959
 
9960
        /* If REL, extract the addend from the insn.  If RELA, it will
9961
           have already been fetched for us.  */
9962
        if (globals->use_rel)
9963
          {
9964
            int negative = (insn & (1 << 23)) ? 1 : -1;
9965
            signed_addend = negative * ((insn & 0xff) << 2);
9966
          }
9967
 
9968
        /* Compute the value (X) to go in the place.  */
9969
        if (r_type == R_ARM_LDC_PC_G0
9970
            || r_type == R_ARM_LDC_PC_G1
9971
            || r_type == R_ARM_LDC_PC_G2)
9972
          /* PC relative.  */
9973
          signed_value = value - pc + signed_addend;
9974
        else
9975
          /* Section base relative.  */
9976
          signed_value = value - sb + signed_addend;
9977
 
9978
        /* Calculate the value of the relevant G_{n-1} to obtain
9979
           the residual at that stage.  */
9980
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9981
 
9982
        /* Check for overflow.  (The absolute value to go in the place must be
9983
           divisible by four and, after having been divided by four, must
9984
           fit in eight bits.)  */
9985
        if ((residual & 0x3) != 0 || residual >= 0x400)
9986
          {
9987
            (*_bfd_error_handler)
9988
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9989
              input_bfd, input_section,
9990
              (long) rel->r_offset, abs (signed_value), howto->name);
9991
            return bfd_reloc_overflow;
9992
          }
9993
 
9994
        /* Mask out the value and U bit.  */
9995
        insn &= 0xff7fff00;
9996
 
9997
        /* Set the U bit if the value to go in the place is non-negative.  */
9998
        if (signed_value >= 0)
9999
          insn |= 1 << 23;
10000
 
10001
        /* Encode the offset.  */
10002
        insn |= residual >> 2;
10003
 
10004
        bfd_put_32 (input_bfd, insn, hit_data);
10005
      }
10006
      return bfd_reloc_ok;
10007
 
10008
    default:
10009
      return bfd_reloc_notsupported;
10010
    }
10011
}
10012
 
10013
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
10014
static void
10015
arm_add_to_rel (bfd *              abfd,
10016
                bfd_byte *         address,
10017
                reloc_howto_type * howto,
10018
                bfd_signed_vma     increment)
10019
{
10020
  bfd_signed_vma addend;
10021
 
10022
  if (howto->type == R_ARM_THM_CALL
10023
      || howto->type == R_ARM_THM_JUMP24)
10024
    {
10025
      int upper_insn, lower_insn;
10026
      int upper, lower;
10027
 
10028
      upper_insn = bfd_get_16 (abfd, address);
10029
      lower_insn = bfd_get_16 (abfd, address + 2);
10030
      upper = upper_insn & 0x7ff;
10031
      lower = lower_insn & 0x7ff;
10032
 
10033
      addend = (upper << 12) | (lower << 1);
10034
      addend += increment;
10035
      addend >>= 1;
10036
 
10037
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10038
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10039
 
10040
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10041
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10042
    }
10043
  else
10044
    {
10045
      bfd_vma        contents;
10046
 
10047
      contents = bfd_get_32 (abfd, address);
10048
 
10049
      /* Get the (signed) value from the instruction.  */
10050
      addend = contents & howto->src_mask;
10051
      if (addend & ((howto->src_mask + 1) >> 1))
10052
        {
10053
          bfd_signed_vma mask;
10054
 
10055
          mask = -1;
10056
          mask &= ~ howto->src_mask;
10057
          addend |= mask;
10058
        }
10059
 
10060
      /* Add in the increment, (which is a byte value).  */
10061
      switch (howto->type)
10062
        {
10063
        default:
10064
          addend += increment;
10065
          break;
10066
 
10067
        case R_ARM_PC24:
10068
        case R_ARM_PLT32:
10069
        case R_ARM_CALL:
10070
        case R_ARM_JUMP24:
10071
          addend <<= howto->size;
10072
          addend += increment;
10073
 
10074
          /* Should we check for overflow here ?  */
10075
 
10076
          /* Drop any undesired bits.  */
10077
          addend >>= howto->rightshift;
10078
          break;
10079
        }
10080
 
10081
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10082
 
10083
      bfd_put_32 (abfd, contents, address);
10084
    }
10085
}
10086
 
10087
#define IS_ARM_TLS_RELOC(R_TYPE)        \
10088
  ((R_TYPE) == R_ARM_TLS_GD32           \
10089
   || (R_TYPE) == R_ARM_TLS_LDO32       \
10090
   || (R_TYPE) == R_ARM_TLS_LDM32       \
10091
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
10092
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
10093
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
10094
   || (R_TYPE) == R_ARM_TLS_LE32        \
10095
   || (R_TYPE) == R_ARM_TLS_IE32        \
10096
   || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10097
 
10098
/* Specific set of relocations for the gnu tls dialect.  */
10099
#define IS_ARM_TLS_GNU_RELOC(R_TYPE)    \
10100
  ((R_TYPE) == R_ARM_TLS_GOTDESC        \
10101
   || (R_TYPE) == R_ARM_TLS_CALL        \
10102
   || (R_TYPE) == R_ARM_THM_TLS_CALL    \
10103
   || (R_TYPE) == R_ARM_TLS_DESCSEQ     \
10104
   || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10105
 
10106
/* Relocate an ARM ELF section.  */
10107
 
10108
static bfd_boolean
10109
elf32_arm_relocate_section (bfd *                  output_bfd,
10110
                            struct bfd_link_info * info,
10111
                            bfd *                  input_bfd,
10112
                            asection *             input_section,
10113
                            bfd_byte *             contents,
10114
                            Elf_Internal_Rela *    relocs,
10115
                            Elf_Internal_Sym *     local_syms,
10116
                            asection **            local_sections)
10117
{
10118
  Elf_Internal_Shdr *symtab_hdr;
10119
  struct elf_link_hash_entry **sym_hashes;
10120
  Elf_Internal_Rela *rel;
10121
  Elf_Internal_Rela *relend;
10122
  const char *name;
10123
  struct elf32_arm_link_hash_table * globals;
10124
 
10125
  globals = elf32_arm_hash_table (info);
10126
  if (globals == NULL)
10127
    return FALSE;
10128
 
10129
  symtab_hdr = & elf_symtab_hdr (input_bfd);
10130
  sym_hashes = elf_sym_hashes (input_bfd);
10131
 
10132
  rel = relocs;
10133
  relend = relocs + input_section->reloc_count;
10134
  for (; rel < relend; rel++)
10135
    {
10136
      int                          r_type;
10137
      reloc_howto_type *           howto;
10138
      unsigned long                r_symndx;
10139
      Elf_Internal_Sym *           sym;
10140
      asection *                   sec;
10141
      struct elf_link_hash_entry * h;
10142
      bfd_vma                      relocation;
10143
      bfd_reloc_status_type        r;
10144
      arelent                      bfd_reloc;
10145
      char                         sym_type;
10146
      bfd_boolean                  unresolved_reloc = FALSE;
10147
      char *error_message = NULL;
10148
 
10149
      r_symndx = ELF32_R_SYM (rel->r_info);
10150
      r_type   = ELF32_R_TYPE (rel->r_info);
10151
      r_type   = arm_real_reloc_type (globals, r_type);
10152
 
10153
      if (   r_type == R_ARM_GNU_VTENTRY
10154
          || r_type == R_ARM_GNU_VTINHERIT)
10155
        continue;
10156
 
10157
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10158
      howto = bfd_reloc.howto;
10159
 
10160
      h = NULL;
10161
      sym = NULL;
10162
      sec = NULL;
10163
 
10164
      if (r_symndx < symtab_hdr->sh_info)
10165
        {
10166
          sym = local_syms + r_symndx;
10167
          sym_type = ELF32_ST_TYPE (sym->st_info);
10168
          sec = local_sections[r_symndx];
10169
 
10170
          /* An object file might have a reference to a local
10171
             undefined symbol.  This is a daft object file, but we
10172
             should at least do something about it.  V4BX & NONE
10173
             relocations do not use the symbol and are explicitly
10174
             allowed to use the undefined symbol, so allow those.
10175
             Likewise for relocations against STN_UNDEF.  */
10176
          if (r_type != R_ARM_V4BX
10177
              && r_type != R_ARM_NONE
10178
              && r_symndx != STN_UNDEF
10179
              && bfd_is_und_section (sec)
10180
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10181
            {
10182
              if (!info->callbacks->undefined_symbol
10183
                  (info, bfd_elf_string_from_elf_section
10184
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
10185
                   input_bfd, input_section,
10186
                   rel->r_offset, TRUE))
10187
                return FALSE;
10188
            }
10189
 
10190
          if (globals->use_rel)
10191
            {
10192
              relocation = (sec->output_section->vma
10193
                            + sec->output_offset
10194
                            + sym->st_value);
10195
              if (!info->relocatable
10196
                  && (sec->flags & SEC_MERGE)
10197
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10198
                {
10199
                  asection *msec;
10200
                  bfd_vma addend, value;
10201
 
10202
                  switch (r_type)
10203
                    {
10204
                    case R_ARM_MOVW_ABS_NC:
10205
                    case R_ARM_MOVT_ABS:
10206
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10207
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10208
                      addend = (addend ^ 0x8000) - 0x8000;
10209
                      break;
10210
 
10211
                    case R_ARM_THM_MOVW_ABS_NC:
10212
                    case R_ARM_THM_MOVT_ABS:
10213
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10214
                              << 16;
10215
                      value |= bfd_get_16 (input_bfd,
10216
                                           contents + rel->r_offset + 2);
10217
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10218
                               | ((value & 0x04000000) >> 15);
10219
                      addend = (addend ^ 0x8000) - 0x8000;
10220
                      break;
10221
 
10222
                    default:
10223
                      if (howto->rightshift
10224
                          || (howto->src_mask & (howto->src_mask + 1)))
10225
                        {
10226
                          (*_bfd_error_handler)
10227
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10228
                             input_bfd, input_section,
10229
                             (long) rel->r_offset, howto->name);
10230
                          return FALSE;
10231
                        }
10232
 
10233
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10234
 
10235
                      /* Get the (signed) value from the instruction.  */
10236
                      addend = value & howto->src_mask;
10237
                      if (addend & ((howto->src_mask + 1) >> 1))
10238
                        {
10239
                          bfd_signed_vma mask;
10240
 
10241
                          mask = -1;
10242
                          mask &= ~ howto->src_mask;
10243
                          addend |= mask;
10244
                        }
10245
                      break;
10246
                    }
10247
 
10248
                  msec = sec;
10249
                  addend =
10250
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10251
                    - relocation;
10252
                  addend += msec->output_section->vma + msec->output_offset;
10253
 
10254
                  /* Cases here must match those in the preceding
10255
                     switch statement.  */
10256
                  switch (r_type)
10257
                    {
10258
                    case R_ARM_MOVW_ABS_NC:
10259
                    case R_ARM_MOVT_ABS:
10260
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10261
                              | (addend & 0xfff);
10262
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10263
                      break;
10264
 
10265
                    case R_ARM_THM_MOVW_ABS_NC:
10266
                    case R_ARM_THM_MOVT_ABS:
10267
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10268
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
10269
                      bfd_put_16 (input_bfd, value >> 16,
10270
                                  contents + rel->r_offset);
10271
                      bfd_put_16 (input_bfd, value,
10272
                                  contents + rel->r_offset + 2);
10273
                      break;
10274
 
10275
                    default:
10276
                      value = (value & ~ howto->dst_mask)
10277
                              | (addend & howto->dst_mask);
10278
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10279
                      break;
10280
                    }
10281
                }
10282
            }
10283
          else
10284
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10285
        }
10286
      else
10287
        {
10288
          bfd_boolean warned;
10289
 
10290
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10291
                                   r_symndx, symtab_hdr, sym_hashes,
10292
                                   h, sec, relocation,
10293
                                   unresolved_reloc, warned);
10294
 
10295
          sym_type = h->type;
10296
        }
10297
 
10298
      if (sec != NULL && elf_discarded_section (sec))
10299
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10300
                                         rel, relend, howto, contents);
10301
 
10302
      if (info->relocatable)
10303
        {
10304
          /* This is a relocatable link.  We don't have to change
10305
             anything, unless the reloc is against a section symbol,
10306
             in which case we have to adjust according to where the
10307
             section symbol winds up in the output section.  */
10308
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10309
            {
10310
              if (globals->use_rel)
10311
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
10312
                                howto, (bfd_signed_vma) sec->output_offset);
10313
              else
10314
                rel->r_addend += sec->output_offset;
10315
            }
10316
          continue;
10317
        }
10318
 
10319
      if (h != NULL)
10320
        name = h->root.root.string;
10321
      else
10322
        {
10323
          name = (bfd_elf_string_from_elf_section
10324
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
10325
          if (name == NULL || *name == '\0')
10326
            name = bfd_section_name (input_bfd, sec);
10327
        }
10328
 
10329
      if (r_symndx != STN_UNDEF
10330
          && r_type != R_ARM_NONE
10331
          && (h == NULL
10332
              || h->root.type == bfd_link_hash_defined
10333
              || h->root.type == bfd_link_hash_defweak)
10334
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10335
        {
10336
          (*_bfd_error_handler)
10337
            ((sym_type == STT_TLS
10338
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10339
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10340
             input_bfd,
10341
             input_section,
10342
             (long) rel->r_offset,
10343
             howto->name,
10344
             name);
10345
        }
10346
 
10347
      /* We call elf32_arm_final_link_relocate unless we're completely
10348
         done, i.e., the relaxation produced the final output we want,
10349
         and we won't let anybody mess with it. Also, we have to do
10350
         addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10351
         both in relaxed and non-relaxed cases */
10352
     if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10353
         || (IS_ARM_TLS_GNU_RELOC (r_type)
10354
             && !((h ? elf32_arm_hash_entry (h)->tls_type :
10355
                   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10356
                  & GOT_TLS_GDESC)))
10357
       {
10358
         r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10359
                                  contents, rel, h == NULL);
10360
         /* This may have been marked unresolved because it came from
10361
            a shared library.  But we've just dealt with that.  */
10362
         unresolved_reloc = 0;
10363
       }
10364
     else
10365
       r = bfd_reloc_continue;
10366
 
10367
     if (r == bfd_reloc_continue)
10368
       r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10369
                                          input_section, contents, rel,
10370
                                          relocation, info, sec, name, sym_type,
10371
                                          (h ? h->target_internal
10372
                                           : ARM_SYM_BRANCH_TYPE (sym)), h,
10373
                                          &unresolved_reloc, &error_message);
10374
 
10375
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10376
         because such sections are not SEC_ALLOC and thus ld.so will
10377
         not process them.  */
10378
      if (unresolved_reloc
10379
          && !((input_section->flags & SEC_DEBUGGING) != 0
10380
               && h->def_dynamic))
10381
        {
10382
          (*_bfd_error_handler)
10383
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10384
             input_bfd,
10385
             input_section,
10386
             (long) rel->r_offset,
10387
             howto->name,
10388
             h->root.root.string);
10389
          return FALSE;
10390
        }
10391
 
10392
      if (r != bfd_reloc_ok)
10393
        {
10394
          switch (r)
10395
            {
10396
            case bfd_reloc_overflow:
10397
              /* If the overflowing reloc was to an undefined symbol,
10398
                 we have already printed one error message and there
10399
                 is no point complaining again.  */
10400
              if ((! h ||
10401
                   h->root.type != bfd_link_hash_undefined)
10402
                  && (!((*info->callbacks->reloc_overflow)
10403
                        (info, (h ? &h->root : NULL), name, howto->name,
10404
                         (bfd_vma) 0, input_bfd, input_section,
10405
                         rel->r_offset))))
10406
                  return FALSE;
10407
              break;
10408
 
10409
            case bfd_reloc_undefined:
10410
              if (!((*info->callbacks->undefined_symbol)
10411
                    (info, name, input_bfd, input_section,
10412
                     rel->r_offset, TRUE)))
10413
                return FALSE;
10414
              break;
10415
 
10416
            case bfd_reloc_outofrange:
10417
              error_message = _("out of range");
10418
              goto common_error;
10419
 
10420
            case bfd_reloc_notsupported:
10421
              error_message = _("unsupported relocation");
10422
              goto common_error;
10423
 
10424
            case bfd_reloc_dangerous:
10425
              /* error_message should already be set.  */
10426
              goto common_error;
10427
 
10428
            default:
10429
              error_message = _("unknown error");
10430
              /* Fall through.  */
10431
 
10432
            common_error:
10433
              BFD_ASSERT (error_message != NULL);
10434
              if (!((*info->callbacks->reloc_dangerous)
10435
                    (info, error_message, input_bfd, input_section,
10436
                     rel->r_offset)))
10437
                return FALSE;
10438
              break;
10439
            }
10440
        }
10441
    }
10442
 
10443
  return TRUE;
10444
}
10445
 
10446
/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
10447
   adds the edit to the start of the list.  (The list must be built in order of
10448
   ascending TINDEX: the function's callers are primarily responsible for
10449
   maintaining that condition).  */
10450
 
10451
static void
10452
add_unwind_table_edit (arm_unwind_table_edit **head,
10453
                       arm_unwind_table_edit **tail,
10454
                       arm_unwind_edit_type type,
10455
                       asection *linked_section,
10456
                       unsigned int tindex)
10457
{
10458
  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10459
      xmalloc (sizeof (arm_unwind_table_edit));
10460
 
10461
  new_edit->type = type;
10462
  new_edit->linked_section = linked_section;
10463
  new_edit->index = tindex;
10464
 
10465
  if (tindex > 0)
10466
    {
10467
      new_edit->next = NULL;
10468
 
10469
      if (*tail)
10470
        (*tail)->next = new_edit;
10471
 
10472
      (*tail) = new_edit;
10473
 
10474
      if (!*head)
10475
        (*head) = new_edit;
10476
    }
10477
  else
10478
    {
10479
      new_edit->next = *head;
10480
 
10481
      if (!*tail)
10482
        *tail = new_edit;
10483
 
10484
      *head = new_edit;
10485
    }
10486
}
10487
 
10488
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10489
 
10490
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
10491
static void
10492
adjust_exidx_size(asection *exidx_sec, int adjust)
10493
{
10494
  asection *out_sec;
10495
 
10496
  if (!exidx_sec->rawsize)
10497
    exidx_sec->rawsize = exidx_sec->size;
10498
 
10499
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10500
  out_sec = exidx_sec->output_section;
10501
  /* Adjust size of output section.  */
10502
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10503
}
10504
 
10505
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
10506
static void
10507
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10508
{
10509
  struct _arm_elf_section_data *exidx_arm_data;
10510
 
10511
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10512
  add_unwind_table_edit (
10513
    &exidx_arm_data->u.exidx.unwind_edit_list,
10514
    &exidx_arm_data->u.exidx.unwind_edit_tail,
10515
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10516
 
10517
  adjust_exidx_size(exidx_sec, 8);
10518
}
10519
 
10520
/* Scan .ARM.exidx tables, and create a list describing edits which should be
10521
   made to those tables, such that:
10522
 
10523
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10524
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10525
        codes which have been inlined into the index).
10526
 
10527
   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10528
 
10529
   The edits are applied when the tables are written
10530
   (in elf32_arm_write_section).
10531
*/
10532
 
10533
bfd_boolean
10534
elf32_arm_fix_exidx_coverage (asection **text_section_order,
10535
                              unsigned int num_text_sections,
10536
                              struct bfd_link_info *info,
10537
                              bfd_boolean merge_exidx_entries)
10538
{
10539
  bfd *inp;
10540
  unsigned int last_second_word = 0, i;
10541
  asection *last_exidx_sec = NULL;
10542
  asection *last_text_sec = NULL;
10543
  int last_unwind_type = -1;
10544
 
10545
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10546
     text sections.  */
10547
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10548
    {
10549
      asection *sec;
10550
 
10551
      for (sec = inp->sections; sec != NULL; sec = sec->next)
10552
        {
10553
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10554
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10555
 
10556
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10557
            continue;
10558
 
10559
          if (elf_sec->linked_to)
10560
            {
10561
              Elf_Internal_Shdr *linked_hdr
10562
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
10563
              struct _arm_elf_section_data *linked_sec_arm_data
10564
                = get_arm_elf_section_data (linked_hdr->bfd_section);
10565
 
10566
              if (linked_sec_arm_data == NULL)
10567
                continue;
10568
 
10569
              /* Link this .ARM.exidx section back from the text section it
10570
                 describes.  */
10571
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10572
            }
10573
        }
10574
    }
10575
 
10576
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
10577
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10578
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
10579
 
10580
  for (i = 0; i < num_text_sections; i++)
10581
    {
10582
      asection *sec = text_section_order[i];
10583
      asection *exidx_sec;
10584
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10585
      struct _arm_elf_section_data *exidx_arm_data;
10586
      bfd_byte *contents = NULL;
10587
      int deleted_exidx_bytes = 0;
10588
      bfd_vma j;
10589
      arm_unwind_table_edit *unwind_edit_head = NULL;
10590
      arm_unwind_table_edit *unwind_edit_tail = NULL;
10591
      Elf_Internal_Shdr *hdr;
10592
      bfd *ibfd;
10593
 
10594
      if (arm_data == NULL)
10595
        continue;
10596
 
10597
      exidx_sec = arm_data->u.text.arm_exidx_sec;
10598
      if (exidx_sec == NULL)
10599
        {
10600
          /* Section has no unwind data.  */
10601
          if (last_unwind_type == 0 || !last_exidx_sec)
10602
            continue;
10603
 
10604
          /* Ignore zero sized sections.  */
10605
          if (sec->size == 0)
10606
            continue;
10607
 
10608
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
10609
          last_unwind_type = 0;
10610
          continue;
10611
        }
10612
 
10613
      /* Skip /DISCARD/ sections.  */
10614
      if (bfd_is_abs_section (exidx_sec->output_section))
10615
        continue;
10616
 
10617
      hdr = &elf_section_data (exidx_sec)->this_hdr;
10618
      if (hdr->sh_type != SHT_ARM_EXIDX)
10619
        continue;
10620
 
10621
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10622
      if (exidx_arm_data == NULL)
10623
        continue;
10624
 
10625
      ibfd = exidx_sec->owner;
10626
 
10627
      if (hdr->contents != NULL)
10628
        contents = hdr->contents;
10629
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10630
        /* An error?  */
10631
        continue;
10632
 
10633
      for (j = 0; j < hdr->sh_size; j += 8)
10634
        {
10635
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10636
          int unwind_type;
10637
          int elide = 0;
10638
 
10639
          /* An EXIDX_CANTUNWIND entry.  */
10640
          if (second_word == 1)
10641
            {
10642
              if (last_unwind_type == 0)
10643
                elide = 1;
10644
              unwind_type = 0;
10645
            }
10646
          /* Inlined unwinding data.  Merge if equal to previous.  */
10647
          else if ((second_word & 0x80000000) != 0)
10648
            {
10649
              if (merge_exidx_entries
10650
                   && last_second_word == second_word && last_unwind_type == 1)
10651
                elide = 1;
10652
              unwind_type = 1;
10653
              last_second_word = second_word;
10654
            }
10655
          /* Normal table entry.  In theory we could merge these too,
10656
             but duplicate entries are likely to be much less common.  */
10657
          else
10658
            unwind_type = 2;
10659
 
10660
          if (elide)
10661
            {
10662
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10663
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
10664
 
10665
              deleted_exidx_bytes += 8;
10666
            }
10667
 
10668
          last_unwind_type = unwind_type;
10669
        }
10670
 
10671
      /* Free contents if we allocated it ourselves.  */
10672
      if (contents != hdr->contents)
10673
        free (contents);
10674
 
10675
      /* Record edits to be applied later (in elf32_arm_write_section).  */
10676
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10677
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10678
 
10679
      if (deleted_exidx_bytes > 0)
10680
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10681
 
10682
      last_exidx_sec = exidx_sec;
10683
      last_text_sec = sec;
10684
    }
10685
 
10686
  /* Add terminating CANTUNWIND entry.  */
10687
  if (last_exidx_sec && last_unwind_type != 0)
10688
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
10689
 
10690
  return TRUE;
10691
}
10692
 
10693
static bfd_boolean
10694
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10695
                               bfd *ibfd, const char *name)
10696
{
10697
  asection *sec, *osec;
10698
 
10699
  sec = bfd_get_section_by_name (ibfd, name);
10700
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10701
    return TRUE;
10702
 
10703
  osec = sec->output_section;
10704
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10705
    return TRUE;
10706
 
