1 |
14 |
khays |
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
|
2 |
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
3 |
166 |
khays |
2009, 2010, 2011, 2012 Free Software Foundation, Inc.
|
4 |
14 |
khays |
Contributed by Stephane Carrez (stcarrez@nerim.fr)
|
5 |
|
|
|
6 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
21 |
|
|
MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#include "alloca-conf.h"
|
24 |
|
|
#include "sysdep.h"
|
25 |
|
|
#include "bfd.h"
|
26 |
|
|
#include "bfdlink.h"
|
27 |
|
|
#include "libbfd.h"
|
28 |
|
|
#include "elf-bfd.h"
|
29 |
|
|
#include "elf32-m68hc1x.h"
|
30 |
|
|
#include "elf/m68hc11.h"
|
31 |
|
|
#include "opcode/m68hc11.h"
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
|
35 |
|
|
((struct elf32_m68hc11_stub_hash_entry *) \
|
36 |
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
37 |
|
|
|
38 |
|
|
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
|
39 |
|
|
(const char *stub_name,
|
40 |
|
|
asection *section,
|
41 |
|
|
struct m68hc11_elf_link_hash_table *htab);
|
42 |
|
|
|
43 |
|
|
static struct bfd_hash_entry *stub_hash_newfunc
|
44 |
|
|
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
45 |
|
|
|
46 |
|
|
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
|
47 |
|
|
const char* name, bfd_vma value,
|
48 |
|
|
asection* sec);
|
49 |
|
|
|
50 |
|
|
static bfd_boolean m68hc11_elf_export_one_stub
|
51 |
|
|
(struct bfd_hash_entry *gen_entry, void *in_arg);
|
52 |
|
|
|
53 |
|
|
static void scan_sections_for_abi (bfd*, asection*, PTR);
|
54 |
|
|
|
55 |
|
|
struct m68hc11_scan_param
|
56 |
|
|
{
|
57 |
|
|
struct m68hc11_page_info* pinfo;
|
58 |
|
|
bfd_boolean use_memory_banks;
|
59 |
|
|
};
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
/* Create a 68HC11/68HC12 ELF linker hash table. */
|
63 |
|
|
|
64 |
|
|
struct m68hc11_elf_link_hash_table*
|
65 |
|
|
m68hc11_elf_hash_table_create (bfd *abfd)
|
66 |
|
|
{
|
67 |
|
|
struct m68hc11_elf_link_hash_table *ret;
|
68 |
|
|
bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
|
69 |
|
|
|
70 |
|
|
ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
|
71 |
|
|
if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
|
72 |
|
|
return NULL;
|
73 |
|
|
|
74 |
|
|
memset (ret, 0, amt);
|
75 |
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
76 |
|
|
_bfd_elf_link_hash_newfunc,
|
77 |
|
|
sizeof (struct elf_link_hash_entry),
|
78 |
|
|
M68HC11_ELF_DATA))
|
79 |
|
|
{
|
80 |
|
|
free (ret);
|
81 |
|
|
return NULL;
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* Init the stub hash table too. */
|
85 |
|
|
amt = sizeof (struct bfd_hash_table);
|
86 |
|
|
ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
|
87 |
|
|
if (ret->stub_hash_table == NULL)
|
88 |
|
|
{
|
89 |
|
|
free (ret);
|
90 |
|
|
return NULL;
|
91 |
|
|
}
|
92 |
|
|
if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
|
93 |
|
|
sizeof (struct elf32_m68hc11_stub_hash_entry)))
|
94 |
|
|
return NULL;
|
95 |
|
|
|
96 |
|
|
ret->stub_bfd = NULL;
|
97 |
|
|
ret->stub_section = 0;
|
98 |
|
|
ret->add_stub_section = NULL;
|
99 |
|
|
ret->sym_cache.abfd = NULL;
|
100 |
|
|
|
101 |
|
|
return ret;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
/* Free the derived linker hash table. */
|
105 |
|
|
|
106 |
|
|
void
|
107 |
|
|
m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
|
108 |
|
|
{
|
109 |
|
|
struct m68hc11_elf_link_hash_table *ret
|
110 |
|
|
= (struct m68hc11_elf_link_hash_table *) hash;
|
111 |
|
|
|
112 |
|
|
bfd_hash_table_free (ret->stub_hash_table);
|
113 |
|
|
free (ret->stub_hash_table);
|
114 |
|
|
_bfd_generic_link_hash_table_free (hash);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/* Assorted hash table functions. */
|
118 |
|
|
|
119 |
|
|
/* Initialize an entry in the stub hash table. */
|
120 |
|
|
|
121 |
|
|
static struct bfd_hash_entry *
|
122 |
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
123 |
|
|
const char *string)
|
124 |
|
|
{
|
125 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
126 |
|
|
subclass. */
|
127 |
|
|
if (entry == NULL)
|
128 |
|
|
{
|
129 |
|
|
entry = bfd_hash_allocate (table,
|
130 |
|
|
sizeof (struct elf32_m68hc11_stub_hash_entry));
|
131 |
|
|
if (entry == NULL)
|
132 |
|
|
return entry;
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
/* Call the allocation method of the superclass. */
|
136 |
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
