OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elf32-arm.c] - Blame information for rev 174

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 khays
/* 32-bit ELF support for ARM
2
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3
   2008, 2009, 2010, 2011  Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include <limits.h>
24
 
25
#include "bfd.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "elf-bfd.h"
29
#include "elf-vxworks.h"
30
#include "elf/arm.h"
31
 
32
/* Return the relocation section associated with NAME.  HTAB is the
33
   bfd's elf32_arm_link_hash_entry.  */
34
#define RELOC_SECTION(HTAB, NAME) \
35
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
 
37
/* Return size of a relocation entry.  HTAB is the bfd's
38
   elf32_arm_link_hash_entry.  */
39
#define RELOC_SIZE(HTAB) \
40
  ((HTAB)->use_rel \
41
   ? sizeof (Elf32_External_Rel) \
42
   : sizeof (Elf32_External_Rela))
43
 
44
/* Return function to swap relocations in.  HTAB is the bfd's
45
   elf32_arm_link_hash_entry.  */
46
#define SWAP_RELOC_IN(HTAB) \
47
  ((HTAB)->use_rel \
48
   ? bfd_elf32_swap_reloc_in \
49
   : bfd_elf32_swap_reloca_in)
50
 
51
/* Return function to swap relocations out.  HTAB is the bfd's
52
   elf32_arm_link_hash_entry.  */
53
#define SWAP_RELOC_OUT(HTAB) \
54
  ((HTAB)->use_rel \
55
   ? bfd_elf32_swap_reloc_out \
56
   : bfd_elf32_swap_reloca_out)
57
 
58
#define elf_info_to_howto               0
59
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
60
 
61
#define ARM_ELF_ABI_VERSION             0
62
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
63
 
64
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65
                                            struct bfd_link_info *link_info,
66
                                            asection *sec,
67
                                            bfd_byte *contents);
68
 
69
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71
   in that slot.  */
72
 
73
static reloc_howto_type elf32_arm_howto_table_1[] =
74
{
75
  /* No relocation.  */
76
  HOWTO (R_ARM_NONE,            /* type */
77
         0,                      /* rightshift */
78
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
79
         0,                      /* bitsize */
80
         FALSE,                 /* pc_relative */
81
         0,                      /* bitpos */
82
         complain_overflow_dont,/* complain_on_overflow */
83
         bfd_elf_generic_reloc, /* special_function */
84
         "R_ARM_NONE",          /* name */
85
         FALSE,                 /* partial_inplace */
86
         0,                      /* src_mask */
87
         0,                      /* dst_mask */
88
         FALSE),                /* pcrel_offset */
89
 
90
  HOWTO (R_ARM_PC24,            /* type */
91
         2,                     /* rightshift */
92
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
93
         24,                    /* bitsize */
94
         TRUE,                  /* pc_relative */
95
         0,                      /* bitpos */
96
         complain_overflow_signed,/* complain_on_overflow */
97
         bfd_elf_generic_reloc, /* special_function */
98
         "R_ARM_PC24",          /* name */
99
         FALSE,                 /* partial_inplace */
100
         0x00ffffff,            /* src_mask */
101
         0x00ffffff,            /* dst_mask */
102
         TRUE),                 /* pcrel_offset */
103
 
104
  /* 32 bit absolute */
105
  HOWTO (R_ARM_ABS32,           /* type */
106
         0,                      /* rightshift */
107
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
108
         32,                    /* bitsize */
109
         FALSE,                 /* pc_relative */
110
         0,                      /* bitpos */
111
         complain_overflow_bitfield,/* complain_on_overflow */
112
         bfd_elf_generic_reloc, /* special_function */
113
         "R_ARM_ABS32",         /* name */
114
         FALSE,                 /* partial_inplace */
115
         0xffffffff,            /* src_mask */
116
         0xffffffff,            /* dst_mask */
117
         FALSE),                /* pcrel_offset */
118
 
119
  /* standard 32bit pc-relative reloc */
120
  HOWTO (R_ARM_REL32,           /* type */
121
         0,                      /* rightshift */
122
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
123
         32,                    /* bitsize */
124
         TRUE,                  /* pc_relative */
125
         0,                      /* bitpos */
126
         complain_overflow_bitfield,/* complain_on_overflow */
127
         bfd_elf_generic_reloc, /* special_function */
128
         "R_ARM_REL32",         /* name */
129
         FALSE,                 /* partial_inplace */
130
         0xffffffff,            /* src_mask */
131
         0xffffffff,            /* dst_mask */
132
         TRUE),                 /* pcrel_offset */
133
 
134
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
136
         0,                      /* rightshift */
137
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
138
         32,                    /* bitsize */
139
         TRUE,                  /* pc_relative */
140
         0,                      /* bitpos */
141
         complain_overflow_dont,/* complain_on_overflow */
142
         bfd_elf_generic_reloc, /* special_function */
143
         "R_ARM_LDR_PC_G0",     /* name */
144
         FALSE,                 /* partial_inplace */
145
         0xffffffff,            /* src_mask */
146
         0xffffffff,            /* dst_mask */
147
         TRUE),                 /* pcrel_offset */
148
 
149
   /* 16 bit absolute */
150
  HOWTO (R_ARM_ABS16,           /* type */
151
         0,                      /* rightshift */
152
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
153
         16,                    /* bitsize */
154
         FALSE,                 /* pc_relative */
155
         0,                      /* bitpos */
156
         complain_overflow_bitfield,/* complain_on_overflow */
157
         bfd_elf_generic_reloc, /* special_function */
158
         "R_ARM_ABS16",         /* name */
159
         FALSE,                 /* partial_inplace */
160
         0x0000ffff,            /* src_mask */
161
         0x0000ffff,            /* dst_mask */
162
         FALSE),                /* pcrel_offset */
163
 
164
  /* 12 bit absolute */
165
  HOWTO (R_ARM_ABS12,           /* type */
166
         0,                      /* rightshift */
167
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
168
         12,                    /* bitsize */
169
         FALSE,                 /* pc_relative */
170
         0,                      /* bitpos */
171
         complain_overflow_bitfield,/* complain_on_overflow */
172
         bfd_elf_generic_reloc, /* special_function */
173
         "R_ARM_ABS12",         /* name */
174
         FALSE,                 /* partial_inplace */
175
         0x00000fff,            /* src_mask */
176
         0x00000fff,            /* dst_mask */
177
         FALSE),                /* pcrel_offset */
178
 
179
  HOWTO (R_ARM_THM_ABS5,        /* type */
180
         6,                     /* rightshift */
181
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
182
         5,                     /* bitsize */
183
         FALSE,                 /* pc_relative */
184
         0,                      /* bitpos */
185
         complain_overflow_bitfield,/* complain_on_overflow */
186
         bfd_elf_generic_reloc, /* special_function */
187
         "R_ARM_THM_ABS5",      /* name */
188
         FALSE,                 /* partial_inplace */
189
         0x000007e0,            /* src_mask */
190
         0x000007e0,            /* dst_mask */
191
         FALSE),                /* pcrel_offset */
192
 
193
  /* 8 bit absolute */
194
  HOWTO (R_ARM_ABS8,            /* type */
195
         0,                      /* rightshift */
196
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
197
         8,                     /* bitsize */
198
         FALSE,                 /* pc_relative */
199
         0,                      /* bitpos */
200
         complain_overflow_bitfield,/* complain_on_overflow */
201
         bfd_elf_generic_reloc, /* special_function */
202
         "R_ARM_ABS8",          /* name */
203
         FALSE,                 /* partial_inplace */
204
         0x000000ff,            /* src_mask */
205
         0x000000ff,            /* dst_mask */
206
         FALSE),                /* pcrel_offset */
207
 
208
  HOWTO (R_ARM_SBREL32,         /* type */
209
         0,                      /* rightshift */
210
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
211
         32,                    /* bitsize */
212
         FALSE,                 /* pc_relative */
213
         0,                      /* bitpos */
214
         complain_overflow_dont,/* complain_on_overflow */
215
         bfd_elf_generic_reloc, /* special_function */
216
         "R_ARM_SBREL32",       /* name */
217
         FALSE,                 /* partial_inplace */
218
         0xffffffff,            /* src_mask */
219
         0xffffffff,            /* dst_mask */
220
         FALSE),                /* pcrel_offset */
221
 
222
  HOWTO (R_ARM_THM_CALL,        /* type */
223
         1,                     /* rightshift */
224
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
225
         24,                    /* bitsize */
226
         TRUE,                  /* pc_relative */
227
         0,                      /* bitpos */
228
         complain_overflow_signed,/* complain_on_overflow */
229
         bfd_elf_generic_reloc, /* special_function */
230
         "R_ARM_THM_CALL",      /* name */
231
         FALSE,                 /* partial_inplace */
232 161 khays
         0x07ff2fff,            /* src_mask */
233
         0x07ff2fff,            /* dst_mask */
234 14 khays
         TRUE),                 /* pcrel_offset */
235
 
236
  HOWTO (R_ARM_THM_PC8,         /* type */
237
         1,                     /* rightshift */
238
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
239
         8,                     /* bitsize */
240
         TRUE,                  /* pc_relative */
241
         0,                      /* bitpos */
242
         complain_overflow_signed,/* complain_on_overflow */
243
         bfd_elf_generic_reloc, /* special_function */
244
         "R_ARM_THM_PC8",       /* name */
245
         FALSE,                 /* partial_inplace */
246
         0x000000ff,            /* src_mask */
247
         0x000000ff,            /* dst_mask */
248
         TRUE),                 /* pcrel_offset */
249
 
250
  HOWTO (R_ARM_BREL_ADJ,        /* type */
251
         1,                     /* rightshift */
252
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
253
         32,                    /* bitsize */
254
         FALSE,                 /* pc_relative */
255
         0,                      /* bitpos */
256
         complain_overflow_signed,/* complain_on_overflow */
257
         bfd_elf_generic_reloc, /* special_function */
258
         "R_ARM_BREL_ADJ",      /* name */
259
         FALSE,                 /* partial_inplace */
260
         0xffffffff,            /* src_mask */
261
         0xffffffff,            /* dst_mask */
262
         FALSE),                /* pcrel_offset */
263
 
264
  HOWTO (R_ARM_TLS_DESC,        /* type */
265
         0,                      /* rightshift */
266
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
267
         32,                    /* bitsize */
268
         FALSE,                 /* pc_relative */
269
         0,                      /* bitpos */
270
         complain_overflow_bitfield,/* complain_on_overflow */
271
         bfd_elf_generic_reloc, /* special_function */
272
         "R_ARM_TLS_DESC",      /* name */
273
         FALSE,                 /* partial_inplace */
274
         0xffffffff,            /* src_mask */
275
         0xffffffff,            /* dst_mask */
276
         FALSE),                /* pcrel_offset */
277
 
278
  HOWTO (R_ARM_THM_SWI8,        /* type */
279
         0,                      /* rightshift */
280
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
281
         0,                      /* bitsize */
282
         FALSE,                 /* pc_relative */
283
         0,                      /* bitpos */
284
         complain_overflow_signed,/* complain_on_overflow */
285
         bfd_elf_generic_reloc, /* special_function */
286
         "R_ARM_SWI8",          /* name */
287
         FALSE,                 /* partial_inplace */
288
         0x00000000,            /* src_mask */
289
         0x00000000,            /* dst_mask */
290
         FALSE),                /* pcrel_offset */
291
 
292
  /* BLX instruction for the ARM.  */
293
  HOWTO (R_ARM_XPC25,           /* type */
294
         2,                     /* rightshift */
295
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
296 161 khays
         24,                    /* bitsize */
297 14 khays
         TRUE,                  /* pc_relative */
298
         0,                      /* bitpos */
299
         complain_overflow_signed,/* complain_on_overflow */
300
         bfd_elf_generic_reloc, /* special_function */
301
         "R_ARM_XPC25",         /* name */
302
         FALSE,                 /* partial_inplace */
303
         0x00ffffff,            /* src_mask */
304
         0x00ffffff,            /* dst_mask */
305
         TRUE),                 /* pcrel_offset */
306
 
307
  /* BLX instruction for the Thumb.  */
308
  HOWTO (R_ARM_THM_XPC22,       /* type */
309
         2,                     /* rightshift */
310
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
311 161 khays
         24,                    /* bitsize */
312 14 khays
         TRUE,                  /* pc_relative */
313
         0,                      /* bitpos */
314
         complain_overflow_signed,/* complain_on_overflow */
315
         bfd_elf_generic_reloc, /* special_function */
316
         "R_ARM_THM_XPC22",     /* name */
317
         FALSE,                 /* partial_inplace */
318 161 khays
         0x07ff2fff,            /* src_mask */
319
         0x07ff2fff,            /* dst_mask */
320 14 khays
         TRUE),                 /* pcrel_offset */
321
 
322
  /* Dynamic TLS relocations.  */
323
 
324
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
325
         0,                     /* rightshift */
326
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
327
         32,                    /* bitsize */
328
         FALSE,                 /* pc_relative */
329
         0,                     /* bitpos */
330
         complain_overflow_bitfield,/* complain_on_overflow */
331
         bfd_elf_generic_reloc, /* special_function */
332
         "R_ARM_TLS_DTPMOD32",  /* name */
333
         TRUE,                  /* partial_inplace */
334
         0xffffffff,            /* src_mask */
335
         0xffffffff,            /* dst_mask */
336
         FALSE),                /* pcrel_offset */
337
 
338
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
339
         0,                     /* rightshift */
340
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
341
         32,                    /* bitsize */
342
         FALSE,                 /* pc_relative */
343
         0,                     /* bitpos */
344
         complain_overflow_bitfield,/* complain_on_overflow */
345
         bfd_elf_generic_reloc, /* special_function */
346
         "R_ARM_TLS_DTPOFF32",  /* name */
347
         TRUE,                  /* partial_inplace */
348
         0xffffffff,            /* src_mask */
349
         0xffffffff,            /* dst_mask */
350
         FALSE),                /* pcrel_offset */
351
 
352
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
353
         0,                     /* rightshift */
354
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
355
         32,                    /* bitsize */
356
         FALSE,                 /* pc_relative */
357
         0,                     /* bitpos */
358
         complain_overflow_bitfield,/* complain_on_overflow */
359
         bfd_elf_generic_reloc, /* special_function */
360
         "R_ARM_TLS_TPOFF32",   /* name */
361
         TRUE,                  /* partial_inplace */
362
         0xffffffff,            /* src_mask */
363
         0xffffffff,            /* dst_mask */
364
         FALSE),                /* pcrel_offset */
365
 
366
  /* Relocs used in ARM Linux */
367
 
368
  HOWTO (R_ARM_COPY,            /* type */
369
         0,                     /* rightshift */
370
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
371
         32,                    /* bitsize */
372
         FALSE,                 /* pc_relative */
373
         0,                     /* bitpos */
374
         complain_overflow_bitfield,/* complain_on_overflow */
375
         bfd_elf_generic_reloc, /* special_function */
376
         "R_ARM_COPY",          /* name */
377
         TRUE,                  /* partial_inplace */
378
         0xffffffff,            /* src_mask */
379
         0xffffffff,            /* dst_mask */
380
         FALSE),                /* pcrel_offset */
381
 
382
  HOWTO (R_ARM_GLOB_DAT,        /* type */
383
         0,                     /* rightshift */
384
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
385
         32,                    /* bitsize */
386
         FALSE,                 /* pc_relative */
387
         0,                     /* bitpos */
388
         complain_overflow_bitfield,/* complain_on_overflow */
389
         bfd_elf_generic_reloc, /* special_function */
390
         "R_ARM_GLOB_DAT",      /* name */
391
         TRUE,                  /* partial_inplace */
392
         0xffffffff,            /* src_mask */
393
         0xffffffff,            /* dst_mask */
394
         FALSE),                /* pcrel_offset */
395
 
396
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
397
         0,                     /* rightshift */
398
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
399
         32,                    /* bitsize */
400
         FALSE,                 /* pc_relative */
401
         0,                     /* bitpos */
402
         complain_overflow_bitfield,/* complain_on_overflow */
403
         bfd_elf_generic_reloc, /* special_function */
404
         "R_ARM_JUMP_SLOT",     /* name */
405
         TRUE,                  /* partial_inplace */
406
         0xffffffff,            /* src_mask */
407
         0xffffffff,            /* dst_mask */
408
         FALSE),                /* pcrel_offset */
409
 
410
  HOWTO (R_ARM_RELATIVE,        /* type */
411
         0,                     /* rightshift */
412
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
413
         32,                    /* bitsize */
414
         FALSE,                 /* pc_relative */
415
         0,                     /* bitpos */
416
         complain_overflow_bitfield,/* complain_on_overflow */
417
         bfd_elf_generic_reloc, /* special_function */
418
         "R_ARM_RELATIVE",      /* name */
419
         TRUE,                  /* partial_inplace */
420
         0xffffffff,            /* src_mask */
421
         0xffffffff,            /* dst_mask */
422
         FALSE),                /* pcrel_offset */
423
 
424
  HOWTO (R_ARM_GOTOFF32,        /* type */
425
         0,                     /* rightshift */
426
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
427
         32,                    /* bitsize */
428
         FALSE,                 /* pc_relative */
429
         0,                     /* bitpos */
430
         complain_overflow_bitfield,/* complain_on_overflow */
431
         bfd_elf_generic_reloc, /* special_function */
432
         "R_ARM_GOTOFF32",      /* name */
433
         TRUE,                  /* partial_inplace */
434
         0xffffffff,            /* src_mask */
435
         0xffffffff,            /* dst_mask */
436
         FALSE),                /* pcrel_offset */
437
 
438
  HOWTO (R_ARM_GOTPC,           /* type */
439
         0,                     /* rightshift */
440
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
441
         32,                    /* bitsize */
442
         TRUE,                  /* pc_relative */
443
         0,                     /* bitpos */
444
         complain_overflow_bitfield,/* complain_on_overflow */
445
         bfd_elf_generic_reloc, /* special_function */
446
         "R_ARM_GOTPC",         /* name */
447
         TRUE,                  /* partial_inplace */
448
         0xffffffff,            /* src_mask */
449
         0xffffffff,            /* dst_mask */
450
         TRUE),                 /* pcrel_offset */
451
 
452
  HOWTO (R_ARM_GOT32,           /* type */
453
         0,                     /* rightshift */
454
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
455
         32,                    /* bitsize */
456
         FALSE,                 /* pc_relative */
457
         0,                     /* bitpos */
458
         complain_overflow_bitfield,/* complain_on_overflow */
459
         bfd_elf_generic_reloc, /* special_function */
460
         "R_ARM_GOT32",         /* name */
461
         TRUE,                  /* partial_inplace */
462
         0xffffffff,            /* src_mask */
463
         0xffffffff,            /* dst_mask */
464
         FALSE),                /* pcrel_offset */
465
 
466
  HOWTO (R_ARM_PLT32,           /* type */
467
         2,                     /* rightshift */
468
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
469
         24,                    /* bitsize */
470
         TRUE,                  /* pc_relative */
471
         0,                     /* bitpos */
472
         complain_overflow_bitfield,/* complain_on_overflow */
473
         bfd_elf_generic_reloc, /* special_function */
474
         "R_ARM_PLT32",         /* name */
475
         FALSE,                 /* partial_inplace */
476
         0x00ffffff,            /* src_mask */
477
         0x00ffffff,            /* dst_mask */
478
         TRUE),                 /* pcrel_offset */
479
 
480
  HOWTO (R_ARM_CALL,            /* type */
481
         2,                     /* rightshift */
482
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
483
         24,                    /* bitsize */
484
         TRUE,                  /* pc_relative */
485
         0,                      /* bitpos */
486
         complain_overflow_signed,/* complain_on_overflow */
487
         bfd_elf_generic_reloc, /* special_function */
488
         "R_ARM_CALL",          /* name */
489
         FALSE,                 /* partial_inplace */
490
         0x00ffffff,            /* src_mask */
491
         0x00ffffff,            /* dst_mask */
492
         TRUE),                 /* pcrel_offset */
493
 
494
  HOWTO (R_ARM_JUMP24,          /* type */
495
         2,                     /* rightshift */
496
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
497
         24,                    /* bitsize */
498
         TRUE,                  /* pc_relative */
499
         0,                      /* bitpos */
500
         complain_overflow_signed,/* complain_on_overflow */
501
         bfd_elf_generic_reloc, /* special_function */
502
         "R_ARM_JUMP24",        /* name */
503
         FALSE,                 /* partial_inplace */
504
         0x00ffffff,            /* src_mask */
505
         0x00ffffff,            /* dst_mask */
506
         TRUE),                 /* pcrel_offset */
507
 
508
  HOWTO (R_ARM_THM_JUMP24,      /* type */
509
         1,                     /* rightshift */
510
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
511
         24,                    /* bitsize */
512
         TRUE,                  /* pc_relative */
513
         0,                      /* bitpos */
514
         complain_overflow_signed,/* complain_on_overflow */
515
         bfd_elf_generic_reloc, /* special_function */
516
         "R_ARM_THM_JUMP24",    /* name */
517
         FALSE,                 /* partial_inplace */
518
         0x07ff2fff,            /* src_mask */
519
         0x07ff2fff,            /* dst_mask */
520
         TRUE),                 /* pcrel_offset */
521
 
522
  HOWTO (R_ARM_BASE_ABS,        /* type */
523
         0,                      /* rightshift */
524
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
525
         32,                    /* bitsize */
526
         FALSE,                 /* pc_relative */
527
         0,                      /* bitpos */
528
         complain_overflow_dont,/* complain_on_overflow */
529
         bfd_elf_generic_reloc, /* special_function */
530
         "R_ARM_BASE_ABS",      /* name */
531
         FALSE,                 /* partial_inplace */
532
         0xffffffff,            /* src_mask */
533
         0xffffffff,            /* dst_mask */
534
         FALSE),                /* pcrel_offset */
535
 
536
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
537
         0,                      /* rightshift */
538
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
539
         12,                    /* bitsize */
540
         TRUE,                  /* pc_relative */
541
         0,                      /* bitpos */
542
         complain_overflow_dont,/* complain_on_overflow */
543
         bfd_elf_generic_reloc, /* special_function */
544
         "R_ARM_ALU_PCREL_7_0", /* name */
545
         FALSE,                 /* partial_inplace */
546
         0x00000fff,            /* src_mask */
547
         0x00000fff,            /* dst_mask */
548
         TRUE),                 /* pcrel_offset */
549
 
550
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
551
         0,                      /* rightshift */
552
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
553
         12,                    /* bitsize */
554
         TRUE,                  /* pc_relative */
555
         8,                     /* bitpos */
556
         complain_overflow_dont,/* complain_on_overflow */
557
         bfd_elf_generic_reloc, /* special_function */
558
         "R_ARM_ALU_PCREL_15_8",/* name */
559
         FALSE,                 /* partial_inplace */
560
         0x00000fff,            /* src_mask */
561
         0x00000fff,            /* dst_mask */
562
         TRUE),                 /* pcrel_offset */
563
 
564
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
565
         0,                      /* rightshift */
566
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
567
         12,                    /* bitsize */
568
         TRUE,                  /* pc_relative */
569
         16,                    /* bitpos */
570
         complain_overflow_dont,/* complain_on_overflow */
571
         bfd_elf_generic_reloc, /* special_function */
572
         "R_ARM_ALU_PCREL_23_15",/* name */
573
         FALSE,                 /* partial_inplace */
574
         0x00000fff,            /* src_mask */
575
         0x00000fff,            /* dst_mask */
576
         TRUE),                 /* pcrel_offset */
577
 
578
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
579
         0,                      /* rightshift */
580
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
581
         12,                    /* bitsize */
582
         FALSE,                 /* pc_relative */
583
         0,                      /* bitpos */
584
         complain_overflow_dont,/* complain_on_overflow */
585
         bfd_elf_generic_reloc, /* special_function */
586
         "R_ARM_LDR_SBREL_11_0",/* name */
587
         FALSE,                 /* partial_inplace */
588
         0x00000fff,            /* src_mask */
589
         0x00000fff,            /* dst_mask */
590
         FALSE),                /* pcrel_offset */
591
 
592
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593
         0,                      /* rightshift */
594
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
595
         8,                     /* bitsize */
596
         FALSE,                 /* pc_relative */
597
         12,                    /* bitpos */
598
         complain_overflow_dont,/* complain_on_overflow */
599
         bfd_elf_generic_reloc, /* special_function */
600
         "R_ARM_ALU_SBREL_19_12",/* name */
601
         FALSE,                 /* partial_inplace */
602
         0x000ff000,            /* src_mask */
603
         0x000ff000,            /* dst_mask */
604
         FALSE),                /* pcrel_offset */
605
 
606
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607
         0,                      /* rightshift */
608
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
609
         8,                     /* bitsize */
610
         FALSE,                 /* pc_relative */
611
         20,                    /* bitpos */
612
         complain_overflow_dont,/* complain_on_overflow */
613
         bfd_elf_generic_reloc, /* special_function */
614
         "R_ARM_ALU_SBREL_27_20",/* name */
615
         FALSE,                 /* partial_inplace */
616
         0x0ff00000,            /* src_mask */
617
         0x0ff00000,            /* dst_mask */
618
         FALSE),                /* pcrel_offset */
619
 
620
  HOWTO (R_ARM_TARGET1,         /* type */
621
         0,                      /* rightshift */
622
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
623
         32,                    /* bitsize */
624
         FALSE,                 /* pc_relative */
625
         0,                      /* bitpos */
626
         complain_overflow_dont,/* complain_on_overflow */
627
         bfd_elf_generic_reloc, /* special_function */
628
         "R_ARM_TARGET1",       /* name */
629
         FALSE,                 /* partial_inplace */
630
         0xffffffff,            /* src_mask */
631
         0xffffffff,            /* dst_mask */
632
         FALSE),                /* pcrel_offset */
633
 
634
  HOWTO (R_ARM_ROSEGREL32,      /* type */
635
         0,                      /* rightshift */
636
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
637
         32,                    /* bitsize */
638
         FALSE,                 /* pc_relative */
639
         0,                      /* bitpos */
640
         complain_overflow_dont,/* complain_on_overflow */
641
         bfd_elf_generic_reloc, /* special_function */
642
         "R_ARM_ROSEGREL32",    /* name */
643
         FALSE,                 /* partial_inplace */
644
         0xffffffff,            /* src_mask */
645
         0xffffffff,            /* dst_mask */
646
         FALSE),                /* pcrel_offset */
647
 
648
  HOWTO (R_ARM_V4BX,            /* type */
649
         0,                      /* rightshift */
650
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
651
         32,                    /* bitsize */
652
         FALSE,                 /* pc_relative */
653
         0,                      /* bitpos */
654
         complain_overflow_dont,/* complain_on_overflow */
655
         bfd_elf_generic_reloc, /* special_function */
656
         "R_ARM_V4BX",          /* name */
657
         FALSE,                 /* partial_inplace */
658
         0xffffffff,            /* src_mask */
659
         0xffffffff,            /* dst_mask */
660
         FALSE),                /* pcrel_offset */
661
 
662
  HOWTO (R_ARM_TARGET2,         /* type */
663
         0,                      /* rightshift */
664
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
665
         32,                    /* bitsize */
666
         FALSE,                 /* pc_relative */
667
         0,                      /* bitpos */
668
         complain_overflow_signed,/* complain_on_overflow */
669
         bfd_elf_generic_reloc, /* special_function */
670
         "R_ARM_TARGET2",       /* name */
671
         FALSE,                 /* partial_inplace */
672
         0xffffffff,            /* src_mask */
673
         0xffffffff,            /* dst_mask */
674
         TRUE),                 /* pcrel_offset */
675
 
676
  HOWTO (R_ARM_PREL31,          /* type */
677
         0,                      /* rightshift */
678
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
679
         31,                    /* bitsize */
680
         TRUE,                  /* pc_relative */
681
         0,                      /* bitpos */
682
         complain_overflow_signed,/* complain_on_overflow */
683
         bfd_elf_generic_reloc, /* special_function */
684
         "R_ARM_PREL31",        /* name */
685
         FALSE,                 /* partial_inplace */
686
         0x7fffffff,            /* src_mask */
687
         0x7fffffff,            /* dst_mask */
688
         TRUE),                 /* pcrel_offset */
689
 
690
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
691
         0,                      /* rightshift */
692
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
693
         16,                    /* bitsize */
694
         FALSE,                 /* pc_relative */
695
         0,                      /* bitpos */
696
         complain_overflow_dont,/* complain_on_overflow */
697
         bfd_elf_generic_reloc, /* special_function */
698
         "R_ARM_MOVW_ABS_NC",   /* name */
699
         FALSE,                 /* partial_inplace */
700
         0x000f0fff,            /* src_mask */
701
         0x000f0fff,            /* dst_mask */
702
         FALSE),                /* pcrel_offset */
703
 
704
  HOWTO (R_ARM_MOVT_ABS,        /* type */
705
         0,                      /* rightshift */
706
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
707
         16,                    /* bitsize */
708
         FALSE,                 /* pc_relative */
709
         0,                      /* bitpos */
710
         complain_overflow_bitfield,/* complain_on_overflow */
711
         bfd_elf_generic_reloc, /* special_function */
712
         "R_ARM_MOVT_ABS",      /* name */
713
         FALSE,                 /* partial_inplace */
714
         0x000f0fff,            /* src_mask */
715
         0x000f0fff,            /* dst_mask */
716
         FALSE),                /* pcrel_offset */
717
 
718
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
719
         0,                      /* rightshift */
720
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
721
         16,                    /* bitsize */
722
         TRUE,                  /* pc_relative */
723
         0,                      /* bitpos */
724
         complain_overflow_dont,/* complain_on_overflow */
725
         bfd_elf_generic_reloc, /* special_function */
726
         "R_ARM_MOVW_PREL_NC",  /* name */
727
         FALSE,                 /* partial_inplace */
728
         0x000f0fff,            /* src_mask */
729
         0x000f0fff,            /* dst_mask */
730
         TRUE),                 /* pcrel_offset */
731
 
732
  HOWTO (R_ARM_MOVT_PREL,       /* type */
733
         0,                      /* rightshift */
734
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
735
         16,                    /* bitsize */
736
         TRUE,                  /* pc_relative */
737
         0,                      /* bitpos */
738
         complain_overflow_bitfield,/* complain_on_overflow */
739
         bfd_elf_generic_reloc, /* special_function */
740
         "R_ARM_MOVT_PREL",     /* name */
741
         FALSE,                 /* partial_inplace */
742
         0x000f0fff,            /* src_mask */
743
         0x000f0fff,            /* dst_mask */
744
         TRUE),                 /* pcrel_offset */
745
 
746
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747
         0,                      /* rightshift */
748
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
749
         16,                    /* bitsize */
750
         FALSE,                 /* pc_relative */
751
         0,                      /* bitpos */
752
         complain_overflow_dont,/* complain_on_overflow */
753
         bfd_elf_generic_reloc, /* special_function */
754
         "R_ARM_THM_MOVW_ABS_NC",/* name */
755
         FALSE,                 /* partial_inplace */
756
         0x040f70ff,            /* src_mask */
757
         0x040f70ff,            /* dst_mask */
758
         FALSE),                /* pcrel_offset */
759
 
760
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
761
         0,                      /* rightshift */
762
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
763
         16,                    /* bitsize */
764
         FALSE,                 /* pc_relative */
765
         0,                      /* bitpos */
766
         complain_overflow_bitfield,/* complain_on_overflow */
767
         bfd_elf_generic_reloc, /* special_function */
768
         "R_ARM_THM_MOVT_ABS",  /* name */
769
         FALSE,                 /* partial_inplace */
770
         0x040f70ff,            /* src_mask */
771
         0x040f70ff,            /* dst_mask */
772
         FALSE),                /* pcrel_offset */
773
 
774
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775
         0,                      /* rightshift */
776
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
777
         16,                    /* bitsize */
778
         TRUE,                  /* pc_relative */
779
         0,                      /* bitpos */
780
         complain_overflow_dont,/* complain_on_overflow */
781
         bfd_elf_generic_reloc, /* special_function */
782
         "R_ARM_THM_MOVW_PREL_NC",/* name */
783
         FALSE,                 /* partial_inplace */
784
         0x040f70ff,            /* src_mask */
785
         0x040f70ff,            /* dst_mask */
786
         TRUE),                 /* pcrel_offset */
787
 
788
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
789
         0,                      /* rightshift */
790
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
791
         16,                    /* bitsize */
792
         TRUE,                  /* pc_relative */
793
         0,                      /* bitpos */
794
         complain_overflow_bitfield,/* complain_on_overflow */
795
         bfd_elf_generic_reloc, /* special_function */
796
         "R_ARM_THM_MOVT_PREL", /* name */
797
         FALSE,                 /* partial_inplace */
798
         0x040f70ff,            /* src_mask */
799
         0x040f70ff,            /* dst_mask */
800
         TRUE),                 /* pcrel_offset */
801
 
802
  HOWTO (R_ARM_THM_JUMP19,      /* type */
803
         1,                     /* rightshift */
804
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
805
         19,                    /* bitsize */
806
         TRUE,                  /* pc_relative */
807
         0,                      /* bitpos */
808
         complain_overflow_signed,/* complain_on_overflow */
809
         bfd_elf_generic_reloc, /* special_function */
810
         "R_ARM_THM_JUMP19",    /* name */
811
         FALSE,                 /* partial_inplace */
812
         0x043f2fff,            /* src_mask */
813
         0x043f2fff,            /* dst_mask */
814
         TRUE),                 /* pcrel_offset */
815
 
816
  HOWTO (R_ARM_THM_JUMP6,       /* type */
817
         1,                     /* rightshift */
818
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
819
         6,                     /* bitsize */
820
         TRUE,                  /* pc_relative */
821
         0,                      /* bitpos */
822
         complain_overflow_unsigned,/* complain_on_overflow */
823
         bfd_elf_generic_reloc, /* special_function */
824
         "R_ARM_THM_JUMP6",     /* name */
825
         FALSE,                 /* partial_inplace */
826
         0x02f8,                /* src_mask */
827
         0x02f8,                /* dst_mask */
828
         TRUE),                 /* pcrel_offset */
829
 
830
  /* These are declared as 13-bit signed relocations because we can
831
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832
     versa.  */
833
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834
         0,                      /* rightshift */
835
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
836
         13,                    /* bitsize */
837
         TRUE,                  /* pc_relative */
838
         0,                      /* bitpos */
839
         complain_overflow_dont,/* complain_on_overflow */
840
         bfd_elf_generic_reloc, /* special_function */
841
         "R_ARM_THM_ALU_PREL_11_0",/* name */
842
         FALSE,                 /* partial_inplace */
843
         0xffffffff,            /* src_mask */
844
         0xffffffff,            /* dst_mask */
845
         TRUE),                 /* pcrel_offset */
846
 
847
  HOWTO (R_ARM_THM_PC12,        /* type */
848
         0,                      /* rightshift */
849
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
850
         13,                    /* bitsize */
851
         TRUE,                  /* pc_relative */
852
         0,                      /* bitpos */
853
         complain_overflow_dont,/* complain_on_overflow */
854
         bfd_elf_generic_reloc, /* special_function */
855
         "R_ARM_THM_PC12",      /* name */
856
         FALSE,                 /* partial_inplace */
857
         0xffffffff,            /* src_mask */
858
         0xffffffff,            /* dst_mask */
859
         TRUE),                 /* pcrel_offset */
860
 
861
  HOWTO (R_ARM_ABS32_NOI,       /* type */
862
         0,                      /* rightshift */
863
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
864
         32,                    /* bitsize */
865
         FALSE,                 /* pc_relative */
866
         0,                      /* bitpos */
867
         complain_overflow_dont,/* complain_on_overflow */
868
         bfd_elf_generic_reloc, /* special_function */
869
         "R_ARM_ABS32_NOI",     /* name */
870
         FALSE,                 /* partial_inplace */
871
         0xffffffff,            /* src_mask */
872
         0xffffffff,            /* dst_mask */
873
         FALSE),                /* pcrel_offset */
874
 
875
  HOWTO (R_ARM_REL32_NOI,       /* type */
876
         0,                      /* rightshift */
877
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
878
         32,                    /* bitsize */
879
         TRUE,                  /* pc_relative */
880
         0,                      /* bitpos */
881
         complain_overflow_dont,/* complain_on_overflow */
882
         bfd_elf_generic_reloc, /* special_function */
883
         "R_ARM_REL32_NOI",     /* name */
884
         FALSE,                 /* partial_inplace */
885
         0xffffffff,            /* src_mask */
886
         0xffffffff,            /* dst_mask */
887
         FALSE),                /* pcrel_offset */
888
 
889
  /* Group relocations.  */
890
 
891
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
892
         0,                      /* rightshift */
893
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
894
         32,                    /* bitsize */
895
         TRUE,                  /* pc_relative */
896
         0,                      /* bitpos */
897
         complain_overflow_dont,/* complain_on_overflow */
898
         bfd_elf_generic_reloc, /* special_function */
899
         "R_ARM_ALU_PC_G0_NC",  /* name */
900
         FALSE,                 /* partial_inplace */
901
         0xffffffff,            /* src_mask */
902
         0xffffffff,            /* dst_mask */
903
         TRUE),                 /* pcrel_offset */
904
 
905
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
906
         0,                      /* rightshift */
907
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
908
         32,                    /* bitsize */
909
         TRUE,                  /* pc_relative */
910
         0,                      /* bitpos */
911
         complain_overflow_dont,/* complain_on_overflow */
912
         bfd_elf_generic_reloc, /* special_function */
913
         "R_ARM_ALU_PC_G0",     /* name */
914
         FALSE,                 /* partial_inplace */
915
         0xffffffff,            /* src_mask */
916
         0xffffffff,            /* dst_mask */
917
         TRUE),                 /* pcrel_offset */
918
 
919
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
920
         0,                      /* rightshift */
921
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
922
         32,                    /* bitsize */
923
         TRUE,                  /* pc_relative */
924
         0,                      /* bitpos */
925
         complain_overflow_dont,/* complain_on_overflow */
926
         bfd_elf_generic_reloc, /* special_function */
927
         "R_ARM_ALU_PC_G1_NC",  /* name */
928
         FALSE,                 /* partial_inplace */
929
         0xffffffff,            /* src_mask */
930
         0xffffffff,            /* dst_mask */
931
         TRUE),                 /* pcrel_offset */
932
 
933
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
934
         0,                      /* rightshift */
935
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
936
         32,                    /* bitsize */
937
         TRUE,                  /* pc_relative */
938
         0,                      /* bitpos */
939
         complain_overflow_dont,/* complain_on_overflow */
940
         bfd_elf_generic_reloc, /* special_function */
941
         "R_ARM_ALU_PC_G1",     /* name */
942
         FALSE,                 /* partial_inplace */
943
         0xffffffff,            /* src_mask */
944
         0xffffffff,            /* dst_mask */
945
         TRUE),                 /* pcrel_offset */
946
 
947
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
948
         0,                      /* rightshift */
949
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
950
         32,                    /* bitsize */
951
         TRUE,                  /* pc_relative */
952
         0,                      /* bitpos */
953
         complain_overflow_dont,/* complain_on_overflow */
954
         bfd_elf_generic_reloc, /* special_function */
955
         "R_ARM_ALU_PC_G2",     /* name */
956
         FALSE,                 /* partial_inplace */
957
         0xffffffff,            /* src_mask */
958
         0xffffffff,            /* dst_mask */
959
         TRUE),                 /* pcrel_offset */
960
 
961
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
962
         0,                      /* rightshift */
963
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
964
         32,                    /* bitsize */
965
         TRUE,                  /* pc_relative */
966
         0,                      /* bitpos */
967
         complain_overflow_dont,/* complain_on_overflow */
968
         bfd_elf_generic_reloc, /* special_function */
969
         "R_ARM_LDR_PC_G1",     /* name */
970
         FALSE,                 /* partial_inplace */
971
         0xffffffff,            /* src_mask */
972
         0xffffffff,            /* dst_mask */
973
         TRUE),                 /* pcrel_offset */
974
 
975
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
976
         0,                      /* rightshift */
977
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
978
         32,                    /* bitsize */
979
         TRUE,                  /* pc_relative */
980
         0,                      /* bitpos */
981
         complain_overflow_dont,/* complain_on_overflow */
982
         bfd_elf_generic_reloc, /* special_function */
983
         "R_ARM_LDR_PC_G2",     /* name */
984
         FALSE,                 /* partial_inplace */
985
         0xffffffff,            /* src_mask */
986
         0xffffffff,            /* dst_mask */
987
         TRUE),                 /* pcrel_offset */
988
 
989
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
990
         0,                      /* rightshift */
991
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
992
         32,                    /* bitsize */
993
         TRUE,                  /* pc_relative */
994
         0,                      /* bitpos */
995
         complain_overflow_dont,/* complain_on_overflow */
996
         bfd_elf_generic_reloc, /* special_function */
997
         "R_ARM_LDRS_PC_G0",    /* name */
998
         FALSE,                 /* partial_inplace */
999
         0xffffffff,            /* src_mask */
1000
         0xffffffff,            /* dst_mask */
1001
         TRUE),                 /* pcrel_offset */
1002
 
1003
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
1004
         0,                      /* rightshift */
1005
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1006
         32,                    /* bitsize */
1007
         TRUE,                  /* pc_relative */
1008
         0,                      /* bitpos */
1009
         complain_overflow_dont,/* complain_on_overflow */
1010
         bfd_elf_generic_reloc, /* special_function */
1011
         "R_ARM_LDRS_PC_G1",    /* name */
1012
         FALSE,                 /* partial_inplace */
1013
         0xffffffff,            /* src_mask */
1014
         0xffffffff,            /* dst_mask */
1015
         TRUE),                 /* pcrel_offset */
1016
 
1017
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
1018
         0,                      /* rightshift */
1019
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1020
         32,                    /* bitsize */
1021
         TRUE,                  /* pc_relative */
1022
         0,                      /* bitpos */
1023
         complain_overflow_dont,/* complain_on_overflow */
1024
         bfd_elf_generic_reloc, /* special_function */
1025
         "R_ARM_LDRS_PC_G2",    /* name */
1026
         FALSE,                 /* partial_inplace */
1027
         0xffffffff,            /* src_mask */
1028
         0xffffffff,            /* dst_mask */
1029
         TRUE),                 /* pcrel_offset */
1030
 
1031
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
1032
         0,                      /* rightshift */
1033
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1034
         32,                    /* bitsize */
1035
         TRUE,                  /* pc_relative */
1036
         0,                      /* bitpos */
1037
         complain_overflow_dont,/* complain_on_overflow */
1038
         bfd_elf_generic_reloc, /* special_function */
1039
         "R_ARM_LDC_PC_G0",     /* name */
1040
         FALSE,                 /* partial_inplace */
1041
         0xffffffff,            /* src_mask */
1042
         0xffffffff,            /* dst_mask */
1043
         TRUE),                 /* pcrel_offset */
1044
 
1045
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
1046
         0,                      /* rightshift */
1047
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1048
         32,                    /* bitsize */
1049
         TRUE,                  /* pc_relative */
1050
         0,                      /* bitpos */
1051
         complain_overflow_dont,/* complain_on_overflow */
1052
         bfd_elf_generic_reloc, /* special_function */
1053
         "R_ARM_LDC_PC_G1",     /* name */
1054
         FALSE,                 /* partial_inplace */
1055
         0xffffffff,            /* src_mask */
1056
         0xffffffff,            /* dst_mask */
1057
         TRUE),                 /* pcrel_offset */
1058
 
1059
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
1060
         0,                      /* rightshift */
1061
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1062
         32,                    /* bitsize */
1063
         TRUE,                  /* pc_relative */
1064
         0,                      /* bitpos */
1065
         complain_overflow_dont,/* complain_on_overflow */
1066
         bfd_elf_generic_reloc, /* special_function */
1067
         "R_ARM_LDC_PC_G2",     /* name */
1068
         FALSE,                 /* partial_inplace */
1069
         0xffffffff,            /* src_mask */
1070
         0xffffffff,            /* dst_mask */
1071
         TRUE),                 /* pcrel_offset */
1072
 
1073
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
1074
         0,                      /* rightshift */
1075
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1076
         32,                    /* bitsize */
1077
         TRUE,                  /* pc_relative */
1078
         0,                      /* bitpos */
1079
         complain_overflow_dont,/* complain_on_overflow */
1080
         bfd_elf_generic_reloc, /* special_function */
1081
         "R_ARM_ALU_SB_G0_NC",  /* name */
1082
         FALSE,                 /* partial_inplace */
1083
         0xffffffff,            /* src_mask */
1084
         0xffffffff,            /* dst_mask */
1085
         TRUE),                 /* pcrel_offset */
1086
 
1087
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
1088
         0,                      /* rightshift */
1089
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1090
         32,                    /* bitsize */
1091
         TRUE,                  /* pc_relative */
1092
         0,                      /* bitpos */
1093
         complain_overflow_dont,/* complain_on_overflow */
1094
         bfd_elf_generic_reloc, /* special_function */
1095
         "R_ARM_ALU_SB_G0",     /* name */
1096
         FALSE,                 /* partial_inplace */
1097
         0xffffffff,            /* src_mask */
1098
         0xffffffff,            /* dst_mask */
1099
         TRUE),                 /* pcrel_offset */
1100
 
1101
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
1102
         0,                      /* rightshift */
1103
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1104
         32,                    /* bitsize */
1105
         TRUE,                  /* pc_relative */
1106
         0,                      /* bitpos */
1107
         complain_overflow_dont,/* complain_on_overflow */
1108
         bfd_elf_generic_reloc, /* special_function */
1109
         "R_ARM_ALU_SB_G1_NC",  /* name */
1110
         FALSE,                 /* partial_inplace */
1111
         0xffffffff,            /* src_mask */
1112
         0xffffffff,            /* dst_mask */
1113
         TRUE),                 /* pcrel_offset */
1114
 
1115
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
1116
         0,                      /* rightshift */
1117
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1118
         32,                    /* bitsize */
1119
         TRUE,                  /* pc_relative */
1120
         0,                      /* bitpos */
1121
         complain_overflow_dont,/* complain_on_overflow */
1122
         bfd_elf_generic_reloc, /* special_function */
1123
         "R_ARM_ALU_SB_G1",     /* name */
1124
         FALSE,                 /* partial_inplace */
1125
         0xffffffff,            /* src_mask */
1126
         0xffffffff,            /* dst_mask */
1127
         TRUE),                 /* pcrel_offset */
1128
 
1129
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
1130
         0,                      /* rightshift */
1131
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1132
         32,                    /* bitsize */
1133
         TRUE,                  /* pc_relative */
1134
         0,                      /* bitpos */
1135
         complain_overflow_dont,/* complain_on_overflow */
1136
         bfd_elf_generic_reloc, /* special_function */
1137
         "R_ARM_ALU_SB_G2",     /* name */
1138
         FALSE,                 /* partial_inplace */
1139
         0xffffffff,            /* src_mask */
1140
         0xffffffff,            /* dst_mask */
1141
         TRUE),                 /* pcrel_offset */
1142
 
1143
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
1144
         0,                      /* rightshift */
1145
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1146
         32,                    /* bitsize */
1147
         TRUE,                  /* pc_relative */
1148
         0,                      /* bitpos */
1149
         complain_overflow_dont,/* complain_on_overflow */
1150
         bfd_elf_generic_reloc, /* special_function */
1151
         "R_ARM_LDR_SB_G0",     /* name */
1152
         FALSE,                 /* partial_inplace */
1153
         0xffffffff,            /* src_mask */
1154
         0xffffffff,            /* dst_mask */
1155
         TRUE),                 /* pcrel_offset */
1156
 
1157
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
1158
         0,                      /* rightshift */
1159
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1160
         32,                    /* bitsize */
1161
         TRUE,                  /* pc_relative */
1162
         0,                      /* bitpos */
1163
         complain_overflow_dont,/* complain_on_overflow */
1164
         bfd_elf_generic_reloc, /* special_function */
1165
         "R_ARM_LDR_SB_G1",     /* name */
1166
         FALSE,                 /* partial_inplace */
1167
         0xffffffff,            /* src_mask */
1168
         0xffffffff,            /* dst_mask */
1169
         TRUE),                 /* pcrel_offset */
1170
 
1171
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
1172
         0,                      /* rightshift */
1173
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1174
         32,                    /* bitsize */
1175
         TRUE,                  /* pc_relative */
1176
         0,                      /* bitpos */
1177
         complain_overflow_dont,/* complain_on_overflow */
1178
         bfd_elf_generic_reloc, /* special_function */
1179
         "R_ARM_LDR_SB_G2",     /* name */
1180
         FALSE,                 /* partial_inplace */
1181
         0xffffffff,            /* src_mask */
1182
         0xffffffff,            /* dst_mask */
1183
         TRUE),                 /* pcrel_offset */
1184
 
1185
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
1186
         0,                      /* rightshift */
1187
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1188
         32,                    /* bitsize */
1189
         TRUE,                  /* pc_relative */
1190
         0,                      /* bitpos */
1191
         complain_overflow_dont,/* complain_on_overflow */
1192
         bfd_elf_generic_reloc, /* special_function */
1193
         "R_ARM_LDRS_SB_G0",    /* name */
1194
         FALSE,                 /* partial_inplace */
1195
         0xffffffff,            /* src_mask */
1196
         0xffffffff,            /* dst_mask */
1197
         TRUE),                 /* pcrel_offset */
1198
 
1199
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
1200
         0,                      /* rightshift */
1201
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1202
         32,                    /* bitsize */
1203
         TRUE,                  /* pc_relative */
1204
         0,                      /* bitpos */
1205
         complain_overflow_dont,/* complain_on_overflow */
1206
         bfd_elf_generic_reloc, /* special_function */
1207
         "R_ARM_LDRS_SB_G1",    /* name */
1208
         FALSE,                 /* partial_inplace */
1209
         0xffffffff,            /* src_mask */
1210
         0xffffffff,            /* dst_mask */
1211
         TRUE),                 /* pcrel_offset */
1212
 
1213
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
1214
         0,                      /* rightshift */
1215
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1216
         32,                    /* bitsize */
1217
         TRUE,                  /* pc_relative */
1218
         0,                      /* bitpos */
1219
         complain_overflow_dont,/* complain_on_overflow */
1220
         bfd_elf_generic_reloc, /* special_function */
1221
         "R_ARM_LDRS_SB_G2",    /* name */
1222
         FALSE,                 /* partial_inplace */
1223
         0xffffffff,            /* src_mask */
1224
         0xffffffff,            /* dst_mask */
1225
         TRUE),                 /* pcrel_offset */
1226
 
1227
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
1228
         0,                      /* rightshift */
1229
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1230
         32,                    /* bitsize */
1231
         TRUE,                  /* pc_relative */
1232
         0,                      /* bitpos */
1233
         complain_overflow_dont,/* complain_on_overflow */
1234
         bfd_elf_generic_reloc, /* special_function */
1235
         "R_ARM_LDC_SB_G0",     /* name */
1236
         FALSE,                 /* partial_inplace */
1237
         0xffffffff,            /* src_mask */
1238
         0xffffffff,            /* dst_mask */
1239
         TRUE),                 /* pcrel_offset */
1240
 
1241
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
1242
         0,                      /* rightshift */
1243
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1244
         32,                    /* bitsize */
1245
         TRUE,                  /* pc_relative */
1246
         0,                      /* bitpos */
1247
         complain_overflow_dont,/* complain_on_overflow */
1248
         bfd_elf_generic_reloc, /* special_function */
1249
         "R_ARM_LDC_SB_G1",     /* name */
1250
         FALSE,                 /* partial_inplace */
1251
         0xffffffff,            /* src_mask */
1252
         0xffffffff,            /* dst_mask */
1253
         TRUE),                 /* pcrel_offset */
1254
 
1255
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
1256
         0,                      /* rightshift */
1257
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1258
         32,                    /* bitsize */
1259
         TRUE,                  /* pc_relative */
1260
         0,                      /* bitpos */
1261
         complain_overflow_dont,/* complain_on_overflow */
1262
         bfd_elf_generic_reloc, /* special_function */
1263
         "R_ARM_LDC_SB_G2",     /* name */
1264
         FALSE,                 /* partial_inplace */
1265
         0xffffffff,            /* src_mask */
1266
         0xffffffff,            /* dst_mask */
1267
         TRUE),                 /* pcrel_offset */
1268
 
1269
  /* End of group relocations.  */
1270
 
1271
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
1272
         0,                      /* rightshift */
1273
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1274
         16,                    /* bitsize */
1275
         FALSE,                 /* pc_relative */
1276
         0,                      /* bitpos */
1277
         complain_overflow_dont,/* complain_on_overflow */
1278
         bfd_elf_generic_reloc, /* special_function */
1279
         "R_ARM_MOVW_BREL_NC",  /* name */
1280
         FALSE,                 /* partial_inplace */
1281
         0x0000ffff,            /* src_mask */
1282
         0x0000ffff,            /* dst_mask */
1283
         FALSE),                /* pcrel_offset */
1284
 
1285
  HOWTO (R_ARM_MOVT_BREL,       /* type */
1286
         0,                      /* rightshift */
1287
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1288
         16,                    /* bitsize */
1289
         FALSE,                 /* pc_relative */
1290
         0,                      /* bitpos */
1291
         complain_overflow_bitfield,/* complain_on_overflow */
1292
         bfd_elf_generic_reloc, /* special_function */
1293
         "R_ARM_MOVT_BREL",     /* name */
1294
         FALSE,                 /* partial_inplace */
1295
         0x0000ffff,            /* src_mask */
1296
         0x0000ffff,            /* dst_mask */
1297
         FALSE),                /* pcrel_offset */
1298
 
1299
  HOWTO (R_ARM_MOVW_BREL,       /* type */
1300
         0,                      /* rightshift */
1301
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1302
         16,                    /* bitsize */
1303
         FALSE,                 /* pc_relative */
1304
         0,                      /* bitpos */
1305
         complain_overflow_dont,/* complain_on_overflow */
1306
         bfd_elf_generic_reloc, /* special_function */
1307
         "R_ARM_MOVW_BREL",     /* name */
1308
         FALSE,                 /* partial_inplace */
1309
         0x0000ffff,            /* src_mask */
1310
         0x0000ffff,            /* dst_mask */
1311
         FALSE),                /* pcrel_offset */
1312
 
1313
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314
         0,                      /* rightshift */
1315
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1316
         16,                    /* bitsize */
1317
         FALSE,                 /* pc_relative */
1318
         0,                      /* bitpos */
1319
         complain_overflow_dont,/* complain_on_overflow */
1320
         bfd_elf_generic_reloc, /* special_function */
1321
         "R_ARM_THM_MOVW_BREL_NC",/* name */
1322
         FALSE,                 /* partial_inplace */
1323
         0x040f70ff,            /* src_mask */
1324
         0x040f70ff,            /* dst_mask */
1325
         FALSE),                /* pcrel_offset */
1326
 
1327
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
1328
         0,                      /* rightshift */
1329
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1330
         16,                    /* bitsize */
1331
         FALSE,                 /* pc_relative */
1332
         0,                      /* bitpos */
1333
         complain_overflow_bitfield,/* complain_on_overflow */
1334
         bfd_elf_generic_reloc, /* special_function */
1335
         "R_ARM_THM_MOVT_BREL", /* name */
1336
         FALSE,                 /* partial_inplace */
1337
         0x040f70ff,            /* src_mask */
1338
         0x040f70ff,            /* dst_mask */
1339
         FALSE),                /* pcrel_offset */
1340
 
1341
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
1342
         0,                      /* rightshift */
1343
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1344
         16,                    /* bitsize */
1345
         FALSE,                 /* pc_relative */
1346
         0,                      /* bitpos */
1347
         complain_overflow_dont,/* complain_on_overflow */
1348
         bfd_elf_generic_reloc, /* special_function */
1349
         "R_ARM_THM_MOVW_BREL", /* name */
1350
         FALSE,                 /* partial_inplace */
1351
         0x040f70ff,            /* src_mask */
1352
         0x040f70ff,            /* dst_mask */
1353
         FALSE),                /* pcrel_offset */
1354
 
1355
  HOWTO (R_ARM_TLS_GOTDESC,     /* type */
1356
         0,                      /* rightshift */
1357
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1358
         32,                    /* bitsize */
1359
         FALSE,                 /* pc_relative */
1360
         0,                      /* bitpos */
1361
         complain_overflow_bitfield,/* complain_on_overflow */
1362
         NULL,                  /* special_function */
1363
         "R_ARM_TLS_GOTDESC",   /* name */
1364
         TRUE,                  /* partial_inplace */
1365
         0xffffffff,            /* src_mask */
1366
         0xffffffff,            /* dst_mask */
1367
         FALSE),                /* pcrel_offset */
1368
 
1369
  HOWTO (R_ARM_TLS_CALL,        /* type */
1370
         0,                      /* rightshift */
1371
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1372
         24,                    /* bitsize */
1373
         FALSE,                 /* pc_relative */
1374
         0,                      /* bitpos */
1375
         complain_overflow_dont,/* complain_on_overflow */
1376
         bfd_elf_generic_reloc, /* special_function */
1377
         "R_ARM_TLS_CALL",      /* name */
1378
         FALSE,                 /* partial_inplace */
1379
         0x00ffffff,            /* src_mask */
1380
         0x00ffffff,            /* dst_mask */
1381
         FALSE),                /* pcrel_offset */
1382
 
1383
  HOWTO (R_ARM_TLS_DESCSEQ,     /* type */
1384
         0,                      /* rightshift */
1385
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1386
         0,                      /* bitsize */
1387
         FALSE,                 /* pc_relative */
1388
         0,                      /* bitpos */
1389
         complain_overflow_bitfield,/* complain_on_overflow */
1390
         bfd_elf_generic_reloc, /* special_function */
1391
         "R_ARM_TLS_DESCSEQ",   /* name */
1392
         FALSE,                 /* partial_inplace */
1393
         0x00000000,            /* src_mask */
1394
         0x00000000,            /* dst_mask */
1395
         FALSE),                /* pcrel_offset */
1396
 
1397
  HOWTO (R_ARM_THM_TLS_CALL,    /* type */
1398
         0,                      /* rightshift */
1399
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1400
         24,                    /* bitsize */
1401
         FALSE,                 /* pc_relative */
1402
         0,                      /* bitpos */
1403
         complain_overflow_dont,/* complain_on_overflow */
1404
         bfd_elf_generic_reloc, /* special_function */
1405
         "R_ARM_THM_TLS_CALL",  /* name */
1406
         FALSE,                 /* partial_inplace */
1407
         0x07ff07ff,            /* src_mask */
1408
         0x07ff07ff,            /* dst_mask */
1409
         FALSE),                /* pcrel_offset */
1410
 
1411
  HOWTO (R_ARM_PLT32_ABS,       /* type */
1412
         0,                      /* rightshift */
1413
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1414
         32,                    /* bitsize */
1415
         FALSE,                 /* pc_relative */
1416
         0,                      /* bitpos */
1417
         complain_overflow_dont,/* complain_on_overflow */
1418
         bfd_elf_generic_reloc, /* special_function */
1419
         "R_ARM_PLT32_ABS",     /* name */
1420
         FALSE,                 /* partial_inplace */
1421
         0xffffffff,            /* src_mask */
1422
         0xffffffff,            /* dst_mask */
1423
         FALSE),                /* pcrel_offset */
1424
 
1425
  HOWTO (R_ARM_GOT_ABS,         /* type */
1426
         0,                      /* rightshift */
1427
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1428
         32,                    /* bitsize */
1429
         FALSE,                 /* pc_relative */
1430
         0,                      /* bitpos */
1431
         complain_overflow_dont,/* complain_on_overflow */
1432
         bfd_elf_generic_reloc, /* special_function */
1433
         "R_ARM_GOT_ABS",       /* name */
1434
         FALSE,                 /* partial_inplace */
1435
         0xffffffff,            /* src_mask */
1436
         0xffffffff,            /* dst_mask */
1437
         FALSE),                        /* pcrel_offset */
1438
 
1439
  HOWTO (R_ARM_GOT_PREL,        /* type */
1440
         0,                      /* rightshift */
1441
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1442
         32,                    /* bitsize */
1443
         TRUE,                  /* pc_relative */
1444
         0,                      /* bitpos */
1445
         complain_overflow_dont,        /* complain_on_overflow */
1446
         bfd_elf_generic_reloc, /* special_function */
1447
         "R_ARM_GOT_PREL",      /* name */
1448
         FALSE,                 /* partial_inplace */
1449
         0xffffffff,            /* src_mask */
1450
         0xffffffff,            /* dst_mask */
1451
         TRUE),                 /* pcrel_offset */
1452
 
1453
  HOWTO (R_ARM_GOT_BREL12,      /* type */
1454
         0,                      /* rightshift */
1455
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1456
         12,                    /* bitsize */
1457
         FALSE,                 /* pc_relative */
1458
         0,                      /* bitpos */
1459
         complain_overflow_bitfield,/* complain_on_overflow */
1460
         bfd_elf_generic_reloc, /* special_function */
1461
         "R_ARM_GOT_BREL12",    /* name */
1462
         FALSE,                 /* partial_inplace */
1463
         0x00000fff,            /* src_mask */
1464
         0x00000fff,            /* dst_mask */
1465
         FALSE),                /* pcrel_offset */
1466
 
1467
  HOWTO (R_ARM_GOTOFF12,        /* type */
1468
         0,                      /* rightshift */
1469
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1470
         12,                    /* bitsize */
1471
         FALSE,                 /* pc_relative */
1472
         0,                      /* bitpos */
1473
         complain_overflow_bitfield,/* complain_on_overflow */
1474
         bfd_elf_generic_reloc, /* special_function */
1475
         "R_ARM_GOTOFF12",      /* name */
1476
         FALSE,                 /* partial_inplace */
1477
         0x00000fff,            /* src_mask */
1478
         0x00000fff,            /* dst_mask */
1479
         FALSE),                /* pcrel_offset */
1480
 
1481
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
1482
 
1483
  /* GNU extension to record C++ vtable member usage */
1484
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
1485
         0,                     /* rightshift */
1486
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1487
         0,                     /* bitsize */
1488
         FALSE,                 /* pc_relative */
1489
         0,                     /* bitpos */
1490
         complain_overflow_dont, /* complain_on_overflow */
1491
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
1492
         "R_ARM_GNU_VTENTRY",   /* name */
1493
         FALSE,                 /* partial_inplace */
1494
         0,                     /* src_mask */
1495
         0,                     /* dst_mask */
1496
         FALSE),                /* pcrel_offset */
1497
 
1498
  /* GNU extension to record C++ vtable hierarchy */
1499
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500
         0,                     /* rightshift */
1501
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1502
         0,                     /* bitsize */
1503
         FALSE,                 /* pc_relative */
1504
         0,                     /* bitpos */
1505
         complain_overflow_dont, /* complain_on_overflow */
1506
         NULL,                  /* special_function */
1507
         "R_ARM_GNU_VTINHERIT", /* name */
1508
         FALSE,                 /* partial_inplace */
1509
         0,                     /* src_mask */
1510
         0,                     /* dst_mask */
1511
         FALSE),                /* pcrel_offset */
1512
 
1513
  HOWTO (R_ARM_THM_JUMP11,      /* type */
1514
         1,                     /* rightshift */
1515
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1516
         11,                    /* bitsize */
1517
         TRUE,                  /* pc_relative */
1518
         0,                      /* bitpos */
1519
         complain_overflow_signed,      /* complain_on_overflow */
1520
         bfd_elf_generic_reloc, /* special_function */
1521
         "R_ARM_THM_JUMP11",    /* name */
1522
         FALSE,                 /* partial_inplace */
1523
         0x000007ff,            /* src_mask */
1524
         0x000007ff,            /* dst_mask */
1525
         TRUE),                 /* pcrel_offset */
1526
 
1527
  HOWTO (R_ARM_THM_JUMP8,       /* type */
1528
         1,                     /* rightshift */
1529
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1530
         8,                     /* bitsize */
1531
         TRUE,                  /* pc_relative */
1532
         0,                      /* bitpos */
1533
         complain_overflow_signed,      /* complain_on_overflow */
1534
         bfd_elf_generic_reloc, /* special_function */
1535
         "R_ARM_THM_JUMP8",     /* name */
1536
         FALSE,                 /* partial_inplace */
1537
         0x000000ff,            /* src_mask */
1538
         0x000000ff,            /* dst_mask */
1539
         TRUE),                 /* pcrel_offset */
1540
 
1541
  /* TLS relocations */
1542
  HOWTO (R_ARM_TLS_GD32,        /* type */
1543
         0,                     /* rightshift */
1544
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1545
         32,                    /* bitsize */
1546
         FALSE,                 /* pc_relative */
1547
         0,                     /* bitpos */
1548
         complain_overflow_bitfield,/* complain_on_overflow */
1549
         NULL,                  /* special_function */
1550
         "R_ARM_TLS_GD32",      /* name */
1551
         TRUE,                  /* partial_inplace */
1552
         0xffffffff,            /* src_mask */
1553
         0xffffffff,            /* dst_mask */
1554
         FALSE),                /* pcrel_offset */
1555
 
1556
  HOWTO (R_ARM_TLS_LDM32,       /* type */
1557
         0,                     /* rightshift */
1558
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1559
         32,                    /* bitsize */
1560
         FALSE,                 /* pc_relative */
1561
         0,                     /* bitpos */
1562
         complain_overflow_bitfield,/* complain_on_overflow */
1563
         bfd_elf_generic_reloc, /* special_function */
1564
         "R_ARM_TLS_LDM32",     /* name */
1565
         TRUE,                  /* partial_inplace */
1566
         0xffffffff,            /* src_mask */
1567
         0xffffffff,            /* dst_mask */
1568
         FALSE),                /* pcrel_offset */
1569
 
1570
  HOWTO (R_ARM_TLS_LDO32,       /* type */
1571
         0,                     /* rightshift */
1572
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1573
         32,                    /* bitsize */
1574
         FALSE,                 /* pc_relative */
1575
         0,                     /* bitpos */
1576
         complain_overflow_bitfield,/* complain_on_overflow */
1577
         bfd_elf_generic_reloc, /* special_function */
1578
         "R_ARM_TLS_LDO32",     /* name */
1579
         TRUE,                  /* partial_inplace */
1580
         0xffffffff,            /* src_mask */
1581
         0xffffffff,            /* dst_mask */
1582
         FALSE),                /* pcrel_offset */
1583
 
1584
  HOWTO (R_ARM_TLS_IE32,        /* type */
1585
         0,                     /* rightshift */
1586
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1587
         32,                    /* bitsize */
1588
         FALSE,                  /* pc_relative */
1589
         0,                     /* bitpos */
1590
         complain_overflow_bitfield,/* complain_on_overflow */
1591
         NULL,                  /* special_function */
1592
         "R_ARM_TLS_IE32",      /* name */
1593
         TRUE,                  /* partial_inplace */
1594
         0xffffffff,            /* src_mask */
1595
         0xffffffff,            /* dst_mask */
1596
         FALSE),                /* pcrel_offset */
1597
 
1598
  HOWTO (R_ARM_TLS_LE32,        /* type */
1599
         0,                     /* rightshift */
1600
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1601
         32,                    /* bitsize */
1602
         FALSE,                 /* pc_relative */
1603
         0,                     /* bitpos */
1604
         complain_overflow_bitfield,/* complain_on_overflow */
1605
         bfd_elf_generic_reloc, /* special_function */
1606
         "R_ARM_TLS_LE32",      /* name */
1607
         TRUE,                  /* partial_inplace */
1608
         0xffffffff,            /* src_mask */
1609
         0xffffffff,            /* dst_mask */
1610
         FALSE),                /* pcrel_offset */
1611
 
1612
  HOWTO (R_ARM_TLS_LDO12,       /* type */
1613
         0,                      /* rightshift */
1614
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1615
         12,                    /* bitsize */
1616
         FALSE,                 /* pc_relative */
1617
         0,                      /* bitpos */
1618
         complain_overflow_bitfield,/* complain_on_overflow */
1619
         bfd_elf_generic_reloc, /* special_function */
1620
         "R_ARM_TLS_LDO12",     /* name */
1621
         FALSE,                 /* partial_inplace */
1622
         0x00000fff,            /* src_mask */
1623
         0x00000fff,            /* dst_mask */
1624
         FALSE),                /* pcrel_offset */
1625
 