10707
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
10708
                                  sec->output_offset, sec->size))
10709
    return FALSE;
10710
 
10711
  return TRUE;
10712
}
10713
 
10714
static bfd_boolean
10715
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10716
{
10717
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10718
  asection *sec, *osec;
10719
 
10720
  if (globals == NULL)
10721
    return FALSE;
10722
 
10723
  /* Invoke the regular ELF backend linker to do all the work.  */
10724
  if (!bfd_elf_final_link (abfd, info))
10725
    return FALSE;
10726
 
10727
  /* Process stub sections (eg BE8 encoding, ...).  */
10728
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10729
  int i;
10730
  for (i=0; i<htab->top_id; i++)
10731
    {
10732
      sec = htab->stub_group[i].stub_sec;
10733
      /* Only process it once, in its link_sec slot.  */
10734
      if (sec && i == htab->stub_group[i].link_sec->id)
10735
        {
10736
          osec = sec->output_section;
10737
          elf32_arm_write_section (abfd, info, sec, sec->contents);
10738
          if (! bfd_set_section_contents (abfd, osec, sec->contents,
10739
                                          sec->output_offset, sec->size))
10740
            return FALSE;
10741
        }
10742
    }
10743
 
10744
  /* Write out any glue sections now that we have created all the
10745
     stubs.  */
10746
  if (globals->bfd_of_glue_owner != NULL)
10747
    {
10748
      if (! elf32_arm_output_glue_section (info, abfd,
10749
                                           globals->bfd_of_glue_owner,
10750
                                           ARM2THUMB_GLUE_SECTION_NAME))
10751
        return FALSE;
10752
 
10753
      if (! elf32_arm_output_glue_section (info, abfd,
10754
                                           globals->bfd_of_glue_owner,
10755
                                           THUMB2ARM_GLUE_SECTION_NAME))
10756
        return FALSE;
10757
 
10758
      if (! elf32_arm_output_glue_section (info, abfd,
10759
                                           globals->bfd_of_glue_owner,
10760
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
10761
        return FALSE;
10762
 
10763
      if (! elf32_arm_output_glue_section (info, abfd,
10764
                                           globals->bfd_of_glue_owner,
10765
                                           ARM_BX_GLUE_SECTION_NAME))
10766
        return FALSE;
10767
    }
10768
 
10769
  return TRUE;
10770
}
10771
 
10772
/* Set the right machine number.  */
10773
 
10774
static bfd_boolean
10775
elf32_arm_object_p (bfd *abfd)
10776
{
10777
  unsigned int mach;
10778
 
10779
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10780
 
10781
  if (mach != bfd_mach_arm_unknown)
10782
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10783
 
10784
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10785
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10786
 
10787
  else
10788
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10789
 
10790
  return TRUE;
10791
}
10792
 
10793
/* Function to keep ARM specific flags in the ELF header.  */
10794
 
10795
static bfd_boolean
10796
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10797
{
10798
  if (elf_flags_init (abfd)
10799
      && elf_elfheader (abfd)->e_flags != flags)
10800
    {
10801
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10802
        {
10803
          if (flags & EF_ARM_INTERWORK)
10804
            (*_bfd_error_handler)
10805
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10806
               abfd);
10807
          else
10808
            _bfd_error_handler
10809
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
10810
               abfd);
10811
        }
10812
    }
10813
  else
10814
    {
10815
      elf_elfheader (abfd)->e_flags = flags;
10816
      elf_flags_init (abfd) = TRUE;
10817
    }
10818
 
10819
  return TRUE;
10820
}
10821
 
10822
/* Copy backend specific data from one object module to another.  */
10823
 
10824
static bfd_boolean
10825
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10826
{
10827
  flagword in_flags;
10828
  flagword out_flags;
10829
 
10830
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10831
    return TRUE;
10832
 
10833
  in_flags  = elf_elfheader (ibfd)->e_flags;
10834
  out_flags = elf_elfheader (obfd)->e_flags;
10835
 
10836
  if (elf_flags_init (obfd)
10837
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10838
      && in_flags != out_flags)
10839
    {
10840
      /* Cannot mix APCS26 and APCS32 code.  */
10841
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10842
        return FALSE;
10843
 
10844
      /* Cannot mix float APCS and non-float APCS code.  */
10845
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10846
        return FALSE;
10847
 
10848
      /* If the src and dest have different interworking flags
10849
         then turn off the interworking bit.  */
10850
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10851
        {
10852
          if (out_flags & EF_ARM_INTERWORK)
10853
            _bfd_error_handler
10854
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10855
               obfd, ibfd);
10856
 
10857
          in_flags &= ~EF_ARM_INTERWORK;
10858
        }
10859
 
10860
      /* Likewise for PIC, though don't warn for this case.  */
10861
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10862
        in_flags &= ~EF_ARM_PIC;
10863
    }
10864
 
10865
  elf_elfheader (obfd)->e_flags = in_flags;
10866
  elf_flags_init (obfd) = TRUE;
10867
 
10868
  /* Also copy the EI_OSABI field.  */
10869
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
10870
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
10871
 
10872
  /* Copy object attributes.  */
10873
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
10874
 
10875
  return TRUE;
10876
}
10877
 
10878
/* Values for Tag_ABI_PCS_R9_use.  */
10879
enum
10880
{
10881
  AEABI_R9_V6,
10882
  AEABI_R9_SB,
10883
  AEABI_R9_TLS,
10884
  AEABI_R9_unused
10885
};
10886
 
10887
/* Values for Tag_ABI_PCS_RW_data.  */
10888
enum
10889
{
10890
  AEABI_PCS_RW_data_absolute,
10891
  AEABI_PCS_RW_data_PCrel,
10892
  AEABI_PCS_RW_data_SBrel,
10893
  AEABI_PCS_RW_data_unused
10894
};
10895
 
10896
/* Values for Tag_ABI_enum_size.  */
10897
enum
10898
{
10899
  AEABI_enum_unused,
10900
  AEABI_enum_short,
10901
  AEABI_enum_wide,
10902
  AEABI_enum_forced_wide
10903
};
10904
 
10905
/* Determine whether an object attribute tag takes an integer, a
10906
   string or both.  */
10907
 
10908
static int
10909
elf32_arm_obj_attrs_arg_type (int tag)
10910
{
10911
  if (tag == Tag_compatibility)
10912
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10913
  else if (tag == Tag_nodefaults)
10914
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10915
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10916
    return ATTR_TYPE_FLAG_STR_VAL;
10917
  else if (tag < 32)
10918
    return ATTR_TYPE_FLAG_INT_VAL;
10919
  else
10920
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10921
}
10922
 
10923
/* The ABI defines that Tag_conformance should be emitted first, and that
10924
   Tag_nodefaults should be second (if either is defined).  This sets those
10925
   two positions, and bumps up the position of all the remaining tags to
10926
   compensate.  */
10927
static int
10928
elf32_arm_obj_attrs_order (int num)
10929
{
10930
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10931
    return Tag_conformance;
10932
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10933
    return Tag_nodefaults;
10934
  if ((num - 2) < Tag_nodefaults)
10935
    return num - 2;
10936
  if ((num - 1) < Tag_conformance)
10937
    return num - 1;
10938
  return num;
10939
}
10940
 
10941
/* Attribute numbers >=64 (mod 128) can be safely ignored.  */
10942
static bfd_boolean
10943
elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10944
{
10945
  if ((tag & 127) < 64)
10946
    {
10947
      _bfd_error_handler
10948
        (_("%B: Unknown mandatory EABI object attribute %d"),
10949
         abfd, tag);
10950
      bfd_set_error (bfd_error_bad_value);
10951
      return FALSE;
10952
    }
10953
  else
10954
    {
10955
      _bfd_error_handler
10956
        (_("Warning: %B: Unknown EABI object attribute %d"),
10957
         abfd, tag);
10958
      return TRUE;
10959
    }
10960
}
10961
 
10962
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
10963
   Returns -1 if no architecture could be read.  */
10964
 
10965
static int
10966
get_secondary_compatible_arch (bfd *abfd)
10967
{
10968
  obj_attribute *attr =
10969
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10970
 
10971
  /* Note: the tag and its argument below are uleb128 values, though
10972
     currently-defined values fit in one byte for each.  */
10973
  if (attr->s
10974
      && attr->s[0] == Tag_CPU_arch
10975
      && (attr->s[1] & 128) != 128
10976
      && attr->s[2] == 0)
10977
   return attr->s[1];
10978
 
10979
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
10980
  return -1;
10981
}
10982
 
10983
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10984
   The tag is removed if ARCH is -1.  */
10985
 
10986
static void
10987
set_secondary_compatible_arch (bfd *abfd, int arch)
10988
{
10989
  obj_attribute *attr =
10990
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10991
 
10992
  if (arch == -1)
10993
    {
10994
      attr->s = NULL;
10995
      return;
10996
    }
10997
 
10998
  /* Note: the tag and its argument below are uleb128 values, though
10999
     currently-defined values fit in one byte for each.  */
11000
  if (!attr->s)
11001
    attr->s = (char *) bfd_alloc (abfd, 3);
11002
  attr->s[0] = Tag_CPU_arch;
11003
  attr->s[1] = arch;
11004
  attr->s[2] = '\0';
11005
}
11006
 
11007
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11008
   into account.  */
11009
 
11010
static int
11011
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11012
                      int newtag, int secondary_compat)
11013
{
11014
#define T(X) TAG_CPU_ARCH_##X
11015
  int tagl, tagh, result;
11016
  const int v6t2[] =
11017
    {
11018
      T(V6T2),   /* PRE_V4.  */
11019
      T(V6T2),   /* V4.  */
11020
      T(V6T2),   /* V4T.  */
11021
      T(V6T2),   /* V5T.  */
11022
      T(V6T2),   /* V5TE.  */
11023
      T(V6T2),   /* V5TEJ.  */
11024
      T(V6T2),   /* V6.  */
11025
      T(V7),     /* V6KZ.  */
11026
      T(V6T2)    /* V6T2.  */
11027
    };
11028
  const int v6k[] =
11029
    {
11030
      T(V6K),    /* PRE_V4.  */
11031
      T(V6K),    /* V4.  */
11032
      T(V6K),    /* V4T.  */
11033
      T(V6K),    /* V5T.  */
11034
      T(V6K),    /* V5TE.  */
11035
      T(V6K),    /* V5TEJ.  */
11036
      T(V6K),    /* V6.  */
11037
      T(V6KZ),   /* V6KZ.  */
11038
      T(V7),     /* V6T2.  */
11039
      T(V6K)     /* V6K.  */
11040
    };
11041
  const int v7[] =
11042
    {
11043
      T(V7),     /* PRE_V4.  */
11044
      T(V7),     /* V4.  */
11045
      T(V7),     /* V4T.  */
11046
      T(V7),     /* V5T.  */
11047
      T(V7),     /* V5TE.  */
11048
      T(V7),     /* V5TEJ.  */
11049
      T(V7),     /* V6.  */
11050
      T(V7),     /* V6KZ.  */
11051
      T(V7),     /* V6T2.  */
11052
      T(V7),     /* V6K.  */
11053
      T(V7)      /* V7.  */
11054
    };
11055
  const int v6_m[] =
11056
    {
11057
      -1,        /* PRE_V4.  */
11058
      -1,        /* V4.  */
11059
      T(V6K),    /* V4T.  */
11060
      T(V6K),    /* V5T.  */
11061
      T(V6K),    /* V5TE.  */
11062
      T(V6K),    /* V5TEJ.  */
11063
      T(V6K),    /* V6.  */
11064
      T(V6KZ),   /* V6KZ.  */
11065
      T(V7),     /* V6T2.  */
11066
      T(V6K),    /* V6K.  */
11067
      T(V7),     /* V7.  */
11068
      T(V6_M)    /* V6_M.  */
11069
    };
11070
  const int v6s_m[] =
11071
    {
11072
      -1,        /* PRE_V4.  */
11073
      -1,        /* V4.  */
11074
      T(V6K),    /* V4T.  */
11075
      T(V6K),    /* V5T.  */
11076
      T(V6K),    /* V5TE.  */
11077
      T(V6K),    /* V5TEJ.  */
11078
      T(V6K),    /* V6.  */
11079
      T(V6KZ),   /* V6KZ.  */
11080
      T(V7),     /* V6T2.  */
11081
      T(V6K),    /* V6K.  */
11082
      T(V7),     /* V7.  */
11083
      T(V6S_M),  /* V6_M.  */
11084
      T(V6S_M)   /* V6S_M.  */
11085
    };
11086
  const int v7e_m[] =
11087
    {
11088
      -1,        /* PRE_V4.  */
11089
      -1,        /* V4.  */
11090
      T(V7E_M),  /* V4T.  */
11091
      T(V7E_M),  /* V5T.  */
11092
      T(V7E_M),  /* V5TE.  */
11093
      T(V7E_M),  /* V5TEJ.  */
11094
      T(V7E_M),  /* V6.  */
11095
      T(V7E_M),  /* V6KZ.  */
11096
      T(V7E_M),  /* V6T2.  */
11097
      T(V7E_M),  /* V6K.  */
11098
      T(V7E_M),  /* V7.  */
11099
      T(V7E_M),  /* V6_M.  */
11100
      T(V7E_M),  /* V6S_M.  */
11101
      T(V7E_M)   /* V7E_M.  */
11102
    };
11103
  const int v4t_plus_v6_m[] =
11104
    {
11105
      -1,               /* PRE_V4.  */
11106
      -1,               /* V4.  */
11107
      T(V4T),           /* V4T.  */
11108
      T(V5T),           /* V5T.  */
11109
      T(V5TE),          /* V5TE.  */
11110
      T(V5TEJ),         /* V5TEJ.  */
11111
      T(V6),            /* V6.  */
11112
      T(V6KZ),          /* V6KZ.  */
11113
      T(V6T2),          /* V6T2.  */
11114
      T(V6K),           /* V6K.  */
11115
      T(V7),            /* V7.  */
11116
      T(V6_M),          /* V6_M.  */
11117
      T(V6S_M),         /* V6S_M.  */
11118
      T(V7E_M),         /* V7E_M.  */
11119
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
11120
    };
11121
  const int *comb[] =
11122
    {
11123
      v6t2,
11124
      v6k,
11125
      v7,
11126
      v6_m,
11127
      v6s_m,
11128
      v7e_m,
11129
      /* Pseudo-architecture.  */
11130
      v4t_plus_v6_m
11131
    };
11132
 
11133
  /* Check we've not got a higher architecture than we know about.  */
11134
 
11135
  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11136
    {
11137
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11138
      return -1;
11139
    }
11140
 
11141
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
11142
 
11143
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11144
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11145
    oldtag = T(V4T_PLUS_V6_M);
11146
 
11147
  /* And override the new tag if we have a Tag_also_compatible_with on the
11148
     input.  */
11149
 
11150
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11151
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11152
    newtag = T(V4T_PLUS_V6_M);
11153
 
11154
  tagl = (oldtag < newtag) ? oldtag : newtag;
11155
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
11156
 
11157
  /* Architectures before V6KZ add features monotonically.  */
11158
  if (tagh <= TAG_CPU_ARCH_V6KZ)
11159
    return result;
11160
 
11161
  result = comb[tagh - T(V6T2)][tagl];
11162
 
11163
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11164
     as the canonical version.  */
11165
  if (result == T(V4T_PLUS_V6_M))
11166
    {
11167
      result = T(V4T);
11168
      *secondary_compat_out = T(V6_M);
11169
    }
11170
  else
11171
    *secondary_compat_out = -1;
11172
 
11173
  if (result == -1)
11174
    {
11175
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11176
                          ibfd, oldtag, newtag);
11177
      return -1;
11178
    }
11179
 
11180
  return result;
11181
#undef T
11182
}
11183
 
11184
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
11185
   are conflicting attributes.  */
11186
 
11187
static bfd_boolean
11188
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11189
{
11190
  obj_attribute *in_attr;
11191
  obj_attribute *out_attr;
11192
  /* Some tags have 0 = don't care, 1 = strong requirement,
11193
     2 = weak requirement.  */
11194
  static const int order_021[3] = {0, 2, 1};
11195
  int i;
11196
  bfd_boolean result = TRUE;
11197
 
11198
  /* Skip the linker stubs file.  This preserves previous behavior
11199
     of accepting unknown attributes in the first input file - but
11200
     is that a bug?  */
11201
  if (ibfd->flags & BFD_LINKER_CREATED)
11202
    return TRUE;
11203
 
11204
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
11205
    {
11206
      /* This is the first object.  Copy the attributes.  */
11207
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
11208
 
11209
      out_attr = elf_known_obj_attributes_proc (obfd);
11210
 
11211
      /* Use the Tag_null value to indicate the attributes have been
11212
         initialized.  */
11213
      out_attr[0].i = 1;
11214
 
11215
      /* We do not output objects with Tag_MPextension_use_legacy - we move
11216
         the attribute's value to Tag_MPextension_use.  */
11217
      if (out_attr[Tag_MPextension_use_legacy].i != 0)
11218
        {
11219
          if (out_attr[Tag_MPextension_use].i != 0
11220
              && out_attr[Tag_MPextension_use_legacy].i
11221
                != out_attr[Tag_MPextension_use].i)
11222
            {
11223
              _bfd_error_handler
11224
                (_("Error: %B has both the current and legacy "
11225
                   "Tag_MPextension_use attributes"), ibfd);
11226
              result = FALSE;
11227
            }
11228
 
11229
          out_attr[Tag_MPextension_use] =
11230
            out_attr[Tag_MPextension_use_legacy];
11231
          out_attr[Tag_MPextension_use_legacy].type = 0;
11232
          out_attr[Tag_MPextension_use_legacy].i = 0;
11233
        }
11234
 
11235
      return result;
11236
    }
11237
 
11238
  in_attr = elf_known_obj_attributes_proc (ibfd);
11239
  out_attr = elf_known_obj_attributes_proc (obfd);
11240
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
11241
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11242
    {
11243
      /* Ignore mismatches if the object doesn't use floating point.  */
11244
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
11245
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11246
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11247
        {
11248
          _bfd_error_handler
11249
            (_("error: %B uses VFP register arguments, %B does not"),
11250
             in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11251
             in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11252
          result = FALSE;
11253
        }
11254
    }
11255
 
11256
  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11257
    {
11258
      /* Merge this attribute with existing attributes.  */
11259
      switch (i)
11260
        {
11261
        case Tag_CPU_raw_name:
11262
        case Tag_CPU_name:
11263
          /* These are merged after Tag_CPU_arch. */
11264
          break;
11265
 
11266
        case Tag_ABI_optimization_goals:
11267
        case Tag_ABI_FP_optimization_goals:
11268
          /* Use the first value seen.  */
11269
          break;
11270
 
11271
        case Tag_CPU_arch:
11272
          {
11273
            int secondary_compat = -1, secondary_compat_out = -1;
11274
            unsigned int saved_out_attr = out_attr[i].i;
11275
            static const char *name_table[] = {
11276
                /* These aren't real CPU names, but we can't guess
11277
                   that from the architecture version alone.  */
11278
                "Pre v4",
11279
                "ARM v4",
11280
                "ARM v4T",
11281
                "ARM v5T",
11282
                "ARM v5TE",
11283
                "ARM v5TEJ",
11284
                "ARM v6",
11285
                "ARM v6KZ",
11286
                "ARM v6T2",
11287
                "ARM v6K",
11288
                "ARM v7",
11289
                "ARM v6-M",
11290
                "ARM v6S-M"
11291
            };
11292
 
11293
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
11294
            secondary_compat = get_secondary_compatible_arch (ibfd);
11295
            secondary_compat_out = get_secondary_compatible_arch (obfd);
11296
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11297
                                                  &secondary_compat_out,
11298
                                                  in_attr[i].i,
11299
                                                  secondary_compat);
11300
            set_secondary_compatible_arch (obfd, secondary_compat_out);
11301
 
11302
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
11303
            if (out_attr[i].i == saved_out_attr)
11304
              ; /* Leave the names alone.  */
11305
            else if (out_attr[i].i == in_attr[i].i)
11306
              {
11307
                /* The output architecture has been changed to match the
11308
                   input architecture.  Use the input names.  */
11309
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11310
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11311
                  : NULL;
11312
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11313
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11314
                  : NULL;
11315
              }
11316
            else
11317
              {
11318
                out_attr[Tag_CPU_name].s = NULL;
11319
                out_attr[Tag_CPU_raw_name].s = NULL;
11320
              }
11321
 
11322
            /* If we still don't have a value for Tag_CPU_name,
11323
               make one up now.  Tag_CPU_raw_name remains blank.  */
11324
            if (out_attr[Tag_CPU_name].s == NULL
11325
                && out_attr[i].i < ARRAY_SIZE (name_table))
11326
              out_attr[Tag_CPU_name].s =
11327
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11328
          }
11329
          break;
11330
 
11331
        case Tag_ARM_ISA_use:
11332
        case Tag_THUMB_ISA_use:
11333
        case Tag_WMMX_arch:
11334
        case Tag_Advanced_SIMD_arch:
11335
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
11336
        case Tag_ABI_FP_rounding:
11337
        case Tag_ABI_FP_exceptions:
11338
        case Tag_ABI_FP_user_exceptions:
11339
        case Tag_ABI_FP_number_model:
11340
        case Tag_FP_HP_extension:
11341
        case Tag_CPU_unaligned_access:
11342
        case Tag_T2EE_use:
11343
        case Tag_MPextension_use:
11344
          /* Use the largest value specified.  */
11345
          if (in_attr[i].i > out_attr[i].i)
11346
            out_attr[i].i = in_attr[i].i;
11347
          break;
11348
 
11349
        case Tag_ABI_align_preserved:
11350
        case Tag_ABI_PCS_RO_data:
11351
          /* Use the smallest value specified.  */
11352
          if (in_attr[i].i < out_attr[i].i)
11353
            out_attr[i].i = in_attr[i].i;
11354
          break;
11355
 
11356
        case Tag_ABI_align_needed:
11357
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11358
              && (in_attr[Tag_ABI_align_preserved].i == 0
11359
                  || out_attr[Tag_ABI_align_preserved].i == 0))
11360
            {
11361
              /* This error message should be enabled once all non-conformant
11362
                 binaries in the toolchain have had the attributes set
11363
                 properly.
11364
              _bfd_error_handler
11365
                (_("error: %B: 8-byte data alignment conflicts with %B"),
11366
                 obfd, ibfd);
11367
              result = FALSE; */
11368
            }
11369
          /* Fall through.  */
11370
        case Tag_ABI_FP_denormal:
11371
        case Tag_ABI_PCS_GOT_use:
11372
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11373
             value if greater than 2 (for future-proofing).  */
11374
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11375
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11376
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11377
            out_attr[i].i = in_attr[i].i;
11378
          break;
11379
 
11380
        case Tag_Virtualization_use:
11381
          /* The virtualization tag effectively stores two bits of
11382
             information: the intended use of TrustZone (in bit 0), and the
11383
             intended use of Virtualization (in bit 1).  */
11384
          if (out_attr[i].i == 0)
11385
            out_attr[i].i = in_attr[i].i;
11386
          else if (in_attr[i].i != 0
11387
                   && in_attr[i].i != out_attr[i].i)
11388
            {
11389
              if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11390
                out_attr[i].i = 3;
11391
              else
11392
                {
11393
                  _bfd_error_handler
11394
                    (_("error: %B: unable to merge virtualization attributes "
11395
                       "with %B"),
11396
                     obfd, ibfd);
11397
                  result = FALSE;
11398
                }
11399
            }
11400
          break;
11401
 
11402
        case Tag_CPU_arch_profile:
11403
          if (out_attr[i].i != in_attr[i].i)
11404
            {
11405
              /* 0 will merge with anything.
11406
                 'A' and 'S' merge to 'A'.
11407
                 'R' and 'S' merge to 'R'.
11408
                 'M' and 'A|R|S' is an error.  */
11409
              if (out_attr[i].i == 0
11410
                  || (out_attr[i].i == 'S'
11411
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11412
                out_attr[i].i = in_attr[i].i;
11413
              else if (in_attr[i].i == 0
11414
                       || (in_attr[i].i == 'S'
11415
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11416
                ; /* Do nothing. */
11417
              else
11418
                {
11419
                  _bfd_error_handler
11420
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
11421
                     ibfd,
11422
                     in_attr[i].i ? in_attr[i].i : '0',
11423
                     out_attr[i].i ? out_attr[i].i : '0');
11424
                  result = FALSE;
11425
                }
11426
            }
11427
          break;
11428
        case Tag_FP_arch:
11429
            {
11430
              /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11431
                 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11432
                 when it's 0.  It might mean absence of FP hardware if
11433
                 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
11434
 