137 |
|
|
if (entry != NULL)
|
138 |
|
|
{
|
139 |
|
|
struct elf32_m68hc11_stub_hash_entry *eh;
|
140 |
|
|
|
141 |
|
|
/* Initialize the local fields. */
|
142 |
|
|
eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
|
143 |
|
|
eh->stub_sec = NULL;
|
144 |
|
|
eh->stub_offset = 0;
|
145 |
|
|
eh->target_value = 0;
|
146 |
|
|
eh->target_section = NULL;
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
return entry;
|
150 |
|
|
}
|
151 |
|
|
|
152 |
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
153 |
|
|
stub entry are initialised. */
|
154 |
|
|
|
155 |
|
|
static struct elf32_m68hc11_stub_hash_entry *
|
156 |
|
|
m68hc12_add_stub (const char *stub_name, asection *section,
|
157 |
|
|
struct m68hc11_elf_link_hash_table *htab)
|
158 |
|
|
{
|
159 |
|
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
160 |
|
|
|
161 |
|
|
/* Enter this entry into the linker stub hash table. */
|
162 |
|
|
stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
|
163 |
|
|
TRUE, FALSE);
|
164 |
|
|
if (stub_entry == NULL)
|
165 |
|
|
{
|
166 |
|
|
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
167 |
|
|
section->owner, stub_name);
|
168 |
|
|
return NULL;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
if (htab->stub_section == 0)
|
172 |
|
|
{
|
173 |
|
|
htab->stub_section = (*htab->add_stub_section) (".tramp",
|
174 |
|
|
htab->tramp_section);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
stub_entry->stub_sec = htab->stub_section;
|
178 |
|
|
stub_entry->stub_offset = 0;
|
179 |
|
|
return stub_entry;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
/* Hook called by the linker routine which adds symbols from an object
|
183 |
|
|
file. We use it for identify far symbols and force a loading of
|
184 |
|
|
the trampoline handler. */
|
185 |
|
|
|
186 |
|
|
bfd_boolean
|
187 |
|
|
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
188 |
|
|
Elf_Internal_Sym *sym,
|
189 |
|
|
const char **namep ATTRIBUTE_UNUSED,
|
190 |
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
191 |
|
|
asection **secp ATTRIBUTE_UNUSED,
|
192 |
|
|
bfd_vma *valp ATTRIBUTE_UNUSED)
|
193 |
|
|
{
|
194 |
|
|
if (sym->st_other & STO_M68HC12_FAR)
|
195 |
|
|
{
|
196 |
|
|
struct elf_link_hash_entry *h;
|
197 |
|
|
|
198 |
|
|
h = (struct elf_link_hash_entry *)
|
199 |
|
|
bfd_link_hash_lookup (info->hash, "__far_trampoline",
|
200 |
|
|
FALSE, FALSE, FALSE);
|
201 |
|
|
if (h == NULL)
|
202 |
|
|
{
|
203 |
|
|
struct bfd_link_hash_entry* entry = NULL;
|
204 |
|
|
|
205 |
|
|
_bfd_generic_link_add_one_symbol (info, abfd,
|
206 |
|
|
"__far_trampoline",
|
207 |
|
|
BSF_GLOBAL,
|
208 |
|
|
bfd_und_section_ptr,
|
209 |
|
|
(bfd_vma) 0, (const char*) NULL,
|
210 |
|
|
FALSE, FALSE, &entry);
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
}
|
214 |
|
|
return TRUE;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
166 |
khays |
/* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
|
218 |
|
|
STO_M68HC12_INTERRUPT. */
|
219 |
|
|
|
220 |
|
|
void
|
221 |
|
|
elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
|
222 |
|
|
const Elf_Internal_Sym *isym,
|
223 |
|
|
bfd_boolean definition,
|
224 |
|
|
bfd_boolean dynamic ATTRIBUTE_UNUSED)
|
225 |
|
|
{
|
226 |
|
|
if (definition)
|
227 |
|
|
h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
|
228 |
|
|
| ELF_ST_VISIBILITY (h->other));
|
229 |
|
|
}
|
230 |
|
|
|
231 |
14 |
khays |
/* External entry points for sizing and building linker stubs. */
|
232 |
|
|
|
233 |
|
|
/* Set up various things so that we can make a list of input sections
|
234 |
|
|
for each output section included in the link. Returns -1 on error,
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
int
|
238 |
|
|
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
239 |
|
|
{
|
240 |
|
|
bfd *input_bfd;
|
241 |
|
|
unsigned int bfd_count;
|
242 |
|
|
int top_id, top_index;
|
243 |
|
|
asection *section;
|
244 |
|
|
asection **input_list, **list;
|
245 |
|
|
bfd_size_type amt;
|
246 |
|
|
asection *text_section;
|
247 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
248 |
|
|
|
249 |
|
|
htab = m68hc11_elf_hash_table (info);
|
250 |
|
|
if (htab == NULL)
|
251 |
|
|
return -1;
|
252 |
|
|
|
253 |
|
|
if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
|
254 |
|
|
return 0;
|
255 |
|
|
|
256 |
|
|
/* Count the number of input BFDs and find the top input section id.