1626
  HOWTO (R_ARM_TLS_LE12,        /* type */
1627
         0,                      /* rightshift */
1628
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1629
         12,                    /* bitsize */
1630
         FALSE,                 /* pc_relative */
1631
         0,                      /* bitpos */
1632
         complain_overflow_bitfield,/* complain_on_overflow */
1633
         bfd_elf_generic_reloc, /* special_function */
1634
         "R_ARM_TLS_LE12",      /* name */
1635
         FALSE,                 /* partial_inplace */
1636
         0x00000fff,            /* src_mask */
1637
         0x00000fff,            /* dst_mask */
1638
         FALSE),                /* pcrel_offset */
1639
 
1640
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
1641
         0,                      /* rightshift */
1642
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1643
         12,                    /* bitsize */
1644
         FALSE,                 /* pc_relative */
1645
         0,                      /* bitpos */
1646
         complain_overflow_bitfield,/* complain_on_overflow */
1647
         bfd_elf_generic_reloc, /* special_function */
1648
         "R_ARM_TLS_IE12GP",    /* name */
1649
         FALSE,                 /* partial_inplace */
1650
         0x00000fff,            /* src_mask */
1651
         0x00000fff,            /* dst_mask */
1652
         FALSE),                /* pcrel_offset */
1653
 
1654
  /* 112-127 private relocations.  */
1655
  EMPTY_HOWTO (112),
1656
  EMPTY_HOWTO (113),
1657
  EMPTY_HOWTO (114),
1658
  EMPTY_HOWTO (115),
1659
  EMPTY_HOWTO (116),
1660
  EMPTY_HOWTO (117),
1661
  EMPTY_HOWTO (118),
1662
  EMPTY_HOWTO (119),
1663
  EMPTY_HOWTO (120),
1664
  EMPTY_HOWTO (121),
1665
  EMPTY_HOWTO (122),
1666
  EMPTY_HOWTO (123),
1667
  EMPTY_HOWTO (124),
1668
  EMPTY_HOWTO (125),
1669
  EMPTY_HOWTO (126),
1670
  EMPTY_HOWTO (127),
1671
 
1672
  /* R_ARM_ME_TOO, obsolete.  */
1673
  EMPTY_HOWTO (128),
1674
 
1675
  HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1676
         0,                      /* rightshift */
1677
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
1678
         0,                      /* bitsize */
1679
         FALSE,                 /* pc_relative */
1680
         0,                      /* bitpos */
1681
         complain_overflow_bitfield,/* complain_on_overflow */
1682
         bfd_elf_generic_reloc, /* special_function */
1683
         "R_ARM_THM_TLS_DESCSEQ",/* name */
1684
         FALSE,                 /* partial_inplace */
1685
         0x00000000,            /* src_mask */
1686
         0x00000000,            /* dst_mask */
1687
         FALSE),                /* pcrel_offset */
1688
};
1689
 
1690
/* 160 onwards: */
1691
static reloc_howto_type elf32_arm_howto_table_2[1] =
1692
{
1693
  HOWTO (R_ARM_IRELATIVE,       /* type */
1694
         0,                     /* rightshift */
1695
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
1696
         32,                    /* bitsize */
1697
         FALSE,                 /* pc_relative */
1698
         0,                     /* bitpos */
1699
         complain_overflow_bitfield,/* complain_on_overflow */
1700
         bfd_elf_generic_reloc, /* special_function */
1701
         "R_ARM_IRELATIVE",     /* name */
1702
         TRUE,                  /* partial_inplace */
1703
         0xffffffff,            /* src_mask */
1704
         0xffffffff,            /* dst_mask */
1705
         FALSE)                 /* pcrel_offset */
1706
};
1707
 
1708
/* 249-255 extended, currently unused, relocations:  */
1709
static reloc_howto_type elf32_arm_howto_table_3[4] =
1710
{
1711
  HOWTO (R_ARM_RREL32,          /* type */
1712
         0,                      /* rightshift */
1713
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1714
         0,                      /* bitsize */
1715
         FALSE,                 /* pc_relative */
1716
         0,                      /* bitpos */
1717
         complain_overflow_dont,/* complain_on_overflow */
1718
         bfd_elf_generic_reloc, /* special_function */
1719
         "R_ARM_RREL32",        /* name */
1720
         FALSE,                 /* partial_inplace */
1721
         0,                      /* src_mask */
1722
         0,                      /* dst_mask */
1723
         FALSE),                /* pcrel_offset */
1724
 
1725
  HOWTO (R_ARM_RABS32,          /* type */
1726
         0,                      /* rightshift */
1727
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1728
         0,                      /* bitsize */
1729
         FALSE,                 /* pc_relative */
1730
         0,                      /* bitpos */
1731
         complain_overflow_dont,/* complain_on_overflow */
1732
         bfd_elf_generic_reloc, /* special_function */
1733
         "R_ARM_RABS32",        /* name */
1734
         FALSE,                 /* partial_inplace */
1735
         0,                      /* src_mask */
1736
         0,                      /* dst_mask */
1737
         FALSE),                /* pcrel_offset */
1738
 
1739
  HOWTO (R_ARM_RPC24,           /* type */
1740
         0,                      /* rightshift */
1741
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1742
         0,                      /* bitsize */
1743
         FALSE,                 /* pc_relative */
1744
         0,                      /* bitpos */
1745
         complain_overflow_dont,/* complain_on_overflow */
1746
         bfd_elf_generic_reloc, /* special_function */
1747
         "R_ARM_RPC24",         /* name */
1748
         FALSE,                 /* partial_inplace */
1749
         0,                      /* src_mask */
1750
         0,                      /* dst_mask */
1751
         FALSE),                /* pcrel_offset */
1752
 
1753
  HOWTO (R_ARM_RBASE,           /* type */
1754
         0,                      /* rightshift */
1755
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
1756
         0,                      /* bitsize */
1757
         FALSE,                 /* pc_relative */
1758
         0,                      /* bitpos */
1759
         complain_overflow_dont,/* complain_on_overflow */
1760
         bfd_elf_generic_reloc, /* special_function */
1761
         "R_ARM_RBASE",         /* name */
1762
         FALSE,                 /* partial_inplace */
1763
         0,                      /* src_mask */
1764
         0,                      /* dst_mask */
1765
         FALSE)                 /* pcrel_offset */
1766
};
1767
 
1768
static reloc_howto_type *
1769
elf32_arm_howto_from_type (unsigned int r_type)
1770
{
1771
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772
    return &elf32_arm_howto_table_1[r_type];
1773
 
1774
  if (r_type == R_ARM_IRELATIVE)
1775
    return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776
 
1777
  if (r_type >= R_ARM_RREL32
1778
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779
    return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780
 
1781
  return NULL;
1782
}
1783
 
1784
static void
1785
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786
                         Elf_Internal_Rela * elf_reloc)
1787
{
1788
  unsigned int r_type;
1789
 
1790
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792
}
1793
 
1794
struct elf32_arm_reloc_map
1795
  {
1796
    bfd_reloc_code_real_type  bfd_reloc_val;
1797
    unsigned char             elf_reloc_val;
1798
  };
1799
 
1800
/* All entries in this list must also be present in elf32_arm_howto_table.  */
1801
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802
  {
1803
    {BFD_RELOC_NONE,                 R_ARM_NONE},
1804
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
1805
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
1806
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
1807
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
1808
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
1809
    {BFD_RELOC_32,                   R_ARM_ABS32},
1810
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
1811
    {BFD_RELOC_8,                    R_ARM_ABS8},
1812
    {BFD_RELOC_16,                   R_ARM_ABS16},
1813
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
1814
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
1815
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
1820
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
1821
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
1822
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
1823
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
1824
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
1825
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
1826
    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
1827
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
1828
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1829
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
1830
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
1831
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
1832
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
1833
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
1834
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
1835
    {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
1836
    {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
1837
    {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
1838
    {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
1839
    {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
1840
    {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
1841
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
1842
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
1843
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
1844
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
1845
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
1846
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
1847
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
1848
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
1849
    {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
1850
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
1851
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
1852
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
1853
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
1854
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
1855
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
1856
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
1857
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
1858
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
1889
  };
1890
 
1891
static reloc_howto_type *
1892
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893
                             bfd_reloc_code_real_type code)
1894
{
1895
  unsigned int i;
1896
 
1897
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900
 
1901
  return NULL;
1902
}
1903
 
1904
static reloc_howto_type *
1905
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906
                             const char *r_name)
1907
{
1908
  unsigned int i;
1909
 
1910
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911
    if (elf32_arm_howto_table_1[i].name != NULL
1912
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913
      return &elf32_arm_howto_table_1[i];
1914
 
1915
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916
    if (elf32_arm_howto_table_2[i].name != NULL
1917
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918
      return &elf32_arm_howto_table_2[i];
1919
 
1920
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921
    if (elf32_arm_howto_table_3[i].name != NULL
1922
        && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923
      return &elf32_arm_howto_table_3[i];
1924
 
1925
  return NULL;
1926
}
1927
 
1928
/* Support for core dump NOTE sections.  */
1929
 
1930
static bfd_boolean
1931
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932
{
1933
  int offset;
1934
  size_t size;
1935
 
1936
  switch (note->descsz)
1937
    {
1938
      default:
1939
        return FALSE;
1940
 
1941
      case 148:         /* Linux/ARM 32-bit.  */
1942
        /* pr_cursig */
1943
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944
 
1945
        /* pr_pid */
1946
        elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947
 
1948
        /* pr_reg */
1949
        offset = 72;
1950
        size = 72;
1951
 
1952
        break;
1953
    }
1954
 
1955
  /* Make a ".reg/999" section.  */
1956
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957
                                          size, note->descpos + offset);
1958
}
1959
 
1960
static bfd_boolean
1961
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962
{
1963
  switch (note->descsz)
1964
    {
1965
      default:
1966
        return FALSE;
1967
 
1968
      case 124:         /* Linux/ARM elf_prpsinfo.  */
1969 166 khays
        elf_tdata (abfd)->core_pid
1970
         = bfd_get_32 (abfd, note->descdata + 12);
1971 14 khays
        elf_tdata (abfd)->core_program
1972
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1973
        elf_tdata (abfd)->core_command
1974
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1975
    }
1976
 
1977
  /* Note that for some reason, a spurious space is tacked
1978
     onto the end of the args in some (at least one anyway)
1979
     implementations, so strip it off if it exists.  */
1980
  {
1981
    char *command = elf_tdata (abfd)->core_command;
1982
    int n = strlen (command);
1983
 
1984
    if (0 < n && command[n - 1] == ' ')
1985
      command[n - 1] = '\0';
1986
  }
1987
 
1988
  return TRUE;
1989
}
1990
 
1991 166 khays
static char *
1992
elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1993
                                int note_type, ...)
1994
{
1995
  switch (note_type)
1996
    {
1997
    default:
1998
      return NULL;
1999
 
2000
    case NT_PRPSINFO:
2001
      {
2002
        char data[124];
2003
        va_list ap;
2004
 
2005
        va_start (ap, note_type);
2006
        memset (data, 0, sizeof (data));
2007
        strncpy (data + 28, va_arg (ap, const char *), 16);
2008
        strncpy (data + 44, va_arg (ap, const char *), 80);
2009
        va_end (ap);
2010
 
2011
        return elfcore_write_note (abfd, buf, bufsiz,
2012
                                   "CORE", note_type, data, sizeof (data));
2013
      }
2014
 
2015
    case NT_PRSTATUS:
2016
      {
2017
        char data[148];
2018
        va_list ap;
2019
        long pid;
2020
        int cursig;
2021
        const void *greg;
2022
 
2023
        va_start (ap, note_type);
2024
        memset (data, 0, sizeof (data));
2025
        pid = va_arg (ap, long);
2026
        bfd_put_32 (abfd, pid, data + 24);
2027
        cursig = va_arg (ap, int);
2028
        bfd_put_16 (abfd, cursig, data + 12);
2029
        greg = va_arg (ap, const void *);
2030
        memcpy (data + 72, greg, 72);
2031
        va_end (ap);
2032
 
2033
        return elfcore_write_note (abfd, buf, bufsiz,
2034
                                   "CORE", note_type, data, sizeof (data));
2035
      }
2036
    }
2037
}
2038
 
2039 14 khays
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
2040
#define TARGET_LITTLE_NAME              "elf32-littlearm"
2041
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
2042
#define TARGET_BIG_NAME                 "elf32-bigarm"
2043
 
2044
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
2045
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
2046 166 khays
#define elf_backend_write_core_note     elf32_arm_nabi_write_core_note
2047 14 khays
 
2048
typedef unsigned long int insn32;
2049
typedef unsigned short int insn16;
2050
 
2051
/* In lieu of proper flags, assume all EABIv4 or later objects are
2052
   interworkable.  */
2053
#define INTERWORK_FLAG(abfd)  \
2054
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2055
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2056
  || ((abfd)->flags & BFD_LINKER_CREATED))
2057
 
2058
/* The linker script knows the section names for placement.
2059
   The entry_names are used to do simple name mangling on the stubs.
2060
   Given a function name, and its type, the stub can be found. The
2061
   name can be changed. The only requirement is the %s be present.  */
2062
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2063
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
2064
 
2065
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2066
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
2067
 
2068
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2069
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
2070
 
2071
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2072
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
2073
 
2074
#define STUB_ENTRY_NAME   "__%s_veneer"
2075
 
2076
/* The name of the dynamic interpreter.  This is put in the .interp
2077
   section.  */
2078
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
2079
 
2080
static const unsigned long tls_trampoline [] =
2081
  {
2082
    0xe08e0000,         /* add r0, lr, r0 */
2083
    0xe5901004,         /* ldr r1, [r0,#4] */
2084
    0xe12fff11,         /* bx  r1 */
2085
  };
2086
 
2087
static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2088
  {
2089
    0xe52d2004, /*      push    {r2}                    */
2090
    0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]   */
2091
    0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]   */
2092
    0xe79f2002, /* 1:   ldr     r2, [pc, r2]            */
2093
    0xe081100f, /* 2:   add     r1, pc                  */
2094
    0xe12fff12, /*      bx      r2                      */
2095
    0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
2096
                                + dl_tlsdesc_lazy_resolver(GOT)   */
2097
    0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2098
  };
2099
 
2100
#ifdef FOUR_WORD_PLT
2101
 
2102
/* The first entry in a procedure linkage table looks like
2103
   this.  It is set up so that any shared library function that is
2104
   called before the relocation has been set up calls the dynamic
2105
   linker first.  */
2106
static const bfd_vma elf32_arm_plt0_entry [] =
2107
  {
2108
    0xe52de004,         /* str   lr, [sp, #-4]! */
2109
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
2110
    0xe08fe00e,         /* add   lr, pc, lr     */
2111
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
2112
  };
2113
 
2114
/* Subsequent entries in a procedure linkage table look like
2115
   this.  */
2116
static const bfd_vma elf32_arm_plt_entry [] =
2117
  {
2118
    0xe28fc600,         /* add   ip, pc, #NN    */
2119
    0xe28cca00,         /* add   ip, ip, #NN    */
2120
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
2121
    0x00000000,         /* unused               */
2122
  };
2123
 
2124
#else
2125
 
2126
/* The first entry in a procedure linkage table looks like
2127
   this.  It is set up so that any shared library function that is
2128
   called before the relocation has been set up calls the dynamic
2129
   linker first.  */
2130
static const bfd_vma elf32_arm_plt0_entry [] =
2131
  {
2132
    0xe52de004,         /* str   lr, [sp, #-4]! */
2133
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
2134
    0xe08fe00e,         /* add   lr, pc, lr     */
2135
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
2136
    0x00000000,         /* &GOT[0] - .          */
2137
  };
2138
 
2139
/* Subsequent entries in a procedure linkage table look like
2140
   this.  */
2141
static const bfd_vma elf32_arm_plt_entry [] =
2142
  {
2143
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
2144
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
2145
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
2146
  };
2147
 
2148
#endif
2149
 
2150
/* The format of the first entry in the procedure linkage table
2151
   for a VxWorks executable.  */
2152
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2153
  {
2154
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
2155
    0xe59fc000,         /* ldr    ip,[pc]                       */
2156
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
2157
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
2158
  };
2159
 
2160
/* The format of subsequent entries in a VxWorks executable.  */
2161
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2162
  {
2163
    0xe59fc000,         /* ldr    ip,[pc]                       */
2164
    0xe59cf000,         /* ldr    pc,[ip]                       */
2165
    0x00000000,         /* .long  @got                          */
2166
    0xe59fc000,         /* ldr    ip,[pc]                       */
2167
    0xea000000,         /* b      _PLT                          */
2168
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
2169
  };
2170
 
2171
/* The format of entries in a VxWorks shared library.  */
2172
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2173
  {
2174
    0xe59fc000,         /* ldr    ip,[pc]                       */
2175
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
2176
    0x00000000,         /* .long  @got                          */
2177
    0xe59fc000,         /* ldr    ip,[pc]                       */
2178
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
2179
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
2180
  };
2181
 
2182
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
2183
#define PLT_THUMB_STUB_SIZE 4
2184
static const bfd_vma elf32_arm_plt_thumb_stub [] =
2185
  {
2186
    0x4778,             /* bx pc */
2187
    0x46c0              /* nop   */
2188
  };
2189
 
2190
/* The entries in a PLT when using a DLL-based target with multiple
2191
   address spaces.  */
2192
static const bfd_vma elf32_arm_symbian_plt_entry [] =
2193
  {
2194
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
2195
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
2196
  };
2197
 
2198
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
2199
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
2200
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
2201
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
2202
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2203
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2204
 
2205
enum stub_insn_type
2206
  {
2207
    THUMB16_TYPE = 1,
2208
    THUMB32_TYPE,
2209
    ARM_TYPE,
2210
    DATA_TYPE
2211
  };
2212
 
2213
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2214
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
2215
   is inserted in arm_build_one_stub().  */
2216
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2217
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2218
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2219
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
2220
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2221
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
2222
 
2223
typedef struct
2224
{
2225
  bfd_vma data;
2226
  enum stub_insn_type type;
2227
  unsigned int r_type;
2228
  int reloc_addend;
2229
}  insn_sequence;
2230
 
2231
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2232
   to reach the stub if necessary.  */
2233
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2234
  {
2235
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
2236
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2237
  };
2238
 
2239
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2240
   available.  */
2241
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2242
  {
2243
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
2244
    ARM_INSN(0xe12fff1c),            /* bx    ip */
2245
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
2246
  };
2247
 
2248
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
2249
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2250
  {
2251
    THUMB16_INSN(0xb401),             /* push {r0} */
2252
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2253
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
2254
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2255
    THUMB16_INSN(0x4760),             /* bx   ip */
2256
    THUMB16_INSN(0xbf00),             /* nop */
2257
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2258
  };
2259
 
2260
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2261
   allowed.  */
2262
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2263
  {
2264
    THUMB16_INSN(0x4778),             /* bx   pc */
2265
    THUMB16_INSN(0x46c0),             /* nop */
2266
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2267
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2268
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
2269
  };
2270
 
2271
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2272
   available.  */
2273
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2274
  {
2275
    THUMB16_INSN(0x4778),             /* bx   pc */
2276
    THUMB16_INSN(0x46c0),             /* nop   */
2277
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
2278
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
2279
  };
2280
 
2281
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2282
   one, when the destination is close enough.  */
2283
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2284
  {
2285
    THUMB16_INSN(0x4778),             /* bx   pc */
2286
    THUMB16_INSN(0x46c0),             /* nop   */
2287
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
2288
  };
2289
 
2290
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
2291
   blx to reach the stub if necessary.  */
2292
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2293
  {
2294
    ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
2295
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
2296
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2297
  };
2298
 
2299
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
2300
   blx to reach the stub if necessary.  We can not add into pc;
2301
   it is not guaranteed to mode switch (different in ARMv6 and
2302
   ARMv7).  */
2303
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2304
  {
2305
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2306
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2307
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2308
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2309
  };
2310
 
2311
/* V4T ARM -> ARM long branch stub, PIC.  */
2312
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2313
  {
2314
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
2315
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2316
    ARM_INSN(0xe12fff1c),             /* bx    ip */
2317
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
2318
  };
2319
 
2320
/* V4T Thumb -> ARM long branch stub, PIC.  */
2321
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2322
  {
2323
    THUMB16_INSN(0x4778),             /* bx   pc */
2324
    THUMB16_INSN(0x46c0),             /* nop  */
2325
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
2326
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
2327
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
2328
  };
2329
 
2330
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2331
   architectures.  */
2332
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2333
  {
2334
    THUMB16_INSN(0xb401),             /* push {r0} */
2335
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
2336
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
2337
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
2338
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
2339
    THUMB16_INSN(0x4760),             /* bx   ip */
2340
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
2341
  };
2342
 
2343
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2344
   allowed.  */
2345
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2346
  {
2347
    THUMB16_INSN(0x4778),             /* bx   pc */
2348
    THUMB16_INSN(0x46c0),             /* nop */
2349
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
2350
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
2351
    ARM_INSN(0xe12fff1c),             /* bx   ip */
2352
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
2353
  };
2354
 
2355
/* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
2356
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2357
static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2358
{
2359
    ARM_INSN(0xe59f1000),             /* ldr   r1, [pc] */
2360
    ARM_INSN(0xe08ff001),             /* add   pc, pc, r1 */
2361
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
2362
};
2363
 
2364
/* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
2365
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
2366
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2367
{
2368
    THUMB16_INSN(0x4778),             /* bx   pc */
2369
    THUMB16_INSN(0x46c0),             /* nop */
2370
    ARM_INSN(0xe59f1000),             /* ldr  r1, [pc, #0] */
2371
    ARM_INSN(0xe081f00f),             /* add  pc, r1, pc */
2372
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
2373
};
2374
 
2375
/* Cortex-A8 erratum-workaround stubs.  */
2376
 
2377
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2378
   can't use a conditional branch to reach this stub).  */
2379
 
2380
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2381
  {
2382
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
2383
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
2384
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
2385
  };
2386
 
2387
/* Stub used for b.w and bl.w instructions.  */
2388
 
2389
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2390
  {
2391
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2392
  };
2393
 
2394
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2395
  {
2396
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
2397
  };
2398
 
2399
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
2400
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
2401
   real destination using an ARM-mode branch.  */
2402
 
2403
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2404
  {
2405
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
2406
  };
2407
 
2408 163 khays
/* For each section group there can be a specially created linker section
2409
   to hold the stubs for that group.  The name of the stub section is based
2410
   upon the name of another section within that group with the suffix below
2411
   applied.
2412 14 khays
 
2413 163 khays
   PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2414
   create what appeared to be a linker stub section when it actually
2415
   contained user code/data.  For example, consider this fragment:
2416
 
2417
     const char * stubborn_problems[] = { "np" };
2418
 
2419
   If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2420
   section called:
2421
 
2422
     .data.rel.local.stubborn_problems
2423
 
2424
   This then causes problems in arm32_arm_build_stubs() as it triggers:
2425
 
2426
      // Ignore non-stub sections.
2427
      if (!strstr (stub_sec->name, STUB_SUFFIX))
2428
        continue;
2429
 
2430
   And so the section would be ignored instead of being processed.  Hence
2431
   the change in definition of STUB_SUFFIX to a name that cannot be a valid
2432
   C identifier.  */
2433
#define STUB_SUFFIX ".__stub"
2434
 
2435 14 khays
/* One entry per long/short branch stub defined above.  */
2436
#define DEF_STUBS \
2437
  DEF_STUB(long_branch_any_any) \
2438
  DEF_STUB(long_branch_v4t_arm_thumb) \
2439
  DEF_STUB(long_branch_thumb_only) \
2440
  DEF_STUB(long_branch_v4t_thumb_thumb) \
2441
  DEF_STUB(long_branch_v4t_thumb_arm) \
2442
  DEF_STUB(short_branch_v4t_thumb_arm) \
2443
  DEF_STUB(long_branch_any_arm_pic) \
2444
  DEF_STUB(long_branch_any_thumb_pic) \
2445
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2446
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2447
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2448
  DEF_STUB(long_branch_thumb_only_pic) \
2449
  DEF_STUB(long_branch_any_tls_pic) \
2450
  DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2451
  DEF_STUB(a8_veneer_b_cond) \
2452
  DEF_STUB(a8_veneer_b) \
2453
  DEF_STUB(a8_veneer_bl) \
2454
  DEF_STUB(a8_veneer_blx)
2455
 
2456
#define DEF_STUB(x) arm_stub_##x,
2457
enum elf32_arm_stub_type {
2458
  arm_stub_none,
2459
  DEF_STUBS
2460
  /* Note the first a8_veneer type */
2461
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2462
};
2463
#undef DEF_STUB
2464
 
2465
typedef struct
2466
{
2467
  const insn_sequence* template_sequence;
2468
  int template_size;
2469
} stub_def;
2470
 
2471
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2472
static const stub_def stub_definitions[] = {
2473
  {NULL, 0},
2474
  DEF_STUBS
2475
};
2476
 
2477
struct elf32_arm_stub_hash_entry
2478
{
2479
  /* Base hash table entry structure.  */
2480
  struct bfd_hash_entry root;
2481
 
2482
  /* The stub section.  */
2483
  asection *stub_sec;
2484
 
2485
  /* Offset within stub_sec of the beginning of this stub.  */
2486
  bfd_vma stub_offset;
2487
 
2488
  /* Given the symbol's value and its section we can determine its final
2489
     value when building the stubs (so the stub knows where to jump).  */
2490
  bfd_vma target_value;
2491
  asection *target_section;
2492
 
2493
  /* Offset to apply to relocation referencing target_value.  */
2494
  bfd_vma target_addend;
2495
 
2496
  /* The instruction which caused this stub to be generated (only valid for
2497
     Cortex-A8 erratum workaround stubs at present).  */
2498
  unsigned long orig_insn;
2499
 
2500
  /* The stub type.  */
2501
  enum elf32_arm_stub_type stub_type;
2502
  /* Its encoding size in bytes.  */
2503
  int stub_size;
2504
  /* Its template.  */
2505
  const insn_sequence *stub_template;
2506
  /* The size of the template (number of entries).  */
2507
  int stub_template_size;
2508
 
2509
  /* The symbol table entry, if any, that this was derived from.  */
2510
  struct elf32_arm_link_hash_entry *h;
2511
 
2512
  /* Type of branch.  */
2513
  enum arm_st_branch_type branch_type;
2514
 
2515
  /* Where this stub is being called from, or, in the case of combined
2516
     stub sections, the first input section in the group.  */
2517
  asection *id_sec;
2518
 
2519
  /* The name for the local symbol at the start of this stub.  The
2520
     stub name in the hash table has to be unique; this does not, so
2521
     it can be friendlier.  */
2522
  char *output_name;
2523
};
2524
 
2525
/* Used to build a map of a section.  This is required for mixed-endian
2526
   code/data.  */
2527
 
2528
typedef struct elf32_elf_section_map
2529
{
2530
  bfd_vma vma;
2531
  char type;
2532
}
2533
elf32_arm_section_map;
2534
 
2535
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
2536
 
2537
typedef enum
2538
{
2539
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2540
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2541
  VFP11_ERRATUM_ARM_VENEER,
2542
  VFP11_ERRATUM_THUMB_VENEER
2543
}
2544
elf32_vfp11_erratum_type;
2545
 
2546
typedef struct elf32_vfp11_erratum_list
2547
{
2548
  struct elf32_vfp11_erratum_list *next;
2549
  bfd_vma vma;
2550
  union
2551
  {
2552
    struct
2553
    {
2554
      struct elf32_vfp11_erratum_list *veneer;
2555
      unsigned int vfp_insn;
2556
    } b;
2557
    struct
2558
    {
2559
      struct elf32_vfp11_erratum_list *branch;
2560
      unsigned int id;
2561
    } v;
2562
  } u;
2563
  elf32_vfp11_erratum_type type;
2564
}
2565
elf32_vfp11_erratum_list;
2566
 
2567
typedef enum
2568
{
2569
  DELETE_EXIDX_ENTRY,
2570
  INSERT_EXIDX_CANTUNWIND_AT_END
2571
}
2572
arm_unwind_edit_type;
2573
 
2574
/* A (sorted) list of edits to apply to an unwind table.  */
2575
typedef struct arm_unwind_table_edit
2576
{
2577
  arm_unwind_edit_type type;
2578
  /* Note: we sometimes want to insert an unwind entry corresponding to a
2579
     section different from the one we're currently writing out, so record the
2580
     (text) section this edit relates to here.  */
2581
  asection *linked_section;
2582
  unsigned int index;
2583
  struct arm_unwind_table_edit *next;
2584
}
2585
arm_unwind_table_edit;
2586
 
2587
typedef struct _arm_elf_section_data
2588
{
2589
  /* Information about mapping symbols.  */
2590
  struct bfd_elf_section_data elf;
2591
  unsigned int mapcount;
2592
  unsigned int mapsize;
2593
  elf32_arm_section_map *map;
2594
  /* Information about CPU errata.  */
2595
  unsigned int erratumcount;
2596
  elf32_vfp11_erratum_list *erratumlist;
2597
  /* Information about unwind tables.  */
2598
  union
2599
  {
2600
    /* Unwind info attached to a text section.  */
2601
    struct
2602
    {
2603
      asection *arm_exidx_sec;
2604
    } text;
2605
 
2606
    /* Unwind info attached to an .ARM.exidx section.  */
2607
    struct
2608
    {
2609
      arm_unwind_table_edit *unwind_edit_list;
2610
      arm_unwind_table_edit *unwind_edit_tail;
2611
    } exidx;
2612
  } u;
2613
}
2614
_arm_elf_section_data;
2615
 
2616
#define elf32_arm_section_data(sec) \
2617
  ((_arm_elf_section_data *) elf_section_data (sec))
2618
 
2619
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2620
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2621
   so may be created multiple times: we use an array of these entries whilst
2622
   relaxing which we can refresh easily, then create stubs for each potentially
2623
   erratum-triggering instruction once we've settled on a solution.  */
2624
 
2625
struct a8_erratum_fix {
2626
  bfd *input_bfd;
2627
  asection *section;
2628
  bfd_vma offset;
2629
  bfd_vma addend;
2630
  unsigned long orig_insn;
2631
  char *stub_name;
2632
  enum elf32_arm_stub_type stub_type;
2633
  enum arm_st_branch_type branch_type;
2634
};
2635
 
2636
/* A table of relocs applied to branches which might trigger Cortex-A8
2637
   erratum.  */
2638
 
2639
struct a8_erratum_reloc {
2640
  bfd_vma from;
2641
  bfd_vma destination;
2642
  struct elf32_arm_link_hash_entry *hash;
2643
  const char *sym_name;
2644
  unsigned int r_type;
2645
  enum arm_st_branch_type branch_type;
2646
  bfd_boolean non_a8_stub;
2647
};
2648
 
2649
/* The size of the thread control block.  */
2650
#define TCB_SIZE        8
2651
 
2652
/* ARM-specific information about a PLT entry, over and above the usual
2653
   gotplt_union.  */
2654
struct arm_plt_info {
2655
  /* We reference count Thumb references to a PLT entry separately,
2656
     so that we can emit the Thumb trampoline only if needed.  */
2657
  bfd_signed_vma thumb_refcount;
2658
 
2659
  /* Some references from Thumb code may be eliminated by BL->BLX
2660
     conversion, so record them separately.  */
2661
  bfd_signed_vma maybe_thumb_refcount;
2662
 
2663
  /* How many of the recorded PLT accesses were from non-call relocations.
2664
     This information is useful when deciding whether anything takes the
2665
     address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
2666
     non-call references to the function should resolve directly to the
2667
     real runtime target.  */
2668
  unsigned int noncall_refcount;
2669
 
2670
  /* Since PLT entries have variable size if the Thumb prologue is
2671
     used, we need to record the index into .got.plt instead of
2672
     recomputing it from the PLT offset.  */
2673
  bfd_signed_vma got_offset;
2674
};
2675
 
2676
/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
2677
struct arm_local_iplt_info {
2678
  /* The information that is usually found in the generic ELF part of
2679
     the hash table entry.  */
2680
  union gotplt_union root;
2681
 
2682
  /* The information that is usually found in the ARM-specific part of
2683
     the hash table entry.  */
2684
  struct arm_plt_info arm;
2685
 
2686
  /* A list of all potential dynamic relocations against this symbol.  */
2687
  struct elf_dyn_relocs *dyn_relocs;
2688
};
2689
 
2690
struct elf_arm_obj_tdata
2691
{
2692
  struct elf_obj_tdata root;
2693
 
2694
  /* tls_type for each local got entry.  */
2695
  char *local_got_tls_type;
2696
 
2697
  /* GOTPLT entries for TLS descriptors.  */
2698
  bfd_vma *local_tlsdesc_gotent;
2699
 
2700
  /* Information for local symbols that need entries in .iplt.  */
2701
  struct arm_local_iplt_info **local_iplt;
2702
 
2703
  /* Zero to warn when linking objects with incompatible enum sizes.  */
2704
  int no_enum_size_warning;
2705
 
2706
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2707
  int no_wchar_size_warning;
2708
};
2709
 
2710
#define elf_arm_tdata(bfd) \
2711
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2712
 
2713
#define elf32_arm_local_got_tls_type(bfd) \
2714
  (elf_arm_tdata (bfd)->local_got_tls_type)
2715
 
2716
#define elf32_arm_local_tlsdesc_gotent(bfd) \
2717
  (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2718
 
2719
#define elf32_arm_local_iplt(bfd) \
2720
  (elf_arm_tdata (bfd)->local_iplt)
2721
 
2722
#define is_arm_elf(bfd) \
2723
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2724
   && elf_tdata (bfd) != NULL \
2725
   && elf_object_id (bfd) == ARM_ELF_DATA)
2726
 
2727
static bfd_boolean
2728
elf32_arm_mkobject (bfd *abfd)
2729
{
2730
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2731
                                  ARM_ELF_DATA);
2732
}
2733
 
2734
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2735
 
2736
/* Arm ELF linker hash entry.  */
2737
struct elf32_arm_link_hash_entry
2738
  {
2739
    struct elf_link_hash_entry root;
2740
 
2741
    /* Track dynamic relocs copied for this symbol.  */
2742
    struct elf_dyn_relocs *dyn_relocs;
2743
 
2744
    /* ARM-specific PLT information.  */
2745
    struct arm_plt_info plt;
2746
 
2747
#define GOT_UNKNOWN     0
2748
#define GOT_NORMAL      1
2749
#define GOT_TLS_GD      2
2750
#define GOT_TLS_IE      4
2751
#define GOT_TLS_GDESC   8
2752
#define GOT_TLS_GD_ANY_P(type)  ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2753
    unsigned int tls_type : 8;
2754
 
2755
    /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
2756
    unsigned int is_iplt : 1;
2757
 
2758
    unsigned int unused : 23;
2759
 
2760
    /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2761
       starting at the end of the jump table.  */
2762
    bfd_vma tlsdesc_got;
2763
 
2764
    /* The symbol marking the real symbol location for exported thumb
2765
       symbols with Arm stubs.  */
2766
    struct elf_link_hash_entry *export_glue;
2767
 
2768
   /* A pointer to the most recently used stub hash entry against this
2769
     symbol.  */
2770
    struct elf32_arm_stub_hash_entry *stub_cache;
2771
  };
2772
 
2773
/* Traverse an arm ELF linker hash table.  */
2774
#define elf32_arm_link_hash_traverse(table, func, info)                 \
2775
  (elf_link_hash_traverse                                               \
2776
   (&(table)->root,                                                     \
2777
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
2778
    (info)))
2779
 
2780
/* Get the ARM elf linker hash table from a link_info structure.  */
2781
#define elf32_arm_hash_table(info) \
2782
  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2783
  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2784
 
2785
#define arm_stub_hash_lookup(table, string, create, copy) \
2786
  ((struct elf32_arm_stub_hash_entry *) \
2787
   bfd_hash_lookup ((table), (string), (create), (copy)))
2788
 
2789
/* Array to keep track of which stub sections have been created, and
2790
   information on stub grouping.  */
2791
struct map_stub
2792
{
2793
  /* This is the section to which stubs in the group will be
2794
     attached.  */
2795
  asection *link_sec;
2796
  /* The stub section.  */
2797
  asection *stub_sec;
2798
};
2799
 
2800
#define elf32_arm_compute_jump_table_size(htab) \
2801
  ((htab)->next_tls_desc_index * 4)
2802
 
2803
/* ARM ELF linker hash table.  */
2804
struct elf32_arm_link_hash_table
2805
{
2806
  /* The main hash table.  */
2807
  struct elf_link_hash_table root;
2808
 
2809
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
2810
  bfd_size_type thumb_glue_size;
2811
 
2812
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
2813
  bfd_size_type arm_glue_size;
2814
 
2815
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
2816
  bfd_size_type bx_glue_size;
2817
 
2818
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
2819
     veneer has been populated.  */
2820
  bfd_vma bx_glue_offset[15];
2821
 
2822
  /* The size in bytes of the section containing glue for VFP11 erratum
2823
     veneers.  */
2824
  bfd_size_type vfp11_erratum_glue_size;
2825
 
2826
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
2827
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2828
     elf32_arm_write_section().  */
2829
  struct a8_erratum_fix *a8_erratum_fixes;
2830
  unsigned int num_a8_erratum_fixes;
2831
 
2832
  /* An arbitrary input BFD chosen to hold the glue sections.  */
2833
  bfd * bfd_of_glue_owner;
2834
 
2835
  /* Nonzero to output a BE8 image.  */
2836
  int byteswap_code;
2837
 
2838
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2839
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
2840
  int target1_is_rel;
2841
 
2842
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
2843
  int target2_reloc;
2844
 
2845
  /* 0 = Ignore R_ARM_V4BX.
2846
     1 = Convert BX to MOV PC.
2847
     2 = Generate v4 interworing stubs.  */
2848
  int fix_v4bx;
2849
 
2850
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
2851
  int fix_cortex_a8;
2852
 
2853 161 khays
  /* Whether we should fix the ARM1176 BLX immediate issue.  */
2854
  int fix_arm1176;
2855
 
2856 14 khays
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
2857
  int use_blx;
2858
 
2859
  /* What sort of code sequences we should look for which may trigger the
2860
     VFP11 denorm erratum.  */
2861
  bfd_arm_vfp11_fix vfp11_fix;
2862
 
2863
  /* Global counter for the number of fixes we have emitted.  */
2864
  int num_vfp11_fixes;
2865
 
2866
  /* Nonzero to force PIC branch veneers.  */
2867
  int pic_veneer;
2868
 
2869
  /* The number of bytes in the initial entry in the PLT.  */
2870
  bfd_size_type plt_header_size;
2871
 
2872
  /* The number of bytes in the subsequent PLT etries.  */
2873
  bfd_size_type plt_entry_size;
2874
 
2875
  /* True if the target system is VxWorks.  */
2876
  int vxworks_p;
2877
 
2878
  /* True if the target system is Symbian OS.  */
2879
  int symbian_p;
2880
 
2881
  /* True if the target uses REL relocations.  */
2882
  int use_rel;
2883
 
2884
  /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
2885
  bfd_vma next_tls_desc_index;
2886
 
2887
  /* How many R_ARM_TLS_DESC relocations were generated so far.  */
2888
  bfd_vma num_tls_desc;
2889
 
2890
  /* Short-cuts to get to dynamic linker sections.  */
2891
  asection *sdynbss;
2892
  asection *srelbss;
2893
 
2894
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
2895
  asection *srelplt2;
2896
 
2897
  /* The offset into splt of the PLT entry for the TLS descriptor
2898
     resolver.  Special values are 0, if not necessary (or not found
2899
     to be necessary yet), and -1 if needed but not determined
2900
     yet.  */
2901
  bfd_vma dt_tlsdesc_plt;
2902
 
2903
  /* The offset into sgot of the GOT entry used by the PLT entry
2904
     above.  */
2905
  bfd_vma dt_tlsdesc_got;
2906
 
2907
  /* Offset in .plt section of tls_arm_trampoline.  */
2908
  bfd_vma tls_trampoline;
2909
 
2910
  /* Data for R_ARM_TLS_LDM32 relocations.  */
2911
  union
2912
  {
2913
    bfd_signed_vma refcount;
2914
    bfd_vma offset;
2915
  } tls_ldm_got;
2916
 
2917
  /* Small local sym cache.  */
2918
  struct sym_cache sym_cache;
2919
 
2920
  /* For convenience in allocate_dynrelocs.  */
2921
  bfd * obfd;
2922
 
2923
  /* The amount of space used by the reserved portion of the sgotplt
2924
     section, plus whatever space is used by the jump slots.  */
2925
  bfd_vma sgotplt_jump_table_size;
2926
 
2927
  /* The stub hash table.  */
2928
  struct bfd_hash_table stub_hash_table;
2929
 
2930
  /* Linker stub bfd.  */
2931
  bfd *stub_bfd;
2932
 
2933
  /* Linker call-backs.  */
2934
  asection * (*add_stub_section) (const char *, asection *);
2935
  void (*layout_sections_again) (void);
2936
 
2937
  /* Array to keep track of which stub sections have been created, and
2938
     information on stub grouping.  */
2939
  struct map_stub *stub_group;
2940
 
2941
  /* Number of elements in stub_group.  */
2942
  int top_id;
2943
 
2944
  /* Assorted information used by elf32_arm_size_stubs.  */
2945
  unsigned int bfd_count;
2946
  int top_index;
2947
  asection **input_list;
2948
};
2949
 
2950
/* Create an entry in an ARM ELF linker hash table.  */
2951
 
2952
static struct bfd_hash_entry *
2953
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2954
                             struct bfd_hash_table * table,
2955
                             const char * string)
2956
{
2957
  struct elf32_arm_link_hash_entry * ret =
2958
    (struct elf32_arm_link_hash_entry *) entry;
2959
 
2960
  /* Allocate the structure if it has not already been allocated by a
2961
     subclass.  */
2962
  if (ret == NULL)
2963
    ret = (struct elf32_arm_link_hash_entry *)
2964
        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2965
  if (ret == NULL)
2966
    return (struct bfd_hash_entry *) ret;
2967
 
2968
  /* Call the allocation method of the superclass.  */
2969
  ret = ((struct elf32_arm_link_hash_entry *)
2970
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2971
                                     table, string));
2972
  if (ret != NULL)
2973
    {
2974
      ret->dyn_relocs = NULL;
2975
      ret->tls_type = GOT_UNKNOWN;
2976
      ret->tlsdesc_got = (bfd_vma) -1;
2977
      ret->plt.thumb_refcount = 0;
2978
      ret->plt.maybe_thumb_refcount = 0;
2979
      ret->plt.noncall_refcount = 0;
2980
      ret->plt.got_offset = -1;
2981
      ret->is_iplt = FALSE;
2982
      ret->export_glue = NULL;
2983
 
2984
      ret->stub_cache = NULL;
2985
    }
2986
 
2987
  return (struct bfd_hash_entry *) ret;
2988
}
2989
 
2990
/* Ensure that we have allocated bookkeeping structures for ABFD's local
2991
   symbols.  */
2992
 
2993
static bfd_boolean
2994
elf32_arm_allocate_local_sym_info (bfd *abfd)
2995
{
2996
  if (elf_local_got_refcounts (abfd) == NULL)
2997
    {
2998
      bfd_size_type num_syms;
2999
      bfd_size_type size;
3000
      char *data;
3001
 
3002
      num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3003
      size = num_syms * (sizeof (bfd_signed_vma)
3004
                         + sizeof (struct arm_local_iplt_info *)
3005
                         + sizeof (bfd_vma)
3006
                         + sizeof (char));
3007
      data = bfd_zalloc (abfd, size);
3008
      if (data == NULL)
3009
        return FALSE;
3010
 
3011
      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3012
      data += num_syms * sizeof (bfd_signed_vma);
3013
 
3014
      elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3015
      data += num_syms * sizeof (struct arm_local_iplt_info *);
3016
 
3017
      elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3018
      data += num_syms * sizeof (bfd_vma);
3019
 
3020
      elf32_arm_local_got_tls_type (abfd) = data;
3021
    }
3022
  return TRUE;
3023
}
3024
 
3025
/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3026
   to input bfd ABFD.  Create the information if it doesn't already exist.
3027
   Return null if an allocation fails.  */
3028
 
3029
static struct arm_local_iplt_info *
3030
elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3031
{
3032
  struct arm_local_iplt_info **ptr;
3033
 
3034
  if (!elf32_arm_allocate_local_sym_info (abfd))
3035
    return NULL;
3036
 
3037
  BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3038
  ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3039
  if (*ptr == NULL)
3040
    *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3041
  return *ptr;
3042
}
3043
 
3044
/* Try to obtain PLT information for the symbol with index R_SYMNDX
3045
   in ABFD's symbol table.  If the symbol is global, H points to its
3046
   hash table entry, otherwise H is null.
3047
 
3048
   Return true if the symbol does have PLT information.  When returning
3049
   true, point *ROOT_PLT at the target-independent reference count/offset
3050
   union and *ARM_PLT at the ARM-specific information.  */
3051
 
3052
static bfd_boolean
3053
elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3054
                        unsigned long r_symndx, union gotplt_union **root_plt,
3055
                        struct arm_plt_info **arm_plt)
3056
{
3057
  struct arm_local_iplt_info *local_iplt;
3058
 
3059
  if (h != NULL)
3060
    {
3061
      *root_plt = &h->root.plt;
3062
      *arm_plt = &h->plt;
3063
      return TRUE;
3064
    }
3065
 
3066
  if (elf32_arm_local_iplt (abfd) == NULL)
3067
    return FALSE;
3068
 
3069
  local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3070
  if (local_iplt == NULL)
3071
    return FALSE;
3072
 
3073
  *root_plt = &local_iplt->root;
3074
  *arm_plt = &local_iplt->arm;
3075
  return TRUE;
3076
}
3077
 
3078
/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3079
   before it.  */
3080
 
3081
static bfd_boolean
3082
elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3083
                                  struct arm_plt_info *arm_plt)
3084
{
3085
  struct elf32_arm_link_hash_table *htab;
3086
 
3087
  htab = elf32_arm_hash_table (info);
3088
  return (arm_plt->thumb_refcount != 0
3089
          || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3090
}
3091
 
3092
/* Return a pointer to the head of the dynamic reloc list that should
3093
   be used for local symbol ISYM, which is symbol number R_SYMNDX in
3094
   ABFD's symbol table.  Return null if an error occurs.  */
3095
 
3096
static struct elf_dyn_relocs **
3097
elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3098
                                   Elf_Internal_Sym *isym)
3099
{
3100
  if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3101
    {
3102
      struct arm_local_iplt_info *local_iplt;
3103
 
3104
      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3105
      if (local_iplt == NULL)
3106
        return NULL;
3107
      return &local_iplt->dyn_relocs;
3108
    }
3109
  else
3110
    {
3111
      /* Track dynamic relocs needed for local syms too.
3112
         We really need local syms available to do this
3113
         easily.  Oh well.  */
3114
      asection *s;
3115
      void *vpp;
3116
 
3117
      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3118
      if (s == NULL)
3119
        abort ();
3120
 
3121
      vpp = &elf_section_data (s)->local_dynrel;
3122
      return (struct elf_dyn_relocs **) vpp;
3123
    }
3124
}
3125
 
3126
/* Initialize an entry in the stub hash table.  */
3127
 
3128
static struct bfd_hash_entry *
3129
stub_hash_newfunc (struct bfd_hash_entry *entry,
3130
                   struct bfd_hash_table *table,
3131
                   const char *string)
3132
{
3133
  /* Allocate the structure if it has not already been allocated by a
3134
     subclass.  */
3135
  if (entry == NULL)
3136
    {
3137
      entry = (struct bfd_hash_entry *)
3138
          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3139
      if (entry == NULL)
3140
        return entry;
3141
    }
3142
 
3143
  /* Call the allocation method of the superclass.  */
3144
  entry = bfd_hash_newfunc (entry, table, string);
3145
  if (entry != NULL)
3146
    {
3147
      struct elf32_arm_stub_hash_entry *eh;
3148
 
3149
      /* Initialize the local fields.  */
3150
      eh = (struct elf32_arm_stub_hash_entry *) entry;
3151
      eh->stub_sec = NULL;
3152
      eh->stub_offset = 0;
3153
      eh->target_value = 0;
3154
      eh->target_section = NULL;
3155
      eh->target_addend = 0;
3156
      eh->orig_insn = 0;
3157
      eh->stub_type = arm_stub_none;
3158
      eh->stub_size = 0;
3159
      eh->stub_template = NULL;
3160
      eh->stub_template_size = 0;
3161
      eh->h = NULL;
3162
      eh->id_sec = NULL;
3163
      eh->output_name = NULL;
3164
    }
3165
 
3166
  return entry;
3167
}
3168
 
3169
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3170
   shortcuts to them in our hash table.  */
3171
 
3172
static bfd_boolean
3173
create_got_section (bfd *dynobj, struct bfd_link_info *info)
3174
{
3175
  struct elf32_arm_link_hash_table *htab;
3176
 
3177
  htab = elf32_arm_hash_table (info);
3178
  if (htab == NULL)
3179
    return FALSE;
3180
 
3181
  /* BPABI objects never have a GOT, or associated sections.  */
3182
  if (htab->symbian_p)
3183
    return TRUE;
3184
 
3185
  if (! _bfd_elf_create_got_section (dynobj, info))
3186
    return FALSE;
3187
 
3188
  return TRUE;
3189
}
3190
 
3191
/* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
3192
 
3193
static bfd_boolean
3194
create_ifunc_sections (struct bfd_link_info *info)
3195
{
3196
  struct elf32_arm_link_hash_table *htab;
3197
  const struct elf_backend_data *bed;
3198
  bfd *dynobj;
3199
  asection *s;
3200
  flagword flags;
3201
 
3202
  htab = elf32_arm_hash_table (info);
3203
  dynobj = htab->root.dynobj;
3204
  bed = get_elf_backend_data (dynobj);
3205
  flags = bed->dynamic_sec_flags;
3206
 
3207
  if (htab->root.iplt == NULL)
3208
    {
3209
      s = bfd_make_section_with_flags (dynobj, ".iplt",
3210
                                       flags | SEC_READONLY | SEC_CODE);
3211
      if (s == NULL
3212
          || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3213
        return FALSE;
3214
      htab->root.iplt = s;
3215
    }
3216
 
3217
  if (htab->root.irelplt == NULL)
3218
    {
3219
      s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3220
                                       flags | SEC_READONLY);
3221
      if (s == NULL
3222
          || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3223
        return FALSE;
3224
      htab->root.irelplt = s;
3225
    }
3226
 
3227
  if (htab->root.igotplt == NULL)
3228
    {
3229
      s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3230
      if (s == NULL
3231
          || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3232
        return FALSE;
3233
      htab->root.igotplt = s;
3234
    }
3235
  return TRUE;
3236
}
3237
 
3238
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3239
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3240
   hash table.  */
3241
 
3242
static bfd_boolean
3243
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3244
{
3245
  struct elf32_arm_link_hash_table *htab;
3246
 
3247
  htab = elf32_arm_hash_table (info);
3248
  if (htab == NULL)
3249
    return FALSE;
3250
 
3251
  if (!htab->root.sgot && !create_got_section (dynobj, info))
3252
    return FALSE;
3253
 
3254
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3255
    return FALSE;
3256
 
3257
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3258
  if (!info->shared)
3259
    htab->srelbss = bfd_get_section_by_name (dynobj,
3260
                                             RELOC_SECTION (htab, ".bss"));
3261
 
3262
  if (htab->vxworks_p)
3263
    {
3264
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3265
        return FALSE;
3266
 
3267
      if (info->shared)
3268
        {
3269
          htab->plt_header_size = 0;
3270
          htab->plt_entry_size
3271
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3272
        }
3273
      else
3274
        {
3275
          htab->plt_header_size
3276
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3277
          htab->plt_entry_size
3278
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3279
        }
3280
    }
3281
 
3282
  if (!htab->root.splt
3283
      || !htab->root.srelplt
3284
      || !htab->sdynbss
3285
      || (!info->shared && !htab->srelbss))
3286
    abort ();
3287
 
3288
  return TRUE;
3289
}
3290
 
3291
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
3292
 
3293
static void
3294
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3295
                                struct elf_link_hash_entry *dir,
3296
                                struct elf_link_hash_entry *ind)
3297
{
3298
  struct elf32_arm_link_hash_entry *edir, *eind;
3299
 
3300
  edir = (struct elf32_arm_link_hash_entry *) dir;
3301
  eind = (struct elf32_arm_link_hash_entry *) ind;
3302
 
3303
  if (eind->dyn_relocs != NULL)
3304
    {
3305
      if (edir->dyn_relocs != NULL)
3306
        {
3307
          struct elf_dyn_relocs **pp;
3308
          struct elf_dyn_relocs *p;
3309
 
3310
          /* Add reloc counts against the indirect sym to the direct sym
3311
             list.  Merge any entries against the same section.  */
3312
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3313
            {
3314
              struct elf_dyn_relocs *q;
3315
 
3316
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
3317
                if (q->sec == p->sec)
3318
                  {
3319
                    q->pc_count += p->pc_count;
3320
                    q->count += p->count;
3321
                    *pp = p->next;
3322
                    break;
3323
                  }
3324
              if (q == NULL)
3325
                pp = &p->next;
3326
            }
3327
          *pp = edir->dyn_relocs;
3328
        }
3329
 
3330
      edir->dyn_relocs = eind->dyn_relocs;
3331
      eind->dyn_relocs = NULL;
3332
    }
3333
 
3334
  if (ind->root.type == bfd_link_hash_indirect)
3335
    {
3336
      /* Copy over PLT info.  */
3337
      edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3338
      eind->plt.thumb_refcount = 0;
3339
      edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3340
      eind->plt.maybe_thumb_refcount = 0;
3341
      edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3342
      eind->plt.noncall_refcount = 0;
3343
 
3344
      /* We should only allocate a function to .iplt once the final
3345
         symbol information is known.  */
3346
      BFD_ASSERT (!eind->is_iplt);
3347
 
3348
      if (dir->got.refcount <= 0)
3349
        {
3350
          edir->tls_type = eind->tls_type;
3351
          eind->tls_type = GOT_UNKNOWN;
3352
        }
3353
    }
3354
 
3355
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3356
}
3357
 
3358
/* Create an ARM elf linker hash table.  */
3359
 
3360
static struct bfd_link_hash_table *
3361
elf32_arm_link_hash_table_create (bfd *abfd)
3362
{
3363
  struct elf32_arm_link_hash_table *ret;
3364
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3365
 
3366
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3367
  if (ret == NULL)
3368
    return NULL;
3369
 
3370
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3371
                                      elf32_arm_link_hash_newfunc,
3372
                                      sizeof (struct elf32_arm_link_hash_entry),
3373
                                      ARM_ELF_DATA))
3374
    {
3375
      free (ret);
3376
      return NULL;
3377
    }
3378
 
3379
  ret->sdynbss = NULL;
3380
  ret->srelbss = NULL;
3381
  ret->srelplt2 = NULL;
3382
  ret->dt_tlsdesc_plt = 0;
3383
  ret->dt_tlsdesc_got = 0;
3384
  ret->tls_trampoline = 0;
3385
  ret->next_tls_desc_index = 0;
3386
  ret->num_tls_desc = 0;
3387
  ret->thumb_glue_size = 0;
3388
  ret->arm_glue_size = 0;
3389
  ret->bx_glue_size = 0;
3390
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3391
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3392
  ret->vfp11_erratum_glue_size = 0;
3393
  ret->num_vfp11_fixes = 0;
3394
  ret->fix_cortex_a8 = 0;
3395 161 khays
  ret->fix_arm1176 = 0;
3396 14 khays
  ret->bfd_of_glue_owner = NULL;
3397
  ret->byteswap_code = 0;
3398
  ret->target1_is_rel = 0;
3399
  ret->target2_reloc = R_ARM_NONE;
3400
#ifdef FOUR_WORD_PLT
3401
  ret->plt_header_size = 16;
3402
  ret->plt_entry_size = 16;
3403
#else
3404
  ret->plt_header_size = 20;
3405
  ret->plt_entry_size = 12;
3406
#endif
3407
  ret->fix_v4bx = 0;
3408
  ret->use_blx = 0;
3409
  ret->vxworks_p = 0;
3410
  ret->symbian_p = 0;
3411
  ret->use_rel = 1;
3412
  ret->sym_cache.abfd = NULL;
3413
  ret->obfd = abfd;
3414
  ret->tls_ldm_got.refcount = 0;
3415
  ret->stub_bfd = NULL;
3416
  ret->add_stub_section = NULL;
3417
  ret->layout_sections_again = NULL;
3418
  ret->stub_group = NULL;
3419
  ret->top_id = 0;
3420
  ret->bfd_count = 0;
3421
  ret->top_index = 0;
3422
  ret->input_list = NULL;
3423
 
3424
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3425
                            sizeof (struct elf32_arm_stub_hash_entry)))
3426
    {
3427
      free (ret);
3428
      return NULL;
3429
    }
3430
 
3431
  return &ret->root.root;
3432
}
3433
 
3434
/* Free the derived linker hash table.  */
3435
 
3436
static void
3437
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3438
{
3439
  struct elf32_arm_link_hash_table *ret
3440
    = (struct elf32_arm_link_hash_table *) hash;
3441
 
3442
  bfd_hash_table_free (&ret->stub_hash_table);
3443
  _bfd_generic_link_hash_table_free (hash);
3444
}
3445
 
3446
/* Determine if we're dealing with a Thumb only architecture.  */
3447
 
3448
static bfd_boolean
3449
using_thumb_only (struct elf32_arm_link_hash_table *globals)
3450
{
3451
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3452
                                       Tag_CPU_arch);
3453
  int profile;
3454
 
3455
  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3456
    return TRUE;
3457
 
3458
  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3459
    return FALSE;
3460
 
3461
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3462
                                      Tag_CPU_arch_profile);
3463
 
3464
  return profile == 'M';
3465
}
3466
 
3467
/* Determine if we're dealing with a Thumb-2 object.  */
3468
 
3469
static bfd_boolean
3470
using_thumb2 (struct elf32_arm_link_hash_table *globals)
3471
{
3472
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3473
                                       Tag_CPU_arch);
3474
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3475
}
3476
 
3477
/* Determine what kind of NOPs are available.  */
3478
 
3479
static bfd_boolean
3480
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3481
{
3482
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3483
                                             Tag_CPU_arch);
3484
  return arch == TAG_CPU_ARCH_V6T2
3485
         || arch == TAG_CPU_ARCH_V6K
3486
         || arch == TAG_CPU_ARCH_V7
3487
         || arch == TAG_CPU_ARCH_V7E_M;
3488
}
3489
 
3490
static bfd_boolean
3491
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3492
{
3493
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3494
                                             Tag_CPU_arch);
3495
  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3496
          || arch == TAG_CPU_ARCH_V7E_M);
3497
}
3498
 
3499
static bfd_boolean
3500
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3501
{
3502
  switch (stub_type)
3503
    {
3504
    case arm_stub_long_branch_thumb_only:
3505
    case arm_stub_long_branch_v4t_thumb_arm:
3506
    case arm_stub_short_branch_v4t_thumb_arm:
3507
    case arm_stub_long_branch_v4t_thumb_arm_pic:
3508
    case arm_stub_long_branch_v4t_thumb_tls_pic:
3509
    case arm_stub_long_branch_thumb_only_pic:
3510
      return TRUE;
3511
    case arm_stub_none:
3512
      BFD_FAIL ();
3513
      return FALSE;
3514
      break;
3515
    default:
3516
      return FALSE;
3517
    }
3518
}
3519
 
3520
/* Determine the type of stub needed, if any, for a call.  */
3521
 
3522
static enum elf32_arm_stub_type
3523
arm_type_of_stub (struct bfd_link_info *info,
3524
                  asection *input_sec,
3525
                  const Elf_Internal_Rela *rel,
3526
                  unsigned char st_type,
3527
                  enum arm_st_branch_type *actual_branch_type,
3528
                  struct elf32_arm_link_hash_entry *hash,
3529
                  bfd_vma destination,
3530
                  asection *sym_sec,
3531
                  bfd *input_bfd,
3532
                  const char *name)
3533
{
3534
  bfd_vma location;
3535
  bfd_signed_vma branch_offset;
3536
  unsigned int r_type;
3537
  struct elf32_arm_link_hash_table * globals;
3538
  int thumb2;
3539
  int thumb_only;
3540
  enum elf32_arm_stub_type stub_type = arm_stub_none;
3541
  int use_plt = 0;
3542
  enum arm_st_branch_type branch_type = *actual_branch_type;
3543
  union gotplt_union *root_plt;
3544
  struct arm_plt_info *arm_plt;
3545
 
3546
  if (branch_type == ST_BRANCH_LONG)
3547
    return stub_type;
3548
 
3549
  globals = elf32_arm_hash_table (info);
3550
  if (globals == NULL)
3551
    return stub_type;
3552
 
3553
  thumb_only = using_thumb_only (globals);
3554
 
3555
  thumb2 = using_thumb2 (globals);
3556
 
3557
  /* Determine where the call point is.  */
3558
  location = (input_sec->output_offset
3559
              + input_sec->output_section->vma
3560
              + rel->r_offset);
3561
 
3562
  r_type = ELF32_R_TYPE (rel->r_info);
3563
 
3564
  /* For TLS call relocs, it is the caller's responsibility to provide
3565
     the address of the appropriate trampoline.  */
3566
  if (r_type != R_ARM_TLS_CALL
3567
      && r_type != R_ARM_THM_TLS_CALL
3568
      && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3569
                                 &root_plt, &arm_plt)
3570
      && root_plt->offset != (bfd_vma) -1)
3571
    {
3572
      asection *splt;
3573
 
3574
      if (hash == NULL || hash->is_iplt)
3575
        splt = globals->root.iplt;
3576
      else
3577
        splt = globals->root.splt;
3578
      if (splt != NULL)
3579
        {
3580
          use_plt = 1;
3581
 
3582
          /* Note when dealing with PLT entries: the main PLT stub is in
3583
             ARM mode, so if the branch is in Thumb mode, another
3584
             Thumb->ARM stub will be inserted later just before the ARM
3585
             PLT stub. We don't take this extra distance into account
3586
             here, because if a long branch stub is needed, we'll add a
3587
             Thumb->Arm one and branch directly to the ARM PLT entry
3588
             because it avoids spreading offset corrections in several
3589
             places.  */
3590
 
3591
          destination = (splt->output_section->vma
3592
                         + splt->output_offset
3593
                         + root_plt->offset);
3594
          st_type = STT_FUNC;
3595
          branch_type = ST_BRANCH_TO_ARM;
3596
        }
3597
    }
3598
  /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
3599
  BFD_ASSERT (st_type != STT_GNU_IFUNC);
3600
 
3601
  branch_offset = (bfd_signed_vma)(destination - location);
3602
 
3603
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3604
      || r_type == R_ARM_THM_TLS_CALL)
3605
    {
3606
      /* Handle cases where:
3607
         - this call goes too far (different Thumb/Thumb2 max
3608
           distance)
3609
         - it's a Thumb->Arm call and blx is not available, or it's a
3610
           Thumb->Arm branch (not bl). A stub is needed in this case,
3611
           but only if this call is not through a PLT entry. Indeed,
3612
           PLT stubs handle mode switching already.
3613
      */
3614
      if ((!thumb2
3615
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3616
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3617
          || (thumb2
3618
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3619
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3620
          || (branch_type == ST_BRANCH_TO_ARM
3621
              && (((r_type == R_ARM_THM_CALL
3622
                    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3623
                  || (r_type == R_ARM_THM_JUMP24))
3624
              && !use_plt))
3625
        {
3626
          if (branch_type == ST_BRANCH_TO_THUMB)
3627
            {
3628
              /* Thumb to thumb.  */
3629
              if (!thumb_only)
3630
                {
3631
                  stub_type = (info->shared | globals->pic_veneer)
3632
                    /* PIC stubs.  */
3633
                    ? ((globals->use_blx
3634 163 khays
                        && (r_type == R_ARM_THM_CALL))
3635 14 khays
                       /* V5T and above. Stub starts with ARM code, so
3636
                          we must be able to switch mode before
3637
                          reaching it, which is only possible for 'bl'
3638
                          (ie R_ARM_THM_CALL relocation).  */
3639
                       ? arm_stub_long_branch_any_thumb_pic
3640
                       /* On V4T, use Thumb code only.  */
3641
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
3642
 
3643
                    /* non-PIC stubs.  */
3644
                    : ((globals->use_blx
3645 163 khays
                        && (r_type == R_ARM_THM_CALL))
3646 14 khays
                       /* V5T and above.  */
3647
                       ? arm_stub_long_branch_any_any
3648
                       /* V4T.  */
3649
                       : arm_stub_long_branch_v4t_thumb_thumb);
3650
                }
3651
              else
3652
                {
3653
                  stub_type = (info->shared | globals->pic_veneer)
3654
                    /* PIC stub.  */
3655
                    ? arm_stub_long_branch_thumb_only_pic
3656
                    /* non-PIC stub.  */
3657
                    : arm_stub_long_branch_thumb_only;
3658
                }
3659
            }
3660
          else
3661
            {
3662
              /* Thumb to arm.  */
3663
              if (sym_sec != NULL
3664
                  && sym_sec->owner != NULL
3665
                  && !INTERWORK_FLAG (sym_sec->owner))
3666
                {
3667
                  (*_bfd_error_handler)
3668
                    (_("%B(%s): warning: interworking not enabled.\n"
3669
                       "  first occurrence: %B: Thumb call to ARM"),
3670
                     sym_sec->owner, input_bfd, name);
3671
                }
3672
 
3673
              stub_type =
3674
                (info->shared | globals->pic_veneer)
3675
                /* PIC stubs.  */
3676
                ? (r_type == R_ARM_THM_TLS_CALL
3677
                   /* TLS PIC stubs */
3678
                   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3679
                      : arm_stub_long_branch_v4t_thumb_tls_pic)
3680
                   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3681
                      /* V5T PIC and above.  */
3682
                      ? arm_stub_long_branch_any_arm_pic
3683
                      /* V4T PIC stub.  */
3684
                      : arm_stub_long_branch_v4t_thumb_arm_pic))
3685
 
3686
                /* non-PIC stubs.  */
3687
                : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3688
                   /* V5T and above.  */
3689
                   ? arm_stub_long_branch_any_any
3690
                   /* V4T.  */
3691
                   : arm_stub_long_branch_v4t_thumb_arm);
3692
 
3693
              /* Handle v4t short branches.  */
3694
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3695
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3696
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3697
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
3698
            }
3699
        }
3700
    }
3701
  else if (r_type == R_ARM_CALL
3702
           || r_type == R_ARM_JUMP24
3703
           || r_type == R_ARM_PLT32
3704
           || r_type == R_ARM_TLS_CALL)
3705
    {
3706
      if (branch_type == ST_BRANCH_TO_THUMB)
3707
        {
3708
          /* Arm to thumb.  */
3709
 
3710
          if (sym_sec != NULL
3711
              && sym_sec->owner != NULL
3712
              && !INTERWORK_FLAG (sym_sec->owner))
3713
            {
3714
              (*_bfd_error_handler)
3715
                (_("%B(%s): warning: interworking not enabled.\n"
3716
                   "  first occurrence: %B: ARM call to Thumb"),
3717
                 sym_sec->owner, input_bfd, name);
3718
            }
3719
 
3720
          /* We have an extra 2-bytes reach because of
3721
             the mode change (bit 24 (H) of BLX encoding).  */
3722
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3723
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3724
              || (r_type == R_ARM_CALL && !globals->use_blx)
3725
              || (r_type == R_ARM_JUMP24)
3726
              || (r_type == R_ARM_PLT32))
3727
            {
3728
              stub_type = (info->shared | globals->pic_veneer)
3729
                /* PIC stubs.  */
3730
                ? ((globals->use_blx)
3731
                   /* V5T and above.  */
3732
                   ? arm_stub_long_branch_any_thumb_pic
3733
                   /* V4T stub.  */
3734
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
3735
 