11435
              static const struct
11436
              {
11437
                  int ver;
11438
                  int regs;
11439
              } vfp_versions[7] =
11440
                {
11441
                  {0, 0},
11442
                  {1, 16},
11443
                  {2, 16},
11444
                  {3, 32},
11445
                  {3, 16},
11446
                  {4, 32},
11447
                  {4, 16}
11448
                };
11449
              int ver;
11450
              int regs;
11451
              int newval;
11452
 
11453
              /* If the output has no requirement about FP hardware,
11454
                 follow the requirement of the input.  */
11455
              if (out_attr[i].i == 0)
11456
                {
11457
                  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11458
                  out_attr[i].i = in_attr[i].i;
11459
                  out_attr[Tag_ABI_HardFP_use].i
11460
                    = in_attr[Tag_ABI_HardFP_use].i;
11461
                  break;
11462
                }
11463
              /* If the input has no requirement about FP hardware, do
11464
                 nothing.  */
11465
              else if (in_attr[i].i == 0)
11466
                {
11467
                  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11468
                  break;
11469
                }
11470
 
11471
              /* Both the input and the output have nonzero Tag_FP_arch.
11472
                 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
11473
 
11474
              /* If both the input and the output have zero Tag_ABI_HardFP_use,
11475
                 do nothing.  */
11476
              if (in_attr[Tag_ABI_HardFP_use].i == 0
11477
                  && out_attr[Tag_ABI_HardFP_use].i == 0)
11478
                ;
11479
              /* If the input and the output have different Tag_ABI_HardFP_use,
11480
                 the combination of them is 3 (SP & DP).  */
11481
              else if (in_attr[Tag_ABI_HardFP_use].i
11482
                       != out_attr[Tag_ABI_HardFP_use].i)
11483
                out_attr[Tag_ABI_HardFP_use].i = 3;
11484
 
11485
              /* Now we can handle Tag_FP_arch.  */
11486
 
11487
              /* Values greater than 6 aren't defined, so just pick the
11488
                 biggest */
11489
              if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11490
                {
11491
                  out_attr[i] = in_attr[i];
11492
                  break;
11493
                }
11494
              /* The output uses the superset of input features
11495
                 (ISA version) and registers.  */
11496
              ver = vfp_versions[in_attr[i].i].ver;
11497
              if (ver < vfp_versions[out_attr[i].i].ver)
11498
                ver = vfp_versions[out_attr[i].i].ver;
11499
              regs = vfp_versions[in_attr[i].i].regs;
11500
              if (regs < vfp_versions[out_attr[i].i].regs)
11501
                regs = vfp_versions[out_attr[i].i].regs;
11502
              /* This assumes all possible supersets are also a valid
11503
                 options.  */
11504
              for (newval = 6; newval > 0; newval--)
11505
                {
11506
                  if (regs == vfp_versions[newval].regs
11507
                      && ver == vfp_versions[newval].ver)
11508
                    break;
11509
                }
11510
              out_attr[i].i = newval;
11511
            }
11512
          break;
11513
        case Tag_PCS_config:
11514
          if (out_attr[i].i == 0)
11515
            out_attr[i].i = in_attr[i].i;
11516
          else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11517
            {
11518
              /* It's sometimes ok to mix different configs, so this is only
11519
                 a warning.  */
11520
              _bfd_error_handler
11521
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
11522
            }
11523
          break;
11524
        case Tag_ABI_PCS_R9_use:
11525
          if (in_attr[i].i != out_attr[i].i
11526
              && out_attr[i].i != AEABI_R9_unused
11527
              && in_attr[i].i != AEABI_R9_unused)
11528
            {
11529
              _bfd_error_handler
11530
                (_("error: %B: Conflicting use of R9"), ibfd);
11531
              result = FALSE;
11532
            }
11533
          if (out_attr[i].i == AEABI_R9_unused)
11534
            out_attr[i].i = in_attr[i].i;
11535
          break;
11536
        case Tag_ABI_PCS_RW_data:
11537
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11538
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11539
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11540
            {
11541
              _bfd_error_handler
11542
                (_("error: %B: SB relative addressing conflicts with use of R9"),
11543
                 ibfd);
11544
              result = FALSE;
11545
            }
11546
          /* Use the smallest value specified.  */
11547
          if (in_attr[i].i < out_attr[i].i)
11548
            out_attr[i].i = in_attr[i].i;
11549
          break;
11550
        case Tag_ABI_PCS_wchar_t:
11551
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11552
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11553
            {
11554
              _bfd_error_handler
11555
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11556
                 ibfd, in_attr[i].i, out_attr[i].i);
11557
            }
11558
          else if (in_attr[i].i && !out_attr[i].i)
11559
            out_attr[i].i = in_attr[i].i;
11560
          break;
11561
        case Tag_ABI_enum_size:
11562
          if (in_attr[i].i != AEABI_enum_unused)
11563
            {
11564
              if (out_attr[i].i == AEABI_enum_unused
11565
                  || out_attr[i].i == AEABI_enum_forced_wide)
11566
                {
11567
                  /* The existing object is compatible with anything.
11568
                     Use whatever requirements the new object has.  */
11569
                  out_attr[i].i = in_attr[i].i;
11570
                }
11571
              else if (in_attr[i].i != AEABI_enum_forced_wide
11572
                       && out_attr[i].i != in_attr[i].i
11573
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
11574
                {
11575
                  static const char *aeabi_enum_names[] =
11576
                    { "", "variable-size", "32-bit", "" };
11577
                  const char *in_name =
11578
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11579
                    ? aeabi_enum_names[in_attr[i].i]
11580
                    : "<unknown>";
11581
                  const char *out_name =
11582
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11583
                    ? aeabi_enum_names[out_attr[i].i]
11584
                    : "<unknown>";
11585
                  _bfd_error_handler
11586
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11587
                     ibfd, in_name, out_name);
11588
                }
11589
            }
11590
          break;
11591
        case Tag_ABI_VFP_args:
11592
          /* Aready done.  */
11593
          break;
11594
        case Tag_ABI_WMMX_args:
11595
          if (in_attr[i].i != out_attr[i].i)
11596
            {
11597
              _bfd_error_handler
11598
                (_("error: %B uses iWMMXt register arguments, %B does not"),
11599
                 ibfd, obfd);
11600
              result = FALSE;
11601
            }
11602
          break;
11603
        case Tag_compatibility:
11604
          /* Merged in target-independent code.  */
11605
          break;
11606
        case Tag_ABI_HardFP_use:
11607
          /* This is handled along with Tag_FP_arch.  */
11608
          break;
11609
        case Tag_ABI_FP_16bit_format:
11610
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
11611
            {
11612
              if (in_attr[i].i != out_attr[i].i)
11613
                {
11614
                  _bfd_error_handler
11615
                    (_("error: fp16 format mismatch between %B and %B"),
11616
                     ibfd, obfd);
11617
                  result = FALSE;
11618
                }
11619
            }
11620
          if (in_attr[i].i != 0)
11621
            out_attr[i].i = in_attr[i].i;
11622
          break;
11623
 
11624
        case Tag_DIV_use:
11625
          /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11626
             mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11627
             SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11628
             CPU.  We will merge as follows: If the input attribute's value
11629
             is one then the output attribute's value remains unchanged.  If
11630
             the input attribute's value is zero or two then if the output
11631
             attribute's value is one the output value is set to the input
11632
             value, otherwise the output value must be the same as the
11633
             inputs.  */
11634
          if (in_attr[i].i != 1 && out_attr[i].i != 1)
11635
            {
11636
              if (in_attr[i].i != out_attr[i].i)
11637
                {
11638
                  _bfd_error_handler
11639
                    (_("DIV usage mismatch between %B and %B"),
11640
                     ibfd, obfd);
11641
                  result = FALSE;
11642
                }
11643
            }
11644
 
11645
          if (in_attr[i].i != 1)
11646
            out_attr[i].i = in_attr[i].i;
11647
 
11648
          break;
11649
 
11650
        case Tag_MPextension_use_legacy:
11651
          /* We don't output objects with Tag_MPextension_use_legacy - we
11652
             move the value to Tag_MPextension_use.  */
11653
          if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11654
            {
11655
              if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11656
                {
11657
                  _bfd_error_handler
11658
                    (_("%B has has both the current and legacy "
11659
                       "Tag_MPextension_use attributes"),
11660
                     ibfd);
11661
                  result = FALSE;
11662
                }
11663
            }
11664
 
11665
          if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11666
            out_attr[Tag_MPextension_use] = in_attr[i];
11667
 
11668
          break;
11669
 
11670
        case Tag_nodefaults:
11671
          /* This tag is set if it exists, but the value is unused (and is
11672
             typically zero).  We don't actually need to do anything here -
11673
             the merge happens automatically when the type flags are merged
11674
             below.  */
11675
          break;
11676
        case Tag_also_compatible_with:
11677
          /* Already done in Tag_CPU_arch.  */
11678
          break;
11679
        case Tag_conformance:
11680
          /* Keep the attribute if it matches.  Throw it away otherwise.
11681
             No attribute means no claim to conform.  */
11682
          if (!in_attr[i].s || !out_attr[i].s
11683
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11684
            out_attr[i].s = NULL;
11685
          break;
11686
 
11687
        default:
11688
          result
11689
            = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11690
        }
11691
 
11692
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
11693
      if (in_attr[i].type && !out_attr[i].type)
11694
        out_attr[i].type = in_attr[i].type;
11695
    }
11696
 
11697
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
11698
  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11699
    return FALSE;
11700
 
11701
  /* Check for any attributes not known on ARM.  */
11702
  result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11703
 
11704
  return result;
11705
}
11706
 
11707
 
11708
/* Return TRUE if the two EABI versions are incompatible.  */
11709
 
11710
static bfd_boolean
11711
elf32_arm_versions_compatible (unsigned iver, unsigned over)
11712
{
11713
  /* v4 and v5 are the same spec before and after it was released,
11714
     so allow mixing them.  */
11715
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11716
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11717
    return TRUE;
11718
 
11719
  return (iver == over);
11720
}
11721
 
11722
/* Merge backend specific data from an object file to the output
11723
   object file when linking.  */
11724
 
11725
static bfd_boolean
11726
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11727
 
11728
/* Display the flags field.  */
11729
 
11730
static bfd_boolean
11731
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11732
{
11733
  FILE * file = (FILE *) ptr;
11734
  unsigned long flags;
11735
 
11736
  BFD_ASSERT (abfd != NULL && ptr != NULL);
11737
 
11738
  /* Print normal ELF private data.  */
11739
  _bfd_elf_print_private_bfd_data (abfd, ptr);
11740
 
11741
  flags = elf_elfheader (abfd)->e_flags;
11742
  /* Ignore init flag - it may not be set, despite the flags field
11743
     containing valid data.  */
11744
 
11745
  /* xgettext:c-format */
11746
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11747
 
11748
  switch (EF_ARM_EABI_VERSION (flags))
11749
    {
11750
    case EF_ARM_EABI_UNKNOWN:
11751
      /* The following flag bits are GNU extensions and not part of the
11752
         official ARM ELF extended ABI.  Hence they are only decoded if
11753
         the EABI version is not set.  */
11754
      if (flags & EF_ARM_INTERWORK)
11755
        fprintf (file, _(" [interworking enabled]"));
11756
 
11757
      if (flags & EF_ARM_APCS_26)
11758
        fprintf (file, " [APCS-26]");
11759
      else
11760
        fprintf (file, " [APCS-32]");
11761
 
11762
      if (flags & EF_ARM_VFP_FLOAT)
11763
        fprintf (file, _(" [VFP float format]"));
11764
      else if (flags & EF_ARM_MAVERICK_FLOAT)
11765
        fprintf (file, _(" [Maverick float format]"));
11766
      else
11767
        fprintf (file, _(" [FPA float format]"));
11768
 
11769
      if (flags & EF_ARM_APCS_FLOAT)
11770
        fprintf (file, _(" [floats passed in float registers]"));
11771
 
11772
      if (flags & EF_ARM_PIC)
11773
        fprintf (file, _(" [position independent]"));
11774
 
11775
      if (flags & EF_ARM_NEW_ABI)
11776
        fprintf (file, _(" [new ABI]"));
11777
 
11778
      if (flags & EF_ARM_OLD_ABI)
11779
        fprintf (file, _(" [old ABI]"));
11780
 
11781
      if (flags & EF_ARM_SOFT_FLOAT)
11782
        fprintf (file, _(" [software FP]"));
11783
 
11784
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11785
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11786
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11787
                 | EF_ARM_MAVERICK_FLOAT);
11788
      break;
11789
 
11790
    case EF_ARM_EABI_VER1:
11791
      fprintf (file, _(" [Version1 EABI]"));
11792
 
11793
      if (flags & EF_ARM_SYMSARESORTED)
11794
        fprintf (file, _(" [sorted symbol table]"));
11795
      else
11796
        fprintf (file, _(" [unsorted symbol table]"));
11797
 
11798
      flags &= ~ EF_ARM_SYMSARESORTED;
11799
      break;
11800
 
11801
    case EF_ARM_EABI_VER2:
11802
      fprintf (file, _(" [Version2 EABI]"));
11803
 
11804
      if (flags & EF_ARM_SYMSARESORTED)
11805
        fprintf (file, _(" [sorted symbol table]"));
11806
      else
11807
        fprintf (file, _(" [unsorted symbol table]"));
11808
 
11809
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11810
        fprintf (file, _(" [dynamic symbols use segment index]"));
11811
 
11812
      if (flags & EF_ARM_MAPSYMSFIRST)
11813
        fprintf (file, _(" [mapping symbols precede others]"));
11814
 
11815
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11816
                 | EF_ARM_MAPSYMSFIRST);
11817
      break;
11818
 
11819
    case EF_ARM_EABI_VER3:
11820
      fprintf (file, _(" [Version3 EABI]"));
11821
      break;
11822
 
11823
    case EF_ARM_EABI_VER4:
11824
      fprintf (file, _(" [Version4 EABI]"));
11825
      goto eabi;
11826
 
11827
    case EF_ARM_EABI_VER5:
11828
      fprintf (file, _(" [Version5 EABI]"));
11829
    eabi:
11830
      if (flags & EF_ARM_BE8)
11831
        fprintf (file, _(" [BE8]"));
11832
 
11833
      if (flags & EF_ARM_LE8)
11834
        fprintf (file, _(" [LE8]"));
11835
 
11836
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11837
      break;
11838
 
11839
    default:
11840
      fprintf (file, _(" <EABI version unrecognised>"));
11841
      break;
11842
    }
11843
 
11844
  flags &= ~ EF_ARM_EABIMASK;
11845
 
11846
  if (flags & EF_ARM_RELEXEC)
11847
    fprintf (file, _(" [relocatable executable]"));
11848
 
11849
  if (flags & EF_ARM_HASENTRY)
11850
    fprintf (file, _(" [has entry point]"));
11851
 
11852
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11853
 
11854
  if (flags)
11855
    fprintf (file, _("<Unrecognised flag bits set>"));
11856
 
11857
  fputc ('\n', file);
11858
 
11859
  return TRUE;
11860
}
11861
 
11862
static int
11863
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11864
{
11865
  switch (ELF_ST_TYPE (elf_sym->st_info))
11866
    {
11867
    case STT_ARM_TFUNC:
11868
      return ELF_ST_TYPE (elf_sym->st_info);
11869
 
11870
    case STT_ARM_16BIT:
11871
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11872
         This allows us to distinguish between data used by Thumb instructions
11873
         and non-data (which is probably code) inside Thumb regions of an
11874
         executable.  */
11875
      if (type != STT_OBJECT && type != STT_TLS)
11876
        return ELF_ST_TYPE (elf_sym->st_info);
11877
      break;
11878
 
11879
    default:
11880
      break;
11881
    }
11882
 
11883
  return type;
11884
}
11885
 
11886
static asection *
11887
elf32_arm_gc_mark_hook (asection *sec,
11888
                        struct bfd_link_info *info,
11889
                        Elf_Internal_Rela *rel,
11890
                        struct elf_link_hash_entry *h,
11891
                        Elf_Internal_Sym *sym)
11892
{
11893
  if (h != NULL)
11894
    switch (ELF32_R_TYPE (rel->r_info))
11895
      {
11896
      case R_ARM_GNU_VTINHERIT:
11897
      case R_ARM_GNU_VTENTRY:
11898
        return NULL;
11899
      }
11900
 
11901
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11902
}
11903
 
11904
/* Update the got entry reference counts for the section being removed.  */
11905
 
11906
static bfd_boolean
11907
elf32_arm_gc_sweep_hook (bfd *                     abfd,
11908
                         struct bfd_link_info *    info,
11909
                         asection *                sec,
11910
                         const Elf_Internal_Rela * relocs)
11911
{
11912
  Elf_Internal_Shdr *symtab_hdr;
11913
  struct elf_link_hash_entry **sym_hashes;
11914
  bfd_signed_vma *local_got_refcounts;
11915
  const Elf_Internal_Rela *rel, *relend;
11916
  struct elf32_arm_link_hash_table * globals;
11917
 
11918
  if (info->relocatable)
11919
    return TRUE;
11920
 
11921
  globals = elf32_arm_hash_table (info);
11922
  if (globals == NULL)
11923
    return FALSE;
11924
 
11925
  elf_section_data (sec)->local_dynrel = NULL;
11926
 
11927
  symtab_hdr = & elf_symtab_hdr (abfd);
11928
  sym_hashes = elf_sym_hashes (abfd);
11929
  local_got_refcounts = elf_local_got_refcounts (abfd);
11930
 
11931
  check_use_blx (globals);
11932
 
11933
  relend = relocs + sec->reloc_count;
11934
  for (rel = relocs; rel < relend; rel++)
11935
    {
11936
      unsigned long r_symndx;
11937
      struct elf_link_hash_entry *h = NULL;
11938
      struct elf32_arm_link_hash_entry *eh;
11939
      int r_type;
11940
      bfd_boolean call_reloc_p;
11941
      bfd_boolean may_become_dynamic_p;
11942
      bfd_boolean may_need_local_target_p;
11943
      union gotplt_union *root_plt;
11944
      struct arm_plt_info *arm_plt;
11945
 
11946
      r_symndx = ELF32_R_SYM (rel->r_info);
11947
      if (r_symndx >= symtab_hdr->sh_info)
11948
        {
11949
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11950
          while (h->root.type == bfd_link_hash_indirect
11951
                 || h->root.type == bfd_link_hash_warning)
11952
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
11953
        }
11954
      eh = (struct elf32_arm_link_hash_entry *) h;
11955
 
11956
      call_reloc_p = FALSE;
11957
      may_become_dynamic_p = FALSE;
11958
      may_need_local_target_p = FALSE;
11959
 
11960
      r_type = ELF32_R_TYPE (rel->r_info);
11961
      r_type = arm_real_reloc_type (globals, r_type);
11962
      switch (r_type)
11963
        {
11964
        case R_ARM_GOT32:
11965
        case R_ARM_GOT_PREL:
11966
        case R_ARM_TLS_GD32:
11967
        case R_ARM_TLS_IE32:
11968
          if (h != NULL)
11969
            {
11970
              if (h->got.refcount > 0)
11971
                h->got.refcount -= 1;
11972
            }
11973
          else if (local_got_refcounts != NULL)
11974
            {
11975
              if (local_got_refcounts[r_symndx] > 0)
11976
                local_got_refcounts[r_symndx] -= 1;
11977
            }
11978
          break;
11979
 
11980
        case R_ARM_TLS_LDM32:
11981
          globals->tls_ldm_got.refcount -= 1;
11982
          break;
11983
 
11984
        case R_ARM_PC24:
11985
        case R_ARM_PLT32:
11986
        case R_ARM_CALL:
11987
        case R_ARM_JUMP24:
11988
        case R_ARM_PREL31:
11989
        case R_ARM_THM_CALL:
11990
        case R_ARM_THM_JUMP24:
11991
        case R_ARM_THM_JUMP19:
11992
          call_reloc_p = TRUE;
11993
          may_need_local_target_p = TRUE;
11994
          break;
11995
 
11996
        case R_ARM_ABS12:
11997
          if (!globals->vxworks_p)
11998
            {
11999
              may_need_local_target_p = TRUE;
12000
              break;
12001
            }
12002
          /* Fall through.  */
12003
        case R_ARM_ABS32:
12004
        case R_ARM_ABS32_NOI:
12005
        case R_ARM_REL32:
12006
        case R_ARM_REL32_NOI:
12007
        case R_ARM_MOVW_ABS_NC:
12008
        case R_ARM_MOVT_ABS:
12009
        case R_ARM_MOVW_PREL_NC:
12010
        case R_ARM_MOVT_PREL:
12011
        case R_ARM_THM_MOVW_ABS_NC:
12012
        case R_ARM_THM_MOVT_ABS:
12013
        case R_ARM_THM_MOVW_PREL_NC:
12014
        case R_ARM_THM_MOVT_PREL:
12015
          /* Should the interworking branches be here also?  */
12016
          if ((info->shared || globals->root.is_relocatable_executable)
12017
              && (sec->flags & SEC_ALLOC) != 0)
12018
            {
12019
              if (h == NULL
12020
                  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12021
                {
12022
                  call_reloc_p = TRUE;
12023
                  may_need_local_target_p = TRUE;
12024
                }
12025
              else
12026
                may_become_dynamic_p = TRUE;
12027
            }
12028
          else
12029
            may_need_local_target_p = TRUE;
12030
          break;
12031
 
12032
        default:
12033
          break;
12034
        }
12035
 
12036
      if (may_need_local_target_p
12037
          && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12038
        {
12039
          BFD_ASSERT (root_plt->refcount > 0);
12040
          root_plt->refcount -= 1;
12041
 
12042
          if (!call_reloc_p)
12043
            arm_plt->noncall_refcount--;
12044
 
12045
          if (r_type == R_ARM_THM_CALL)
12046
            arm_plt->maybe_thumb_refcount--;
12047
 
12048
          if (r_type == R_ARM_THM_JUMP24
12049
              || r_type == R_ARM_THM_JUMP19)
12050
            arm_plt->thumb_refcount--;
12051
        }
12052
 
12053
      if (may_become_dynamic_p)
12054
        {
12055
          struct elf_dyn_relocs **pp;
12056
          struct elf_dyn_relocs *p;
12057
 
12058
          if (h != NULL)
12059
            pp = &(eh->dyn_relocs);
12060
          else
12061
            {
12062
              Elf_Internal_Sym *isym;
12063
 
12064
              isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12065
                                            abfd, r_symndx);
12066
              if (isym == NULL)
12067
                return FALSE;
12068
              pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12069
              if (pp == NULL)
12070
                return FALSE;
12071
            }
12072
          for (; (p = *pp) != NULL; pp = &p->next)
12073
            if (p->sec == sec)
12074
              {
12075
                /* Everything must go for SEC.  */
12076
                *pp = p->next;
12077
                break;
12078
              }
12079
        }
12080
    }
12081
 
12082
  return TRUE;
12083
}
12084
 
12085
/* Look through the relocs for a section during the first phase.  */
12086
 
12087
static bfd_boolean
12088
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12089
                        asection *sec, const Elf_Internal_Rela *relocs)
12090
{
12091
  Elf_Internal_Shdr *symtab_hdr;
12092
  struct elf_link_hash_entry **sym_hashes;
12093
  const Elf_Internal_Rela *rel;
12094
  const Elf_Internal_Rela *rel_end;
12095
  bfd *dynobj;
12096
  asection *sreloc;
12097
  struct elf32_arm_link_hash_table *htab;
12098
  bfd_boolean call_reloc_p;
12099
  bfd_boolean may_become_dynamic_p;
12100
  bfd_boolean may_need_local_target_p;
12101
  unsigned long nsyms;
12102
 
12103
  if (info->relocatable)
12104
    return TRUE;
12105
 
12106
  BFD_ASSERT (is_arm_elf (abfd));
12107
 
12108
  htab = elf32_arm_hash_table (info);
12109
  if (htab == NULL)
12110
    return FALSE;
12111
 
12112
  sreloc = NULL;
12113
 
12114
  /* Create dynamic sections for relocatable executables so that we can
12115
     copy relocations.  */
12116
  if (htab->root.is_relocatable_executable
12117
      && ! htab->root.dynamic_sections_created)
12118
    {
12119
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12120
        return FALSE;
12121
    }
12122
 
12123
  if (htab->root.dynobj == NULL)
12124
    htab->root.dynobj = abfd;
12125
  if (!create_ifunc_sections (info))
12126
    return FALSE;
12127
 