|
257 |
|
|
Also search for an existing ".tramp" section so that we know
|
258 |
|
|
where generated trampolines must go. Default to ".text" if we
|
259 |
|
|
can't find it. */
|
260 |
|
|
htab->tramp_section = 0;
|
261 |
|
|
text_section = 0;
|
262 |
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
263 |
|
|
input_bfd != NULL;
|
264 |
|
|
input_bfd = input_bfd->link_next)
|
265 |
|
|
{
|
266 |
|
|
bfd_count += 1;
|
267 |
|
|
for (section = input_bfd->sections;
|
268 |
|
|
section != NULL;
|
269 |
|
|
section = section->next)
|
270 |
|
|
{
|
271 |
|
|
const char* name = bfd_get_section_name (input_bfd, section);
|
272 |
|
|
|
273 |
|
|
if (!strcmp (name, ".tramp"))
|
274 |
|
|
htab->tramp_section = section;
|
275 |
|
|
|
276 |
|
|
if (!strcmp (name, ".text"))
|
277 |
|
|
text_section = section;
|
278 |
|
|
|
279 |
|
|
if (top_id < section->id)
|
280 |
|
|
top_id = section->id;
|
281 |
|
|
}
|
282 |
|
|
}
|
283 |
|
|
htab->bfd_count = bfd_count;
|
284 |
|
|
if (htab->tramp_section == 0)
|
285 |
|
|
htab->tramp_section = text_section;
|
286 |
|
|
|
287 |
|
|
/* We can't use output_bfd->section_count here to find the top output
|
288 |
|
|
section index as some sections may have been removed, and
|
289 |
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
290 |
|
|
for (section = output_bfd->sections, top_index = 0;
|
291 |
|
|
section != NULL;
|
292 |
|
|
section = section->next)
|
293 |
|
|
{
|
294 |
|
|
if (top_index < section->index)
|
295 |
|
|
top_index = section->index;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
htab->top_index = top_index;
|
299 |
|
|
amt = sizeof (asection *) * (top_index + 1);
|
300 |
|
|
input_list = (asection **) bfd_malloc (amt);
|
301 |
|
|
htab->input_list = input_list;
|
302 |
|
|
if (input_list == NULL)
|
303 |
|
|
return -1;
|
304 |
|
|
|
305 |
|
|
/* For sections we aren't interested in, mark their entries with a
|
306 |
|
|
value we can check later. */
|
307 |
|
|
list = input_list + top_index;
|
308 |
|
|
do
|
309 |
|
|
*list = bfd_abs_section_ptr;
|
310 |
|
|
while (list-- != input_list);
|
311 |
|
|
|
312 |
|
|
for (section = output_bfd->sections;
|
313 |
|
|
section != NULL;
|
314 |
|
|
section = section->next)
|
315 |
|
|
{
|
316 |
|
|
if ((section->flags & SEC_CODE) != 0)
|
317 |
|
|
input_list[section->index] = NULL;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
return 1;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/* Determine and set the size of the stub section for a final link.
|
324 |
|
|
|
325 |
|
|
The basic idea here is to examine all the relocations looking for
|
326 |
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
327 |
|
|
instruction. */
|
328 |
|
|
|
329 |
|
|
bfd_boolean
|
330 |
|
|
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
|
331 |
|
|
struct bfd_link_info *info,
|
332 |
|
|
asection * (*add_stub_section) (const char*, asection*))
|
333 |
|
|
{
|
334 |
|
|
bfd *input_bfd;
|
335 |
|
|
asection *section;
|
336 |
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
337 |
|
|
unsigned int bfd_indx, bfd_count;
|
338 |
|
|
bfd_size_type amt;
|
339 |
|
|
asection *stub_sec;
|
340 |
|
|
struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
|
341 |
|
|
|
342 |
|
|
if (htab == NULL)
|
343 |
|
|
return FALSE;
|
344 |
|
|
|
345 |
|
|
/* Stash our params away. */
|
346 |
|
|
htab->stub_bfd = stub_bfd;
|
347 |
|
|
htab->add_stub_section = add_stub_section;
|
348 |
|
|
|
349 |
|
|
/* Count the number of input BFDs and find the top input section id. */
|
350 |
|
|
for (input_bfd = info->input_bfds, bfd_count = 0;
|
351 |
|
|
input_bfd != NULL;
|
352 |
|
|
input_bfd = input_bfd->link_next)
|
353 |
|
|
bfd_count += 1;
|
354 |
|
|
|
355 |
|
|
/* We want to read in symbol extension records only once. To do this
|
356 |
|
|
we need to read in the local symbols in parallel and save them for
|
357 |
|
|
later use; so hold pointers to the local symbols in an array. */
|
358 |
|
|
amt = sizeof (Elf_Internal_Sym *) * bfd_count;
|
359 |
|
|
all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
|
360 |
|
|
if (all_local_syms == NULL)
|
361 |
|
|
return FALSE;
|
362 |
|
|
|
363 |
|
|
/* Walk over all the input BFDs, swapping in local symbols. */
|
364 |
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
365 |
|
|
input_bfd != NULL;
|
366 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
367 |
|
|
{
|