3736
                /* non-PIC stubs.  */
3737
                : ((globals->use_blx)
3738
                   /* V5T and above.  */
3739
                   ? arm_stub_long_branch_any_any
3740
                   /* V4T.  */
3741
                   : arm_stub_long_branch_v4t_arm_thumb);
3742
            }
3743
        }
3744
      else
3745
        {
3746
          /* Arm to arm.  */
3747
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3748
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3749
            {
3750
              stub_type =
3751
                (info->shared | globals->pic_veneer)
3752
                /* PIC stubs.  */
3753
                ? (r_type == R_ARM_TLS_CALL
3754
                   /* TLS PIC Stub */
3755
                   ? arm_stub_long_branch_any_tls_pic
3756
                   : arm_stub_long_branch_any_arm_pic)
3757
                /* non-PIC stubs.  */
3758
                : arm_stub_long_branch_any_any;
3759
            }
3760
        }
3761
    }
3762
 
3763
  /* If a stub is needed, record the actual destination type.  */
3764
  if (stub_type != arm_stub_none)
3765
    *actual_branch_type = branch_type;
3766
 
3767
  return stub_type;
3768
}
3769
 
3770
/* Build a name for an entry in the stub hash table.  */
3771
 
3772
static char *
3773
elf32_arm_stub_name (const asection *input_section,
3774
                     const asection *sym_sec,
3775
                     const struct elf32_arm_link_hash_entry *hash,
3776
                     const Elf_Internal_Rela *rel,
3777
                     enum elf32_arm_stub_type stub_type)
3778
{
3779
  char *stub_name;
3780
  bfd_size_type len;
3781
 
3782
  if (hash)
3783
    {
3784
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3785
      stub_name = (char *) bfd_malloc (len);
3786
      if (stub_name != NULL)
3787
        sprintf (stub_name, "%08x_%s+%x_%d",
3788
                 input_section->id & 0xffffffff,
3789
                 hash->root.root.root.string,
3790
                 (int) rel->r_addend & 0xffffffff,
3791
                 (int) stub_type);
3792
    }
3793
  else
3794
    {
3795
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3796
      stub_name = (char *) bfd_malloc (len);
3797
      if (stub_name != NULL)
3798
        sprintf (stub_name, "%08x_%x:%x+%x_%d",
3799
                 input_section->id & 0xffffffff,
3800
                 sym_sec->id & 0xffffffff,
3801
                 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3802
                 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3803
                 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3804
                 (int) rel->r_addend & 0xffffffff,
3805
                 (int) stub_type);
3806
    }
3807
 
3808
  return stub_name;
3809
}
3810
 
3811
/* Look up an entry in the stub hash.  Stub entries are cached because
3812
   creating the stub name takes a bit of time.  */
3813
 
3814
static struct elf32_arm_stub_hash_entry *
3815
elf32_arm_get_stub_entry (const asection *input_section,
3816
                          const asection *sym_sec,
3817
                          struct elf_link_hash_entry *hash,
3818
                          const Elf_Internal_Rela *rel,
3819
                          struct elf32_arm_link_hash_table *htab,
3820
                          enum elf32_arm_stub_type stub_type)
3821
{
3822
  struct elf32_arm_stub_hash_entry *stub_entry;
3823
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3824
  const asection *id_sec;
3825
 
3826
  if ((input_section->flags & SEC_CODE) == 0)
3827
    return NULL;
3828
 
3829
  /* If this input section is part of a group of sections sharing one
3830
     stub section, then use the id of the first section in the group.
3831
     Stub names need to include a section id, as there may well be
3832
     more than one stub used to reach say, printf, and we need to
3833
     distinguish between them.  */
3834
  id_sec = htab->stub_group[input_section->id].link_sec;
3835
 
3836
  if (h != NULL && h->stub_cache != NULL
3837
      && h->stub_cache->h == h
3838
      && h->stub_cache->id_sec == id_sec
3839
      && h->stub_cache->stub_type == stub_type)
3840
    {
3841
      stub_entry = h->stub_cache;
3842
    }
3843
  else
3844
    {
3845
      char *stub_name;
3846
 
3847
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3848
      if (stub_name == NULL)
3849
        return NULL;
3850
 
3851
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3852
                                        stub_name, FALSE, FALSE);
3853
      if (h != NULL)
3854
        h->stub_cache = stub_entry;
3855
 
3856
      free (stub_name);
3857
    }
3858
 
3859
  return stub_entry;
3860
}
3861
 
3862
/* Find or create a stub section.  Returns a pointer to the stub section, and
3863
   the section to which the stub section will be attached (in *LINK_SEC_P).
3864
   LINK_SEC_P may be NULL.  */
3865
 
3866
static asection *
3867
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3868
                                   struct elf32_arm_link_hash_table *htab)
3869
{
3870
  asection *link_sec;
3871
  asection *stub_sec;
3872
 
3873
  link_sec = htab->stub_group[section->id].link_sec;
3874 163 khays
  BFD_ASSERT (link_sec != NULL);
3875 14 khays
  stub_sec = htab->stub_group[section->id].stub_sec;
3876 163 khays
 
3877 14 khays
  if (stub_sec == NULL)
3878
    {
3879
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
3880
      if (stub_sec == NULL)
3881
        {
3882
          size_t namelen;
3883
          bfd_size_type len;
3884
          char *s_name;
3885
 
3886
          namelen = strlen (link_sec->name);
3887
          len = namelen + sizeof (STUB_SUFFIX);
3888
          s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3889
          if (s_name == NULL)
3890
            return NULL;
3891
 
3892
          memcpy (s_name, link_sec->name, namelen);
3893
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3894
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3895
          if (stub_sec == NULL)
3896
            return NULL;
3897
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
3898
        }
3899
      htab->stub_group[section->id].stub_sec = stub_sec;
3900
    }
3901
 
3902
  if (link_sec_p)
3903
    *link_sec_p = link_sec;
3904
 
3905
  return stub_sec;
3906
}
3907
 
3908
/* Add a new stub entry to the stub hash.  Not all fields of the new
3909
   stub entry are initialised.  */
3910
 
3911
static struct elf32_arm_stub_hash_entry *
3912
elf32_arm_add_stub (const char *stub_name,
3913
                    asection *section,
3914
                    struct elf32_arm_link_hash_table *htab)
3915
{
3916
  asection *link_sec;
3917
  asection *stub_sec;
3918
  struct elf32_arm_stub_hash_entry *stub_entry;
3919
 
3920
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3921
  if (stub_sec == NULL)
3922
    return NULL;
3923
 
3924
  /* Enter this entry into the linker stub hash table.  */
3925
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3926
                                     TRUE, FALSE);
3927
  if (stub_entry == NULL)
3928
    {
3929
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3930
                             section->owner,
3931
                             stub_name);
3932
      return NULL;
3933
    }
3934
 
3935
  stub_entry->stub_sec = stub_sec;
3936
  stub_entry->stub_offset = 0;
3937
  stub_entry->id_sec = link_sec;
3938
 
3939
  return stub_entry;
3940
}
3941
 
3942
/* Store an Arm insn into an output section not processed by
3943
   elf32_arm_write_section.  */
3944
 
3945
static void
3946
put_arm_insn (struct elf32_arm_link_hash_table * htab,
3947
              bfd * output_bfd, bfd_vma val, void * ptr)
3948
{
3949
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3950
    bfd_putl32 (val, ptr);
3951
  else
3952
    bfd_putb32 (val, ptr);
3953
}
3954
 
3955
/* Store a 16-bit Thumb insn into an output section not processed by
3956
   elf32_arm_write_section.  */
3957
 
3958
static void
3959
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3960
                bfd * output_bfd, bfd_vma val, void * ptr)
3961
{
3962
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
3963
    bfd_putl16 (val, ptr);
3964
  else
3965
    bfd_putb16 (val, ptr);
3966
}
3967
 
3968
/* If it's possible to change R_TYPE to a more efficient access
3969
   model, return the new reloc type.  */
3970
 
3971
static unsigned
3972
elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3973
                          struct elf_link_hash_entry *h)
3974
{
3975
  int is_local = (h == NULL);
3976
 
3977
  if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3978
    return r_type;
3979
 
3980
  /* We do not support relaxations for Old TLS models.  */
3981
  switch (r_type)
3982
    {
3983
    case R_ARM_TLS_GOTDESC:
3984
    case R_ARM_TLS_CALL:
3985
    case R_ARM_THM_TLS_CALL:
3986
    case R_ARM_TLS_DESCSEQ:
3987
    case R_ARM_THM_TLS_DESCSEQ:
3988
      return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3989
    }
3990
 
3991
  return r_type;
3992
}
3993
 
3994
static bfd_reloc_status_type elf32_arm_final_link_relocate
3995
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3996
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3997
   const char *, unsigned char, enum arm_st_branch_type,
3998
   struct elf_link_hash_entry *, bfd_boolean *, char **);
3999
 
4000
static unsigned int
4001
arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4002
{
4003
  switch (stub_type)
4004
    {
4005
    case arm_stub_a8_veneer_b_cond:
4006
    case arm_stub_a8_veneer_b:
4007
    case arm_stub_a8_veneer_bl:
4008
      return 2;
4009
 
4010
    case arm_stub_long_branch_any_any:
4011
    case arm_stub_long_branch_v4t_arm_thumb:
4012
    case arm_stub_long_branch_thumb_only:
4013
    case arm_stub_long_branch_v4t_thumb_thumb:
4014
    case arm_stub_long_branch_v4t_thumb_arm:
4015
    case arm_stub_short_branch_v4t_thumb_arm:
4016
    case arm_stub_long_branch_any_arm_pic:
4017
    case arm_stub_long_branch_any_thumb_pic:
4018
    case arm_stub_long_branch_v4t_thumb_thumb_pic:
4019
    case arm_stub_long_branch_v4t_arm_thumb_pic:
4020
    case arm_stub_long_branch_v4t_thumb_arm_pic:
4021
    case arm_stub_long_branch_thumb_only_pic:
4022
    case arm_stub_long_branch_any_tls_pic:
4023
    case arm_stub_long_branch_v4t_thumb_tls_pic:
4024
    case arm_stub_a8_veneer_blx:
4025
      return 4;
4026
 
4027
    default:
4028
      abort ();  /* Should be unreachable.  */
4029
    }
4030
}
4031
 
4032
static bfd_boolean
4033
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4034
                    void * in_arg)
4035
{
4036
#define MAXRELOCS 2
4037
  struct elf32_arm_stub_hash_entry *stub_entry;
4038
  struct elf32_arm_link_hash_table *globals;
4039
  struct bfd_link_info *info;
4040
  asection *stub_sec;
4041
  bfd *stub_bfd;
4042
  bfd_byte *loc;
4043
  bfd_vma sym_value;
4044
  int template_size;
4045
  int size;
4046
  const insn_sequence *template_sequence;
4047
  int i;
4048
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4049
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
4050
  int nrelocs = 0;
4051
 
4052
  /* Massage our args to the form they really have.  */
4053
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4054
  info = (struct bfd_link_info *) in_arg;
4055
 
4056
  globals = elf32_arm_hash_table (info);
4057
  if (globals == NULL)
4058
    return FALSE;
4059
 
4060
  stub_sec = stub_entry->stub_sec;
4061
 
4062
  if ((globals->fix_cortex_a8 < 0)
4063
      != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4064
    /* We have to do less-strictly-aligned fixes last.  */
4065
    return TRUE;
4066
 
4067
  /* Make a note of the offset within the stubs for this entry.  */
4068
  stub_entry->stub_offset = stub_sec->size;
4069
  loc = stub_sec->contents + stub_entry->stub_offset;
4070
 
4071
  stub_bfd = stub_sec->owner;
4072
 
4073
  /* This is the address of the stub destination.  */
4074
  sym_value = (stub_entry->target_value
4075
               + stub_entry->target_section->output_offset
4076
               + stub_entry->target_section->output_section->vma);
4077
 
4078
  template_sequence = stub_entry->stub_template;
4079
  template_size = stub_entry->stub_template_size;
4080
 
4081
  size = 0;
4082
  for (i = 0; i < template_size; i++)
4083
    {
4084
      switch (template_sequence[i].type)
4085
        {
4086
        case THUMB16_TYPE:
4087
          {
4088
            bfd_vma data = (bfd_vma) template_sequence[i].data;
4089
            if (template_sequence[i].reloc_addend != 0)
4090
              {
4091
                /* We've borrowed the reloc_addend field to mean we should
4092
                   insert a condition code into this (Thumb-1 branch)
4093
                   instruction.  See THUMB16_BCOND_INSN.  */
4094
                BFD_ASSERT ((data & 0xff00) == 0xd000);
4095
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4096
              }
4097
            bfd_put_16 (stub_bfd, data, loc + size);
4098
            size += 2;
4099
          }
4100
          break;
4101
 
4102
        case THUMB32_TYPE:
4103
          bfd_put_16 (stub_bfd,
4104
                      (template_sequence[i].data >> 16) & 0xffff,
4105
                      loc + size);
4106
          bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4107
                      loc + size + 2);
4108
          if (template_sequence[i].r_type != R_ARM_NONE)
4109
            {
4110
              stub_reloc_idx[nrelocs] = i;
4111
              stub_reloc_offset[nrelocs++] = size;
4112
            }
4113
          size += 4;
4114
          break;
4115
 
4116
        case ARM_TYPE:
4117
          bfd_put_32 (stub_bfd, template_sequence[i].data,
4118
                      loc + size);
4119
          /* Handle cases where the target is encoded within the
4120
             instruction.  */
4121
          if (template_sequence[i].r_type == R_ARM_JUMP24)
4122
            {
4123
              stub_reloc_idx[nrelocs] = i;
4124
              stub_reloc_offset[nrelocs++] = size;
4125
            }
4126
          size += 4;
4127
          break;
4128
 
4129
        case DATA_TYPE:
4130
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4131
          stub_reloc_idx[nrelocs] = i;
4132
          stub_reloc_offset[nrelocs++] = size;
4133
          size += 4;
4134
          break;
4135
 
4136
        default:
4137
          BFD_FAIL ();
4138
          return FALSE;
4139
        }
4140
    }
4141
 
4142
  stub_sec->size += size;
4143
 
4144
  /* Stub size has already been computed in arm_size_one_stub. Check
4145
     consistency.  */
4146
  BFD_ASSERT (size == stub_entry->stub_size);
4147
 
4148
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
4149
  if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4150
    sym_value |= 1;
4151
 
4152
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
4153
     in each stub.  */
4154
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4155
 
4156
  for (i = 0; i < nrelocs; i++)
4157
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4158
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4159
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4160
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4161
      {
4162
        Elf_Internal_Rela rel;
4163
        bfd_boolean unresolved_reloc;
4164
        char *error_message;
4165
        enum arm_st_branch_type branch_type
4166
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4167
             ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4168
        bfd_vma points_to = sym_value + stub_entry->target_addend;
4169
 
4170
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4171
        rel.r_info = ELF32_R_INFO (0,
4172
                                   template_sequence[stub_reloc_idx[i]].r_type);
4173
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4174
 
4175
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4176
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4177
             template should refer back to the instruction after the original
4178
             branch.  */
4179
          points_to = sym_value;
4180
 
4181
        /* There may be unintended consequences if this is not true.  */
4182
        BFD_ASSERT (stub_entry->h == NULL);
4183
 
4184
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
4185
           properly.  We should probably use this function unconditionally,
4186
           rather than only for certain relocations listed in the enclosing
4187
           conditional, for the sake of consistency.  */
4188
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4189
            (template_sequence[stub_reloc_idx[i]].r_type),
4190
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4191
          points_to, info, stub_entry->target_section, "", STT_FUNC,
4192
          branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4193
          &unresolved_reloc, &error_message);
4194
      }
4195
    else
4196
      {
4197
        Elf_Internal_Rela rel;
4198
        bfd_boolean unresolved_reloc;
4199
        char *error_message;
4200
        bfd_vma points_to = sym_value + stub_entry->target_addend
4201
          + template_sequence[stub_reloc_idx[i]].reloc_addend;
4202
 
4203
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4204
        rel.r_info = ELF32_R_INFO (0,
4205
                                   template_sequence[stub_reloc_idx[i]].r_type);
4206
        rel.r_addend = 0;
4207
 
4208
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4209
            (template_sequence[stub_reloc_idx[i]].r_type),
4210
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4211
          points_to, info, stub_entry->target_section, "", STT_FUNC,
4212
          stub_entry->branch_type,
4213
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4214
          &error_message);
4215
      }
4216
 
4217
  return TRUE;
4218
#undef MAXRELOCS
4219
}
4220
 
4221
/* Calculate the template, template size and instruction size for a stub.
4222
   Return value is the instruction size.  */
4223
 
4224
static unsigned int
4225
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4226
                             const insn_sequence **stub_template,
4227
                             int *stub_template_size)
4228
{
4229
  const insn_sequence *template_sequence = NULL;
4230
  int template_size = 0, i;
4231
  unsigned int size;
4232
 
4233
  template_sequence = stub_definitions[stub_type].template_sequence;
4234
  if (stub_template)
4235
    *stub_template = template_sequence;
4236
 
4237
  template_size = stub_definitions[stub_type].template_size;
4238
  if (stub_template_size)
4239
    *stub_template_size = template_size;
4240
 
4241
  size = 0;
4242
  for (i = 0; i < template_size; i++)
4243
    {
4244
      switch (template_sequence[i].type)
4245
        {
4246
        case THUMB16_TYPE:
4247
          size += 2;
4248
          break;
4249
 
4250
        case ARM_TYPE:
4251
        case THUMB32_TYPE:
4252
        case DATA_TYPE:
4253
          size += 4;
4254
          break;
4255
 
4256
        default:
4257
          BFD_FAIL ();
4258
          return 0;
4259
        }
4260
    }
4261
 
4262
  return size;
4263
}
4264
 
4265
/* As above, but don't actually build the stub.  Just bump offset so
4266
   we know stub section sizes.  */
4267
 
4268
static bfd_boolean
4269
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4270
                   void *in_arg ATTRIBUTE_UNUSED)
4271
{
4272
  struct elf32_arm_stub_hash_entry *stub_entry;
4273
  const insn_sequence *template_sequence;
4274
  int template_size, size;
4275
 
4276
  /* Massage our args to the form they really have.  */
4277
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4278
 
4279
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4280
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4281
 
4282
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4283
                                      &template_size);
4284
 
4285
  stub_entry->stub_size = size;
4286
  stub_entry->stub_template = template_sequence;
4287
  stub_entry->stub_template_size = template_size;
4288
 
4289
  size = (size + 7) & ~7;
4290
  stub_entry->stub_sec->size += size;
4291
 
4292
  return TRUE;
4293
}
4294
 
4295
/* External entry points for sizing and building linker stubs.  */
4296
 
4297
/* Set up various things so that we can make a list of input sections
4298
   for each output section included in the link.  Returns -1 on error,
4299
 
4300
 
4301
int
4302
elf32_arm_setup_section_lists (bfd *output_bfd,
4303
                               struct bfd_link_info *info)
4304
{
4305
  bfd *input_bfd;
4306
  unsigned int bfd_count;
4307
  int top_id, top_index;
4308
  asection *section;
4309
  asection **input_list, **list;
4310
  bfd_size_type amt;
4311
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4312
 
4313
  if (htab == NULL)
4314
    return 0;
4315
  if (! is_elf_hash_table (htab))
4316
    return 0;
4317
 
4318
  /* Count the number of input BFDs and find the top input section id.  */
4319
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4320
       input_bfd != NULL;
4321
       input_bfd = input_bfd->link_next)
4322
    {
4323
      bfd_count += 1;
4324
      for (section = input_bfd->sections;
4325
           section != NULL;
4326
           section = section->next)
4327
        {
4328
          if (top_id < section->id)
4329
            top_id = section->id;
4330
        }
4331
    }
4332
  htab->bfd_count = bfd_count;
4333
 
4334
  amt = sizeof (struct map_stub) * (top_id + 1);
4335
  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4336
  if (htab->stub_group == NULL)
4337
    return -1;
4338
  htab->top_id = top_id;
4339
 
4340
  /* We can't use output_bfd->section_count here to find the top output
4341
     section index as some sections may have been removed, and
4342
     _bfd_strip_section_from_output doesn't renumber the indices.  */
4343
  for (section = output_bfd->sections, top_index = 0;
4344
       section != NULL;
4345
       section = section->next)
4346
    {
4347
      if (top_index < section->index)
4348
        top_index = section->index;
4349
    }
4350
 
4351
  htab->top_index = top_index;
4352
  amt = sizeof (asection *) * (top_index + 1);
4353
  input_list = (asection **) bfd_malloc (amt);
4354
  htab->input_list = input_list;
4355
  if (input_list == NULL)
4356
    return -1;
4357
 
4358
  /* For sections we aren't interested in, mark their entries with a
4359
     value we can check later.  */
4360
  list = input_list + top_index;
4361
  do
4362
    *list = bfd_abs_section_ptr;
4363
  while (list-- != input_list);
4364
 
4365
  for (section = output_bfd->sections;
4366
       section != NULL;
4367
       section = section->next)
4368
    {
4369
      if ((section->flags & SEC_CODE) != 0)
4370
        input_list[section->index] = NULL;
4371
    }
4372
 
4373
  return 1;
4374
}
4375
 
4376
/* The linker repeatedly calls this function for each input section,
4377
   in the order that input sections are linked into output sections.
4378
   Build lists of input sections to determine groupings between which
4379
   we may insert linker stubs.  */
4380
 
4381
void
4382
elf32_arm_next_input_section (struct bfd_link_info *info,
4383
                              asection *isec)
4384
{
4385
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4386
 
4387
  if (htab == NULL)
4388
    return;
4389
 
4390
  if (isec->output_section->index <= htab->top_index)
4391
    {
4392
      asection **list = htab->input_list + isec->output_section->index;
4393
 
4394
      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4395
        {
4396
          /* Steal the link_sec pointer for our list.  */
4397
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4398
          /* This happens to make the list in reverse order,
4399
             which we reverse later.  */
4400
          PREV_SEC (isec) = *list;
4401
          *list = isec;
4402
        }
4403
    }
4404
}
4405
 
4406
/* See whether we can group stub sections together.  Grouping stub
4407
   sections may result in fewer stubs.  More importantly, we need to
4408
   put all .init* and .fini* stubs at the end of the .init or
4409
   .fini output sections respectively, because glibc splits the
4410
   _init and _fini functions into multiple parts.  Putting a stub in
4411
   the middle of a function is not a good idea.  */
4412
 
4413
static void
4414
group_sections (struct elf32_arm_link_hash_table *htab,
4415
                bfd_size_type stub_group_size,
4416
                bfd_boolean stubs_always_after_branch)
4417
{
4418
  asection **list = htab->input_list;
4419
 
4420
  do
4421
    {
4422
      asection *tail = *list;
4423
      asection *head;
4424
 
4425
      if (tail == bfd_abs_section_ptr)
4426
        continue;
4427
 
4428
      /* Reverse the list: we must avoid placing stubs at the
4429
         beginning of the section because the beginning of the text
4430
         section may be required for an interrupt vector in bare metal
4431
         code.  */
4432
#define NEXT_SEC PREV_SEC
4433
      head = NULL;
4434
      while (tail != NULL)
4435
        {
4436
          /* Pop from tail.  */
4437
          asection *item = tail;
4438
          tail = PREV_SEC (item);
4439
 
4440
          /* Push on head.  */
4441
          NEXT_SEC (item) = head;
4442
          head = item;
4443
        }
4444
 
4445
      while (head != NULL)
4446
        {
4447
          asection *curr;
4448
          asection *next;
4449
          bfd_vma stub_group_start = head->output_offset;
4450
          bfd_vma end_of_next;
4451
 
4452
          curr = head;
4453
          while (NEXT_SEC (curr) != NULL)
4454
            {
4455
              next = NEXT_SEC (curr);
4456
              end_of_next = next->output_offset + next->size;
4457
              if (end_of_next - stub_group_start >= stub_group_size)
4458
                /* End of NEXT is too far from start, so stop.  */
4459
                break;
4460
              /* Add NEXT to the group.  */
4461
              curr = next;
4462
            }
4463
 
4464
          /* OK, the size from the start to the start of CURR is less
4465
             than stub_group_size and thus can be handled by one stub
4466
             section.  (Or the head section is itself larger than
4467
             stub_group_size, in which case we may be toast.)
4468
             We should really be keeping track of the total size of
4469
             stubs added here, as stubs contribute to the final output
4470
             section size.  */
4471
          do
4472
            {
4473
              next = NEXT_SEC (head);
4474
              /* Set up this stub group.  */
4475
              htab->stub_group[head->id].link_sec = curr;
4476
            }
4477
          while (head != curr && (head = next) != NULL);
4478
 
4479
          /* But wait, there's more!  Input sections up to stub_group_size
4480
             bytes after the stub section can be handled by it too.  */
4481
          if (!stubs_always_after_branch)
4482
            {
4483
              stub_group_start = curr->output_offset + curr->size;
4484
 
4485
              while (next != NULL)
4486
                {
4487
                  end_of_next = next->output_offset + next->size;
4488
                  if (end_of_next - stub_group_start >= stub_group_size)
4489
                    /* End of NEXT is too far from stubs, so stop.  */
4490
                    break;
4491
                  /* Add NEXT to the stub group.  */
4492
                  head = next;
4493
                  next = NEXT_SEC (head);
4494
                  htab->stub_group[head->id].link_sec = curr;
4495
                }
4496
            }
4497
          head = next;
4498
        }
4499
    }
4500
  while (list++ != htab->input_list + htab->top_index);
4501
 
4502
  free (htab->input_list);
4503
#undef PREV_SEC
4504
#undef NEXT_SEC
4505
}
4506
 
4507
/* Comparison function for sorting/searching relocations relating to Cortex-A8
4508
   erratum fix.  */
4509
 
4510
static int
4511
a8_reloc_compare (const void *a, const void *b)
4512
{
4513
  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4514
  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4515
 
4516
  if (ra->from < rb->from)
4517
    return -1;
4518
  else if (ra->from > rb->from)
4519
    return 1;
4520
  else
4521
    return 0;
4522
}
4523
 
4524
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4525
                                                    const char *, char **);
4526
 
4527
/* Helper function to scan code for sequences which might trigger the Cortex-A8
4528
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
4529
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
4530
   otherwise.  */
4531
 
4532
static bfd_boolean
4533
cortex_a8_erratum_scan (bfd *input_bfd,
4534
                        struct bfd_link_info *info,
4535
                        struct a8_erratum_fix **a8_fixes_p,
4536
                        unsigned int *num_a8_fixes_p,
4537
                        unsigned int *a8_fix_table_size_p,
4538
                        struct a8_erratum_reloc *a8_relocs,
4539
                        unsigned int num_a8_relocs,
4540
                        unsigned prev_num_a8_fixes,
4541
                        bfd_boolean *stub_changed_p)
4542
{
4543
  asection *section;
4544
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4545
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4546
  unsigned int num_a8_fixes = *num_a8_fixes_p;
4547
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4548
 
4549
  if (htab == NULL)
4550
    return FALSE;
4551
 
4552
  for (section = input_bfd->sections;
4553
       section != NULL;
4554
       section = section->next)
4555
    {
4556
      bfd_byte *contents = NULL;
4557
      struct _arm_elf_section_data *sec_data;
4558
      unsigned int span;
4559
      bfd_vma base_vma;
4560
 
4561
      if (elf_section_type (section) != SHT_PROGBITS
4562
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4563
          || (section->flags & SEC_EXCLUDE) != 0
4564
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4565
          || (section->output_section == bfd_abs_section_ptr))
4566
        continue;
4567
 
4568
      base_vma = section->output_section->vma + section->output_offset;
4569
 
4570
      if (elf_section_data (section)->this_hdr.contents != NULL)
4571
        contents = elf_section_data (section)->this_hdr.contents;
4572
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4573
        return TRUE;
4574
 
4575
      sec_data = elf32_arm_section_data (section);
4576
 
4577
      for (span = 0; span < sec_data->mapcount; span++)
4578
        {
4579
          unsigned int span_start = sec_data->map[span].vma;
4580
          unsigned int span_end = (span == sec_data->mapcount - 1)
4581
            ? section->size : sec_data->map[span + 1].vma;
4582
          unsigned int i;
4583
          char span_type = sec_data->map[span].type;
4584
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4585
 
4586
          if (span_type != 't')
4587
            continue;
4588
 
4589
          /* Span is entirely within a single 4KB region: skip scanning.  */
4590
          if (((base_vma + span_start) & ~0xfff)
4591
              == ((base_vma + span_end) & ~0xfff))
4592
            continue;
4593
 
4594
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4595
 
4596
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
4597
               * The branch target is in the same 4KB region as the
4598
                 first half of the branch.
4599
               * The instruction before the branch is a 32-bit
4600
                 length non-branch instruction.  */
4601
          for (i = span_start; i < span_end;)
4602
            {
4603
              unsigned int insn = bfd_getl16 (&contents[i]);
4604
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4605
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4606
 
4607
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4608
                insn_32bit = TRUE;
4609
 
4610
              if (insn_32bit)
4611
                {
4612
                  /* Load the rest of the insn (in manual-friendly order).  */
4613
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4614
 
4615
                  /* Encoding T4: B<c>.W.  */
4616
                  is_b = (insn & 0xf800d000) == 0xf0009000;
4617
                  /* Encoding T1: BL<c>.W.  */
4618
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
4619
                  /* Encoding T2: BLX<c>.W.  */
4620
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
4621
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
4622
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
4623
                           && (insn & 0x07f00000) != 0x03800000;
4624
                }
4625
 
4626
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4627
 
4628
              if (((base_vma + i) & 0xfff) == 0xffe
4629
                  && insn_32bit
4630
                  && is_32bit_branch
4631
                  && last_was_32bit
4632
                  && ! last_was_branch)
4633
                {
4634
                  bfd_signed_vma offset = 0;
4635
                  bfd_boolean force_target_arm = FALSE;
4636
                  bfd_boolean force_target_thumb = FALSE;
4637
                  bfd_vma target;
4638
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
4639
                  struct a8_erratum_reloc key, *found;
4640
                  bfd_boolean use_plt = FALSE;
4641
 
4642
                  key.from = base_vma + i;
4643
                  found = (struct a8_erratum_reloc *)
4644
                      bsearch (&key, a8_relocs, num_a8_relocs,
4645
                               sizeof (struct a8_erratum_reloc),
4646
                               &a8_reloc_compare);
4647
 
4648
                  if (found)
4649
                    {
4650
                      char *error_message = NULL;
4651
                      struct elf_link_hash_entry *entry;
4652
 
4653
                      /* We don't care about the error returned from this
4654
                         function, only if there is glue or not.  */
4655
                      entry = find_thumb_glue (info, found->sym_name,
4656
                                               &error_message);
4657
 
4658
                      if (entry)
4659
                        found->non_a8_stub = TRUE;
4660
 
4661
                      /* Keep a simpler condition, for the sake of clarity.  */
4662
                      if (htab->root.splt != NULL && found->hash != NULL
4663
                          && found->hash->root.plt.offset != (bfd_vma) -1)
4664
                        use_plt = TRUE;
4665
 
4666
                      if (found->r_type == R_ARM_THM_CALL)
4667
                        {
4668
                          if (found->branch_type == ST_BRANCH_TO_ARM
4669
                              || use_plt)
4670
                            force_target_arm = TRUE;
4671
                          else
4672
                            force_target_thumb = TRUE;
4673
                        }
4674
                    }
4675
 
4676
                  /* Check if we have an offending branch instruction.  */
4677
 
4678
                  if (found && found->non_a8_stub)
4679
                    /* We've already made a stub for this instruction, e.g.
4680
                       it's a long branch or a Thumb->ARM stub.  Assume that
4681
                       stub will suffice to work around the A8 erratum (see
4682
                       setting of always_after_branch above).  */
4683
                    ;
4684
                  else if (is_bcc)
4685
                    {
4686
                      offset = (insn & 0x7ff) << 1;
4687
                      offset |= (insn & 0x3f0000) >> 4;
4688
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
4689
                      offset |= (insn & 0x800) ? 0x80000 : 0;
4690
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
4691
                      if (offset & 0x100000)
4692
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
4693
                      stub_type = arm_stub_a8_veneer_b_cond;
4694
                    }
4695
                  else if (is_b || is_bl || is_blx)
4696
                    {
4697
                      int s = (insn & 0x4000000) != 0;
4698
                      int j1 = (insn & 0x2000) != 0;
4699
                      int j2 = (insn & 0x800) != 0;
4700
                      int i1 = !(j1 ^ s);
4701
                      int i2 = !(j2 ^ s);
4702
 
4703
                      offset = (insn & 0x7ff) << 1;
4704
                      offset |= (insn & 0x3ff0000) >> 4;
4705
                      offset |= i2 << 22;
4706
                      offset |= i1 << 23;
4707
                      offset |= s << 24;
4708
                      if (offset & 0x1000000)
4709
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
4710
 
4711
                      if (is_blx)
4712
                        offset &= ~ ((bfd_signed_vma) 3);
4713
 
4714
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
4715
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4716
                    }
4717
 
4718
                  if (stub_type != arm_stub_none)
4719
                    {
4720
                      bfd_vma pc_for_insn = base_vma + i + 4;
4721
 
4722
                      /* The original instruction is a BL, but the target is
4723
                         an ARM instruction.  If we were not making a stub,
4724
                         the BL would have been converted to a BLX.  Use the
4725
                         BLX stub instead in that case.  */
4726
                      if (htab->use_blx && force_target_arm
4727
                          && stub_type == arm_stub_a8_veneer_bl)
4728
                        {
4729
                          stub_type = arm_stub_a8_veneer_blx;
4730
                          is_blx = TRUE;
4731
                          is_bl = FALSE;
4732
                        }
4733
                      /* Conversely, if the original instruction was
4734
                         BLX but the target is Thumb mode, use the BL
4735
                         stub.  */
4736
                      else if (force_target_thumb
4737
                               && stub_type == arm_stub_a8_veneer_blx)
4738
                        {
4739
                          stub_type = arm_stub_a8_veneer_bl;
4740
                          is_blx = FALSE;
4741
                          is_bl = TRUE;
4742
                        }
4743
 
4744
                      if (is_blx)
4745
                        pc_for_insn &= ~ ((bfd_vma) 3);
4746
 
4747
                      /* If we found a relocation, use the proper destination,
4748
                         not the offset in the (unrelocated) instruction.
4749
                         Note this is always done if we switched the stub type
4750
                         above.  */
4751
                      if (found)
4752
                        offset =
4753
                          (bfd_signed_vma) (found->destination - pc_for_insn);
4754
 
4755
                      /* If the stub will use a Thumb-mode branch to a
4756
                         PLT target, redirect it to the preceding Thumb
4757
                         entry point.  */
4758
                      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4759
                        offset -= PLT_THUMB_STUB_SIZE;
4760
 
4761
                      target = pc_for_insn + offset;
4762
 
4763
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
4764
                         take the different PC value (+8 instead of +4) into
4765
                         account.  */
4766
                      if (stub_type == arm_stub_a8_veneer_blx)
4767
                        offset += 4;
4768
 
4769
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4770
                        {
4771
                          char *stub_name = NULL;
4772
 
4773
                          if (num_a8_fixes == a8_fix_table_size)
4774
                            {
4775
                              a8_fix_table_size *= 2;
4776
                              a8_fixes = (struct a8_erratum_fix *)
4777
                                  bfd_realloc (a8_fixes,
4778
                                               sizeof (struct a8_erratum_fix)
4779
                                               * a8_fix_table_size);
4780
                            }
4781
 
4782
                          if (num_a8_fixes < prev_num_a8_fixes)
4783
                            {
4784
                              /* If we're doing a subsequent scan,
4785
                                 check if we've found the same fix as
4786
                                 before, and try and reuse the stub
4787
                                 name.  */
4788
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
4789
                              if ((a8_fixes[num_a8_fixes].section != section)
4790
                                  || (a8_fixes[num_a8_fixes].offset != i))
4791
                                {
4792
                                  free (stub_name);
4793
                                  stub_name = NULL;
4794
                                  *stub_changed_p = TRUE;
4795
                                }
4796
                            }
4797
 
4798
                          if (!stub_name)
4799
                            {
4800
                              stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4801
                              if (stub_name != NULL)
4802
                                sprintf (stub_name, "%x:%x", section->id, i);
4803
                            }
4804
 
4805
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4806
                          a8_fixes[num_a8_fixes].section = section;
4807
                          a8_fixes[num_a8_fixes].offset = i;
4808
                          a8_fixes[num_a8_fixes].addend = offset;
4809
                          a8_fixes[num_a8_fixes].orig_insn = insn;
4810
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
4811
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
4812
                          a8_fixes[num_a8_fixes].branch_type =
4813
                            is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4814
 
4815
                          num_a8_fixes++;
4816
                        }
4817
                    }
4818
                }
4819
 
4820
              i += insn_32bit ? 4 : 2;
4821
              last_was_32bit = insn_32bit;
4822
              last_was_branch = is_32bit_branch;
4823
            }
4824
        }
4825
 
4826
      if (elf_section_data (section)->this_hdr.contents == NULL)
4827
        free (contents);
4828
    }
4829
 
4830
  *a8_fixes_p = a8_fixes;
4831
  *num_a8_fixes_p = num_a8_fixes;
4832
  *a8_fix_table_size_p = a8_fix_table_size;
4833
 
4834
  return FALSE;
4835
}
4836
 
4837
/* Determine and set the size of the stub section for a final link.
4838
 
4839
   The basic idea here is to examine all the relocations looking for
4840
   PC-relative calls to a target that is unreachable with a "bl"
4841
   instruction.  */
4842
 
4843
bfd_boolean
4844
elf32_arm_size_stubs (bfd *output_bfd,
4845
                      bfd *stub_bfd,
4846
                      struct bfd_link_info *info,
4847
                      bfd_signed_vma group_size,
4848
                      asection * (*add_stub_section) (const char *, asection *),
4849
                      void (*layout_sections_again) (void))
4850
{
4851
  bfd_size_type stub_group_size;
4852
  bfd_boolean stubs_always_after_branch;
4853
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4854
  struct a8_erratum_fix *a8_fixes = NULL;
4855
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4856
  struct a8_erratum_reloc *a8_relocs = NULL;
4857
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4858
 
4859
  if (htab == NULL)
4860
    return FALSE;
4861
 
4862
  if (htab->fix_cortex_a8)
4863
    {
4864
      a8_fixes = (struct a8_erratum_fix *)
4865
          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4866
      a8_relocs = (struct a8_erratum_reloc *)
4867
          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4868
    }
4869
 
4870
  /* Propagate mach to stub bfd, because it may not have been
4871
     finalized when we created stub_bfd.  */
4872
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4873
                     bfd_get_mach (output_bfd));
4874
 
4875
  /* Stash our params away.  */
4876
  htab->stub_bfd = stub_bfd;
4877
  htab->add_stub_section = add_stub_section;
4878
  htab->layout_sections_again = layout_sections_again;
4879
  stubs_always_after_branch = group_size < 0;
4880
 
4881
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4882
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
4883
     crude way of enforcing that.  */
4884
  if (htab->fix_cortex_a8)
4885
    stubs_always_after_branch = 1;
4886
 
4887
  if (group_size < 0)
4888
    stub_group_size = -group_size;
4889
  else
4890
    stub_group_size = group_size;
4891
 
4892
  if (stub_group_size == 1)
4893
    {
4894
      /* Default values.  */
4895
      /* Thumb branch range is +-4MB has to be used as the default
4896
         maximum size (a given section can contain both ARM and Thumb
4897
         code, so the worst case has to be taken into account).
4898
 
4899
         This value is 24K less than that, which allows for 2025
4900
         12-byte stubs.  If we exceed that, then we will fail to link.
4901
         The user will have to relink with an explicit group size
4902
         option.  */
4903
      stub_group_size = 4170000;
4904
    }
4905
 
4906
  group_sections (htab, stub_group_size, stubs_always_after_branch);
4907
 
4908
  /* If we're applying the cortex A8 fix, we need to determine the
4909
     program header size now, because we cannot change it later --
4910
     that could alter section placements.  Notice the A8 erratum fix
4911
     ends up requiring the section addresses to remain unchanged
4912
     modulo the page size.  That's something we cannot represent
4913
     inside BFD, and we don't want to force the section alignment to
4914
     be the page size.  */
4915
  if (htab->fix_cortex_a8)
4916
    (*htab->layout_sections_again) ();
4917
 
4918
  while (1)
4919
    {
4920
      bfd *input_bfd;
4921
      unsigned int bfd_indx;
4922
      asection *stub_sec;
4923
      bfd_boolean stub_changed = FALSE;
4924
      unsigned prev_num_a8_fixes = num_a8_fixes;
4925
 
4926
      num_a8_fixes = 0;
4927
      for (input_bfd = info->input_bfds, bfd_indx = 0;
4928
           input_bfd != NULL;
4929
           input_bfd = input_bfd->link_next, bfd_indx++)
4930
        {
4931
          Elf_Internal_Shdr *symtab_hdr;
4932
          asection *section;
4933
          Elf_Internal_Sym *local_syms = NULL;
4934
 
4935
          num_a8_relocs = 0;
4936
 
4937
          /* We'll need the symbol table in a second.  */
4938
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4939
          if (symtab_hdr->sh_info == 0)
4940
            continue;
4941
 
4942
          /* Walk over each section attached to the input bfd.  */
4943
          for (section = input_bfd->sections;
4944
               section != NULL;
4945
               section = section->next)
4946
            {
4947
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4948
 
4949
              /* If there aren't any relocs, then there's nothing more
4950
                 to do.  */
4951
              if ((section->flags & SEC_RELOC) == 0
4952
                  || section->reloc_count == 0
4953
                  || (section->flags & SEC_CODE) == 0)
4954
                continue;
4955
 
4956
              /* If this section is a link-once section that will be
4957
                 discarded, then don't create any stubs.  */
4958
              if (section->output_section == NULL
4959
                  || section->output_section->owner != output_bfd)
4960
                continue;
4961
 
4962
              /* Get the relocs.  */
4963
              internal_relocs
4964
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4965
                                             NULL, info->keep_memory);
4966
              if (internal_relocs == NULL)
4967
                goto error_ret_free_local;
4968
 
4969
              /* Now examine each relocation.  */
4970
              irela = internal_relocs;
4971
              irelaend = irela + section->reloc_count;
4972
              for (; irela < irelaend; irela++)
4973
                {
4974
                  unsigned int r_type, r_indx;
4975
                  enum elf32_arm_stub_type stub_type;
4976
                  struct elf32_arm_stub_hash_entry *stub_entry;
4977
                  asection *sym_sec;
4978
                  bfd_vma sym_value;
4979
                  bfd_vma destination;
4980
                  struct elf32_arm_link_hash_entry *hash;
4981
                  const char *sym_name;
4982
                  char *stub_name;
4983
                  const asection *id_sec;
4984
                  unsigned char st_type;
4985
                  enum arm_st_branch_type branch_type;
4986
                  bfd_boolean created_stub = FALSE;
4987
 
4988
                  r_type = ELF32_R_TYPE (irela->r_info);
4989
                  r_indx = ELF32_R_SYM (irela->r_info);
4990
 
4991
                  if (r_type >= (unsigned int) R_ARM_max)
4992
                    {
4993
                      bfd_set_error (bfd_error_bad_value);
4994
                    error_ret_free_internal:
4995
                      if (elf_section_data (section)->relocs == NULL)
4996
                        free (internal_relocs);
4997
                      goto error_ret_free_local;
4998
                    }
4999
 
5000
                  hash = NULL;
5001
                  if (r_indx >= symtab_hdr->sh_info)
5002
                    hash = elf32_arm_hash_entry
5003
                      (elf_sym_hashes (input_bfd)
5004
                       [r_indx - symtab_hdr->sh_info]);
5005
 
5006
                  /* Only look for stubs on branch instructions, or
5007
                     non-relaxed TLSCALL  */
5008
                  if ((r_type != (unsigned int) R_ARM_CALL)
5009
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
5010
                      && (r_type != (unsigned int) R_ARM_JUMP24)
5011
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5012
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
5013
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5014
                      && (r_type != (unsigned int) R_ARM_PLT32)
5015
                      && !((r_type == (unsigned int) R_ARM_TLS_CALL
5016
                            || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5017
                           && r_type == elf32_arm_tls_transition
5018
                               (info, r_type, &hash->root)
5019
                           && ((hash ? hash->tls_type
5020
                                : (elf32_arm_local_got_tls_type
5021
                                   (input_bfd)[r_indx]))
5022
                               & GOT_TLS_GDESC) != 0))
5023
                    continue;
5024
 
5025
                  /* Now determine the call target, its name, value,
5026
                     section.  */
5027
                  sym_sec = NULL;
5028
                  sym_value = 0;
5029
                  destination = 0;
5030
                  sym_name = NULL;
5031
 
5032
                  if (r_type == (unsigned int) R_ARM_TLS_CALL
5033
                      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5034
                    {
5035
                      /* A non-relaxed TLS call.  The target is the
5036
                         plt-resident trampoline and nothing to do
5037
                         with the symbol.  */
5038
                      BFD_ASSERT (htab->tls_trampoline > 0);
5039
                      sym_sec = htab->root.splt;
5040
                      sym_value = htab->tls_trampoline;
5041
                      hash = 0;
5042
                      st_type = STT_FUNC;
5043
                      branch_type = ST_BRANCH_TO_ARM;
5044
                    }
5045
                  else if (!hash)
5046
                    {
5047
                      /* It's a local symbol.  */
5048
                      Elf_Internal_Sym *sym;
5049
 
5050
                      if (local_syms == NULL)
5051
                        {
5052
                          local_syms
5053
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
5054
                          if (local_syms == NULL)
5055
                            local_syms
5056
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5057
                                                      symtab_hdr->sh_info, 0,
5058
                                                      NULL, NULL, NULL);
5059
                          if (local_syms == NULL)
5060
                            goto error_ret_free_internal;
5061
                        }
5062
 
5063
                      sym = local_syms + r_indx;
5064
                      if (sym->st_shndx == SHN_UNDEF)
5065
                        sym_sec = bfd_und_section_ptr;
5066
                      else if (sym->st_shndx == SHN_ABS)
5067
                        sym_sec = bfd_abs_section_ptr;
5068
                      else if (sym->st_shndx == SHN_COMMON)
5069
                        sym_sec = bfd_com_section_ptr;
5070
                      else
5071
                        sym_sec =
5072
                          bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5073
 
5074
                      if (!sym_sec)
5075
                        /* This is an undefined symbol.  It can never
5076
                           be resolved. */
5077
                        continue;
5078
 
5079
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5080
                        sym_value = sym->st_value;
5081
                      destination = (sym_value + irela->r_addend
5082
                                     + sym_sec->output_offset
5083
                                     + sym_sec->output_section->vma);
5084
                      st_type = ELF_ST_TYPE (sym->st_info);
5085
                      branch_type = ARM_SYM_BRANCH_TYPE (sym);
5086
                      sym_name
5087
                        = bfd_elf_string_from_elf_section (input_bfd,
5088
                                                           symtab_hdr->sh_link,
5089
                                                           sym->st_name);
5090
                    }
5091
                  else
5092
                    {
5093
                      /* It's an external symbol.  */
5094
                      while (hash->root.root.type == bfd_link_hash_indirect
5095
                             || hash->root.root.type == bfd_link_hash_warning)
5096
                        hash = ((struct elf32_arm_link_hash_entry *)
5097
                                hash->root.root.u.i.link);
5098
 
5099
                      if (hash->root.root.type == bfd_link_hash_defined
5100
                          || hash->root.root.type == bfd_link_hash_defweak)
5101
                        {
5102
                          sym_sec = hash->root.root.u.def.section;
5103
                          sym_value = hash->root.root.u.def.value;
5104
 
5105
                          struct elf32_arm_link_hash_table *globals =
5106
                                                  elf32_arm_hash_table (info);
5107
 
5108
                          /* For a destination in a shared library,
5109
                             use the PLT stub as target address to
5110
                             decide whether a branch stub is
5111
                             needed.  */
5112
                          if (globals != NULL
5113
                              && globals->root.splt != NULL
5114
                              && hash != NULL
5115
                              && hash->root.plt.offset != (bfd_vma) -1)
5116
                            {
5117
                              sym_sec = globals->root.splt;
5118
                              sym_value = hash->root.plt.offset;
5119
                              if (sym_sec->output_section != NULL)
5120
                                destination = (sym_value
5121
                                               + sym_sec->output_offset
5122
                                               + sym_sec->output_section->vma);
5123
                            }
5124
                          else if (sym_sec->output_section != NULL)
5125
                            destination = (sym_value + irela->r_addend
5126
                                           + sym_sec->output_offset
5127
                                           + sym_sec->output_section->vma);
5128
                        }
5129
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
5130
                               || (hash->root.root.type == bfd_link_hash_undefweak))
5131
                        {
5132
                          /* For a shared library, use the PLT stub as
5133
                             target address to decide whether a long
5134
                             branch stub is needed.
5135
                             For absolute code, they cannot be handled.  */
5136
                          struct elf32_arm_link_hash_table *globals =
5137
                            elf32_arm_hash_table (info);
5138
 
5139
                          if (globals != NULL
5140
                              && globals->root.splt != NULL
5141
                              && hash != NULL
5142
                              && hash->root.plt.offset != (bfd_vma) -1)
5143
                            {
5144
                              sym_sec = globals->root.splt;
5145
                              sym_value = hash->root.plt.offset;
5146
                              if (sym_sec->output_section != NULL)
5147
                                destination = (sym_value
5148
                                               + sym_sec->output_offset
5149
                                               + sym_sec->output_section->vma);
5150
                            }
5151
                          else
5152
                            continue;
5153
                        }
5154
                      else
5155
                        {
5156
                          bfd_set_error (bfd_error_bad_value);
5157
                          goto error_ret_free_internal;
5158
                        }
5159
                      st_type = hash->root.type;
5160
                      branch_type = hash->root.target_internal;
5161
                      sym_name = hash->root.root.root.string;
5162
                    }
5163
 
5164
                  do
5165
                    {
5166
                      /* Determine what (if any) linker stub is needed.  */
5167
                      stub_type = arm_type_of_stub (info, section, irela,
5168
                                                    st_type, &branch_type,
5169
                                                    hash, destination, sym_sec,
5170
                                                    input_bfd, sym_name);
5171
                      if (stub_type == arm_stub_none)
5172
                        break;
5173
 
5174
                      /* Support for grouping stub sections.  */
5175
                      id_sec = htab->stub_group[section->id].link_sec;
5176
 
5177
                      /* Get the name of this stub.  */
5178
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5179
                                                       irela, stub_type);
5180
                      if (!stub_name)
5181
                        goto error_ret_free_internal;
5182
 
5183
                      /* We've either created a stub for this reloc already,
5184
                         or we are about to.  */
5185
                      created_stub = TRUE;
5186
 
5187
                      stub_entry = arm_stub_hash_lookup
5188
                                     (&htab->stub_hash_table, stub_name,
5189
                                      FALSE, FALSE);
5190
                      if (stub_entry != NULL)
5191
                        {
5192
                          /* The proper stub has already been created.  */
5193
                          free (stub_name);
5194
                          stub_entry->target_value = sym_value;
5195
                          break;
5196
                        }
5197
 
5198
                      stub_entry = elf32_arm_add_stub (stub_name, section,
5199
                                                       htab);
5200
                      if (stub_entry == NULL)
5201
                        {
5202
                          free (stub_name);
5203
                          goto error_ret_free_internal;
5204
                        }
5205
 
5206
                      stub_entry->target_value = sym_value;
5207
                      stub_entry->target_section = sym_sec;
5208
                      stub_entry->stub_type = stub_type;
5209
                      stub_entry->h = hash;
5210
                      stub_entry->branch_type = branch_type;
5211
 
5212
                      if (sym_name == NULL)
5213
                        sym_name = "unnamed";
5214
                      stub_entry->output_name = (char *)
5215
                          bfd_alloc (htab->stub_bfd,
5216
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5217
                                     + strlen (sym_name));
5218
                      if (stub_entry->output_name == NULL)
5219
                        {
5220
                          free (stub_name);
5221
                          goto error_ret_free_internal;
5222
                        }
5223
 
5224
                      /* For historical reasons, use the existing names for
5225
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
5226
                      if ((r_type == (unsigned int) R_ARM_THM_CALL
5227
                           || r_type == (unsigned int) R_ARM_THM_JUMP24)
5228
                          && branch_type == ST_BRANCH_TO_ARM)
5229
                        sprintf (stub_entry->output_name,
5230
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5231
                      else if ((r_type == (unsigned int) R_ARM_CALL
5232
                               || r_type == (unsigned int) R_ARM_JUMP24)
5233
                               && branch_type == ST_BRANCH_TO_THUMB)
5234
                        sprintf (stub_entry->output_name,
5235
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5236
                      else
5237
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5238
                                 sym_name);
5239
 
5240
                      stub_changed = TRUE;
5241
                    }
5242
                  while (0);
5243
 
5244
                  /* Look for relocations which might trigger Cortex-A8
5245
                     erratum.  */
5246
                  if (htab->fix_cortex_a8
5247
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
5248
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
5249
                          || r_type == (unsigned int) R_ARM_THM_CALL
5250
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
5251
                    {
5252
                      bfd_vma from = section->output_section->vma
5253
                                     + section->output_offset
5254
                                     + irela->r_offset;
5255
 
5256
                      if ((from & 0xfff) == 0xffe)
5257
                        {
5258
                          /* Found a candidate.  Note we haven't checked the
5259
                             destination is within 4K here: if we do so (and
5260
                             don't create an entry in a8_relocs) we can't tell
5261
                             that a branch should have been relocated when
5262
                             scanning later.  */
5263
                          if (num_a8_relocs == a8_reloc_table_size)
5264
                            {
5265
                              a8_reloc_table_size *= 2;
5266
                              a8_relocs = (struct a8_erratum_reloc *)
5267
                                  bfd_realloc (a8_relocs,
5268
                                               sizeof (struct a8_erratum_reloc)
5269
                                               * a8_reloc_table_size);
5270
                            }
5271
 
5272
                          a8_relocs[num_a8_relocs].from = from;
5273
                          a8_relocs[num_a8_relocs].destination = destination;
5274
                          a8_relocs[num_a8_relocs].r_type = r_type;
5275
                          a8_relocs[num_a8_relocs].branch_type = branch_type;
5276
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
5277
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5278
                          a8_relocs[num_a8_relocs].hash = hash;
5279
 
5280
                          num_a8_relocs++;
5281
                        }
5282
                    }
5283
                }
5284
 
5285
              /* We're done with the internal relocs, free them.  */
5286
              if (elf_section_data (section)->relocs == NULL)
5287
                free (internal_relocs);
5288
            }
5289
 
5290
          if (htab->fix_cortex_a8)
5291
            {
5292
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
5293
              qsort (a8_relocs, num_a8_relocs,
5294
                     sizeof (struct a8_erratum_reloc),
5295
                     &a8_reloc_compare);
5296
 
5297
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
5298
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5299
                                          &num_a8_fixes, &a8_fix_table_size,
5300
                                          a8_relocs, num_a8_relocs,
5301
                                          prev_num_a8_fixes, &stub_changed)
5302
                  != 0)
5303
                goto error_ret_free_local;
5304
            }
5305
        }
5306
 
5307
      if (prev_num_a8_fixes != num_a8_fixes)
5308
        stub_changed = TRUE;
5309
 
5310
      if (!stub_changed)
5311
        break;
5312
 
5313
      /* OK, we've added some stubs.  Find out the new size of the
5314
         stub sections.  */
5315
      for (stub_sec = htab->stub_bfd->sections;
5316
           stub_sec != NULL;
5317
           stub_sec = stub_sec->next)
5318
        {
5319
          /* Ignore non-stub sections.  */
5320
          if (!strstr (stub_sec->name, STUB_SUFFIX))
5321
            continue;
5322
 
5323
          stub_sec->size = 0;
5324
        }
5325
 
5326
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5327
 
5328
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
5329
      if (htab->fix_cortex_a8)
5330
        for (i = 0; i < num_a8_fixes; i++)
5331
          {
5332
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5333
                         a8_fixes[i].section, htab);
5334
 
5335
            if (stub_sec == NULL)
5336
              goto error_ret_free_local;
5337
 
5338
            stub_sec->size
5339
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5340
                                              NULL);
5341
          }
5342
 
5343
 
5344
      /* Ask the linker to do its stuff.  */
5345
      (*htab->layout_sections_again) ();
5346
    }
5347
 
5348
  /* Add stubs for Cortex-A8 erratum fixes now.  */
5349
  if (htab->fix_cortex_a8)
5350
    {
5351
      for (i = 0; i < num_a8_fixes; i++)
5352
        {
5353
          struct elf32_arm_stub_hash_entry *stub_entry;
5354
          char *stub_name = a8_fixes[i].stub_name;
5355
          asection *section = a8_fixes[i].section;
5356
          unsigned int section_id = a8_fixes[i].section->id;
5357
          asection *link_sec = htab->stub_group[section_id].link_sec;
5358
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
5359
          const insn_sequence *template_sequence;
5360
          int template_size, size = 0;
5361
 
5362
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5363
                                             TRUE, FALSE);
5364
          if (stub_entry == NULL)
5365
            {
5366
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5367
                                     section->owner,
5368
                                     stub_name);
5369
              return FALSE;
5370
            }
5371
 
5372
          stub_entry->stub_sec = stub_sec;
5373
          stub_entry->stub_offset = 0;
5374
          stub_entry->id_sec = link_sec;
5375
          stub_entry->stub_type = a8_fixes[i].stub_type;
5376
          stub_entry->target_section = a8_fixes[i].section;
5377
          stub_entry->target_value = a8_fixes[i].offset;
5378
          stub_entry->target_addend = a8_fixes[i].addend;
5379
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
5380
          stub_entry->branch_type = a8_fixes[i].branch_type;
5381
 
5382
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
5383
                                              &template_sequence,
5384
                                              &template_size);
5385
 
5386
          stub_entry->stub_size = size;
5387
          stub_entry->stub_template = template_sequence;
5388
          stub_entry->stub_template_size = template_size;
5389
        }
5390
 
5391
      /* Stash the Cortex-A8 erratum fix array for use later in
5392
         elf32_arm_write_section().  */
5393
      htab->a8_erratum_fixes = a8_fixes;
5394
      htab->num_a8_erratum_fixes = num_a8_fixes;
5395
    }
5396
  else
5397
    {
5398
      htab->a8_erratum_fixes = NULL;
5399
      htab->num_a8_erratum_fixes = 0;
5400
    }
5401
  return TRUE;
5402
 
5403
 error_ret_free_local:
5404
  return FALSE;
5405
}
5406
 
5407
/* Build all the stubs associated with the current output file.  The
5408
   stubs are kept in a hash table attached to the main linker hash
5409
   table.  We also set up the .plt entries for statically linked PIC
5410
   functions here.  This function is called via arm_elf_finish in the
5411
   linker.  */
5412
 
5413
bfd_boolean
5414
elf32_arm_build_stubs (struct bfd_link_info *info)
5415
{
5416
  asection *stub_sec;
5417
  struct bfd_hash_table *table;
5418
  struct elf32_arm_link_hash_table *htab;
5419
 
5420
  htab = elf32_arm_hash_table (info);
5421
  if (htab == NULL)
5422
    return FALSE;
5423
 
5424
  for (stub_sec = htab->stub_bfd->sections;
5425
       stub_sec != NULL;
5426
       stub_sec = stub_sec->next)
5427
    {
5428
      bfd_size_type size;
5429
 
5430
      /* Ignore non-stub sections.  */
5431
      if (!strstr (stub_sec->name, STUB_SUFFIX))
5432
        continue;
5433
 
5434
      /* Allocate memory to hold the linker stubs.  */
5435
      size = stub_sec->size;
5436
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5437
      if (stub_sec->contents == NULL && size != 0)
5438
        return FALSE;
5439
      stub_sec->size = 0;
5440
    }
5441
 
5442
  /* Build the stubs as directed by the stub hash table.  */
5443
  table = &htab->stub_hash_table;
5444
  bfd_hash_traverse (table, arm_build_one_stub, info);
5445
  if (htab->fix_cortex_a8)
5446
    {
5447
      /* Place the cortex a8 stubs last.  */
5448
      htab->fix_cortex_a8 = -1;
5449
      bfd_hash_traverse (table, arm_build_one_stub, info);
5450
    }
5451
 
5452
  return TRUE;
5453
}
5454
 
5455
/* Locate the Thumb encoded calling stub for NAME.  */
5456
 
5457
static struct elf_link_hash_entry *
5458
find_thumb_glue (struct bfd_link_info *link_info,
5459
                 const char *name,
5460
                 char **error_message)
5461
{
5462
  char *tmp_name;
5463
  struct elf_link_hash_entry *hash;
5464
  struct elf32_arm_link_hash_table *hash_table;
5465
 
5466
  /* We need a pointer to the armelf specific hash table.  */
5467
  hash_table = elf32_arm_hash_table (link_info);
5468
  if (hash_table == NULL)
5469
    return NULL;
5470
 
5471
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5472
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5473
 
5474
  BFD_ASSERT (tmp_name);
5475
 
5476
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5477
 
5478
  hash = elf_link_hash_lookup
5479
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5480
 
5481
  if (hash == NULL
5482
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5483
                   tmp_name, name) == -1)
5484
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5485
 
5486
  free (tmp_name);
5487
 
5488
  return hash;
5489
}
5490
 
5491
/* Locate the ARM encoded calling stub for NAME.  */
5492
 
5493
static struct elf_link_hash_entry *
5494
find_arm_glue (struct bfd_link_info *link_info,
5495
               const char *name,
5496
               char **error_message)
5497
{
5498
  char *tmp_name;
5499
  struct elf_link_hash_entry *myh;
5500
  struct elf32_arm_link_hash_table *hash_table;
5501
 
5502
  /* We need a pointer to the elfarm specific hash table.  */
5503
  hash_table = elf32_arm_hash_table (link_info);
5504
  if (hash_table == NULL)
5505
    return NULL;
5506
 
5507
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5508
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5509
 
5510
  BFD_ASSERT (tmp_name);
5511
 
5512
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5513
 
5514
  myh = elf_link_hash_lookup
5515
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5516
 
5517
  if (myh == NULL
5518
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5519
                   tmp_name, name) == -1)
5520
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5521
 
5522
  free (tmp_name);
5523
 
5524
  return myh;
5525
}
5526
 
5527
/* ARM->Thumb glue (static images):
5528
 
5529
   .arm
5530
   __func_from_arm:
5531
   ldr r12, __func_addr
5532
   bx  r12
5533
   __func_addr:
5534
   .word func    @ behave as if you saw a ARM_32 reloc.
5535
 
5536
   (v5t static images)
5537
   .arm
5538
   __func_from_arm:
5539
   ldr pc, __func_addr
5540
   __func_addr:
5541
   .word func    @ behave as if you saw a ARM_32 reloc.
5542
 
5543
   (relocatable images)
5544
   .arm
5545
   __func_from_arm:
5546
   ldr r12, __func_offset
5547
   add r12, r12, pc
5548
   bx  r12
5549
   __func_offset:
5550
   .word func - .   */
5551
 
5552
#define ARM2THUMB_STATIC_GLUE_SIZE 12
5553
static const insn32 a2t1_ldr_insn = 0xe59fc000;
5554
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5555
static const insn32 a2t3_func_addr_insn = 0x00000001;
5556
 
5557
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5558
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5559
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5560
 
5561
#define ARM2THUMB_PIC_GLUE_SIZE 16
5562
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5563
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5564
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5565
 
5566
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
5567
 
5568
     .thumb                             .thumb
5569
     .align 2                           .align 2
5570
 __func_from_thumb:                 __func_from_thumb:
5571
     bx pc                              push {r6, lr}
5572
     nop                                ldr  r6, __func_addr
5573
     .arm                               mov  lr, pc
5574
     b func                             bx   r6
5575
                                        .arm
5576
                                    ;; back_to_thumb
5577
                                        ldmia r13! {r6, lr}
5578
                                        bx    lr
5579
                                    __func_addr:
5580
                                        .word        func  */
5581
 
5582
#define THUMB2ARM_GLUE_SIZE 8
5583
static const insn16 t2a1_bx_pc_insn = 0x4778;
5584
static const insn16 t2a2_noop_insn = 0x46c0;
5585
static const insn32 t2a3_b_insn = 0xea000000;
5586
 
5587
#define VFP11_ERRATUM_VENEER_SIZE 8
5588
 
5589
#define ARM_BX_VENEER_SIZE 12
5590
static const insn32 armbx1_tst_insn = 0xe3100001;
5591
static const insn32 armbx2_moveq_insn = 0x01a0f000;
5592
static const insn32 armbx3_bx_insn = 0xe12fff10;
5593
 
5594
#ifndef ELFARM_NABI_C_INCLUDED
5595
static void
5596
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5597
{
5598
  asection * s;
5599
  bfd_byte * contents;
5600
 
5601
  if (size == 0)
5602
    {
5603
      /* Do not include empty glue sections in the output.  */
5604
      if (abfd != NULL)
5605
        {
5606
          s = bfd_get_section_by_name (abfd, name);
5607
          if (s != NULL)
5608
            s->flags |= SEC_EXCLUDE;
5609
        }
5610
      return;
5611
    }
5612
 
5613
  BFD_ASSERT (abfd != NULL);
5614
 
5615
  s = bfd_get_section_by_name (abfd, name);
5616
  BFD_ASSERT (s != NULL);
5617
 
5618
  contents = (bfd_byte *) bfd_alloc (abfd, size);
5619
 
5620
  BFD_ASSERT (s->size == size);
5621
  s->contents = contents;
5622
}
5623
 
5624
bfd_boolean
5625
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5626
{
5627
  struct elf32_arm_link_hash_table * globals;
5628
 
5629
  globals = elf32_arm_hash_table (info);
5630
  BFD_ASSERT (globals != NULL);
5631
 
5632
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5633
                                   globals->arm_glue_size,
5634
                                   ARM2THUMB_GLUE_SECTION_NAME);
5635
 
5636
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5637
                                   globals->thumb_glue_size,
5638
                                   THUMB2ARM_GLUE_SECTION_NAME);
5639
 
5640
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5641
                                   globals->vfp11_erratum_glue_size,
5642
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
5643
 
5644
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5645
                                   globals->bx_glue_size,
5646
                                   ARM_BX_GLUE_SECTION_NAME);
5647
 
5648
  return TRUE;
5649
}
5650
 
5651
/* Allocate space and symbols for calling a Thumb function from Arm mode.
5652
   returns the symbol identifying the stub.  */
5653
 
5654
static struct elf_link_hash_entry *
5655
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5656
                          struct elf_link_hash_entry * h)
5657
{
5658
  const char * name = h->root.root.string;
5659
  asection * s;
5660
  char * tmp_name;
5661
  struct elf_link_hash_entry * myh;
5662
  struct bfd_link_hash_entry * bh;
5663
  struct elf32_arm_link_hash_table * globals;
5664
  bfd_vma val;
5665
  bfd_size_type size;
5666
 
5667
  globals = elf32_arm_hash_table (link_info);
5668
  BFD_ASSERT (globals != NULL);
5669
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5670
 
5671
  s = bfd_get_section_by_name
5672
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5673
 
5674
  BFD_ASSERT (s != NULL);
5675
 
5676
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5677
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5678
 
5679
  BFD_ASSERT (tmp_name);
5680
 
5681
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5682
 
5683
  myh = elf_link_hash_lookup
5684
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5685
 
5686
  if (myh != NULL)
5687
    {
5688
      /* We've already seen this guy.  */
5689
      free (tmp_name);
5690
      return myh;
5691
    }
5692
 