12128
  dynobj = htab->root.dynobj;
12129
 
12130
  symtab_hdr = & elf_symtab_hdr (abfd);
12131
  sym_hashes = elf_sym_hashes (abfd);
12132
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12133
 
12134
  rel_end = relocs + sec->reloc_count;
12135
  for (rel = relocs; rel < rel_end; rel++)
12136
    {
12137
      Elf_Internal_Sym *isym;
12138
      struct elf_link_hash_entry *h;
12139
      struct elf32_arm_link_hash_entry *eh;
12140
      unsigned long r_symndx;
12141
      int r_type;
12142
 
12143
      r_symndx = ELF32_R_SYM (rel->r_info);
12144
      r_type = ELF32_R_TYPE (rel->r_info);
12145
      r_type = arm_real_reloc_type (htab, r_type);
12146
 
12147
      if (r_symndx >= nsyms
12148
          /* PR 9934: It is possible to have relocations that do not
12149
             refer to symbols, thus it is also possible to have an
12150
             object file containing relocations but no symbol table.  */
12151
          && (r_symndx > STN_UNDEF || nsyms > 0))
12152
        {
12153
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12154
                                   r_symndx);
12155
          return FALSE;
12156
        }
12157
 
12158
      h = NULL;
12159
      isym = NULL;
12160
      if (nsyms > 0)
12161
        {
12162
          if (r_symndx < symtab_hdr->sh_info)
12163
            {
12164
              /* A local symbol.  */
12165
              isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12166
                                            abfd, r_symndx);
12167
              if (isym == NULL)
12168
                return FALSE;
12169
            }
12170
          else
12171
            {
12172
              h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12173
              while (h->root.type == bfd_link_hash_indirect
12174
                     || h->root.type == bfd_link_hash_warning)
12175
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
12176
            }
12177
        }
12178
 
12179
      eh = (struct elf32_arm_link_hash_entry *) h;
12180
 
12181
      call_reloc_p = FALSE;
12182
      may_become_dynamic_p = FALSE;
12183
      may_need_local_target_p = FALSE;
12184
 
12185
      /* Could be done earlier, if h were already available.  */
12186
      r_type = elf32_arm_tls_transition (info, r_type, h);
12187
      switch (r_type)
12188
        {
12189
          case R_ARM_GOT32:
12190
          case R_ARM_GOT_PREL:
12191
          case R_ARM_TLS_GD32:
12192
          case R_ARM_TLS_IE32:
12193
          case R_ARM_TLS_GOTDESC:
12194
          case R_ARM_TLS_DESCSEQ:
12195
          case R_ARM_THM_TLS_DESCSEQ:
12196
          case R_ARM_TLS_CALL:
12197
          case R_ARM_THM_TLS_CALL:
12198
            /* This symbol requires a global offset table entry.  */
12199
            {
12200
              int tls_type, old_tls_type;
12201
 
12202
              switch (r_type)
12203
                {
12204
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12205
 
12206
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12207
 
12208
                case R_ARM_TLS_GOTDESC:
12209
                case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12210
                case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12211
                  tls_type = GOT_TLS_GDESC; break;
12212
 
12213
                default: tls_type = GOT_NORMAL; break;
12214
                }
12215
 
12216
              if (h != NULL)
12217
                {
12218
                  h->got.refcount++;
12219
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12220
                }
12221
              else
12222
                {
12223
                  /* This is a global offset table entry for a local symbol.  */
12224
                  if (!elf32_arm_allocate_local_sym_info (abfd))
12225
                    return FALSE;
12226
                  elf_local_got_refcounts (abfd)[r_symndx] += 1;
12227
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12228
                }
12229
 
12230
              /* If a variable is accessed with both tls methods, two
12231
                 slots may be created.  */
12232
              if (GOT_TLS_GD_ANY_P (old_tls_type)
12233
                  && GOT_TLS_GD_ANY_P (tls_type))
12234
                tls_type |= old_tls_type;
12235
 
12236
              /* We will already have issued an error message if there
12237
                 is a TLS/non-TLS mismatch, based on the symbol
12238
                 type.  So just combine any TLS types needed.  */
12239
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12240
                  && tls_type != GOT_NORMAL)
12241
                tls_type |= old_tls_type;
12242
 
12243
              /* If the symbol is accessed in both IE and GDESC
12244
                 method, we're able to relax. Turn off the GDESC flag,
12245
                 without messing up with any other kind of tls types
12246
                 that may be involved */
12247
              if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12248
                tls_type &= ~GOT_TLS_GDESC;
12249
 
12250
              if (old_tls_type != tls_type)
12251
                {
12252
                  if (h != NULL)
12253
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
12254
                  else
12255
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12256
                }
12257
            }
12258
            /* Fall through.  */
12259
 
12260
          case R_ARM_TLS_LDM32:
12261
            if (r_type == R_ARM_TLS_LDM32)
12262
                htab->tls_ldm_got.refcount++;
12263
            /* Fall through.  */
12264
 
12265
          case R_ARM_GOTOFF32:
12266
          case R_ARM_GOTPC:
12267
            if (htab->root.sgot == NULL
12268
                && !create_got_section (htab->root.dynobj, info))
12269
              return FALSE;
12270
            break;
12271
 
12272
          case R_ARM_PC24:
12273
          case R_ARM_PLT32:
12274
          case R_ARM_CALL:
12275
          case R_ARM_JUMP24:
12276
          case R_ARM_PREL31:
12277
          case R_ARM_THM_CALL:
12278
          case R_ARM_THM_JUMP24:
12279
          case R_ARM_THM_JUMP19:
12280
            call_reloc_p = TRUE;
12281
            may_need_local_target_p = TRUE;
12282
            break;
12283
 
12284
          case R_ARM_ABS12:
12285
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12286
               ldr __GOTT_INDEX__ offsets.  */
12287
            if (!htab->vxworks_p)
12288
              {
12289
                may_need_local_target_p = TRUE;
12290
                break;
12291
              }
12292
            /* Fall through.  */
12293
 
12294
          case R_ARM_MOVW_ABS_NC:
12295
          case R_ARM_MOVT_ABS:
12296
          case R_ARM_THM_MOVW_ABS_NC:
12297
          case R_ARM_THM_MOVT_ABS:
12298
            if (info->shared)
12299
              {
12300
                (*_bfd_error_handler)
12301
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12302
                   abfd, elf32_arm_howto_table_1[r_type].name,
12303
                   (h) ? h->root.root.string : "a local symbol");
12304
                bfd_set_error (bfd_error_bad_value);
12305
                return FALSE;
12306
              }
12307
 
12308
            /* Fall through.  */
12309
          case R_ARM_ABS32:
12310
          case R_ARM_ABS32_NOI:
12311
          case R_ARM_REL32:
12312
          case R_ARM_REL32_NOI:
12313
          case R_ARM_MOVW_PREL_NC:
12314
          case R_ARM_MOVT_PREL:
12315
          case R_ARM_THM_MOVW_PREL_NC:
12316
          case R_ARM_THM_MOVT_PREL:
12317
 
12318
            /* Should the interworking branches be listed here?  */
12319
            if ((info->shared || htab->root.is_relocatable_executable)
12320
                && (sec->flags & SEC_ALLOC) != 0)
12321
              {
12322
                if (h == NULL
12323
                    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12324
                  {
12325
                    /* In shared libraries and relocatable executables,
12326
                       we treat local relative references as calls;
12327
                       see the related SYMBOL_CALLS_LOCAL code in
12328
                       allocate_dynrelocs.  */
12329
                    call_reloc_p = TRUE;
12330
                    may_need_local_target_p = TRUE;
12331
                  }
12332
                else
12333
                  /* We are creating a shared library or relocatable
12334
                     executable, and this is a reloc against a global symbol,
12335
                     or a non-PC-relative reloc against a local symbol.
12336
                     We may need to copy the reloc into the output.  */
12337
                  may_become_dynamic_p = TRUE;
12338
              }
12339
            else
12340
              may_need_local_target_p = TRUE;
12341
            break;
12342
 
12343
        /* This relocation describes the C++ object vtable hierarchy.
12344
           Reconstruct it for later use during GC.  */
12345
        case R_ARM_GNU_VTINHERIT:
12346
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12347
            return FALSE;
12348
          break;
12349
 
12350
        /* This relocation describes which C++ vtable entries are actually
12351
           used.  Record for later use during GC.  */
12352
        case R_ARM_GNU_VTENTRY:
12353
          BFD_ASSERT (h != NULL);
12354
          if (h != NULL
12355
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12356
            return FALSE;
12357
          break;
12358
        }
12359
 
12360
      if (h != NULL)
12361
        {
12362
          if (call_reloc_p)
12363
            /* We may need a .plt entry if the function this reloc
12364
               refers to is in a different object, regardless of the
12365
               symbol's type.  We can't tell for sure yet, because
12366
               something later might force the symbol local.  */
12367
            h->needs_plt = 1;
12368
          else if (may_need_local_target_p)
12369
            /* If this reloc is in a read-only section, we might
12370
               need a copy reloc.  We can't check reliably at this
12371
               stage whether the section is read-only, as input
12372
               sections have not yet been mapped to output sections.
12373
               Tentatively set the flag for now, and correct in
12374
               adjust_dynamic_symbol.  */
12375
            h->non_got_ref = 1;
12376
        }
12377
 
12378
      if (may_need_local_target_p
12379
          && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12380
        {
12381
          union gotplt_union *root_plt;
12382
          struct arm_plt_info *arm_plt;
12383
          struct arm_local_iplt_info *local_iplt;
12384
 
12385
          if (h != NULL)
12386
            {
12387
              root_plt = &h->plt;
12388
              arm_plt = &eh->plt;
12389
            }
12390
          else
12391
            {
12392
              local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12393
              if (local_iplt == NULL)
12394
                return FALSE;
12395
              root_plt = &local_iplt->root;
12396
              arm_plt = &local_iplt->arm;
12397
            }
12398
 
12399
          /* If the symbol is a function that doesn't bind locally,
12400
             this relocation will need a PLT entry.  */
12401
          root_plt->refcount += 1;
12402
 
12403
          if (!call_reloc_p)
12404
            arm_plt->noncall_refcount++;
12405
 
12406
          /* It's too early to use htab->use_blx here, so we have to
12407
             record possible blx references separately from
12408
             relocs that definitely need a thumb stub.  */
12409
 
12410
          if (r_type == R_ARM_THM_CALL)
12411
            arm_plt->maybe_thumb_refcount += 1;
12412
 
12413
          if (r_type == R_ARM_THM_JUMP24
12414
              || r_type == R_ARM_THM_JUMP19)
12415
            arm_plt->thumb_refcount += 1;
12416
        }
12417
 
12418
      if (may_become_dynamic_p)
12419
        {
12420
          struct elf_dyn_relocs *p, **head;
12421
 
12422
          /* Create a reloc section in dynobj.  */
12423
          if (sreloc == NULL)
12424
            {
12425
              sreloc = _bfd_elf_make_dynamic_reloc_section
12426
                (sec, dynobj, 2, abfd, ! htab->use_rel);
12427
 
12428
              if (sreloc == NULL)
12429
                return FALSE;
12430
 
12431
              /* BPABI objects never have dynamic relocations mapped.  */
12432
              if (htab->symbian_p)
12433
                {
12434
                  flagword flags;
12435
 
12436
                  flags = bfd_get_section_flags (dynobj, sreloc);
12437
                  flags &= ~(SEC_LOAD | SEC_ALLOC);
12438
                  bfd_set_section_flags (dynobj, sreloc, flags);
12439
                }
12440
            }
12441
 
12442
          /* If this is a global symbol, count the number of
12443
             relocations we need for this symbol.  */
12444
          if (h != NULL)
12445
            head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12446
          else
12447
            {
12448
              head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12449
              if (head == NULL)
12450
                return FALSE;
12451
            }
12452
 
12453
          p = *head;
12454
          if (p == NULL || p->sec != sec)
12455
            {
12456
              bfd_size_type amt = sizeof *p;
12457
 
12458
              p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12459
              if (p == NULL)
12460
                return FALSE;
12461
              p->next = *head;
12462
              *head = p;
12463
              p->sec = sec;
12464
              p->count = 0;
12465
              p->pc_count = 0;
12466
            }
12467
 
12468
          if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12469
            p->pc_count += 1;
12470
          p->count += 1;
12471
        }
12472
    }
12473
 
12474
  return TRUE;
12475
}
12476
 
12477
/* Unwinding tables are not referenced directly.  This pass marks them as
12478
   required if the corresponding code section is marked.  */
12479
 
12480
static bfd_boolean
12481
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12482
                                  elf_gc_mark_hook_fn gc_mark_hook)
12483
{
12484
  bfd *sub;
12485
  Elf_Internal_Shdr **elf_shdrp;
12486
  bfd_boolean again;
12487
 
12488 161 khays
  _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12489
 
12490 14 khays
  /* Marking EH data may cause additional code sections to be marked,
12491
     requiring multiple passes.  */
12492
  again = TRUE;
12493
  while (again)
12494
    {
12495
      again = FALSE;
12496
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12497
        {
12498
          asection *o;
12499
 
12500
          if (! is_arm_elf (sub))
12501
            continue;
12502
 
12503
          elf_shdrp = elf_elfsections (sub);
12504
          for (o = sub->sections; o != NULL; o = o->next)
12505
            {
12506
              Elf_Internal_Shdr *hdr;
12507
 
12508
              hdr = &elf_section_data (o)->this_hdr;
12509
              if (hdr->sh_type == SHT_ARM_EXIDX
12510
                  && hdr->sh_link
12511
                  && hdr->sh_link < elf_numsections (sub)
12512
                  && !o->gc_mark
12513
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12514
                {
12515
                  again = TRUE;
12516
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12517
                    return FALSE;
12518
                }
12519
            }
12520
        }
12521
    }
12522
 
12523
  return TRUE;
12524
}
12525
 
12526
/* Treat mapping symbols as special target symbols.  */
12527
 
12528
static bfd_boolean
12529
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12530
{
12531
  return bfd_is_arm_special_symbol_name (sym->name,
12532
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12533
}
12534
 
12535
/* This is a copy of elf_find_function() from elf.c except that
12536
   ARM mapping symbols are ignored when looking for function names
12537
   and STT_ARM_TFUNC is considered to a function type.  */
12538
 
12539
static bfd_boolean
12540
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
12541
                       asection *    section,
12542
                       asymbol **    symbols,
12543
                       bfd_vma       offset,
12544
                       const char ** filename_ptr,
12545
                       const char ** functionname_ptr)
12546
{
12547
  const char * filename = NULL;
12548
  asymbol * func = NULL;
12549
  bfd_vma low_func = 0;
12550
  asymbol ** p;
12551
 
12552
  for (p = symbols; *p != NULL; p++)
12553
    {
12554
      elf_symbol_type *q;
12555
 
12556
      q = (elf_symbol_type *) *p;
12557
 
12558
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12559
        {
12560
        default:
12561
          break;
12562
        case STT_FILE:
12563
          filename = bfd_asymbol_name (&q->symbol);
12564
          break;
12565
        case STT_FUNC:
12566
        case STT_ARM_TFUNC:
12567
        case STT_NOTYPE:
12568
          /* Skip mapping symbols.  */
12569
          if ((q->symbol.flags & BSF_LOCAL)
12570
              && bfd_is_arm_special_symbol_name (q->symbol.name,
12571
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12572
            continue;
12573
          /* Fall through.  */
12574
          if (bfd_get_section (&q->symbol) == section
12575
              && q->symbol.value >= low_func
12576
              && q->symbol.value <= offset)
12577
            {
12578
              func = (asymbol *) q;
12579
              low_func = q->symbol.value;
12580
            }
12581
          break;
12582
        }
12583
    }
12584
 
12585
  if (func == NULL)
12586
    return FALSE;
12587
 
12588
  if (filename_ptr)
12589
    *filename_ptr = filename;
12590
  if (functionname_ptr)
12591
    *functionname_ptr = bfd_asymbol_name (func);
12592
 
12593
  return TRUE;
12594
}
12595
 
12596
 
12597
/* Find the nearest line to a particular section and offset, for error
12598
   reporting.   This code is a duplicate of the code in elf.c, except
12599
   that it uses arm_elf_find_function.  */
12600
 
12601
static bfd_boolean
12602
elf32_arm_find_nearest_line (bfd *          abfd,
12603
                             asection *     section,
12604
                             asymbol **     symbols,
12605
                             bfd_vma        offset,
12606
                             const char **  filename_ptr,
12607
                             const char **  functionname_ptr,
12608
                             unsigned int * line_ptr)
12609
{
12610
  bfd_boolean found = FALSE;
12611
 
12612
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
12613
 
12614
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
12615
                                     filename_ptr, functionname_ptr,
12616
                                     line_ptr, 0,
12617
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
12618
    {
12619
      if (!*functionname_ptr)
12620
        arm_elf_find_function (abfd, section, symbols, offset,
12621
                               *filename_ptr ? NULL : filename_ptr,
12622
                               functionname_ptr);
12623
 
12624
      return TRUE;
12625
    }
12626
 
12627
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12628
                                             & found, filename_ptr,
12629
                                             functionname_ptr, line_ptr,
12630
                                             & elf_tdata (abfd)->line_info))
12631
    return FALSE;
12632
 
12633
  if (found && (*functionname_ptr || *line_ptr))
12634
    return TRUE;
12635
 
12636
  if (symbols == NULL)
12637
    return FALSE;
12638
 
12639
  if (! arm_elf_find_function (abfd, section, symbols, offset,
12640
                               filename_ptr, functionname_ptr))
12641
    return FALSE;
12642
 
12643
  *line_ptr = 0;
12644
  return TRUE;
12645
}
12646
 
12647
static bfd_boolean
12648
elf32_arm_find_inliner_info (bfd *          abfd,
12649
                             const char **  filename_ptr,
12650
                             const char **  functionname_ptr,
12651
                             unsigned int * line_ptr)
12652
{
12653
  bfd_boolean found;
12654
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12655
                                         functionname_ptr, line_ptr,
12656
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
12657
  return found;
12658
}
12659
 
12660
/* Adjust a symbol defined by a dynamic object and referenced by a
12661
   regular object.  The current definition is in some section of the
12662
   dynamic object, but we're not including those sections.  We have to
12663
   change the definition to something the rest of the link can
12664
   understand.  */
12665
 
12666
static bfd_boolean
12667
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12668
                                 struct elf_link_hash_entry * h)
12669
{
12670
  bfd * dynobj;
12671
  asection * s;
12672
  struct elf32_arm_link_hash_entry * eh;
12673
  struct elf32_arm_link_hash_table *globals;
12674
 
12675
  globals = elf32_arm_hash_table (info);
12676
  if (globals == NULL)
12677
    return FALSE;
12678
 
12679
  dynobj = elf_hash_table (info)->dynobj;
12680
 
12681
  /* Make sure we know what is going on here.  */
12682
  BFD_ASSERT (dynobj != NULL
12683
              && (h->needs_plt
12684
                  || h->type == STT_GNU_IFUNC
12685
                  || h->u.weakdef != NULL
12686
                  || (h->def_dynamic
12687
                      && h->ref_regular
12688
                      && !h->def_regular)));
12689
 
12690
  eh = (struct elf32_arm_link_hash_entry *) h;
12691
 
12692
  /* If this is a function, put it in the procedure linkage table.  We
12693
     will fill in the contents of the procedure linkage table later,
12694
     when we know the address of the .got section.  */
12695
  if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12696
    {
12697
      /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12698
         symbol binds locally.  */
12699
      if (h->plt.refcount <= 0
12700
          || (h->type != STT_GNU_IFUNC
12701
              && (SYMBOL_CALLS_LOCAL (info, h)
12702
                  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12703
                      && h->root.type == bfd_link_hash_undefweak))))
12704
        {
12705
          /* This case can occur if we saw a PLT32 reloc in an input
12706
             file, but the symbol was never referred to by a dynamic
12707
             object, or if all references were garbage collected.  In
12708
             such a case, we don't actually need to build a procedure
12709
             linkage table, and we can just do a PC24 reloc instead.  */
12710
          h->plt.offset = (bfd_vma) -1;
12711
          eh->plt.thumb_refcount = 0;
12712
          eh->plt.maybe_thumb_refcount = 0;
12713
          eh->plt.noncall_refcount = 0;
12714
          h->needs_plt = 0;
12715
        }
12716
 
12717
      return TRUE;
12718
    }
12719
  else
12720
    {
12721
      /* It's possible that we incorrectly decided a .plt reloc was
12722
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
12723
         in check_relocs.  We can't decide accurately between function
12724
         and non-function syms in check-relocs; Objects loaded later in
12725
         the link may change h->type.  So fix it now.  */
12726
      h->plt.offset = (bfd_vma) -1;
12727
      eh->plt.thumb_refcount = 0;
12728
      eh->plt.maybe_thumb_refcount = 0;
12729
      eh->plt.noncall_refcount = 0;
12730
    }
12731
 
12732
  /* If this is a weak symbol, and there is a real definition, the
12733
     processor independent code will have arranged for us to see the
12734
     real definition first, and we can just use the same value.  */
12735
  if (h->u.weakdef != NULL)
12736
    {
12737
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12738
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
12739
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
12740
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
12741
      return TRUE;
12742
    }
12743
 
12744
  /* If there are no non-GOT references, we do not need a copy
12745
     relocation.  */
12746
  if (!h->non_got_ref)
12747
    return TRUE;
12748
 
12749
  /* This is a reference to a symbol defined by a dynamic object which
12750
     is not a function.  */
12751
 
12752
  /* If we are creating a shared library, we must presume that the
12753
     only references to the symbol are via the global offset table.
12754
     For such cases we need not do anything here; the relocations will
12755
     be handled correctly by relocate_section.  Relocatable executables
12756
     can reference data in shared objects directly, so we don't need to
12757
     do anything here.  */
12758
  if (info->shared || globals->root.is_relocatable_executable)
12759
    return TRUE;
12760
 
12761
  if (h->size == 0)
12762
    {
12763
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12764
                             h->root.root.string);
12765
      return TRUE;
12766
    }
12767
 
12768
  /* We must allocate the symbol in our .dynbss section, which will
12769
     become part of the .bss section of the executable.  There will be
12770
     an entry for this symbol in the .dynsym section.  The dynamic
12771
     object will contain position independent code, so all references
12772
     from the dynamic object to this symbol will go through the global
12773
     offset table.  The dynamic linker will use the .dynsym entry to
12774
     determine the address it must put in the global offset table, so
12775
     both the dynamic object and the regular object will refer to the
12776
     same memory location for the variable.  */
12777
  s = bfd_get_section_by_name (dynobj, ".dynbss");
12778
  BFD_ASSERT (s != NULL);
12779
 
12780
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12781
     copy the initial value out of the dynamic object and into the
12782
     runtime process image.  We need to remember the offset into the
12783
     .rel(a).bss section we are going to use.  */
12784
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12785
    {
12786
      asection *srel;
12787
 
12788
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12789
      elf32_arm_allocate_dynrelocs (info, srel, 1);
12790
      h->needs_copy = 1;
12791
    }
12792
 
12793
  return _bfd_elf_adjust_dynamic_copy (h, s);
12794
}
12795
 
12796
/* Allocate space in .plt, .got and associated reloc sections for
12797
   dynamic relocs.  */
12798
 
12799
static bfd_boolean
12800
allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12801
{
12802
  struct bfd_link_info *info;
12803
  struct elf32_arm_link_hash_table *htab;
12804
  struct elf32_arm_link_hash_entry *eh;
12805
  struct elf_dyn_relocs *p;
12806
 
12807
  if (h->root.type == bfd_link_hash_indirect)
12808
    return TRUE;
12809
 
12810
  eh = (struct elf32_arm_link_hash_entry *) h;
12811
 
12812
  info = (struct bfd_link_info *) inf;
12813
  htab = elf32_arm_hash_table (info);
12814
  if (htab == NULL)
12815
    return FALSE;
12816
 
12817
  if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12818
      && h->plt.refcount > 0)
12819
    {
12820
      /* Make sure this symbol is output as a dynamic symbol.
12821
         Undefined weak syms won't yet be marked as dynamic.  */
12822
      if (h->dynindx == -1
12823
          && !h->forced_local)
12824
        {
12825
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
12826
            return FALSE;
12827
        }
12828
 