368 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
369 |
|
|
|
370 |
|
|
/* We'll need the symbol table in a second. */
|
371 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
372 |
|
|
if (symtab_hdr->sh_info == 0)
|
373 |
|
|
continue;
|
374 |
|
|
|
375 |
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
376 |
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
377 |
|
|
if (local_syms == NULL)
|
378 |
|
|
{
|
379 |
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
380 |
|
|
symtab_hdr->sh_info, 0,
|
381 |
|
|
NULL, NULL, NULL);
|
382 |
|
|
/* Cache them for elf_link_input_bfd. */
|
383 |
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
384 |
|
|
}
|
385 |
|
|
if (local_syms == NULL)
|
386 |
|
|
{
|
387 |
|
|
free (all_local_syms);
|
388 |
|
|
return FALSE;
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
all_local_syms[bfd_indx] = local_syms;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
395 |
|
|
input_bfd != NULL;
|
396 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
397 |
|
|
{
|
398 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
399 |
|
|
struct elf_link_hash_entry ** sym_hashes;
|
400 |
|
|
|
401 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
402 |
|
|
|
403 |
|
|
/* We'll need the symbol table in a second. */
|
404 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
405 |
|
|
if (symtab_hdr->sh_info == 0)
|
406 |
|
|
continue;
|
407 |
|
|
|
408 |
|
|
local_syms = all_local_syms[bfd_indx];
|
409 |
|
|
|
410 |
|
|
/* Walk over each section attached to the input bfd. */
|
411 |
|
|
for (section = input_bfd->sections;
|
412 |
|
|
section != NULL;
|
413 |
|
|
section = section->next)
|
414 |
|
|
{
|
415 |
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
416 |
|
|
|
417 |
|
|
/* If there aren't any relocs, then there's nothing more
|
418 |
|
|
to do. */
|
419 |
|
|
if ((section->flags & SEC_RELOC) == 0
|
420 |
|
|
|| section->reloc_count == 0)
|
421 |
|
|
continue;
|
422 |
|
|
|
423 |
|
|
/* If this section is a link-once section that will be
|
424 |
|
|
discarded, then don't create any stubs. */
|
425 |
|
|
if (section->output_section == NULL
|
426 |
|
|
|| section->output_section->owner != output_bfd)
|
427 |
|
|
continue;
|
428 |
|
|
|
429 |
|
|
/* Get the relocs. */
|
430 |
|
|
internal_relocs
|
431 |
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
|
432 |
|
|
(Elf_Internal_Rela *) NULL,
|
433 |
|
|
info->keep_memory);
|
434 |
|
|
if (internal_relocs == NULL)
|
435 |
|
|
goto error_ret_free_local;
|
436 |
|
|
|
437 |
|
|
/* Now examine each relocation. */
|
438 |
|
|
irela = internal_relocs;
|
439 |
|
|
irelaend = irela + section->reloc_count;
|
440 |
|
|
for (; irela < irelaend; irela++)
|
441 |
|
|
{
|
442 |
|
|
unsigned int r_type, r_indx;
|
443 |
|
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
444 |
|
|
asection *sym_sec;
|
445 |
|
|
bfd_vma sym_value;
|
446 |
|
|
struct elf_link_hash_entry *hash;
|
447 |
|
|
const char *stub_name;
|
448 |
|
|
Elf_Internal_Sym *sym;
|
449 |
|
|
|
450 |
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
451 |
|
|
|
452 |
|
|
/* Only look at 16-bit relocs. */
|
453 |
|
|
if (r_type != (unsigned int) R_M68HC11_16)
|
454 |
|
|
continue;
|
455 |
|
|
|
456 |
|
|
/* Now determine the call target, its name, value,
|
457 |
|
|
section. */
|
458 |
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
459 |
|
|
if (r_indx < symtab_hdr->sh_info)
|
460 |
|
|
{
|
461 |
|
|
/* It's a local symbol. */
|
462 |
|
|
Elf_Internal_Shdr *hdr;
|
463 |
|
|
bfd_boolean is_far;
|
464 |
|
|
|
465 |
|
|
sym = local_syms + r_indx;
|
466 |
|
|
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
467 |
|
|
if (!is_far)
|
468 |
|
|
continue;
|
469 |
|
|
|
470 |
|
|
if (sym->st_shndx >= elf_numsections (input_bfd))
|
471 |
|
|
sym_sec = NULL;
|
472 |
|
|
else
|
473 |
|
|
{
|
474 |
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
475 |
|
|
sym_sec = hdr->bfd_section;
|
476 |
|
|
}
|
477 |
|
|
stub_name = (bfd_elf_string_from_elf_section
|
478 |
|
|
(input_bfd, symtab_hdr->sh_link,
|
479 |
|
|
sym->st_name));
|
480 |
|
|
sym_value = sym->st_value;
|
481 |
|
|
hash = NULL;
|
482 |
|
|
}
|
483 |
|
|
else
|
484 |
|
|
{
|
485 |
|
|
/* It's an external symbol. */
|
486 |
|
|
int e_indx;
|
487 |
|
|
|
488 |
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
489 |
|
|
hash = (struct elf_link_hash_entry *)
|
490 |
|
|
(sym_hashes[e_indx]);
|
491 |
|