5693
  /* The only trick here is using hash_table->arm_glue_size as the value.
5694
     Even though the section isn't allocated yet, this is where we will be
5695
     putting it.  The +1 on the value marks that the stub has not been
5696
     output yet - not that it is a Thumb function.  */
5697
  bh = NULL;
5698
  val = globals->arm_glue_size + 1;
5699
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5700
                                    tmp_name, BSF_GLOBAL, s, val,
5701
                                    NULL, TRUE, FALSE, &bh);
5702
 
5703
  myh = (struct elf_link_hash_entry *) bh;
5704
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5705
  myh->forced_local = 1;
5706
 
5707
  free (tmp_name);
5708
 
5709
  if (link_info->shared || globals->root.is_relocatable_executable
5710
      || globals->pic_veneer)
5711
    size = ARM2THUMB_PIC_GLUE_SIZE;
5712
  else if (globals->use_blx)
5713
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5714
  else
5715
    size = ARM2THUMB_STATIC_GLUE_SIZE;
5716
 
5717
  s->size += size;
5718
  globals->arm_glue_size += size;
5719
 
5720
  return myh;
5721
}
5722
 
5723
/* Allocate space for ARMv4 BX veneers.  */
5724
 
5725
static void
5726
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5727
{
5728
  asection * s;
5729
  struct elf32_arm_link_hash_table *globals;
5730
  char *tmp_name;
5731
  struct elf_link_hash_entry *myh;
5732
  struct bfd_link_hash_entry *bh;
5733
  bfd_vma val;
5734
 
5735
  /* BX PC does not need a veneer.  */
5736
  if (reg == 15)
5737
    return;
5738
 
5739
  globals = elf32_arm_hash_table (link_info);
5740
  BFD_ASSERT (globals != NULL);
5741
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5742
 
5743
  /* Check if this veneer has already been allocated.  */
5744
  if (globals->bx_glue_offset[reg])
5745
    return;
5746
 
5747
  s = bfd_get_section_by_name
5748
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5749
 
5750
  BFD_ASSERT (s != NULL);
5751
 
5752
  /* Add symbol for veneer.  */
5753
  tmp_name = (char *)
5754
      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5755
 
5756
  BFD_ASSERT (tmp_name);
5757
 
5758
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5759
 
5760
  myh = elf_link_hash_lookup
5761
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5762
 
5763
  BFD_ASSERT (myh == NULL);
5764
 
5765
  bh = NULL;
5766
  val = globals->bx_glue_size;
5767
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5768
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5769
                                    NULL, TRUE, FALSE, &bh);
5770
 
5771
  myh = (struct elf_link_hash_entry *) bh;
5772
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5773
  myh->forced_local = 1;
5774
 
5775
  s->size += ARM_BX_VENEER_SIZE;
5776
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5777
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5778
}
5779
 
5780
 
5781
/* Add an entry to the code/data map for section SEC.  */
5782
 
5783
static void
5784
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5785
{
5786
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5787
  unsigned int newidx;
5788
 
5789
  if (sec_data->map == NULL)
5790
    {
5791
      sec_data->map = (elf32_arm_section_map *)
5792
          bfd_malloc (sizeof (elf32_arm_section_map));
5793
      sec_data->mapcount = 0;
5794
      sec_data->mapsize = 1;
5795
    }
5796
 
5797
  newidx = sec_data->mapcount++;
5798
 
5799
  if (sec_data->mapcount > sec_data->mapsize)
5800
    {
5801
      sec_data->mapsize *= 2;
5802
      sec_data->map = (elf32_arm_section_map *)
5803
          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5804
                               * sizeof (elf32_arm_section_map));
5805
    }
5806
 
5807
  if (sec_data->map)
5808
    {
5809
      sec_data->map[newidx].vma = vma;
5810
      sec_data->map[newidx].type = type;
5811
    }
5812
}
5813
 
5814
 
5815
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
5816
   veneers are handled for now.  */
5817
 
5818
static bfd_vma
5819
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5820
                             elf32_vfp11_erratum_list *branch,
5821
                             bfd *branch_bfd,
5822
                             asection *branch_sec,
5823
                             unsigned int offset)
5824
{
5825
  asection *s;
5826
  struct elf32_arm_link_hash_table *hash_table;
5827
  char *tmp_name;
5828
  struct elf_link_hash_entry *myh;
5829
  struct bfd_link_hash_entry *bh;
5830
  bfd_vma val;
5831
  struct _arm_elf_section_data *sec_data;
5832
  elf32_vfp11_erratum_list *newerr;
5833
 
5834
  hash_table = elf32_arm_hash_table (link_info);
5835
  BFD_ASSERT (hash_table != NULL);
5836
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5837
 
5838
  s = bfd_get_section_by_name
5839
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5840
 
5841
  sec_data = elf32_arm_section_data (s);
5842
 
5843
  BFD_ASSERT (s != NULL);
5844
 
5845
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5846
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5847
 
5848
  BFD_ASSERT (tmp_name);
5849
 
5850
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5851
           hash_table->num_vfp11_fixes);
5852
 
5853
  myh = elf_link_hash_lookup
5854
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5855
 
5856
  BFD_ASSERT (myh == NULL);
5857
 
5858
  bh = NULL;
5859
  val = hash_table->vfp11_erratum_glue_size;
5860
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5861
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5862
                                    NULL, TRUE, FALSE, &bh);
5863
 
5864
  myh = (struct elf_link_hash_entry *) bh;
5865
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5866
  myh->forced_local = 1;
5867
 
5868
  /* Link veneer back to calling location.  */
5869
  sec_data->erratumcount += 1;
5870
  newerr = (elf32_vfp11_erratum_list *)
5871
      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5872
 
5873
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
5874
  newerr->vma = -1;
5875
  newerr->u.v.branch = branch;
5876
  newerr->u.v.id = hash_table->num_vfp11_fixes;
5877
  branch->u.b.veneer = newerr;
5878
 
5879
  newerr->next = sec_data->erratumlist;
5880
  sec_data->erratumlist = newerr;
5881
 
5882
  /* A symbol for the return from the veneer.  */
5883
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5884
           hash_table->num_vfp11_fixes);
5885
 
5886
  myh = elf_link_hash_lookup
5887
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5888
 
5889
  if (myh != NULL)
5890
    abort ();
5891
 
5892
  bh = NULL;
5893
  val = offset + 4;
5894
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5895
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
5896
 
5897
  myh = (struct elf_link_hash_entry *) bh;
5898
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5899
  myh->forced_local = 1;
5900
 
5901
  free (tmp_name);
5902
 
5903
  /* Generate a mapping symbol for the veneer section, and explicitly add an
5904
     entry for that symbol to the code/data map for the section.  */
5905
  if (hash_table->vfp11_erratum_glue_size == 0)
5906
    {
5907
      bh = NULL;
5908
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
5909
         ever requires this erratum fix.  */
5910
      _bfd_generic_link_add_one_symbol (link_info,
5911
                                        hash_table->bfd_of_glue_owner, "$a",
5912
                                        BSF_LOCAL, s, 0, NULL,
5913
                                        TRUE, FALSE, &bh);
5914
 
5915
      myh = (struct elf_link_hash_entry *) bh;
5916
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5917
      myh->forced_local = 1;
5918
 
5919
      /* The elf32_arm_init_maps function only cares about symbols from input
5920
         BFDs.  We must make a note of this generated mapping symbol
5921
         ourselves so that code byteswapping works properly in
5922
         elf32_arm_write_section.  */
5923
      elf32_arm_section_map_add (s, 'a', 0);
5924
    }
5925
 
5926
  s->size += VFP11_ERRATUM_VENEER_SIZE;
5927
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5928
  hash_table->num_vfp11_fixes++;
5929
 
5930
  /* The offset of the veneer.  */
5931
  return val;
5932
}
5933
 
5934
#define ARM_GLUE_SECTION_FLAGS \
5935
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5936
   | SEC_READONLY | SEC_LINKER_CREATED)
5937
 
5938
/* Create a fake section for use by the ARM backend of the linker.  */
5939
 
5940
static bfd_boolean
5941
arm_make_glue_section (bfd * abfd, const char * name)
5942
{
5943
  asection * sec;
5944
 
5945
  sec = bfd_get_section_by_name (abfd, name);
5946
  if (sec != NULL)
5947
    /* Already made.  */
5948
    return TRUE;
5949
 
5950
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5951
 
5952
  if (sec == NULL
5953
      || !bfd_set_section_alignment (abfd, sec, 2))
5954
    return FALSE;
5955
 
5956
  /* Set the gc mark to prevent the section from being removed by garbage
5957
     collection, despite the fact that no relocs refer to this section.  */
5958
  sec->gc_mark = 1;
5959
 
5960
  return TRUE;
5961
}
5962
 
5963
/* Add the glue sections to ABFD.  This function is called from the
5964
   linker scripts in ld/emultempl/{armelf}.em.  */
5965
 
5966
bfd_boolean
5967
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5968
                                        struct bfd_link_info *info)
5969
{
5970
  /* If we are only performing a partial
5971
     link do not bother adding the glue.  */
5972
  if (info->relocatable)
5973
    return TRUE;
5974
 
5975
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5976
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5977
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5978
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5979
}
5980
 
5981
/* Select a BFD to be used to hold the sections used by the glue code.
5982
   This function is called from the linker scripts in ld/emultempl/
5983
   {armelf/pe}.em.  */
5984
 
5985
bfd_boolean
5986
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5987
{
5988
  struct elf32_arm_link_hash_table *globals;
5989
 
5990
  /* If we are only performing a partial link
5991
     do not bother getting a bfd to hold the glue.  */
5992
  if (info->relocatable)
5993
    return TRUE;
5994
 
5995
  /* Make sure we don't attach the glue sections to a dynamic object.  */
5996
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
5997
 
5998
  globals = elf32_arm_hash_table (info);
5999
  BFD_ASSERT (globals != NULL);
6000
 
6001
  if (globals->bfd_of_glue_owner != NULL)
6002
    return TRUE;
6003
 
6004
  /* Save the bfd for later use.  */
6005
  globals->bfd_of_glue_owner = abfd;
6006
 
6007
  return TRUE;
6008
}
6009
 
6010
static void
6011
check_use_blx (struct elf32_arm_link_hash_table *globals)
6012
{
6013 161 khays
  int cpu_arch;
6014
 
6015
  cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6016
                                       Tag_CPU_arch);
6017
 
6018
  if (globals->fix_arm1176)
6019
    {
6020
      if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6021
        globals->use_blx = 1;
6022
    }
6023
  else
6024
    {
6025
      if (cpu_arch > TAG_CPU_ARCH_V4T)
6026
        globals->use_blx = 1;
6027
    }
6028 14 khays
}
6029
 
6030
bfd_boolean
6031
bfd_elf32_arm_process_before_allocation (bfd *abfd,
6032
                                         struct bfd_link_info *link_info)
6033
{
6034
  Elf_Internal_Shdr *symtab_hdr;
6035
  Elf_Internal_Rela *internal_relocs = NULL;
6036
  Elf_Internal_Rela *irel, *irelend;
6037
  bfd_byte *contents = NULL;
6038
 
6039
  asection *sec;
6040
  struct elf32_arm_link_hash_table *globals;
6041
 
6042
  /* If we are only performing a partial link do not bother
6043
     to construct any glue.  */
6044
  if (link_info->relocatable)
6045
    return TRUE;
6046
 
6047
  /* Here we have a bfd that is to be included on the link.  We have a
6048
     hook to do reloc rummaging, before section sizes are nailed down.  */
6049
  globals = elf32_arm_hash_table (link_info);
6050
  BFD_ASSERT (globals != NULL);
6051
 
6052
  check_use_blx (globals);
6053
 
6054
  if (globals->byteswap_code && !bfd_big_endian (abfd))
6055
    {
6056
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6057
                          abfd);
6058
      return FALSE;
6059
    }
6060
 
6061
  /* PR 5398: If we have not decided to include any loadable sections in
6062
     the output then we will not have a glue owner bfd.  This is OK, it
6063
     just means that there is nothing else for us to do here.  */
6064
  if (globals->bfd_of_glue_owner == NULL)
6065
    return TRUE;
6066
 
6067
  /* Rummage around all the relocs and map the glue vectors.  */
6068
  sec = abfd->sections;
6069
 
6070
  if (sec == NULL)
6071
    return TRUE;
6072
 
6073
  for (; sec != NULL; sec = sec->next)
6074
    {
6075
      if (sec->reloc_count == 0)
6076
        continue;
6077
 
6078
      if ((sec->flags & SEC_EXCLUDE) != 0)
6079
        continue;
6080
 
6081
      symtab_hdr = & elf_symtab_hdr (abfd);
6082
 
6083
      /* Load the relocs.  */
6084
      internal_relocs
6085
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6086
 
6087
      if (internal_relocs == NULL)
6088
        goto error_return;
6089
 
6090
      irelend = internal_relocs + sec->reloc_count;
6091
      for (irel = internal_relocs; irel < irelend; irel++)
6092
        {
6093
          long r_type;
6094
          unsigned long r_index;
6095
 
6096
          struct elf_link_hash_entry *h;
6097
 
6098
          r_type = ELF32_R_TYPE (irel->r_info);
6099
          r_index = ELF32_R_SYM (irel->r_info);
6100
 
6101
          /* These are the only relocation types we care about.  */
6102
          if (   r_type != R_ARM_PC24
6103
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6104
            continue;
6105
 
6106
          /* Get the section contents if we haven't done so already.  */
6107
          if (contents == NULL)
6108
            {
6109
              /* Get cached copy if it exists.  */
6110
              if (elf_section_data (sec)->this_hdr.contents != NULL)
6111
                contents = elf_section_data (sec)->this_hdr.contents;
6112
              else
6113
                {
6114
                  /* Go get them off disk.  */
6115
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6116
                    goto error_return;
6117
                }
6118
            }
6119
 
6120
          if (r_type == R_ARM_V4BX)
6121
            {
6122
              int reg;
6123
 
6124
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6125
              record_arm_bx_glue (link_info, reg);
6126
              continue;
6127
            }
6128
 
6129
          /* If the relocation is not against a symbol it cannot concern us.  */
6130
          h = NULL;
6131
 
6132
          /* We don't care about local symbols.  */
6133
          if (r_index < symtab_hdr->sh_info)
6134
            continue;
6135
 
6136
          /* This is an external symbol.  */
6137
          r_index -= symtab_hdr->sh_info;
6138
          h = (struct elf_link_hash_entry *)
6139
            elf_sym_hashes (abfd)[r_index];
6140
 
6141
          /* If the relocation is against a static symbol it must be within
6142
             the current section and so cannot be a cross ARM/Thumb relocation.  */
6143
          if (h == NULL)
6144
            continue;
6145
 
6146
          /* If the call will go through a PLT entry then we do not need
6147
             glue.  */
6148
          if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6149
            continue;
6150
 
6151
          switch (r_type)
6152
            {
6153
            case R_ARM_PC24:
6154
              /* This one is a call from arm code.  We need to look up
6155
                 the target of the call.  If it is a thumb target, we
6156
                 insert glue.  */
6157
              if (h->target_internal == ST_BRANCH_TO_THUMB)
6158
                record_arm_to_thumb_glue (link_info, h);
6159
              break;
6160
 
6161
            default:
6162
              abort ();
6163
            }
6164
        }
6165
 
6166
      if (contents != NULL
6167
          && elf_section_data (sec)->this_hdr.contents != contents)
6168
        free (contents);
6169
      contents = NULL;
6170
 
6171
      if (internal_relocs != NULL
6172
          && elf_section_data (sec)->relocs != internal_relocs)
6173
        free (internal_relocs);
6174
      internal_relocs = NULL;
6175
    }
6176
 
6177
  return TRUE;
6178
 
6179
error_return:
6180
  if (contents != NULL
6181
      && elf_section_data (sec)->this_hdr.contents != contents)
6182
    free (contents);
6183
  if (internal_relocs != NULL
6184
      && elf_section_data (sec)->relocs != internal_relocs)
6185
    free (internal_relocs);
6186
 
6187
  return FALSE;
6188
}
6189
#endif
6190
 
6191
 
6192
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
6193
 
6194
void
6195
bfd_elf32_arm_init_maps (bfd *abfd)
6196
{
6197
  Elf_Internal_Sym *isymbuf;
6198
  Elf_Internal_Shdr *hdr;
6199
  unsigned int i, localsyms;
6200
 
6201
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
6202
  if (! is_arm_elf (abfd))
6203
    return;
6204
 
6205
  if ((abfd->flags & DYNAMIC) != 0)
6206
    return;
6207
 
6208
  hdr = & elf_symtab_hdr (abfd);
6209
  localsyms = hdr->sh_info;
6210
 
6211
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6212
     should contain the number of local symbols, which should come before any
6213
     global symbols.  Mapping symbols are always local.  */
6214
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6215
                                  NULL);
6216
 
6217
  /* No internal symbols read?  Skip this BFD.  */
6218
  if (isymbuf == NULL)
6219
    return;
6220
 
6221
  for (i = 0; i < localsyms; i++)
6222
    {
6223
      Elf_Internal_Sym *isym = &isymbuf[i];
6224
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6225
      const char *name;
6226
 
6227
      if (sec != NULL
6228
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6229
        {
6230
          name = bfd_elf_string_from_elf_section (abfd,
6231
            hdr->sh_link, isym->st_name);
6232
 
6233
          if (bfd_is_arm_special_symbol_name (name,
6234
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6235
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
6236
        }
6237
    }
6238
}
6239
 
6240
 
6241
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6242
   say what they wanted.  */
6243
 
6244
void
6245
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6246
{
6247
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6248
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6249
 
6250
  if (globals == NULL)
6251
    return;
6252
 
6253
  if (globals->fix_cortex_a8 == -1)
6254
    {
6255
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
6256
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6257
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
6258
              || out_attr[Tag_CPU_arch_profile].i == 0))
6259
        globals->fix_cortex_a8 = 1;
6260
      else
6261
        globals->fix_cortex_a8 = 0;
6262
    }
6263
}
6264
 
6265
 
6266
void
6267
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6268
{
6269
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6270
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6271
 
6272
  if (globals == NULL)
6273
    return;
6274
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
6275
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6276
    {
6277
      switch (globals->vfp11_fix)
6278
        {
6279
        case BFD_ARM_VFP11_FIX_DEFAULT:
6280
        case BFD_ARM_VFP11_FIX_NONE:
6281
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6282
          break;
6283
 
6284
        default:
6285
          /* Give a warning, but do as the user requests anyway.  */
6286
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6287
            "workaround is not necessary for target architecture"), obfd);
6288
        }
6289
    }
6290
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6291
    /* For earlier architectures, we might need the workaround, but do not
6292
       enable it by default.  If users is running with broken hardware, they
6293
       must enable the erratum fix explicitly.  */
6294
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6295
}
6296
 
6297
 
6298
enum bfd_arm_vfp11_pipe
6299
{
6300
  VFP11_FMAC,
6301
  VFP11_LS,
6302
  VFP11_DS,
6303
  VFP11_BAD
6304
};
6305
 
6306
/* Return a VFP register number.  This is encoded as RX:X for single-precision
6307
   registers, or X:RX for double-precision registers, where RX is the group of
6308
   four bits in the instruction encoding and X is the single extension bit.
6309
   RX and X fields are specified using their lowest (starting) bit.  The return
6310
   value is:
6311
 
6312
     0...31: single-precision registers s0...s31
6313
     32...63: double-precision registers d0...d31.
6314
 
6315
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
6316
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
6317
 
6318
static unsigned int
6319
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6320
                     unsigned int x)
6321
{
6322
  if (is_double)
6323
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6324
  else
6325
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6326
}
6327
 
6328
/* Set bits in *WMASK according to a register number REG as encoded by
6329
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
6330
 
6331
static void
6332
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6333
{
6334
  if (reg < 32)
6335
    *wmask |= 1 << reg;
6336
  else if (reg < 48)
6337
    *wmask |= 3 << ((reg - 32) * 2);
6338
}
6339
 
6340
/* Return TRUE if WMASK overwrites anything in REGS.  */
6341
 
6342
static bfd_boolean
6343
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6344
{
6345
  int i;
6346
 
6347
  for (i = 0; i < numregs; i++)
6348
    {
6349
      unsigned int reg = regs[i];
6350
 
6351
      if (reg < 32 && (wmask & (1 << reg)) != 0)
6352
        return TRUE;
6353
 
6354
      reg -= 32;
6355
 
6356
      if (reg >= 16)
6357
        continue;
6358
 
6359
      if ((wmask & (3 << (reg * 2))) != 0)
6360
        return TRUE;
6361
    }
6362
 
6363
  return FALSE;
6364
}
6365
 
6366
/* In this function, we're interested in two things: finding input registers
6367
   for VFP data-processing instructions, and finding the set of registers which
6368
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
6369
   hold the written set, so FLDM etc. are easy to deal with (we're only
6370
   interested in 32 SP registers or 16 dp registers, due to the VFP version
6371
   implemented by the chip in question).  DP registers are marked by setting
6372
   both SP registers in the write mask).  */
6373
 
6374
static enum bfd_arm_vfp11_pipe
6375
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6376
                           int *numregs)
6377
{
6378
  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6379
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6380
 
6381
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
6382
    {
6383
      unsigned int pqrs;
6384
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6385
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6386
 
6387
      pqrs = ((insn & 0x00800000) >> 20)
6388
           | ((insn & 0x00300000) >> 19)
6389
           | ((insn & 0x00000040) >> 6);
6390
 
6391
      switch (pqrs)
6392
        {
6393
        case 0: /* fmac[sd].  */
6394
        case 1: /* fnmac[sd].  */
6395
        case 2: /* fmsc[sd].  */
6396
        case 3: /* fnmsc[sd].  */
6397
          vpipe = VFP11_FMAC;
6398
          bfd_arm_vfp11_write_mask (destmask, fd);
6399
          regs[0] = fd;
6400
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
6401
          regs[2] = fm;
6402
          *numregs = 3;
6403
          break;
6404
 
6405
        case 4: /* fmul[sd].  */
6406
        case 5: /* fnmul[sd].  */
6407
        case 6: /* fadd[sd].  */
6408
        case 7: /* fsub[sd].  */
6409
          vpipe = VFP11_FMAC;
6410
          goto vfp_binop;
6411
 
6412
        case 8: /* fdiv[sd].  */
6413
          vpipe = VFP11_DS;
6414
          vfp_binop:
6415
          bfd_arm_vfp11_write_mask (destmask, fd);
6416
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
6417
          regs[1] = fm;
6418
          *numregs = 2;
6419
          break;
6420
 
6421
        case 15: /* extended opcode.  */
6422
          {
6423
            unsigned int extn = ((insn >> 15) & 0x1e)
6424
                              | ((insn >> 7) & 1);
6425
 
6426
            switch (extn)
6427
              {
6428
              case 0: /* fcpy[sd].  */
6429
              case 1: /* fabs[sd].  */
6430
              case 2: /* fneg[sd].  */
6431
              case 8: /* fcmp[sd].  */
6432
              case 9: /* fcmpe[sd].  */
6433
              case 10: /* fcmpz[sd].  */
6434
              case 11: /* fcmpez[sd].  */
6435
              case 16: /* fuito[sd].  */
6436
              case 17: /* fsito[sd].  */
6437
              case 24: /* ftoui[sd].  */
6438
              case 25: /* ftouiz[sd].  */
6439
              case 26: /* ftosi[sd].  */
6440
              case 27: /* ftosiz[sd].  */
6441
                /* These instructions will not bounce due to underflow.  */
6442
                *numregs = 0;
6443
                vpipe = VFP11_FMAC;
6444
                break;
6445
 
6446
              case 3: /* fsqrt[sd].  */
6447
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
6448
                   registers to cause the erratum in previous instructions.  */
6449
                bfd_arm_vfp11_write_mask (destmask, fd);
6450
                vpipe = VFP11_DS;
6451
                break;
6452
 
6453
              case 15: /* fcvt{ds,sd}.  */
6454
                {
6455
                  int rnum = 0;
6456
 
6457
                  bfd_arm_vfp11_write_mask (destmask, fd);
6458
 
6459
                  /* Only FCVTSD can underflow.  */
6460
                  if ((insn & 0x100) != 0)
6461
                    regs[rnum++] = fm;
6462
 
6463
                  *numregs = rnum;
6464
 
6465
                  vpipe = VFP11_FMAC;
6466
                }
6467
                break;
6468
 
6469
              default:
6470
                return VFP11_BAD;
6471
              }
6472
          }
6473
          break;
6474
 
6475
        default:
6476
          return VFP11_BAD;
6477
        }
6478
    }
6479
  /* Two-register transfer.  */
6480
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6481
    {
6482
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6483
 
6484
      if ((insn & 0x100000) == 0)
6485
        {
6486
          if (is_double)
6487
            bfd_arm_vfp11_write_mask (destmask, fm);
6488
          else
6489
            {
6490
              bfd_arm_vfp11_write_mask (destmask, fm);
6491
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
6492
            }
6493
        }
6494
 
6495
      vpipe = VFP11_LS;
6496
    }
6497
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
6498
    {
6499
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6500
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6501
 
6502
      switch (puw)
6503
        {
6504
        case 0: /* Two-reg transfer.  We should catch these above.  */
6505
          abort ();
6506
 
6507
        case 2: /* fldm[sdx].  */
6508
        case 3:
6509
        case 5:
6510
          {
6511
            unsigned int i, offset = insn & 0xff;
6512
 
6513
            if (is_double)
6514
              offset >>= 1;
6515
 
6516
            for (i = fd; i < fd + offset; i++)
6517
              bfd_arm_vfp11_write_mask (destmask, i);
6518
          }
6519
          break;
6520
 
6521
        case 4: /* fld[sd].  */
6522
        case 6:
6523
          bfd_arm_vfp11_write_mask (destmask, fd);
6524
          break;
6525
 
6526
        default:
6527
          return VFP11_BAD;
6528
        }
6529
 
6530
      vpipe = VFP11_LS;
6531
    }
6532
  /* Single-register transfer. Note L==0.  */
6533
  else if ((insn & 0x0f100e10) == 0x0e000a10)
6534
    {
6535
      unsigned int opcode = (insn >> 21) & 7;
6536
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6537
 
6538
      switch (opcode)
6539
        {
6540
        case 0: /* fmsr/fmdlr.  */
6541
        case 1: /* fmdhr.  */
6542
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
6543
             destination register.  I don't know if this is exactly right,
6544
             but it is the conservative choice.  */
6545
          bfd_arm_vfp11_write_mask (destmask, fn);
6546
          break;
6547
 
6548
        case 7: /* fmxr.  */
6549
          break;
6550
        }
6551
 
6552
      vpipe = VFP11_LS;
6553
    }
6554
 
6555
  return vpipe;
6556
}
6557
 
6558
 
6559
static int elf32_arm_compare_mapping (const void * a, const void * b);
6560
 
6561
 
6562
/* Look for potentially-troublesome code sequences which might trigger the
6563
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
6564
   (available from ARM) for details of the erratum.  A short version is
6565
   described in ld.texinfo.  */
6566
 
6567
bfd_boolean
6568
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6569
{
6570
  asection *sec;
6571
  bfd_byte *contents = NULL;
6572
  int state = 0;
6573
  int regs[3], numregs = 0;
6574
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6575
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6576
 
6577
  if (globals == NULL)
6578
    return FALSE;
6579
 
6580
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6581
     The states transition as follows:
6582
 
6583
 
6584
           A VFP FMAC-pipeline instruction has been seen. Fill
6585
           regs[0]..regs[numregs-1] with its input operands. Remember this
6586
           instruction in 'first_fmac'.
6587
 
6588
       1 -> 2
6589
           Any instruction, except for a VFP instruction which overwrites
6590
           regs[*].
6591
 
6592
       1 -> 3 [ -> 0 ]  or
6593
       2 -> 3 [ -> 0 ]
6594
           A VFP instruction has been seen which overwrites any of regs[*].
6595
           We must make a veneer!  Reset state to 0 before examining next
6596
           instruction.
6597
 
6598
       2 -> 0
6599
           If we fail to match anything in state 2, reset to state 0 and reset
6600
           the instruction pointer to the instruction after 'first_fmac'.
6601
 
6602
     If the VFP11 vector mode is in use, there must be at least two unrelated
6603
     instructions between anti-dependent VFP11 instructions to properly avoid
6604
     triggering the erratum, hence the use of the extra state 1.  */
6605
 
6606
  /* If we are only performing a partial link do not bother
6607
     to construct any glue.  */
6608
  if (link_info->relocatable)
6609
    return TRUE;
6610
 
6611
  /* Skip if this bfd does not correspond to an ELF image.  */
6612
  if (! is_arm_elf (abfd))
6613
    return TRUE;
6614
 
6615
  /* We should have chosen a fix type by the time we get here.  */
6616
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6617
 
6618
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6619
    return TRUE;
6620
 
6621
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
6622
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6623
    return TRUE;
6624
 
6625
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6626
    {
6627
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6628
      struct _arm_elf_section_data *sec_data;
6629
 
6630
      /* If we don't have executable progbits, we're not interested in this
6631
         section.  Also skip if section is to be excluded.  */
6632
      if (elf_section_type (sec) != SHT_PROGBITS
6633
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6634
          || (sec->flags & SEC_EXCLUDE) != 0
6635
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6636
          || sec->output_section == bfd_abs_section_ptr
6637
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6638
        continue;
6639
 
6640
      sec_data = elf32_arm_section_data (sec);
6641
 
6642
      if (sec_data->mapcount == 0)
6643
        continue;
6644
 
6645
      if (elf_section_data (sec)->this_hdr.contents != NULL)
6646
        contents = elf_section_data (sec)->this_hdr.contents;
6647
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6648
        goto error_return;
6649
 
6650
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6651
             elf32_arm_compare_mapping);
6652
 
6653
      for (span = 0; span < sec_data->mapcount; span++)
6654
        {
6655
          unsigned int span_start = sec_data->map[span].vma;
6656
          unsigned int span_end = (span == sec_data->mapcount - 1)
6657
                                  ? sec->size : sec_data->map[span + 1].vma;
6658
          char span_type = sec_data->map[span].type;
6659
 
6660
          /* FIXME: Only ARM mode is supported at present.  We may need to
6661
             support Thumb-2 mode also at some point.  */
6662
          if (span_type != 'a')
6663
            continue;
6664
 
6665
          for (i = span_start; i < span_end;)
6666
            {
6667
              unsigned int next_i = i + 4;
6668
              unsigned int insn = bfd_big_endian (abfd)
6669
                ? (contents[i] << 24)
6670
                  | (contents[i + 1] << 16)
6671
                  | (contents[i + 2] << 8)
6672
                  | contents[i + 3]
6673
                : (contents[i + 3] << 24)
6674
                  | (contents[i + 2] << 16)
6675
                  | (contents[i + 1] << 8)
6676
                  | contents[i];
6677
              unsigned int writemask = 0;
6678
              enum bfd_arm_vfp11_pipe vpipe;
6679
 
6680
              switch (state)
6681
                {
6682
                case 0:
6683
                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6684
                                                    &numregs);
6685
                  /* I'm assuming the VFP11 erratum can trigger with denorm
6686
                     operands on either the FMAC or the DS pipeline. This might
6687
                     lead to slightly overenthusiastic veneer insertion.  */
6688
                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6689
                    {
6690
                      state = use_vector ? 1 : 2;
6691
                      first_fmac = i;
6692
                      veneer_of_insn = insn;
6693
                    }
6694
                  break;
6695
 
6696
                case 1:
6697
                  {
6698
                    int other_regs[3], other_numregs;
6699
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6700
                                                      other_regs,
6701
                                                      &other_numregs);
6702
                    if (vpipe != VFP11_BAD
6703
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6704
                                                         numregs))
6705
                      state = 3;
6706
                    else
6707
                      state = 2;
6708
                  }
6709
                  break;
6710
 
6711
                case 2:
6712
                  {
6713
                    int other_regs[3], other_numregs;
6714
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6715
                                                      other_regs,
6716
                                                      &other_numregs);
6717
                    if (vpipe != VFP11_BAD
6718
                        && bfd_arm_vfp11_antidependency (writemask, regs,
6719
                                                         numregs))
6720
                      state = 3;
6721
                    else
6722
                      {
6723
                        state = 0;
6724
                        next_i = first_fmac + 4;
6725
                      }
6726
                  }
6727
                  break;
6728
 
6729
                case 3:
6730
                  abort ();  /* Should be unreachable.  */
6731
                }
6732
 
6733
              if (state == 3)
6734
                {
6735
                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6736
                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6737
 
6738
                  elf32_arm_section_data (sec)->erratumcount += 1;
6739
 
6740
                  newerr->u.b.vfp_insn = veneer_of_insn;
6741
 
6742
                  switch (span_type)
6743
                    {
6744
                    case 'a':
6745
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6746
                      break;
6747
 
6748
                    default:
6749
                      abort ();
6750
                    }
6751
 
6752
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6753
                                               first_fmac);
6754
 
6755
                  newerr->vma = -1;
6756
 
6757
                  newerr->next = sec_data->erratumlist;
6758
                  sec_data->erratumlist = newerr;
6759
 
6760
                  state = 0;
6761
                }
6762
 
6763
              i = next_i;
6764
            }
6765
        }
6766
 
6767
      if (contents != NULL
6768
          && elf_section_data (sec)->this_hdr.contents != contents)
6769
        free (contents);
6770
      contents = NULL;
6771
    }
6772
 
6773
  return TRUE;
6774
 
6775
error_return:
6776
  if (contents != NULL
6777
      && elf_section_data (sec)->this_hdr.contents != contents)
6778
    free (contents);
6779
 
6780
  return FALSE;
6781
}
6782
 
6783
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6784
   after sections have been laid out, using specially-named symbols.  */
6785
 
6786
void
6787
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6788
                                          struct bfd_link_info *link_info)
6789
{
6790
  asection *sec;
6791
  struct elf32_arm_link_hash_table *globals;
6792
  char *tmp_name;
6793
 
6794
  if (link_info->relocatable)
6795
    return;
6796
 
6797
  /* Skip if this bfd does not correspond to an ELF image.  */
6798
  if (! is_arm_elf (abfd))
6799
    return;
6800
 
6801
  globals = elf32_arm_hash_table (link_info);
6802
  if (globals == NULL)
6803
    return;
6804
 
6805
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6806
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6807
 
6808
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
6809
    {
6810
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6811
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6812
 
6813
      for (; errnode != NULL; errnode = errnode->next)
6814
        {
6815
          struct elf_link_hash_entry *myh;
6816
          bfd_vma vma;
6817
 
6818
          switch (errnode->type)
6819
            {
6820
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6821
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6822
              /* Find veneer symbol.  */
6823
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6824
                       errnode->u.b.veneer->u.v.id);
6825
 
6826
              myh = elf_link_hash_lookup
6827
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6828
 
6829
              if (myh == NULL)
6830
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6831
                                         "`%s'"), abfd, tmp_name);
6832
 
6833
              vma = myh->root.u.def.section->output_section->vma
6834
                    + myh->root.u.def.section->output_offset
6835
                    + myh->root.u.def.value;
6836
 
6837
              errnode->u.b.veneer->vma = vma;
6838
              break;
6839
 
6840
            case VFP11_ERRATUM_ARM_VENEER:
6841
            case VFP11_ERRATUM_THUMB_VENEER:
6842
              /* Find return location.  */
6843
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6844
                       errnode->u.v.id);
6845
 
6846
              myh = elf_link_hash_lookup
6847
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6848
 
6849
              if (myh == NULL)
6850
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6851
                                         "`%s'"), abfd, tmp_name);
6852
 
6853
              vma = myh->root.u.def.section->output_section->vma
6854
                    + myh->root.u.def.section->output_offset
6855
                    + myh->root.u.def.value;
6856
 
6857
              errnode->u.v.branch->vma = vma;
6858
              break;
6859
 
6860
            default:
6861
              abort ();
6862
            }
6863
        }
6864
    }
6865
 
6866
  free (tmp_name);
6867
}
6868
 
6869
 
6870
/* Set target relocation values needed during linking.  */
6871
 
6872
void
6873
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6874
                                 struct bfd_link_info *link_info,
6875
                                 int target1_is_rel,
6876
                                 char * target2_type,
6877
                                 int fix_v4bx,
6878
                                 int use_blx,
6879
                                 bfd_arm_vfp11_fix vfp11_fix,
6880
                                 int no_enum_warn, int no_wchar_warn,
6881 161 khays
                                 int pic_veneer, int fix_cortex_a8,
6882
                                 int fix_arm1176)
6883 14 khays
{
6884
  struct elf32_arm_link_hash_table *globals;
6885
 
6886
  globals = elf32_arm_hash_table (link_info);
6887
  if (globals == NULL)
6888
    return;
6889
 
6890
  globals->target1_is_rel = target1_is_rel;
6891
  if (strcmp (target2_type, "rel") == 0)
6892
    globals->target2_reloc = R_ARM_REL32;
6893
  else if (strcmp (target2_type, "abs") == 0)
6894
    globals->target2_reloc = R_ARM_ABS32;
6895
  else if (strcmp (target2_type, "got-rel") == 0)
6896
    globals->target2_reloc = R_ARM_GOT_PREL;
6897
  else
6898
    {
6899
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6900
                          target2_type);
6901
    }
6902
  globals->fix_v4bx = fix_v4bx;
6903
  globals->use_blx |= use_blx;
6904
  globals->vfp11_fix = vfp11_fix;
6905
  globals->pic_veneer = pic_veneer;
6906
  globals->fix_cortex_a8 = fix_cortex_a8;
6907 161 khays
  globals->fix_arm1176 = fix_arm1176;
6908 14 khays
 
6909
  BFD_ASSERT (is_arm_elf (output_bfd));
6910
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6911
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6912
}
6913
 
6914
/* Replace the target offset of a Thumb bl or b.w instruction.  */
6915
 
6916
static void
6917
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6918
{
6919
  bfd_vma upper;
6920
  bfd_vma lower;
6921
  int reloc_sign;
6922
 
6923
  BFD_ASSERT ((offset & 1) == 0);
6924
 
6925
  upper = bfd_get_16 (abfd, insn);
6926
  lower = bfd_get_16 (abfd, insn + 2);
6927
  reloc_sign = (offset < 0) ? 1 : 0;
6928
  upper = (upper & ~(bfd_vma) 0x7ff)
6929
          | ((offset >> 12) & 0x3ff)
6930
          | (reloc_sign << 10);
6931
  lower = (lower & ~(bfd_vma) 0x2fff)
6932
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6933
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6934
          | ((offset >> 1) & 0x7ff);
6935
  bfd_put_16 (abfd, upper, insn);
6936
  bfd_put_16 (abfd, lower, insn + 2);
6937
}
6938
 
6939
/* Thumb code calling an ARM function.  */
6940
 
6941
static int
6942
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6943
                         const char *           name,
6944
                         bfd *                  input_bfd,
6945
                         bfd *                  output_bfd,
6946
                         asection *             input_section,
6947
                         bfd_byte *             hit_data,
6948
                         asection *             sym_sec,
6949
                         bfd_vma                offset,
6950
                         bfd_signed_vma         addend,
6951
                         bfd_vma                val,
6952
                         char **error_message)
6953
{
6954
  asection * s = 0;
6955
  bfd_vma my_offset;
6956
  long int ret_offset;
6957
  struct elf_link_hash_entry * myh;
6958
  struct elf32_arm_link_hash_table * globals;
6959
 
6960
  myh = find_thumb_glue (info, name, error_message);
6961
  if (myh == NULL)
6962
    return FALSE;
6963
 
6964
  globals = elf32_arm_hash_table (info);
6965
  BFD_ASSERT (globals != NULL);
6966
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6967
 
6968
  my_offset = myh->root.u.def.value;
6969
 
6970
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6971
                               THUMB2ARM_GLUE_SECTION_NAME);
6972
 
6973
  BFD_ASSERT (s != NULL);
6974
  BFD_ASSERT (s->contents != NULL);
6975
  BFD_ASSERT (s->output_section != NULL);
6976
 
6977
  if ((my_offset & 0x01) == 0x01)
6978
    {
6979
      if (sym_sec != NULL
6980
          && sym_sec->owner != NULL
6981
          && !INTERWORK_FLAG (sym_sec->owner))
6982
        {
6983
          (*_bfd_error_handler)
6984
            (_("%B(%s): warning: interworking not enabled.\n"
6985 166 khays
               "  first occurrence: %B: Thumb call to ARM"),
6986 14 khays
             sym_sec->owner, input_bfd, name);
6987
 
6988
          return FALSE;
6989
        }
6990
 
6991
      --my_offset;
6992
      myh->root.u.def.value = my_offset;
6993
 
6994
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6995
                      s->contents + my_offset);
6996
 
6997
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6998
                      s->contents + my_offset + 2);
6999
 
7000
      ret_offset =
7001
        /* Address of destination of the stub.  */
7002
        ((bfd_signed_vma) val)
7003
        - ((bfd_signed_vma)
7004
           /* Offset from the start of the current section
7005
              to the start of the stubs.  */
7006
           (s->output_offset
7007
            /* Offset of the start of this stub from the start of the stubs.  */
7008
            + my_offset
7009
            /* Address of the start of the current section.  */
7010
            + s->output_section->vma)
7011
           /* The branch instruction is 4 bytes into the stub.  */
7012
           + 4
7013
           /* ARM branches work from the pc of the instruction + 8.  */
7014
           + 8);
7015
 
7016
      put_arm_insn (globals, output_bfd,
7017
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7018
                    s->contents + my_offset + 4);
7019
    }
7020
 
7021
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7022
 
7023
  /* Now go back and fix up the original BL insn to point to here.  */
7024
  ret_offset =
7025
    /* Address of where the stub is located.  */
7026
    (s->output_section->vma + s->output_offset + my_offset)
7027
     /* Address of where the BL is located.  */
7028
    - (input_section->output_section->vma + input_section->output_offset
7029
       + offset)
7030
    /* Addend in the relocation.  */
7031
    - addend
7032
    /* Biassing for PC-relative addressing.  */
7033
    - 8;
7034
 
7035
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7036
 
7037
  return TRUE;
7038
}
7039
 
7040
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
7041
 
7042
static struct elf_link_hash_entry *
7043
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7044
                             const char *           name,
7045
                             bfd *                  input_bfd,
7046
                             bfd *                  output_bfd,
7047
                             asection *             sym_sec,
7048
                             bfd_vma                val,
7049
                             asection *             s,
7050
                             char **                error_message)
7051
{
7052
  bfd_vma my_offset;
7053
  long int ret_offset;
7054
  struct elf_link_hash_entry * myh;
7055
  struct elf32_arm_link_hash_table * globals;
7056
 
7057
  myh = find_arm_glue (info, name, error_message);
7058
  if (myh == NULL)
7059
    return NULL;
7060
 
7061
  globals = elf32_arm_hash_table (info);
7062
  BFD_ASSERT (globals != NULL);
7063
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7064
 
7065
  my_offset = myh->root.u.def.value;
7066
 
7067
  if ((my_offset & 0x01) == 0x01)
7068
    {
7069
      if (sym_sec != NULL
7070
          && sym_sec->owner != NULL
7071
          && !INTERWORK_FLAG (sym_sec->owner))
7072
        {
7073
          (*_bfd_error_handler)
7074
            (_("%B(%s): warning: interworking not enabled.\n"
7075
               "  first occurrence: %B: arm call to thumb"),
7076
             sym_sec->owner, input_bfd, name);
7077
        }
7078
 
7079
      --my_offset;
7080
      myh->root.u.def.value = my_offset;
7081
 
7082
      if (info->shared || globals->root.is_relocatable_executable
7083
          || globals->pic_veneer)
7084
        {
7085
          /* For relocatable objects we can't use absolute addresses,
7086
             so construct the address from a relative offset.  */
7087
          /* TODO: If the offset is small it's probably worth
7088
             constructing the address with adds.  */
7089
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7090
                        s->contents + my_offset);
7091
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7092
                        s->contents + my_offset + 4);
7093
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7094
                        s->contents + my_offset + 8);
7095
          /* Adjust the offset by 4 for the position of the add,
7096
             and 8 for the pipeline offset.  */
7097
          ret_offset = (val - (s->output_offset
7098
                               + s->output_section->vma
7099
                               + my_offset + 12))
7100
                       | 1;
7101
          bfd_put_32 (output_bfd, ret_offset,
7102
                      s->contents + my_offset + 12);
7103
        }
7104
      else if (globals->use_blx)
7105
        {
7106
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7107
                        s->contents + my_offset);
7108
 
7109
          /* It's a thumb address.  Add the low order bit.  */
7110
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7111
                      s->contents + my_offset + 4);
7112
        }
7113
      else
7114
        {
7115
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7116
                        s->contents + my_offset);
7117
 
7118
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7119
                        s->contents + my_offset + 4);
7120
 
7121
          /* It's a thumb address.  Add the low order bit.  */
7122
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7123
                      s->contents + my_offset + 8);
7124
 
7125
          my_offset += 12;
7126
        }
7127
    }
7128
 
7129
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
7130
 
7131
  return myh;
7132
}
7133
 
7134
/* Arm code calling a Thumb function.  */
7135
 
7136
static int
7137
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7138
                         const char *           name,
7139
                         bfd *                  input_bfd,
7140
                         bfd *                  output_bfd,
7141
                         asection *             input_section,
7142
                         bfd_byte *             hit_data,
7143
                         asection *             sym_sec,
7144
                         bfd_vma                offset,
7145
                         bfd_signed_vma         addend,
7146
                         bfd_vma                val,
7147
                         char **error_message)
7148
{
7149
  unsigned long int tmp;
7150
  bfd_vma my_offset;
7151
  asection * s;
7152
  long int ret_offset;
7153
  struct elf_link_hash_entry * myh;
7154
  struct elf32_arm_link_hash_table * globals;
7155
 
7156
  globals = elf32_arm_hash_table (info);
7157
  BFD_ASSERT (globals != NULL);
7158
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7159
 
7160
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7161
                               ARM2THUMB_GLUE_SECTION_NAME);
7162
  BFD_ASSERT (s != NULL);
7163
  BFD_ASSERT (s->contents != NULL);
7164
  BFD_ASSERT (s->output_section != NULL);
7165
 
7166
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7167
                                     sym_sec, val, s, error_message);
7168
  if (!myh)
7169
    return FALSE;
7170
 
7171
  my_offset = myh->root.u.def.value;
7172
  tmp = bfd_get_32 (input_bfd, hit_data);
7173
  tmp = tmp & 0xFF000000;
7174
 
7175
  /* Somehow these are both 4 too far, so subtract 8.  */
7176
  ret_offset = (s->output_offset
7177
                + my_offset
7178
                + s->output_section->vma
7179
                - (input_section->output_offset
7180
                   + input_section->output_section->vma
7181
                   + offset + addend)
7182
                - 8);
7183
 
7184
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7185
 
7186
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7187
 
7188
  return TRUE;
7189
}
7190
 
7191
/* Populate Arm stub for an exported Thumb function.  */
7192
 
7193
static bfd_boolean
7194
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7195
{
7196
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
7197
  asection * s;
7198
  struct elf_link_hash_entry * myh;
7199
  struct elf32_arm_link_hash_entry *eh;
7200
  struct elf32_arm_link_hash_table * globals;
7201
  asection *sec;
7202
  bfd_vma val;
7203
  char *error_message;
7204
 
7205
  eh = elf32_arm_hash_entry (h);
7206
  /* Allocate stubs for exported Thumb functions on v4t.  */
7207
  if (eh->export_glue == NULL)
7208
    return TRUE;
7209
 
7210
  globals = elf32_arm_hash_table (info);
7211
  BFD_ASSERT (globals != NULL);
7212
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7213
 
7214
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7215
                               ARM2THUMB_GLUE_SECTION_NAME);
7216
  BFD_ASSERT (s != NULL);
7217
  BFD_ASSERT (s->contents != NULL);
7218
  BFD_ASSERT (s->output_section != NULL);
7219
 
7220
  sec = eh->export_glue->root.u.def.section;
7221
 
7222
  BFD_ASSERT (sec->output_section != NULL);
7223
 
7224
  val = eh->export_glue->root.u.def.value + sec->output_offset
7225
        + sec->output_section->vma;
7226
 
7227
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7228
                                     h->root.u.def.section->owner,
7229
                                     globals->obfd, sec, val, s,
7230
                                     &error_message);
7231
  BFD_ASSERT (myh);
7232
  return TRUE;
7233
}
7234
 
7235
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
7236
 
7237
static bfd_vma
7238
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7239
{
7240
  bfd_byte *p;
7241
  bfd_vma glue_addr;
7242
  asection *s;
7243
  struct elf32_arm_link_hash_table *globals;
7244
 
7245
  globals = elf32_arm_hash_table (info);
7246
  BFD_ASSERT (globals != NULL);
7247
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7248
 
7249
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7250
                               ARM_BX_GLUE_SECTION_NAME);
7251
  BFD_ASSERT (s != NULL);
7252
  BFD_ASSERT (s->contents != NULL);
7253
  BFD_ASSERT (s->output_section != NULL);
7254
 
7255
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7256
 
7257
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7258
 
7259
  if ((globals->bx_glue_offset[reg] & 1) == 0)
7260
    {
7261
      p = s->contents + glue_addr;
7262
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7263
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7264
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7265
      globals->bx_glue_offset[reg] |= 1;
7266
    }
7267
 
7268
  return glue_addr + s->output_section->vma + s->output_offset;
7269
}
7270
 
7271
/* Generate Arm stubs for exported Thumb symbols.  */
7272
static void
7273
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7274
                                  struct bfd_link_info *link_info)
7275
{
7276
  struct elf32_arm_link_hash_table * globals;
7277
 
7278
  if (link_info == NULL)
7279
    /* Ignore this if we are not called by the ELF backend linker.  */
7280
    return;
7281
 
7282
  globals = elf32_arm_hash_table (link_info);
7283
  if (globals == NULL)
7284
    return;
7285
 
7286
  /* If blx is available then exported Thumb symbols are OK and there is
7287
     nothing to do.  */
7288
  if (globals->use_blx)
7289
    return;
7290
 
7291
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7292
                          link_info);
7293
}
7294
 
7295
/* Reserve space for COUNT dynamic relocations in relocation selection
7296
   SRELOC.  */
7297
 
7298
static void
7299
elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7300
                              bfd_size_type count)
7301
{
7302
  struct elf32_arm_link_hash_table *htab;
7303
 
7304
  htab = elf32_arm_hash_table (info);
7305
  BFD_ASSERT (htab->root.dynamic_sections_created);
7306
  if (sreloc == NULL)
7307
    abort ();
7308
  sreloc->size += RELOC_SIZE (htab) * count;
7309
}
7310
 
7311
/* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
7312
   dynamic, the relocations should go in SRELOC, otherwise they should
7313
   go in the special .rel.iplt section.  */
7314
 
7315
static void
7316
elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7317
                            bfd_size_type count)
7318
{
7319
  struct elf32_arm_link_hash_table *htab;
7320
 
7321
  htab = elf32_arm_hash_table (info);
7322
  if (!htab->root.dynamic_sections_created)
7323
    htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7324
  else
7325
    {
7326
      BFD_ASSERT (sreloc != NULL);
7327
      sreloc->size += RELOC_SIZE (htab) * count;
7328
    }
7329
}
7330
 
7331
/* Add relocation REL to the end of relocation section SRELOC.  */
7332
 
7333
static void
7334
elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7335
                        asection *sreloc, Elf_Internal_Rela *rel)
7336
{
7337
  bfd_byte *loc;
7338
  struct elf32_arm_link_hash_table *htab;
7339
 
7340
  htab = elf32_arm_hash_table (info);
7341
  if (!htab->root.dynamic_sections_created
7342
      && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7343
    sreloc = htab->root.irelplt;
7344
  if (sreloc == NULL)
7345
    abort ();
7346
  loc = sreloc->contents;
7347
  loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7348
  if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7349
    abort ();
7350
  SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7351
}
7352
 
7353
/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7354
   IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7355
   to .plt.  */
7356
 
7357
static void
7358
elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7359
                              bfd_boolean is_iplt_entry,
7360
                              union gotplt_union *root_plt,
7361
                              struct arm_plt_info *arm_plt)
7362
{
7363
  struct elf32_arm_link_hash_table *htab;
7364
  asection *splt;
7365
  asection *sgotplt;
7366
 
7367
  htab = elf32_arm_hash_table (info);
7368
 
7369
  if (is_iplt_entry)
7370
    {
7371
      splt = htab->root.iplt;
7372
      sgotplt = htab->root.igotplt;
7373
 
7374
      /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
7375
      elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7376
    }
7377
  else
7378
    {
7379
      splt = htab->root.splt;
7380
      sgotplt = htab->root.sgotplt;
7381
 
7382
      /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
7383
      elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7384
 
7385
      /* If this is the first .plt entry, make room for the special
7386
         first entry.  */
7387
      if (splt->size == 0)
7388
        splt->size += htab->plt_header_size;
7389
    }
7390
 
7391
  /* Allocate the PLT entry itself, including any leading Thumb stub.  */
7392
  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7393
    splt->size += PLT_THUMB_STUB_SIZE;
7394
  root_plt->offset = splt->size;
7395
  splt->size += htab->plt_entry_size;
7396
 
7397
  if (!htab->symbian_p)
7398
    {
7399
      /* We also need to make an entry in the .got.plt section, which
7400
         will be placed in the .got section by the linker script.  */
7401
      arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7402
      sgotplt->size += 4;
7403
    }
7404
}
7405
 
7406
/* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
7407
   the entry lives in .iplt and resolves to (*SYM_VALUE)().
7408
   Otherwise, DYNINDX is the index of the symbol in the dynamic
7409
   symbol table and SYM_VALUE is undefined.
7410
 
7411
   ROOT_PLT points to the offset of the PLT entry from the start of its
7412
   section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
7413
   bookkeeping information.  */
7414
 
7415
static void
7416
elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7417
                              union gotplt_union *root_plt,
7418
                              struct arm_plt_info *arm_plt,
7419
                              int dynindx, bfd_vma sym_value)
7420
{
7421
  struct elf32_arm_link_hash_table *htab;
7422
  asection *sgot;
7423
  asection *splt;
7424
  asection *srel;
7425
  bfd_byte *loc;
7426
  bfd_vma plt_index;
7427
  Elf_Internal_Rela rel;
7428
  bfd_vma plt_header_size;
7429
  bfd_vma got_header_size;
7430
 
7431
  htab = elf32_arm_hash_table (info);
7432
 
7433
  /* Pick the appropriate sections and sizes.  */
7434
  if (dynindx == -1)
7435
    {
7436
      splt = htab->root.iplt;
7437
      sgot = htab->root.igotplt;
7438
      srel = htab->root.irelplt;
7439
 
7440
      /* There are no reserved entries in .igot.plt, and no special
7441
         first entry in .iplt.  */
7442
      got_header_size = 0;
7443
      plt_header_size = 0;
7444
    }
7445
  else
7446
    {
7447
      splt = htab->root.splt;
7448
      sgot = htab->root.sgotplt;
7449
      srel = htab->root.srelplt;
7450
 
7451
      got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7452
      plt_header_size = htab->plt_header_size;
7453
    }
7454
  BFD_ASSERT (splt != NULL && srel != NULL);
7455
 
7456
  /* Fill in the entry in the procedure linkage table.  */
7457
  if (htab->symbian_p)
7458
    {
7459
      BFD_ASSERT (dynindx >= 0);
7460
      put_arm_insn (htab, output_bfd,
7461
                    elf32_arm_symbian_plt_entry[0],
7462
                    splt->contents + root_plt->offset);
7463
      bfd_put_32 (output_bfd,
7464
                  elf32_arm_symbian_plt_entry[1],
7465
                  splt->contents + root_plt->offset + 4);
7466
 
7467
      /* Fill in the entry in the .rel.plt section.  */
7468
      rel.r_offset = (splt->output_section->vma
7469
                      + splt->output_offset
7470
                      + root_plt->offset + 4);
7471
      rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7472
 
7473
      /* Get the index in the procedure linkage table which
7474
         corresponds to this symbol.  This is the index of this symbol
7475
         in all the symbols for which we are making plt entries.  The
7476
         first entry in the procedure linkage table is reserved.  */
7477
      plt_index = ((root_plt->offset - plt_header_size)
7478
                   / htab->plt_entry_size);
7479
    }
7480
  else
7481
    {
7482
      bfd_vma got_offset, got_address, plt_address;
7483
      bfd_vma got_displacement, initial_got_entry;
7484
      bfd_byte * ptr;
7485
 
7486
      BFD_ASSERT (sgot != NULL);
7487
 
7488
      /* Get the offset into the .(i)got.plt table of the entry that
7489
         corresponds to this function.  */
7490
      got_offset = (arm_plt->got_offset & -2);
7491
 
7492
      /* Get the index in the procedure linkage table which
7493
         corresponds to this symbol.  This is the index of this symbol
7494
         in all the symbols for which we are making plt entries.
7495
         After the reserved .got.plt entries, all symbols appear in
7496
         the same order as in .plt.  */
7497
      plt_index = (got_offset - got_header_size) / 4;
7498
 
7499
      /* Calculate the address of the GOT entry.  */
7500
      got_address = (sgot->output_section->vma
7501
                     + sgot->output_offset
7502
                     + got_offset);
7503
 
7504
      /* ...and the address of the PLT entry.  */
7505
      plt_address = (splt->output_section->vma
7506
                     + splt->output_offset
7507
                     + root_plt->offset);
7508
 
7509
      ptr = splt->contents + root_plt->offset;
7510
      if (htab->vxworks_p && info->shared)
7511
        {
7512
          unsigned int i;
7513
          bfd_vma val;
7514
 
7515
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7516
            {
7517
              val = elf32_arm_vxworks_shared_plt_entry[i];
7518
              if (i == 2)
7519
                val |= got_address - sgot->output_section->vma;
7520
              if (i == 5)
7521
                val |= plt_index * RELOC_SIZE (htab);
7522
              if (i == 2 || i == 5)
7523
                bfd_put_32 (output_bfd, val, ptr);
7524
              else
7525
                put_arm_insn (htab, output_bfd, val, ptr);
7526
            }
7527
        }
7528
      else if (htab->vxworks_p)
7529
        {
7530
          unsigned int i;
7531
          bfd_vma val;
7532
 
7533
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7534
            {
7535
              val = elf32_arm_vxworks_exec_plt_entry[i];
7536
              if (i == 2)
7537
                val |= got_address;
7538
              if (i == 4)
7539
                val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7540
              if (i == 5)
7541
                val |= plt_index * RELOC_SIZE (htab);
7542
              if (i == 2 || i == 5)
7543
                bfd_put_32 (output_bfd, val, ptr);
7544
              else
7545
                put_arm_insn (htab, output_bfd, val, ptr);
7546
            }
7547
 
7548
          loc = (htab->srelplt2->contents
7549
                 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7550
 
7551
          /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7552
             referencing the GOT for this PLT entry.  */
7553
          rel.r_offset = plt_address + 8;
7554
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7555
          rel.r_addend = got_offset;
7556
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7557
          loc += RELOC_SIZE (htab);
7558
 
7559
          /* Create the R_ARM_ABS32 relocation referencing the
7560
             beginning of the PLT for this GOT entry.  */
7561
          rel.r_offset = got_address;
7562
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7563
          rel.r_addend = 0;
7564
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7565
        }
7566
      else
7567
        {
7568
          /* Calculate the displacement between the PLT slot and the
7569
             entry in the GOT.  The eight-byte offset accounts for the
7570
             value produced by adding to pc in the first instruction
7571
             of the PLT stub.  */
7572
          got_displacement = got_address - (plt_address + 8);
7573
 
7574
          BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7575
 
7576
          if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7577
            {
7578
              put_thumb_insn (htab, output_bfd,
7579
                              elf32_arm_plt_thumb_stub[0], ptr - 4);
7580
              put_thumb_insn (htab, output_bfd,
7581
                              elf32_arm_plt_thumb_stub[1], ptr - 2);
7582
            }
7583
 
7584
          put_arm_insn (htab, output_bfd,
7585
                        elf32_arm_plt_entry[0]
7586
                        | ((got_displacement & 0x0ff00000) >> 20),
7587
                        ptr + 0);
7588
          put_arm_insn (htab, output_bfd,
7589
                        elf32_arm_plt_entry[1]
7590
                        | ((got_displacement & 0x000ff000) >> 12),
7591
                        ptr+ 4);
7592
          put_arm_insn (htab, output_bfd,
7593
                        elf32_arm_plt_entry[2]
7594
                        | (got_displacement & 0x00000fff),
7595
                        ptr + 8);
7596
#ifdef FOUR_WORD_PLT
7597
          bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7598
#endif
7599
        }
7600
 
7601
      /* Fill in the entry in the .rel(a).(i)plt section.  */
7602
      rel.r_offset = got_address;
7603
      rel.r_addend = 0;
7604
      if (dynindx == -1)
7605
        {
7606
          /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7607
             The dynamic linker or static executable then calls SYM_VALUE
7608
             to determine the correct run-time value of the .igot.plt entry.  */
7609
          rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7610
          initial_got_entry = sym_value;
7611
        }
7612
      else
7613
        {
7614
          rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7615
          initial_got_entry = (splt->output_section->vma
7616
                               + splt->output_offset);
7617
        }
7618
 
7619
      /* Fill in the entry in the global offset table.  */
7620
      bfd_put_32 (output_bfd, initial_got_entry,
7621
                  sgot->contents + got_offset);
7622
    }
7623
 
7624
  loc = srel->contents + plt_index * RELOC_SIZE (htab);
7625
  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7626
}
7627
 
7628
/* Some relocations map to different relocations depending on the
7629
   target.  Return the real relocation.  */
7630
 
7631
static int
7632
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7633
                     int r_type)
7634
{
7635
  switch (r_type)
7636
    {
7637
    case R_ARM_TARGET1:
7638
      if (globals->target1_is_rel)
7639
        return R_ARM_REL32;
7640
      else
7641
        return R_ARM_ABS32;
7642
 
7643
    case R_ARM_TARGET2:
7644
      return globals->target2_reloc;
7645
 
7646
    default:
7647
      return r_type;
7648
    }
7649
}
7650
 
7651
/* Return the base VMA address which should be subtracted from real addresses
7652
   when resolving @dtpoff relocation.
7653
   This is PT_TLS segment p_vaddr.  */
7654
 
7655
static bfd_vma
7656
dtpoff_base (struct bfd_link_info *info)
7657
{
7658
  /* If tls_sec is NULL, we should have signalled an error already.  */
7659
  if (elf_hash_table (info)->tls_sec == NULL)
7660
    return 0;
7661
  return elf_hash_table (info)->tls_sec->vma;
7662
}
7663
 
7664
/* Return the relocation value for @tpoff relocation
7665
   if STT_TLS virtual address is ADDRESS.  */
7666
 
7667
static bfd_vma
7668
tpoff (struct bfd_link_info *info, bfd_vma address)
7669
{
7670
  struct elf_link_hash_table *htab = elf_hash_table (info);
7671
  bfd_vma base;
7672
 
7673
  /* If tls_sec is NULL, we should have signalled an error already.  */
7674
  if (htab->tls_sec == NULL)
7675
    return 0;
7676
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7677
  return address - htab->tls_sec->vma + base;
7678
}
7679
 
7680
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7681
   VALUE is the relocation value.  */
7682
 
7683
static bfd_reloc_status_type
7684
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7685
{
7686
  if (value > 0xfff)
7687
    return bfd_reloc_overflow;
7688
 
7689
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
7690
  bfd_put_32 (abfd, value, data);
7691
  return bfd_reloc_ok;
7692
}
7693
 
7694
/* Handle TLS relaxations.  Relaxing is possible for symbols that use
7695
   R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7696
   R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7697
 
7698
   Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7699
   is to then call final_link_relocate.  Return other values in the
7700
   case of error.
7701
 
7702
   FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7703
   the pre-relaxed code.  It would be nice if the relocs were updated
7704
   to match the optimization.   */
7705
 
7706
static bfd_reloc_status_type
7707
elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7708
                     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7709
                     Elf_Internal_Rela *rel, unsigned long is_local)
7710
{
7711
  unsigned long insn;
7712
 
7713
  switch (ELF32_R_TYPE (rel->r_info))
7714
    {
7715
    default:
7716
      return bfd_reloc_notsupported;
7717
 
7718
    case R_ARM_TLS_GOTDESC:
7719
      if (is_local)
7720
        insn = 0;
7721
      else
7722
        {
7723
          insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7724
          if (insn & 1)
7725
            insn -= 5; /* THUMB */
7726
          else
7727
            insn -= 8; /* ARM */
7728
        }
7729
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7730
      return bfd_reloc_continue;
7731
 
7732
    case R_ARM_THM_TLS_DESCSEQ:
7733
      /* Thumb insn.  */
7734
      insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7735
      if ((insn & 0xff78) == 0x4478)      /* add rx, pc */
7736
        {
7737
          if (is_local)
7738
            /* nop */
7739
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7740
        }
7741
      else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
7742
        {
7743
          if (is_local)
7744
            /* nop */
7745
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7746
          else
7747
            /* ldr rx,[ry] */
7748
            bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7749
        }
7750
      else if ((insn & 0xff87) == 0x4780)  /* blx rx */
7751
        {
7752
          if (is_local)
7753
            /* nop */
7754
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7755
          else
7756
            /* mov r0, rx */
7757
            bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7758
                        contents + rel->r_offset);
7759
        }
7760
      else
7761
        {
7762
          if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7763
            /* It's a 32 bit instruction, fetch the rest of it for
7764
               error generation.  */
7765
            insn = (insn << 16)
7766
              | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7767
          (*_bfd_error_handler)
7768
            (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7769
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7770
          return bfd_reloc_notsupported;
7771
        }
7772
      break;
7773
 
7774
    case R_ARM_TLS_DESCSEQ:
7775
      /* arm insn.  */
7776
      insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7777
      if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7778
        {
7779
          if (is_local)
7780
            /* mov rx, ry */
7781
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7782
                        contents + rel->r_offset);
7783
        }
7784
      else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7785
        {
7786
          if (is_local)
7787
            /* nop */
7788
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7789
          else
7790
            /* ldr rx,[ry] */
7791
            bfd_put_32 (input_bfd, insn & 0xfffff000,
7792
                        contents + rel->r_offset);
7793
        }
7794
      else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7795
        {
7796
          if (is_local)
7797
            /* nop */
7798
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7799
          else
7800
            /* mov r0, rx */
7801
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7802
                        contents + rel->r_offset);
7803
        }
7804
      else
7805
        {
7806
          (*_bfd_error_handler)
7807
            (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7808
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7809
          return bfd_reloc_notsupported;
7810
        }
7811
      break;
7812
 
7813
    case R_ARM_TLS_CALL:
7814
      /* GD->IE relaxation, turn the instruction into 'nop' or
7815
         'ldr r0, [pc,r0]'  */
7816
      insn = is_local ? 0xe1a00000 : 0xe79f0000;
7817
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7818
      break;
7819
 
7820
    case R_ARM_THM_TLS_CALL:
7821
      /* GD->IE relaxation */
7822
      if (!is_local)
7823
        /* add r0,pc; ldr r0, [r0]  */
7824
        insn = 0x44786800;
7825
      else if (arch_has_thumb2_nop (globals))
7826
        /* nop.w */
7827
        insn = 0xf3af8000;
7828
      else
7829
        /* nop; nop */
7830
        insn = 0xbf00bf00;
7831
 
7832
      bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7833
      bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7834
      break;
7835
    }
7836
  return bfd_reloc_ok;
7837
}
7838
 
7839
/* For a given value of n, calculate the value of G_n as required to
7840
   deal with group relocations.  We return it in the form of an
7841
   encoded constant-and-rotation, together with the final residual.  If n is
7842
   specified as less than zero, then final_residual is filled with the
7843
   input value and no further action is performed.  */
7844
 
7845
static bfd_vma
7846
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7847
{
7848
  int current_n;
7849
  bfd_vma g_n;
7850
  bfd_vma encoded_g_n = 0;
7851
  bfd_vma residual = value; /* Also known as Y_n.  */
7852
 