12829
      /* If the call in the PLT entry binds locally, the associated
12830
         GOT entry should use an R_ARM_IRELATIVE relocation instead of
12831
         the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
12832
         than the .plt section.  */
12833
      if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12834
        {
12835
          eh->is_iplt = 1;
12836
          if (eh->plt.noncall_refcount == 0
12837
              && SYMBOL_REFERENCES_LOCAL (info, h))
12838
            /* All non-call references can be resolved directly.
12839
               This means that they can (and in some cases, must)
12840
               resolve directly to the run-time target, rather than
12841
               to the PLT.  That in turns means that any .got entry
12842
               would be equal to the .igot.plt entry, so there's
12843
               no point having both.  */
12844
            h->got.refcount = 0;
12845
        }
12846
 
12847
      if (info->shared
12848
          || eh->is_iplt
12849
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12850
        {
12851
          elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12852
 
12853
          /* If this symbol is not defined in a regular file, and we are
12854
             not generating a shared library, then set the symbol to this
12855
             location in the .plt.  This is required to make function
12856
             pointers compare as equal between the normal executable and
12857
             the shared library.  */
12858
          if (! info->shared
12859
              && !h->def_regular)
12860
            {
12861
              h->root.u.def.section = htab->root.splt;
12862
              h->root.u.def.value = h->plt.offset;
12863
 
12864
              /* Make sure the function is not marked as Thumb, in case
12865
                 it is the target of an ABS32 relocation, which will
12866
                 point to the PLT entry.  */
12867
              h->target_internal = ST_BRANCH_TO_ARM;
12868
            }
12869
 
12870
          htab->next_tls_desc_index++;
12871
 
12872
          /* VxWorks executables have a second set of relocations for
12873
             each PLT entry.  They go in a separate relocation section,
12874
             which is processed by the kernel loader.  */
12875
          if (htab->vxworks_p && !info->shared)
12876
            {
12877
              /* There is a relocation for the initial PLT entry:
12878
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
12879
              if (h->plt.offset == htab->plt_header_size)
12880
                elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12881
 
12882
              /* There are two extra relocations for each subsequent
12883
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
12884
                 and an R_ARM_32 relocation for the PLT entry.  */
12885
              elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12886
            }
12887
        }
12888
      else
12889
        {
12890
          h->plt.offset = (bfd_vma) -1;
12891
          h->needs_plt = 0;
12892
        }
12893
    }
12894
  else
12895
    {
12896
      h->plt.offset = (bfd_vma) -1;
12897
      h->needs_plt = 0;
12898
    }
12899
 
12900
  eh = (struct elf32_arm_link_hash_entry *) h;
12901
  eh->tlsdesc_got = (bfd_vma) -1;
12902
 
12903
  if (h->got.refcount > 0)
12904
    {
12905
      asection *s;
12906
      bfd_boolean dyn;
12907
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
12908
      int indx;
12909
 
12910
      /* Make sure this symbol is output as a dynamic symbol.
12911
         Undefined weak syms won't yet be marked as dynamic.  */
12912
      if (h->dynindx == -1
12913
          && !h->forced_local)
12914
        {
12915
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
12916
            return FALSE;
12917
        }
12918
 
12919
      if (!htab->symbian_p)
12920
        {
12921
          s = htab->root.sgot;
12922
          h->got.offset = s->size;
12923
 
12924
          if (tls_type == GOT_UNKNOWN)
12925
            abort ();
12926
 
12927
          if (tls_type == GOT_NORMAL)
12928
            /* Non-TLS symbols need one GOT slot.  */
12929
            s->size += 4;
12930
          else
12931
            {
12932
              if (tls_type & GOT_TLS_GDESC)
12933
                {
12934
                  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
12935
                  eh->tlsdesc_got
12936
                    = (htab->root.sgotplt->size
12937
                       - elf32_arm_compute_jump_table_size (htab));
12938
                  htab->root.sgotplt->size += 8;
12939
                  h->got.offset = (bfd_vma) -2;
12940
                  /* plt.got_offset needs to know there's a TLS_DESC
12941
                     reloc in the middle of .got.plt.  */
12942
                  htab->num_tls_desc++;
12943
                }
12944
 
12945
              if (tls_type & GOT_TLS_GD)
12946
                {
12947
                  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
12948
                     the symbol is both GD and GDESC, got.offset may
12949
                     have been overwritten.  */
12950
                  h->got.offset = s->size;
12951
                  s->size += 8;
12952
                }
12953
 
12954
              if (tls_type & GOT_TLS_IE)
12955
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
12956
                s->size += 4;
12957
            }
12958
 
12959
          dyn = htab->root.dynamic_sections_created;
12960
 
12961
          indx = 0;
12962
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12963
              && (!info->shared
12964
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
12965
            indx = h->dynindx;
12966
 
12967
          if (tls_type != GOT_NORMAL
12968
              && (info->shared || indx != 0)
12969
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12970
                  || h->root.type != bfd_link_hash_undefweak))
12971
            {
12972
              if (tls_type & GOT_TLS_IE)
12973
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12974
 
12975
              if (tls_type & GOT_TLS_GD)
12976
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12977
 
12978
              if (tls_type & GOT_TLS_GDESC)
12979
                {
12980
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
12981
                  /* GDESC needs a trampoline to jump to.  */
12982
                  htab->tls_trampoline = -1;
12983
                }
12984
 
12985
              /* Only GD needs it.  GDESC just emits one relocation per
12986
                 2 entries.  */
12987
              if ((tls_type & GOT_TLS_GD) && indx != 0)
12988
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12989
            }
12990
          else if (!SYMBOL_REFERENCES_LOCAL (info, h))
12991
            {
12992
              if (htab->root.dynamic_sections_created)
12993
                /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
12994
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12995
            }
12996
          else if (h->type == STT_GNU_IFUNC
12997
                   && eh->plt.noncall_refcount == 0)
12998
            /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12999
               they all resolve dynamically instead.  Reserve room for the
13000
               GOT entry's R_ARM_IRELATIVE relocation.  */
13001
            elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13002
          else if (info->shared)
13003
            /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
13004
            elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13005
        }
13006
    }
13007
  else
13008
    h->got.offset = (bfd_vma) -1;
13009
 
13010
  /* Allocate stubs for exported Thumb functions on v4t.  */
13011
  if (!htab->use_blx && h->dynindx != -1
13012
      && h->def_regular
13013
      && h->target_internal == ST_BRANCH_TO_THUMB
13014
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13015
    {
13016
      struct elf_link_hash_entry * th;
13017
      struct bfd_link_hash_entry * bh;
13018
      struct elf_link_hash_entry * myh;
13019
      char name[1024];
13020
      asection *s;
13021
      bh = NULL;
13022
      /* Create a new symbol to regist the real location of the function.  */
13023
      s = h->root.u.def.section;
13024
      sprintf (name, "__real_%s", h->root.root.string);
13025
      _bfd_generic_link_add_one_symbol (info, s->owner,
13026
                                        name, BSF_GLOBAL, s,
13027
                                        h->root.u.def.value,
13028
                                        NULL, TRUE, FALSE, &bh);
13029
 
13030
      myh = (struct elf_link_hash_entry *) bh;
13031
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13032
      myh->forced_local = 1;
13033
      myh->target_internal = ST_BRANCH_TO_THUMB;
13034
      eh->export_glue = myh;
13035
      th = record_arm_to_thumb_glue (info, h);
13036
      /* Point the symbol at the stub.  */
13037
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13038
      h->target_internal = ST_BRANCH_TO_ARM;
13039
      h->root.u.def.section = th->root.u.def.section;
13040
      h->root.u.def.value = th->root.u.def.value & ~1;
13041
    }
13042
 
13043
  if (eh->dyn_relocs == NULL)
13044
    return TRUE;
13045
 
13046
  /* In the shared -Bsymbolic case, discard space allocated for
13047
     dynamic pc-relative relocs against symbols which turn out to be
13048
     defined in regular objects.  For the normal shared case, discard
13049
     space for pc-relative relocs that have become local due to symbol
13050
     visibility changes.  */
13051
 
13052
  if (info->shared || htab->root.is_relocatable_executable)
13053
    {
13054
      /* The only relocs that use pc_count are R_ARM_REL32 and
13055
         R_ARM_REL32_NOI, which will appear on something like
13056
         ".long foo - .".  We want calls to protected symbols to resolve
13057
         directly to the function rather than going via the plt.  If people
13058
         want function pointer comparisons to work as expected then they
13059
         should avoid writing assembly like ".long foo - .".  */
13060
      if (SYMBOL_CALLS_LOCAL (info, h))
13061
        {
13062
          struct elf_dyn_relocs **pp;
13063
 
13064
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13065
            {
13066
              p->count -= p->pc_count;
13067
              p->pc_count = 0;
13068
              if (p->count == 0)
13069
                *pp = p->next;
13070
              else
13071
                pp = &p->next;
13072
            }
13073
        }
13074
 
13075
      if (htab->vxworks_p)
13076
        {
13077
          struct elf_dyn_relocs **pp;
13078
 
13079
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13080
            {
13081
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13082
                *pp = p->next;
13083
              else
13084
                pp = &p->next;
13085
            }
13086
        }
13087
 
13088
      /* Also discard relocs on undefined weak syms with non-default
13089
         visibility.  */
13090
      if (eh->dyn_relocs != NULL
13091
          && h->root.type == bfd_link_hash_undefweak)
13092
        {
13093
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13094
            eh->dyn_relocs = NULL;
13095
 
13096
          /* Make sure undefined weak symbols are output as a dynamic
13097
             symbol in PIEs.  */
13098
          else if (h->dynindx == -1
13099
                   && !h->forced_local)
13100
            {
13101
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
13102
                return FALSE;
13103
            }
13104
        }
13105
 
13106
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
13107
               && h->root.type == bfd_link_hash_new)
13108
        {
13109
          /* Output absolute symbols so that we can create relocations
13110
             against them.  For normal symbols we output a relocation
13111
             against the section that contains them.  */
13112
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
13113
            return FALSE;
13114
        }
13115
 
13116
    }
13117
  else
13118
    {
13119
      /* For the non-shared case, discard space for relocs against
13120
         symbols which turn out to need copy relocs or are not
13121
         dynamic.  */
13122
 
13123
      if (!h->non_got_ref
13124
          && ((h->def_dynamic
13125
               && !h->def_regular)
13126
              || (htab->root.dynamic_sections_created
13127
                  && (h->root.type == bfd_link_hash_undefweak
13128
                      || h->root.type == bfd_link_hash_undefined))))
13129
        {
13130
          /* Make sure this symbol is output as a dynamic symbol.
13131
             Undefined weak syms won't yet be marked as dynamic.  */
13132
          if (h->dynindx == -1
13133
              && !h->forced_local)
13134
            {
13135
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
13136
                return FALSE;
13137
            }
13138
 
13139
          /* If that succeeded, we know we'll be keeping all the
13140
             relocs.  */
13141
          if (h->dynindx != -1)
13142
            goto keep;
13143
        }
13144
 
13145
      eh->dyn_relocs = NULL;
13146
 
13147
    keep: ;
13148
    }
13149
 
13150
  /* Finally, allocate space.  */
13151
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
13152
    {
13153
      asection *sreloc = elf_section_data (p->sec)->sreloc;
13154
      if (h->type == STT_GNU_IFUNC
13155
          && eh->plt.noncall_refcount == 0
13156
          && SYMBOL_REFERENCES_LOCAL (info, h))
13157
        elf32_arm_allocate_irelocs (info, sreloc, p->count);
13158
      else
13159
        elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13160
    }
13161
 
13162
  return TRUE;
13163
}
13164
 
13165
/* Find any dynamic relocs that apply to read-only sections.  */
13166
 
13167
static bfd_boolean
13168
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13169
{
13170
  struct elf32_arm_link_hash_entry * eh;
13171
  struct elf_dyn_relocs * p;
13172
 
13173
  eh = (struct elf32_arm_link_hash_entry *) h;
13174
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
13175
    {
13176
      asection *s = p->sec;
13177
 
13178
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
13179
        {
13180
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
13181
 
13182
          info->flags |= DF_TEXTREL;
13183
 
13184
          /* Not an error, just cut short the traversal.  */
13185
          return FALSE;
13186
        }
13187
    }
13188
  return TRUE;
13189
}
13190
 
13191
void
13192
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13193
                                 int byteswap_code)
13194
{
13195
  struct elf32_arm_link_hash_table *globals;
13196
 
13197
  globals = elf32_arm_hash_table (info);
13198
  if (globals == NULL)
13199
    return;
13200
 
13201
  globals->byteswap_code = byteswap_code;
13202
}
13203
 
13204
/* Set the sizes of the dynamic sections.  */
13205
 
13206
static bfd_boolean
13207
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13208
                                 struct bfd_link_info * info)
13209
{
13210
  bfd * dynobj;
13211
  asection * s;
13212
  bfd_boolean plt;
13213
  bfd_boolean relocs;
13214
  bfd *ibfd;
13215
  struct elf32_arm_link_hash_table *htab;
13216
 
13217
  htab = elf32_arm_hash_table (info);
13218
  if (htab == NULL)
13219
    return FALSE;
13220
 
13221
  dynobj = elf_hash_table (info)->dynobj;
13222
  BFD_ASSERT (dynobj != NULL);
13223
  check_use_blx (htab);
13224
 
13225
  if (elf_hash_table (info)->dynamic_sections_created)
13226
    {
13227
      /* Set the contents of the .interp section to the interpreter.  */
13228
      if (info->executable)
13229
        {
13230
          s = bfd_get_section_by_name (dynobj, ".interp");
13231
          BFD_ASSERT (s != NULL);
13232
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13233
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13234
        }
13235
    }
13236
 
13237
  /* Set up .got offsets for local syms, and space for local dynamic
13238
     relocs.  */
13239
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13240
    {
13241
      bfd_signed_vma *local_got;
13242
      bfd_signed_vma *end_local_got;
13243
      struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13244
      char *local_tls_type;
13245
      bfd_vma *local_tlsdesc_gotent;
13246
      bfd_size_type locsymcount;
13247
      Elf_Internal_Shdr *symtab_hdr;
13248
      asection *srel;
13249
      bfd_boolean is_vxworks = htab->vxworks_p;
13250
      unsigned int symndx;
13251
 
13252
      if (! is_arm_elf (ibfd))
13253
        continue;
13254
 
13255
      for (s = ibfd->sections; s != NULL; s = s->next)
13256
        {
13257
          struct elf_dyn_relocs *p;
13258
 
13259
          for (p = (struct elf_dyn_relocs *)
13260
                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13261
            {
13262
              if (!bfd_is_abs_section (p->sec)
13263
                  && bfd_is_abs_section (p->sec->output_section))
13264
                {
13265
                  /* Input section has been discarded, either because
13266
                     it is a copy of a linkonce section or due to
13267
                     linker script /DISCARD/, so we'll be discarding
13268
                     the relocs too.  */
13269
                }
13270
              else if (is_vxworks
13271
                       && strcmp (p->sec->output_section->name,
13272
                                  ".tls_vars") == 0)
13273
                {
13274
                  /* Relocations in vxworks .tls_vars sections are
13275
                     handled specially by the loader.  */
13276
                }
13277
              else if (p->count != 0)
13278
                {
13279
                  srel = elf_section_data (p->sec)->sreloc;
13280
                  elf32_arm_allocate_dynrelocs (info, srel, p->count);
13281
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13282
                    info->flags |= DF_TEXTREL;
13283
                }
13284
            }
13285
        }
13286
 
13287
      local_got = elf_local_got_refcounts (ibfd);
13288
      if (!local_got)
13289
        continue;
13290
 
13291
      symtab_hdr = & elf_symtab_hdr (ibfd);
13292
      locsymcount = symtab_hdr->sh_info;
13293
      end_local_got = local_got + locsymcount;
13294
      local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13295
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13296
      local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13297
      symndx = 0;
13298
      s = htab->root.sgot;
13299
      srel = htab->root.srelgot;
13300
      for (; local_got < end_local_got;
13301
           ++local_got, ++local_iplt_ptr, ++local_tls_type,
13302
           ++local_tlsdesc_gotent, ++symndx)
13303
        {
13304
          *local_tlsdesc_gotent = (bfd_vma) -1;
13305
          local_iplt = *local_iplt_ptr;
13306
          if (local_iplt != NULL)
13307
            {
13308
              struct elf_dyn_relocs *p;
13309
 
13310
              if (local_iplt->root.refcount > 0)
13311
                {
13312
                  elf32_arm_allocate_plt_entry (info, TRUE,
13313
                                                &local_iplt->root,
13314
                                                &local_iplt->arm);
13315
                  if (local_iplt->arm.noncall_refcount == 0)
13316
                    /* All references to the PLT are calls, so all
13317
                       non-call references can resolve directly to the
13318
                       run-time target.  This means that the .got entry
13319
                       would be the same as the .igot.plt entry, so there's
13320
                       no point creating both.  */
13321
                    *local_got = 0;
13322
                }
13323
              else
13324
                {
13325
                  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13326
                  local_iplt->root.offset = (bfd_vma) -1;
13327
                }
13328
 
13329
              for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13330
                {
13331
                  asection *psrel;
13332
 
13333
                  psrel = elf_section_data (p->sec)->sreloc;
13334
                  if (local_iplt->arm.noncall_refcount == 0)
13335
                    elf32_arm_allocate_irelocs (info, psrel, p->count);
13336
                  else
13337
                    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13338
                }
13339
            }
13340
          if (*local_got > 0)
13341
            {
13342
              Elf_Internal_Sym *isym;
13343
 
13344
              *local_got = s->size;
13345
              if (*local_tls_type & GOT_TLS_GD)
13346
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
13347
                s->size += 8;
13348
              if (*local_tls_type & GOT_TLS_GDESC)
13349
                {
13350
                  *local_tlsdesc_gotent = htab->root.sgotplt->size
13351
                    - elf32_arm_compute_jump_table_size (htab);
13352
                  htab->root.sgotplt->size += 8;
13353
                  *local_got = (bfd_vma) -2;
13354
                  /* plt.got_offset needs to know there's a TLS_DESC
13355
                     reloc in the middle of .got.plt.  */
13356
                  htab->num_tls_desc++;
13357
                }
13358
              if (*local_tls_type & GOT_TLS_IE)
13359
                s->size += 4;
13360
 
13361
              if (*local_tls_type & GOT_NORMAL)
13362
                {
13363
                  /* If the symbol is both GD and GDESC, *local_got
13364
                     may have been overwritten.  */
13365
                  *local_got = s->size;
13366
                  s->size += 4;
13367
                }
13368
 
13369
              isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13370
              if (isym == NULL)
13371
                return FALSE;
13372
 
13373
              /* If all references to an STT_GNU_IFUNC PLT are calls,
13374
                 then all non-call references, including this GOT entry,
13375
                 resolve directly to the run-time target.  */
13376
              if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13377
                  && (local_iplt == NULL
13378
                      || local_iplt->arm.noncall_refcount == 0))
13379
                elf32_arm_allocate_irelocs (info, srel, 1);
13380
              else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13381
                       || *local_tls_type & GOT_TLS_GD)
13382
                elf32_arm_allocate_dynrelocs (info, srel, 1);
13383
 
13384
              if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13385
                {
13386
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13387
                  htab->tls_trampoline = -1;
13388
                }
13389
            }
13390
          else
13391
            *local_got = (bfd_vma) -1;
13392
        }
13393
    }
13394
 
13395
  if (htab->tls_ldm_got.refcount > 0)
13396
    {
13397
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
13398
         for R_ARM_TLS_LDM32 relocations.  */
13399
      htab->tls_ldm_got.offset = htab->root.sgot->size;
13400
      htab->root.sgot->size += 8;
13401
      if (info->shared)
13402
        elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13403
    }
13404
  else
13405
    htab->tls_ldm_got.offset = -1;
13406
 
13407
  /* Allocate global sym .plt and .got entries, and space for global
13408
     sym dynamic relocs.  */
13409
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13410
 
13411
  /* Here we rummage through the found bfds to collect glue information.  */
13412
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13413
    {
13414
      if (! is_arm_elf (ibfd))
13415
        continue;
13416
 
13417
      /* Initialise mapping tables for code/data.  */
13418
      bfd_elf32_arm_init_maps (ibfd);
13419
 
13420
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13421
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13422
        /* xgettext:c-format */
13423
        _bfd_error_handler (_("Errors encountered processing file %s"),
13424
                            ibfd->filename);
13425
    }
13426
 
13427
  /* Allocate space for the glue sections now that we've sized them.  */
13428
  bfd_elf32_arm_allocate_interworking_sections (info);
13429
 
13430
  /* For every jump slot reserved in the sgotplt, reloc_count is
13431
     incremented.  However, when we reserve space for TLS descriptors,
13432
     it's not incremented, so in order to compute the space reserved
13433
     for them, it suffices to multiply the reloc count by the jump
13434
     slot size.  */
13435
  if (htab->root.srelplt)
13436
    htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13437
 
13438
  if (htab->tls_trampoline)
13439
    {
13440
      if (htab->root.splt->size == 0)
13441
        htab->root.splt->size += htab->plt_header_size;
13442
 
13443
      htab->tls_trampoline = htab->root.splt->size;
13444
      htab->root.splt->size += htab->plt_entry_size;
13445
 
13446
      /* If we're not using lazy TLS relocations, don't generate the
13447
         PLT and GOT entries they require.  */
13448
      if (!(info->flags & DF_BIND_NOW))
13449
        {
13450
          htab->dt_tlsdesc_got = htab->root.sgot->size;
13451
          htab->root.sgot->size += 4;
13452
 
13453
          htab->dt_tlsdesc_plt = htab->root.splt->size;
13454
          htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13455
        }
13456
    }
13457
 
13458
  /* The check_relocs and adjust_dynamic_symbol entry points have
13459
     determined the sizes of the various dynamic sections.  Allocate
13460
     memory for them.  */
13461
  plt = FALSE;
13462
  relocs = FALSE;
13463
  for (s = dynobj->sections; s != NULL; s = s->next)
13464
    {
13465
      const char * name;
13466
 
13467
      if ((s->flags & SEC_LINKER_CREATED) == 0)
13468
        continue;
13469
 
13470
      /* It's OK to base decisions on the section name, because none
13471
         of the dynobj section names depend upon the input files.  */
13472
      name = bfd_get_section_name (dynobj, s);
13473
 
13474
      if (s == htab->root.splt)
13475
        {
13476
          /* Remember whether there is a PLT.  */
13477
          plt = s->size != 0;
13478
        }
13479
      else if (CONST_STRNEQ (name, ".rel"))
13480
        {
13481
          if (s->size != 0)
13482
            {
13483
              /* Remember whether there are any reloc sections other
13484
                 than .rel(a).plt and .rela.plt.unloaded.  */
13485
              if (s != htab->root.srelplt && s != htab->srelplt2)
13486
                relocs = TRUE;
13487
 
13488
              /* We use the reloc_count field as a counter if we need
13489
                 to copy relocs into the output file.  */
13490
              s->reloc_count = 0;
13491
            }
13492
        }
13493
      else if (s != htab->root.sgot
13494
               && s != htab->root.sgotplt
13495
               && s != htab->root.iplt
13496
               && s != htab->root.igotplt
13497
               && s != htab->sdynbss)
13498
        {
13499
          /* It's not one of our sections, so don't allocate space.  */
13500
          continue;
13501
        }
13502
 
13503
      if (s->size == 0)
13504
        {
13505
          /* If we don't need this section, strip it from the
13506
             output file.  This is mostly to handle .rel(a).bss and
13507
             .rel(a).plt.  We must create both sections in
13508
             create_dynamic_sections, because they must be created
13509
             before the linker maps input sections to output
13510
             sections.  The linker does that before
13511
             adjust_dynamic_symbol is called, and it is that
13512
             function which decides whether anything needs to go
13513
             into these sections.  */
13514
          s->flags |= SEC_EXCLUDE;
13515
          continue;
13516
        }
13517
 
13518
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
13519
        continue;
13520
 
13521
      /* Allocate memory for the section contents.  */
13522
      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13523
      if (s->contents == NULL)
13524
        return FALSE;
13525
    }
13526
 
13527
  if (elf_hash_table (info)->dynamic_sections_created)
13528
    {
13529
      /* Add some entries to the .dynamic section.  We fill in the
13530
         values later, in elf32_arm_finish_dynamic_sections, but we
13531
         must add the entries now so that we get the correct size for
13532
         the .dynamic section.  The DT_DEBUG entry is filled in by the
13533
         dynamic linker and used by the debugger.  */
13534
#define add_dynamic_entry(TAG, VAL) \
13535
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13536
 
13537
     if (info->executable)
13538
        {
13539
          if (!add_dynamic_entry (DT_DEBUG, 0))
13540
            return FALSE;
13541
        }
13542
 