|
|
492 |
|
|
while (hash->root.type == bfd_link_hash_indirect
|
493 |
|
|
|| hash->root.type == bfd_link_hash_warning)
|
494 |
|
|
hash = ((struct elf_link_hash_entry *)
|
495 |
|
|
hash->root.u.i.link);
|
496 |
|
|
|
497 |
|
|
if (hash->root.type == bfd_link_hash_defined
|
498 |
|
|
|| hash->root.type == bfd_link_hash_defweak
|
499 |
|
|
|| hash->root.type == bfd_link_hash_new)
|
500 |
|
|
{
|
501 |
|
|
if (!(hash->other & STO_M68HC12_FAR))
|
502 |
|
|
continue;
|
503 |
|
|
}
|
504 |
|
|
else if (hash->root.type == bfd_link_hash_undefweak)
|
505 |
|
|
{
|
506 |
|
|
continue;
|
507 |
|
|
}
|
508 |
|
|
else if (hash->root.type == bfd_link_hash_undefined)
|
509 |
|
|
{
|
510 |
|
|
continue;
|
511 |
|
|
}
|
512 |
|
|
else
|
513 |
|
|
{
|
514 |
|
|
bfd_set_error (bfd_error_bad_value);
|
515 |
|
|
goto error_ret_free_internal;
|
516 |
|
|
}
|
517 |
|
|
sym_sec = hash->root.u.def.section;
|
518 |
|
|
sym_value = hash->root.u.def.value;
|
519 |
|
|
stub_name = hash->root.root.string;
|
520 |
|
|
}
|
521 |
|
|
|
522 |
|
|
if (!stub_name)
|
523 |
|
|
goto error_ret_free_internal;
|
524 |
|
|
|
525 |
|
|
stub_entry = m68hc12_stub_hash_lookup
|
526 |
|
|
(htab->stub_hash_table,
|
527 |
|
|
stub_name,
|
528 |
|
|
FALSE, FALSE);
|
529 |
|
|
if (stub_entry == NULL)
|
530 |
|
|
{
|
531 |
|
|
if (add_stub_section == 0)
|
532 |
|
|
continue;
|
533 |
|
|
|
534 |
|
|
stub_entry = m68hc12_add_stub (stub_name, section, htab);
|
535 |
|
|
if (stub_entry == NULL)
|
536 |
|
|
{
|
537 |
|
|
error_ret_free_internal:
|
538 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
539 |
|
|
free (internal_relocs);
|
540 |
|
|
goto error_ret_free_local;
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
stub_entry->target_value = sym_value;
|
545 |
|
|
stub_entry->target_section = sym_sec;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
/* We're done with the internal relocs, free them. */
|
549 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
550 |
|
|
free (internal_relocs);
|
551 |
|
|
}
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
if (add_stub_section)
|
555 |
|
|
{
|
556 |
|
|
/* OK, we've added some stubs. Find out the new size of the
|
557 |
|
|
stub sections. */
|
558 |
|
|
for (stub_sec = htab->stub_bfd->sections;
|
559 |
|
|
stub_sec != NULL;
|
560 |
|
|
stub_sec = stub_sec->next)
|
561 |
|
|
{
|
562 |
|
|
stub_sec->size = 0;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
|
566 |
|
|
}
|
567 |
|
|
free (all_local_syms);
|
568 |
|
|
return TRUE;
|
569 |
|
|
|
570 |
|
|
error_ret_free_local:
|
571 |
|
|
free (all_local_syms);
|
572 |
|
|
return FALSE;
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* Export the trampoline addresses in the symbol table. */
|
576 |
|
|
static bfd_boolean
|
577 |
|
|
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
|
578 |
|
|
{
|
579 |
|
|
struct bfd_link_info *info;
|
580 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
581 |
|
|
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
582 |
|
|
char* name;
|
583 |
|
|
bfd_boolean result;
|
584 |
|
|
|
585 |
|
|
info = (struct bfd_link_info *) in_arg;
|
586 |
|
|
htab = m68hc11_elf_hash_table (info);
|
587 |
|
|
if (htab == NULL)
|
588 |
|
|
return FALSE;
|
589 |
|
|
|
590 |
|
|
/* Massage our args to the form they really have. */
|
591 |
|
|
stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
|
592 |
|
|
|
593 |
|
|
/* Generate the trampoline according to HC11 or HC12. */
|
594 |
|
|
result = (* htab->build_one_stub) (gen_entry, in_arg);
|
595 |
|
|
|
596 |
|
|
/* Make a printable name that does not conflict with the real function. */
|
597 |
|
|
name = alloca (strlen (stub_entry->root.string) + 16);
|
598 |
|
|
sprintf (name, "tramp.%s", stub_entry->root.string);
|
599 |
|
|
|
600 |
|
|
/* Export the symbol for debugging/disassembling. */
|
601 |
|
|
m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
|
602 |
|
|
stub_entry->stub_offset,
|
603 |
|
|
stub_entry->stub_sec);
|
604 |
|
|
return result;
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Export a symbol or set its value and section. */
|
608 |
|
|
static void
|
609 |
|
|
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
|
610 |
|
|
const char *name, bfd_vma value, asection *sec)
|
611 |
|
|
{
|
612 |
|
|
struct elf_link_hash_entry *h;
|
613 |
|
|
|
614 |
|
|
h = (struct elf_link_hash_entry *)
|
615 |
|
|
bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