7853
  for (current_n = 0; current_n <= n; current_n++)
7854
    {
7855
      int shift;
7856
 
7857
      /* Calculate which part of the value to mask.  */
7858
      if (residual == 0)
7859
        shift = 0;
7860
      else
7861
        {
7862
          int msb;
7863
 
7864
          /* Determine the most significant bit in the residual and
7865
             align the resulting value to a 2-bit boundary.  */
7866
          for (msb = 30; msb >= 0; msb -= 2)
7867
            if (residual & (3 << msb))
7868
              break;
7869
 
7870
          /* The desired shift is now (msb - 6), or zero, whichever
7871
             is the greater.  */
7872
          shift = msb - 6;
7873
          if (shift < 0)
7874
            shift = 0;
7875
        }
7876
 
7877
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
7878
      g_n = residual & (0xff << shift);
7879
      encoded_g_n = (g_n >> shift)
7880
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7881
 
7882
      /* Calculate the residual for the next time around.  */
7883
      residual &= ~g_n;
7884
    }
7885
 
7886
  *final_residual = residual;
7887
 
7888
  return encoded_g_n;
7889
}
7890
 
7891
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
7892
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
7893
 
7894
static int
7895
identify_add_or_sub (bfd_vma insn)
7896
{
7897
  int opcode = insn & 0x1e00000;
7898
 
7899
  if (opcode == 1 << 23) /* ADD */
7900
    return 1;
7901
 
7902
  if (opcode == 1 << 22) /* SUB */
7903
    return -1;
7904
 
7905
  return 0;
7906
}
7907
 
7908
/* Perform a relocation as part of a final link.  */
7909
 
7910
static bfd_reloc_status_type
7911
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
7912
                               bfd *                        input_bfd,
7913
                               bfd *                        output_bfd,
7914
                               asection *                   input_section,
7915
                               bfd_byte *                   contents,
7916
                               Elf_Internal_Rela *          rel,
7917
                               bfd_vma                      value,
7918
                               struct bfd_link_info *       info,
7919
                               asection *                   sym_sec,
7920
                               const char *                 sym_name,
7921
                               unsigned char                st_type,
7922
                               enum arm_st_branch_type      branch_type,
7923
                               struct elf_link_hash_entry * h,
7924
                               bfd_boolean *                unresolved_reloc_p,
7925
                               char **                      error_message)
7926
{
7927
  unsigned long                 r_type = howto->type;
7928
  unsigned long                 r_symndx;
7929
  bfd_byte *                    hit_data = contents + rel->r_offset;
7930
  bfd_vma *                     local_got_offsets;
7931
  bfd_vma *                     local_tlsdesc_gotents;
7932
  asection *                    sgot;
7933
  asection *                    splt;
7934
  asection *                    sreloc = NULL;
7935
  asection *                    srelgot;
7936
  bfd_vma                       addend;
7937
  bfd_signed_vma                signed_addend;
7938
  unsigned char                 dynreloc_st_type;
7939
  bfd_vma                       dynreloc_value;
7940
  struct elf32_arm_link_hash_table * globals;
7941
  struct elf32_arm_link_hash_entry *eh;
7942
  union gotplt_union           *root_plt;
7943
  struct arm_plt_info          *arm_plt;
7944
  bfd_vma                       plt_offset;
7945
  bfd_vma                       gotplt_offset;
7946
  bfd_boolean                   has_iplt_entry;
7947
 
7948
  globals = elf32_arm_hash_table (info);
7949
  if (globals == NULL)
7950
    return bfd_reloc_notsupported;
7951
 
7952
  BFD_ASSERT (is_arm_elf (input_bfd));
7953
 
7954
  /* Some relocation types map to different relocations depending on the
7955
     target.  We pick the right one here.  */
7956
  r_type = arm_real_reloc_type (globals, r_type);
7957
 
7958
  /* It is possible to have linker relaxations on some TLS access
7959
     models.  Update our information here.  */
7960
  r_type = elf32_arm_tls_transition (info, r_type, h);
7961
 
7962
  if (r_type != howto->type)
7963
    howto = elf32_arm_howto_from_type (r_type);
7964
 
7965
  /* If the start address has been set, then set the EF_ARM_HASENTRY
7966
     flag.  Setting this more than once is redundant, but the cost is
7967
     not too high, and it keeps the code simple.
7968
 
7969
     The test is done  here, rather than somewhere else, because the
7970
     start address is only set just before the final link commences.
7971
 
7972
     Note - if the user deliberately sets a start address of 0, the
7973
     flag will not be set.  */
7974
  if (bfd_get_start_address (output_bfd) != 0)
7975
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7976
 
7977
  eh = (struct elf32_arm_link_hash_entry *) h;
7978
  sgot = globals->root.sgot;
7979
  local_got_offsets = elf_local_got_offsets (input_bfd);
7980
  local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7981
 
7982
  if (globals->root.dynamic_sections_created)
7983
    srelgot = globals->root.srelgot;
7984
  else
7985
    srelgot = NULL;
7986
 
7987
  r_symndx = ELF32_R_SYM (rel->r_info);
7988
 
7989
  if (globals->use_rel)
7990
    {
7991
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7992
 
7993
      if (addend & ((howto->src_mask + 1) >> 1))
7994
        {
7995
          signed_addend = -1;
7996
          signed_addend &= ~ howto->src_mask;
7997
          signed_addend |= addend;
7998
        }
7999
      else
8000
        signed_addend = addend;
8001
    }
8002
  else
8003
    addend = signed_addend = rel->r_addend;
8004
 
8005
  /* Record the symbol information that should be used in dynamic
8006
     relocations.  */
8007
  dynreloc_st_type = st_type;
8008
  dynreloc_value = value;
8009
  if (branch_type == ST_BRANCH_TO_THUMB)
8010
    dynreloc_value |= 1;
8011
 
8012
  /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
8013
     VALUE appropriately for relocations that we resolve at link time.  */
8014
  has_iplt_entry = FALSE;
8015
  if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8016
      && root_plt->offset != (bfd_vma) -1)
8017
    {
8018
      plt_offset = root_plt->offset;
8019
      gotplt_offset = arm_plt->got_offset;
8020
 
8021
      if (h == NULL || eh->is_iplt)
8022
        {
8023
          has_iplt_entry = TRUE;
8024
          splt = globals->root.iplt;
8025
 
8026
          /* Populate .iplt entries here, because not all of them will
8027
             be seen by finish_dynamic_symbol.  The lower bit is set if
8028
             we have already populated the entry.  */
8029
          if (plt_offset & 1)
8030
            plt_offset--;
8031
          else
8032
            {
8033
              elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8034
                                            -1, dynreloc_value);
8035
              root_plt->offset |= 1;
8036
            }
8037
 
8038
          /* Static relocations always resolve to the .iplt entry.  */
8039
          st_type = STT_FUNC;
8040
          value = (splt->output_section->vma
8041
                   + splt->output_offset
8042
                   + plt_offset);
8043
          branch_type = ST_BRANCH_TO_ARM;
8044
 
8045
          /* If there are non-call relocations that resolve to the .iplt
8046
             entry, then all dynamic ones must too.  */
8047
          if (arm_plt->noncall_refcount != 0)
8048
            {
8049
              dynreloc_st_type = st_type;
8050
              dynreloc_value = value;
8051
            }
8052
        }
8053
      else
8054
        /* We populate the .plt entry in finish_dynamic_symbol.  */
8055
        splt = globals->root.splt;
8056
    }
8057
  else
8058
    {
8059
      splt = NULL;
8060
      plt_offset = (bfd_vma) -1;
8061
      gotplt_offset = (bfd_vma) -1;
8062
    }
8063
 
8064
  switch (r_type)
8065
    {
8066
    case R_ARM_NONE:
8067
      /* We don't need to find a value for this symbol.  It's just a
8068
         marker.  */
8069
      *unresolved_reloc_p = FALSE;
8070
      return bfd_reloc_ok;
8071
 
8072
    case R_ARM_ABS12:
8073
      if (!globals->vxworks_p)
8074
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8075
 
8076
    case R_ARM_PC24:
8077
    case R_ARM_ABS32:
8078
    case R_ARM_ABS32_NOI:
8079
    case R_ARM_REL32:
8080
    case R_ARM_REL32_NOI:
8081
    case R_ARM_CALL:
8082
    case R_ARM_JUMP24:
8083
    case R_ARM_XPC25:
8084
    case R_ARM_PREL31:
8085
    case R_ARM_PLT32:
8086
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
8087
         will use the symbol's value, which may point to a PLT entry, but we
8088
         don't need to handle that here.  If we created a PLT entry, all
8089
         branches in this object should go to it, except if the PLT is too
8090
         far away, in which case a long branch stub should be inserted.  */
8091
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8092
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8093
           && r_type != R_ARM_CALL
8094
           && r_type != R_ARM_JUMP24
8095
           && r_type != R_ARM_PLT32)
8096
          && plt_offset != (bfd_vma) -1)
8097
        {
8098
          /* If we've created a .plt section, and assigned a PLT entry
8099
             to this function, it must either be a STT_GNU_IFUNC reference
8100
             or not be known to bind locally.  In other cases, we should
8101
             have cleared the PLT entry by now.  */
8102
          BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8103
 
8104
          value = (splt->output_section->vma
8105
                   + splt->output_offset
8106
                   + plt_offset);
8107
          *unresolved_reloc_p = FALSE;
8108
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
8109
                                           contents, rel->r_offset, value,
8110
                                           rel->r_addend);
8111
        }
8112
 
8113
      /* When generating a shared object or relocatable executable, these
8114
         relocations are copied into the output file to be resolved at
8115
         run time.  */
8116
      if ((info->shared || globals->root.is_relocatable_executable)
8117
          && (input_section->flags & SEC_ALLOC)
8118
          && !(globals->vxworks_p
8119
               && strcmp (input_section->output_section->name,
8120
                          ".tls_vars") == 0)
8121
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8122
              || !SYMBOL_CALLS_LOCAL (info, h))
8123
          && (!strstr (input_section->name, STUB_SUFFIX))
8124
          && (h == NULL
8125
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8126
              || h->root.type != bfd_link_hash_undefweak)
8127
          && r_type != R_ARM_PC24
8128
          && r_type != R_ARM_CALL
8129
          && r_type != R_ARM_JUMP24
8130
          && r_type != R_ARM_PREL31
8131
          && r_type != R_ARM_PLT32)
8132
        {
8133
          Elf_Internal_Rela outrel;
8134
          bfd_boolean skip, relocate;
8135
 
8136
          *unresolved_reloc_p = FALSE;
8137
 
8138
          if (sreloc == NULL && globals->root.dynamic_sections_created)
8139
            {
8140
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8141
                                                           ! globals->use_rel);
8142
 
8143
              if (sreloc == NULL)
8144
                return bfd_reloc_notsupported;
8145
            }
8146
 
8147
          skip = FALSE;
8148
          relocate = FALSE;
8149
 
8150
          outrel.r_addend = addend;
8151
          outrel.r_offset =
8152
            _bfd_elf_section_offset (output_bfd, info, input_section,
8153
                                     rel->r_offset);
8154
          if (outrel.r_offset == (bfd_vma) -1)
8155
            skip = TRUE;
8156
          else if (outrel.r_offset == (bfd_vma) -2)
8157
            skip = TRUE, relocate = TRUE;
8158
          outrel.r_offset += (input_section->output_section->vma
8159
                              + input_section->output_offset);
8160
 
8161
          if (skip)
8162
            memset (&outrel, 0, sizeof outrel);
8163
          else if (h != NULL
8164
                   && h->dynindx != -1
8165
                   && (!info->shared
8166
                       || !info->symbolic
8167
                       || !h->def_regular))
8168
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8169
          else
8170
            {
8171
              int symbol;
8172
 
8173
              /* This symbol is local, or marked to become local.  */
8174
              BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8175
              if (globals->symbian_p)
8176
                {
8177
                  asection *osec;
8178
 
8179
                  /* On Symbian OS, the data segment and text segement
8180
                     can be relocated independently.  Therefore, we
8181
                     must indicate the segment to which this
8182
                     relocation is relative.  The BPABI allows us to
8183
                     use any symbol in the right segment; we just use
8184
                     the section symbol as it is convenient.  (We
8185
                     cannot use the symbol given by "h" directly as it
8186
                     will not appear in the dynamic symbol table.)
8187
 
8188
                     Note that the dynamic linker ignores the section
8189
                     symbol value, so we don't subtract osec->vma
8190
                     from the emitted reloc addend.  */
8191
                  if (sym_sec)
8192
                    osec = sym_sec->output_section;
8193
                  else
8194
                    osec = input_section->output_section;
8195
                  symbol = elf_section_data (osec)->dynindx;
8196
                  if (symbol == 0)
8197
                    {
8198
                      struct elf_link_hash_table *htab = elf_hash_table (info);
8199
 
8200
                      if ((osec->flags & SEC_READONLY) == 0
8201
                          && htab->data_index_section != NULL)
8202
                        osec = htab->data_index_section;
8203
                      else
8204
                        osec = htab->text_index_section;
8205
                      symbol = elf_section_data (osec)->dynindx;
8206
                    }
8207
                  BFD_ASSERT (symbol != 0);
8208
                }
8209
              else
8210
                /* On SVR4-ish systems, the dynamic loader cannot
8211
                   relocate the text and data segments independently,
8212
                   so the symbol does not matter.  */
8213
                symbol = 0;
8214
              if (dynreloc_st_type == STT_GNU_IFUNC)
8215
                /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8216
                   to the .iplt entry.  Instead, every non-call reference
8217
                   must use an R_ARM_IRELATIVE relocation to obtain the
8218
                   correct run-time address.  */
8219
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8220
              else
8221
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8222
              if (globals->use_rel)
8223
                relocate = TRUE;
8224
              else
8225
                outrel.r_addend += dynreloc_value;
8226
            }
8227
 
8228
          elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8229
 
8230
          /* If this reloc is against an external symbol, we do not want to
8231
             fiddle with the addend.  Otherwise, we need to include the symbol
8232
             value so that it becomes an addend for the dynamic reloc.  */
8233
          if (! relocate)
8234
            return bfd_reloc_ok;
8235
 
8236
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
8237
                                           contents, rel->r_offset,
8238
                                           dynreloc_value, (bfd_vma) 0);
8239
        }
8240
      else switch (r_type)
8241
        {
8242
        case R_ARM_ABS12:
8243
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8244
 
8245
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
8246
        case R_ARM_CALL:
8247
        case R_ARM_JUMP24:
8248
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
8249
        case R_ARM_PLT32:
8250
          {
8251
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8252
 
8253
          if (r_type == R_ARM_XPC25)
8254
            {
8255
              /* Check for Arm calling Arm function.  */
8256
              /* FIXME: Should we translate the instruction into a BL
8257
                 instruction instead ?  */
8258
              if (branch_type != ST_BRANCH_TO_THUMB)
8259
                (*_bfd_error_handler)
8260
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8261
                   input_bfd,
8262
                   h ? h->root.root.string : "(local)");
8263
            }
8264
          else if (r_type == R_ARM_PC24)
8265
            {
8266
              /* Check for Arm calling Thumb function.  */
8267
              if (branch_type == ST_BRANCH_TO_THUMB)
8268
                {
8269
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8270
                                               output_bfd, input_section,
8271
                                               hit_data, sym_sec, rel->r_offset,
8272
                                               signed_addend, value,
8273
                                               error_message))
8274
                    return bfd_reloc_ok;
8275
                  else
8276
                    return bfd_reloc_dangerous;
8277
                }
8278
            }
8279
 
8280
          /* Check if a stub has to be inserted because the
8281
             destination is too far or we are changing mode.  */
8282
          if (   r_type == R_ARM_CALL
8283
              || r_type == R_ARM_JUMP24
8284
              || r_type == R_ARM_PLT32)
8285
            {
8286
              enum elf32_arm_stub_type stub_type = arm_stub_none;
8287
              struct elf32_arm_link_hash_entry *hash;
8288
 
8289
              hash = (struct elf32_arm_link_hash_entry *) h;
8290
              stub_type = arm_type_of_stub (info, input_section, rel,
8291
                                            st_type, &branch_type,
8292
                                            hash, value, sym_sec,
8293
                                            input_bfd, sym_name);
8294
 
8295
              if (stub_type != arm_stub_none)
8296
                {
8297
                  /* The target is out of reach, so redirect the
8298
                     branch to the local stub for this function.  */
8299
                  stub_entry = elf32_arm_get_stub_entry (input_section,
8300
                                                         sym_sec, h,
8301
                                                         rel, globals,
8302
                                                         stub_type);
8303 163 khays
                  {
8304
                    if (stub_entry != NULL)
8305
                      value = (stub_entry->stub_offset
8306
                               + stub_entry->stub_sec->output_offset
8307
                               + stub_entry->stub_sec->output_section->vma);
8308
 
8309
                    if (plt_offset != (bfd_vma) -1)
8310
                      *unresolved_reloc_p = FALSE;
8311
                  }
8312 14 khays
                }
8313
              else
8314
                {
8315
                  /* If the call goes through a PLT entry, make sure to
8316
                     check distance to the right destination address.  */
8317
                  if (plt_offset != (bfd_vma) -1)
8318
                    {
8319
                      value = (splt->output_section->vma
8320
                               + splt->output_offset
8321
                               + plt_offset);
8322
                      *unresolved_reloc_p = FALSE;
8323
                      /* The PLT entry is in ARM mode, regardless of the
8324
                         target function.  */
8325
                      branch_type = ST_BRANCH_TO_ARM;
8326
                    }
8327
                }
8328
            }
8329
 
8330
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8331
             where:
8332
              S is the address of the symbol in the relocation.
8333
              P is address of the instruction being relocated.
8334
              A is the addend (extracted from the instruction) in bytes.
8335
 
8336
             S is held in 'value'.
8337
             P is the base address of the section containing the
8338
               instruction plus the offset of the reloc into that
8339
               section, ie:
8340
                 (input_section->output_section->vma +
8341
                  input_section->output_offset +
8342
                  rel->r_offset).
8343
             A is the addend, converted into bytes, ie:
8344
                 (signed_addend * 4)
8345
 
8346
             Note: None of these operations have knowledge of the pipeline
8347
             size of the processor, thus it is up to the assembler to
8348
             encode this information into the addend.  */
8349
          value -= (input_section->output_section->vma
8350
                    + input_section->output_offset);
8351
          value -= rel->r_offset;
8352
          if (globals->use_rel)
8353
            value += (signed_addend << howto->size);
8354
          else
8355
            /* RELA addends do not have to be adjusted by howto->size.  */
8356
            value += signed_addend;
8357
 
8358
          signed_addend = value;
8359
          signed_addend >>= howto->rightshift;
8360
 
8361
          /* A branch to an undefined weak symbol is turned into a jump to
8362
             the next instruction unless a PLT entry will be created.
8363
             Do the same for local undefined symbols (but not for STN_UNDEF).
8364
             The jump to the next instruction is optimized as a NOP depending
8365
             on the architecture.  */
8366
          if (h ? (h->root.type == bfd_link_hash_undefweak
8367
                   && plt_offset == (bfd_vma) -1)
8368
              : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8369
            {
8370
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8371
 
8372
              if (arch_has_arm_nop (globals))
8373
                value |= 0x0320f000;
8374
              else
8375
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
8376
            }
8377
          else
8378
            {
8379
              /* Perform a signed range check.  */
8380
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
8381
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8382
                return bfd_reloc_overflow;
8383
 
8384
              addend = (value & 2);
8385
 
8386
              value = (signed_addend & howto->dst_mask)
8387
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8388
 
8389
              if (r_type == R_ARM_CALL)
8390
                {
8391
                  /* Set the H bit in the BLX instruction.  */
8392
                  if (branch_type == ST_BRANCH_TO_THUMB)
8393
                    {
8394
                      if (addend)
8395
                        value |= (1 << 24);
8396
                      else
8397
                        value &= ~(bfd_vma)(1 << 24);
8398
                    }
8399
 
8400
                  /* Select the correct instruction (BL or BLX).  */
8401
                  /* Only if we are not handling a BL to a stub. In this
8402
                     case, mode switching is performed by the stub.  */
8403
                  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8404
                    value |= (1 << 28);
8405
                  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8406
                    {
8407
                      value &= ~(bfd_vma)(1 << 28);
8408
                      value |= (1 << 24);
8409
                    }
8410
                }
8411
            }
8412
          }
8413
          break;
8414
 
8415
        case R_ARM_ABS32:
8416
          value += addend;
8417
          if (branch_type == ST_BRANCH_TO_THUMB)
8418
            value |= 1;
8419
          break;
8420
 
8421
        case R_ARM_ABS32_NOI:
8422
          value += addend;
8423
          break;
8424
 
8425
        case R_ARM_REL32:
8426
          value += addend;
8427
          if (branch_type == ST_BRANCH_TO_THUMB)
8428
            value |= 1;
8429
          value -= (input_section->output_section->vma
8430
                    + input_section->output_offset + rel->r_offset);
8431
          break;
8432
 
8433
        case R_ARM_REL32_NOI:
8434
          value += addend;
8435
          value -= (input_section->output_section->vma
8436
                    + input_section->output_offset + rel->r_offset);
8437
          break;
8438
 
8439
        case R_ARM_PREL31:
8440
          value -= (input_section->output_section->vma
8441
                    + input_section->output_offset + rel->r_offset);
8442
          value += signed_addend;
8443
          if (! h || h->root.type != bfd_link_hash_undefweak)
8444
            {
8445
              /* Check for overflow.  */
8446
              if ((value ^ (value >> 1)) & (1 << 30))
8447
                return bfd_reloc_overflow;
8448
            }
8449
          value &= 0x7fffffff;
8450
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8451
          if (branch_type == ST_BRANCH_TO_THUMB)
8452
            value |= 1;
8453
          break;
8454
        }
8455
 
8456
      bfd_put_32 (input_bfd, value, hit_data);
8457
      return bfd_reloc_ok;
8458
 
8459
    case R_ARM_ABS8:
8460
      value += addend;
8461
 
8462
      /* There is no way to tell whether the user intended to use a signed or
8463
         unsigned addend.  When checking for overflow we accept either,
8464
         as specified by the AAELF.  */
8465
      if ((long) value > 0xff || (long) value < -0x80)
8466
        return bfd_reloc_overflow;
8467
 
8468
      bfd_put_8 (input_bfd, value, hit_data);
8469
      return bfd_reloc_ok;
8470
 
8471
    case R_ARM_ABS16:
8472
      value += addend;
8473
 
8474
      /* See comment for R_ARM_ABS8.  */
8475
      if ((long) value > 0xffff || (long) value < -0x8000)
8476
        return bfd_reloc_overflow;
8477
 
8478
      bfd_put_16 (input_bfd, value, hit_data);
8479
      return bfd_reloc_ok;
8480
 
8481
    case R_ARM_THM_ABS5:
8482
      /* Support ldr and str instructions for the thumb.  */
8483
      if (globals->use_rel)
8484
        {
8485
          /* Need to refetch addend.  */
8486
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8487
          /* ??? Need to determine shift amount from operand size.  */
8488
          addend >>= howto->rightshift;
8489
        }
8490
      value += addend;
8491
 
8492
      /* ??? Isn't value unsigned?  */
8493
      if ((long) value > 0x1f || (long) value < -0x10)
8494
        return bfd_reloc_overflow;
8495
 
8496
      /* ??? Value needs to be properly shifted into place first.  */
8497
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8498
      bfd_put_16 (input_bfd, value, hit_data);
8499
      return bfd_reloc_ok;
8500
 
8501
    case R_ARM_THM_ALU_PREL_11_0:
8502
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
8503
      {
8504
        bfd_vma insn;
8505
        bfd_signed_vma relocation;
8506
 
8507
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8508
             | bfd_get_16 (input_bfd, hit_data + 2);
8509
 
8510
        if (globals->use_rel)
8511
          {
8512
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8513
                          | ((insn & (1 << 26)) >> 15);
8514
            if (insn & 0xf00000)
8515
              signed_addend = -signed_addend;
8516
          }
8517
 
8518
        relocation = value + signed_addend;
8519
        relocation -= (input_section->output_section->vma
8520
                       + input_section->output_offset
8521
                       + rel->r_offset);
8522
 
8523
        value = abs (relocation);
8524
 
8525
        if (value >= 0x1000)
8526
          return bfd_reloc_overflow;
8527
 
8528
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
8529
             | ((value & 0x700) << 4)
8530
             | ((value & 0x800) << 15);
8531
        if (relocation < 0)
8532
          insn |= 0xa00000;
8533
 
8534
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8535
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8536
 
8537
        return bfd_reloc_ok;
8538
      }
8539
 
8540
    case R_ARM_THM_PC8:
8541
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
8542
         but it is supported for compatibility with third party libraries
8543
         generated by other compilers, specifically the ARM/IAR.  */
8544
      {
8545
        bfd_vma insn;
8546
        bfd_signed_vma relocation;
8547
 
8548
        insn = bfd_get_16 (input_bfd, hit_data);
8549
 
8550
        if (globals->use_rel)
8551
          addend = (insn & 0x00ff) << 2;
8552
 
8553
        relocation = value + addend;
8554
        relocation -= (input_section->output_section->vma
8555
                       + input_section->output_offset
8556
                       + rel->r_offset);
8557
 
8558
        value = abs (relocation);
8559
 
8560
        /* We do not check for overflow of this reloc.  Although strictly
8561
           speaking this is incorrect, it appears to be necessary in order
8562
           to work with IAR generated relocs.  Since GCC and GAS do not
8563
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8564
           a problem for them.  */
8565
        value &= 0x3fc;
8566
 
8567
        insn = (insn & 0xff00) | (value >> 2);
8568
 
8569
        bfd_put_16 (input_bfd, insn, hit_data);
8570
 
8571
        return bfd_reloc_ok;
8572
      }
8573
 
8574
    case R_ARM_THM_PC12:
8575
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
8576
      {
8577
        bfd_vma insn;
8578
        bfd_signed_vma relocation;
8579
 
8580
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8581
             | bfd_get_16 (input_bfd, hit_data + 2);
8582
 
8583
        if (globals->use_rel)
8584
          {
8585
            signed_addend = insn & 0xfff;
8586
            if (!(insn & (1 << 23)))
8587
              signed_addend = -signed_addend;
8588
          }
8589
 
8590
        relocation = value + signed_addend;
8591
        relocation -= (input_section->output_section->vma
8592
                       + input_section->output_offset
8593
                       + rel->r_offset);
8594
 
8595
        value = abs (relocation);
8596
 
8597
        if (value >= 0x1000)
8598
          return bfd_reloc_overflow;
8599
 
8600
        insn = (insn & 0xff7ff000) | value;
8601
        if (relocation >= 0)
8602
          insn |= (1 << 23);
8603
 
8604
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
8605
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8606
 
8607
        return bfd_reloc_ok;
8608
      }
8609
 
8610
    case R_ARM_THM_XPC22:
8611
    case R_ARM_THM_CALL:
8612
    case R_ARM_THM_JUMP24:
8613
      /* Thumb BL (branch long instruction).  */
8614
      {
8615
        bfd_vma relocation;
8616
        bfd_vma reloc_sign;
8617
        bfd_boolean overflow = FALSE;
8618
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8619
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8620
        bfd_signed_vma reloc_signed_max;
8621
        bfd_signed_vma reloc_signed_min;
8622
        bfd_vma check;
8623
        bfd_signed_vma signed_check;
8624
        int bitsize;
8625
        const int thumb2 = using_thumb2 (globals);
8626
 
8627
        /* A branch to an undefined weak symbol is turned into a jump to
8628
           the next instruction unless a PLT entry will be created.
8629
           The jump to the next instruction is optimized as a NOP.W for
8630
           Thumb-2 enabled architectures.  */
8631
        if (h && h->root.type == bfd_link_hash_undefweak
8632
            && plt_offset == (bfd_vma) -1)
8633
          {
8634
            if (arch_has_thumb2_nop (globals))
8635
              {
8636
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
8637
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8638
              }
8639
            else
8640
              {
8641
                bfd_put_16 (input_bfd, 0xe000, hit_data);
8642
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8643
              }
8644
            return bfd_reloc_ok;
8645
          }
8646
 
8647
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
8648
           with Thumb-1) involving the J1 and J2 bits.  */
8649
        if (globals->use_rel)
8650
          {
8651
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8652
            bfd_vma upper = upper_insn & 0x3ff;
8653
            bfd_vma lower = lower_insn & 0x7ff;
8654
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8655
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8656
            bfd_vma i1 = j1 ^ s ? 0 : 1;
8657
            bfd_vma i2 = j2 ^ s ? 0 : 1;
8658
 
8659
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8660
            /* Sign extend.  */
8661
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8662
 
8663
            signed_addend = addend;
8664
          }
8665
 
8666
        if (r_type == R_ARM_THM_XPC22)
8667
          {
8668
            /* Check for Thumb to Thumb call.  */
8669
            /* FIXME: Should we translate the instruction into a BL
8670
               instruction instead ?  */
8671
            if (branch_type == ST_BRANCH_TO_THUMB)
8672
              (*_bfd_error_handler)
8673
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8674
                 input_bfd,
8675
                 h ? h->root.root.string : "(local)");
8676
          }
8677
        else
8678
          {
8679
            /* If it is not a call to Thumb, assume call to Arm.
8680
               If it is a call relative to a section name, then it is not a
8681
               function call at all, but rather a long jump.  Calls through
8682
               the PLT do not require stubs.  */
8683
            if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8684
              {
8685
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
8686
                  {
8687
                    /* Convert BL to BLX.  */
8688
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
8689
                  }
8690
                else if ((   r_type != R_ARM_THM_CALL)
8691
                         && (r_type != R_ARM_THM_JUMP24))
8692
                  {
8693
                    if (elf32_thumb_to_arm_stub
8694
                        (info, sym_name, input_bfd, output_bfd, input_section,
8695
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
8696
                         error_message))
8697
                      return bfd_reloc_ok;
8698
                    else
8699
                      return bfd_reloc_dangerous;
8700
                  }
8701
              }
8702
            else if (branch_type == ST_BRANCH_TO_THUMB
8703
                     && globals->use_blx
8704
                     && r_type == R_ARM_THM_CALL)
8705
              {
8706
                /* Make sure this is a BL.  */
8707
                lower_insn |= 0x1800;
8708
              }
8709
          }
8710
 
8711
        enum elf32_arm_stub_type stub_type = arm_stub_none;
8712
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8713
          {
8714
            /* Check if a stub has to be inserted because the destination
8715
               is too far.  */
8716
            struct elf32_arm_stub_hash_entry *stub_entry;
8717
            struct elf32_arm_link_hash_entry *hash;
8718
 
8719
            hash = (struct elf32_arm_link_hash_entry *) h;
8720
 
8721
            stub_type = arm_type_of_stub (info, input_section, rel,
8722
                                          st_type, &branch_type,
8723
                                          hash, value, sym_sec,
8724
                                          input_bfd, sym_name);
8725
 
8726
            if (stub_type != arm_stub_none)
8727
              {
8728
                /* The target is out of reach or we are changing modes, so
8729
                   redirect the branch to the local stub for this
8730
                   function.  */
8731
                stub_entry = elf32_arm_get_stub_entry (input_section,
8732
                                                       sym_sec, h,
8733
                                                       rel, globals,
8734
                                                       stub_type);
8735
                if (stub_entry != NULL)
8736 163 khays
                  {
8737
                    value = (stub_entry->stub_offset
8738
                             + stub_entry->stub_sec->output_offset
8739
                             + stub_entry->stub_sec->output_section->vma);
8740 14 khays
 
8741 163 khays
                    if (plt_offset != (bfd_vma) -1)
8742
                      *unresolved_reloc_p = FALSE;
8743
                  }
8744
 
8745 14 khays
                /* If this call becomes a call to Arm, force BLX.  */
8746
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8747
                  {
8748
                    if ((stub_entry
8749
                         && !arm_stub_is_thumb (stub_entry->stub_type))
8750
                        || branch_type != ST_BRANCH_TO_THUMB)
8751
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
8752
                  }
8753
              }
8754
          }
8755
 
8756
        /* Handle calls via the PLT.  */
8757
        if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8758
          {
8759
            value = (splt->output_section->vma
8760
                     + splt->output_offset
8761
                     + plt_offset);
8762
 
8763
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
8764
              {
8765
                /* If the Thumb BLX instruction is available, convert
8766
                   the BL to a BLX instruction to call the ARM-mode
8767
                   PLT entry.  */
8768
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
8769
                branch_type = ST_BRANCH_TO_ARM;
8770
              }
8771
            else
8772
              {
8773
                /* Target the Thumb stub before the ARM PLT entry.  */
8774
                value -= PLT_THUMB_STUB_SIZE;
8775
                branch_type = ST_BRANCH_TO_THUMB;
8776
              }
8777
            *unresolved_reloc_p = FALSE;
8778
          }
8779
 
8780
        relocation = value + signed_addend;
8781
 
8782
        relocation -= (input_section->output_section->vma
8783
                       + input_section->output_offset
8784
                       + rel->r_offset);
8785
 
8786
        check = relocation >> howto->rightshift;
8787
 
8788
        /* If this is a signed value, the rightshift just dropped
8789
           leading 1 bits (assuming twos complement).  */
8790
        if ((bfd_signed_vma) relocation >= 0)
8791
          signed_check = check;
8792
        else
8793
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8794
 
8795
        /* Calculate the permissable maximum and minimum values for
8796
           this relocation according to whether we're relocating for
8797
           Thumb-2 or not.  */
8798
        bitsize = howto->bitsize;
8799
        if (!thumb2)
8800
          bitsize -= 2;
8801
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
8802
        reloc_signed_min = ~reloc_signed_max;
8803
 
8804
        /* Assumes two's complement.  */
8805
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8806
          overflow = TRUE;
8807
 
8808
        if ((lower_insn & 0x5000) == 0x4000)
8809
          /* For a BLX instruction, make sure that the relocation is rounded up
8810
             to a word boundary.  This follows the semantics of the instruction
8811
             which specifies that bit 1 of the target address will come from bit
8812
             1 of the base address.  */
8813
          relocation = (relocation + 2) & ~ 3;
8814
 
8815
        /* Put RELOCATION back into the insn.  Assumes two's complement.
8816
           We use the Thumb-2 encoding, which is safe even if dealing with
8817
           a Thumb-1 instruction by virtue of our overflow check above.  */
8818
        reloc_sign = (signed_check < 0) ? 1 : 0;
8819
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8820
                     | ((relocation >> 12) & 0x3ff)
8821
                     | (reloc_sign << 10);
8822
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8823
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8824
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8825
                     | ((relocation >> 1) & 0x7ff);
8826
 
8827
        /* Put the relocated value back in the object file:  */
8828
        bfd_put_16 (input_bfd, upper_insn, hit_data);
8829
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8830
 
8831
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8832
      }
8833
      break;
8834
 
8835
    case R_ARM_THM_JUMP19:
8836
      /* Thumb32 conditional branch instruction.  */
8837
      {
8838
        bfd_vma relocation;
8839
        bfd_boolean overflow = FALSE;
8840
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8841
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8842
        bfd_signed_vma reloc_signed_max = 0xffffe;
8843
        bfd_signed_vma reloc_signed_min = -0x100000;
8844
        bfd_signed_vma signed_check;
8845
 
8846
        /* Need to refetch the addend, reconstruct the top three bits,
8847
           and squish the two 11 bit pieces together.  */
8848
        if (globals->use_rel)
8849
          {
8850
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
8851
            bfd_vma upper = (upper_insn & 0x003f);
8852
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
8853
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
8854
            bfd_vma lower = (lower_insn & 0x07ff);
8855
 
8856
            upper |= J1 << 6;
8857
            upper |= J2 << 7;
8858
            upper |= (!S) << 8;
8859
            upper -= 0x0100; /* Sign extend.  */
8860
 
8861
            addend = (upper << 12) | (lower << 1);
8862
            signed_addend = addend;
8863
          }
8864
 
8865
        /* Handle calls via the PLT.  */
8866
        if (plt_offset != (bfd_vma) -1)
8867
          {
8868
            value = (splt->output_section->vma
8869
                     + splt->output_offset
8870
                     + plt_offset);
8871
            /* Target the Thumb stub before the ARM PLT entry.  */
8872
            value -= PLT_THUMB_STUB_SIZE;
8873
            *unresolved_reloc_p = FALSE;
8874
          }
8875
 
8876
        /* ??? Should handle interworking?  GCC might someday try to
8877
           use this for tail calls.  */
8878
 
8879
        relocation = value + signed_addend;
8880
        relocation -= (input_section->output_section->vma
8881
                       + input_section->output_offset
8882
                       + rel->r_offset);
8883
        signed_check = (bfd_signed_vma) relocation;
8884
 
8885
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8886
          overflow = TRUE;
8887
 
8888
        /* Put RELOCATION back into the insn.  */
8889
        {
8890
          bfd_vma S  = (relocation & 0x00100000) >> 20;
8891
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
8892
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
8893
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
8894
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
8895
 
8896
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8897
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8898
        }
8899
 
8900
        /* Put the relocated value back in the object file:  */
8901
        bfd_put_16 (input_bfd, upper_insn, hit_data);
8902
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8903
 
8904
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8905
      }
8906
 
8907
    case R_ARM_THM_JUMP11:
8908
    case R_ARM_THM_JUMP8:
8909
    case R_ARM_THM_JUMP6:
8910
      /* Thumb B (branch) instruction).  */
8911
      {
8912
        bfd_signed_vma relocation;
8913
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8914
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8915
        bfd_signed_vma signed_check;
8916
 
8917
        /* CZB cannot jump backward.  */
8918
        if (r_type == R_ARM_THM_JUMP6)
8919
          reloc_signed_min = 0;
8920
 
8921
        if (globals->use_rel)
8922
          {
8923
            /* Need to refetch addend.  */
8924
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8925
            if (addend & ((howto->src_mask + 1) >> 1))
8926
              {
8927
                signed_addend = -1;
8928
                signed_addend &= ~ howto->src_mask;
8929
                signed_addend |= addend;
8930
              }
8931
            else
8932
              signed_addend = addend;
8933
            /* The value in the insn has been right shifted.  We need to
8934
               undo this, so that we can perform the address calculation
8935
               in terms of bytes.  */
8936
            signed_addend <<= howto->rightshift;
8937
          }
8938
        relocation = value + signed_addend;
8939
 
8940
        relocation -= (input_section->output_section->vma
8941
                       + input_section->output_offset
8942
                       + rel->r_offset);
8943
 
8944
        relocation >>= howto->rightshift;
8945
        signed_check = relocation;
8946
 
8947
        if (r_type == R_ARM_THM_JUMP6)
8948
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8949
        else
8950
          relocation &= howto->dst_mask;
8951
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8952
 
8953
        bfd_put_16 (input_bfd, relocation, hit_data);
8954
 
8955
        /* Assumes two's complement.  */
8956
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8957
          return bfd_reloc_overflow;
8958
 
8959
        return bfd_reloc_ok;
8960
      }
8961
 
8962
    case R_ARM_ALU_PCREL7_0:
8963
    case R_ARM_ALU_PCREL15_8:
8964
    case R_ARM_ALU_PCREL23_15:
8965
      {
8966
        bfd_vma insn;
8967
        bfd_vma relocation;
8968
 
8969
        insn = bfd_get_32 (input_bfd, hit_data);
8970
        if (globals->use_rel)
8971
          {
8972
            /* Extract the addend.  */
8973
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8974
            signed_addend = addend;
8975
          }
8976
        relocation = value + signed_addend;
8977
 
8978
        relocation -= (input_section->output_section->vma
8979
                       + input_section->output_offset
8980
                       + rel->r_offset);
8981
        insn = (insn & ~0xfff)
8982
               | ((howto->bitpos << 7) & 0xf00)
8983
               | ((relocation >> howto->bitpos) & 0xff);
8984
        bfd_put_32 (input_bfd, value, hit_data);
8985
      }
8986
      return bfd_reloc_ok;
8987
 
8988
    case R_ARM_GNU_VTINHERIT:
8989
    case R_ARM_GNU_VTENTRY:
8990
      return bfd_reloc_ok;
8991
 
8992
    case R_ARM_GOTOFF32:
8993
      /* Relocation is relative to the start of the
8994
         global offset table.  */
8995
 
8996
      BFD_ASSERT (sgot != NULL);
8997
      if (sgot == NULL)
8998
        return bfd_reloc_notsupported;
8999
 
9000
      /* If we are addressing a Thumb function, we need to adjust the
9001
         address by one, so that attempts to call the function pointer will
9002
         correctly interpret it as Thumb code.  */
9003
      if (branch_type == ST_BRANCH_TO_THUMB)
9004
        value += 1;
9005
 
9006
      /* Note that sgot->output_offset is not involved in this
9007
         calculation.  We always want the start of .got.  If we
9008
         define _GLOBAL_OFFSET_TABLE in a different way, as is
9009
         permitted by the ABI, we might have to change this
9010
         calculation.  */
9011
      value -= sgot->output_section->vma;
9012
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9013
                                       contents, rel->r_offset, value,
9014
                                       rel->r_addend);
9015
 
9016
    case R_ARM_GOTPC:
9017
      /* Use global offset table as symbol value.  */
9018
      BFD_ASSERT (sgot != NULL);
9019
 
9020
      if (sgot == NULL)
9021
        return bfd_reloc_notsupported;
9022
 
9023
      *unresolved_reloc_p = FALSE;
9024
      value = sgot->output_section->vma;
9025
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9026
                                       contents, rel->r_offset, value,
9027
                                       rel->r_addend);
9028
 
9029
    case R_ARM_GOT32:
9030
    case R_ARM_GOT_PREL:
9031
      /* Relocation is to the entry for this symbol in the
9032
         global offset table.  */
9033
      if (sgot == NULL)
9034
        return bfd_reloc_notsupported;
9035
 
9036
      if (dynreloc_st_type == STT_GNU_IFUNC
9037
          && plt_offset != (bfd_vma) -1
9038
          && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9039
        {
9040
          /* We have a relocation against a locally-binding STT_GNU_IFUNC
9041
             symbol, and the relocation resolves directly to the runtime
9042
             target rather than to the .iplt entry.  This means that any
9043
             .got entry would be the same value as the .igot.plt entry,
9044
             so there's no point creating both.  */
9045
          sgot = globals->root.igotplt;
9046
          value = sgot->output_offset + gotplt_offset;
9047
        }
9048
      else if (h != NULL)
9049
        {
9050
          bfd_vma off;
9051
 
9052
          off = h->got.offset;
9053
          BFD_ASSERT (off != (bfd_vma) -1);
9054
          if ((off & 1) != 0)
9055
            {
9056
              /* We have already processsed one GOT relocation against
9057
                 this symbol.  */
9058
              off &= ~1;
9059
              if (globals->root.dynamic_sections_created
9060
                  && !SYMBOL_REFERENCES_LOCAL (info, h))
9061
                *unresolved_reloc_p = FALSE;
9062
            }
9063
          else
9064
            {
9065
              Elf_Internal_Rela outrel;
9066
 
9067
              if (!SYMBOL_REFERENCES_LOCAL (info, h))
9068
                {
9069
                  /* If the symbol doesn't resolve locally in a static
9070
                     object, we have an undefined reference.  If the
9071
                     symbol doesn't resolve locally in a dynamic object,
9072
                     it should be resolved by the dynamic linker.  */
9073
                  if (globals->root.dynamic_sections_created)
9074
                    {
9075
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9076
                      *unresolved_reloc_p = FALSE;
9077
                    }
9078
                  else
9079
                    outrel.r_info = 0;
9080
                  outrel.r_addend = 0;
9081
                }
9082
              else
9083
                {
9084
                  if (dynreloc_st_type == STT_GNU_IFUNC)
9085
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9086
                  else if (info->shared)
9087
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9088
                  else
9089
                    outrel.r_info = 0;
9090
                  outrel.r_addend = dynreloc_value;
9091
                }
9092
 
9093
              /* The GOT entry is initialized to zero by default.
9094
                 See if we should install a different value.  */
9095
              if (outrel.r_addend != 0
9096
                  && (outrel.r_info == 0 || globals->use_rel))
9097
                {
9098
                  bfd_put_32 (output_bfd, outrel.r_addend,
9099
                              sgot->contents + off);
9100
                  outrel.r_addend = 0;
9101
                }
9102
 
9103
              if (outrel.r_info != 0)
9104
                {
9105
                  outrel.r_offset = (sgot->output_section->vma
9106
                                     + sgot->output_offset
9107
                                     + off);
9108
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9109
                }
9110
              h->got.offset |= 1;
9111
            }
9112
          value = sgot->output_offset + off;
9113
        }
9114
      else
9115
        {
9116
          bfd_vma off;
9117
 
9118
          BFD_ASSERT (local_got_offsets != NULL &&
9119
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
9120
 
9121
          off = local_got_offsets[r_symndx];
9122
 
9123
          /* The offset must always be a multiple of 4.  We use the
9124
             least significant bit to record whether we have already
9125
             generated the necessary reloc.  */
9126
          if ((off & 1) != 0)
9127
            off &= ~1;
9128
          else
9129
            {
9130
              if (globals->use_rel)
9131
                bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9132
 
9133
              if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9134
                {
9135
                  Elf_Internal_Rela outrel;
9136
 
9137
                  outrel.r_addend = addend + dynreloc_value;
9138
                  outrel.r_offset = (sgot->output_section->vma
9139
                                     + sgot->output_offset
9140
                                     + off);
9141
                  if (dynreloc_st_type == STT_GNU_IFUNC)
9142
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9143
                  else
9144
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9145
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9146
                }
9147
 
9148
              local_got_offsets[r_symndx] |= 1;
9149
            }
9150
 
9151
          value = sgot->output_offset + off;
9152
        }
9153
      if (r_type != R_ARM_GOT32)
9154
        value += sgot->output_section->vma;
9155
 
9156
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9157
                                       contents, rel->r_offset, value,
9158
                                       rel->r_addend);
9159
 
9160
    case R_ARM_TLS_LDO32:
9161
      value = value - dtpoff_base (info);
9162
 
9163
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9164
                                       contents, rel->r_offset, value,
9165
                                       rel->r_addend);
9166
 
9167
    case R_ARM_TLS_LDM32:
9168
      {
9169
        bfd_vma off;
9170
 
9171
        if (sgot == NULL)
9172
          abort ();
9173
 
9174
        off = globals->tls_ldm_got.offset;
9175
 
9176
        if ((off & 1) != 0)
9177
          off &= ~1;
9178
        else
9179
          {
9180
            /* If we don't know the module number, create a relocation
9181
               for it.  */
9182
            if (info->shared)
9183
              {
9184
                Elf_Internal_Rela outrel;
9185
 
9186
                if (srelgot == NULL)
9187
                  abort ();
9188
 
9189
                outrel.r_addend = 0;
9190
                outrel.r_offset = (sgot->output_section->vma
9191
                                   + sgot->output_offset + off);
9192
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9193
 
9194
                if (globals->use_rel)
9195
                  bfd_put_32 (output_bfd, outrel.r_addend,
9196
                              sgot->contents + off);
9197
 
9198
                elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9199
              }
9200
            else
9201
              bfd_put_32 (output_bfd, 1, sgot->contents + off);
9202
 
9203
            globals->tls_ldm_got.offset |= 1;
9204
          }
9205
 
9206
        value = sgot->output_section->vma + sgot->output_offset + off
9207
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9208
 
9209
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
9210
                                         contents, rel->r_offset, value,
9211
                                         rel->r_addend);
9212
      }
9213
 
9214
    case R_ARM_TLS_CALL:
9215
    case R_ARM_THM_TLS_CALL:
9216
    case R_ARM_TLS_GD32:
9217
    case R_ARM_TLS_IE32:
9218
    case R_ARM_TLS_GOTDESC:
9219
    case R_ARM_TLS_DESCSEQ:
9220
    case R_ARM_THM_TLS_DESCSEQ:
9221
      {
9222
        bfd_vma off, offplt;
9223
        int indx = 0;
9224
        char tls_type;
9225
 
9226
        BFD_ASSERT (sgot != NULL);
9227
 
9228
        if (h != NULL)
9229
          {
9230
            bfd_boolean dyn;
9231
            dyn = globals->root.dynamic_sections_created;
9232
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9233
                && (!info->shared
9234
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
9235
              {
9236
                *unresolved_reloc_p = FALSE;
9237
                indx = h->dynindx;
9238
              }
9239
            off = h->got.offset;
9240
            offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9241
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9242
          }
9243
        else
9244
          {
9245
            BFD_ASSERT (local_got_offsets != NULL);
9246
            off = local_got_offsets[r_symndx];
9247
            offplt = local_tlsdesc_gotents[r_symndx];
9248
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9249
          }
9250
 
9251
        /* Linker relaxations happens from one of the
9252
           R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
9253
        if (ELF32_R_TYPE(rel->r_info) != r_type)
9254
          tls_type = GOT_TLS_IE;
9255
 
9256
        BFD_ASSERT (tls_type != GOT_UNKNOWN);
9257
 
9258
        if ((off & 1) != 0)
9259
          off &= ~1;
9260
        else
9261
          {
9262
            bfd_boolean need_relocs = FALSE;
9263
            Elf_Internal_Rela outrel;
9264
            int cur_off = off;
9265
 
9266
            /* The GOT entries have not been initialized yet.  Do it
9267
               now, and emit any relocations.  If both an IE GOT and a
9268
               GD GOT are necessary, we emit the GD first.  */
9269
 
9270
            if ((info->shared || indx != 0)
9271
                && (h == NULL
9272
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9273
                    || h->root.type != bfd_link_hash_undefweak))
9274
              {
9275
                need_relocs = TRUE;
9276
                BFD_ASSERT (srelgot != NULL);
9277
              }
9278
 
9279
            if (tls_type & GOT_TLS_GDESC)
9280
              {
9281
                bfd_byte *loc;
9282
 
9283
                /* We should have relaxed, unless this is an undefined
9284
                   weak symbol.  */
9285
                BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9286
                            || info->shared);
9287
                BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9288
                            <= globals->root.sgotplt->size);
9289
 
9290
                outrel.r_addend = 0;
9291
                outrel.r_offset = (globals->root.sgotplt->output_section->vma
9292
                                   + globals->root.sgotplt->output_offset
9293
                                   + offplt
9294
                                   + globals->sgotplt_jump_table_size);
9295
 
9296
                outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9297
                sreloc = globals->root.srelplt;
9298
                loc = sreloc->contents;
9299
                loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9300
                BFD_ASSERT (loc + RELOC_SIZE (globals)
9301
                           <= sreloc->contents + sreloc->size);
9302
 
9303
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9304
 
9305
                /* For globals, the first word in the relocation gets
9306
                   the relocation index and the top bit set, or zero,
9307
                   if we're binding now.  For locals, it gets the
9308
                   symbol's offset in the tls section.  */
9309
                bfd_put_32 (output_bfd,
9310
                            !h ? value - elf_hash_table (info)->tls_sec->vma
9311
                            : info->flags & DF_BIND_NOW ? 0
9312
                            : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9313
                            globals->root.sgotplt->contents + offplt +
9314
                            globals->sgotplt_jump_table_size);
9315
 
9316
                /* Second word in the relocation is always zero.  */
9317
                bfd_put_32 (output_bfd, 0,
9318
                            globals->root.sgotplt->contents + offplt +
9319
                            globals->sgotplt_jump_table_size + 4);
9320
              }
9321
            if (tls_type & GOT_TLS_GD)
9322
              {
9323
                if (need_relocs)
9324
                  {
9325
                    outrel.r_addend = 0;
9326
                    outrel.r_offset = (sgot->output_section->vma
9327
                                       + sgot->output_offset
9328
                                       + cur_off);
9329
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9330
 
9331
                    if (globals->use_rel)
9332
                      bfd_put_32 (output_bfd, outrel.r_addend,
9333
                                  sgot->contents + cur_off);
9334
 
9335
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9336
 
9337
                    if (indx == 0)
9338
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
9339
                                  sgot->contents + cur_off + 4);
9340
                    else
9341
                      {
9342
                        outrel.r_addend = 0;
9343
                        outrel.r_info = ELF32_R_INFO (indx,
9344
                                                      R_ARM_TLS_DTPOFF32);
9345
                        outrel.r_offset += 4;
9346
 
9347
                        if (globals->use_rel)
9348
                          bfd_put_32 (output_bfd, outrel.r_addend,
9349
                                      sgot->contents + cur_off + 4);
9350
 
9351
                        elf32_arm_add_dynreloc (output_bfd, info,
9352
                                                srelgot, &outrel);
9353
                      }
9354
                  }
9355
                else
9356
                  {
9357
                    /* If we are not emitting relocations for a
9358
                       general dynamic reference, then we must be in a
9359
                       static link or an executable link with the
9360
                       symbol binding locally.  Mark it as belonging
9361
                       to module 1, the executable.  */
9362
                    bfd_put_32 (output_bfd, 1,
9363
                                sgot->contents + cur_off);
9364
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
9365
                                sgot->contents + cur_off + 4);
9366
                  }
9367
 
9368
                cur_off += 8;
9369
              }
9370
 
9371
            if (tls_type & GOT_TLS_IE)
9372
              {
9373
                if (need_relocs)
9374
                  {
9375
                    if (indx == 0)
9376
                      outrel.r_addend = value - dtpoff_base (info);
9377
                    else
9378
                      outrel.r_addend = 0;
9379
                    outrel.r_offset = (sgot->output_section->vma
9380
                                       + sgot->output_offset
9381
                                       + cur_off);
9382
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9383
 
9384
                    if (globals->use_rel)
9385
                      bfd_put_32 (output_bfd, outrel.r_addend,
9386
                                  sgot->contents + cur_off);
9387
 
9388
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9389
                  }
9390
                else
9391
                  bfd_put_32 (output_bfd, tpoff (info, value),
9392
                              sgot->contents + cur_off);
9393
                cur_off += 4;
9394
              }
9395
 
9396
            if (h != NULL)
9397
              h->got.offset |= 1;
9398
            else
9399
              local_got_offsets[r_symndx] |= 1;
9400
          }
9401
 
9402
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9403
          off += 8;
9404
        else if (tls_type & GOT_TLS_GDESC)
9405
          off = offplt;
9406
 
9407
        if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9408
            || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9409
          {
9410
            bfd_signed_vma offset;
9411
            /* TLS stubs are arm mode.  The original symbol is a
9412
               data object, so branch_type is bogus.  */
9413
            branch_type = ST_BRANCH_TO_ARM;
9414
            enum elf32_arm_stub_type stub_type
9415
              = arm_type_of_stub (info, input_section, rel,
9416
                                  st_type, &branch_type,
9417
                                  (struct elf32_arm_link_hash_entry *)h,
9418
                                  globals->tls_trampoline, globals->root.splt,
9419
                                  input_bfd, sym_name);
9420
 
9421
            if (stub_type != arm_stub_none)
9422
              {
9423
                struct elf32_arm_stub_hash_entry *stub_entry
9424
                  = elf32_arm_get_stub_entry
9425
                  (input_section, globals->root.splt, 0, rel,
9426
                   globals, stub_type);
9427
                offset = (stub_entry->stub_offset
9428
                          + stub_entry->stub_sec->output_offset
9429
                          + stub_entry->stub_sec->output_section->vma);
9430
              }
9431
            else
9432
              offset = (globals->root.splt->output_section->vma
9433
                        + globals->root.splt->output_offset
9434
                        + globals->tls_trampoline);
9435
 
9436
            if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9437
              {
9438
                unsigned long inst;
9439
 
9440
                offset -= (input_section->output_section->vma +
9441
                           input_section->output_offset + rel->r_offset + 8);
9442
 
9443
                inst = offset >> 2;
9444
                inst &= 0x00ffffff;
9445
                value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9446
              }
9447
            else
9448
              {
9449
                /* Thumb blx encodes the offset in a complicated
9450
                   fashion.  */
9451
                unsigned upper_insn, lower_insn;
9452
                unsigned neg;
9453
 
9454
                offset -= (input_section->output_section->vma +
9455
                           input_section->output_offset
9456
                           + rel->r_offset + 4);
9457
 
9458
                if (stub_type != arm_stub_none
9459
                    && arm_stub_is_thumb (stub_type))
9460
                  {
9461
                    lower_insn = 0xd000;
9462
                  }
9463
                else
9464
                  {
9465
                    lower_insn = 0xc000;
9466
                    /* Round up the offset to a word boundary */
9467
                    offset = (offset + 2) & ~2;
9468
                  }
9469
 
9470
                neg = offset < 0;
9471
                upper_insn = (0xf000
9472
                              | ((offset >> 12) & 0x3ff)
9473
                              | (neg << 10));
9474
                lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9475
                              | (((!((offset >> 22) & 1)) ^ neg) << 11)
9476
                              | ((offset >> 1) & 0x7ff);
9477
                bfd_put_16 (input_bfd, upper_insn, hit_data);
9478
                bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9479
                return bfd_reloc_ok;
9480
              }
9481
          }
9482
        /* These relocations needs special care, as besides the fact
9483
           they point somewhere in .gotplt, the addend must be
9484
           adjusted accordingly depending on the type of instruction
9485
           we refer to */
9486
        else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9487
          {
9488
            unsigned long data, insn;
9489
            unsigned thumb;
9490
 
9491
            data = bfd_get_32 (input_bfd, hit_data);
9492
            thumb = data & 1;
9493
            data &= ~1u;
9494
 
9495
            if (thumb)
9496
              {
9497
                insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9498
                if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9499
                  insn = (insn << 16)
9500
                    | bfd_get_16 (input_bfd,
9501
                                  contents + rel->r_offset - data + 2);
9502
                if ((insn & 0xf800c000) == 0xf000c000)
9503
                  /* bl/blx */
9504
                  value = -6;
9505
                else if ((insn & 0xffffff00) == 0x4400)
9506
                  /* add */
9507
                  value = -5;
9508
                else
9509
                  {
9510
                    (*_bfd_error_handler)
9511
                      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9512
                       input_bfd, input_section,
9513
                       (unsigned long)rel->r_offset, insn);
9514
                    return bfd_reloc_notsupported;
9515
                  }
9516
              }
9517
            else
9518
              {
9519
                insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9520
 
9521
                switch (insn >> 24)
9522
                  {
9523
                  case 0xeb:  /* bl */
9524
                  case 0xfa:  /* blx */
9525
                    value = -4;
9526
                    break;
9527
 
9528
                  case 0xe0:    /* add */
9529
                    value = -8;
9530
                    break;
9531
 
9532
                  default:
9533
                    (*_bfd_error_handler)
9534
                      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9535
                       input_bfd, input_section,
9536
                       (unsigned long)rel->r_offset, insn);
9537
                    return bfd_reloc_notsupported;
9538
                  }
9539
              }
9540
 
9541
            value += ((globals->root.sgotplt->output_section->vma
9542
                       + globals->root.sgotplt->output_offset + off)
9543
                      - (input_section->output_section->vma
9544
                         + input_section->output_offset
9545
                         + rel->r_offset)
9546
                      + globals->sgotplt_jump_table_size);
9547
          }
9548
        else
9549
          value = ((globals->root.sgot->output_section->vma
9550
                    + globals->root.sgot->output_offset + off)
9551
                   - (input_section->output_section->vma
9552
                      + input_section->output_offset + rel->r_offset));
9553
 
9554
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
9555
                                         contents, rel->r_offset, value,
9556
                                         rel->r_addend);
9557
      }
9558
 
9559
    case R_ARM_TLS_LE32:
9560 161 khays
      if (info->shared && !info->pie)
9561 14 khays
        {
9562
          (*_bfd_error_handler)
9563
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9564
             input_bfd, input_section,
9565
             (long) rel->r_offset, howto->name);
9566
          return (bfd_reloc_status_type) FALSE;
9567
        }
9568
      else
9569
        value = tpoff (info, value);
9570
 
9571
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
9572
                                       contents, rel->r_offset, value,
9573
                                       rel->r_addend);
9574
 
9575
    case R_ARM_V4BX:
9576
      if (globals->fix_v4bx)
9577
        {
9578
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9579
 
9580
          /* Ensure that we have a BX instruction.  */
9581
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9582
 
9583
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9584
            {
9585
              /* Branch to veneer.  */
9586
              bfd_vma glue_addr;
9587
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9588
              glue_addr -= input_section->output_section->vma
9589
                           + input_section->output_offset
9590
                           + rel->r_offset + 8;
9591
              insn = (insn & 0xf0000000) | 0x0a000000
9592
                     | ((glue_addr >> 2) & 0x00ffffff);
9593
            }
9594
          else
9595
            {
9596
              /* Preserve Rm (lowest four bits) and the condition code
9597
                 (highest four bits). Other bits encode MOV PC,Rm.  */
9598
              insn = (insn & 0xf000000f) | 0x01a0f000;
9599
            }
9600
 
9601
          bfd_put_32 (input_bfd, insn, hit_data);
9602
        }
9603
      return bfd_reloc_ok;
9604
 
9605
    case R_ARM_MOVW_ABS_NC:
9606
    case R_ARM_MOVT_ABS:
9607
    case R_ARM_MOVW_PREL_NC:
9608
    case R_ARM_MOVT_PREL:
9609
    /* Until we properly support segment-base-relative addressing then
9610
       we assume the segment base to be zero, as for the group relocations.
9611
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9612
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
9613
    case R_ARM_MOVW_BREL_NC:
9614
    case R_ARM_MOVW_BREL:
9615
    case R_ARM_MOVT_BREL:
9616
      {
9617
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9618
 
9619
        if (globals->use_rel)
9620
          {
9621
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9622
            signed_addend = (addend ^ 0x8000) - 0x8000;
9623
          }
9624
 
9625
        value += signed_addend;
9626
 
9627
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9628
          value -= (input_section->output_section->vma
9629
                    + input_section->output_offset + rel->r_offset);
9630
 
9631
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9632
          return bfd_reloc_overflow;
9633
 
9634
        if (branch_type == ST_BRANCH_TO_THUMB)
9635
          value |= 1;
9636
 
9637
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9638
            || r_type == R_ARM_MOVT_BREL)
9639
          value >>= 16;
9640
 
9641
        insn &= 0xfff0f000;
9642
        insn |= value & 0xfff;
9643
        insn |= (value & 0xf000) << 4;
9644
        bfd_put_32 (input_bfd, insn, hit_data);
9645
      }
9646
      return bfd_reloc_ok;
9647
 
9648
    case R_ARM_THM_MOVW_ABS_NC:
9649
    case R_ARM_THM_MOVT_ABS:
9650
    case R_ARM_THM_MOVW_PREL_NC:
9651
    case R_ARM_THM_MOVT_PREL:
9652
    /* Until we properly support segment-base-relative addressing then
9653
       we assume the segment base to be zero, as for the above relocations.
9654
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9655
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9656
       as R_ARM_THM_MOVT_ABS.  */
9657
    case R_ARM_THM_MOVW_BREL_NC:
9658
    case R_ARM_THM_MOVW_BREL:
9659
    case R_ARM_THM_MOVT_BREL:
9660
      {
9661
        bfd_vma insn;
9662
 
9663
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
9664
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
9665
 
9666
        if (globals->use_rel)
9667
          {
9668
            addend = ((insn >> 4)  & 0xf000)
9669
                   | ((insn >> 15) & 0x0800)
9670
                   | ((insn >> 4)  & 0x0700)
9671
                   | (insn         & 0x00ff);
9672
            signed_addend = (addend ^ 0x8000) - 0x8000;
9673
          }
9674
 
9675
        value += signed_addend;
9676
 
9677
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9678
          value -= (input_section->output_section->vma
9679
                    + input_section->output_offset + rel->r_offset);
9680
 
9681
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9682
          return bfd_reloc_overflow;
9683
 
9684
        if (branch_type == ST_BRANCH_TO_THUMB)
9685
          value |= 1;
9686
 
9687
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9688
            || r_type == R_ARM_THM_MOVT_BREL)
9689
          value >>= 16;
9690
 
9691
        insn &= 0xfbf08f00;
9692
        insn |= (value & 0xf000) << 4;
9693
        insn |= (value & 0x0800) << 15;
9694
        insn |= (value & 0x0700) << 4;
9695
        insn |= (value & 0x00ff);
9696
 
9697
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
9698
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9699
      }
9700
      return bfd_reloc_ok;
9701
 
9702
    case R_ARM_ALU_PC_G0_NC:
9703
    case R_ARM_ALU_PC_G1_NC:
9704
    case R_ARM_ALU_PC_G0:
9705
    case R_ARM_ALU_PC_G1:
9706
    case R_ARM_ALU_PC_G2:
9707
    case R_ARM_ALU_SB_G0_NC:
9708
    case R_ARM_ALU_SB_G1_NC:
9709
    case R_ARM_ALU_SB_G0:
9710
    case R_ARM_ALU_SB_G1:
9711
    case R_ARM_ALU_SB_G2:
9712
      {
9713
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9714
        bfd_vma pc = input_section->output_section->vma
9715
                     + input_section->output_offset + rel->r_offset;
9716
        /* sb should be the origin of the *segment* containing the symbol.
9717
           It is not clear how to obtain this OS-dependent value, so we
9718
           make an arbitrary choice of zero.  */
9719
        bfd_vma sb = 0;
9720
        bfd_vma residual;
9721
        bfd_vma g_n;
9722
        bfd_signed_vma signed_value;
9723
        int group = 0;
9724
 
9725
        /* Determine which group of bits to select.  */
9726
        switch (r_type)
9727
          {
9728
          case R_ARM_ALU_PC_G0_NC:
9729
          case R_ARM_ALU_PC_G0:
9730
          case R_ARM_ALU_SB_G0_NC:
9731
          case R_ARM_ALU_SB_G0:
9732
            group = 0;
9733
            break;
9734
 
9735
          case R_ARM_ALU_PC_G1_NC:
9736
          case R_ARM_ALU_PC_G1:
9737
          case R_ARM_ALU_SB_G1_NC:
9738
          case R_ARM_ALU_SB_G1:
9739
            group = 1;
9740
            break;
9741
 
9742
          case R_ARM_ALU_PC_G2:
9743
          case R_ARM_ALU_SB_G2:
9744
            group = 2;
9745
            break;
9746
 
9747
          default:
9748
            abort ();
9749
          }
9750
 
9751
        /* If REL, extract the addend from the insn.  If RELA, it will
9752
           have already been fetched for us.  */
9753
        if (globals->use_rel)
9754
          {
9755
            int negative;
9756
            bfd_vma constant = insn & 0xff;
9757
            bfd_vma rotation = (insn & 0xf00) >> 8;
9758
 
9759
            if (rotation == 0)
9760
              signed_addend = constant;
9761
            else
9762
              {
9763
                /* Compensate for the fact that in the instruction, the
9764
                   rotation is stored in multiples of 2 bits.  */
9765
                rotation *= 2;
9766
 
9767
                /* Rotate "constant" right by "rotation" bits.  */
9768
                signed_addend = (constant >> rotation) |
9769
                                (constant << (8 * sizeof (bfd_vma) - rotation));
9770
              }
9771
 
9772
            /* Determine if the instruction is an ADD or a SUB.
9773
               (For REL, this determines the sign of the addend.)  */
9774
            negative = identify_add_or_sub (insn);
9775
            if (negative == 0)
9776
              {
9777
                (*_bfd_error_handler)
9778
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9779
                  input_bfd, input_section,
9780
                  (long) rel->r_offset, howto->name);
9781
                return bfd_reloc_overflow;
9782
              }
9783
 
9784
            signed_addend *= negative;
9785
          }
9786
 
9787
        /* Compute the value (X) to go in the place.  */
9788
        if (r_type == R_ARM_ALU_PC_G0_NC
9789
            || r_type == R_ARM_ALU_PC_G1_NC
9790
            || r_type == R_ARM_ALU_PC_G0
9791
            || r_type == R_ARM_ALU_PC_G1
9792
            || r_type == R_ARM_ALU_PC_G2)
9793
          /* PC relative.  */
9794
          signed_value = value - pc + signed_addend;
9795
        else
9796
          /* Section base relative.  */
9797
          signed_value = value - sb + signed_addend;
9798
 