13543
      if (plt)
13544
        {
13545
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
13546
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
13547
              || !add_dynamic_entry (DT_PLTREL,
13548
                                     htab->use_rel ? DT_REL : DT_RELA)
13549
              || !add_dynamic_entry (DT_JMPREL, 0))
13550
            return FALSE;
13551
 
13552
          if (htab->dt_tlsdesc_plt &&
13553
                (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13554
                 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13555
            return FALSE;
13556
        }
13557
 
13558
      if (relocs)
13559
        {
13560
          if (htab->use_rel)
13561
            {
13562
              if (!add_dynamic_entry (DT_REL, 0)
13563
                  || !add_dynamic_entry (DT_RELSZ, 0)
13564
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13565
                return FALSE;
13566
            }
13567
          else
13568
            {
13569
              if (!add_dynamic_entry (DT_RELA, 0)
13570
                  || !add_dynamic_entry (DT_RELASZ, 0)
13571
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13572
                return FALSE;
13573
            }
13574
        }
13575
 
13576
      /* If any dynamic relocs apply to a read-only section,
13577
         then we need a DT_TEXTREL entry.  */
13578
      if ((info->flags & DF_TEXTREL) == 0)
13579
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13580
                                info);
13581
 
13582
      if ((info->flags & DF_TEXTREL) != 0)
13583
        {
13584
          if (!add_dynamic_entry (DT_TEXTREL, 0))
13585
            return FALSE;
13586
        }
13587
      if (htab->vxworks_p
13588
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13589
        return FALSE;
13590
    }
13591
#undef add_dynamic_entry
13592
 
13593
  return TRUE;
13594
}
13595
 
13596
/* Size sections even though they're not dynamic.  We use it to setup
13597
   _TLS_MODULE_BASE_, if needed.  */
13598
 
13599
static bfd_boolean
13600
elf32_arm_always_size_sections (bfd *output_bfd,
13601
                                struct bfd_link_info *info)
13602
{
13603
  asection *tls_sec;
13604
 
13605
  if (info->relocatable)
13606
    return TRUE;
13607
 
13608
  tls_sec = elf_hash_table (info)->tls_sec;
13609
 
13610
  if (tls_sec)
13611
    {
13612
      struct elf_link_hash_entry *tlsbase;
13613
 
13614
      tlsbase = elf_link_hash_lookup
13615
        (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13616
 
13617
      if (tlsbase)
13618
        {
13619
          struct bfd_link_hash_entry *bh = NULL;
13620
          const struct elf_backend_data *bed
13621
            = get_elf_backend_data (output_bfd);
13622
 
13623
          if (!(_bfd_generic_link_add_one_symbol
13624
                (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13625
                 tls_sec, 0, NULL, FALSE,
13626
                 bed->collect, &bh)))
13627
            return FALSE;
13628
 
13629
          tlsbase->type = STT_TLS;
13630
          tlsbase = (struct elf_link_hash_entry *)bh;
13631
          tlsbase->def_regular = 1;
13632
          tlsbase->other = STV_HIDDEN;
13633
          (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13634
        }
13635
    }
13636
  return TRUE;
13637
}
13638
 
13639
/* Finish up dynamic symbol handling.  We set the contents of various
13640
   dynamic sections here.  */
13641
 
13642
static bfd_boolean
13643
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13644
                                 struct bfd_link_info * info,
13645
                                 struct elf_link_hash_entry * h,
13646
                                 Elf_Internal_Sym * sym)
13647
{
13648
  struct elf32_arm_link_hash_table *htab;
13649
  struct elf32_arm_link_hash_entry *eh;
13650
 
13651
  htab = elf32_arm_hash_table (info);
13652
  if (htab == NULL)
13653
    return FALSE;
13654
 
13655
  eh = (struct elf32_arm_link_hash_entry *) h;
13656
 
13657
  if (h->plt.offset != (bfd_vma) -1)
13658
    {
13659
      if (!eh->is_iplt)
13660
        {
13661
          BFD_ASSERT (h->dynindx != -1);
13662
          elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13663
                                        h->dynindx, 0);
13664
        }
13665
 
13666
      if (!h->def_regular)
13667
        {
13668
          /* Mark the symbol as undefined, rather than as defined in
13669
             the .plt section.  Leave the value alone.  */
13670
          sym->st_shndx = SHN_UNDEF;
13671
          /* If the symbol is weak, we do need to clear the value.
13672
             Otherwise, the PLT entry would provide a definition for
13673
             the symbol even if the symbol wasn't defined anywhere,
13674
             and so the symbol would never be NULL.  */
13675
          if (!h->ref_regular_nonweak)
13676
            sym->st_value = 0;
13677
        }
13678
      else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13679
        {
13680
          /* At least one non-call relocation references this .iplt entry,
13681
             so the .iplt entry is the function's canonical address.  */
13682
          sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13683
          sym->st_target_internal = ST_BRANCH_TO_ARM;
13684
          sym->st_shndx = (_bfd_elf_section_from_bfd_section
13685
                           (output_bfd, htab->root.iplt->output_section));
13686
          sym->st_value = (h->plt.offset
13687
                           + htab->root.iplt->output_section->vma
13688
                           + htab->root.iplt->output_offset);
13689
        }
13690
    }
13691
 
13692
  if (h->needs_copy)
13693
    {
13694
      asection * s;
13695
      Elf_Internal_Rela rel;
13696
 
13697
      /* This symbol needs a copy reloc.  Set it up.  */
13698
      BFD_ASSERT (h->dynindx != -1
13699
                  && (h->root.type == bfd_link_hash_defined
13700
                      || h->root.type == bfd_link_hash_defweak));
13701
 
13702
      s = htab->srelbss;
13703
      BFD_ASSERT (s != NULL);
13704
 
13705
      rel.r_addend = 0;
13706
      rel.r_offset = (h->root.u.def.value
13707
                      + h->root.u.def.section->output_section->vma
13708
                      + h->root.u.def.section->output_offset);
13709
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13710
      elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13711
    }
13712
 
13713
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
13714
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13715
     to the ".got" section.  */
13716
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13717
      || (!htab->vxworks_p && h == htab->root.hgot))
13718
    sym->st_shndx = SHN_ABS;
13719
 
13720
  return TRUE;
13721
}
13722
 
13723
static void
13724
arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13725
                    void *contents,
13726
                    const unsigned long *template, unsigned count)
13727
{
13728
  unsigned ix;
13729
 
13730
  for (ix = 0; ix != count; ix++)
13731
    {
13732
      unsigned long insn = template[ix];
13733
 
13734
      /* Emit mov pc,rx if bx is not permitted.  */
13735
      if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13736
        insn = (insn & 0xf000000f) | 0x01a0f000;
13737
      put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13738
    }
13739
}
13740
 
13741
/* Finish up the dynamic sections.  */
13742
 
13743
static bfd_boolean
13744
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13745
{
13746
  bfd * dynobj;
13747
  asection * sgot;
13748
  asection * sdyn;
13749
  struct elf32_arm_link_hash_table *htab;
13750
 
13751
  htab = elf32_arm_hash_table (info);
13752
  if (htab == NULL)
13753
    return FALSE;
13754
 
13755
  dynobj = elf_hash_table (info)->dynobj;
13756
 
13757
  sgot = htab->root.sgotplt;
13758 148 khays
  /* A broken linker script might have discarded the dynamic sections.
13759
     Catch this here so that we do not seg-fault later on.  */
13760
  if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
13761
    return FALSE;
13762 14 khays
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13763
 
13764
  if (elf_hash_table (info)->dynamic_sections_created)
13765
    {
13766
      asection *splt;
13767
      Elf32_External_Dyn *dyncon, *dynconend;
13768
 
13769
      splt = htab->root.splt;
13770
      BFD_ASSERT (splt != NULL && sdyn != NULL);
13771
      BFD_ASSERT (htab->symbian_p || sgot != NULL);
13772
 
13773
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
13774
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13775
 
13776
      for (; dyncon < dynconend; dyncon++)
13777
        {
13778
          Elf_Internal_Dyn dyn;
13779
          const char * name;
13780
          asection * s;
13781
 
13782
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13783
 
13784
          switch (dyn.d_tag)
13785
            {
13786
              unsigned int type;
13787
 
13788
            default:
13789
              if (htab->vxworks_p
13790
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13791
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13792
              break;
13793
 
13794
            case DT_HASH:
13795
              name = ".hash";
13796
              goto get_vma_if_bpabi;
13797
            case DT_STRTAB:
13798
              name = ".dynstr";
13799
              goto get_vma_if_bpabi;
13800
            case DT_SYMTAB:
13801
              name = ".dynsym";
13802
              goto get_vma_if_bpabi;
13803
            case DT_VERSYM:
13804
              name = ".gnu.version";
13805
              goto get_vma_if_bpabi;
13806
            case DT_VERDEF:
13807
              name = ".gnu.version_d";
13808
              goto get_vma_if_bpabi;
13809
            case DT_VERNEED:
13810
              name = ".gnu.version_r";
13811
              goto get_vma_if_bpabi;
13812
 
13813
            case DT_PLTGOT:
13814
              name = ".got";
13815
              goto get_vma;
13816
            case DT_JMPREL:
13817
              name = RELOC_SECTION (htab, ".plt");
13818
            get_vma:
13819
              s = bfd_get_section_by_name (output_bfd, name);
13820
              BFD_ASSERT (s != NULL);
13821
              if (!htab->symbian_p)
13822
                dyn.d_un.d_ptr = s->vma;
13823
              else
13824
                /* In the BPABI, tags in the PT_DYNAMIC section point
13825
                   at the file offset, not the memory address, for the
13826
                   convenience of the post linker.  */
13827
                dyn.d_un.d_ptr = s->filepos;
13828
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13829
              break;
13830
 
13831
            get_vma_if_bpabi:
13832
              if (htab->symbian_p)
13833
                goto get_vma;
13834
              break;
13835
 
13836
            case DT_PLTRELSZ:
13837
              s = htab->root.srelplt;
13838
              BFD_ASSERT (s != NULL);
13839
              dyn.d_un.d_val = s->size;
13840
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13841
              break;
13842
 
13843
            case DT_RELSZ:
13844
            case DT_RELASZ:
13845
              if (!htab->symbian_p)
13846
                {
13847
                  /* My reading of the SVR4 ABI indicates that the
13848
                     procedure linkage table relocs (DT_JMPREL) should be
13849
                     included in the overall relocs (DT_REL).  This is
13850
                     what Solaris does.  However, UnixWare can not handle
13851
                     that case.  Therefore, we override the DT_RELSZ entry
13852
                     here to make it not include the JMPREL relocs.  Since
13853
                     the linker script arranges for .rel(a).plt to follow all
13854
                     other relocation sections, we don't have to worry
13855
                     about changing the DT_REL entry.  */
13856
                  s = htab->root.srelplt;
13857
                  if (s != NULL)
13858
                    dyn.d_un.d_val -= s->size;
13859
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13860
                  break;
13861
                }
13862
              /* Fall through.  */
13863
 
13864
            case DT_REL:
13865
            case DT_RELA:
13866
              /* In the BPABI, the DT_REL tag must point at the file
13867
                 offset, not the VMA, of the first relocation
13868
                 section.  So, we use code similar to that in
13869
                 elflink.c, but do not check for SHF_ALLOC on the
13870
                 relcoation section, since relocations sections are
13871
                 never allocated under the BPABI.  The comments above
13872
                 about Unixware notwithstanding, we include all of the
13873
                 relocations here.  */
13874
              if (htab->symbian_p)
13875
                {
13876
                  unsigned int i;
13877
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13878
                          ? SHT_REL : SHT_RELA);
13879
                  dyn.d_un.d_val = 0;
13880
                  for (i = 1; i < elf_numsections (output_bfd); i++)
13881
                    {
13882
                      Elf_Internal_Shdr *hdr
13883
                        = elf_elfsections (output_bfd)[i];
13884
                      if (hdr->sh_type == type)
13885
                        {
13886
                          if (dyn.d_tag == DT_RELSZ
13887
                              || dyn.d_tag == DT_RELASZ)
13888
                            dyn.d_un.d_val += hdr->sh_size;
13889
                          else if ((ufile_ptr) hdr->sh_offset
13890
                                   <= dyn.d_un.d_val - 1)
13891
                            dyn.d_un.d_val = hdr->sh_offset;
13892
                        }
13893
                    }
13894
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13895
                }
13896
              break;
13897
 
13898
            case DT_TLSDESC_PLT:
13899
              s = htab->root.splt;
13900
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13901
                                + htab->dt_tlsdesc_plt);
13902
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13903
              break;
13904
 
13905
            case DT_TLSDESC_GOT:
13906
              s = htab->root.sgot;
13907
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13908
                                + htab->dt_tlsdesc_got);
13909
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13910
              break;
13911
 
13912
              /* Set the bottom bit of DT_INIT/FINI if the
13913
                 corresponding function is Thumb.  */
13914
            case DT_INIT:
13915
              name = info->init_function;
13916
              goto get_sym;
13917
            case DT_FINI:
13918
              name = info->fini_function;
13919
            get_sym:
13920
              /* If it wasn't set by elf_bfd_final_link
13921
                 then there is nothing to adjust.  */
13922
              if (dyn.d_un.d_val != 0)
13923
                {
13924
                  struct elf_link_hash_entry * eh;
13925
 
13926
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
13927
                                             FALSE, FALSE, TRUE);
13928
                  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13929
                    {
13930
                      dyn.d_un.d_val |= 1;
13931
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13932
                    }
13933
                }
13934
              break;
13935
            }
13936
        }
13937
 
13938
      /* Fill in the first entry in the procedure linkage table.  */
13939
      if (splt->size > 0 && htab->plt_header_size)
13940
        {
13941
          const bfd_vma *plt0_entry;
13942
          bfd_vma got_address, plt_address, got_displacement;
13943
 
13944
          /* Calculate the addresses of the GOT and PLT.  */
13945
          got_address = sgot->output_section->vma + sgot->output_offset;
13946
          plt_address = splt->output_section->vma + splt->output_offset;
13947
 
13948
          if (htab->vxworks_p)
13949
            {
13950
              /* The VxWorks GOT is relocated by the dynamic linker.
13951
                 Therefore, we must emit relocations rather than simply
13952
                 computing the values now.  */
13953
              Elf_Internal_Rela rel;
13954
 
13955
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13956
              put_arm_insn (htab, output_bfd, plt0_entry[0],
13957
                            splt->contents + 0);
13958
              put_arm_insn (htab, output_bfd, plt0_entry[1],
13959
                            splt->contents + 4);
13960
              put_arm_insn (htab, output_bfd, plt0_entry[2],
13961
                            splt->contents + 8);
13962
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13963
 
13964
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
13965
              rel.r_offset = plt_address + 12;
13966
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13967
              rel.r_addend = 0;
13968
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13969
                                     htab->srelplt2->contents);
13970
            }
13971
          else
13972
            {
13973
              got_displacement = got_address - (plt_address + 16);
13974
 
13975
              plt0_entry = elf32_arm_plt0_entry;
13976
              put_arm_insn (htab, output_bfd, plt0_entry[0],
13977
                            splt->contents + 0);
13978
              put_arm_insn (htab, output_bfd, plt0_entry[1],
13979
                            splt->contents + 4);
13980
              put_arm_insn (htab, output_bfd, plt0_entry[2],
13981
                            splt->contents + 8);
13982
              put_arm_insn (htab, output_bfd, plt0_entry[3],
13983
                            splt->contents + 12);
13984
 
13985
#ifdef FOUR_WORD_PLT
13986
              /* The displacement value goes in the otherwise-unused
13987
                 last word of the second entry.  */
13988
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
13989
#else
13990
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
13991
#endif
13992
            }
13993
        }
13994
 
13995
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
13996
         really seem like the right value.  */
13997
      if (splt->output_section->owner == output_bfd)
13998
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
13999
 
14000
      if (htab->dt_tlsdesc_plt)
14001
        {
14002
          bfd_vma got_address
14003
            = sgot->output_section->vma + sgot->output_offset;
14004
          bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14005
                                    + htab->root.sgot->output_offset);
14006
          bfd_vma plt_address
14007
            = splt->output_section->vma + splt->output_offset;
14008
 
14009
          arm_put_trampoline (htab, output_bfd,
14010
                              splt->contents + htab->dt_tlsdesc_plt,
14011
                              dl_tlsdesc_lazy_trampoline, 6);
14012
 
14013
          bfd_put_32 (output_bfd,
14014
                      gotplt_address + htab->dt_tlsdesc_got
14015
                      - (plt_address + htab->dt_tlsdesc_plt)
14016
                      - dl_tlsdesc_lazy_trampoline[6],
14017
                      splt->contents + htab->dt_tlsdesc_plt + 24);
14018
          bfd_put_32 (output_bfd,
14019
                      got_address - (plt_address + htab->dt_tlsdesc_plt)
14020
                      - dl_tlsdesc_lazy_trampoline[7],
14021
                      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14022
        }
14023
 
14024
      if (htab->tls_trampoline)
14025
        {
14026
          arm_put_trampoline (htab, output_bfd,
14027
                              splt->contents + htab->tls_trampoline,
14028
                              tls_trampoline, 3);
14029
#ifdef FOUR_WORD_PLT
14030
          bfd_put_32 (output_bfd, 0x00000000,
14031
                      splt->contents + htab->tls_trampoline + 12);
14032
#endif 
14033
        }
14034
 
14035
      if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14036
        {
14037
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
14038
             incorrect symbol indexes.  */
14039
          int num_plts;
14040
          unsigned char *p;
14041
 
14042
          num_plts = ((htab->root.splt->size - htab->plt_header_size)
14043
                      / htab->plt_entry_size);
14044
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
14045
 
14046
          for (; num_plts; num_plts--)
14047
            {
14048
              Elf_Internal_Rela rel;
14049
 
14050
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14051
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14052
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14053
              p += RELOC_SIZE (htab);
14054
 
14055
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14056
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14057
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14058
              p += RELOC_SIZE (htab);
14059
            }
14060
        }
14061
    }
14062
 
14063
  /* Fill in the first three entries in the global offset table.  */
14064
  if (sgot)
14065
    {
14066
      if (sgot->size > 0)
14067
        {
14068
          if (sdyn == NULL)
14069
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14070
          else
14071
            bfd_put_32 (output_bfd,
14072
                        sdyn->output_section->vma + sdyn->output_offset,
14073
                        sgot->contents);
14074
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14075
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14076
        }
14077
 
14078
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14079
    }
14080
 
14081
  return TRUE;
14082
}
14083
 
14084
static void
14085
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14086
{
14087
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
14088
  struct elf32_arm_link_hash_table *globals;
14089
 
14090
  i_ehdrp = elf_elfheader (abfd);
14091
 
14092
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14093
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14094
  else
14095
    i_ehdrp->e_ident[EI_OSABI] = 0;
14096
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14097
 
14098
  if (link_info)
14099
    {
14100
      globals = elf32_arm_hash_table (link_info);
14101
      if (globals != NULL && globals->byteswap_code)
14102
        i_ehdrp->e_flags |= EF_ARM_BE8;
14103
    }
14104
}
14105
 
14106
static enum elf_reloc_type_class
14107
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14108
{
14109
  switch ((int) ELF32_R_TYPE (rela->r_info))
14110
    {
14111
    case R_ARM_RELATIVE:
14112
      return reloc_class_relative;
14113
    case R_ARM_JUMP_SLOT:
14114
      return reloc_class_plt;
14115
    case R_ARM_COPY:
14116
      return reloc_class_copy;
14117
    default:
14118
      return reloc_class_normal;
14119
    }
14120
}
14121
 
14122
static void
14123
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14124
{
14125
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14126
}
14127
 
14128
/* Return TRUE if this is an unwinding table entry.  */
14129
 
14130
static bfd_boolean
14131
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14132
{
14133
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14134
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14135
}
14136
 
14137
 
14138
/* Set the type and flags for an ARM section.  We do this by
14139
   the section name, which is a hack, but ought to work.  */
14140
 
14141
static bfd_boolean
14142
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14143
{
14144
  const char * name;
14145
 
14146
  name = bfd_get_section_name (abfd, sec);
14147
 
14148
  if (is_arm_elf_unwind_section_name (abfd, name))
14149
    {
14150
      hdr->sh_type = SHT_ARM_EXIDX;
14151
      hdr->sh_flags |= SHF_LINK_ORDER;
14152
    }
14153
  return TRUE;
14154
}
14155
 
14156
/* Handle an ARM specific section when reading an object file.  This is
14157
   called when bfd_section_from_shdr finds a section with an unknown
14158
   type.  */
14159
 
14160
static bfd_boolean
14161
elf32_arm_section_from_shdr (bfd *abfd,
14162
                             Elf_Internal_Shdr * hdr,
14163
                             const char *name,
14164
                             int shindex)
14165
{
14166
  /* There ought to be a place to keep ELF backend specific flags, but
14167
     at the moment there isn't one.  We just keep track of the
14168
     sections by their name, instead.  Fortunately, the ABI gives
14169
     names for all the ARM specific sections, so we will probably get
14170
     away with this.  */
14171
  switch (hdr->sh_type)
14172
    {
14173
    case SHT_ARM_EXIDX:
14174
    case SHT_ARM_PREEMPTMAP:
14175
    case SHT_ARM_ATTRIBUTES:
14176
      break;
14177
 
14178
    default:
14179
      return FALSE;
14180
    }
14181
 
14182
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14183
    return FALSE;
14184
 
14185
  return TRUE;
14186
}
14187
 
14188
static _arm_elf_section_data *
14189
get_arm_elf_section_data (asection * sec)
14190
{
14191
  if (sec && sec->owner && is_arm_elf (sec->owner))
14192
    return elf32_arm_section_data (sec);
14193
  else
14194
    return NULL;
14195
}
14196
 
14197
typedef struct
14198
{
14199
  void *finfo;
14200
  struct bfd_link_info *info;
14201
  asection *sec;
14202
  int sec_shndx;
14203
  int (*func) (void *, const char *, Elf_Internal_Sym *,
14204
               asection *, struct elf_link_hash_entry *);
14205
} output_arch_syminfo;
14206
 
14207
enum map_symbol_type
14208
{
14209
  ARM_MAP_ARM,
14210
  ARM_MAP_THUMB,
14211
  ARM_MAP_DATA
14212
};
14213
 
14214
 
14215
/* Output a single mapping symbol.  */
14216
 
14217
static bfd_boolean
14218
elf32_arm_output_map_sym (output_arch_syminfo *osi,
14219
                          enum map_symbol_type type,
14220
                          bfd_vma offset)
14221
{
14222
  static const char *names[3] = {"$a", "$t", "$d"};
14223
  Elf_Internal_Sym sym;
14224
 
14225
  sym.st_value = osi->sec->output_section->vma
14226
                 + osi->sec->output_offset
14227
                 + offset;
14228
  sym.st_size = 0;
14229
  sym.st_other = 0;
14230
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14231
  sym.st_shndx = osi->sec_shndx;
14232
  sym.st_target_internal = 0;
14233
  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14234
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14235
}
14236
 
14237
/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14238
   IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
14239
 
14240
static bfd_boolean
14241
elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14242
                            bfd_boolean is_iplt_entry_p,
14243
                            union gotplt_union *root_plt,
14244
                            struct arm_plt_info *arm_plt)
14245
{
14246
  struct elf32_arm_link_hash_table *htab;
14247
  bfd_vma addr, plt_header_size;
14248
 
14249
  if (root_plt->offset == (bfd_vma) -1)
14250
    return TRUE;
14251
 
14252
  htab = elf32_arm_hash_table (osi->info);
14253
  if (htab == NULL)
14254
    return FALSE;
14255
 
14256
  if (is_iplt_entry_p)
14257
    {
14258
      osi->sec = htab->root.iplt;
14259
      plt_header_size = 0;
14260
    }
14261
  else
14262
    {
14263
      osi->sec = htab->root.splt;
14264
      plt_header_size = htab->plt_header_size;
14265
    }
14266
  osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14267
                    (osi->info->output_bfd, osi->sec->output_section));
14268
 
14269
  addr = root_plt->offset & -2;
14270
  if (htab->symbian_p)
14271
    {
14272
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14273
        return FALSE;
14274
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14275
        return FALSE;
14276
    }
14277
  else if (htab->vxworks_p)
14278
    {
14279
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14280
        return FALSE;
14281
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14282
        return FALSE;
14283
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14284
        return FALSE;
14285
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14286
        return FALSE;
14287
    }
14288
  else
14289
    {
14290
      bfd_boolean thumb_stub_p;
14291
 