|
616 |
|
|
if (h == NULL)
|
617 |
|
|
{
|
618 |
|
|
_bfd_generic_link_add_one_symbol (info, abfd,
|
619 |
|
|
name,
|
620 |
|
|
BSF_GLOBAL,
|
621 |
|
|
sec,
|
622 |
|
|
value,
|
623 |
|
|
(const char*) NULL,
|
624 |
|
|
TRUE, FALSE, NULL);
|
625 |
|
|
}
|
626 |
|
|
else
|
627 |
|
|
{
|
628 |
|
|
h->root.type = bfd_link_hash_defined;
|
629 |
|
|
h->root.u.def.value = value;
|
630 |
|
|
h->root.u.def.section = sec;
|
631 |
|
|
}
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
|
635 |
|
|
/* Build all the stubs associated with the current output file. The
|
636 |
|
|
stubs are kept in a hash table attached to the main linker hash
|
637 |
|
|
table. This function is called via m68hc12elf_finish in the
|
638 |
|
|
linker. */
|
639 |
|
|
|
640 |
|
|
bfd_boolean
|
641 |
|
|
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
|
642 |
|
|
{
|
643 |
|
|
asection *stub_sec;
|
644 |
|
|
struct bfd_hash_table *table;
|
645 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
646 |
|
|
struct m68hc11_scan_param param;
|
647 |
|
|
|
648 |
|
|
m68hc11_elf_get_bank_parameters (info);
|
649 |
|
|
htab = m68hc11_elf_hash_table (info);
|
650 |
|
|
if (htab == NULL)
|
651 |
|
|
return FALSE;
|
652 |
|
|
|
653 |
|
|
for (stub_sec = htab->stub_bfd->sections;
|
654 |
|
|
stub_sec != NULL;
|
655 |
|
|
stub_sec = stub_sec->next)
|
656 |
|
|
{
|
657 |
|
|
bfd_size_type size;
|
658 |
|
|
|
659 |
|
|
/* Allocate memory to hold the linker stubs. */
|
660 |
|
|
size = stub_sec->size;
|
661 |
|
|
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
|
662 |
|
|
if (stub_sec->contents == NULL && size != 0)
|
663 |
|
|
return FALSE;
|
664 |
|
|
stub_sec->size = 0;
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/* Build the stubs as directed by the stub hash table. */
|
668 |
|
|
table = htab->stub_hash_table;
|
669 |
|
|
bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
|
670 |
|
|
|
671 |
|
|
/* Scan the output sections to see if we use the memory banks.
|
672 |
|
|
If so, export the symbols that define how the memory banks
|
673 |
|
|
are mapped. This is used by gdb and the simulator to obtain
|
674 |
|
|
the information. It can be used by programs to burn the eprom
|
675 |
|
|
at the good addresses. */
|
676 |
|
|
param.use_memory_banks = FALSE;
|
677 |
|
|
param.pinfo = &htab->pinfo;
|
678 |
|
|
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
679 |
|
|
if (param.use_memory_banks)
|
680 |
|
|
{
|
681 |
|
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
|
682 |
|
|
htab->pinfo.bank_physical,
|
683 |
|
|
bfd_abs_section_ptr);
|
684 |
|
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
685 |
|
|
htab->pinfo.bank_virtual,
|
686 |
|
|
bfd_abs_section_ptr);
|
687 |
|
|
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
|
688 |
|
|
htab->pinfo.bank_size,
|
689 |
|
|
bfd_abs_section_ptr);
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
return TRUE;
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
void
|
696 |
|
|
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
|
697 |
|
|
{
|
698 |
|
|
unsigned i;
|
699 |
|
|
struct m68hc11_page_info *pinfo;
|
700 |
|
|
struct bfd_link_hash_entry *h;
|
701 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
702 |
|
|
|
703 |
|
|
htab = m68hc11_elf_hash_table (info);
|
704 |
|
|
if (htab == NULL)
|
705 |
|
|
return;
|
706 |
|
|
|
707 |
|
|
pinfo = & htab->pinfo;
|
708 |
|
|
if (pinfo->bank_param_initialized)
|
709 |
|
|
return;
|
710 |
|
|
|
711 |
|
|
pinfo->bank_virtual = M68HC12_BANK_VIRT;
|
712 |
|
|
pinfo->bank_mask = M68HC12_BANK_MASK;
|
713 |
|
|
pinfo->bank_physical = M68HC12_BANK_BASE;
|
714 |
|
|
pinfo->bank_shift = M68HC12_BANK_SHIFT;
|
715 |
|
|
pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
|
716 |
|
|
|
717 |
|
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
|
718 |
|
|
FALSE, FALSE, TRUE);
|
719 |
|
|
if (h != (struct bfd_link_hash_entry*) NULL
|
720 |
|
|
&& h->type == bfd_link_hash_defined)
|
721 |
|
|
pinfo->bank_physical = (h->u.def.value
|
722 |
|
|
+ h->u.def.section->output_section->vma
|
723 |
|
|
+ h->u.def.section->output_offset);
|
724 |
|
|
|
725 |
|
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
726 |
|
|
FALSE, FALSE, TRUE);
|
727 |
|
|
if (h != (struct bfd_link_hash_entry*) NULL
|
728 |
|
|
&& h->type == bfd_link_hash_defined)
|
729 |
|
|
pinfo->bank_virtual = (h->u.def.value
|
730 |
|
|