9799
        /* If the target symbol is a Thumb function, then set the
9800
           Thumb bit in the address.  */
9801
        if (branch_type == ST_BRANCH_TO_THUMB)
9802
          signed_value |= 1;
9803
 
9804
        /* Calculate the value of the relevant G_n, in encoded
9805
           constant-with-rotation format.  */
9806
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
9807
                                          &residual);
9808
 
9809
        /* Check for overflow if required.  */
9810
        if ((r_type == R_ARM_ALU_PC_G0
9811
             || r_type == R_ARM_ALU_PC_G1
9812
             || r_type == R_ARM_ALU_PC_G2
9813
             || r_type == R_ARM_ALU_SB_G0
9814
             || r_type == R_ARM_ALU_SB_G1
9815
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9816
          {
9817
            (*_bfd_error_handler)
9818
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9819
              input_bfd, input_section,
9820
              (long) rel->r_offset, abs (signed_value), howto->name);
9821
            return bfd_reloc_overflow;
9822
          }
9823
 
9824
        /* Mask out the value and the ADD/SUB part of the opcode; take care
9825
           not to destroy the S bit.  */
9826
        insn &= 0xff1ff000;
9827
 
9828
        /* Set the opcode according to whether the value to go in the
9829
           place is negative.  */
9830
        if (signed_value < 0)
9831
          insn |= 1 << 22;
9832
        else
9833
          insn |= 1 << 23;
9834
 
9835
        /* Encode the offset.  */
9836
        insn |= g_n;
9837
 
9838
        bfd_put_32 (input_bfd, insn, hit_data);
9839
      }
9840
      return bfd_reloc_ok;
9841
 
9842
    case R_ARM_LDR_PC_G0:
9843
    case R_ARM_LDR_PC_G1:
9844
    case R_ARM_LDR_PC_G2:
9845
    case R_ARM_LDR_SB_G0:
9846
    case R_ARM_LDR_SB_G1:
9847
    case R_ARM_LDR_SB_G2:
9848
      {
9849
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9850
        bfd_vma pc = input_section->output_section->vma
9851
                     + input_section->output_offset + rel->r_offset;
9852
        bfd_vma sb = 0; /* See note above.  */
9853
        bfd_vma residual;
9854
        bfd_signed_vma signed_value;
9855
        int group = 0;
9856
 
9857
        /* Determine which groups of bits to calculate.  */
9858
        switch (r_type)
9859
          {
9860
          case R_ARM_LDR_PC_G0:
9861
          case R_ARM_LDR_SB_G0:
9862
            group = 0;
9863
            break;
9864
 
9865
          case R_ARM_LDR_PC_G1:
9866
          case R_ARM_LDR_SB_G1:
9867
            group = 1;
9868
            break;
9869
 
9870
          case R_ARM_LDR_PC_G2:
9871
          case R_ARM_LDR_SB_G2:
9872
            group = 2;
9873
            break;
9874
 
9875
          default:
9876
            abort ();
9877
          }
9878
 
9879
        /* If REL, extract the addend from the insn.  If RELA, it will
9880
           have already been fetched for us.  */
9881
        if (globals->use_rel)
9882
          {
9883
            int negative = (insn & (1 << 23)) ? 1 : -1;
9884
            signed_addend = negative * (insn & 0xfff);
9885
          }
9886
 
9887
        /* Compute the value (X) to go in the place.  */
9888
        if (r_type == R_ARM_LDR_PC_G0
9889
            || r_type == R_ARM_LDR_PC_G1
9890
            || r_type == R_ARM_LDR_PC_G2)
9891
          /* PC relative.  */
9892
          signed_value = value - pc + signed_addend;
9893
        else
9894
          /* Section base relative.  */
9895
          signed_value = value - sb + signed_addend;
9896
 
9897
        /* Calculate the value of the relevant G_{n-1} to obtain
9898
           the residual at that stage.  */
9899
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9900
 
9901
        /* Check for overflow.  */
9902
        if (residual >= 0x1000)
9903
          {
9904
            (*_bfd_error_handler)
9905
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9906
              input_bfd, input_section,
9907
              (long) rel->r_offset, abs (signed_value), howto->name);
9908
            return bfd_reloc_overflow;
9909
          }
9910
 
9911
        /* Mask out the value and U bit.  */
9912
        insn &= 0xff7ff000;
9913
 
9914
        /* Set the U bit if the value to go in the place is non-negative.  */
9915
        if (signed_value >= 0)
9916
          insn |= 1 << 23;
9917
 
9918
        /* Encode the offset.  */
9919
        insn |= residual;
9920
 
9921
        bfd_put_32 (input_bfd, insn, hit_data);
9922
      }
9923
      return bfd_reloc_ok;
9924
 
9925
    case R_ARM_LDRS_PC_G0:
9926
    case R_ARM_LDRS_PC_G1:
9927
    case R_ARM_LDRS_PC_G2:
9928
    case R_ARM_LDRS_SB_G0:
9929
    case R_ARM_LDRS_SB_G1:
9930
    case R_ARM_LDRS_SB_G2:
9931
      {
9932
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9933
        bfd_vma pc = input_section->output_section->vma
9934
                     + input_section->output_offset + rel->r_offset;
9935
        bfd_vma sb = 0; /* See note above.  */
9936
        bfd_vma residual;
9937
        bfd_signed_vma signed_value;
9938
        int group = 0;
9939
 
9940
        /* Determine which groups of bits to calculate.  */
9941
        switch (r_type)
9942
          {
9943
          case R_ARM_LDRS_PC_G0:
9944
          case R_ARM_LDRS_SB_G0:
9945
            group = 0;
9946
            break;
9947
 
9948
          case R_ARM_LDRS_PC_G1:
9949
          case R_ARM_LDRS_SB_G1:
9950
            group = 1;
9951
            break;
9952
 
9953
          case R_ARM_LDRS_PC_G2:
9954
          case R_ARM_LDRS_SB_G2:
9955
            group = 2;
9956
            break;
9957
 
9958
          default:
9959
            abort ();
9960
          }
9961
 
9962
        /* If REL, extract the addend from the insn.  If RELA, it will
9963
           have already been fetched for us.  */
9964
        if (globals->use_rel)
9965
          {
9966
            int negative = (insn & (1 << 23)) ? 1 : -1;
9967
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9968
          }
9969
 
9970
        /* Compute the value (X) to go in the place.  */
9971
        if (r_type == R_ARM_LDRS_PC_G0
9972
            || r_type == R_ARM_LDRS_PC_G1
9973
            || r_type == R_ARM_LDRS_PC_G2)
9974
          /* PC relative.  */
9975
          signed_value = value - pc + signed_addend;
9976
        else
9977
          /* Section base relative.  */
9978
          signed_value = value - sb + signed_addend;
9979
 
9980
        /* Calculate the value of the relevant G_{n-1} to obtain
9981
           the residual at that stage.  */
9982
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9983
 
9984
        /* Check for overflow.  */
9985
        if (residual >= 0x100)
9986
          {
9987
            (*_bfd_error_handler)
9988
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9989
              input_bfd, input_section,
9990
              (long) rel->r_offset, abs (signed_value), howto->name);
9991
            return bfd_reloc_overflow;
9992
          }
9993
 
9994
        /* Mask out the value and U bit.  */
9995
        insn &= 0xff7ff0f0;
9996
 
9997
        /* Set the U bit if the value to go in the place is non-negative.  */
9998
        if (signed_value >= 0)
9999
          insn |= 1 << 23;
10000
 
10001
        /* Encode the offset.  */
10002
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10003
 
10004
        bfd_put_32 (input_bfd, insn, hit_data);
10005
      }
10006
      return bfd_reloc_ok;
10007
 
10008
    case R_ARM_LDC_PC_G0:
10009
    case R_ARM_LDC_PC_G1:
10010
    case R_ARM_LDC_PC_G2:
10011
    case R_ARM_LDC_SB_G0:
10012
    case R_ARM_LDC_SB_G1:
10013
    case R_ARM_LDC_SB_G2:
10014
      {
10015
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10016
        bfd_vma pc = input_section->output_section->vma
10017
                     + input_section->output_offset + rel->r_offset;
10018
        bfd_vma sb = 0; /* See note above.  */
10019
        bfd_vma residual;
10020
        bfd_signed_vma signed_value;
10021
        int group = 0;
10022
 
10023
        /* Determine which groups of bits to calculate.  */
10024
        switch (r_type)
10025
          {
10026
          case R_ARM_LDC_PC_G0:
10027
          case R_ARM_LDC_SB_G0:
10028
            group = 0;
10029
            break;
10030
 
10031
          case R_ARM_LDC_PC_G1:
10032
          case R_ARM_LDC_SB_G1:
10033
            group = 1;
10034
            break;
10035
 
10036
          case R_ARM_LDC_PC_G2:
10037
          case R_ARM_LDC_SB_G2:
10038
            group = 2;
10039
            break;
10040
 
10041
          default:
10042
            abort ();
10043
          }
10044
 
10045
        /* If REL, extract the addend from the insn.  If RELA, it will
10046
           have already been fetched for us.  */
10047
        if (globals->use_rel)
10048
          {
10049
            int negative = (insn & (1 << 23)) ? 1 : -1;
10050
            signed_addend = negative * ((insn & 0xff) << 2);
10051
          }
10052
 
10053
        /* Compute the value (X) to go in the place.  */
10054
        if (r_type == R_ARM_LDC_PC_G0
10055
            || r_type == R_ARM_LDC_PC_G1
10056
            || r_type == R_ARM_LDC_PC_G2)
10057
          /* PC relative.  */
10058
          signed_value = value - pc + signed_addend;
10059
        else
10060
          /* Section base relative.  */
10061
          signed_value = value - sb + signed_addend;
10062
 
10063
        /* Calculate the value of the relevant G_{n-1} to obtain
10064
           the residual at that stage.  */
10065
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10066
 
10067
        /* Check for overflow.  (The absolute value to go in the place must be
10068
           divisible by four and, after having been divided by four, must
10069
           fit in eight bits.)  */
10070
        if ((residual & 0x3) != 0 || residual >= 0x400)
10071
          {
10072
            (*_bfd_error_handler)
10073
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10074
              input_bfd, input_section,
10075
              (long) rel->r_offset, abs (signed_value), howto->name);
10076
            return bfd_reloc_overflow;
10077
          }
10078
 
10079
        /* Mask out the value and U bit.  */
10080
        insn &= 0xff7fff00;
10081
 
10082
        /* Set the U bit if the value to go in the place is non-negative.  */
10083
        if (signed_value >= 0)
10084
          insn |= 1 << 23;
10085
 
10086
        /* Encode the offset.  */
10087
        insn |= residual >> 2;
10088
 
10089
        bfd_put_32 (input_bfd, insn, hit_data);
10090
      }
10091
      return bfd_reloc_ok;
10092
 
10093
    default:
10094
      return bfd_reloc_notsupported;
10095
    }
10096
}
10097
 
10098
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
10099
static void
10100
arm_add_to_rel (bfd *              abfd,
10101
                bfd_byte *         address,
10102
                reloc_howto_type * howto,
10103
                bfd_signed_vma     increment)
10104
{
10105
  bfd_signed_vma addend;
10106
 
10107
  if (howto->type == R_ARM_THM_CALL
10108
      || howto->type == R_ARM_THM_JUMP24)
10109
    {
10110
      int upper_insn, lower_insn;
10111
      int upper, lower;
10112
 
10113
      upper_insn = bfd_get_16 (abfd, address);
10114
      lower_insn = bfd_get_16 (abfd, address + 2);
10115
      upper = upper_insn & 0x7ff;
10116
      lower = lower_insn & 0x7ff;
10117
 
10118
      addend = (upper << 12) | (lower << 1);
10119
      addend += increment;
10120
      addend >>= 1;
10121
 
10122
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10123
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10124
 
10125
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10126
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10127
    }
10128
  else
10129
    {
10130
      bfd_vma        contents;
10131
 
10132
      contents = bfd_get_32 (abfd, address);
10133
 
10134
      /* Get the (signed) value from the instruction.  */
10135
      addend = contents & howto->src_mask;
10136
      if (addend & ((howto->src_mask + 1) >> 1))
10137
        {
10138
          bfd_signed_vma mask;
10139
 
10140
          mask = -1;
10141
          mask &= ~ howto->src_mask;
10142
          addend |= mask;
10143
        }
10144
 
10145
      /* Add in the increment, (which is a byte value).  */
10146
      switch (howto->type)
10147
        {
10148
        default:
10149
          addend += increment;
10150
          break;
10151
 
10152
        case R_ARM_PC24:
10153
        case R_ARM_PLT32:
10154
        case R_ARM_CALL:
10155
        case R_ARM_JUMP24:
10156
          addend <<= howto->size;
10157
          addend += increment;
10158
 
10159
          /* Should we check for overflow here ?  */
10160
 
10161
          /* Drop any undesired bits.  */
10162
          addend >>= howto->rightshift;
10163
          break;
10164
        }
10165
 
10166
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10167
 
10168
      bfd_put_32 (abfd, contents, address);
10169
    }
10170
}
10171
 
10172
#define IS_ARM_TLS_RELOC(R_TYPE)        \
10173
  ((R_TYPE) == R_ARM_TLS_GD32           \
10174
   || (R_TYPE) == R_ARM_TLS_LDO32       \
10175
   || (R_TYPE) == R_ARM_TLS_LDM32       \
10176
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
10177
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
10178
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
10179
   || (R_TYPE) == R_ARM_TLS_LE32        \
10180
   || (R_TYPE) == R_ARM_TLS_IE32        \
10181
   || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10182
 
10183
/* Specific set of relocations for the gnu tls dialect.  */
10184
#define IS_ARM_TLS_GNU_RELOC(R_TYPE)    \
10185
  ((R_TYPE) == R_ARM_TLS_GOTDESC        \
10186
   || (R_TYPE) == R_ARM_TLS_CALL        \
10187
   || (R_TYPE) == R_ARM_THM_TLS_CALL    \
10188
   || (R_TYPE) == R_ARM_TLS_DESCSEQ     \
10189
   || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10190
 
10191
/* Relocate an ARM ELF section.  */
10192
 
10193
static bfd_boolean
10194
elf32_arm_relocate_section (bfd *                  output_bfd,
10195
                            struct bfd_link_info * info,
10196
                            bfd *                  input_bfd,
10197
                            asection *             input_section,
10198
                            bfd_byte *             contents,
10199
                            Elf_Internal_Rela *    relocs,
10200
                            Elf_Internal_Sym *     local_syms,
10201
                            asection **            local_sections)
10202
{
10203
  Elf_Internal_Shdr *symtab_hdr;
10204
  struct elf_link_hash_entry **sym_hashes;
10205
  Elf_Internal_Rela *rel;
10206
  Elf_Internal_Rela *relend;
10207
  const char *name;
10208
  struct elf32_arm_link_hash_table * globals;
10209
 
10210
  globals = elf32_arm_hash_table (info);
10211
  if (globals == NULL)
10212
    return FALSE;
10213
 
10214
  symtab_hdr = & elf_symtab_hdr (input_bfd);
10215
  sym_hashes = elf_sym_hashes (input_bfd);
10216
 
10217
  rel = relocs;
10218
  relend = relocs + input_section->reloc_count;
10219
  for (; rel < relend; rel++)
10220
    {
10221
      int                          r_type;
10222
      reloc_howto_type *           howto;
10223
      unsigned long                r_symndx;
10224
      Elf_Internal_Sym *           sym;
10225
      asection *                   sec;
10226
      struct elf_link_hash_entry * h;
10227
      bfd_vma                      relocation;
10228
      bfd_reloc_status_type        r;
10229
      arelent                      bfd_reloc;
10230
      char                         sym_type;
10231
      bfd_boolean                  unresolved_reloc = FALSE;
10232
      char *error_message = NULL;
10233
 
10234
      r_symndx = ELF32_R_SYM (rel->r_info);
10235
      r_type   = ELF32_R_TYPE (rel->r_info);
10236
      r_type   = arm_real_reloc_type (globals, r_type);
10237
 
10238
      if (   r_type == R_ARM_GNU_VTENTRY
10239
          || r_type == R_ARM_GNU_VTINHERIT)
10240
        continue;
10241
 
10242
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10243
      howto = bfd_reloc.howto;
10244
 
10245
      h = NULL;
10246
      sym = NULL;
10247
      sec = NULL;
10248
 
10249
      if (r_symndx < symtab_hdr->sh_info)
10250
        {
10251
          sym = local_syms + r_symndx;
10252
          sym_type = ELF32_ST_TYPE (sym->st_info);
10253
          sec = local_sections[r_symndx];
10254
 
10255
          /* An object file might have a reference to a local
10256
             undefined symbol.  This is a daft object file, but we
10257
             should at least do something about it.  V4BX & NONE
10258
             relocations do not use the symbol and are explicitly
10259
             allowed to use the undefined symbol, so allow those.
10260
             Likewise for relocations against STN_UNDEF.  */
10261
          if (r_type != R_ARM_V4BX
10262
              && r_type != R_ARM_NONE
10263
              && r_symndx != STN_UNDEF
10264
              && bfd_is_und_section (sec)
10265
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10266
            {
10267
              if (!info->callbacks->undefined_symbol
10268
                  (info, bfd_elf_string_from_elf_section
10269
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
10270
                   input_bfd, input_section,
10271
                   rel->r_offset, TRUE))
10272
                return FALSE;
10273
            }
10274
 
10275
          if (globals->use_rel)
10276
            {
10277
              relocation = (sec->output_section->vma
10278
                            + sec->output_offset
10279
                            + sym->st_value);
10280
              if (!info->relocatable
10281
                  && (sec->flags & SEC_MERGE)
10282
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10283
                {
10284
                  asection *msec;
10285
                  bfd_vma addend, value;
10286
 
10287
                  switch (r_type)
10288
                    {
10289
                    case R_ARM_MOVW_ABS_NC:
10290
                    case R_ARM_MOVT_ABS:
10291
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10292
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10293
                      addend = (addend ^ 0x8000) - 0x8000;
10294
                      break;
10295
 
10296
                    case R_ARM_THM_MOVW_ABS_NC:
10297
                    case R_ARM_THM_MOVT_ABS:
10298
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10299
                              << 16;
10300
                      value |= bfd_get_16 (input_bfd,
10301
                                           contents + rel->r_offset + 2);
10302
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10303
                               | ((value & 0x04000000) >> 15);
10304
                      addend = (addend ^ 0x8000) - 0x8000;
10305
                      break;
10306
 
10307
                    default:
10308
                      if (howto->rightshift
10309
                          || (howto->src_mask & (howto->src_mask + 1)))
10310
                        {
10311
                          (*_bfd_error_handler)
10312
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10313
                             input_bfd, input_section,
10314
                             (long) rel->r_offset, howto->name);
10315
                          return FALSE;
10316
                        }
10317
 
10318
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10319
 
10320
                      /* Get the (signed) value from the instruction.  */
10321
                      addend = value & howto->src_mask;
10322
                      if (addend & ((howto->src_mask + 1) >> 1))
10323
                        {
10324
                          bfd_signed_vma mask;
10325
 
10326
                          mask = -1;
10327
                          mask &= ~ howto->src_mask;
10328
                          addend |= mask;
10329
                        }
10330
                      break;
10331
                    }
10332
 
10333
                  msec = sec;
10334
                  addend =
10335
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10336
                    - relocation;
10337
                  addend += msec->output_section->vma + msec->output_offset;
10338
 
10339
                  /* Cases here must match those in the preceding
10340
                     switch statement.  */
10341
                  switch (r_type)
10342
                    {
10343
                    case R_ARM_MOVW_ABS_NC:
10344
                    case R_ARM_MOVT_ABS:
10345
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10346
                              | (addend & 0xfff);
10347
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10348
                      break;
10349
 
10350
                    case R_ARM_THM_MOVW_ABS_NC:
10351
                    case R_ARM_THM_MOVT_ABS:
10352
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10353
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
10354
                      bfd_put_16 (input_bfd, value >> 16,
10355
                                  contents + rel->r_offset);
10356
                      bfd_put_16 (input_bfd, value,
10357
                                  contents + rel->r_offset + 2);
10358
                      break;
10359
 
10360
                    default:
10361
                      value = (value & ~ howto->dst_mask)
10362
                              | (addend & howto->dst_mask);
10363
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10364
                      break;
10365
                    }
10366
                }
10367
            }
10368
          else
10369
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10370
        }
10371
      else
10372
        {
10373
          bfd_boolean warned;
10374
 
10375
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10376
                                   r_symndx, symtab_hdr, sym_hashes,
10377
                                   h, sec, relocation,
10378
                                   unresolved_reloc, warned);
10379
 
10380
          sym_type = h->type;
10381
        }
10382
 
10383
      if (sec != NULL && elf_discarded_section (sec))
10384
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10385
                                         rel, relend, howto, contents);
10386
 
10387
      if (info->relocatable)
10388
        {
10389
          /* This is a relocatable link.  We don't have to change
10390
             anything, unless the reloc is against a section symbol,
10391
             in which case we have to adjust according to where the
10392
             section symbol winds up in the output section.  */
10393
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10394
            {
10395
              if (globals->use_rel)
10396
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
10397
                                howto, (bfd_signed_vma) sec->output_offset);
10398
              else
10399
                rel->r_addend += sec->output_offset;
10400
            }
10401
          continue;
10402
        }
10403
 
10404
      if (h != NULL)
10405
        name = h->root.root.string;
10406
      else
10407
        {
10408
          name = (bfd_elf_string_from_elf_section
10409
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
10410
          if (name == NULL || *name == '\0')
10411
            name = bfd_section_name (input_bfd, sec);
10412
        }
10413
 
10414
      if (r_symndx != STN_UNDEF
10415
          && r_type != R_ARM_NONE
10416
          && (h == NULL
10417
              || h->root.type == bfd_link_hash_defined
10418
              || h->root.type == bfd_link_hash_defweak)
10419
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10420
        {
10421
          (*_bfd_error_handler)
10422
            ((sym_type == STT_TLS
10423
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10424
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10425
             input_bfd,
10426
             input_section,
10427
             (long) rel->r_offset,
10428
             howto->name,
10429
             name);
10430
        }
10431
 
10432
      /* We call elf32_arm_final_link_relocate unless we're completely
10433
         done, i.e., the relaxation produced the final output we want,
10434
         and we won't let anybody mess with it. Also, we have to do
10435
         addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10436
         both in relaxed and non-relaxed cases */
10437
     if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10438
         || (IS_ARM_TLS_GNU_RELOC (r_type)
10439
             && !((h ? elf32_arm_hash_entry (h)->tls_type :
10440
                   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10441
                  & GOT_TLS_GDESC)))
10442
       {
10443
         r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10444
                                  contents, rel, h == NULL);
10445
         /* This may have been marked unresolved because it came from
10446
            a shared library.  But we've just dealt with that.  */
10447
         unresolved_reloc = 0;
10448
       }
10449
     else
10450
       r = bfd_reloc_continue;
10451
 
10452
     if (r == bfd_reloc_continue)
10453
       r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10454
                                          input_section, contents, rel,
10455
                                          relocation, info, sec, name, sym_type,
10456
                                          (h ? h->target_internal
10457
                                           : ARM_SYM_BRANCH_TYPE (sym)), h,
10458
                                          &unresolved_reloc, &error_message);
10459
 
10460
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10461
         because such sections are not SEC_ALLOC and thus ld.so will
10462
         not process them.  */
10463
      if (unresolved_reloc
10464
          && !((input_section->flags & SEC_DEBUGGING) != 0
10465 163 khays
               && h->def_dynamic)
10466
          && _bfd_elf_section_offset (output_bfd, info, input_section,
10467
                                      rel->r_offset) != (bfd_vma) -1)
10468 14 khays
        {
10469
          (*_bfd_error_handler)
10470
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10471
             input_bfd,
10472
             input_section,
10473
             (long) rel->r_offset,
10474
             howto->name,
10475
             h->root.root.string);
10476
          return FALSE;
10477
        }
10478
 
10479
      if (r != bfd_reloc_ok)
10480
        {
10481
          switch (r)
10482
            {
10483
            case bfd_reloc_overflow:
10484
              /* If the overflowing reloc was to an undefined symbol,
10485
                 we have already printed one error message and there
10486
                 is no point complaining again.  */
10487
              if ((! h ||
10488
                   h->root.type != bfd_link_hash_undefined)
10489
                  && (!((*info->callbacks->reloc_overflow)
10490
                        (info, (h ? &h->root : NULL), name, howto->name,
10491
                         (bfd_vma) 0, input_bfd, input_section,
10492
                         rel->r_offset))))
10493
                  return FALSE;
10494
              break;
10495
 
10496
            case bfd_reloc_undefined:
10497
              if (!((*info->callbacks->undefined_symbol)
10498
                    (info, name, input_bfd, input_section,
10499
                     rel->r_offset, TRUE)))
10500
                return FALSE;
10501
              break;
10502
 
10503
            case bfd_reloc_outofrange:
10504
              error_message = _("out of range");
10505
              goto common_error;
10506
 
10507
            case bfd_reloc_notsupported:
10508
              error_message = _("unsupported relocation");
10509
              goto common_error;
10510
 
10511
            case bfd_reloc_dangerous:
10512
              /* error_message should already be set.  */
10513
              goto common_error;
10514
 
10515
            default:
10516
              error_message = _("unknown error");
10517
              /* Fall through.  */
10518
 
10519
            common_error:
10520
              BFD_ASSERT (error_message != NULL);
10521
              if (!((*info->callbacks->reloc_dangerous)
10522
                    (info, error_message, input_bfd, input_section,
10523
                     rel->r_offset)))
10524
                return FALSE;
10525
              break;
10526
            }
10527
        }
10528
    }
10529
 
10530
  return TRUE;
10531
}
10532
 
10533
/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
10534
   adds the edit to the start of the list.  (The list must be built in order of
10535
   ascending TINDEX: the function's callers are primarily responsible for
10536
   maintaining that condition).  */
10537
 
10538
static void
10539
add_unwind_table_edit (arm_unwind_table_edit **head,
10540
                       arm_unwind_table_edit **tail,
10541
                       arm_unwind_edit_type type,
10542
                       asection *linked_section,
10543
                       unsigned int tindex)
10544
{
10545
  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10546
      xmalloc (sizeof (arm_unwind_table_edit));
10547
 
10548
  new_edit->type = type;
10549
  new_edit->linked_section = linked_section;
10550
  new_edit->index = tindex;
10551
 
10552
  if (tindex > 0)
10553
    {
10554
      new_edit->next = NULL;
10555
 
10556
      if (*tail)
10557
        (*tail)->next = new_edit;
10558
 
10559
      (*tail) = new_edit;
10560
 
10561
      if (!*head)
10562
        (*head) = new_edit;
10563
    }
10564
  else
10565
    {
10566
      new_edit->next = *head;
10567
 
10568
      if (!*tail)
10569
        *tail = new_edit;
10570
 
10571
      *head = new_edit;
10572
    }
10573
}
10574
 
10575
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10576
 
10577
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
10578
static void
10579
adjust_exidx_size(asection *exidx_sec, int adjust)
10580
{
10581
  asection *out_sec;
10582
 
10583
  if (!exidx_sec->rawsize)
10584
    exidx_sec->rawsize = exidx_sec->size;
10585
 
10586
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10587
  out_sec = exidx_sec->output_section;
10588
  /* Adjust size of output section.  */
10589
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10590
}
10591
 
10592
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
10593
static void
10594
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10595
{
10596
  struct _arm_elf_section_data *exidx_arm_data;
10597
 
10598
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10599
  add_unwind_table_edit (
10600
    &exidx_arm_data->u.exidx.unwind_edit_list,
10601
    &exidx_arm_data->u.exidx.unwind_edit_tail,
10602
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10603
 
10604
  adjust_exidx_size(exidx_sec, 8);
10605
}
10606
 
10607
/* Scan .ARM.exidx tables, and create a list describing edits which should be
10608
   made to those tables, such that:
10609
 
10610
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10611
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10612
        codes which have been inlined into the index).
10613
 
10614
   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10615
 
10616
   The edits are applied when the tables are written
10617
   (in elf32_arm_write_section).
10618
*/
10619
 
10620
bfd_boolean
10621
elf32_arm_fix_exidx_coverage (asection **text_section_order,
10622
                              unsigned int num_text_sections,
10623
                              struct bfd_link_info *info,
10624
                              bfd_boolean merge_exidx_entries)
10625
{
10626
  bfd *inp;
10627
  unsigned int last_second_word = 0, i;
10628
  asection *last_exidx_sec = NULL;
10629
  asection *last_text_sec = NULL;
10630
  int last_unwind_type = -1;
10631
 
10632
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10633
     text sections.  */
10634
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10635
    {
10636
      asection *sec;
10637
 
10638
      for (sec = inp->sections; sec != NULL; sec = sec->next)
10639
        {
10640
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10641
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10642
 
10643
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10644
            continue;
10645
 
10646
          if (elf_sec->linked_to)
10647
            {
10648
              Elf_Internal_Shdr *linked_hdr
10649
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
10650
              struct _arm_elf_section_data *linked_sec_arm_data
10651
                = get_arm_elf_section_data (linked_hdr->bfd_section);
10652
 
10653
              if (linked_sec_arm_data == NULL)
10654
                continue;
10655
 
10656
              /* Link this .ARM.exidx section back from the text section it
10657
                 describes.  */
10658
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10659
            }
10660
        }
10661
    }
10662
 
10663
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
10664
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10665
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
10666
 
10667
  for (i = 0; i < num_text_sections; i++)
10668
    {
10669
      asection *sec = text_section_order[i];
10670
      asection *exidx_sec;
10671
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10672
      struct _arm_elf_section_data *exidx_arm_data;
10673
      bfd_byte *contents = NULL;
10674
      int deleted_exidx_bytes = 0;
10675
      bfd_vma j;
10676
      arm_unwind_table_edit *unwind_edit_head = NULL;
10677
      arm_unwind_table_edit *unwind_edit_tail = NULL;
10678
      Elf_Internal_Shdr *hdr;
10679
      bfd *ibfd;
10680
 
10681
      if (arm_data == NULL)
10682
        continue;
10683
 
10684
      exidx_sec = arm_data->u.text.arm_exidx_sec;
10685
      if (exidx_sec == NULL)
10686
        {
10687
          /* Section has no unwind data.  */
10688
          if (last_unwind_type == 0 || !last_exidx_sec)
10689
            continue;
10690
 
10691
          /* Ignore zero sized sections.  */
10692
          if (sec->size == 0)
10693
            continue;
10694
 
10695
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
10696
          last_unwind_type = 0;
10697
          continue;
10698
        }
10699
 
10700
      /* Skip /DISCARD/ sections.  */
10701
      if (bfd_is_abs_section (exidx_sec->output_section))
10702
        continue;
10703
 
10704
      hdr = &elf_section_data (exidx_sec)->this_hdr;
10705
      if (hdr->sh_type != SHT_ARM_EXIDX)
10706
        continue;
10707
 
10708
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10709
      if (exidx_arm_data == NULL)
10710
        continue;
10711
 
10712
      ibfd = exidx_sec->owner;
10713
 
10714
      if (hdr->contents != NULL)
10715
        contents = hdr->contents;
10716
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10717
        /* An error?  */
10718
        continue;
10719
 
10720
      for (j = 0; j < hdr->sh_size; j += 8)
10721
        {
10722
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10723
          int unwind_type;
10724
          int elide = 0;
10725
 
10726
          /* An EXIDX_CANTUNWIND entry.  */
10727
          if (second_word == 1)
10728
            {
10729
              if (last_unwind_type == 0)
10730
                elide = 1;
10731
              unwind_type = 0;
10732
            }
10733
          /* Inlined unwinding data.  Merge if equal to previous.  */
10734
          else if ((second_word & 0x80000000) != 0)
10735
            {
10736
              if (merge_exidx_entries
10737
                   && last_second_word == second_word && last_unwind_type == 1)
10738
                elide = 1;
10739
              unwind_type = 1;
10740
              last_second_word = second_word;
10741
            }
10742
          /* Normal table entry.  In theory we could merge these too,
10743
             but duplicate entries are likely to be much less common.  */
10744
          else
10745
            unwind_type = 2;
10746
 
10747
          if (elide)
10748
            {
10749
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10750
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
10751
 
10752
              deleted_exidx_bytes += 8;
10753
            }
10754
 
10755
          last_unwind_type = unwind_type;
10756
        }
10757
 
10758
      /* Free contents if we allocated it ourselves.  */
10759
      if (contents != hdr->contents)
10760
        free (contents);
10761
 
10762
      /* Record edits to be applied later (in elf32_arm_write_section).  */
10763
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10764
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10765
 
10766
      if (deleted_exidx_bytes > 0)
10767
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10768
 
10769
      last_exidx_sec = exidx_sec;
10770
      last_text_sec = sec;
10771
    }
10772
 
10773
  /* Add terminating CANTUNWIND entry.  */
10774
  if (last_exidx_sec && last_unwind_type != 0)
10775
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
10776
 
10777
  return TRUE;
10778
}
10779
 
10780
static bfd_boolean
10781
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10782
                               bfd *ibfd, const char *name)
10783
{
10784
  asection *sec, *osec;
10785
 
10786
  sec = bfd_get_section_by_name (ibfd, name);
10787
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10788
    return TRUE;
10789
 
10790
  osec = sec->output_section;
10791
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10792
    return TRUE;
10793
 
10794
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
10795
                                  sec->output_offset, sec->size))
10796
    return FALSE;
10797
 
10798
  return TRUE;
10799
}
10800
 
10801
static bfd_boolean
10802
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10803
{
10804
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10805
  asection *sec, *osec;
10806
 
10807
  if (globals == NULL)
10808
    return FALSE;
10809
 
10810
  /* Invoke the regular ELF backend linker to do all the work.  */
10811
  if (!bfd_elf_final_link (abfd, info))
10812
    return FALSE;
10813
 
10814
  /* Process stub sections (eg BE8 encoding, ...).  */
10815
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10816
  int i;
10817
  for (i=0; i<htab->top_id; i++)
10818
    {
10819
      sec = htab->stub_group[i].stub_sec;
10820
      /* Only process it once, in its link_sec slot.  */
10821
      if (sec && i == htab->stub_group[i].link_sec->id)
10822
        {
10823
          osec = sec->output_section;
10824
          elf32_arm_write_section (abfd, info, sec, sec->contents);
10825
          if (! bfd_set_section_contents (abfd, osec, sec->contents,
10826
                                          sec->output_offset, sec->size))
10827
            return FALSE;
10828
        }
10829
    }
10830
 
10831
  /* Write out any glue sections now that we have created all the
10832
     stubs.  */
10833
  if (globals->bfd_of_glue_owner != NULL)
10834
    {
10835
      if (! elf32_arm_output_glue_section (info, abfd,
10836
                                           globals->bfd_of_glue_owner,
10837
                                           ARM2THUMB_GLUE_SECTION_NAME))
10838
        return FALSE;
10839
 
10840
      if (! elf32_arm_output_glue_section (info, abfd,
10841
                                           globals->bfd_of_glue_owner,
10842
                                           THUMB2ARM_GLUE_SECTION_NAME))
10843
        return FALSE;
10844
 
10845
      if (! elf32_arm_output_glue_section (info, abfd,
10846
                                           globals->bfd_of_glue_owner,
10847
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
10848
        return FALSE;
10849
 
10850
      if (! elf32_arm_output_glue_section (info, abfd,
10851
                                           globals->bfd_of_glue_owner,
10852
                                           ARM_BX_GLUE_SECTION_NAME))
10853
        return FALSE;
10854
    }
10855
 
10856
  return TRUE;
10857
}
10858
 
10859
/* Set the right machine number.  */
10860
 
10861
static bfd_boolean
10862
elf32_arm_object_p (bfd *abfd)
10863
{
10864
  unsigned int mach;
10865
 
10866
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10867
 
10868
  if (mach != bfd_mach_arm_unknown)
10869
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10870
 
10871
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10872
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10873
 
10874
  else
10875
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10876
 
10877
  return TRUE;
10878
}
10879
 
10880
/* Function to keep ARM specific flags in the ELF header.  */
10881
 
10882
static bfd_boolean
10883
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10884
{
10885
  if (elf_flags_init (abfd)
10886
      && elf_elfheader (abfd)->e_flags != flags)
10887
    {
10888
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10889
        {
10890
          if (flags & EF_ARM_INTERWORK)
10891
            (*_bfd_error_handler)
10892
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10893
               abfd);
10894
          else
10895
            _bfd_error_handler
10896
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
10897
               abfd);
10898
        }
10899
    }
10900
  else
10901
    {
10902
      elf_elfheader (abfd)->e_flags = flags;
10903
      elf_flags_init (abfd) = TRUE;
10904
    }
10905
 
10906
  return TRUE;
10907
}
10908
 
10909
/* Copy backend specific data from one object module to another.  */
10910
 
10911
static bfd_boolean
10912
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10913
{
10914
  flagword in_flags;
10915
  flagword out_flags;
10916
 
10917
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10918
    return TRUE;
10919
 
10920
  in_flags  = elf_elfheader (ibfd)->e_flags;
10921
  out_flags = elf_elfheader (obfd)->e_flags;
10922
 
10923
  if (elf_flags_init (obfd)
10924
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10925
      && in_flags != out_flags)
10926
    {
10927
      /* Cannot mix APCS26 and APCS32 code.  */
10928
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10929
        return FALSE;
10930
 
10931
      /* Cannot mix float APCS and non-float APCS code.  */
10932
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10933
        return FALSE;
10934
 
10935
      /* If the src and dest have different interworking flags
10936
         then turn off the interworking bit.  */
10937
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10938
        {
10939
          if (out_flags & EF_ARM_INTERWORK)
10940
            _bfd_error_handler
10941
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10942
               obfd, ibfd);
10943
 
10944
          in_flags &= ~EF_ARM_INTERWORK;
10945
        }
10946
 
10947
      /* Likewise for PIC, though don't warn for this case.  */
10948
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10949
        in_flags &= ~EF_ARM_PIC;
10950
    }
10951
 
10952
  elf_elfheader (obfd)->e_flags = in_flags;
10953
  elf_flags_init (obfd) = TRUE;
10954
 
10955
  /* Also copy the EI_OSABI field.  */
10956
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
10957
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
10958
 
10959
  /* Copy object attributes.  */
10960
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
10961
 
10962
  return TRUE;
10963
}
10964
 
10965
/* Values for Tag_ABI_PCS_R9_use.  */
10966
enum
10967
{
10968
  AEABI_R9_V6,
10969
  AEABI_R9_SB,
10970
  AEABI_R9_TLS,
10971
  AEABI_R9_unused
10972
};
10973
 
10974
/* Values for Tag_ABI_PCS_RW_data.  */
10975
enum
10976
{
10977
  AEABI_PCS_RW_data_absolute,
10978
  AEABI_PCS_RW_data_PCrel,
10979
  AEABI_PCS_RW_data_SBrel,
10980
  AEABI_PCS_RW_data_unused
10981
};
10982
 
10983
/* Values for Tag_ABI_enum_size.  */
10984
enum
10985
{
10986
  AEABI_enum_unused,
10987
  AEABI_enum_short,
10988
  AEABI_enum_wide,
10989
  AEABI_enum_forced_wide
10990
};
10991
 
10992
/* Determine whether an object attribute tag takes an integer, a
10993
   string or both.  */
10994
 
10995
static int
10996
elf32_arm_obj_attrs_arg_type (int tag)
10997
{
10998
  if (tag == Tag_compatibility)
10999
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11000
  else if (tag == Tag_nodefaults)
11001
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11002
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11003
    return ATTR_TYPE_FLAG_STR_VAL;
11004
  else if (tag < 32)
11005
    return ATTR_TYPE_FLAG_INT_VAL;
11006
  else
11007
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11008
}
11009
 
11010
/* The ABI defines that Tag_conformance should be emitted first, and that
11011
   Tag_nodefaults should be second (if either is defined).  This sets those
11012
   two positions, and bumps up the position of all the remaining tags to
11013
   compensate.  */
11014
static int
11015
elf32_arm_obj_attrs_order (int num)
11016
{
11017
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11018
    return Tag_conformance;
11019
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11020
    return Tag_nodefaults;
11021
  if ((num - 2) < Tag_nodefaults)
11022
    return num - 2;
11023
  if ((num - 1) < Tag_conformance)
11024
    return num - 1;
11025
  return num;
11026
}
11027
 
11028
/* Attribute numbers >=64 (mod 128) can be safely ignored.  */
11029
static bfd_boolean
11030
elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11031
{
11032
  if ((tag & 127) < 64)
11033
    {
11034
      _bfd_error_handler
11035
        (_("%B: Unknown mandatory EABI object attribute %d"),
11036
         abfd, tag);
11037
      bfd_set_error (bfd_error_bad_value);
11038
      return FALSE;
11039
    }
11040
  else
11041
    {
11042
      _bfd_error_handler
11043
        (_("Warning: %B: Unknown EABI object attribute %d"),
11044
         abfd, tag);
11045
      return TRUE;
11046
    }
11047
}
11048
 
11049
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
11050
   Returns -1 if no architecture could be read.  */
11051
 
11052
static int
11053
get_secondary_compatible_arch (bfd *abfd)
11054
{
11055
  obj_attribute *attr =
11056
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11057
 
11058
  /* Note: the tag and its argument below are uleb128 values, though
11059
     currently-defined values fit in one byte for each.  */
11060
  if (attr->s
11061
      && attr->s[0] == Tag_CPU_arch
11062
      && (attr->s[1] & 128) != 128
11063
      && attr->s[2] == 0)
11064
   return attr->s[1];
11065
 
11066
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
11067
  return -1;
11068
}
11069
 
11070
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11071
   The tag is removed if ARCH is -1.  */
11072
 
11073
static void
11074
set_secondary_compatible_arch (bfd *abfd, int arch)
11075
{
11076
  obj_attribute *attr =
11077
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11078
 
11079
  if (arch == -1)
11080
    {
11081
      attr->s = NULL;
11082
      return;
11083
    }
11084
 
11085
  /* Note: the tag and its argument below are uleb128 values, though
11086
     currently-defined values fit in one byte for each.  */
11087
  if (!attr->s)
11088
    attr->s = (char *) bfd_alloc (abfd, 3);
11089
  attr->s[0] = Tag_CPU_arch;
11090
  attr->s[1] = arch;
11091
  attr->s[2] = '\0';
11092
}
11093
 
11094
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11095
   into account.  */
11096
 
11097
static int
11098
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11099
                      int newtag, int secondary_compat)
11100
{
11101
#define T(X) TAG_CPU_ARCH_##X
11102
  int tagl, tagh, result;
11103
  const int v6t2[] =
11104
    {
11105
      T(V6T2),   /* PRE_V4.  */
11106
      T(V6T2),   /* V4.  */
11107
      T(V6T2),   /* V4T.  */
11108
      T(V6T2),   /* V5T.  */
11109
      T(V6T2),   /* V5TE.  */
11110
      T(V6T2),   /* V5TEJ.  */
11111
      T(V6T2),   /* V6.  */
11112
      T(V7),     /* V6KZ.  */
11113
      T(V6T2)    /* V6T2.  */
11114
    };
11115
  const int v6k[] =
11116
    {
11117
      T(V6K),    /* PRE_V4.  */
11118
      T(V6K),    /* V4.  */
11119
      T(V6K),    /* V4T.  */
11120
      T(V6K),    /* V5T.  */
11121
      T(V6K),    /* V5TE.  */
11122
      T(V6K),    /* V5TEJ.  */
11123
      T(V6K),    /* V6.  */
11124
      T(V6KZ),   /* V6KZ.  */
11125
      T(V7),     /* V6T2.  */
11126
      T(V6K)     /* V6K.  */
11127
    };
11128
  const int v7[] =
11129
    {
11130
      T(V7),     /* PRE_V4.  */
11131
      T(V7),     /* V4.  */
11132
      T(V7),     /* V4T.  */
11133
      T(V7),     /* V5T.  */
11134
      T(V7),     /* V5TE.  */
11135
      T(V7),     /* V5TEJ.  */
11136
      T(V7),     /* V6.  */
11137
      T(V7),     /* V6KZ.  */
11138
      T(V7),     /* V6T2.  */
11139
      T(V7),     /* V6K.  */
11140
      T(V7)      /* V7.  */
11141
    };
11142
  const int v6_m[] =
11143
    {
11144
      -1,        /* PRE_V4.  */
11145
      -1,        /* V4.  */
11146
      T(V6K),    /* V4T.  */
11147
      T(V6K),    /* V5T.  */
11148
      T(V6K),    /* V5TE.  */
11149
      T(V6K),    /* V5TEJ.  */
11150
      T(V6K),    /* V6.  */
11151
      T(V6KZ),   /* V6KZ.  */
11152
      T(V7),     /* V6T2.  */
11153
      T(V6K),    /* V6K.  */
11154
      T(V7),     /* V7.  */
11155
      T(V6_M)    /* V6_M.  */
11156
    };
11157
  const int v6s_m[] =
11158
    {
11159
      -1,        /* PRE_V4.  */
11160
      -1,        /* V4.  */
11161
      T(V6K),    /* V4T.  */
11162
      T(V6K),    /* V5T.  */
11163
      T(V6K),    /* V5TE.  */
11164
      T(V6K),    /* V5TEJ.  */
11165
      T(V6K),    /* V6.  */
11166
      T(V6KZ),   /* V6KZ.  */
11167
      T(V7),     /* V6T2.  */
11168
      T(V6K),    /* V6K.  */
11169
      T(V7),     /* V7.  */
11170
      T(V6S_M),  /* V6_M.  */
11171
      T(V6S_M)   /* V6S_M.  */
11172
    };
11173
  const int v7e_m[] =
11174
    {
11175
      -1,        /* PRE_V4.  */
11176
      -1,        /* V4.  */
11177
      T(V7E_M),  /* V4T.  */
11178
      T(V7E_M),  /* V5T.  */
11179
      T(V7E_M),  /* V5TE.  */
11180
      T(V7E_M),  /* V5TEJ.  */
11181
      T(V7E_M),  /* V6.  */
11182
      T(V7E_M),  /* V6KZ.  */
11183
      T(V7E_M),  /* V6T2.  */
11184
      T(V7E_M),  /* V6K.  */
11185
      T(V7E_M),  /* V7.  */
11186
      T(V7E_M),  /* V6_M.  */
11187
      T(V7E_M),  /* V6S_M.  */
11188
      T(V7E_M)   /* V7E_M.  */
11189
    };
11190
  const int v4t_plus_v6_m[] =
11191
    {
11192
      -1,               /* PRE_V4.  */
11193
      -1,               /* V4.  */
11194
      T(V4T),           /* V4T.  */
11195
      T(V5T),           /* V5T.  */
11196
      T(V5TE),          /* V5TE.  */
11197
      T(V5TEJ),         /* V5TEJ.  */
11198
      T(V6),            /* V6.  */
11199
      T(V6KZ),          /* V6KZ.  */
11200
      T(V6T2),          /* V6T2.  */
11201
      T(V6K),           /* V6K.  */
11202
      T(V7),            /* V7.  */
11203
      T(V6_M),          /* V6_M.  */
11204
      T(V6S_M),         /* V6S_M.  */
11205
      T(V7E_M),         /* V7E_M.  */
11206
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
11207
    };
11208
  const int *comb[] =
11209
    {
11210
      v6t2,
11211
      v6k,
11212
      v7,
11213
      v6_m,
11214
      v6s_m,
11215
      v7e_m,
11216
      /* Pseudo-architecture.  */
11217
      v4t_plus_v6_m
11218
    };
11219
 
11220
  /* Check we've not got a higher architecture than we know about.  */
11221
 
11222
  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11223
    {
11224
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11225
      return -1;
11226
    }
11227
 
11228
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
11229
 
11230
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11231
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11232
    oldtag = T(V4T_PLUS_V6_M);
11233
 
11234
  /* And override the new tag if we have a Tag_also_compatible_with on the
11235
     input.  */
11236
 
11237
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11238
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11239
    newtag = T(V4T_PLUS_V6_M);
11240
 
11241
  tagl = (oldtag < newtag) ? oldtag : newtag;
11242
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
11243
 
11244
  /* Architectures before V6KZ add features monotonically.  */
11245
  if (tagh <= TAG_CPU_ARCH_V6KZ)
11246
    return result;
11247
 
11248
  result = comb[tagh - T(V6T2)][tagl];
11249
 
11250
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11251
     as the canonical version.  */
11252
  if (result == T(V4T_PLUS_V6_M))
11253
    {
11254
      result = T(V4T);
11255
      *secondary_compat_out = T(V6_M);
11256
    }
11257
  else
11258
    *secondary_compat_out = -1;
11259
 
11260
  if (result == -1)
11261
    {
11262
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11263
                          ibfd, oldtag, newtag);
11264
      return -1;
11265
    }
11266
 
11267
  return result;
11268
#undef T
11269
}
11270
 
11271
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
11272
   are conflicting attributes.  */
11273
 
11274
static bfd_boolean
11275
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11276
{
11277
  obj_attribute *in_attr;
11278
  obj_attribute *out_attr;
11279
  /* Some tags have 0 = don't care, 1 = strong requirement,
11280
     2 = weak requirement.  */
11281
  static const int order_021[3] = {0, 2, 1};
11282
  int i;
11283
  bfd_boolean result = TRUE;
11284
 
11285
  /* Skip the linker stubs file.  This preserves previous behavior
11286
     of accepting unknown attributes in the first input file - but
11287
     is that a bug?  */
11288
  if (ibfd->flags & BFD_LINKER_CREATED)
11289
    return TRUE;
11290
 
11291
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
11292
    {
11293
      /* This is the first object.  Copy the attributes.  */
11294
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
11295
 
11296
      out_attr = elf_known_obj_attributes_proc (obfd);
11297
 
11298
      /* Use the Tag_null value to indicate the attributes have been
11299
         initialized.  */
11300
      out_attr[0].i = 1;
11301
 
11302
      /* We do not output objects with Tag_MPextension_use_legacy - we move
11303
         the attribute's value to Tag_MPextension_use.  */
11304
      if (out_attr[Tag_MPextension_use_legacy].i != 0)
11305
        {
11306
          if (out_attr[Tag_MPextension_use].i != 0
11307
              && out_attr[Tag_MPextension_use_legacy].i
11308
                != out_attr[Tag_MPextension_use].i)
11309
            {
11310
              _bfd_error_handler
11311
                (_("Error: %B has both the current and legacy "
11312
                   "Tag_MPextension_use attributes"), ibfd);
11313
              result = FALSE;
11314
            }
11315
 
11316
          out_attr[Tag_MPextension_use] =
11317
            out_attr[Tag_MPextension_use_legacy];
11318
          out_attr[Tag_MPextension_use_legacy].type = 0;
11319
          out_attr[Tag_MPextension_use_legacy].i = 0;
11320
        }
11321
 
11322
      return result;
11323
    }
11324
 
11325
  in_attr = elf_known_obj_attributes_proc (ibfd);
11326
  out_attr = elf_known_obj_attributes_proc (obfd);
11327
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
11328
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11329
    {
11330
      /* Ignore mismatches if the object doesn't use floating point.  */
11331
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
11332
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11333
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11334
        {
11335
          _bfd_error_handler
11336
            (_("error: %B uses VFP register arguments, %B does not"),
11337
             in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11338
             in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11339
          result = FALSE;
11340
        }
11341
    }
11342
 
11343
  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11344
    {
11345
      /* Merge this attribute with existing attributes.  */
11346
      switch (i)
11347
        {
11348
        case Tag_CPU_raw_name:
11349
        case Tag_CPU_name:
11350
          /* These are merged after Tag_CPU_arch. */
11351
          break;
11352
 
11353
        case Tag_ABI_optimization_goals:
11354
        case Tag_ABI_FP_optimization_goals:
11355
          /* Use the first value seen.  */
11356
          break;
11357
 
11358
        case Tag_CPU_arch:
11359
          {
11360
            int secondary_compat = -1, secondary_compat_out = -1;
11361
            unsigned int saved_out_attr = out_attr[i].i;
11362
            static const char *name_table[] = {
11363
                /* These aren't real CPU names, but we can't guess
11364
                   that from the architecture version alone.  */
11365
                "Pre v4",
11366
                "ARM v4",
11367
                "ARM v4T",
11368
                "ARM v5T",
11369
                "ARM v5TE",
11370
                "ARM v5TEJ",
11371
                "ARM v6",
11372
                "ARM v6KZ",
11373
                "ARM v6T2",
11374
                "ARM v6K",
11375
                "ARM v7",
11376
                "ARM v6-M",
11377
                "ARM v6S-M"
11378
            };
11379
 
11380
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
11381
            secondary_compat = get_secondary_compatible_arch (ibfd);
11382
            secondary_compat_out = get_secondary_compatible_arch (obfd);
11383
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11384
                                                  &secondary_compat_out,
11385
                                                  in_attr[i].i,
11386
                                                  secondary_compat);
11387
            set_secondary_compatible_arch (obfd, secondary_compat_out);
11388
 
11389
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
11390
            if (out_attr[i].i == saved_out_attr)
11391
              ; /* Leave the names alone.  */
11392
            else if (out_attr[i].i == in_attr[i].i)
11393
              {
11394
                /* The output architecture has been changed to match the
11395
                   input architecture.  Use the input names.  */
11396
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11397
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11398
                  : NULL;
11399
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11400
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11401
                  : NULL;
11402
              }
11403
            else
11404
              {
11405
                out_attr[Tag_CPU_name].s = NULL;
11406
                out_attr[Tag_CPU_raw_name].s = NULL;
11407
              }
11408
 
11409
            /* If we still don't have a value for Tag_CPU_name,
11410
               make one up now.  Tag_CPU_raw_name remains blank.  */
11411
            if (out_attr[Tag_CPU_name].s == NULL
11412
                && out_attr[i].i < ARRAY_SIZE (name_table))
11413
              out_attr[Tag_CPU_name].s =
11414
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11415
          }
11416
          break;
11417
 
11418
        case Tag_ARM_ISA_use:
11419
        case Tag_THUMB_ISA_use:
11420
        case Tag_WMMX_arch:
11421
        case Tag_Advanced_SIMD_arch:
11422
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
11423
        case Tag_ABI_FP_rounding:
11424
        case Tag_ABI_FP_exceptions:
11425
        case Tag_ABI_FP_user_exceptions:
11426
        case Tag_ABI_FP_number_model:
11427
        case Tag_FP_HP_extension:
11428
        case Tag_CPU_unaligned_access:
11429
        case Tag_T2EE_use:
11430
        case Tag_MPextension_use:
11431
          /* Use the largest value specified.  */
11432
          if (in_attr[i].i > out_attr[i].i)
11433
            out_attr[i].i = in_attr[i].i;
11434
          break;
11435
 
11436
        case Tag_ABI_align_preserved:
11437
        case Tag_ABI_PCS_RO_data:
11438
          /* Use the smallest value specified.  */
11439
          if (in_attr[i].i < out_attr[i].i)
11440
            out_attr[i].i = in_attr[i].i;
11441
          break;
11442
 
11443
        case Tag_ABI_align_needed:
11444
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11445
              && (in_attr[Tag_ABI_align_preserved].i == 0
11446
                  || out_attr[Tag_ABI_align_preserved].i == 0))
11447
            {
11448
              /* This error message should be enabled once all non-conformant
11449
                 binaries in the toolchain have had the attributes set
11450
                 properly.
11451
              _bfd_error_handler
11452
                (_("error: %B: 8-byte data alignment conflicts with %B"),
11453
                 obfd, ibfd);
11454
              result = FALSE; */
11455
            }
11456
          /* Fall through.  */
11457
        case Tag_ABI_FP_denormal:
11458
        case Tag_ABI_PCS_GOT_use:
11459
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11460
             value if greater than 2 (for future-proofing).  */
11461
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11462
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11463
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11464
            out_attr[i].i = in_attr[i].i;
11465
          break;
11466
 
11467
        case Tag_Virtualization_use:
11468
          /* The virtualization tag effectively stores two bits of
11469
             information: the intended use of TrustZone (in bit 0), and the
11470
             intended use of Virtualization (in bit 1).  */
11471
          if (out_attr[i].i == 0)
11472
            out_attr[i].i = in_attr[i].i;
11473
          else if (in_attr[i].i != 0
11474
                   && in_attr[i].i != out_attr[i].i)
11475
            {
11476
              if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11477
                out_attr[i].i = 3;
11478
              else
11479
                {
11480
                  _bfd_error_handler
11481
                    (_("error: %B: unable to merge virtualization attributes "
11482
                       "with %B"),
11483
                     obfd, ibfd);
11484
                  result = FALSE;
11485
                }
11486
            }
11487
          break;
11488
 
11489
        case Tag_CPU_arch_profile:
11490
          if (out_attr[i].i != in_attr[i].i)
11491
            {
11492
              /* 0 will merge with anything.
11493
                 'A' and 'S' merge to 'A'.
11494
                 'R' and 'S' merge to 'R'.
11495
                 'M' and 'A|R|S' is an error.  */
11496
              if (out_attr[i].i == 0
11497
                  || (out_attr[i].i == 'S'
11498
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11499
                out_attr[i].i = in_attr[i].i;
11500
              else if (in_attr[i].i == 0
11501
                       || (in_attr[i].i == 'S'
11502
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11503
                ; /* Do nothing. */
11504
              else
11505
                {
11506
                  _bfd_error_handler
11507
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
11508
                     ibfd,
11509
                     in_attr[i].i ? in_attr[i].i : '0',
11510
                     out_attr[i].i ? out_attr[i].i : '0');
11511
                  result = FALSE;
11512
                }
11513
            }
11514
          break;
11515
        case Tag_FP_arch:
11516
            {
11517
              /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11518
                 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11519
                 when it's 0.  It might mean absence of FP hardware if
11520
                 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
11521
 
11522
              static const struct
11523
              {
11524
                  int ver;
11525
                  int regs;
11526
              } vfp_versions[7] =
11527
                {
11528
                  {0, 0},
11529
                  {1, 16},
11530
                  {2, 16},
11531
                  {3, 32},
11532
                  {3, 16},
11533
                  {4, 32},
11534
                  {4, 16}
11535
                };
11536
              int ver;
11537
              int regs;
11538
              int newval;
11539
 
11540
              /* If the output has no requirement about FP hardware,
11541
                 follow the requirement of the input.  */
11542
              if (out_attr[i].i == 0)
11543
                {
11544
                  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11545
                  out_attr[i].i = in_attr[i].i;
11546
                  out_attr[Tag_ABI_HardFP_use].i
11547
                    = in_attr[Tag_ABI_HardFP_use].i;
11548
                  break;
11549
                }
11550
              /* If the input has no requirement about FP hardware, do
11551
                 nothing.  */
11552
              else if (in_attr[i].i == 0)
11553
                {
11554
                  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11555
                  break;
11556
                }
11557
 
11558
              /* Both the input and the output have nonzero Tag_FP_arch.
11559
                 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
11560
 
11561
              /* If both the input and the output have zero Tag_ABI_HardFP_use,
11562
                 do nothing.  */
11563
              if (in_attr[Tag_ABI_HardFP_use].i == 0
11564
                  && out_attr[Tag_ABI_HardFP_use].i == 0)
11565
                ;
11566
              /* If the input and the output have different Tag_ABI_HardFP_use,
11567
                 the combination of them is 3 (SP & DP).  */
11568
              else if (in_attr[Tag_ABI_HardFP_use].i
11569
                       != out_attr[Tag_ABI_HardFP_use].i)
11570
                out_attr[Tag_ABI_HardFP_use].i = 3;
11571
 
11572
              /* Now we can handle Tag_FP_arch.  */
11573
 
11574
              /* Values greater than 6 aren't defined, so just pick the
11575
                 biggest */
11576
              if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11577
                {
11578
                  out_attr[i] = in_attr[i];
11579
                  break;
11580
                }
11581
              /* The output uses the superset of input features
11582
                 (ISA version) and registers.  */
11583
              ver = vfp_versions[in_attr[i].i].ver;
11584
              if (ver < vfp_versions[out_attr[i].i].ver)
11585
                ver = vfp_versions[out_attr[i].i].ver;
11586
              regs = vfp_versions[in_attr[i].i].regs;
11587
              if (regs < vfp_versions[out_attr[i].i].regs)
11588
                regs = vfp_versions[out_attr[i].i].regs;
11589
              /* This assumes all possible supersets are also a valid
11590
                 options.  */
11591
              for (newval = 6; newval > 0; newval--)
11592
                {
11593
                  if (regs == vfp_versions[newval].regs
11594
                      && ver == vfp_versions[newval].ver)
11595
                    break;
11596
                }
11597
              out_attr[i].i = newval;
11598
            }
11599
          break;
11600
        case Tag_PCS_config:
11601
          if (out_attr[i].i == 0)
11602
            out_attr[i].i = in_attr[i].i;
11603 163 khays
          else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11604 14 khays
            {
11605
              /* It's sometimes ok to mix different configs, so this is only
11606
                 a warning.  */
11607
              _bfd_error_handler
11608
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
11609
            }
11610
          break;
11611
        case Tag_ABI_PCS_R9_use:
11612
          if (in_attr[i].i != out_attr[i].i
11613
              && out_attr[i].i != AEABI_R9_unused
11614
              && in_attr[i].i != AEABI_R9_unused)
11615
            {
11616
              _bfd_error_handler
11617
                (_("error: %B: Conflicting use of R9"), ibfd);
11618
              result = FALSE;
11619
            }
11620
          if (out_attr[i].i == AEABI_R9_unused)
11621
            out_attr[i].i = in_attr[i].i;
11622
          break;
11623
        case Tag_ABI_PCS_RW_data:
11624
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11625
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11626
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11627
            {
11628
              _bfd_error_handler
11629
                (_("error: %B: SB relative addressing conflicts with use of R9"),
11630
                 ibfd);
11631
              result = FALSE;
11632
            }
11633
          /* Use the smallest value specified.  */
11634
          if (in_attr[i].i < out_attr[i].i)
11635
            out_attr[i].i = in_attr[i].i;
11636
          break;
11637
        case Tag_ABI_PCS_wchar_t:
11638
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11639
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11640
            {
11641
              _bfd_error_handler
11642
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11643
                 ibfd, in_attr[i].i, out_attr[i].i);
11644
            }
11645
          else if (in_attr[i].i && !out_attr[i].i)
11646
            out_attr[i].i = in_attr[i].i;
11647
          break;
11648
        case Tag_ABI_enum_size:
11649
          if (in_attr[i].i != AEABI_enum_unused)
11650
            {
11651
              if (out_attr[i].i == AEABI_enum_unused
11652
                  || out_attr[i].i == AEABI_enum_forced_wide)
11653
                {
11654
                  /* The existing object is compatible with anything.
11655
                     Use whatever requirements the new object has.  */
11656
                  out_attr[i].i = in_attr[i].i;
11657
                }
11658
              else if (in_attr[i].i != AEABI_enum_forced_wide
11659
                       && out_attr[i].i != in_attr[i].i
11660
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
11661
                {
11662
                  static const char *aeabi_enum_names[] =
11663
                    { "", "variable-size", "32-bit", "" };
11664
                  const char *in_name =
11665
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11666
                    ? aeabi_enum_names[in_attr[i].i]
11667
                    : "<unknown>";
11668
                  const char *out_name =
11669
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11670
                    ? aeabi_enum_names[out_attr[i].i]
11671
                    : "<unknown>";
11672
                  _bfd_error_handler
11673
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11674
                     ibfd, in_name, out_name);
11675
                }
11676
            }
11677
          break;
11678
        case Tag_ABI_VFP_args:
11679
          /* Aready done.  */
11680
          break;
11681
        case Tag_ABI_WMMX_args:
11682
          if (in_attr[i].i != out_attr[i].i)
11683
            {
11684
              _bfd_error_handler
11685
                (_("error: %B uses iWMMXt register arguments, %B does not"),
11686
                 ibfd, obfd);
11687
              result = FALSE;
11688
            }
11689
          break;
11690
        case Tag_compatibility:
11691
          /* Merged in target-independent code.  */
11692
          break;
11693
        case Tag_ABI_HardFP_use:
11694
          /* This is handled along with Tag_FP_arch.  */
11695
          break;
11696
        case Tag_ABI_FP_16bit_format:
11697
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
11698
            {
11699
              if (in_attr[i].i != out_attr[i].i)
11700
                {
11701
                  _bfd_error_handler
11702
                    (_("error: fp16 format mismatch between %B and %B"),
11703
                     ibfd, obfd);
11704
                  result = FALSE;
11705
                }
11706
            }
11707
          if (in_attr[i].i != 0)
11708
            out_attr[i].i = in_attr[i].i;
11709
          break;
11710
 
11711
        case Tag_DIV_use:
11712
          /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11713
             mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11714
             SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11715
             CPU.  We will merge as follows: If the input attribute's value
11716
             is one then the output attribute's value remains unchanged.  If
11717
             the input attribute's value is zero or two then if the output
11718
             attribute's value is one the output value is set to the input
11719
             value, otherwise the output value must be the same as the
11720
             inputs.  */
11721
          if (in_attr[i].i != 1 && out_attr[i].i != 1)
11722
            {
11723
              if (in_attr[i].i != out_attr[i].i)
11724
                {
11725
                  _bfd_error_handler
11726
                    (_("DIV usage mismatch between %B and %B"),
11727
                     ibfd, obfd);
11728
                  result = FALSE;
11729
                }
11730
            }
11731
 
11732
          if (in_attr[i].i != 1)
11733
            out_attr[i].i = in_attr[i].i;
11734
 
11735
          break;
11736
 
11737
        case Tag_MPextension_use_legacy:
11738
          /* We don't output objects with Tag_MPextension_use_legacy - we
11739
             move the value to Tag_MPextension_use.  */
11740
          if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11741
            {
11742
              if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11743
                {
11744
                  _bfd_error_handler
11745
                    (_("%B has has both the current and legacy "
11746
                       "Tag_MPextension_use attributes"),
11747
                     ibfd);
11748
                  result = FALSE;
11749
                }
11750
            }
11751
 
11752
          if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11753
            out_attr[Tag_MPextension_use] = in_attr[i];
11754
 
11755
          break;
11756
 
11757
        case Tag_nodefaults:
11758
          /* This tag is set if it exists, but the value is unused (and is
11759
             typically zero).  We don't actually need to do anything here -
11760
             the merge happens automatically when the type flags are merged
11761
             below.  */
11762
          break;
11763
        case Tag_also_compatible_with:
11764
          /* Already done in Tag_CPU_arch.  */
11765
          break;
11766
        case Tag_conformance:
11767
          /* Keep the attribute if it matches.  Throw it away otherwise.
11768
             No attribute means no claim to conform.  */
11769
          if (!in_attr[i].s || !out_attr[i].s
11770
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11771
            out_attr[i].s = NULL;
11772
          break;
11773
 
11774
        default:
11775
          result
11776
            = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11777
        }
11778
 
11779
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
11780
      if (in_attr[i].type && !out_attr[i].type)
11781
        out_attr[i].type = in_attr[i].type;
11782
    }
11783
 
11784
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
11785
  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11786
    return FALSE;
11787
 
11788
  /* Check for any attributes not known on ARM.  */
11789
  result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11790
 
11791
  return result;
11792
}
11793
 
11794
 
11795
/* Return TRUE if the two EABI versions are incompatible.  */
11796
 
11797
static bfd_boolean
11798
elf32_arm_versions_compatible (unsigned iver, unsigned over)
11799
{
11800
  /* v4 and v5 are the same spec before and after it was released,
11801
     so allow mixing them.  */
11802
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11803
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11804
    return TRUE;
11805
 
11806
  return (iver == over);
11807
}
11808
 
11809
/* Merge backend specific data from an object file to the output
11810
   object file when linking.  */
11811
 
11812
static bfd_boolean
11813
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11814
 
11815
/* Display the flags field.  */
11816
 
11817
static bfd_boolean
11818
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11819
{
11820
  FILE * file = (FILE *) ptr;
11821
  unsigned long flags;
11822
 