14292
      thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14293
      if (thumb_stub_p)
14294
        {
14295
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14296
            return FALSE;
14297
        }
14298
#ifdef FOUR_WORD_PLT
14299
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14300
        return FALSE;
14301
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14302
        return FALSE;
14303
#else
14304
      /* A three-word PLT with no Thumb thunk contains only Arm code,
14305
         so only need to output a mapping symbol for the first PLT entry and
14306
         entries with thumb thunks.  */
14307
      if (thumb_stub_p || addr == plt_header_size)
14308
        {
14309
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14310
            return FALSE;
14311
        }
14312
#endif
14313
    }
14314
 
14315
  return TRUE;
14316
}
14317
 
14318
/* Output mapping symbols for PLT entries associated with H.  */
14319
 
14320
static bfd_boolean
14321
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14322
{
14323
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14324
  struct elf32_arm_link_hash_entry *eh;
14325
 
14326
  if (h->root.type == bfd_link_hash_indirect)
14327
    return TRUE;
14328
 
14329
  if (h->root.type == bfd_link_hash_warning)
14330
    /* When warning symbols are created, they **replace** the "real"
14331
       entry in the hash table, thus we never get to see the real
14332
       symbol in a hash traversal.  So look at it now.  */
14333
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
14334
 
14335
  eh = (struct elf32_arm_link_hash_entry *) h;
14336
  return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14337
                                     &h->plt, &eh->plt);
14338
}
14339
 
14340
/* Output a single local symbol for a generated stub.  */
14341
 
14342
static bfd_boolean
14343
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14344
                           bfd_vma offset, bfd_vma size)
14345
{
14346
  Elf_Internal_Sym sym;
14347
 
14348
  sym.st_value = osi->sec->output_section->vma
14349
                 + osi->sec->output_offset
14350
                 + offset;
14351
  sym.st_size = size;
14352
  sym.st_other = 0;
14353
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14354
  sym.st_shndx = osi->sec_shndx;
14355
  sym.st_target_internal = 0;
14356
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14357
}
14358
 
14359
static bfd_boolean
14360
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14361
                  void * in_arg)
14362
{
14363
  struct elf32_arm_stub_hash_entry *stub_entry;
14364
  asection *stub_sec;
14365
  bfd_vma addr;
14366
  char *stub_name;
14367
  output_arch_syminfo *osi;
14368
  const insn_sequence *template_sequence;
14369
  enum stub_insn_type prev_type;
14370
  int size;
14371
  int i;
14372
  enum map_symbol_type sym_type;
14373
 
14374
  /* Massage our args to the form they really have.  */
14375
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14376
  osi = (output_arch_syminfo *) in_arg;
14377
 
14378
  stub_sec = stub_entry->stub_sec;
14379
 
14380
  /* Ensure this stub is attached to the current section being
14381
     processed.  */
14382
  if (stub_sec != osi->sec)
14383
    return TRUE;
14384
 
14385
  addr = (bfd_vma) stub_entry->stub_offset;
14386
  stub_name = stub_entry->output_name;
14387
 
14388
  template_sequence = stub_entry->stub_template;
14389
  switch (template_sequence[0].type)
14390
    {
14391
    case ARM_TYPE:
14392
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14393
        return FALSE;
14394
      break;
14395
    case THUMB16_TYPE:
14396
    case THUMB32_TYPE:
14397
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14398
                                      stub_entry->stub_size))
14399
        return FALSE;
14400
      break;
14401
    default:
14402
      BFD_FAIL ();
14403
      return 0;
14404
    }
14405
 
14406
  prev_type = DATA_TYPE;
14407
  size = 0;
14408
  for (i = 0; i < stub_entry->stub_template_size; i++)
14409
    {
14410
      switch (template_sequence[i].type)
14411
        {
14412
        case ARM_TYPE:
14413
          sym_type = ARM_MAP_ARM;
14414
          break;
14415
 
14416
        case THUMB16_TYPE:
14417
        case THUMB32_TYPE:
14418
          sym_type = ARM_MAP_THUMB;
14419
          break;
14420
 
14421
        case DATA_TYPE:
14422
          sym_type = ARM_MAP_DATA;
14423
          break;
14424
 
14425
        default:
14426
          BFD_FAIL ();
14427
          return FALSE;
14428
        }
14429
 
14430
      if (template_sequence[i].type != prev_type)
14431
        {
14432
          prev_type = template_sequence[i].type;
14433
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14434
            return FALSE;
14435
        }
14436
 
14437
      switch (template_sequence[i].type)
14438
        {
14439
        case ARM_TYPE:
14440
        case THUMB32_TYPE:
14441
          size += 4;
14442
          break;
14443
 
14444
        case THUMB16_TYPE:
14445
          size += 2;
14446
          break;
14447
 
14448
        case DATA_TYPE:
14449
          size += 4;
14450
          break;
14451
 
14452
        default:
14453
          BFD_FAIL ();
14454
          return FALSE;
14455
        }
14456
    }
14457
 
14458
  return TRUE;
14459
}
14460
 
14461
/* Output mapping symbols for linker generated sections,
14462
   and for those data-only sections that do not have a
14463
   $d.  */
14464
 
14465
static bfd_boolean
14466
elf32_arm_output_arch_local_syms (bfd *output_bfd,
14467
                                  struct bfd_link_info *info,
14468
                                  void *finfo,
14469
                                  int (*func) (void *, const char *,
14470
                                               Elf_Internal_Sym *,
14471
                                               asection *,
14472
                                               struct elf_link_hash_entry *))
14473
{
14474
  output_arch_syminfo osi;
14475
  struct elf32_arm_link_hash_table *htab;
14476
  bfd_vma offset;
14477
  bfd_size_type size;
14478
  bfd *input_bfd;
14479
 
14480
  htab = elf32_arm_hash_table (info);
14481
  if (htab == NULL)
14482
    return FALSE;
14483
 
14484
  check_use_blx (htab);
14485
 
14486
  osi.finfo = finfo;
14487
  osi.info = info;
14488
  osi.func = func;
14489
 
14490
  /* Add a $d mapping symbol to data-only sections that
14491
     don't have any mapping symbol.  This may result in (harmless) redundant
14492
     mapping symbols.  */
14493
  for (input_bfd = info->input_bfds;
14494
       input_bfd != NULL;
14495
       input_bfd = input_bfd->link_next)
14496
    {
14497
      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14498
        for (osi.sec = input_bfd->sections;
14499
             osi.sec != NULL;
14500
             osi.sec = osi.sec->next)
14501
          {
14502
            if (osi.sec->output_section != NULL
14503
                && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14504
                    != 0)
14505
                && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14506
                   == SEC_HAS_CONTENTS
14507
                && get_arm_elf_section_data (osi.sec) != NULL
14508
                && get_arm_elf_section_data (osi.sec)->mapcount == 0
14509
                && osi.sec->size > 0)
14510
              {
14511
                osi.sec_shndx = _bfd_elf_section_from_bfd_section
14512
                  (output_bfd, osi.sec->output_section);
14513
                if (osi.sec_shndx != (int)SHN_BAD)
14514
                  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14515
              }
14516
          }
14517
    }
14518
 
14519
  /* ARM->Thumb glue.  */
14520
  if (htab->arm_glue_size > 0)
14521
    {
14522
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14523
                                         ARM2THUMB_GLUE_SECTION_NAME);
14524
 
14525
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14526
          (output_bfd, osi.sec->output_section);
14527
      if (info->shared || htab->root.is_relocatable_executable
14528
          || htab->pic_veneer)
14529
        size = ARM2THUMB_PIC_GLUE_SIZE;
14530
      else if (htab->use_blx)
14531
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14532
      else
14533
        size = ARM2THUMB_STATIC_GLUE_SIZE;
14534
 
14535
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
14536
        {
14537
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14538
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14539
        }
14540
    }
14541
 
14542
  /* Thumb->ARM glue.  */
14543
  if (htab->thumb_glue_size > 0)
14544
    {
14545
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14546
                                         THUMB2ARM_GLUE_SECTION_NAME);
14547
 
14548
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14549
          (output_bfd, osi.sec->output_section);
14550
      size = THUMB2ARM_GLUE_SIZE;
14551
 
14552
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14553
        {
14554
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14555
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14556
        }
14557
    }
14558
 
14559
  /* ARMv4 BX veneers.  */
14560
  if (htab->bx_glue_size > 0)
14561
    {
14562
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14563
                                         ARM_BX_GLUE_SECTION_NAME);
14564
 
14565
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14566
          (output_bfd, osi.sec->output_section);
14567
 
14568
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14569
    }
14570
 
14571
  /* Long calls stubs.  */
14572
  if (htab->stub_bfd && htab->stub_bfd->sections)
14573
    {
14574
      asection* stub_sec;
14575
 
14576
      for (stub_sec = htab->stub_bfd->sections;
14577
           stub_sec != NULL;
14578
           stub_sec = stub_sec->next)
14579
        {
14580
          /* Ignore non-stub sections.  */
14581
          if (!strstr (stub_sec->name, STUB_SUFFIX))
14582
            continue;
14583
 
14584
          osi.sec = stub_sec;
14585
 
14586
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
14587
            (output_bfd, osi.sec->output_section);
14588
 
14589
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14590
        }
14591
    }
14592
 
14593
  /* Finally, output mapping symbols for the PLT.  */
14594
  if (htab->root.splt && htab->root.splt->size > 0)
14595
    {
14596
      osi.sec = htab->root.splt;
14597
      osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14598
                       (output_bfd, osi.sec->output_section));
14599
 
14600
      /* Output mapping symbols for the plt header.  SymbianOS does not have a
14601
         plt header.  */
14602
      if (htab->vxworks_p)
14603
        {
14604
          /* VxWorks shared libraries have no PLT header.  */
14605
          if (!info->shared)
14606
            {
14607
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14608
                return FALSE;
14609
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14610
                return FALSE;
14611
            }
14612
        }
14613
      else if (!htab->symbian_p)
14614
        {
14615
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14616
            return FALSE;
14617
#ifndef FOUR_WORD_PLT
14618
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14619
            return FALSE;
14620
#endif
14621
        }
14622
    }
14623
  if ((htab->root.splt && htab->root.splt->size > 0)
14624
      || (htab->root.iplt && htab->root.iplt->size > 0))
14625
    {
14626
      elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14627
      for (input_bfd = info->input_bfds;
14628
           input_bfd != NULL;
14629
           input_bfd = input_bfd->link_next)
14630
        {
14631
          struct arm_local_iplt_info **local_iplt;
14632
          unsigned int i, num_syms;
14633
 
14634
          local_iplt = elf32_arm_local_iplt (input_bfd);
14635
          if (local_iplt != NULL)
14636
            {
14637
              num_syms = elf_symtab_hdr (input_bfd).sh_info;
14638
              for (i = 0; i < num_syms; i++)
14639
                if (local_iplt[i] != NULL
14640
                    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14641
                                                    &local_iplt[i]->root,
14642
                                                    &local_iplt[i]->arm))
14643
                  return FALSE;
14644
            }
14645
        }
14646
    }
14647
  if (htab->dt_tlsdesc_plt != 0)
14648
    {
14649
      /* Mapping symbols for the lazy tls trampoline.  */
14650
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14651
        return FALSE;
14652
 
14653
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14654
                                     htab->dt_tlsdesc_plt + 24))
14655
        return FALSE;
14656
    }
14657
  if (htab->tls_trampoline != 0)
14658
    {
14659
      /* Mapping symbols for the tls trampoline.  */
14660
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14661
        return FALSE;
14662
#ifdef FOUR_WORD_PLT
14663
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14664
                                     htab->tls_trampoline + 12))
14665
        return FALSE;
14666
#endif 
14667
    }
14668
 
14669
  return TRUE;
14670
}
14671
 
14672
/* Allocate target specific section data.  */
14673
 
14674
static bfd_boolean
14675
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14676
{
14677
  if (!sec->used_by_bfd)
14678
    {
14679
      _arm_elf_section_data *sdata;
14680
      bfd_size_type amt = sizeof (*sdata);
14681
 
14682
      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14683
      if (sdata == NULL)
14684
        return FALSE;
14685
      sec->used_by_bfd = sdata;
14686
    }
14687
 
14688
  return _bfd_elf_new_section_hook (abfd, sec);
14689
}
14690
 
14691
 
14692
/* Used to order a list of mapping symbols by address.  */
14693
 
14694
static int
14695
elf32_arm_compare_mapping (const void * a, const void * b)
14696
{
14697
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14698
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14699
 
14700
  if (amap->vma > bmap->vma)
14701
    return 1;
14702
  else if (amap->vma < bmap->vma)
14703
    return -1;
14704
  else if (amap->type > bmap->type)
14705
    /* Ensure results do not depend on the host qsort for objects with
14706
       multiple mapping symbols at the same address by sorting on type
14707
       after vma.  */
14708
    return 1;
14709
  else if (amap->type < bmap->type)
14710
    return -1;
14711
  else
14712
    return 0;
14713
}
14714
 
14715
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
14716
 
14717
static unsigned long
14718
offset_prel31 (unsigned long addr, bfd_vma offset)
14719
{
14720
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14721
}
14722
 
14723
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14724
   relocations.  */
14725
 
14726
static void
14727
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14728
{
14729
  unsigned long first_word = bfd_get_32 (output_bfd, from);
14730
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14731
 
14732
  /* High bit of first word is supposed to be zero.  */
14733
  if ((first_word & 0x80000000ul) == 0)
14734
    first_word = offset_prel31 (first_word, offset);
14735
 
14736
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14737
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
14738
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14739
    second_word = offset_prel31 (second_word, offset);
14740
 
14741
  bfd_put_32 (output_bfd, first_word, to);
14742
  bfd_put_32 (output_bfd, second_word, to + 4);
14743
}
14744
 
14745
/* Data for make_branch_to_a8_stub().  */
14746
 
14747
struct a8_branch_to_stub_data {
14748
  asection *writing_section;
14749
  bfd_byte *contents;
14750
};
14751
 
14752
 
14753
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
14754
   places for a particular section.  */
14755
 
14756
static bfd_boolean
14757
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14758
                       void *in_arg)
14759
{
14760
  struct elf32_arm_stub_hash_entry *stub_entry;
14761
  struct a8_branch_to_stub_data *data;
14762
  bfd_byte *contents;
14763
  unsigned long branch_insn;
14764
  bfd_vma veneered_insn_loc, veneer_entry_loc;
14765
  bfd_signed_vma branch_offset;
14766
  bfd *abfd;
14767
  unsigned int target;
14768
 
14769
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14770
  data = (struct a8_branch_to_stub_data *) in_arg;
14771
 
14772
  if (stub_entry->target_section != data->writing_section
14773
      || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14774
    return TRUE;
14775
 
14776
  contents = data->contents;
14777
 
14778
  veneered_insn_loc = stub_entry->target_section->output_section->vma
14779
                      + stub_entry->target_section->output_offset
14780
                      + stub_entry->target_value;
14781
 
14782
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14783
                     + stub_entry->stub_sec->output_offset
14784
                     + stub_entry->stub_offset;
14785
 
14786
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14787
    veneered_insn_loc &= ~3u;
14788
 
14789
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14790
 
14791
  abfd = stub_entry->target_section->owner;
14792
  target = stub_entry->target_value;
14793
 
14794
  /* We attempt to avoid this condition by setting stubs_always_after_branch
14795
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14796
     This check is just to be on the safe side...  */
14797
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14798
    {
14799
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14800
                               "allocated in unsafe location"), abfd);
14801
      return FALSE;
14802
    }
14803
 
14804
  switch (stub_entry->stub_type)
14805
    {
14806
    case arm_stub_a8_veneer_b:
14807
    case arm_stub_a8_veneer_b_cond:
14808
      branch_insn = 0xf0009000;
14809
      goto jump24;
14810
 
14811
    case arm_stub_a8_veneer_blx:
14812
      branch_insn = 0xf000e800;
14813
      goto jump24;
14814
 
14815
    case arm_stub_a8_veneer_bl:
14816
      {
14817
        unsigned int i1, j1, i2, j2, s;
14818
 
14819
        branch_insn = 0xf000d000;
14820
 
14821
      jump24:
14822
        if (branch_offset < -16777216 || branch_offset > 16777214)
14823
          {
14824
            /* There's not much we can do apart from complain if this
14825
               happens.  */
14826
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14827
                                     "of range (input file too large)"), abfd);
14828
            return FALSE;
14829
          }
14830
 
14831
        /* i1 = not(j1 eor s), so:
14832
           not i1 = j1 eor s
14833
           j1 = (not i1) eor s.  */
14834
 
14835
        branch_insn |= (branch_offset >> 1) & 0x7ff;
14836
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14837
        i2 = (branch_offset >> 22) & 1;
14838
        i1 = (branch_offset >> 23) & 1;
14839
        s = (branch_offset >> 24) & 1;
14840
        j1 = (!i1) ^ s;
14841
        j2 = (!i2) ^ s;
14842
        branch_insn |= j2 << 11;
14843
        branch_insn |= j1 << 13;
14844
        branch_insn |= s << 26;
14845
      }
14846
      break;
14847
 
14848
    default:
14849
      BFD_FAIL ();
14850
      return FALSE;
14851
    }
14852
 
14853
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14854
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14855
 
14856
  return TRUE;
14857
}
14858
 
14859
/* Do code byteswapping.  Return FALSE afterwards so that the section is
14860
   written out as normal.  */
14861
 
14862
static bfd_boolean
14863
elf32_arm_write_section (bfd *output_bfd,
14864
                         struct bfd_link_info *link_info,
14865
                         asection *sec,
14866
                         bfd_byte *contents)
14867
{
14868
  unsigned int mapcount, errcount;
14869
  _arm_elf_section_data *arm_data;
14870
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14871
  elf32_arm_section_map *map;
14872
  elf32_vfp11_erratum_list *errnode;
14873
  bfd_vma ptr;
14874
  bfd_vma end;
14875
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
14876
  bfd_byte tmp;
14877
  unsigned int i;
14878
 
14879
  if (globals == NULL)
14880
    return FALSE;
14881
 
14882
  /* If this section has not been allocated an _arm_elf_section_data
14883
     structure then we cannot record anything.  */
14884
  arm_data = get_arm_elf_section_data (sec);
14885
  if (arm_data == NULL)
14886
    return FALSE;
14887
 
14888
  mapcount = arm_data->mapcount;
14889
  map = arm_data->map;
14890
  errcount = arm_data->erratumcount;
14891
 
14892
  if (errcount != 0)
14893
    {
14894
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14895
 
14896
      for (errnode = arm_data->erratumlist; errnode != 0;
14897
           errnode = errnode->next)
14898
        {
14899
          bfd_vma target = errnode->vma - offset;
14900
 
14901
          switch (errnode->type)
14902
            {
14903
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14904
              {
14905
                bfd_vma branch_to_veneer;
14906
                /* Original condition code of instruction, plus bit mask for
14907
                   ARM B instruction.  */
14908
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14909
                                  | 0x0a000000;
14910
 
14911
                /* The instruction is before the label.  */
14912
                target -= 4;
14913
 
14914
                /* Above offset included in -4 below.  */
14915
                branch_to_veneer = errnode->u.b.veneer->vma
14916
                                   - errnode->vma - 4;
14917
 
14918
                if ((signed) branch_to_veneer < -(1 << 25)
14919
                    || (signed) branch_to_veneer >= (1 << 25))
14920
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14921
                                           "range"), output_bfd);
14922
 
14923
                insn |= (branch_to_veneer >> 2) & 0xffffff;
14924
                contents[endianflip ^ target] = insn & 0xff;
14925
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14926
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14927
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14928
              }
14929
              break;
14930
 
14931
            case VFP11_ERRATUM_ARM_VENEER:
14932
              {
14933
                bfd_vma branch_from_veneer;
14934
                unsigned int insn;
14935
 
14936
                /* Take size of veneer into account.  */
14937
                branch_from_veneer = errnode->u.v.branch->vma
14938
                                     - errnode->vma - 12;
14939
 
14940
                if ((signed) branch_from_veneer < -(1 << 25)
14941
                    || (signed) branch_from_veneer >= (1 << 25))
14942
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14943
                                           "range"), output_bfd);
14944
 
14945
                /* Original instruction.  */
14946
                insn = errnode->u.v.branch->u.b.vfp_insn;
14947
                contents[endianflip ^ target] = insn & 0xff;
14948
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14949
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14950
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14951
 
14952
                /* Branch back to insn after original insn.  */
14953
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14954
                contents[endianflip ^ (target + 4)] = insn & 0xff;
14955
                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14956
                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14957
                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
14958
              }
14959
              break;
14960
 
14961
            default:
14962
              abort ();
14963
            }
14964
        }
14965
    }
14966
 
14967
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14968
    {
14969
      arm_unwind_table_edit *edit_node
14970
        = arm_data->u.exidx.unwind_edit_list;
14971
      /* Now, sec->size is the size of the section we will write.  The original
14972
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14973
         markers) was sec->rawsize.  (This isn't the case if we perform no
14974
         edits, then rawsize will be zero and we should use size).  */
14975
      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
14976
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14977
      unsigned int in_index, out_index;
14978
      bfd_vma add_to_offsets = 0;
14979
 
14980
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14981
        {
14982
          if (edit_node)
14983
            {
14984
              unsigned int edit_index = edit_node->index;
14985
 
14986
              if (in_index < edit_index && in_index * 8 < input_size)
14987
                {
14988
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14989
                                    contents + in_index * 8, add_to_offsets);
14990
                  out_index++;
14991
                  in_index++;
14992
                }
14993
              else if (in_index == edit_index
14994
                       || (in_index * 8 >= input_size
14995
                           && edit_index == UINT_MAX))
14996
                {
14997
                  switch (edit_node->type)
14998
                    {
14999
                    case DELETE_EXIDX_ENTRY:
15000
                      in_index++;
15001
                      add_to_offsets += 8;
15002
                      break;
15003
 
15004
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
15005
                      {
15006
                        asection *text_sec = edit_node->linked_section;
15007
                        bfd_vma text_offset = text_sec->output_section->vma
15008
                                              + text_sec->output_offset
15009
                                              + text_sec->size;
15010
                        bfd_vma exidx_offset = offset + out_index * 8;
15011
                        unsigned long prel31_offset;
15012
 
15013
                        /* Note: this is meant to be equivalent to an
15014
                           R_ARM_PREL31 relocation.  These synthetic
15015
                           EXIDX_CANTUNWIND markers are not relocated by the
15016
                           usual BFD method.  */
15017
                        prel31_offset = (text_offset - exidx_offset)
15018
                                        & 0x7ffffffful;
15019
 
15020
                        /* First address we can't unwind.  */
15021
                        bfd_put_32 (output_bfd, prel31_offset,
15022
                                    &edited_contents[out_index * 8]);
15023
 
15024
                        /* Code for EXIDX_CANTUNWIND.  */
15025
                        bfd_put_32 (output_bfd, 0x1,
15026
                                    &edited_contents[out_index * 8 + 4]);
15027
 
15028
                        out_index++;
15029
                        add_to_offsets -= 8;
15030
                      }
15031
                      break;
15032
                    }
15033
 
15034
                  edit_node = edit_node->next;
15035
                }
15036
            }
15037
          else
15038
            {
15039
              /* No more edits, copy remaining entries verbatim.  */
15040
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15041
                                contents + in_index * 8, add_to_offsets);
15042
              out_index++;
15043
              in_index++;
15044
            }
15045
        }
15046
 
15047
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15048
        bfd_set_section_contents (output_bfd, sec->output_section,
15049
                                  edited_contents,
15050
                                  (file_ptr) sec->output_offset, sec->size);
15051
 
15052
      return TRUE;
15053
    }
15054
 
15055
  /* Fix code to point to Cortex-A8 erratum stubs.  */
15056
  if (globals->fix_cortex_a8)
15057
    {
15058
      struct a8_branch_to_stub_data data;
15059
 
15060
      data.writing_section = sec;
15061
      data.contents = contents;
15062
 
15063
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15064
                         &data);
15065
    }
15066
 
15067
  if (mapcount == 0)
15068
    return FALSE;
15069
 
15070
  if (globals->byteswap_code)
15071
    {
15072
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15073
 
15074
      ptr = map[0].vma;
15075
      for (i = 0; i < mapcount; i++)
15076
        {
15077
          if (i == mapcount - 1)
15078
            end = sec->size;
15079
          else
15080
            end = map[i + 1].vma;
15081
 