+ h->u.def.section->output_section->vma
|
731 |
|
|
+ h->u.def.section->output_offset);
|
732 |
|
|
|
733 |
|
|
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
|
734 |
|
|
FALSE, FALSE, TRUE);
|
735 |
|
|
if (h != (struct bfd_link_hash_entry*) NULL
|
736 |
|
|
&& h->type == bfd_link_hash_defined)
|
737 |
|
|
pinfo->bank_size = (h->u.def.value
|
738 |
|
|
+ h->u.def.section->output_section->vma
|
739 |
|
|
+ h->u.def.section->output_offset);
|
740 |
|
|
|
741 |
|
|
pinfo->bank_shift = 0;
|
742 |
|
|
for (i = pinfo->bank_size; i != 0; i >>= 1)
|
743 |
|
|
pinfo->bank_shift++;
|
744 |
|
|
pinfo->bank_shift--;
|
745 |
|
|
pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
|
746 |
|
|
pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
|
747 |
|
|
pinfo->bank_param_initialized = 1;
|
748 |
|
|
|
749 |
|
|
h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
|
750 |
|
|
FALSE, TRUE);
|
751 |
|
|
if (h != (struct bfd_link_hash_entry*) NULL
|
752 |
|
|
&& h->type == bfd_link_hash_defined)
|
753 |
|
|
pinfo->trampoline_addr = (h->u.def.value
|
754 |
|
|
+ h->u.def.section->output_section->vma
|
755 |
|
|
+ h->u.def.section->output_offset);
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* Return 1 if the address is in banked memory.
|
759 |
|
|
This can be applied to a virtual address and to a physical address. */
|
760 |
|
|
int
|
761 |
|
|
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
762 |
|
|
{
|
763 |
|
|
if (addr >= pinfo->bank_virtual)
|
764 |
|
|
return 1;
|
765 |
|
|
|
766 |
|
|
if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
|
767 |
|
|
return 1;
|
768 |
|
|
|
769 |
|
|
return 0;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Return the physical address seen by the processor, taking
|
773 |
|
|
into account banked memory. */
|
774 |
|
|
bfd_vma
|
775 |
|
|
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
776 |
|
|
{
|
777 |
|
|
if (addr < pinfo->bank_virtual)
|
778 |
|
|
return addr;
|
779 |
|
|
|
780 |
|
|
/* Map the address to the memory bank. */
|
781 |
|
|
addr -= pinfo->bank_virtual;
|
782 |
|
|
addr &= pinfo->bank_mask;
|
783 |
|
|
addr += pinfo->bank_physical;
|
784 |
|
|
return addr;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Return the page number corresponding to an address in banked memory. */
|
788 |
|
|
bfd_vma
|
789 |
|
|
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
790 |
|
|
{
|
791 |
|
|
if (addr < pinfo->bank_virtual)
|
792 |
|
|
return 0;
|
793 |
|
|
|
794 |
|
|
/* Map the address to the memory bank. */
|
795 |
|
|
addr -= pinfo->bank_virtual;
|
796 |
|
|
addr >>= pinfo->bank_shift;
|
797 |
|
|
addr &= 0x0ff;
|
798 |
|
|
return addr;
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
/* This function is used for relocs which are only used for relaxing,
|
802 |
|
|
which the linker should otherwise ignore. */
|
803 |
|
|
|
804 |
|
|
bfd_reloc_status_type
|
805 |
|
|
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
806 |
|
|
arelent *reloc_entry,
|
807 |
|
|
asymbol *symbol ATTRIBUTE_UNUSED,
|
808 |
|
|
void *data ATTRIBUTE_UNUSED,
|
809 |
|
|
asection *input_section,
|
810 |
|
|
bfd *output_bfd,
|
811 |
|
|
char **error_message ATTRIBUTE_UNUSED)
|
812 |
|
|
{
|
813 |
|
|
if (output_bfd != NULL)
|
814 |
|
|
reloc_entry->address += input_section->output_offset;
|
815 |
|
|
return bfd_reloc_ok;
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
bfd_reloc_status_type
|
819 |
|
|
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
820 |
|
|
arelent *reloc_entry,
|
821 |
|
|
asymbol *symbol,
|
822 |
|
|
void *data ATTRIBUTE_UNUSED,
|
823 |
|
|
asection *input_section,
|
824 |
|
|
bfd *output_bfd,
|
825 |
|
|
char **error_message ATTRIBUTE_UNUSED)
|
826 |
|
|
{
|
827 |
|
|
if (output_bfd != (bfd *) NULL
|
828 |
|
|
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
829 |
|
|
&& (! reloc_entry->howto->partial_inplace
|
830 |
|
|
|| reloc_entry->addend == 0))
|
831 |
|
|
{
|
832 |
|
|
reloc_entry->address += input_section->output_offset;
|
833 |
|
|
return bfd_reloc_ok;
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
if (output_bfd != NULL)
|
837 |
|
|
return bfd_reloc_continue;
|
838 |
|
|
|
839 |
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
840 |
|
|
return bfd_reloc_outofrange;
|
841 |
|
|
|
842 |
|
|
abort();
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Look through the relocs for a section during the first phase.