11823
  BFD_ASSERT (abfd != NULL && ptr != NULL);
11824
 
11825
  /* Print normal ELF private data.  */
11826
  _bfd_elf_print_private_bfd_data (abfd, ptr);
11827
 
11828
  flags = elf_elfheader (abfd)->e_flags;
11829
  /* Ignore init flag - it may not be set, despite the flags field
11830
     containing valid data.  */
11831
 
11832
  /* xgettext:c-format */
11833
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11834
 
11835
  switch (EF_ARM_EABI_VERSION (flags))
11836
    {
11837
    case EF_ARM_EABI_UNKNOWN:
11838
      /* The following flag bits are GNU extensions and not part of the
11839
         official ARM ELF extended ABI.  Hence they are only decoded if
11840
         the EABI version is not set.  */
11841
      if (flags & EF_ARM_INTERWORK)
11842
        fprintf (file, _(" [interworking enabled]"));
11843
 
11844
      if (flags & EF_ARM_APCS_26)
11845
        fprintf (file, " [APCS-26]");
11846
      else
11847
        fprintf (file, " [APCS-32]");
11848
 
11849
      if (flags & EF_ARM_VFP_FLOAT)
11850
        fprintf (file, _(" [VFP float format]"));
11851
      else if (flags & EF_ARM_MAVERICK_FLOAT)
11852
        fprintf (file, _(" [Maverick float format]"));
11853
      else
11854
        fprintf (file, _(" [FPA float format]"));
11855
 
11856
      if (flags & EF_ARM_APCS_FLOAT)
11857
        fprintf (file, _(" [floats passed in float registers]"));
11858
 
11859
      if (flags & EF_ARM_PIC)
11860
        fprintf (file, _(" [position independent]"));
11861
 
11862
      if (flags & EF_ARM_NEW_ABI)
11863
        fprintf (file, _(" [new ABI]"));
11864
 
11865
      if (flags & EF_ARM_OLD_ABI)
11866
        fprintf (file, _(" [old ABI]"));
11867
 
11868
      if (flags & EF_ARM_SOFT_FLOAT)
11869
        fprintf (file, _(" [software FP]"));
11870
 
11871
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11872
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11873
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11874
                 | EF_ARM_MAVERICK_FLOAT);
11875
      break;
11876
 
11877
    case EF_ARM_EABI_VER1:
11878
      fprintf (file, _(" [Version1 EABI]"));
11879
 
11880
      if (flags & EF_ARM_SYMSARESORTED)
11881
        fprintf (file, _(" [sorted symbol table]"));
11882
      else
11883
        fprintf (file, _(" [unsorted symbol table]"));
11884
 
11885
      flags &= ~ EF_ARM_SYMSARESORTED;
11886
      break;
11887
 
11888
    case EF_ARM_EABI_VER2:
11889
      fprintf (file, _(" [Version2 EABI]"));
11890
 
11891
      if (flags & EF_ARM_SYMSARESORTED)
11892
        fprintf (file, _(" [sorted symbol table]"));
11893
      else
11894
        fprintf (file, _(" [unsorted symbol table]"));
11895
 
11896
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11897
        fprintf (file, _(" [dynamic symbols use segment index]"));
11898
 
11899
      if (flags & EF_ARM_MAPSYMSFIRST)
11900
        fprintf (file, _(" [mapping symbols precede others]"));
11901
 
11902
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11903
                 | EF_ARM_MAPSYMSFIRST);
11904
      break;
11905
 
11906
    case EF_ARM_EABI_VER3:
11907
      fprintf (file, _(" [Version3 EABI]"));
11908
      break;
11909
 
11910
    case EF_ARM_EABI_VER4:
11911
      fprintf (file, _(" [Version4 EABI]"));
11912
      goto eabi;
11913
 
11914
    case EF_ARM_EABI_VER5:
11915
      fprintf (file, _(" [Version5 EABI]"));
11916
    eabi:
11917
      if (flags & EF_ARM_BE8)
11918
        fprintf (file, _(" [BE8]"));
11919
 
11920
      if (flags & EF_ARM_LE8)
11921
        fprintf (file, _(" [LE8]"));
11922
 
11923
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11924
      break;
11925
 
11926
    default:
11927
      fprintf (file, _(" <EABI version unrecognised>"));
11928
      break;
11929
    }
11930
 
11931
  flags &= ~ EF_ARM_EABIMASK;
11932
 
11933
  if (flags & EF_ARM_RELEXEC)
11934
    fprintf (file, _(" [relocatable executable]"));
11935
 
11936
  if (flags & EF_ARM_HASENTRY)
11937
    fprintf (file, _(" [has entry point]"));
11938
 
11939
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11940
 
11941
  if (flags)
11942
    fprintf (file, _("<Unrecognised flag bits set>"));
11943
 
11944
  fputc ('\n', file);
11945
 
11946
  return TRUE;
11947
}
11948
 
11949
static int
11950
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11951
{
11952
  switch (ELF_ST_TYPE (elf_sym->st_info))
11953
    {
11954
    case STT_ARM_TFUNC:
11955
      return ELF_ST_TYPE (elf_sym->st_info);
11956
 
11957
    case STT_ARM_16BIT:
11958
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11959
         This allows us to distinguish between data used by Thumb instructions
11960
         and non-data (which is probably code) inside Thumb regions of an
11961
         executable.  */
11962
      if (type != STT_OBJECT && type != STT_TLS)
11963
        return ELF_ST_TYPE (elf_sym->st_info);
11964
      break;
11965
 
11966
    default:
11967
      break;
11968
    }
11969
 
11970
  return type;
11971
}
11972
 
11973
static asection *
11974
elf32_arm_gc_mark_hook (asection *sec,
11975
                        struct bfd_link_info *info,
11976
                        Elf_Internal_Rela *rel,
11977
                        struct elf_link_hash_entry *h,
11978
                        Elf_Internal_Sym *sym)
11979
{
11980
  if (h != NULL)
11981
    switch (ELF32_R_TYPE (rel->r_info))
11982
      {
11983
      case R_ARM_GNU_VTINHERIT:
11984
      case R_ARM_GNU_VTENTRY:
11985
        return NULL;
11986
      }
11987
 
11988
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11989
}
11990
 
11991
/* Update the got entry reference counts for the section being removed.  */
11992
 
11993
static bfd_boolean
11994
elf32_arm_gc_sweep_hook (bfd *                     abfd,
11995
                         struct bfd_link_info *    info,
11996
                         asection *                sec,
11997
                         const Elf_Internal_Rela * relocs)
11998
{
11999
  Elf_Internal_Shdr *symtab_hdr;
12000
  struct elf_link_hash_entry **sym_hashes;
12001
  bfd_signed_vma *local_got_refcounts;
12002
  const Elf_Internal_Rela *rel, *relend;
12003
  struct elf32_arm_link_hash_table * globals;
12004
 
12005
  if (info->relocatable)
12006
    return TRUE;
12007
 
12008
  globals = elf32_arm_hash_table (info);
12009
  if (globals == NULL)
12010
    return FALSE;
12011
 
12012
  elf_section_data (sec)->local_dynrel = NULL;
12013
 
12014
  symtab_hdr = & elf_symtab_hdr (abfd);
12015
  sym_hashes = elf_sym_hashes (abfd);
12016
  local_got_refcounts = elf_local_got_refcounts (abfd);
12017
 
12018
  check_use_blx (globals);
12019
 
12020
  relend = relocs + sec->reloc_count;
12021
  for (rel = relocs; rel < relend; rel++)
12022
    {
12023
      unsigned long r_symndx;
12024
      struct elf_link_hash_entry *h = NULL;
12025
      struct elf32_arm_link_hash_entry *eh;
12026
      int r_type;
12027
      bfd_boolean call_reloc_p;
12028
      bfd_boolean may_become_dynamic_p;
12029
      bfd_boolean may_need_local_target_p;
12030
      union gotplt_union *root_plt;
12031
      struct arm_plt_info *arm_plt;
12032
 
12033
      r_symndx = ELF32_R_SYM (rel->r_info);
12034
      if (r_symndx >= symtab_hdr->sh_info)
12035
        {
12036
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12037
          while (h->root.type == bfd_link_hash_indirect
12038
                 || h->root.type == bfd_link_hash_warning)
12039
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
12040
        }
12041
      eh = (struct elf32_arm_link_hash_entry *) h;
12042
 
12043
      call_reloc_p = FALSE;
12044
      may_become_dynamic_p = FALSE;
12045
      may_need_local_target_p = FALSE;
12046
 
12047
      r_type = ELF32_R_TYPE (rel->r_info);
12048
      r_type = arm_real_reloc_type (globals, r_type);
12049
      switch (r_type)
12050
        {
12051
        case R_ARM_GOT32:
12052
        case R_ARM_GOT_PREL:
12053
        case R_ARM_TLS_GD32:
12054
        case R_ARM_TLS_IE32:
12055
          if (h != NULL)
12056
            {
12057
              if (h->got.refcount > 0)
12058
                h->got.refcount -= 1;
12059
            }
12060
          else if (local_got_refcounts != NULL)
12061
            {
12062
              if (local_got_refcounts[r_symndx] > 0)
12063
                local_got_refcounts[r_symndx] -= 1;
12064
            }
12065
          break;
12066
 
12067
        case R_ARM_TLS_LDM32:
12068
          globals->tls_ldm_got.refcount -= 1;
12069
          break;
12070
 
12071
        case R_ARM_PC24:
12072
        case R_ARM_PLT32:
12073
        case R_ARM_CALL:
12074
        case R_ARM_JUMP24:
12075
        case R_ARM_PREL31:
12076
        case R_ARM_THM_CALL:
12077
        case R_ARM_THM_JUMP24:
12078
        case R_ARM_THM_JUMP19:
12079
          call_reloc_p = TRUE;
12080
          may_need_local_target_p = TRUE;
12081
          break;
12082
 
12083
        case R_ARM_ABS12:
12084
          if (!globals->vxworks_p)
12085
            {
12086
              may_need_local_target_p = TRUE;
12087
              break;
12088
            }
12089
          /* Fall through.  */
12090
        case R_ARM_ABS32:
12091
        case R_ARM_ABS32_NOI:
12092
        case R_ARM_REL32:
12093
        case R_ARM_REL32_NOI:
12094
        case R_ARM_MOVW_ABS_NC:
12095
        case R_ARM_MOVT_ABS:
12096
        case R_ARM_MOVW_PREL_NC:
12097
        case R_ARM_MOVT_PREL:
12098
        case R_ARM_THM_MOVW_ABS_NC:
12099
        case R_ARM_THM_MOVT_ABS:
12100
        case R_ARM_THM_MOVW_PREL_NC:
12101
        case R_ARM_THM_MOVT_PREL:
12102
          /* Should the interworking branches be here also?  */
12103
          if ((info->shared || globals->root.is_relocatable_executable)
12104
              && (sec->flags & SEC_ALLOC) != 0)
12105
            {
12106
              if (h == NULL
12107
                  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12108
                {
12109
                  call_reloc_p = TRUE;
12110
                  may_need_local_target_p = TRUE;
12111
                }
12112
              else
12113
                may_become_dynamic_p = TRUE;
12114
            }
12115
          else
12116
            may_need_local_target_p = TRUE;
12117
          break;
12118
 
12119
        default:
12120
          break;
12121
        }
12122
 
12123
      if (may_need_local_target_p
12124
          && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12125
        {
12126
          BFD_ASSERT (root_plt->refcount > 0);
12127
          root_plt->refcount -= 1;
12128
 
12129
          if (!call_reloc_p)
12130
            arm_plt->noncall_refcount--;
12131
 
12132
          if (r_type == R_ARM_THM_CALL)
12133
            arm_plt->maybe_thumb_refcount--;
12134
 
12135
          if (r_type == R_ARM_THM_JUMP24
12136
              || r_type == R_ARM_THM_JUMP19)
12137
            arm_plt->thumb_refcount--;
12138
        }
12139
 
12140
      if (may_become_dynamic_p)
12141
        {
12142
          struct elf_dyn_relocs **pp;
12143
          struct elf_dyn_relocs *p;
12144
 
12145
          if (h != NULL)
12146
            pp = &(eh->dyn_relocs);
12147
          else
12148
            {
12149
              Elf_Internal_Sym *isym;
12150
 
12151
              isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12152
                                            abfd, r_symndx);
12153
              if (isym == NULL)
12154
                return FALSE;
12155
              pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12156
              if (pp == NULL)
12157
                return FALSE;
12158
            }
12159
          for (; (p = *pp) != NULL; pp = &p->next)
12160
            if (p->sec == sec)
12161
              {
12162
                /* Everything must go for SEC.  */
12163
                *pp = p->next;
12164
                break;
12165
              }
12166
        }
12167
    }
12168
 
12169
  return TRUE;
12170
}
12171
 
12172
/* Look through the relocs for a section during the first phase.  */
12173
 
12174
static bfd_boolean
12175
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12176
                        asection *sec, const Elf_Internal_Rela *relocs)
12177
{
12178
  Elf_Internal_Shdr *symtab_hdr;
12179
  struct elf_link_hash_entry **sym_hashes;
12180
  const Elf_Internal_Rela *rel;
12181
  const Elf_Internal_Rela *rel_end;
12182
  bfd *dynobj;
12183
  asection *sreloc;
12184
  struct elf32_arm_link_hash_table *htab;
12185
  bfd_boolean call_reloc_p;
12186
  bfd_boolean may_become_dynamic_p;
12187
  bfd_boolean may_need_local_target_p;
12188
  unsigned long nsyms;
12189
 
12190
  if (info->relocatable)
12191
    return TRUE;
12192
 
12193
  BFD_ASSERT (is_arm_elf (abfd));
12194
 
12195
  htab = elf32_arm_hash_table (info);
12196
  if (htab == NULL)
12197
    return FALSE;
12198
 
12199
  sreloc = NULL;
12200
 
12201
  /* Create dynamic sections for relocatable executables so that we can
12202
     copy relocations.  */
12203
  if (htab->root.is_relocatable_executable
12204
      && ! htab->root.dynamic_sections_created)
12205
    {
12206
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12207
        return FALSE;
12208
    }
12209
 
12210
  if (htab->root.dynobj == NULL)
12211
    htab->root.dynobj = abfd;
12212
  if (!create_ifunc_sections (info))
12213
    return FALSE;
12214
 
12215
  dynobj = htab->root.dynobj;
12216
 
12217
  symtab_hdr = & elf_symtab_hdr (abfd);
12218
  sym_hashes = elf_sym_hashes (abfd);
12219
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12220
 
12221
  rel_end = relocs + sec->reloc_count;
12222
  for (rel = relocs; rel < rel_end; rel++)
12223
    {
12224
      Elf_Internal_Sym *isym;
12225
      struct elf_link_hash_entry *h;
12226
      struct elf32_arm_link_hash_entry *eh;
12227
      unsigned long r_symndx;
12228
      int r_type;
12229
 
12230
      r_symndx = ELF32_R_SYM (rel->r_info);
12231
      r_type = ELF32_R_TYPE (rel->r_info);
12232
      r_type = arm_real_reloc_type (htab, r_type);
12233
 
12234
      if (r_symndx >= nsyms
12235
          /* PR 9934: It is possible to have relocations that do not
12236
             refer to symbols, thus it is also possible to have an
12237
             object file containing relocations but no symbol table.  */
12238
          && (r_symndx > STN_UNDEF || nsyms > 0))
12239
        {
12240
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12241
                                   r_symndx);
12242
          return FALSE;
12243
        }
12244
 
12245
      h = NULL;
12246
      isym = NULL;
12247
      if (nsyms > 0)
12248
        {
12249
          if (r_symndx < symtab_hdr->sh_info)
12250
            {
12251
              /* A local symbol.  */
12252
              isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12253
                                            abfd, r_symndx);
12254
              if (isym == NULL)
12255
                return FALSE;
12256
            }
12257
          else
12258
            {
12259
              h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12260
              while (h->root.type == bfd_link_hash_indirect
12261
                     || h->root.type == bfd_link_hash_warning)
12262
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
12263
            }
12264
        }
12265
 
12266
      eh = (struct elf32_arm_link_hash_entry *) h;
12267
 
12268
      call_reloc_p = FALSE;
12269
      may_become_dynamic_p = FALSE;
12270
      may_need_local_target_p = FALSE;
12271
 
12272
      /* Could be done earlier, if h were already available.  */
12273
      r_type = elf32_arm_tls_transition (info, r_type, h);
12274
      switch (r_type)
12275
        {
12276
          case R_ARM_GOT32:
12277
          case R_ARM_GOT_PREL:
12278
          case R_ARM_TLS_GD32:
12279
          case R_ARM_TLS_IE32:
12280
          case R_ARM_TLS_GOTDESC:
12281
          case R_ARM_TLS_DESCSEQ:
12282
          case R_ARM_THM_TLS_DESCSEQ:
12283
          case R_ARM_TLS_CALL:
12284
          case R_ARM_THM_TLS_CALL:
12285
            /* This symbol requires a global offset table entry.  */
12286
            {
12287
              int tls_type, old_tls_type;
12288
 
12289
              switch (r_type)
12290
                {
12291
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12292
 
12293
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12294
 
12295
                case R_ARM_TLS_GOTDESC:
12296
                case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12297
                case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12298
                  tls_type = GOT_TLS_GDESC; break;
12299
 
12300
                default: tls_type = GOT_NORMAL; break;
12301
                }
12302
 
12303
              if (h != NULL)
12304
                {
12305
                  h->got.refcount++;
12306
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12307
                }
12308
              else
12309
                {
12310
                  /* This is a global offset table entry for a local symbol.  */
12311
                  if (!elf32_arm_allocate_local_sym_info (abfd))
12312
                    return FALSE;
12313
                  elf_local_got_refcounts (abfd)[r_symndx] += 1;
12314
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12315
                }
12316
 
12317
              /* If a variable is accessed with both tls methods, two
12318
                 slots may be created.  */
12319
              if (GOT_TLS_GD_ANY_P (old_tls_type)
12320
                  && GOT_TLS_GD_ANY_P (tls_type))
12321
                tls_type |= old_tls_type;
12322
 
12323
              /* We will already have issued an error message if there
12324
                 is a TLS/non-TLS mismatch, based on the symbol
12325
                 type.  So just combine any TLS types needed.  */
12326
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12327
                  && tls_type != GOT_NORMAL)
12328
                tls_type |= old_tls_type;
12329
 
12330
              /* If the symbol is accessed in both IE and GDESC
12331
                 method, we're able to relax. Turn off the GDESC flag,
12332
                 without messing up with any other kind of tls types
12333
                 that may be involved */
12334
              if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12335
                tls_type &= ~GOT_TLS_GDESC;
12336
 
12337
              if (old_tls_type != tls_type)
12338
                {
12339
                  if (h != NULL)
12340
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
12341
                  else
12342
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12343
                }
12344
            }
12345
            /* Fall through.  */
12346
 
12347
          case R_ARM_TLS_LDM32:
12348
            if (r_type == R_ARM_TLS_LDM32)
12349
                htab->tls_ldm_got.refcount++;
12350
            /* Fall through.  */
12351
 
12352
          case R_ARM_GOTOFF32:
12353
          case R_ARM_GOTPC:
12354
            if (htab->root.sgot == NULL
12355
                && !create_got_section (htab->root.dynobj, info))
12356
              return FALSE;
12357
            break;
12358
 
12359
          case R_ARM_PC24:
12360
          case R_ARM_PLT32:
12361
          case R_ARM_CALL:
12362
          case R_ARM_JUMP24:
12363
          case R_ARM_PREL31:
12364
          case R_ARM_THM_CALL:
12365
          case R_ARM_THM_JUMP24:
12366
          case R_ARM_THM_JUMP19:
12367
            call_reloc_p = TRUE;
12368
            may_need_local_target_p = TRUE;
12369
            break;
12370
 
12371
          case R_ARM_ABS12:
12372
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12373
               ldr __GOTT_INDEX__ offsets.  */
12374
            if (!htab->vxworks_p)
12375
              {
12376
                may_need_local_target_p = TRUE;
12377
                break;
12378
              }
12379
            /* Fall through.  */
12380
 
12381
          case R_ARM_MOVW_ABS_NC:
12382
          case R_ARM_MOVT_ABS:
12383
          case R_ARM_THM_MOVW_ABS_NC:
12384
          case R_ARM_THM_MOVT_ABS:
12385
            if (info->shared)
12386
              {
12387
                (*_bfd_error_handler)
12388
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12389
                   abfd, elf32_arm_howto_table_1[r_type].name,
12390
                   (h) ? h->root.root.string : "a local symbol");
12391
                bfd_set_error (bfd_error_bad_value);
12392
                return FALSE;
12393
              }
12394
 
12395
            /* Fall through.  */
12396
          case R_ARM_ABS32:
12397
          case R_ARM_ABS32_NOI:
12398
          case R_ARM_REL32:
12399
          case R_ARM_REL32_NOI:
12400
          case R_ARM_MOVW_PREL_NC:
12401
          case R_ARM_MOVT_PREL:
12402
          case R_ARM_THM_MOVW_PREL_NC:
12403
          case R_ARM_THM_MOVT_PREL:
12404
 
12405
            /* Should the interworking branches be listed here?  */
12406
            if ((info->shared || htab->root.is_relocatable_executable)
12407
                && (sec->flags & SEC_ALLOC) != 0)
12408
              {
12409
                if (h == NULL
12410
                    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12411
                  {
12412
                    /* In shared libraries and relocatable executables,
12413
                       we treat local relative references as calls;
12414
                       see the related SYMBOL_CALLS_LOCAL code in
12415
                       allocate_dynrelocs.  */
12416
                    call_reloc_p = TRUE;
12417
                    may_need_local_target_p = TRUE;
12418
                  }
12419
                else
12420
                  /* We are creating a shared library or relocatable
12421
                     executable, and this is a reloc against a global symbol,
12422
                     or a non-PC-relative reloc against a local symbol.
12423
                     We may need to copy the reloc into the output.  */
12424
                  may_become_dynamic_p = TRUE;
12425
              }
12426
            else
12427
              may_need_local_target_p = TRUE;
12428
            break;
12429
 
12430
        /* This relocation describes the C++ object vtable hierarchy.
12431
           Reconstruct it for later use during GC.  */
12432
        case R_ARM_GNU_VTINHERIT:
12433
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12434
            return FALSE;
12435
          break;
12436
 
12437
        /* This relocation describes which C++ vtable entries are actually
12438
           used.  Record for later use during GC.  */
12439
        case R_ARM_GNU_VTENTRY:
12440
          BFD_ASSERT (h != NULL);
12441
          if (h != NULL
12442
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12443
            return FALSE;
12444
          break;
12445
        }
12446
 
12447
      if (h != NULL)
12448
        {
12449
          if (call_reloc_p)
12450
            /* We may need a .plt entry if the function this reloc
12451
               refers to is in a different object, regardless of the
12452
               symbol's type.  We can't tell for sure yet, because
12453
               something later might force the symbol local.  */
12454
            h->needs_plt = 1;
12455
          else if (may_need_local_target_p)
12456
            /* If this reloc is in a read-only section, we might
12457
               need a copy reloc.  We can't check reliably at this
12458
               stage whether the section is read-only, as input
12459
               sections have not yet been mapped to output sections.
12460
               Tentatively set the flag for now, and correct in
12461
               adjust_dynamic_symbol.  */
12462
            h->non_got_ref = 1;
12463
        }
12464
 
12465
      if (may_need_local_target_p
12466
          && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12467
        {
12468
          union gotplt_union *root_plt;
12469
          struct arm_plt_info *arm_plt;
12470
          struct arm_local_iplt_info *local_iplt;
12471
 
12472
          if (h != NULL)
12473
            {
12474
              root_plt = &h->plt;
12475
              arm_plt = &eh->plt;
12476
            }
12477
          else
12478
            {
12479
              local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12480
              if (local_iplt == NULL)
12481
                return FALSE;
12482
              root_plt = &local_iplt->root;
12483
              arm_plt = &local_iplt->arm;
12484
            }
12485
 
12486
          /* If the symbol is a function that doesn't bind locally,
12487
             this relocation will need a PLT entry.  */
12488
          root_plt->refcount += 1;
12489
 
12490
          if (!call_reloc_p)
12491
            arm_plt->noncall_refcount++;
12492
 
12493
          /* It's too early to use htab->use_blx here, so we have to
12494
             record possible blx references separately from
12495
             relocs that definitely need a thumb stub.  */
12496
 
12497
          if (r_type == R_ARM_THM_CALL)
12498
            arm_plt->maybe_thumb_refcount += 1;
12499
 
12500
          if (r_type == R_ARM_THM_JUMP24
12501
              || r_type == R_ARM_THM_JUMP19)
12502
            arm_plt->thumb_refcount += 1;
12503
        }
12504
 
12505
      if (may_become_dynamic_p)
12506
        {
12507
          struct elf_dyn_relocs *p, **head;
12508
 
12509
          /* Create a reloc section in dynobj.  */
12510
          if (sreloc == NULL)
12511
            {
12512
              sreloc = _bfd_elf_make_dynamic_reloc_section
12513
                (sec, dynobj, 2, abfd, ! htab->use_rel);
12514
 
12515
              if (sreloc == NULL)
12516
                return FALSE;
12517
 
12518
              /* BPABI objects never have dynamic relocations mapped.  */
12519
              if (htab->symbian_p)
12520
                {
12521
                  flagword flags;
12522
 
12523
                  flags = bfd_get_section_flags (dynobj, sreloc);
12524
                  flags &= ~(SEC_LOAD | SEC_ALLOC);
12525
                  bfd_set_section_flags (dynobj, sreloc, flags);
12526
                }
12527
            }
12528
 
12529
          /* If this is a global symbol, count the number of
12530
             relocations we need for this symbol.  */
12531
          if (h != NULL)
12532
            head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12533
          else
12534
            {
12535
              head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12536
              if (head == NULL)
12537
                return FALSE;
12538
            }
12539
 
12540
          p = *head;
12541
          if (p == NULL || p->sec != sec)
12542
            {
12543
              bfd_size_type amt = sizeof *p;
12544
 
12545
              p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12546
              if (p == NULL)
12547
                return FALSE;
12548
              p->next = *head;
12549
              *head = p;
12550
              p->sec = sec;
12551
              p->count = 0;
12552
              p->pc_count = 0;
12553
            }
12554
 
12555
          if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12556
            p->pc_count += 1;
12557
          p->count += 1;
12558
        }
12559
    }
12560
 
12561
  return TRUE;
12562
}
12563
 
12564
/* Unwinding tables are not referenced directly.  This pass marks them as
12565
   required if the corresponding code section is marked.  */
12566
 
12567
static bfd_boolean
12568
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12569
                                  elf_gc_mark_hook_fn gc_mark_hook)
12570
{
12571
  bfd *sub;
12572
  Elf_Internal_Shdr **elf_shdrp;
12573
  bfd_boolean again;
12574
 
12575 161 khays
  _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12576
 
12577 14 khays
  /* Marking EH data may cause additional code sections to be marked,
12578
     requiring multiple passes.  */
12579
  again = TRUE;
12580
  while (again)
12581
    {
12582
      again = FALSE;
12583
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12584
        {
12585
          asection *o;
12586
 
12587
          if (! is_arm_elf (sub))
12588
            continue;
12589
 
12590
          elf_shdrp = elf_elfsections (sub);
12591
          for (o = sub->sections; o != NULL; o = o->next)
12592
            {
12593
              Elf_Internal_Shdr *hdr;
12594
 
12595
              hdr = &elf_section_data (o)->this_hdr;
12596
              if (hdr->sh_type == SHT_ARM_EXIDX
12597
                  && hdr->sh_link
12598
                  && hdr->sh_link < elf_numsections (sub)
12599
                  && !o->gc_mark
12600
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12601
                {
12602
                  again = TRUE;
12603
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12604
                    return FALSE;
12605
                }
12606
            }
12607
        }
12608
    }
12609
 
12610
  return TRUE;
12611
}
12612
 
12613
/* Treat mapping symbols as special target symbols.  */
12614
 
12615
static bfd_boolean
12616
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12617
{
12618
  return bfd_is_arm_special_symbol_name (sym->name,
12619
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12620
}
12621
 
12622
/* This is a copy of elf_find_function() from elf.c except that
12623
   ARM mapping symbols are ignored when looking for function names
12624
   and STT_ARM_TFUNC is considered to a function type.  */
12625
 
12626
static bfd_boolean
12627
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
12628
                       asection *    section,
12629
                       asymbol **    symbols,
12630
                       bfd_vma       offset,
12631
                       const char ** filename_ptr,
12632
                       const char ** functionname_ptr)
12633
{
12634
  const char * filename = NULL;
12635
  asymbol * func = NULL;
12636
  bfd_vma low_func = 0;
12637
  asymbol ** p;
12638
 
12639
  for (p = symbols; *p != NULL; p++)
12640
    {
12641
      elf_symbol_type *q;
12642
 
12643
      q = (elf_symbol_type *) *p;
12644
 
12645
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12646
        {
12647
        default:
12648
          break;
12649
        case STT_FILE:
12650
          filename = bfd_asymbol_name (&q->symbol);
12651
          break;
12652
        case STT_FUNC:
12653
        case STT_ARM_TFUNC:
12654
        case STT_NOTYPE:
12655
          /* Skip mapping symbols.  */
12656
          if ((q->symbol.flags & BSF_LOCAL)
12657
              && bfd_is_arm_special_symbol_name (q->symbol.name,
12658
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12659
            continue;
12660
          /* Fall through.  */
12661
          if (bfd_get_section (&q->symbol) == section
12662
              && q->symbol.value >= low_func
12663
              && q->symbol.value <= offset)
12664
            {
12665
              func = (asymbol *) q;
12666
              low_func = q->symbol.value;
12667
            }
12668
          break;
12669
        }
12670
    }
12671
 
12672
  if (func == NULL)
12673
    return FALSE;
12674
 
12675
  if (filename_ptr)
12676
    *filename_ptr = filename;
12677
  if (functionname_ptr)
12678
    *functionname_ptr = bfd_asymbol_name (func);
12679
 
12680
  return TRUE;
12681
}
12682
 
12683
 
12684
/* Find the nearest line to a particular section and offset, for error
12685
   reporting.   This code is a duplicate of the code in elf.c, except
12686
   that it uses arm_elf_find_function.  */
12687
 
12688
static bfd_boolean
12689
elf32_arm_find_nearest_line (bfd *          abfd,
12690
                             asection *     section,
12691
                             asymbol **     symbols,
12692
                             bfd_vma        offset,
12693
                             const char **  filename_ptr,
12694
                             const char **  functionname_ptr,
12695
                             unsigned int * line_ptr)
12696
{
12697
  bfd_boolean found = FALSE;
12698
 
12699
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
12700
 
12701 163 khays
  if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12702
                                     section, symbols, offset,
12703 14 khays
                                     filename_ptr, functionname_ptr,
12704
                                     line_ptr, 0,
12705
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
12706
    {
12707
      if (!*functionname_ptr)
12708
        arm_elf_find_function (abfd, section, symbols, offset,
12709
                               *filename_ptr ? NULL : filename_ptr,
12710
                               functionname_ptr);
12711
 
12712
      return TRUE;
12713
    }
12714
 
12715
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12716
                                             & found, filename_ptr,
12717
                                             functionname_ptr, line_ptr,
12718
                                             & elf_tdata (abfd)->line_info))
12719
    return FALSE;
12720
 
12721
  if (found && (*functionname_ptr || *line_ptr))
12722
    return TRUE;
12723
 
12724
  if (symbols == NULL)
12725
    return FALSE;
12726
 
12727
  if (! arm_elf_find_function (abfd, section, symbols, offset,
12728
                               filename_ptr, functionname_ptr))
12729
    return FALSE;
12730
 
12731
  *line_ptr = 0;
12732
  return TRUE;
12733
}
12734
 
12735
static bfd_boolean
12736
elf32_arm_find_inliner_info (bfd *          abfd,
12737
                             const char **  filename_ptr,
12738
                             const char **  functionname_ptr,
12739
                             unsigned int * line_ptr)
12740
{
12741
  bfd_boolean found;
12742
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12743
                                         functionname_ptr, line_ptr,
12744
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
12745
  return found;
12746
}
12747
 
12748
/* Adjust a symbol defined by a dynamic object and referenced by a
12749
   regular object.  The current definition is in some section of the
12750
   dynamic object, but we're not including those sections.  We have to
12751
   change the definition to something the rest of the link can
12752
   understand.  */
12753
 
12754
static bfd_boolean
12755
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12756
                                 struct elf_link_hash_entry * h)
12757
{
12758
  bfd * dynobj;
12759
  asection * s;
12760
  struct elf32_arm_link_hash_entry * eh;
12761
  struct elf32_arm_link_hash_table *globals;
12762
 
12763
  globals = elf32_arm_hash_table (info);
12764
  if (globals == NULL)
12765
    return FALSE;
12766
 
12767
  dynobj = elf_hash_table (info)->dynobj;
12768
 
12769
  /* Make sure we know what is going on here.  */
12770
  BFD_ASSERT (dynobj != NULL
12771
              && (h->needs_plt
12772
                  || h->type == STT_GNU_IFUNC
12773
                  || h->u.weakdef != NULL
12774
                  || (h->def_dynamic
12775
                      && h->ref_regular
12776
                      && !h->def_regular)));
12777
 
12778
  eh = (struct elf32_arm_link_hash_entry *) h;
12779
 
12780
  /* If this is a function, put it in the procedure linkage table.  We
12781
     will fill in the contents of the procedure linkage table later,
12782
     when we know the address of the .got section.  */
12783
  if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12784
    {
12785
      /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12786
         symbol binds locally.  */
12787
      if (h->plt.refcount <= 0
12788
          || (h->type != STT_GNU_IFUNC
12789
              && (SYMBOL_CALLS_LOCAL (info, h)
12790
                  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12791
                      && h->root.type == bfd_link_hash_undefweak))))
12792
        {
12793
          /* This case can occur if we saw a PLT32 reloc in an input
12794
             file, but the symbol was never referred to by a dynamic
12795
             object, or if all references were garbage collected.  In
12796
             such a case, we don't actually need to build a procedure
12797
             linkage table, and we can just do a PC24 reloc instead.  */
12798
          h->plt.offset = (bfd_vma) -1;
12799
          eh->plt.thumb_refcount = 0;
12800
          eh->plt.maybe_thumb_refcount = 0;
12801
          eh->plt.noncall_refcount = 0;
12802
          h->needs_plt = 0;
12803
        }
12804
 
12805
      return TRUE;
12806
    }
12807
  else
12808
    {
12809
      /* It's possible that we incorrectly decided a .plt reloc was
12810
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
12811
         in check_relocs.  We can't decide accurately between function
12812
         and non-function syms in check-relocs; Objects loaded later in
12813
         the link may change h->type.  So fix it now.  */
12814
      h->plt.offset = (bfd_vma) -1;
12815
      eh->plt.thumb_refcount = 0;
12816
      eh->plt.maybe_thumb_refcount = 0;
12817
      eh->plt.noncall_refcount = 0;
12818
    }
12819
 
12820
  /* If this is a weak symbol, and there is a real definition, the
12821
     processor independent code will have arranged for us to see the
12822
     real definition first, and we can just use the same value.  */
12823
  if (h->u.weakdef != NULL)
12824
    {
12825
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12826
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
12827
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
12828
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
12829
      return TRUE;
12830
    }
12831
 
12832
  /* If there are no non-GOT references, we do not need a copy
12833
     relocation.  */
12834
  if (!h->non_got_ref)
12835
    return TRUE;
12836
 
12837
  /* This is a reference to a symbol defined by a dynamic object which
12838
     is not a function.  */
12839
 
12840
  /* If we are creating a shared library, we must presume that the
12841
     only references to the symbol are via the global offset table.
12842
     For such cases we need not do anything here; the relocations will
12843
     be handled correctly by relocate_section.  Relocatable executables
12844
     can reference data in shared objects directly, so we don't need to
12845
     do anything here.  */
12846
  if (info->shared || globals->root.is_relocatable_executable)
12847
    return TRUE;
12848
 
12849
  if (h->size == 0)
12850
    {
12851
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12852
                             h->root.root.string);
12853
      return TRUE;
12854
    }
12855
 
12856
  /* We must allocate the symbol in our .dynbss section, which will
12857
     become part of the .bss section of the executable.  There will be
12858
     an entry for this symbol in the .dynsym section.  The dynamic
12859
     object will contain position independent code, so all references
12860
     from the dynamic object to this symbol will go through the global
12861
     offset table.  The dynamic linker will use the .dynsym entry to
12862
     determine the address it must put in the global offset table, so
12863
     both the dynamic object and the regular object will refer to the
12864
     same memory location for the variable.  */
12865
  s = bfd_get_section_by_name (dynobj, ".dynbss");
12866
  BFD_ASSERT (s != NULL);
12867
 
12868
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12869
     copy the initial value out of the dynamic object and into the
12870
     runtime process image.  We need to remember the offset into the
12871
     .rel(a).bss section we are going to use.  */
12872
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12873
    {
12874
      asection *srel;
12875
 
12876
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12877
      elf32_arm_allocate_dynrelocs (info, srel, 1);
12878
      h->needs_copy = 1;
12879
    }
12880
 
12881
  return _bfd_elf_adjust_dynamic_copy (h, s);
12882
}
12883
 
12884
/* Allocate space in .plt, .got and associated reloc sections for
12885
   dynamic relocs.  */
12886
 
12887
static bfd_boolean
12888
allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12889
{
12890
  struct bfd_link_info *info;
12891
  struct elf32_arm_link_hash_table *htab;
12892
  struct elf32_arm_link_hash_entry *eh;
12893
  struct elf_dyn_relocs *p;
12894
 
12895
  if (h->root.type == bfd_link_hash_indirect)
12896
    return TRUE;
12897
 
12898
  eh = (struct elf32_arm_link_hash_entry *) h;
12899
 
12900
  info = (struct bfd_link_info *) inf;
12901
  htab = elf32_arm_hash_table (info);
12902
  if (htab == NULL)
12903
    return FALSE;
12904
 
12905
  if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12906
      && h->plt.refcount > 0)
12907
    {
12908
      /* Make sure this symbol is output as a dynamic symbol.
12909
         Undefined weak syms won't yet be marked as dynamic.  */
12910
      if (h->dynindx == -1
12911
          && !h->forced_local)
12912
        {
12913
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
12914
            return FALSE;
12915
        }
12916
 
12917
      /* If the call in the PLT entry binds locally, the associated
12918
         GOT entry should use an R_ARM_IRELATIVE relocation instead of
12919
         the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
12920
         than the .plt section.  */
12921
      if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12922
        {
12923
          eh->is_iplt = 1;
12924
          if (eh->plt.noncall_refcount == 0
12925
              && SYMBOL_REFERENCES_LOCAL (info, h))
12926
            /* All non-call references can be resolved directly.
12927
               This means that they can (and in some cases, must)
12928
               resolve directly to the run-time target, rather than
12929
               to the PLT.  That in turns means that any .got entry
12930
               would be equal to the .igot.plt entry, so there's
12931
               no point having both.  */
12932
            h->got.refcount = 0;
12933
        }
12934
 
12935
      if (info->shared
12936
          || eh->is_iplt
12937
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12938
        {
12939
          elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12940
 
12941
          /* If this symbol is not defined in a regular file, and we are
12942
             not generating a shared library, then set the symbol to this
12943
             location in the .plt.  This is required to make function
12944
             pointers compare as equal between the normal executable and
12945
             the shared library.  */
12946
          if (! info->shared
12947
              && !h->def_regular)
12948
            {
12949
              h->root.u.def.section = htab->root.splt;
12950
              h->root.u.def.value = h->plt.offset;
12951
 
12952
              /* Make sure the function is not marked as Thumb, in case
12953
                 it is the target of an ABS32 relocation, which will
12954
                 point to the PLT entry.  */
12955
              h->target_internal = ST_BRANCH_TO_ARM;
12956
            }
12957
 
12958
          htab->next_tls_desc_index++;
12959
 
12960
          /* VxWorks executables have a second set of relocations for
12961
             each PLT entry.  They go in a separate relocation section,
12962
             which is processed by the kernel loader.  */
12963
          if (htab->vxworks_p && !info->shared)
12964
            {
12965
              /* There is a relocation for the initial PLT entry:
12966
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
12967
              if (h->plt.offset == htab->plt_header_size)
12968
                elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12969
 
12970
              /* There are two extra relocations for each subsequent
12971
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
12972
                 and an R_ARM_32 relocation for the PLT entry.  */
12973
              elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12974
            }
12975
        }
12976
      else
12977
        {
12978
          h->plt.offset = (bfd_vma) -1;
12979
          h->needs_plt = 0;
12980
        }
12981
    }
12982
  else
12983
    {
12984
      h->plt.offset = (bfd_vma) -1;
12985
      h->needs_plt = 0;
12986
    }
12987
 
12988
  eh = (struct elf32_arm_link_hash_entry *) h;
12989
  eh->tlsdesc_got = (bfd_vma) -1;
12990
 
12991
  if (h->got.refcount > 0)
12992
    {
12993
      asection *s;
12994
      bfd_boolean dyn;
12995
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
12996
      int indx;
12997
 
12998
      /* Make sure this symbol is output as a dynamic symbol.
12999
         Undefined weak syms won't yet be marked as dynamic.  */
13000
      if (h->dynindx == -1
13001
          && !h->forced_local)
13002
        {
13003
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
13004
            return FALSE;
13005
        }
13006
 
13007
      if (!htab->symbian_p)
13008
        {
13009
          s = htab->root.sgot;
13010
          h->got.offset = s->size;
13011
 
13012
          if (tls_type == GOT_UNKNOWN)
13013
            abort ();
13014
 
13015
          if (tls_type == GOT_NORMAL)
13016
            /* Non-TLS symbols need one GOT slot.  */
13017
            s->size += 4;
13018
          else
13019
            {
13020
              if (tls_type & GOT_TLS_GDESC)
13021
                {
13022
                  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
13023
                  eh->tlsdesc_got
13024
                    = (htab->root.sgotplt->size
13025
                       - elf32_arm_compute_jump_table_size (htab));
13026
                  htab->root.sgotplt->size += 8;
13027
                  h->got.offset = (bfd_vma) -2;
13028
                  /* plt.got_offset needs to know there's a TLS_DESC
13029
                     reloc in the middle of .got.plt.  */
13030
                  htab->num_tls_desc++;
13031
                }
13032
 
13033
              if (tls_type & GOT_TLS_GD)
13034
                {
13035
                  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
13036
                     the symbol is both GD and GDESC, got.offset may
13037
                     have been overwritten.  */
13038
                  h->got.offset = s->size;
13039
                  s->size += 8;
13040
                }
13041
 
13042
              if (tls_type & GOT_TLS_IE)
13043
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
13044
                s->size += 4;
13045
            }
13046
 
13047
          dyn = htab->root.dynamic_sections_created;
13048
 
13049
          indx = 0;
13050
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13051
              && (!info->shared
13052
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
13053
            indx = h->dynindx;
13054
 
13055
          if (tls_type != GOT_NORMAL
13056
              && (info->shared || indx != 0)
13057
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13058
                  || h->root.type != bfd_link_hash_undefweak))
13059
            {
13060
              if (tls_type & GOT_TLS_IE)
13061
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13062
 
13063
              if (tls_type & GOT_TLS_GD)
13064
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13065
 
13066
              if (tls_type & GOT_TLS_GDESC)
13067
                {
13068
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13069
                  /* GDESC needs a trampoline to jump to.  */
13070
                  htab->tls_trampoline = -1;
13071
                }
13072
 
13073
              /* Only GD needs it.  GDESC just emits one relocation per
13074
                 2 entries.  */
13075
              if ((tls_type & GOT_TLS_GD) && indx != 0)
13076
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13077
            }
13078
          else if (!SYMBOL_REFERENCES_LOCAL (info, h))
13079
            {
13080
              if (htab->root.dynamic_sections_created)
13081
                /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
13082
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13083
            }
13084
          else if (h->type == STT_GNU_IFUNC
13085
                   && eh->plt.noncall_refcount == 0)
13086
            /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13087
               they all resolve dynamically instead.  Reserve room for the
13088
               GOT entry's R_ARM_IRELATIVE relocation.  */
13089
            elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13090
          else if (info->shared)
13091
            /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
13092
            elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13093
        }
13094
    }
13095
  else
13096
    h->got.offset = (bfd_vma) -1;
13097
 
13098
  /* Allocate stubs for exported Thumb functions on v4t.  */
13099
  if (!htab->use_blx && h->dynindx != -1
13100
      && h->def_regular
13101
      && h->target_internal == ST_BRANCH_TO_THUMB
13102
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13103
    {
13104
      struct elf_link_hash_entry * th;
13105
      struct bfd_link_hash_entry * bh;
13106
      struct elf_link_hash_entry * myh;
13107
      char name[1024];
13108
      asection *s;
13109
      bh = NULL;
13110
      /* Create a new symbol to regist the real location of the function.  */
13111
      s = h->root.u.def.section;
13112
      sprintf (name, "__real_%s", h->root.root.string);
13113
      _bfd_generic_link_add_one_symbol (info, s->owner,
13114
                                        name, BSF_GLOBAL, s,
13115
                                        h->root.u.def.value,
13116
                                        NULL, TRUE, FALSE, &bh);
13117
 
13118
      myh = (struct elf_link_hash_entry *) bh;
13119
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13120
      myh->forced_local = 1;
13121
      myh->target_internal = ST_BRANCH_TO_THUMB;
13122
      eh->export_glue = myh;
13123
      th = record_arm_to_thumb_glue (info, h);
13124
      /* Point the symbol at the stub.  */
13125
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13126
      h->target_internal = ST_BRANCH_TO_ARM;
13127
      h->root.u.def.section = th->root.u.def.section;
13128
      h->root.u.def.value = th->root.u.def.value & ~1;
13129
    }
13130
 
13131
  if (eh->dyn_relocs == NULL)
13132
    return TRUE;
13133
 
13134
  /* In the shared -Bsymbolic case, discard space allocated for
13135
     dynamic pc-relative relocs against symbols which turn out to be
13136
     defined in regular objects.  For the normal shared case, discard
13137
     space for pc-relative relocs that have become local due to symbol
13138
     visibility changes.  */
13139
 
13140
  if (info->shared || htab->root.is_relocatable_executable)
13141
    {
13142
      /* The only relocs that use pc_count are R_ARM_REL32 and
13143
         R_ARM_REL32_NOI, which will appear on something like
13144
         ".long foo - .".  We want calls to protected symbols to resolve
13145
         directly to the function rather than going via the plt.  If people
13146
         want function pointer comparisons to work as expected then they
13147
         should avoid writing assembly like ".long foo - .".  */
13148
      if (SYMBOL_CALLS_LOCAL (info, h))
13149
        {
13150
          struct elf_dyn_relocs **pp;
13151
 
13152
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13153
            {
13154
              p->count -= p->pc_count;
13155
              p->pc_count = 0;
13156
              if (p->count == 0)
13157
                *pp = p->next;
13158
              else
13159
                pp = &p->next;
13160
            }
13161
        }
13162
 
13163
      if (htab->vxworks_p)
13164
        {
13165
          struct elf_dyn_relocs **pp;
13166
 
13167
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13168
            {
13169
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13170
                *pp = p->next;
13171
              else
13172
                pp = &p->next;
13173
            }
13174
        }
13175
 
13176
      /* Also discard relocs on undefined weak syms with non-default
13177
         visibility.  */
13178
      if (eh->dyn_relocs != NULL
13179
          && h->root.type == bfd_link_hash_undefweak)
13180
        {
13181
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13182
            eh->dyn_relocs = NULL;
13183
 
13184
          /* Make sure undefined weak symbols are output as a dynamic
13185
             symbol in PIEs.  */
13186
          else if (h->dynindx == -1
13187
                   && !h->forced_local)
13188
            {
13189
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
13190
                return FALSE;
13191
            }
13192
        }
13193
 
13194
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
13195
               && h->root.type == bfd_link_hash_new)
13196
        {
13197
          /* Output absolute symbols so that we can create relocations
13198
             against them.  For normal symbols we output a relocation
13199
             against the section that contains them.  */
13200
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
13201
            return FALSE;
13202
        }
13203
 
13204
    }
13205
  else
13206
    {
13207
      /* For the non-shared case, discard space for relocs against
13208
         symbols which turn out to need copy relocs or are not
13209
         dynamic.  */
13210
 
13211
      if (!h->non_got_ref
13212
          && ((h->def_dynamic
13213
               && !h->def_regular)
13214
              || (htab->root.dynamic_sections_created
13215
                  && (h->root.type == bfd_link_hash_undefweak
13216
                      || h->root.type == bfd_link_hash_undefined))))
13217
        {
13218
          /* Make sure this symbol is output as a dynamic symbol.
13219
             Undefined weak syms won't yet be marked as dynamic.  */
13220
          if (h->dynindx == -1
13221
              && !h->forced_local)
13222
            {
13223
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
13224
                return FALSE;
13225
            }
13226
 
13227
          /* If that succeeded, we know we'll be keeping all the
13228
             relocs.  */
13229
          if (h->dynindx != -1)
13230
            goto keep;
13231
        }
13232
 
13233
      eh->dyn_relocs = NULL;
13234
 
13235
    keep: ;
13236
    }
13237
 
13238
  /* Finally, allocate space.  */
13239
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
13240
    {
13241
      asection *sreloc = elf_section_data (p->sec)->sreloc;
13242
      if (h->type == STT_GNU_IFUNC
13243
          && eh->plt.noncall_refcount == 0
13244
          && SYMBOL_REFERENCES_LOCAL (info, h))
13245
        elf32_arm_allocate_irelocs (info, sreloc, p->count);
13246
      else
13247
        elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13248
    }
13249
 
13250
  return TRUE;
13251
}
13252
 
13253
/* Find any dynamic relocs that apply to read-only sections.  */
13254
 
13255
static bfd_boolean
13256
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13257
{
13258
  struct elf32_arm_link_hash_entry * eh;
13259
  struct elf_dyn_relocs * p;
13260
 
13261
  eh = (struct elf32_arm_link_hash_entry *) h;
13262
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
13263
    {
13264
      asection *s = p->sec;
13265
 
13266
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
13267
        {
13268
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
13269
 
13270
          info->flags |= DF_TEXTREL;
13271
 
13272
          /* Not an error, just cut short the traversal.  */
13273
          return FALSE;
13274
        }
13275
    }
13276
  return TRUE;
13277
}
13278
 
13279
void
13280
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13281
                                 int byteswap_code)
13282
{
13283
  struct elf32_arm_link_hash_table *globals;
13284
 
13285
  globals = elf32_arm_hash_table (info);
13286
  if (globals == NULL)
13287
    return;
13288
 
13289
  globals->byteswap_code = byteswap_code;
13290
}
13291
 
13292
/* Set the sizes of the dynamic sections.  */
13293
 
13294
static bfd_boolean
13295
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13296
                                 struct bfd_link_info * info)
13297
{
13298
  bfd * dynobj;
13299
  asection * s;
13300
  bfd_boolean plt;
13301
  bfd_boolean relocs;
13302
  bfd *ibfd;
13303
  struct elf32_arm_link_hash_table *htab;
13304
 
13305
  htab = elf32_arm_hash_table (info);
13306
  if (htab == NULL)
13307
    return FALSE;
13308
 
13309
  dynobj = elf_hash_table (info)->dynobj;
13310
  BFD_ASSERT (dynobj != NULL);
13311
  check_use_blx (htab);
13312
 
13313
  if (elf_hash_table (info)->dynamic_sections_created)
13314
    {
13315
      /* Set the contents of the .interp section to the interpreter.  */
13316
      if (info->executable)
13317
        {
13318
          s = bfd_get_section_by_name (dynobj, ".interp");
13319
          BFD_ASSERT (s != NULL);
13320
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13321
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13322
        }
13323
    }
13324
 
13325
  /* Set up .got offsets for local syms, and space for local dynamic
13326
     relocs.  */
13327
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13328
    {
13329
      bfd_signed_vma *local_got;
13330
      bfd_signed_vma *end_local_got;
13331
      struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13332
      char *local_tls_type;
13333
      bfd_vma *local_tlsdesc_gotent;
13334
      bfd_size_type locsymcount;
13335
      Elf_Internal_Shdr *symtab_hdr;
13336
      asection *srel;
13337
      bfd_boolean is_vxworks = htab->vxworks_p;
13338
      unsigned int symndx;
13339
 
13340
      if (! is_arm_elf (ibfd))
13341
        continue;
13342
 
13343
      for (s = ibfd->sections; s != NULL; s = s->next)
13344
        {
13345
          struct elf_dyn_relocs *p;
13346
 
13347
          for (p = (struct elf_dyn_relocs *)
13348
                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13349
            {
13350
              if (!bfd_is_abs_section (p->sec)
13351
                  && bfd_is_abs_section (p->sec->output_section))
13352
                {
13353
                  /* Input section has been discarded, either because
13354
                     it is a copy of a linkonce section or due to
13355
                     linker script /DISCARD/, so we'll be discarding
13356
                     the relocs too.  */
13357
                }
13358
              else if (is_vxworks
13359
                       && strcmp (p->sec->output_section->name,
13360
                                  ".tls_vars") == 0)
13361
                {
13362
                  /* Relocations in vxworks .tls_vars sections are
13363
                     handled specially by the loader.  */
13364
                }
13365
              else if (p->count != 0)
13366
                {
13367
                  srel = elf_section_data (p->sec)->sreloc;
13368
                  elf32_arm_allocate_dynrelocs (info, srel, p->count);
13369
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13370
                    info->flags |= DF_TEXTREL;
13371
                }
13372
            }
13373
        }
13374
 
13375
      local_got = elf_local_got_refcounts (ibfd);
13376
      if (!local_got)
13377
        continue;
13378
 
13379
      symtab_hdr = & elf_symtab_hdr (ibfd);
13380
      locsymcount = symtab_hdr->sh_info;
13381
      end_local_got = local_got + locsymcount;
13382
      local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13383
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13384
      local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13385
      symndx = 0;
13386
      s = htab->root.sgot;
13387
      srel = htab->root.srelgot;
13388
      for (; local_got < end_local_got;
13389
           ++local_got, ++local_iplt_ptr, ++local_tls_type,
13390
           ++local_tlsdesc_gotent, ++symndx)
13391
        {
13392
          *local_tlsdesc_gotent = (bfd_vma) -1;
13393
          local_iplt = *local_iplt_ptr;
13394
          if (local_iplt != NULL)
13395
            {
13396
              struct elf_dyn_relocs *p;
13397
 
13398
              if (local_iplt->root.refcount > 0)
13399
                {
13400
                  elf32_arm_allocate_plt_entry (info, TRUE,
13401
                                                &local_iplt->root,
13402
                                                &local_iplt->arm);
13403
                  if (local_iplt->arm.noncall_refcount == 0)
13404
                    /* All references to the PLT are calls, so all
13405
                       non-call references can resolve directly to the
13406
                       run-time target.  This means that the .got entry
13407
                       would be the same as the .igot.plt entry, so there's
13408
                       no point creating both.  */
13409
                    *local_got = 0;
13410
                }
13411
              else
13412
                {
13413
                  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13414
                  local_iplt->root.offset = (bfd_vma) -1;
13415
                }
13416
 
13417
              for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13418
                {
13419
                  asection *psrel;
13420
 
13421
                  psrel = elf_section_data (p->sec)->sreloc;
13422
                  if (local_iplt->arm.noncall_refcount == 0)
13423
                    elf32_arm_allocate_irelocs (info, psrel, p->count);
13424
                  else
13425
                    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13426
                }
13427
            }
13428
          if (*local_got > 0)
13429
            {
13430
              Elf_Internal_Sym *isym;
13431
 
13432
              *local_got = s->size;
13433
              if (*local_tls_type & GOT_TLS_GD)
13434
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
13435
                s->size += 8;
13436
              if (*local_tls_type & GOT_TLS_GDESC)
13437
                {
13438
                  *local_tlsdesc_gotent = htab->root.sgotplt->size
13439
                    - elf32_arm_compute_jump_table_size (htab);
13440
                  htab->root.sgotplt->size += 8;
13441
                  *local_got = (bfd_vma) -2;
13442
                  /* plt.got_offset needs to know there's a TLS_DESC
13443
                     reloc in the middle of .got.plt.  */
13444
                  htab->num_tls_desc++;
13445
                }
13446
              if (*local_tls_type & GOT_TLS_IE)
13447
                s->size += 4;
13448
 
13449
              if (*local_tls_type & GOT_NORMAL)
13450
                {
13451
                  /* If the symbol is both GD and GDESC, *local_got
13452
                     may have been overwritten.  */
13453
                  *local_got = s->size;
13454
                  s->size += 4;
13455
                }
13456
 
13457
              isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13458
              if (isym == NULL)
13459
                return FALSE;
13460
 
13461
              /* If all references to an STT_GNU_IFUNC PLT are calls,
13462
                 then all non-call references, including this GOT entry,
13463
                 resolve directly to the run-time target.  */
13464
              if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13465
                  && (local_iplt == NULL
13466
                      || local_iplt->arm.noncall_refcount == 0))
13467
                elf32_arm_allocate_irelocs (info, srel, 1);
13468
              else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13469
                       || *local_tls_type & GOT_TLS_GD)
13470
                elf32_arm_allocate_dynrelocs (info, srel, 1);
13471
 
13472
              if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13473
                {
13474
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13475
                  htab->tls_trampoline = -1;
13476
                }
13477
            }
13478
          else
13479
            *local_got = (bfd_vma) -1;
13480
        }
13481
    }
13482
 
13483
  if (htab->tls_ldm_got.refcount > 0)
13484
    {
13485
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
13486
         for R_ARM_TLS_LDM32 relocations.  */
13487
      htab->tls_ldm_got.offset = htab->root.sgot->size;
13488
      htab->root.sgot->size += 8;
13489
      if (info->shared)
13490
        elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13491
    }
13492
  else
13493
    htab->tls_ldm_got.offset = -1;
13494
 
13495
  /* Allocate global sym .plt and .got entries, and space for global
13496
     sym dynamic relocs.  */
13497
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13498
 
13499
  /* Here we rummage through the found bfds to collect glue information.  */
13500
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13501
    {
13502
      if (! is_arm_elf (ibfd))
13503
        continue;
13504
 
13505
      /* Initialise mapping tables for code/data.  */
13506
      bfd_elf32_arm_init_maps (ibfd);
13507
 
13508
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13509
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13510
        /* xgettext:c-format */
13511
        _bfd_error_handler (_("Errors encountered processing file %s"),
13512
                            ibfd->filename);
13513
    }
13514
 
13515
  /* Allocate space for the glue sections now that we've sized them.  */
13516
  bfd_elf32_arm_allocate_interworking_sections (info);
13517
 
13518
  /* For every jump slot reserved in the sgotplt, reloc_count is
13519
     incremented.  However, when we reserve space for TLS descriptors,
13520
     it's not incremented, so in order to compute the space reserved
13521
     for them, it suffices to multiply the reloc count by the jump
13522
     slot size.  */
13523
  if (htab->root.srelplt)
13524
    htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13525
 
13526
  if (htab->tls_trampoline)
13527
    {
13528
      if (htab->root.splt->size == 0)
13529
        htab->root.splt->size += htab->plt_header_size;
13530
 
13531
      htab->tls_trampoline = htab->root.splt->size;
13532
      htab->root.splt->size += htab->plt_entry_size;
13533
 
13534
      /* If we're not using lazy TLS relocations, don't generate the
13535
         PLT and GOT entries they require.  */
13536
      if (!(info->flags & DF_BIND_NOW))
13537
        {
13538
          htab->dt_tlsdesc_got = htab->root.sgot->size;
13539
          htab->root.sgot->size += 4;
13540
 
13541
          htab->dt_tlsdesc_plt = htab->root.splt->size;
13542
          htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13543
        }
13544
    }
13545
 
13546
  /* The check_relocs and adjust_dynamic_symbol entry points have
13547
     determined the sizes of the various dynamic sections.  Allocate
13548
     memory for them.  */
13549
  plt = FALSE;
13550
  relocs = FALSE;
13551
  for (s = dynobj->sections; s != NULL; s = s->next)
13552
    {
13553
      const char * name;
13554
 
13555
      if ((s->flags & SEC_LINKER_CREATED) == 0)
13556
        continue;
13557
 
13558
      /* It's OK to base decisions on the section name, because none
13559
         of the dynobj section names depend upon the input files.  */
13560
      name = bfd_get_section_name (dynobj, s);
13561
 
13562
      if (s == htab->root.splt)
13563
        {
13564
          /* Remember whether there is a PLT.  */
13565
          plt = s->size != 0;
13566
        }
13567
      else if (CONST_STRNEQ (name, ".rel"))
13568
        {
13569
          if (s->size != 0)
13570
            {
13571
              /* Remember whether there are any reloc sections other
13572
                 than .rel(a).plt and .rela.plt.unloaded.  */
13573
              if (s != htab->root.srelplt && s != htab->srelplt2)
13574
                relocs = TRUE;
13575
 
13576
              /* We use the reloc_count field as a counter if we need
13577
                 to copy relocs into the output file.  */
13578
              s->reloc_count = 0;
13579
            }
13580
        }
13581
      else if (s != htab->root.sgot
13582
               && s != htab->root.sgotplt
13583
               && s != htab->root.iplt
13584
               && s != htab->root.igotplt
13585
               && s != htab->sdynbss)
13586
        {
13587
          /* It's not one of our sections, so don't allocate space.  */
13588
          continue;
13589
        }
13590
 
13591
      if (s->size == 0)
13592
        {
13593
          /* If we don't need this section, strip it from the
13594
             output file.  This is mostly to handle .rel(a).bss and
13595
             .rel(a).plt.  We must create both sections in
13596
             create_dynamic_sections, because they must be created
13597
             before the linker maps input sections to output
13598
             sections.  The linker does that before
13599
             adjust_dynamic_symbol is called, and it is that
13600
             function which decides whether anything needs to go
13601
             into these sections.  */
13602
          s->flags |= SEC_EXCLUDE;
13603
          continue;
13604
        }
13605
 
13606
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
13607
        continue;
13608
 
13609
      /* Allocate memory for the section contents.  */
13610
      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13611
      if (s->contents == NULL)
13612
        return FALSE;
13613
    }
13614
 
13615
  if (elf_hash_table (info)->dynamic_sections_created)
13616
    {
13617
      /* Add some entries to the .dynamic section.  We fill in the
13618
         values later, in elf32_arm_finish_dynamic_sections, but we
13619
         must add the entries now so that we get the correct size for
13620
         the .dynamic section.  The DT_DEBUG entry is filled in by the
13621
         dynamic linker and used by the debugger.  */
13622
#define add_dynamic_entry(TAG, VAL) \
13623
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13624
 
13625
     if (info->executable)
13626
        {
13627
          if (!add_dynamic_entry (DT_DEBUG, 0))
13628
            return FALSE;
13629
        }
13630
 
13631
      if (plt)
13632
        {
13633
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
13634
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
13635
              || !add_dynamic_entry (DT_PLTREL,
13636
                                     htab->use_rel ? DT_REL : DT_RELA)
13637
              || !add_dynamic_entry (DT_JMPREL, 0))
13638
            return FALSE;
13639
 
13640
          if (htab->dt_tlsdesc_plt &&
13641
                (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13642
                 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13643
            return FALSE;
13644
        }
13645
 
13646
      if (relocs)
13647
        {
13648
          if (htab->use_rel)
13649
            {
13650
              if (!add_dynamic_entry (DT_REL, 0)
13651
                  || !add_dynamic_entry (DT_RELSZ, 0)
13652
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13653
                return FALSE;
13654
            }
13655
          else
13656
            {
13657
              if (!add_dynamic_entry (DT_RELA, 0)
13658
                  || !add_dynamic_entry (DT_RELASZ, 0)
13659
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13660
                return FALSE;
13661
            }
13662
        }
13663
 
13664
      /* If any dynamic relocs apply to a read-only section,
13665
         then we need a DT_TEXTREL entry.  */
13666
      if ((info->flags & DF_TEXTREL) == 0)
13667
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13668
                                info);
13669
 
13670
      if ((info->flags & DF_TEXTREL) != 0)
13671
        {
13672
          if (!add_dynamic_entry (DT_TEXTREL, 0))
13673
            return FALSE;
13674
        }
13675
      if (htab->vxworks_p
13676
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13677
        return FALSE;
13678
    }
13679
#undef add_dynamic_entry
13680
 
13681
  return TRUE;
13682
}
13683
 
13684
/* Size sections even though they're not dynamic.  We use it to setup
13685
   _TLS_MODULE_BASE_, if needed.  */
13686
 
13687
static bfd_boolean
13688
elf32_arm_always_size_sections (bfd *output_bfd,
13689
                                struct bfd_link_info *info)
13690
{
13691
  asection *tls_sec;
13692
 
13693
  if (info->relocatable)
13694
    return TRUE;
13695
 
13696
  tls_sec = elf_hash_table (info)->tls_sec;
13697
 
13698
  if (tls_sec)
13699
    {
13700
      struct elf_link_hash_entry *tlsbase;
13701
 
13702
      tlsbase = elf_link_hash_lookup
13703
        (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13704
 
13705
      if (tlsbase)
13706
        {
13707
          struct bfd_link_hash_entry *bh = NULL;
13708
          const struct elf_backend_data *bed
13709
            = get_elf_backend_data (output_bfd);
13710
 
13711
          if (!(_bfd_generic_link_add_one_symbol
13712
                (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13713
                 tls_sec, 0, NULL, FALSE,
13714
                 bed->collect, &bh)))
13715
            return FALSE;
13716
 
13717
          tlsbase->type = STT_TLS;
13718
          tlsbase = (struct elf_link_hash_entry *)bh;
13719
          tlsbase->def_regular = 1;
13720
          tlsbase->other = STV_HIDDEN;
13721
          (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13722
        }
13723
    }
13724
  return TRUE;
13725
}
13726
 
13727
/* Finish up dynamic symbol handling.  We set the contents of various
13728
   dynamic sections here.  */
13729
 
13730
static bfd_boolean
13731
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13732
                                 struct bfd_link_info * info,
13733
                                 struct elf_link_hash_entry * h,
13734
                                 Elf_Internal_Sym * sym)
13735
{
13736
  struct elf32_arm_link_hash_table *htab;
13737
  struct elf32_arm_link_hash_entry *eh;
13738
 
13739
  htab = elf32_arm_hash_table (info);
13740
  if (htab == NULL)
13741
    return FALSE;
13742
 
13743
  eh = (struct elf32_arm_link_hash_entry *) h;
13744
 
13745
  if (h->plt.offset != (bfd_vma) -1)
13746
    {
13747
      if (!eh->is_iplt)
13748
        {
13749
          BFD_ASSERT (h->dynindx != -1);
13750
          elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13751
                                        h->dynindx, 0);
13752
        }
13753
 
13754
      if (!h->def_regular)
13755
        {
13756
          /* Mark the symbol as undefined, rather than as defined in
13757
             the .plt section.  Leave the value alone.  */
13758
          sym->st_shndx = SHN_UNDEF;
13759
          /* If the symbol is weak, we do need to clear the value.
13760
             Otherwise, the PLT entry would provide a definition for
13761
             the symbol even if the symbol wasn't defined anywhere,
13762
             and so the symbol would never be NULL.  */
13763
          if (!h->ref_regular_nonweak)
13764
            sym->st_value = 0;
13765
        }
13766
      else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13767
        {
13768
          /* At least one non-call relocation references this .iplt entry,
13769
             so the .iplt entry is the function's canonical address.  */
13770
          sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13771
          sym->st_target_internal = ST_BRANCH_TO_ARM;
13772
          sym->st_shndx = (_bfd_elf_section_from_bfd_section
13773
                           (output_bfd, htab->root.iplt->output_section));
13774
          sym->st_value = (h->plt.offset
13775
                           + htab->root.iplt->output_section->vma
13776
                           + htab->root.iplt->output_offset);
13777
        }
13778
    }
13779
 