15082
          switch (map[i].type)
15083
            {
15084
            case 'a':
15085
              /* Byte swap code words.  */
15086
              while (ptr + 3 < end)
15087
                {
15088
                  tmp = contents[ptr];
15089
                  contents[ptr] = contents[ptr + 3];
15090
                  contents[ptr + 3] = tmp;
15091
                  tmp = contents[ptr + 1];
15092
                  contents[ptr + 1] = contents[ptr + 2];
15093
                  contents[ptr + 2] = tmp;
15094
                  ptr += 4;
15095
                }
15096
              break;
15097
 
15098
            case 't':
15099
              /* Byte swap code halfwords.  */
15100
              while (ptr + 1 < end)
15101
                {
15102
                  tmp = contents[ptr];
15103
                  contents[ptr] = contents[ptr + 1];
15104
                  contents[ptr + 1] = tmp;
15105
                  ptr += 2;
15106
                }
15107
              break;
15108
 
15109
            case 'd':
15110
              /* Leave data alone.  */
15111
              break;
15112
            }
15113
          ptr = end;
15114
        }
15115
    }
15116
 
15117
  free (map);
15118
  arm_data->mapcount = -1;
15119
  arm_data->mapsize = 0;
15120
  arm_data->map = NULL;
15121
 
15122
  return FALSE;
15123
}
15124
 
15125
/* Mangle thumb function symbols as we read them in.  */
15126
 
15127
static bfd_boolean
15128
elf32_arm_swap_symbol_in (bfd * abfd,
15129
                          const void *psrc,
15130
                          const void *pshn,
15131
                          Elf_Internal_Sym *dst)
15132
{
15133
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15134
    return FALSE;
15135
 
15136
  /* New EABI objects mark thumb function symbols by setting the low bit of
15137
     the address.  */
15138
  if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15139
      || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15140
    {
15141
      if (dst->st_value & 1)
15142
        {
15143
          dst->st_value &= ~(bfd_vma) 1;
15144
          dst->st_target_internal = ST_BRANCH_TO_THUMB;
15145
        }
15146
      else
15147
        dst->st_target_internal = ST_BRANCH_TO_ARM;
15148
    }
15149
  else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15150
    {
15151
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15152
      dst->st_target_internal = ST_BRANCH_TO_THUMB;
15153
    }
15154
  else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15155
    dst->st_target_internal = ST_BRANCH_LONG;
15156
  else
15157
    dst->st_target_internal = ST_BRANCH_UNKNOWN;
15158
 
15159
  return TRUE;
15160
}
15161
 
15162
 
15163
/* Mangle thumb function symbols as we write them out.  */
15164
 
15165
static void
15166
elf32_arm_swap_symbol_out (bfd *abfd,
15167
                           const Elf_Internal_Sym *src,
15168
                           void *cdst,
15169
                           void *shndx)
15170
{
15171
  Elf_Internal_Sym newsym;
15172
 
15173
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15174
     of the address set, as per the new EABI.  We do this unconditionally
15175
     because objcopy does not set the elf header flags until after
15176
     it writes out the symbol table.  */
15177
  if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15178
    {
15179
      newsym = *src;
15180
      if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15181
        newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15182
      if (newsym.st_shndx != SHN_UNDEF)
15183
        {
15184
          /* Do this only for defined symbols. At link type, the static
15185
             linker will simulate the work of dynamic linker of resolving
15186
             symbols and will carry over the thumbness of found symbols to
15187
             the output symbol table. It's not clear how it happens, but
15188
             the thumbness of undefined symbols can well be different at
15189
             runtime, and writing '1' for them will be confusing for users
15190
             and possibly for dynamic linker itself.
15191
          */
15192
          newsym.st_value |= 1;
15193
        }
15194
 
15195
      src = &newsym;
15196
    }
15197
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15198
}
15199
 
15200
/* Add the PT_ARM_EXIDX program header.  */
15201
 
15202
static bfd_boolean
15203
elf32_arm_modify_segment_map (bfd *abfd,
15204
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
15205
{
15206
  struct elf_segment_map *m;
15207
  asection *sec;
15208
 
15209
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15210
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15211
    {
15212
      /* If there is already a PT_ARM_EXIDX header, then we do not
15213
         want to add another one.  This situation arises when running
15214
         "strip"; the input binary already has the header.  */
15215
      m = elf_tdata (abfd)->segment_map;
15216
      while (m && m->p_type != PT_ARM_EXIDX)
15217
        m = m->next;
15218
      if (!m)
15219
        {
15220
          m = (struct elf_segment_map *)
15221
              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15222
          if (m == NULL)
15223
            return FALSE;
15224
          m->p_type = PT_ARM_EXIDX;
15225
          m->count = 1;
15226
          m->sections[0] = sec;
15227
 
15228
          m->next = elf_tdata (abfd)->segment_map;
15229
          elf_tdata (abfd)->segment_map = m;
15230
        }
15231
    }
15232
 
15233
  return TRUE;
15234
}
15235
 
15236
/* We may add a PT_ARM_EXIDX program header.  */
15237
 
15238
static int
15239
elf32_arm_additional_program_headers (bfd *abfd,
15240
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15241
{
15242
  asection *sec;
15243
 
15244
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15245
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15246
    return 1;
15247
  else
15248
    return 0;
15249
}
15250
 
15251
/* Hook called by the linker routine which adds symbols from an object
15252
   file.  */
15253
 
15254
static bfd_boolean
15255
elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15256
                           Elf_Internal_Sym *sym, const char **namep,
15257
                           flagword *flagsp, asection **secp, bfd_vma *valp)
15258
{
15259
  if ((abfd->flags & DYNAMIC) == 0
15260
      && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15261
          || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15262
    elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15263
 
15264
  if (elf32_arm_hash_table (info)->vxworks_p
15265
      && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15266
                                       flagsp, secp, valp))
15267
    return FALSE;
15268
 
15269
  return TRUE;
15270
}
15271
 
15272
/* We use this to override swap_symbol_in and swap_symbol_out.  */
15273
const struct elf_size_info elf32_arm_size_info =
15274
{
15275
  sizeof (Elf32_External_Ehdr),
15276
  sizeof (Elf32_External_Phdr),
15277
  sizeof (Elf32_External_Shdr),
15278
  sizeof (Elf32_External_Rel),
15279
  sizeof (Elf32_External_Rela),
15280
  sizeof (Elf32_External_Sym),
15281
  sizeof (Elf32_External_Dyn),
15282
  sizeof (Elf_External_Note),
15283
  4,
15284
  1,
15285
  32, 2,
15286
  ELFCLASS32, EV_CURRENT,
15287
  bfd_elf32_write_out_phdrs,
15288
  bfd_elf32_write_shdrs_and_ehdr,
15289
  bfd_elf32_checksum_contents,
15290
  bfd_elf32_write_relocs,
15291
  elf32_arm_swap_symbol_in,
15292
  elf32_arm_swap_symbol_out,
15293
  bfd_elf32_slurp_reloc_table,
15294
  bfd_elf32_slurp_symbol_table,
15295
  bfd_elf32_swap_dyn_in,
15296
  bfd_elf32_swap_dyn_out,
15297
  bfd_elf32_swap_reloc_in,
15298
  bfd_elf32_swap_reloc_out,
15299
  bfd_elf32_swap_reloca_in,
15300
  bfd_elf32_swap_reloca_out
15301
};
15302
 
15303
#define ELF_ARCH                        bfd_arch_arm
15304
#define ELF_TARGET_ID                   ARM_ELF_DATA
15305
#define ELF_MACHINE_CODE                EM_ARM
15306
#ifdef __QNXTARGET__
15307
#define ELF_MAXPAGESIZE                 0x1000
15308
#else
15309
#define ELF_MAXPAGESIZE                 0x8000
15310
#endif
15311
#define ELF_MINPAGESIZE                 0x1000
15312
#define ELF_COMMONPAGESIZE              0x1000
15313
 
15314
#define bfd_elf32_mkobject                      elf32_arm_mkobject
15315
 
15316
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
15317
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
15318
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
15319
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
15320
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
15321
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
15322
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
15323
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15324
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
15325
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
15326
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
15327
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
15328
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
15329
 
15330
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
15331
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
15332
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
15333
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
15334
#define elf_backend_check_relocs                elf32_arm_check_relocs
15335
#define elf_backend_relocate_section            elf32_arm_relocate_section
15336
#define elf_backend_write_section               elf32_arm_write_section
15337
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
15338
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
15339
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
15340
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
15341
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
15342
#define elf_backend_always_size_sections        elf32_arm_always_size_sections
15343
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
15344
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
15345
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
15346
#define elf_backend_object_p                    elf32_arm_object_p
15347
#define elf_backend_fake_sections               elf32_arm_fake_sections
15348
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
15349
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
15350
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
15351
#define elf_backend_size_info                   elf32_arm_size_info
15352
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
15353
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
15354
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
15355
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
15356
#define elf_backend_add_symbol_hook             elf32_arm_add_symbol_hook
15357
 
15358
#define elf_backend_can_refcount       1
15359
#define elf_backend_can_gc_sections    1
15360
#define elf_backend_plt_readonly       1
15361
#define elf_backend_want_got_plt       1
15362
#define elf_backend_want_plt_sym       0
15363
#define elf_backend_may_use_rel_p      1
15364
#define elf_backend_may_use_rela_p     0
15365
#define elf_backend_default_use_rela_p 0
15366
 
15367
#define elf_backend_got_header_size     12
15368
 
15369
#undef  elf_backend_obj_attrs_vendor
15370
#define elf_backend_obj_attrs_vendor            "aeabi"
15371
#undef  elf_backend_obj_attrs_section
15372
#define elf_backend_obj_attrs_section           ".ARM.attributes"
15373
#undef  elf_backend_obj_attrs_arg_type
15374
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
15375
#undef  elf_backend_obj_attrs_section_type
15376
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
15377
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
15378
#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15379
 
15380
#include "elf32-target.h"
15381
 
15382
/* VxWorks Targets.  */
15383
 
15384
#undef  TARGET_LITTLE_SYM
15385
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
15386
#undef  TARGET_LITTLE_NAME
15387
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
15388
#undef  TARGET_BIG_SYM
15389
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
15390
#undef  TARGET_BIG_NAME
15391
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
15392
 
15393
/* Like elf32_arm_link_hash_table_create -- but overrides
15394
   appropriately for VxWorks.  */
15395
 
15396
static struct bfd_link_hash_table *
15397
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15398
{
15399
  struct bfd_link_hash_table *ret;
15400
 
15401
  ret = elf32_arm_link_hash_table_create (abfd);
15402
  if (ret)
15403
    {
15404
      struct elf32_arm_link_hash_table *htab
15405
        = (struct elf32_arm_link_hash_table *) ret;
15406
      htab->use_rel = 0;
15407
      htab->vxworks_p = 1;
15408
    }
15409
  return ret;
15410
}
15411
 
15412
static void
15413
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15414
{
15415
  elf32_arm_final_write_processing (abfd, linker);
15416
  elf_vxworks_final_write_processing (abfd, linker);
15417
}
15418
 
15419
#undef  elf32_bed
15420
#define elf32_bed elf32_arm_vxworks_bed
15421
 
15422
#undef  bfd_elf32_bfd_link_hash_table_create
15423
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
15424
#undef  elf_backend_final_write_processing
15425
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
15426
#undef  elf_backend_emit_relocs
15427
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
15428
 
15429
#undef  elf_backend_may_use_rel_p
15430
#define elf_backend_may_use_rel_p       0
15431
#undef  elf_backend_may_use_rela_p
15432
#define elf_backend_may_use_rela_p      1
15433
#undef  elf_backend_default_use_rela_p
15434
#define elf_backend_default_use_rela_p  1
15435
#undef  elf_backend_want_plt_sym
15436
#define elf_backend_want_plt_sym        1
15437
#undef  ELF_MAXPAGESIZE
15438
#define ELF_MAXPAGESIZE                 0x1000
15439
 
15440
#include "elf32-target.h"
15441
 
15442
 
15443
/* Merge backend specific data from an object file to the output
15444
   object file when linking.  */
15445
 
15446
static bfd_boolean
15447
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15448
{
15449
  flagword out_flags;
15450
  flagword in_flags;
15451
  bfd_boolean flags_compatible = TRUE;
15452
  asection *sec;
15453
 
15454
  /* Check if we have the same endianness.  */
15455
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15456
    return FALSE;
15457
 
15458
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15459
    return TRUE;
15460
 
15461
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15462
    return FALSE;
15463
 
15464
  /* The input BFD must have had its flags initialised.  */
15465
  /* The following seems bogus to me -- The flags are initialized in
15466
     the assembler but I don't think an elf_flags_init field is
15467
     written into the object.  */
15468
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
15469
 
15470
  in_flags  = elf_elfheader (ibfd)->e_flags;
15471
  out_flags = elf_elfheader (obfd)->e_flags;
15472
 
15473
  /* In theory there is no reason why we couldn't handle this.  However
15474
     in practice it isn't even close to working and there is no real
15475
     reason to want it.  */
15476
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15477
      && !(ibfd->flags & DYNAMIC)
15478
      && (in_flags & EF_ARM_BE8))
15479
    {
15480
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
15481
                          ibfd);
15482
      return FALSE;
15483
    }
15484
 
15485
  if (!elf_flags_init (obfd))
15486
    {
15487
      /* If the input is the default architecture and had the default
15488
         flags then do not bother setting the flags for the output
15489
         architecture, instead allow future merges to do this.  If no
15490
         future merges ever set these flags then they will retain their
15491
         uninitialised values, which surprise surprise, correspond
15492
         to the default values.  */
15493
      if (bfd_get_arch_info (ibfd)->the_default
15494
          && elf_elfheader (ibfd)->e_flags == 0)
15495
        return TRUE;
15496
 
15497
      elf_flags_init (obfd) = TRUE;
15498
      elf_elfheader (obfd)->e_flags = in_flags;
15499
 
15500
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15501
          && bfd_get_arch_info (obfd)->the_default)
15502
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15503
 
15504
      return TRUE;
15505
    }
15506
 
15507
  /* Determine what should happen if the input ARM architecture
15508
     does not match the output ARM architecture.  */
15509
  if (! bfd_arm_merge_machines (ibfd, obfd))
15510
    return FALSE;
15511
 
15512
  /* Identical flags must be compatible.  */
15513
  if (in_flags == out_flags)
15514
    return TRUE;
15515
 
15516
  /* Check to see if the input BFD actually contains any sections.  If
15517
     not, its flags may not have been initialised either, but it
15518
     cannot actually cause any incompatiblity.  Do not short-circuit
15519
     dynamic objects; their section list may be emptied by
15520
    elf_link_add_object_symbols.
15521
 
15522
    Also check to see if there are no code sections in the input.
15523
    In this case there is no need to check for code specific flags.
15524
    XXX - do we need to worry about floating-point format compatability
15525
    in data sections ?  */
15526
  if (!(ibfd->flags & DYNAMIC))
15527
    {
15528
      bfd_boolean null_input_bfd = TRUE;
15529
      bfd_boolean only_data_sections = TRUE;
15530
 
15531
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15532
        {
15533
          /* Ignore synthetic glue sections.  */
15534
          if (strcmp (sec->name, ".glue_7")
15535
              && strcmp (sec->name, ".glue_7t"))
15536
            {
15537
              if ((bfd_get_section_flags (ibfd, sec)
15538
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15539
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15540
                only_data_sections = FALSE;
15541
 
15542
              null_input_bfd = FALSE;
15543
              break;
15544
            }
15545
        }
15546
 
15547
      if (null_input_bfd || only_data_sections)
15548
        return TRUE;
15549
    }
15550
 
15551
  /* Complain about various flag mismatches.  */
15552
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15553
                                      EF_ARM_EABI_VERSION (out_flags)))
15554
    {
15555
      _bfd_error_handler
15556
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15557
         ibfd, obfd,
15558
         (in_flags & EF_ARM_EABIMASK) >> 24,
15559
         (out_flags & EF_ARM_EABIMASK) >> 24);
15560
      return FALSE;
15561
    }
15562
 
15563
  /* Not sure what needs to be checked for EABI versions >= 1.  */
15564
  /* VxWorks libraries do not use these flags.  */
15565
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15566
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15567
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15568
    {
15569
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15570
        {
15571
          _bfd_error_handler
15572
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15573
             ibfd, obfd,
15574
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
15575
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
15576
          flags_compatible = FALSE;
15577
        }
15578
 
15579
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15580
        {
15581
          if (in_flags & EF_ARM_APCS_FLOAT)
15582
            _bfd_error_handler
15583
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15584
               ibfd, obfd);
15585
          else
15586
            _bfd_error_handler
15587
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15588
               ibfd, obfd);
15589
 
15590
          flags_compatible = FALSE;
15591
        }
15592
 
15593
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15594
        {
15595
          if (in_flags & EF_ARM_VFP_FLOAT)
15596
            _bfd_error_handler
15597
              (_("error: %B uses VFP instructions, whereas %B does not"),
15598
               ibfd, obfd);
15599
          else
15600
            _bfd_error_handler
15601
              (_("error: %B uses FPA instructions, whereas %B does not"),
15602
               ibfd, obfd);
15603
 
15604
          flags_compatible = FALSE;
15605
        }
15606
 
15607
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15608
        {
15609
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
15610
            _bfd_error_handler
15611
              (_("error: %B uses Maverick instructions, whereas %B does not"),
15612
               ibfd, obfd);
15613
          else
15614
            _bfd_error_handler
15615
              (_("error: %B does not use Maverick instructions, whereas %B does"),
15616
               ibfd, obfd);
15617
 
15618
          flags_compatible = FALSE;
15619
        }
15620
 
15621
#ifdef EF_ARM_SOFT_FLOAT
15622
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15623
        {
15624
          /* We can allow interworking between code that is VFP format
15625
             layout, and uses either soft float or integer regs for
15626
             passing floating point arguments and results.  We already
15627
             know that the APCS_FLOAT flags match; similarly for VFP
15628
             flags.  */
15629
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15630
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15631
            {
15632
              if (in_flags & EF_ARM_SOFT_FLOAT)
15633
                _bfd_error_handler
15634
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
15635
                   ibfd, obfd);
15636
              else
15637
                _bfd_error_handler
15638
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
15639
                   ibfd, obfd);
15640
 
15641
              flags_compatible = FALSE;
15642
            }
15643
        }
15644
#endif
15645
 
15646
      /* Interworking mismatch is only a warning.  */
15647
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15648
        {
15649
          if (in_flags & EF_ARM_INTERWORK)
15650
            {
15651
              _bfd_error_handler
15652
                (_("Warning: %B supports interworking, whereas %B does not"),
15653
                 ibfd, obfd);
15654
            }
15655
          else
15656
            {
15657
              _bfd_error_handler
15658
                (_("Warning: %B does not support interworking, whereas %B does"),
15659
                 ibfd, obfd);
15660
            }
15661
        }
15662
    }
15663
 
15664
  return flags_compatible;
15665
}
15666
 
15667
 
15668
/* Symbian OS Targets.  */
15669
 
15670
#undef  TARGET_LITTLE_SYM
15671
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
15672
#undef  TARGET_LITTLE_NAME
15673
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
15674
#undef  TARGET_BIG_SYM
15675
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
15676
#undef  TARGET_BIG_NAME
15677
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
15678
 
15679
/* Like elf32_arm_link_hash_table_create -- but overrides
15680
   appropriately for Symbian OS.  */
15681
 
15682
static struct bfd_link_hash_table *
15683
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15684
{
15685
  struct bfd_link_hash_table *ret;
15686
 
15687
  ret = elf32_arm_link_hash_table_create (abfd);
15688
  if (ret)
15689
    {
15690
      struct elf32_arm_link_hash_table *htab
15691
        = (struct elf32_arm_link_hash_table *)ret;
15692
      /* There is no PLT header for Symbian OS.  */
15693
      htab->plt_header_size = 0;
15694
      /* The PLT entries are each one instruction and one word.  */
15695
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15696
      htab->symbian_p = 1;
15697
      /* Symbian uses armv5t or above, so use_blx is always true.  */
15698
      htab->use_blx = 1;
15699
      htab->root.is_relocatable_executable = 1;
15700
    }
15701
  return ret;
15702
}
15703
 
15704
static const struct bfd_elf_special_section
15705
elf32_arm_symbian_special_sections[] =
15706
{
15707
  /* In a BPABI executable, the dynamic linking sections do not go in
15708
     the loadable read-only segment.  The post-linker may wish to
15709
     refer to these sections, but they are not part of the final
15710
     program image.  */
15711
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
15712
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
15713
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
15714
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
15715
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
15716
  /* These sections do not need to be writable as the SymbianOS
15717
     postlinker will arrange things so that no dynamic relocation is
15718
     required.  */
15719
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
15720
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
15721
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15722
  { NULL,                             0, 0, 0,                 0 }
15723
};
15724
 
15725
static void
15726
elf32_arm_symbian_begin_write_processing (bfd *abfd,
15727
                                          struct bfd_link_info *link_info)
15728
{
15729
  /* BPABI objects are never loaded directly by an OS kernel; they are
15730
     processed by a postlinker first, into an OS-specific format.  If
15731
     the D_PAGED bit is set on the file, BFD will align segments on
15732
     page boundaries, so that an OS can directly map the file.  With
15733
     BPABI objects, that just results in wasted space.  In addition,
15734
     because we clear the D_PAGED bit, map_sections_to_segments will
15735
     recognize that the program headers should not be mapped into any
15736
     loadable segment.  */
15737
  abfd->flags &= ~D_PAGED;
15738
  elf32_arm_begin_write_processing (abfd, link_info);
15739
}
15740
 
15741
static bfd_boolean
15742
elf32_arm_symbian_modify_segment_map (bfd *abfd,
15743
                                      struct bfd_link_info *info)
15744
{
15745
  struct elf_segment_map *m;
15746
  asection *dynsec;
15747
 
15748
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
15749
     segment.  However, because the .dynamic section is not marked
15750
     with SEC_LOAD, the generic ELF code will not create such a
15751
     segment.  */
15752
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15753
  if (dynsec)
15754
    {
15755
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15756
        if (m->p_type == PT_DYNAMIC)
15757
          break;
15758
 
15759
      if (m == NULL)
15760
        {
15761
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15762
          m->next = elf_tdata (abfd)->segment_map;
15763
          elf_tdata (abfd)->segment_map = m;
15764
        }
15765
    }
15766
 
15767
  /* Also call the generic arm routine.  */
15768
  return elf32_arm_modify_segment_map (abfd, info);
15769
}
15770
 
15771
/* Return address for Ith PLT stub in section PLT, for relocation REL
15772
   or (bfd_vma) -1 if it should not be included.  */
15773
 
15774
static bfd_vma
15775
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15776
                               const arelent *rel ATTRIBUTE_UNUSED)
15777
{
15778
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15779
}
15780
 
15781
 
15782
#undef  elf32_bed
15783
#define elf32_bed elf32_arm_symbian_bed
15784
 
15785
/* The dynamic sections are not allocated on SymbianOS; the postlinker
15786
   will process them and then discard them.  */
15787
#undef  ELF_DYNAMIC_SEC_FLAGS
15788
#define ELF_DYNAMIC_SEC_FLAGS \
15789
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15790
 
15791
#undef elf_backend_emit_relocs
15792
 
15793
#undef  bfd_elf32_bfd_link_hash_table_create
15794
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
15795
#undef  elf_backend_special_sections
15796
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
15797
#undef  elf_backend_begin_write_processing
15798
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
15799
#undef  elf_backend_final_write_processing
15800
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
15801
 
15802
#undef  elf_backend_modify_segment_map
15803
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15804
 
15805
/* There is no .got section for BPABI objects, and hence no header.  */
15806
#undef  elf_backend_got_header_size
15807
#define elf_backend_got_header_size 0
15808
 
15809
/* Similarly, there is no .got.plt section.  */
15810
#undef  elf_backend_want_got_plt
15811
#define elf_backend_want_got_plt 0
15812
 
15813
#undef  elf_backend_plt_sym_val
15814
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
15815
 
15816
#undef  elf_backend_may_use_rel_p
15817
#define elf_backend_may_use_rel_p       1
15818
#undef  elf_backend_may_use_rela_p
15819
#define elf_backend_may_use_rela_p      0
15820
#undef  elf_backend_default_use_rela_p
15821
#define elf_backend_default_use_rela_p  0
15822
#undef  elf_backend_want_plt_sym
15823
#define elf_backend_want_plt_sym        0
15824
#undef  ELF_MAXPAGESIZE
15825
#define ELF_MAXPAGESIZE                 0x8000
15826
 
15827
#include "elf32-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.