13780
  if (h->needs_copy)
13781
    {
13782
      asection * s;
13783
      Elf_Internal_Rela rel;
13784
 
13785
      /* This symbol needs a copy reloc.  Set it up.  */
13786
      BFD_ASSERT (h->dynindx != -1
13787
                  && (h->root.type == bfd_link_hash_defined
13788
                      || h->root.type == bfd_link_hash_defweak));
13789
 
13790
      s = htab->srelbss;
13791
      BFD_ASSERT (s != NULL);
13792
 
13793
      rel.r_addend = 0;
13794
      rel.r_offset = (h->root.u.def.value
13795
                      + h->root.u.def.section->output_section->vma
13796
                      + h->root.u.def.section->output_offset);
13797
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13798
      elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13799
    }
13800
 
13801
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
13802
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13803
     to the ".got" section.  */
13804
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13805
      || (!htab->vxworks_p && h == htab->root.hgot))
13806
    sym->st_shndx = SHN_ABS;
13807
 
13808
  return TRUE;
13809
}
13810
 
13811
static void
13812
arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13813
                    void *contents,
13814
                    const unsigned long *template, unsigned count)
13815
{
13816
  unsigned ix;
13817
 
13818
  for (ix = 0; ix != count; ix++)
13819
    {
13820
      unsigned long insn = template[ix];
13821
 
13822
      /* Emit mov pc,rx if bx is not permitted.  */
13823
      if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13824
        insn = (insn & 0xf000000f) | 0x01a0f000;
13825
      put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13826
    }
13827
}
13828
 
13829
/* Finish up the dynamic sections.  */
13830
 
13831
static bfd_boolean
13832
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13833
{
13834
  bfd * dynobj;
13835
  asection * sgot;
13836
  asection * sdyn;
13837
  struct elf32_arm_link_hash_table *htab;
13838
 
13839
  htab = elf32_arm_hash_table (info);
13840
  if (htab == NULL)
13841
    return FALSE;
13842
 
13843
  dynobj = elf_hash_table (info)->dynobj;
13844
 
13845
  sgot = htab->root.sgotplt;
13846 148 khays
  /* A broken linker script might have discarded the dynamic sections.
13847
     Catch this here so that we do not seg-fault later on.  */
13848
  if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
13849
    return FALSE;
13850 14 khays
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13851
 
13852
  if (elf_hash_table (info)->dynamic_sections_created)
13853
    {
13854
      asection *splt;
13855
      Elf32_External_Dyn *dyncon, *dynconend;
13856
 
13857
      splt = htab->root.splt;
13858
      BFD_ASSERT (splt != NULL && sdyn != NULL);
13859
      BFD_ASSERT (htab->symbian_p || sgot != NULL);
13860
 
13861
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
13862
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13863
 
13864
      for (; dyncon < dynconend; dyncon++)
13865
        {
13866
          Elf_Internal_Dyn dyn;
13867
          const char * name;
13868
          asection * s;
13869
 
13870
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13871
 
13872
          switch (dyn.d_tag)
13873
            {
13874
              unsigned int type;
13875
 
13876
            default:
13877
              if (htab->vxworks_p
13878
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13879
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13880
              break;
13881
 
13882
            case DT_HASH:
13883
              name = ".hash";
13884
              goto get_vma_if_bpabi;
13885
            case DT_STRTAB:
13886
              name = ".dynstr";
13887
              goto get_vma_if_bpabi;
13888
            case DT_SYMTAB:
13889
              name = ".dynsym";
13890
              goto get_vma_if_bpabi;
13891
            case DT_VERSYM:
13892
              name = ".gnu.version";
13893
              goto get_vma_if_bpabi;
13894
            case DT_VERDEF:
13895
              name = ".gnu.version_d";
13896
              goto get_vma_if_bpabi;
13897
            case DT_VERNEED:
13898
              name = ".gnu.version_r";
13899
              goto get_vma_if_bpabi;
13900
 
13901
            case DT_PLTGOT:
13902
              name = ".got";
13903
              goto get_vma;
13904
            case DT_JMPREL:
13905
              name = RELOC_SECTION (htab, ".plt");
13906
            get_vma:
13907
              s = bfd_get_section_by_name (output_bfd, name);
13908
              BFD_ASSERT (s != NULL);
13909
              if (!htab->symbian_p)
13910
                dyn.d_un.d_ptr = s->vma;
13911
              else
13912
                /* In the BPABI, tags in the PT_DYNAMIC section point
13913
                   at the file offset, not the memory address, for the
13914
                   convenience of the post linker.  */
13915
                dyn.d_un.d_ptr = s->filepos;
13916
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13917
              break;
13918
 
13919
            get_vma_if_bpabi:
13920
              if (htab->symbian_p)
13921
                goto get_vma;
13922
              break;
13923
 
13924
            case DT_PLTRELSZ:
13925
              s = htab->root.srelplt;
13926
              BFD_ASSERT (s != NULL);
13927
              dyn.d_un.d_val = s->size;
13928
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13929
              break;
13930
 
13931
            case DT_RELSZ:
13932
            case DT_RELASZ:
13933
              if (!htab->symbian_p)
13934
                {
13935
                  /* My reading of the SVR4 ABI indicates that the
13936
                     procedure linkage table relocs (DT_JMPREL) should be
13937
                     included in the overall relocs (DT_REL).  This is
13938
                     what Solaris does.  However, UnixWare can not handle
13939
                     that case.  Therefore, we override the DT_RELSZ entry
13940
                     here to make it not include the JMPREL relocs.  Since
13941
                     the linker script arranges for .rel(a).plt to follow all
13942
                     other relocation sections, we don't have to worry
13943
                     about changing the DT_REL entry.  */
13944
                  s = htab->root.srelplt;
13945
                  if (s != NULL)
13946
                    dyn.d_un.d_val -= s->size;
13947
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13948
                  break;
13949
                }
13950
              /* Fall through.  */
13951
 
13952
            case DT_REL:
13953
            case DT_RELA:
13954
              /* In the BPABI, the DT_REL tag must point at the file
13955
                 offset, not the VMA, of the first relocation
13956
                 section.  So, we use code similar to that in
13957
                 elflink.c, but do not check for SHF_ALLOC on the
13958
                 relcoation section, since relocations sections are
13959
                 never allocated under the BPABI.  The comments above
13960
                 about Unixware notwithstanding, we include all of the
13961
                 relocations here.  */
13962
              if (htab->symbian_p)
13963
                {
13964
                  unsigned int i;
13965
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13966
                          ? SHT_REL : SHT_RELA);
13967
                  dyn.d_un.d_val = 0;
13968
                  for (i = 1; i < elf_numsections (output_bfd); i++)
13969
                    {
13970
                      Elf_Internal_Shdr *hdr
13971
                        = elf_elfsections (output_bfd)[i];
13972
                      if (hdr->sh_type == type)
13973
                        {
13974
                          if (dyn.d_tag == DT_RELSZ
13975
                              || dyn.d_tag == DT_RELASZ)
13976
                            dyn.d_un.d_val += hdr->sh_size;
13977
                          else if ((ufile_ptr) hdr->sh_offset
13978
                                   <= dyn.d_un.d_val - 1)
13979
                            dyn.d_un.d_val = hdr->sh_offset;
13980
                        }
13981
                    }
13982
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13983
                }
13984
              break;
13985
 
13986
            case DT_TLSDESC_PLT:
13987
              s = htab->root.splt;
13988
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13989
                                + htab->dt_tlsdesc_plt);
13990
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13991
              break;
13992
 
13993
            case DT_TLSDESC_GOT:
13994
              s = htab->root.sgot;
13995
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13996
                                + htab->dt_tlsdesc_got);
13997
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13998
              break;
13999
 
14000
              /* Set the bottom bit of DT_INIT/FINI if the
14001
                 corresponding function is Thumb.  */
14002
            case DT_INIT:
14003
              name = info->init_function;
14004
              goto get_sym;
14005
            case DT_FINI:
14006
              name = info->fini_function;
14007
            get_sym:
14008
              /* If it wasn't set by elf_bfd_final_link
14009
                 then there is nothing to adjust.  */
14010
              if (dyn.d_un.d_val != 0)
14011
                {
14012
                  struct elf_link_hash_entry * eh;
14013
 
14014
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
14015
                                             FALSE, FALSE, TRUE);
14016
                  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14017
                    {
14018
                      dyn.d_un.d_val |= 1;
14019
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14020
                    }
14021
                }
14022
              break;
14023
            }
14024
        }
14025
 
14026
      /* Fill in the first entry in the procedure linkage table.  */
14027
      if (splt->size > 0 && htab->plt_header_size)
14028
        {
14029
          const bfd_vma *plt0_entry;
14030
          bfd_vma got_address, plt_address, got_displacement;
14031
 
14032
          /* Calculate the addresses of the GOT and PLT.  */
14033
          got_address = sgot->output_section->vma + sgot->output_offset;
14034
          plt_address = splt->output_section->vma + splt->output_offset;
14035
 
14036
          if (htab->vxworks_p)
14037
            {
14038
              /* The VxWorks GOT is relocated by the dynamic linker.
14039
                 Therefore, we must emit relocations rather than simply
14040
                 computing the values now.  */
14041
              Elf_Internal_Rela rel;
14042
 
14043
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14044
              put_arm_insn (htab, output_bfd, plt0_entry[0],
14045
                            splt->contents + 0);
14046
              put_arm_insn (htab, output_bfd, plt0_entry[1],
14047
                            splt->contents + 4);
14048
              put_arm_insn (htab, output_bfd, plt0_entry[2],
14049
                            splt->contents + 8);
14050
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14051
 
14052
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
14053
              rel.r_offset = plt_address + 12;
14054
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14055
              rel.r_addend = 0;
14056
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14057
                                     htab->srelplt2->contents);
14058
            }
14059
          else
14060
            {
14061
              got_displacement = got_address - (plt_address + 16);
14062
 
14063
              plt0_entry = elf32_arm_plt0_entry;
14064
              put_arm_insn (htab, output_bfd, plt0_entry[0],
14065
                            splt->contents + 0);
14066
              put_arm_insn (htab, output_bfd, plt0_entry[1],
14067
                            splt->contents + 4);
14068
              put_arm_insn (htab, output_bfd, plt0_entry[2],
14069
                            splt->contents + 8);
14070
              put_arm_insn (htab, output_bfd, plt0_entry[3],
14071
                            splt->contents + 12);
14072
 
14073
#ifdef FOUR_WORD_PLT
14074
              /* The displacement value goes in the otherwise-unused
14075
                 last word of the second entry.  */
14076
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14077
#else
14078
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14079
#endif
14080
            }
14081
        }
14082
 
14083
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
14084
         really seem like the right value.  */
14085
      if (splt->output_section->owner == output_bfd)
14086
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14087
 
14088
      if (htab->dt_tlsdesc_plt)
14089
        {
14090
          bfd_vma got_address
14091
            = sgot->output_section->vma + sgot->output_offset;
14092
          bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14093
                                    + htab->root.sgot->output_offset);
14094
          bfd_vma plt_address
14095
            = splt->output_section->vma + splt->output_offset;
14096
 
14097
          arm_put_trampoline (htab, output_bfd,
14098
                              splt->contents + htab->dt_tlsdesc_plt,
14099
                              dl_tlsdesc_lazy_trampoline, 6);
14100
 
14101
          bfd_put_32 (output_bfd,
14102
                      gotplt_address + htab->dt_tlsdesc_got
14103
                      - (plt_address + htab->dt_tlsdesc_plt)
14104
                      - dl_tlsdesc_lazy_trampoline[6],
14105
                      splt->contents + htab->dt_tlsdesc_plt + 24);
14106
          bfd_put_32 (output_bfd,
14107
                      got_address - (plt_address + htab->dt_tlsdesc_plt)
14108
                      - dl_tlsdesc_lazy_trampoline[7],
14109
                      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14110
        }
14111
 
14112
      if (htab->tls_trampoline)
14113
        {
14114
          arm_put_trampoline (htab, output_bfd,
14115
                              splt->contents + htab->tls_trampoline,
14116
                              tls_trampoline, 3);
14117
#ifdef FOUR_WORD_PLT
14118
          bfd_put_32 (output_bfd, 0x00000000,
14119
                      splt->contents + htab->tls_trampoline + 12);
14120
#endif 
14121
        }
14122
 
14123
      if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14124
        {
14125
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
14126
             incorrect symbol indexes.  */
14127
          int num_plts;
14128
          unsigned char *p;
14129
 
14130
          num_plts = ((htab->root.splt->size - htab->plt_header_size)
14131
                      / htab->plt_entry_size);
14132
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
14133
 
14134
          for (; num_plts; num_plts--)
14135
            {
14136
              Elf_Internal_Rela rel;
14137
 
14138
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14139
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14140
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14141
              p += RELOC_SIZE (htab);
14142
 
14143
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14144
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14145
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14146
              p += RELOC_SIZE (htab);
14147
            }
14148
        }
14149
    }
14150
 
14151
  /* Fill in the first three entries in the global offset table.  */
14152
  if (sgot)
14153
    {
14154
      if (sgot->size > 0)
14155
        {
14156
          if (sdyn == NULL)
14157
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14158
          else
14159
            bfd_put_32 (output_bfd,
14160
                        sdyn->output_section->vma + sdyn->output_offset,
14161
                        sgot->contents);
14162
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14163
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14164
        }
14165
 
14166
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14167
    }
14168
 
14169
  return TRUE;
14170
}
14171
 
14172
static void
14173
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14174
{
14175
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
14176
  struct elf32_arm_link_hash_table *globals;
14177
 
14178
  i_ehdrp = elf_elfheader (abfd);
14179
 
14180
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14181
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14182
  else
14183
    i_ehdrp->e_ident[EI_OSABI] = 0;
14184
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14185
 
14186
  if (link_info)
14187
    {
14188
      globals = elf32_arm_hash_table (link_info);
14189
      if (globals != NULL && globals->byteswap_code)
14190
        i_ehdrp->e_flags |= EF_ARM_BE8;
14191
    }
14192
}
14193
 
14194
static enum elf_reloc_type_class
14195
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14196
{
14197
  switch ((int) ELF32_R_TYPE (rela->r_info))
14198
    {
14199
    case R_ARM_RELATIVE:
14200
      return reloc_class_relative;
14201
    case R_ARM_JUMP_SLOT:
14202
      return reloc_class_plt;
14203
    case R_ARM_COPY:
14204
      return reloc_class_copy;
14205
    default:
14206
      return reloc_class_normal;
14207
    }
14208
}
14209
 
14210
static void
14211
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14212
{
14213
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14214
}
14215
 
14216
/* Return TRUE if this is an unwinding table entry.  */
14217
 
14218
static bfd_boolean
14219
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14220
{
14221
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14222
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14223
}
14224
 
14225
 
14226
/* Set the type and flags for an ARM section.  We do this by
14227
   the section name, which is a hack, but ought to work.  */
14228
 
14229
static bfd_boolean
14230
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14231
{
14232
  const char * name;
14233
 
14234
  name = bfd_get_section_name (abfd, sec);
14235
 
14236
  if (is_arm_elf_unwind_section_name (abfd, name))
14237
    {
14238
      hdr->sh_type = SHT_ARM_EXIDX;
14239
      hdr->sh_flags |= SHF_LINK_ORDER;
14240
    }
14241
  return TRUE;
14242
}
14243
 
14244
/* Handle an ARM specific section when reading an object file.  This is
14245
   called when bfd_section_from_shdr finds a section with an unknown
14246
   type.  */
14247
 
14248
static bfd_boolean
14249
elf32_arm_section_from_shdr (bfd *abfd,
14250
                             Elf_Internal_Shdr * hdr,
14251
                             const char *name,
14252
                             int shindex)
14253
{
14254
  /* There ought to be a place to keep ELF backend specific flags, but
14255
     at the moment there isn't one.  We just keep track of the
14256
     sections by their name, instead.  Fortunately, the ABI gives
14257
     names for all the ARM specific sections, so we will probably get
14258
     away with this.  */
14259
  switch (hdr->sh_type)
14260
    {
14261
    case SHT_ARM_EXIDX:
14262
    case SHT_ARM_PREEMPTMAP:
14263
    case SHT_ARM_ATTRIBUTES:
14264
      break;
14265
 
14266
    default:
14267
      return FALSE;
14268
    }
14269
 
14270
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14271
    return FALSE;
14272
 
14273
  return TRUE;
14274
}
14275
 
14276
static _arm_elf_section_data *
14277
get_arm_elf_section_data (asection * sec)
14278
{
14279
  if (sec && sec->owner && is_arm_elf (sec->owner))
14280
    return elf32_arm_section_data (sec);
14281
  else
14282
    return NULL;
14283
}
14284
 
14285
typedef struct
14286
{
14287
  void *finfo;
14288
  struct bfd_link_info *info;
14289
  asection *sec;
14290
  int sec_shndx;
14291
  int (*func) (void *, const char *, Elf_Internal_Sym *,
14292
               asection *, struct elf_link_hash_entry *);
14293
} output_arch_syminfo;
14294
 
14295
enum map_symbol_type
14296
{
14297
  ARM_MAP_ARM,
14298
  ARM_MAP_THUMB,
14299
  ARM_MAP_DATA
14300
};
14301
 
14302
 
14303
/* Output a single mapping symbol.  */
14304
 
14305
static bfd_boolean
14306
elf32_arm_output_map_sym (output_arch_syminfo *osi,
14307
                          enum map_symbol_type type,
14308
                          bfd_vma offset)
14309
{
14310
  static const char *names[3] = {"$a", "$t", "$d"};
14311
  Elf_Internal_Sym sym;
14312
 
14313
  sym.st_value = osi->sec->output_section->vma
14314
                 + osi->sec->output_offset
14315
                 + offset;
14316
  sym.st_size = 0;
14317
  sym.st_other = 0;
14318
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14319
  sym.st_shndx = osi->sec_shndx;
14320
  sym.st_target_internal = 0;
14321
  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14322
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14323
}
14324
 
14325
/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14326
   IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
14327
 
14328
static bfd_boolean
14329
elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14330
                            bfd_boolean is_iplt_entry_p,
14331
                            union gotplt_union *root_plt,
14332
                            struct arm_plt_info *arm_plt)
14333
{
14334
  struct elf32_arm_link_hash_table *htab;
14335
  bfd_vma addr, plt_header_size;
14336
 
14337
  if (root_plt->offset == (bfd_vma) -1)
14338
    return TRUE;
14339
 
14340
  htab = elf32_arm_hash_table (osi->info);
14341
  if (htab == NULL)
14342
    return FALSE;
14343
 
14344
  if (is_iplt_entry_p)
14345
    {
14346
      osi->sec = htab->root.iplt;
14347
      plt_header_size = 0;
14348
    }
14349
  else
14350
    {
14351
      osi->sec = htab->root.splt;
14352
      plt_header_size = htab->plt_header_size;
14353
    }
14354
  osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14355
                    (osi->info->output_bfd, osi->sec->output_section));
14356
 
14357
  addr = root_plt->offset & -2;
14358
  if (htab->symbian_p)
14359
    {
14360
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14361
        return FALSE;
14362
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14363
        return FALSE;
14364
    }
14365
  else if (htab->vxworks_p)
14366
    {
14367
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14368
        return FALSE;
14369
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14370
        return FALSE;
14371
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14372
        return FALSE;
14373
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14374
        return FALSE;
14375
    }
14376
  else
14377
    {
14378
      bfd_boolean thumb_stub_p;
14379
 
14380
      thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14381
      if (thumb_stub_p)
14382
        {
14383
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14384
            return FALSE;
14385
        }
14386
#ifdef FOUR_WORD_PLT
14387
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14388
        return FALSE;
14389
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14390
        return FALSE;
14391
#else
14392
      /* A three-word PLT with no Thumb thunk contains only Arm code,
14393
         so only need to output a mapping symbol for the first PLT entry and
14394
         entries with thumb thunks.  */
14395
      if (thumb_stub_p || addr == plt_header_size)
14396
        {
14397
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14398
            return FALSE;
14399
        }
14400
#endif
14401
    }
14402
 
14403
  return TRUE;
14404
}
14405
 
14406
/* Output mapping symbols for PLT entries associated with H.  */
14407
 
14408
static bfd_boolean
14409
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14410
{
14411
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14412
  struct elf32_arm_link_hash_entry *eh;
14413
 
14414
  if (h->root.type == bfd_link_hash_indirect)
14415
    return TRUE;
14416
 
14417
  if (h->root.type == bfd_link_hash_warning)
14418
    /* When warning symbols are created, they **replace** the "real"
14419
       entry in the hash table, thus we never get to see the real
14420
       symbol in a hash traversal.  So look at it now.  */
14421
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
14422
 
14423
  eh = (struct elf32_arm_link_hash_entry *) h;
14424
  return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14425
                                     &h->plt, &eh->plt);
14426
}
14427
 
14428
/* Output a single local symbol for a generated stub.  */
14429
 
14430
static bfd_boolean
14431
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14432
                           bfd_vma offset, bfd_vma size)
14433
{
14434
  Elf_Internal_Sym sym;
14435
 
14436
  sym.st_value = osi->sec->output_section->vma
14437
                 + osi->sec->output_offset
14438
                 + offset;
14439
  sym.st_size = size;
14440
  sym.st_other = 0;
14441
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14442
  sym.st_shndx = osi->sec_shndx;
14443
  sym.st_target_internal = 0;
14444
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14445
}
14446
 
14447
static bfd_boolean
14448
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14449
                  void * in_arg)
14450
{
14451
  struct elf32_arm_stub_hash_entry *stub_entry;
14452
  asection *stub_sec;
14453
  bfd_vma addr;
14454
  char *stub_name;
14455
  output_arch_syminfo *osi;
14456
  const insn_sequence *template_sequence;
14457
  enum stub_insn_type prev_type;
14458
  int size;
14459
  int i;
14460
  enum map_symbol_type sym_type;
14461
 
14462
  /* Massage our args to the form they really have.  */
14463
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14464
  osi = (output_arch_syminfo *) in_arg;
14465
 
14466
  stub_sec = stub_entry->stub_sec;
14467
 
14468
  /* Ensure this stub is attached to the current section being
14469
     processed.  */
14470
  if (stub_sec != osi->sec)
14471
    return TRUE;
14472
 
14473
  addr = (bfd_vma) stub_entry->stub_offset;
14474
  stub_name = stub_entry->output_name;
14475
 
14476
  template_sequence = stub_entry->stub_template;
14477
  switch (template_sequence[0].type)
14478
    {
14479
    case ARM_TYPE:
14480
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14481
        return FALSE;
14482
      break;
14483
    case THUMB16_TYPE:
14484
    case THUMB32_TYPE:
14485
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14486
                                      stub_entry->stub_size))
14487
        return FALSE;
14488
      break;
14489
    default:
14490
      BFD_FAIL ();
14491
      return 0;
14492
    }
14493
 
14494
  prev_type = DATA_TYPE;
14495
  size = 0;
14496
  for (i = 0; i < stub_entry->stub_template_size; i++)
14497
    {
14498
      switch (template_sequence[i].type)
14499
        {
14500
        case ARM_TYPE:
14501
          sym_type = ARM_MAP_ARM;
14502
          break;
14503
 
14504
        case THUMB16_TYPE:
14505
        case THUMB32_TYPE:
14506
          sym_type = ARM_MAP_THUMB;
14507
          break;
14508
 
14509
        case DATA_TYPE:
14510
          sym_type = ARM_MAP_DATA;
14511
          break;
14512
 
14513
        default:
14514
          BFD_FAIL ();
14515
          return FALSE;
14516
        }
14517
 
14518
      if (template_sequence[i].type != prev_type)
14519
        {
14520
          prev_type = template_sequence[i].type;
14521
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14522
            return FALSE;
14523
        }
14524
 
14525
      switch (template_sequence[i].type)
14526
        {
14527
        case ARM_TYPE:
14528
        case THUMB32_TYPE:
14529
          size += 4;
14530
          break;
14531
 
14532
        case THUMB16_TYPE:
14533
          size += 2;
14534
          break;
14535
 
14536
        case DATA_TYPE:
14537
          size += 4;
14538
          break;
14539
 
14540
        default:
14541
          BFD_FAIL ();
14542
          return FALSE;
14543
        }
14544
    }
14545
 
14546
  return TRUE;
14547
}
14548
 
14549
/* Output mapping symbols for linker generated sections,
14550
   and for those data-only sections that do not have a
14551
   $d.  */
14552
 
14553
static bfd_boolean
14554
elf32_arm_output_arch_local_syms (bfd *output_bfd,
14555
                                  struct bfd_link_info *info,
14556
                                  void *finfo,
14557
                                  int (*func) (void *, const char *,
14558
                                               Elf_Internal_Sym *,
14559
                                               asection *,
14560
                                               struct elf_link_hash_entry *))
14561
{
14562
  output_arch_syminfo osi;
14563
  struct elf32_arm_link_hash_table *htab;
14564
  bfd_vma offset;
14565
  bfd_size_type size;
14566
  bfd *input_bfd;
14567
 
14568
  htab = elf32_arm_hash_table (info);
14569
  if (htab == NULL)
14570
    return FALSE;
14571
 
14572
  check_use_blx (htab);
14573
 
14574
  osi.finfo = finfo;
14575
  osi.info = info;
14576
  osi.func = func;
14577
 
14578
  /* Add a $d mapping symbol to data-only sections that
14579
     don't have any mapping symbol.  This may result in (harmless) redundant
14580
     mapping symbols.  */
14581
  for (input_bfd = info->input_bfds;
14582
       input_bfd != NULL;
14583
       input_bfd = input_bfd->link_next)
14584
    {
14585
      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14586
        for (osi.sec = input_bfd->sections;
14587
             osi.sec != NULL;
14588
             osi.sec = osi.sec->next)
14589
          {
14590
            if (osi.sec->output_section != NULL
14591
                && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14592
                    != 0)
14593
                && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14594
                   == SEC_HAS_CONTENTS
14595
                && get_arm_elf_section_data (osi.sec) != NULL
14596
                && get_arm_elf_section_data (osi.sec)->mapcount == 0
14597 163 khays
                && osi.sec->size > 0
14598
                && (osi.sec->flags & SEC_EXCLUDE) == 0)
14599 14 khays
              {
14600
                osi.sec_shndx = _bfd_elf_section_from_bfd_section
14601
                  (output_bfd, osi.sec->output_section);
14602
                if (osi.sec_shndx != (int)SHN_BAD)
14603
                  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14604
              }
14605
          }
14606
    }
14607
 
14608
  /* ARM->Thumb glue.  */
14609
  if (htab->arm_glue_size > 0)
14610
    {
14611
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14612
                                         ARM2THUMB_GLUE_SECTION_NAME);
14613
 
14614
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14615
          (output_bfd, osi.sec->output_section);
14616
      if (info->shared || htab->root.is_relocatable_executable
14617
          || htab->pic_veneer)
14618
        size = ARM2THUMB_PIC_GLUE_SIZE;
14619
      else if (htab->use_blx)
14620
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14621
      else
14622
        size = ARM2THUMB_STATIC_GLUE_SIZE;
14623
 
14624
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
14625
        {
14626
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14627
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14628
        }
14629
    }
14630
 
14631
  /* Thumb->ARM glue.  */
14632
  if (htab->thumb_glue_size > 0)
14633
    {
14634
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14635
                                         THUMB2ARM_GLUE_SECTION_NAME);
14636
 
14637
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14638
          (output_bfd, osi.sec->output_section);
14639
      size = THUMB2ARM_GLUE_SIZE;
14640
 
14641
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14642
        {
14643
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14644
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14645
        }
14646
    }
14647
 
14648
  /* ARMv4 BX veneers.  */
14649
  if (htab->bx_glue_size > 0)
14650
    {
14651
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14652
                                         ARM_BX_GLUE_SECTION_NAME);
14653
 
14654
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
14655
          (output_bfd, osi.sec->output_section);
14656
 
14657
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14658
    }
14659
 
14660
  /* Long calls stubs.  */
14661
  if (htab->stub_bfd && htab->stub_bfd->sections)
14662
    {
14663
      asection* stub_sec;
14664
 
14665
      for (stub_sec = htab->stub_bfd->sections;
14666
           stub_sec != NULL;
14667
           stub_sec = stub_sec->next)
14668
        {
14669
          /* Ignore non-stub sections.  */
14670
          if (!strstr (stub_sec->name, STUB_SUFFIX))
14671
            continue;
14672
 
14673
          osi.sec = stub_sec;
14674
 
14675
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
14676
            (output_bfd, osi.sec->output_section);
14677
 
14678
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14679
        }
14680
    }
14681
 
14682
  /* Finally, output mapping symbols for the PLT.  */
14683
  if (htab->root.splt && htab->root.splt->size > 0)
14684
    {
14685
      osi.sec = htab->root.splt;
14686
      osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14687
                       (output_bfd, osi.sec->output_section));
14688
 
14689
      /* Output mapping symbols for the plt header.  SymbianOS does not have a
14690
         plt header.  */
14691
      if (htab->vxworks_p)
14692
        {
14693
          /* VxWorks shared libraries have no PLT header.  */
14694
          if (!info->shared)
14695
            {
14696
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14697
                return FALSE;
14698
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14699
                return FALSE;
14700
            }
14701
        }
14702
      else if (!htab->symbian_p)
14703
        {
14704
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14705
            return FALSE;
14706
#ifndef FOUR_WORD_PLT
14707
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14708
            return FALSE;
14709
#endif
14710
        }
14711
    }
14712
  if ((htab->root.splt && htab->root.splt->size > 0)
14713
      || (htab->root.iplt && htab->root.iplt->size > 0))
14714
    {
14715
      elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14716
      for (input_bfd = info->input_bfds;
14717
           input_bfd != NULL;
14718
           input_bfd = input_bfd->link_next)
14719
        {
14720
          struct arm_local_iplt_info **local_iplt;
14721
          unsigned int i, num_syms;
14722
 
14723
          local_iplt = elf32_arm_local_iplt (input_bfd);
14724
          if (local_iplt != NULL)
14725
            {
14726
              num_syms = elf_symtab_hdr (input_bfd).sh_info;
14727
              for (i = 0; i < num_syms; i++)
14728
                if (local_iplt[i] != NULL
14729
                    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14730
                                                    &local_iplt[i]->root,
14731
                                                    &local_iplt[i]->arm))
14732
                  return FALSE;
14733
            }
14734
        }
14735
    }
14736
  if (htab->dt_tlsdesc_plt != 0)
14737
    {
14738
      /* Mapping symbols for the lazy tls trampoline.  */
14739
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14740
        return FALSE;
14741
 
14742
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14743
                                     htab->dt_tlsdesc_plt + 24))
14744
        return FALSE;
14745
    }
14746
  if (htab->tls_trampoline != 0)
14747
    {
14748
      /* Mapping symbols for the tls trampoline.  */
14749
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14750
        return FALSE;
14751
#ifdef FOUR_WORD_PLT
14752
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14753
                                     htab->tls_trampoline + 12))
14754
        return FALSE;
14755
#endif 
14756
    }
14757
 
14758
  return TRUE;
14759
}
14760
 
14761
/* Allocate target specific section data.  */
14762
 
14763
static bfd_boolean
14764
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14765
{
14766
  if (!sec->used_by_bfd)
14767
    {
14768
      _arm_elf_section_data *sdata;
14769
      bfd_size_type amt = sizeof (*sdata);
14770
 
14771
      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14772
      if (sdata == NULL)
14773
        return FALSE;
14774
      sec->used_by_bfd = sdata;
14775
    }
14776
 
14777
  return _bfd_elf_new_section_hook (abfd, sec);
14778
}
14779
 
14780
 
14781
/* Used to order a list of mapping symbols by address.  */
14782
 
14783
static int
14784
elf32_arm_compare_mapping (const void * a, const void * b)
14785
{
14786
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14787
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14788
 
14789
  if (amap->vma > bmap->vma)
14790
    return 1;
14791
  else if (amap->vma < bmap->vma)
14792
    return -1;
14793
  else if (amap->type > bmap->type)
14794
    /* Ensure results do not depend on the host qsort for objects with
14795
       multiple mapping symbols at the same address by sorting on type
14796
       after vma.  */
14797
    return 1;
14798
  else if (amap->type < bmap->type)
14799
    return -1;
14800
  else
14801
    return 0;
14802
}
14803
 
14804
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
14805
 
14806
static unsigned long
14807
offset_prel31 (unsigned long addr, bfd_vma offset)
14808
{
14809
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14810
}
14811
 
14812
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14813
   relocations.  */
14814
 
14815
static void
14816
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14817
{
14818
  unsigned long first_word = bfd_get_32 (output_bfd, from);
14819
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14820
 
14821
  /* High bit of first word is supposed to be zero.  */
14822
  if ((first_word & 0x80000000ul) == 0)
14823
    first_word = offset_prel31 (first_word, offset);
14824
 
14825
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14826
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
14827
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14828
    second_word = offset_prel31 (second_word, offset);
14829
 
14830
  bfd_put_32 (output_bfd, first_word, to);
14831
  bfd_put_32 (output_bfd, second_word, to + 4);
14832
}
14833
 
14834
/* Data for make_branch_to_a8_stub().  */
14835
 
14836
struct a8_branch_to_stub_data {
14837
  asection *writing_section;
14838
  bfd_byte *contents;
14839
};
14840
 
14841
 
14842
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
14843
   places for a particular section.  */
14844
 
14845
static bfd_boolean
14846
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14847
                       void *in_arg)
14848
{
14849
  struct elf32_arm_stub_hash_entry *stub_entry;
14850
  struct a8_branch_to_stub_data *data;
14851
  bfd_byte *contents;
14852
  unsigned long branch_insn;
14853
  bfd_vma veneered_insn_loc, veneer_entry_loc;
14854
  bfd_signed_vma branch_offset;
14855
  bfd *abfd;
14856
  unsigned int target;
14857
 
14858
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14859
  data = (struct a8_branch_to_stub_data *) in_arg;
14860
 
14861
  if (stub_entry->target_section != data->writing_section
14862
      || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14863
    return TRUE;
14864
 
14865
  contents = data->contents;
14866
 
14867
  veneered_insn_loc = stub_entry->target_section->output_section->vma
14868
                      + stub_entry->target_section->output_offset
14869
                      + stub_entry->target_value;
14870
 
14871
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14872
                     + stub_entry->stub_sec->output_offset
14873
                     + stub_entry->stub_offset;
14874
 
14875
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14876
    veneered_insn_loc &= ~3u;
14877
 
14878
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14879
 
14880
  abfd = stub_entry->target_section->owner;
14881
  target = stub_entry->target_value;
14882
 
14883
  /* We attempt to avoid this condition by setting stubs_always_after_branch
14884
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14885
     This check is just to be on the safe side...  */
14886
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14887
    {
14888
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14889
                               "allocated in unsafe location"), abfd);
14890
      return FALSE;
14891
    }
14892
 
14893
  switch (stub_entry->stub_type)
14894
    {
14895
    case arm_stub_a8_veneer_b:
14896
    case arm_stub_a8_veneer_b_cond:
14897
      branch_insn = 0xf0009000;
14898
      goto jump24;
14899
 
14900
    case arm_stub_a8_veneer_blx:
14901
      branch_insn = 0xf000e800;
14902
      goto jump24;
14903
 
14904
    case arm_stub_a8_veneer_bl:
14905
      {
14906
        unsigned int i1, j1, i2, j2, s;
14907
 
14908
        branch_insn = 0xf000d000;
14909
 
14910
      jump24:
14911
        if (branch_offset < -16777216 || branch_offset > 16777214)
14912
          {
14913
            /* There's not much we can do apart from complain if this
14914
               happens.  */
14915
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14916
                                     "of range (input file too large)"), abfd);
14917
            return FALSE;
14918
          }
14919
 
14920
        /* i1 = not(j1 eor s), so:
14921
           not i1 = j1 eor s
14922
           j1 = (not i1) eor s.  */
14923
 
14924
        branch_insn |= (branch_offset >> 1) & 0x7ff;
14925
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14926
        i2 = (branch_offset >> 22) & 1;
14927
        i1 = (branch_offset >> 23) & 1;
14928
        s = (branch_offset >> 24) & 1;
14929
        j1 = (!i1) ^ s;
14930
        j2 = (!i2) ^ s;
14931
        branch_insn |= j2 << 11;
14932
        branch_insn |= j1 << 13;
14933
        branch_insn |= s << 26;
14934
      }
14935
      break;
14936
 
14937
    default:
14938
      BFD_FAIL ();
14939
      return FALSE;
14940
    }
14941
 
14942
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14943
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14944
 
14945
  return TRUE;
14946
}
14947
 
14948
/* Do code byteswapping.  Return FALSE afterwards so that the section is
14949
   written out as normal.  */
14950
 
14951
static bfd_boolean
14952
elf32_arm_write_section (bfd *output_bfd,
14953
                         struct bfd_link_info *link_info,
14954
                         asection *sec,
14955
                         bfd_byte *contents)
14956
{
14957
  unsigned int mapcount, errcount;
14958
  _arm_elf_section_data *arm_data;
14959
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14960
  elf32_arm_section_map *map;
14961
  elf32_vfp11_erratum_list *errnode;
14962
  bfd_vma ptr;
14963
  bfd_vma end;
14964
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
14965
  bfd_byte tmp;
14966
  unsigned int i;
14967
 
14968
  if (globals == NULL)
14969
    return FALSE;
14970
 
14971
  /* If this section has not been allocated an _arm_elf_section_data
14972
     structure then we cannot record anything.  */
14973
  arm_data = get_arm_elf_section_data (sec);
14974
  if (arm_data == NULL)
14975
    return FALSE;
14976
 
14977
  mapcount = arm_data->mapcount;
14978
  map = arm_data->map;
14979
  errcount = arm_data->erratumcount;
14980
 
14981
  if (errcount != 0)
14982
    {
14983
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14984
 
14985
      for (errnode = arm_data->erratumlist; errnode != 0;
14986
           errnode = errnode->next)
14987
        {
14988
          bfd_vma target = errnode->vma - offset;
14989
 
14990
          switch (errnode->type)
14991
            {
14992
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14993
              {
14994
                bfd_vma branch_to_veneer;
14995
                /* Original condition code of instruction, plus bit mask for
14996
                   ARM B instruction.  */
14997
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14998
                                  | 0x0a000000;
14999
 
15000
                /* The instruction is before the label.  */
15001
                target -= 4;
15002
 
15003
                /* Above offset included in -4 below.  */
15004
                branch_to_veneer = errnode->u.b.veneer->vma
15005
                                   - errnode->vma - 4;
15006
 
15007
                if ((signed) branch_to_veneer < -(1 << 25)
15008
                    || (signed) branch_to_veneer >= (1 << 25))
15009
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15010
                                           "range"), output_bfd);
15011
 
15012
                insn |= (branch_to_veneer >> 2) & 0xffffff;
15013
                contents[endianflip ^ target] = insn & 0xff;
15014
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15015
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15016
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15017
              }
15018
              break;
15019
 
15020
            case VFP11_ERRATUM_ARM_VENEER:
15021
              {
15022
                bfd_vma branch_from_veneer;
15023
                unsigned int insn;
15024
 
15025
                /* Take size of veneer into account.  */
15026
                branch_from_veneer = errnode->u.v.branch->vma
15027
                                     - errnode->vma - 12;
15028
 
15029
                if ((signed) branch_from_veneer < -(1 << 25)
15030
                    || (signed) branch_from_veneer >= (1 << 25))
15031
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15032
                                           "range"), output_bfd);
15033
 
15034
                /* Original instruction.  */
15035
                insn = errnode->u.v.branch->u.b.vfp_insn;
15036
                contents[endianflip ^ target] = insn & 0xff;
15037
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15038
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15039
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15040
 
15041
                /* Branch back to insn after original insn.  */
15042
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15043
                contents[endianflip ^ (target + 4)] = insn & 0xff;
15044
                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15045
                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15046
                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15047
              }
15048
              break;
15049
 
15050
            default:
15051
              abort ();
15052
            }
15053
        }
15054
    }
15055
 
15056
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15057
    {
15058
      arm_unwind_table_edit *edit_node
15059
        = arm_data->u.exidx.unwind_edit_list;
15060
      /* Now, sec->size is the size of the section we will write.  The original
15061
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15062
         markers) was sec->rawsize.  (This isn't the case if we perform no
15063
         edits, then rawsize will be zero and we should use size).  */
15064
      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15065
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15066
      unsigned int in_index, out_index;
15067
      bfd_vma add_to_offsets = 0;
15068
 
15069
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15070
        {
15071
          if (edit_node)
15072
            {
15073
              unsigned int edit_index = edit_node->index;
15074
 
15075
              if (in_index < edit_index && in_index * 8 < input_size)
15076
                {
15077
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15078
                                    contents + in_index * 8, add_to_offsets);
15079
                  out_index++;
15080
                  in_index++;
15081
                }
15082
              else if (in_index == edit_index
15083
                       || (in_index * 8 >= input_size
15084
                           && edit_index == UINT_MAX))
15085
                {
15086
                  switch (edit_node->type)
15087
                    {
15088
                    case DELETE_EXIDX_ENTRY:
15089
                      in_index++;
15090
                      add_to_offsets += 8;
15091
                      break;
15092
 
15093
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
15094
                      {
15095
                        asection *text_sec = edit_node->linked_section;
15096
                        bfd_vma text_offset = text_sec->output_section->vma
15097
                                              + text_sec->output_offset
15098
                                              + text_sec->size;
15099
                        bfd_vma exidx_offset = offset + out_index * 8;
15100
                        unsigned long prel31_offset;
15101
 
15102
                        /* Note: this is meant to be equivalent to an
15103
                           R_ARM_PREL31 relocation.  These synthetic
15104
                           EXIDX_CANTUNWIND markers are not relocated by the
15105
                           usual BFD method.  */
15106
                        prel31_offset = (text_offset - exidx_offset)
15107
                                        & 0x7ffffffful;
15108
 
15109
                        /* First address we can't unwind.  */
15110
                        bfd_put_32 (output_bfd, prel31_offset,
15111
                                    &edited_contents[out_index * 8]);
15112
 
15113
                        /* Code for EXIDX_CANTUNWIND.  */
15114
                        bfd_put_32 (output_bfd, 0x1,
15115
                                    &edited_contents[out_index * 8 + 4]);
15116
 
15117
                        out_index++;
15118
                        add_to_offsets -= 8;
15119
                      }
15120
                      break;
15121
                    }
15122
 
15123
                  edit_node = edit_node->next;
15124
                }
15125
            }
15126
          else
15127
            {
15128
              /* No more edits, copy remaining entries verbatim.  */
15129
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15130
                                contents + in_index * 8, add_to_offsets);
15131
              out_index++;
15132
              in_index++;
15133
            }
15134
        }
15135
 
15136
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15137
        bfd_set_section_contents (output_bfd, sec->output_section,
15138
                                  edited_contents,
15139
                                  (file_ptr) sec->output_offset, sec->size);
15140
 
15141
      return TRUE;
15142
    }
15143
 
15144
  /* Fix code to point to Cortex-A8 erratum stubs.  */
15145
  if (globals->fix_cortex_a8)
15146
    {
15147
      struct a8_branch_to_stub_data data;
15148
 
15149
      data.writing_section = sec;
15150
      data.contents = contents;
15151
 
15152
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15153
                         &data);
15154
    }
15155
 
15156
  if (mapcount == 0)
15157
    return FALSE;
15158
 
15159
  if (globals->byteswap_code)
15160
    {
15161
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15162
 
15163
      ptr = map[0].vma;
15164
      for (i = 0; i < mapcount; i++)
15165
        {
15166
          if (i == mapcount - 1)
15167
            end = sec->size;
15168
          else
15169
            end = map[i + 1].vma;
15170
 
15171
          switch (map[i].type)
15172
            {
15173
            case 'a':
15174
              /* Byte swap code words.  */
15175
              while (ptr + 3 < end)
15176
                {
15177
                  tmp = contents[ptr];
15178
                  contents[ptr] = contents[ptr + 3];
15179
                  contents[ptr + 3] = tmp;
15180
                  tmp = contents[ptr + 1];
15181
                  contents[ptr + 1] = contents[ptr + 2];
15182
                  contents[ptr + 2] = tmp;
15183
                  ptr += 4;
15184
                }
15185
              break;
15186
 
15187
            case 't':
15188
              /* Byte swap code halfwords.  */
15189
              while (ptr + 1 < end)
15190
                {
15191
                  tmp = contents[ptr];
15192
                  contents[ptr] = contents[ptr + 1];
15193
                  contents[ptr + 1] = tmp;
15194
                  ptr += 2;
15195
                }
15196
              break;
15197
 
15198
            case 'd':
15199
              /* Leave data alone.  */
15200
              break;
15201
            }
15202
          ptr = end;
15203
        }
15204
    }
15205
 
15206
  free (map);
15207
  arm_data->mapcount = -1;
15208
  arm_data->mapsize = 0;
15209
  arm_data->map = NULL;
15210
 
15211
  return FALSE;
15212
}
15213
 
15214
/* Mangle thumb function symbols as we read them in.  */
15215
 
15216
static bfd_boolean
15217
elf32_arm_swap_symbol_in (bfd * abfd,
15218
                          const void *psrc,
15219
                          const void *pshn,
15220
                          Elf_Internal_Sym *dst)
15221
{
15222
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15223
    return FALSE;
15224
 
15225
  /* New EABI objects mark thumb function symbols by setting the low bit of
15226
     the address.  */
15227
  if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15228
      || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15229
    {
15230
      if (dst->st_value & 1)
15231
        {
15232
          dst->st_value &= ~(bfd_vma) 1;
15233
          dst->st_target_internal = ST_BRANCH_TO_THUMB;
15234
        }
15235
      else
15236
        dst->st_target_internal = ST_BRANCH_TO_ARM;
15237
    }
15238
  else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15239
    {
15240
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15241
      dst->st_target_internal = ST_BRANCH_TO_THUMB;
15242
    }
15243
  else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15244
    dst->st_target_internal = ST_BRANCH_LONG;
15245
  else
15246
    dst->st_target_internal = ST_BRANCH_UNKNOWN;
15247
 
15248
  return TRUE;
15249
}
15250
 
15251
 
15252
/* Mangle thumb function symbols as we write them out.  */
15253
 
15254
static void
15255
elf32_arm_swap_symbol_out (bfd *abfd,
15256
                           const Elf_Internal_Sym *src,
15257
                           void *cdst,
15258
                           void *shndx)
15259
{
15260
  Elf_Internal_Sym newsym;
15261
 
15262
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15263
     of the address set, as per the new EABI.  We do this unconditionally
15264
     because objcopy does not set the elf header flags until after
15265
     it writes out the symbol table.  */
15266
  if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15267
    {
15268
      newsym = *src;
15269
      if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15270
        newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15271
      if (newsym.st_shndx != SHN_UNDEF)
15272
        {
15273
          /* Do this only for defined symbols. At link type, the static
15274
             linker will simulate the work of dynamic linker of resolving
15275
             symbols and will carry over the thumbness of found symbols to
15276
             the output symbol table. It's not clear how it happens, but
15277
             the thumbness of undefined symbols can well be different at
15278
             runtime, and writing '1' for them will be confusing for users
15279
             and possibly for dynamic linker itself.
15280
          */
15281
          newsym.st_value |= 1;
15282
        }
15283
 
15284
      src = &newsym;
15285
    }
15286
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15287
}
15288
 
15289
/* Add the PT_ARM_EXIDX program header.  */
15290
 
15291
static bfd_boolean
15292
elf32_arm_modify_segment_map (bfd *abfd,
15293
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
15294
{
15295
  struct elf_segment_map *m;
15296
  asection *sec;
15297
 
15298
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15299
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15300
    {
15301
      /* If there is already a PT_ARM_EXIDX header, then we do not
15302
         want to add another one.  This situation arises when running
15303
         "strip"; the input binary already has the header.  */
15304
      m = elf_tdata (abfd)->segment_map;
15305
      while (m && m->p_type != PT_ARM_EXIDX)
15306
        m = m->next;
15307
      if (!m)
15308
        {
15309
          m = (struct elf_segment_map *)
15310
              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15311
          if (m == NULL)
15312
            return FALSE;
15313
          m->p_type = PT_ARM_EXIDX;
15314
          m->count = 1;
15315
          m->sections[0] = sec;
15316
 
15317
          m->next = elf_tdata (abfd)->segment_map;
15318
          elf_tdata (abfd)->segment_map = m;
15319
        }
15320
    }
15321
 
15322
  return TRUE;
15323
}
15324
 
15325
/* We may add a PT_ARM_EXIDX program header.  */
15326
 
15327
static int
15328
elf32_arm_additional_program_headers (bfd *abfd,
15329
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
15330
{
15331
  asection *sec;
15332
 
15333
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15334
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15335
    return 1;
15336
  else
15337
    return 0;
15338
}
15339
 
15340
/* Hook called by the linker routine which adds symbols from an object
15341
   file.  */
15342
 
15343
static bfd_boolean
15344
elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15345
                           Elf_Internal_Sym *sym, const char **namep,
15346
                           flagword *flagsp, asection **secp, bfd_vma *valp)
15347
{
15348
  if ((abfd->flags & DYNAMIC) == 0
15349
      && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15350
          || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15351
    elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15352
 
15353
  if (elf32_arm_hash_table (info)->vxworks_p
15354
      && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15355
                                       flagsp, secp, valp))
15356
    return FALSE;
15357
 
15358
  return TRUE;
15359
}
15360
 
15361
/* We use this to override swap_symbol_in and swap_symbol_out.  */
15362
const struct elf_size_info elf32_arm_size_info =
15363
{
15364
  sizeof (Elf32_External_Ehdr),
15365
  sizeof (Elf32_External_Phdr),
15366
  sizeof (Elf32_External_Shdr),
15367
  sizeof (Elf32_External_Rel),
15368
  sizeof (Elf32_External_Rela),
15369
  sizeof (Elf32_External_Sym),
15370
  sizeof (Elf32_External_Dyn),
15371
  sizeof (Elf_External_Note),
15372
  4,
15373
  1,
15374
  32, 2,
15375
  ELFCLASS32, EV_CURRENT,
15376
  bfd_elf32_write_out_phdrs,
15377
  bfd_elf32_write_shdrs_and_ehdr,
15378
  bfd_elf32_checksum_contents,
15379
  bfd_elf32_write_relocs,
15380
  elf32_arm_swap_symbol_in,
15381
  elf32_arm_swap_symbol_out,
15382
  bfd_elf32_slurp_reloc_table,
15383
  bfd_elf32_slurp_symbol_table,
15384
  bfd_elf32_swap_dyn_in,
15385
  bfd_elf32_swap_dyn_out,
15386
  bfd_elf32_swap_reloc_in,
15387
  bfd_elf32_swap_reloc_out,
15388
  bfd_elf32_swap_reloca_in,
15389
  bfd_elf32_swap_reloca_out
15390
};
15391
 
15392
#define ELF_ARCH                        bfd_arch_arm
15393
#define ELF_TARGET_ID                   ARM_ELF_DATA
15394
#define ELF_MACHINE_CODE                EM_ARM
15395
#ifdef __QNXTARGET__
15396
#define ELF_MAXPAGESIZE                 0x1000
15397
#else
15398
#define ELF_MAXPAGESIZE                 0x8000
15399
#endif
15400
#define ELF_MINPAGESIZE                 0x1000
15401
#define ELF_COMMONPAGESIZE              0x1000
15402
 
15403
#define bfd_elf32_mkobject                      elf32_arm_mkobject
15404
 
15405
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
15406
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
15407
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
15408
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
15409
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
15410
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
15411
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
15412
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15413
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
15414
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
15415
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
15416
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
15417
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
15418
 
15419
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
15420
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
15421
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
15422
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
15423
#define elf_backend_check_relocs                elf32_arm_check_relocs
15424
#define elf_backend_relocate_section            elf32_arm_relocate_section
15425
#define elf_backend_write_section               elf32_arm_write_section
15426
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
15427
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
15428
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
15429
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
15430
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
15431
#define elf_backend_always_size_sections        elf32_arm_always_size_sections
15432
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
15433
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
15434
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
15435
#define elf_backend_object_p                    elf32_arm_object_p
15436
#define elf_backend_fake_sections               elf32_arm_fake_sections
15437
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
15438
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
15439
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
15440
#define elf_backend_size_info                   elf32_arm_size_info
15441
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
15442
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
15443
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
15444
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
15445
#define elf_backend_add_symbol_hook             elf32_arm_add_symbol_hook
15446
 
15447
#define elf_backend_can_refcount       1
15448
#define elf_backend_can_gc_sections    1
15449
#define elf_backend_plt_readonly       1
15450
#define elf_backend_want_got_plt       1
15451
#define elf_backend_want_plt_sym       0
15452
#define elf_backend_may_use_rel_p      1
15453
#define elf_backend_may_use_rela_p     0
15454
#define elf_backend_default_use_rela_p 0
15455
 
15456
#define elf_backend_got_header_size     12
15457
 
15458
#undef  elf_backend_obj_attrs_vendor
15459
#define elf_backend_obj_attrs_vendor            "aeabi"
15460
#undef  elf_backend_obj_attrs_section
15461
#define elf_backend_obj_attrs_section           ".ARM.attributes"
15462
#undef  elf_backend_obj_attrs_arg_type
15463
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
15464
#undef  elf_backend_obj_attrs_section_type
15465
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
15466
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
15467
#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15468
 
15469
#include "elf32-target.h"
15470
 
15471
/* VxWorks Targets.  */
15472
 
15473
#undef  TARGET_LITTLE_SYM
15474
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
15475
#undef  TARGET_LITTLE_NAME
15476
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
15477
#undef  TARGET_BIG_SYM
15478
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
15479
#undef  TARGET_BIG_NAME
15480
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
15481
 
15482
/* Like elf32_arm_link_hash_table_create -- but overrides
15483
   appropriately for VxWorks.  */
15484
 
15485
static struct bfd_link_hash_table *
15486
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15487
{
15488
  struct bfd_link_hash_table *ret;
15489
 
15490
  ret = elf32_arm_link_hash_table_create (abfd);
15491
  if (ret)
15492
    {
15493
      struct elf32_arm_link_hash_table *htab
15494
        = (struct elf32_arm_link_hash_table *) ret;
15495
      htab->use_rel = 0;
15496
      htab->vxworks_p = 1;
15497
    }
15498
  return ret;
15499
}
15500
 
15501
static void
15502
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15503
{
15504
  elf32_arm_final_write_processing (abfd, linker);
15505
  elf_vxworks_final_write_processing (abfd, linker);
15506
}
15507
 
15508
#undef  elf32_bed
15509
#define elf32_bed elf32_arm_vxworks_bed
15510
 
15511
#undef  bfd_elf32_bfd_link_hash_table_create
15512
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
15513
#undef  elf_backend_final_write_processing
15514
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
15515
#undef  elf_backend_emit_relocs
15516
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
15517
 
15518
#undef  elf_backend_may_use_rel_p
15519
#define elf_backend_may_use_rel_p       0
15520
#undef  elf_backend_may_use_rela_p
15521
#define elf_backend_may_use_rela_p      1
15522
#undef  elf_backend_default_use_rela_p
15523
#define elf_backend_default_use_rela_p  1
15524
#undef  elf_backend_want_plt_sym
15525
#define elf_backend_want_plt_sym        1
15526
#undef  ELF_MAXPAGESIZE
15527
#define ELF_MAXPAGESIZE                 0x1000
15528
 
15529
#include "elf32-target.h"
15530
 
15531
 
15532
/* Merge backend specific data from an object file to the output
15533
   object file when linking.  */
15534
 
15535
static bfd_boolean
15536
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15537
{
15538
  flagword out_flags;
15539
  flagword in_flags;
15540
  bfd_boolean flags_compatible = TRUE;
15541
  asection *sec;
15542
 
15543
  /* Check if we have the same endianness.  */
15544
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15545
    return FALSE;
15546
 
15547
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15548
    return TRUE;
15549
 
15550
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15551
    return FALSE;
15552
 
15553
  /* The input BFD must have had its flags initialised.  */
15554
  /* The following seems bogus to me -- The flags are initialized in
15555
     the assembler but I don't think an elf_flags_init field is
15556
     written into the object.  */
15557
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
15558
 
15559
  in_flags  = elf_elfheader (ibfd)->e_flags;
15560
  out_flags = elf_elfheader (obfd)->e_flags;
15561
 
15562
  /* In theory there is no reason why we couldn't handle this.  However
15563
     in practice it isn't even close to working and there is no real
15564
     reason to want it.  */
15565
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15566
      && !(ibfd->flags & DYNAMIC)
15567
      && (in_flags & EF_ARM_BE8))
15568
    {
15569
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
15570
                          ibfd);
15571
      return FALSE;
15572
    }
15573
 
15574
  if (!elf_flags_init (obfd))
15575
    {
15576
      /* If the input is the default architecture and had the default
15577
         flags then do not bother setting the flags for the output
15578
         architecture, instead allow future merges to do this.  If no
15579
         future merges ever set these flags then they will retain their
15580
         uninitialised values, which surprise surprise, correspond
15581
         to the default values.  */
15582
      if (bfd_get_arch_info (ibfd)->the_default
15583
          && elf_elfheader (ibfd)->e_flags == 0)
15584
        return TRUE;
15585
 
15586
      elf_flags_init (obfd) = TRUE;
15587
      elf_elfheader (obfd)->e_flags = in_flags;
15588
 
15589
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15590
          && bfd_get_arch_info (obfd)->the_default)
15591
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15592
 
15593
      return TRUE;
15594
    }
15595
 
15596
  /* Determine what should happen if the input ARM architecture
15597
     does not match the output ARM architecture.  */
15598
  if (! bfd_arm_merge_machines (ibfd, obfd))
15599
    return FALSE;
15600
 
15601
  /* Identical flags must be compatible.  */
15602
  if (in_flags == out_flags)
15603
    return TRUE;
15604
 
15605
  /* Check to see if the input BFD actually contains any sections.  If
15606
     not, its flags may not have been initialised either, but it
15607
     cannot actually cause any incompatiblity.  Do not short-circuit
15608
     dynamic objects; their section list may be emptied by
15609
    elf_link_add_object_symbols.
15610
 
15611
    Also check to see if there are no code sections in the input.
15612
    In this case there is no need to check for code specific flags.
15613
    XXX - do we need to worry about floating-point format compatability
15614
    in data sections ?  */
15615
  if (!(ibfd->flags & DYNAMIC))
15616
    {
15617
      bfd_boolean null_input_bfd = TRUE;
15618
      bfd_boolean only_data_sections = TRUE;
15619
 
15620
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15621
        {
15622
          /* Ignore synthetic glue sections.  */
15623
          if (strcmp (sec->name, ".glue_7")
15624
              && strcmp (sec->name, ".glue_7t"))
15625
            {
15626
              if ((bfd_get_section_flags (ibfd, sec)
15627
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15628
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15629
                only_data_sections = FALSE;
15630
 
15631
              null_input_bfd = FALSE;
15632
              break;
15633
            }
15634
        }
15635
 
15636
      if (null_input_bfd || only_data_sections)
15637
        return TRUE;
15638
    }
15639
 
15640
  /* Complain about various flag mismatches.  */
15641
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15642
                                      EF_ARM_EABI_VERSION (out_flags)))
15643
    {
15644
      _bfd_error_handler
15645
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15646
         ibfd, obfd,
15647
         (in_flags & EF_ARM_EABIMASK) >> 24,
15648
         (out_flags & EF_ARM_EABIMASK) >> 24);
15649
      return FALSE;
15650
    }
15651
 
15652
  /* Not sure what needs to be checked for EABI versions >= 1.  */
15653
  /* VxWorks libraries do not use these flags.  */
15654
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15655
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15656
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15657
    {
15658
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15659
        {
15660
          _bfd_error_handler
15661
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15662
             ibfd, obfd,
15663
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
15664
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
15665
          flags_compatible = FALSE;
15666
        }
15667
 
15668
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15669
        {
15670
          if (in_flags & EF_ARM_APCS_FLOAT)
15671
            _bfd_error_handler
15672
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15673
               ibfd, obfd);
15674
          else
15675
            _bfd_error_handler
15676
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15677
               ibfd, obfd);
15678
 
15679
          flags_compatible = FALSE;
15680
        }
15681
 
15682
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15683
        {
15684
          if (in_flags & EF_ARM_VFP_FLOAT)
15685
            _bfd_error_handler
15686
              (_("error: %B uses VFP instructions, whereas %B does not"),
15687
               ibfd, obfd);
15688
          else
15689
            _bfd_error_handler
15690
              (_("error: %B uses FPA instructions, whereas %B does not"),
15691
               ibfd, obfd);
15692
 
15693
          flags_compatible = FALSE;
15694
        }
15695
 
15696
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15697
        {
15698
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
15699
            _bfd_error_handler
15700
              (_("error: %B uses Maverick instructions, whereas %B does not"),
15701
               ibfd, obfd);
15702
          else
15703
            _bfd_error_handler
15704
              (_("error: %B does not use Maverick instructions, whereas %B does"),
15705
               ibfd, obfd);
15706
 
15707
          flags_compatible = FALSE;
15708
        }
15709
 
15710
#ifdef EF_ARM_SOFT_FLOAT
15711
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15712
        {
15713
          /* We can allow interworking between code that is VFP format
15714
             layout, and uses either soft float or integer regs for
15715
             passing floating point arguments and results.  We already
15716
             know that the APCS_FLOAT flags match; similarly for VFP
15717
             flags.  */
15718
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15719
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15720
            {
15721
              if (in_flags & EF_ARM_SOFT_FLOAT)
15722
                _bfd_error_handler
15723
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
15724
                   ibfd, obfd);
15725
              else
15726
                _bfd_error_handler
15727
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
15728
                   ibfd, obfd);
15729
 
15730
              flags_compatible = FALSE;
15731
            }
15732
        }
15733
#endif
15734
 
15735
      /* Interworking mismatch is only a warning.  */
15736
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15737
        {
15738
          if (in_flags & EF_ARM_INTERWORK)
15739
            {
15740
              _bfd_error_handler
15741
                (_("Warning: %B supports interworking, whereas %B does not"),
15742
                 ibfd, obfd);
15743
            }
15744
          else
15745
            {
15746
              _bfd_error_handler
15747
                (_("Warning: %B does not support interworking, whereas %B does"),
15748
                 ibfd, obfd);
15749
            }
15750
        }
15751
    }
15752
 
15753
  return flags_compatible;
15754
}
15755
 
15756
 
15757
/* Symbian OS Targets.  */
15758
 
15759
#undef  TARGET_LITTLE_SYM
15760
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
15761
#undef  TARGET_LITTLE_NAME
15762
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
15763
#undef  TARGET_BIG_SYM
15764
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
15765
#undef  TARGET_BIG_NAME
15766
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
15767
 
15768
/* Like elf32_arm_link_hash_table_create -- but overrides
15769
   appropriately for Symbian OS.  */
15770
 
15771
static struct bfd_link_hash_table *
15772
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15773
{
15774
  struct bfd_link_hash_table *ret;
15775
 
15776
  ret = elf32_arm_link_hash_table_create (abfd);
15777
  if (ret)
15778
    {
15779
      struct elf32_arm_link_hash_table *htab
15780
        = (struct elf32_arm_link_hash_table *)ret;
15781
      /* There is no PLT header for Symbian OS.  */
15782
      htab->plt_header_size = 0;
15783
      /* The PLT entries are each one instruction and one word.  */
15784
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15785
      htab->symbian_p = 1;
15786
      /* Symbian uses armv5t or above, so use_blx is always true.  */
15787
      htab->use_blx = 1;
15788
      htab->root.is_relocatable_executable = 1;
15789
    }
15790
  return ret;
15791
}
15792
 
15793
static const struct bfd_elf_special_section
15794
elf32_arm_symbian_special_sections[] =
15795
{
15796
  /* In a BPABI executable, the dynamic linking sections do not go in
15797
     the loadable read-only segment.  The post-linker may wish to
15798
     refer to these sections, but they are not part of the final
15799
     program image.  */
15800
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
15801
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
15802
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
15803
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
15804
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
15805
  /* These sections do not need to be writable as the SymbianOS
15806
     postlinker will arrange things so that no dynamic relocation is
15807
     required.  */
15808
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
15809
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
15810
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15811
  { NULL,                             0, 0, 0,                 0 }
15812
};
15813
 
15814
static void
15815
elf32_arm_symbian_begin_write_processing (bfd *abfd,
15816
                                          struct bfd_link_info *link_info)
15817
{
15818
  /* BPABI objects are never loaded directly by an OS kernel; they are
15819
     processed by a postlinker first, into an OS-specific format.  If
15820
     the D_PAGED bit is set on the file, BFD will align segments on
15821
     page boundaries, so that an OS can directly map the file.  With
15822
     BPABI objects, that just results in wasted space.  In addition,
15823
     because we clear the D_PAGED bit, map_sections_to_segments will
15824
     recognize that the program headers should not be mapped into any
15825
     loadable segment.  */
15826
  abfd->flags &= ~D_PAGED;
15827
  elf32_arm_begin_write_processing (abfd, link_info);
15828
}
15829
 
15830
static bfd_boolean
15831
elf32_arm_symbian_modify_segment_map (bfd *abfd,
15832
                                      struct bfd_link_info *info)
15833
{
15834
  struct elf_segment_map *m;
15835
  asection *dynsec;
15836
 
15837
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
15838
     segment.  However, because the .dynamic section is not marked
15839
     with SEC_LOAD, the generic ELF code will not create such a
15840
     segment.  */
15841
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15842
  if (dynsec)
15843
    {
15844
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15845
        if (m->p_type == PT_DYNAMIC)
15846
          break;
15847
 
15848
      if (m == NULL)
15849
        {
15850
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15851
          m->next = elf_tdata (abfd)->segment_map;
15852
          elf_tdata (abfd)->segment_map = m;
15853
        }
15854
    }
15855
 
15856
  /* Also call the generic arm routine.  */
15857
  return elf32_arm_modify_segment_map (abfd, info);
15858
}
15859
 
15860
/* Return address for Ith PLT stub in section PLT, for relocation REL
15861
   or (bfd_vma) -1 if it should not be included.  */
15862
 
15863
static bfd_vma
15864
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15865
                               const arelent *rel ATTRIBUTE_UNUSED)
15866
{
15867
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15868
}
15869
 
15870
 
15871
#undef  elf32_bed
15872
#define elf32_bed elf32_arm_symbian_bed
15873
 
15874
/* The dynamic sections are not allocated on SymbianOS; the postlinker
15875
   will process them and then discard them.  */
15876
#undef  ELF_DYNAMIC_SEC_FLAGS
15877
#define ELF_DYNAMIC_SEC_FLAGS \
15878
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15879
 
15880
#undef elf_backend_emit_relocs
15881
 
15882
#undef  bfd_elf32_bfd_link_hash_table_create
15883
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
15884
#undef  elf_backend_special_sections
15885
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
15886
#undef  elf_backend_begin_write_processing
15887
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
15888
#undef  elf_backend_final_write_processing
15889
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
15890
 
15891
#undef  elf_backend_modify_segment_map
15892
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15893
 
15894
/* There is no .got section for BPABI objects, and hence no header.  */
15895
#undef  elf_backend_got_header_size
15896
#define elf_backend_got_header_size 0
15897
 
15898
/* Similarly, there is no .got.plt section.  */
15899
#undef  elf_backend_want_got_plt
15900
#define elf_backend_want_got_plt 0
15901
 
15902
#undef  elf_backend_plt_sym_val
15903
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
15904
 
15905
#undef  elf_backend_may_use_rel_p
15906
#define elf_backend_may_use_rel_p       1
15907
#undef  elf_backend_may_use_rela_p
15908
#define elf_backend_may_use_rela_p      0
15909
#undef  elf_backend_default_use_rela_p
15910
#define elf_backend_default_use_rela_p  0
15911
#undef  elf_backend_want_plt_sym
15912
#define elf_backend_want_plt_sym        0
15913
#undef  ELF_MAXPAGESIZE
15914
#define ELF_MAXPAGESIZE                 0x8000
15915
 
15916
#include "elf32-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.