|
846 |
|
|
Since we don't do .gots or .plts, we just need to consider the
|
847 |
|
|
virtual table relocs for gc. */
|
848 |
|
|
|
849 |
|
|
bfd_boolean
|
850 |
|
|
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
851 |
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
852 |
|
|
{
|
853 |
|
|
Elf_Internal_Shdr * symtab_hdr;
|
854 |
|
|
struct elf_link_hash_entry ** sym_hashes;
|
855 |
|
|
const Elf_Internal_Rela * rel;
|
856 |
|
|
const Elf_Internal_Rela * rel_end;
|
857 |
|
|
|
858 |
|
|
if (info->relocatable)
|
859 |
|
|
return TRUE;
|
860 |
|
|
|
861 |
|
|
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
|
862 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
863 |
|
|
rel_end = relocs + sec->reloc_count;
|
864 |
|
|
|
865 |
|
|
for (rel = relocs; rel < rel_end; rel++)
|
866 |
|
|
{
|
867 |
|
|
struct elf_link_hash_entry * h;
|
868 |
|
|
unsigned long r_symndx;
|
869 |
|
|
|
870 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
871 |
|
|
|
872 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
873 |
|
|
h = NULL;
|
874 |
|
|
else
|
875 |
|
|
{
|
876 |
|
|
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
|
877 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
878 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
879 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
883 |
|
|
{
|
884 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
885 |
|
|
Reconstruct it for later use during GC. */
|
886 |
|
|
case R_M68HC11_GNU_VTINHERIT:
|
887 |
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
888 |
|
|
return FALSE;
|
889 |
|
|
break;
|
890 |
|
|
|
891 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
892 |
|
|
used. Record for later use during GC. */
|
893 |
|
|
case R_M68HC11_GNU_VTENTRY:
|
894 |
|
|
BFD_ASSERT (h != NULL);
|
895 |
|
|
if (h != NULL
|
896 |
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
897 |
|
|
return FALSE;
|
898 |
|
|
break;
|
899 |
|
|
}
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
return TRUE;
|
903 |
|
|
}
|
904 |
|
|
|
905 |
|
|
/* Relocate a 68hc11/68hc12 ELF section. */
|
906 |
|
|
bfd_boolean
|
907 |
|
|
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
908 |
|
|
struct bfd_link_info *info,
|
909 |
|
|
bfd *input_bfd, asection *input_section,
|
910 |
|
|
bfd_byte *contents, Elf_Internal_Rela *relocs,
|
911 |
|
|
Elf_Internal_Sym *local_syms,
|
912 |
|
|
asection **local_sections)
|
913 |
|
|
{
|
914 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
915 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
916 |
|
|
Elf_Internal_Rela *rel, *relend;
|
917 |
|
|
const char *name = NULL;
|
918 |
|
|
struct m68hc11_page_info *pinfo;
|
919 |
|
|
const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
|
920 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
921 |
|
|
|
922 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
923 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
924 |
|
|
|
925 |
|
|
htab = m68hc11_elf_hash_table (info);
|
926 |
|
|
if (htab == NULL)
|
927 |
|
|
return FALSE;
|
928 |
|
|
|
929 |
|
|
/* Get memory bank parameters. */
|
930 |
|
|
m68hc11_elf_get_bank_parameters (info);
|
931 |
|
|
|
932 |
|
|
pinfo = & htab->pinfo;
|
933 |
|
|
rel = relocs;
|
934 |
|
|
relend = relocs + input_section->reloc_count;
|
935 |
|
|
|
936 |
|
|
for (; rel < relend; rel++)
|
937 |
|
|
{
|
938 |
|
|
int r_type;
|
939 |
|
|
arelent arel;
|
940 |
|
|
reloc_howto_type *howto;
|
941 |
|
|
unsigned long r_symndx;
|
942 |
|
|
Elf_Internal_Sym *sym;
|
943 |
|
|
asection *sec;
|
944 |
|
|
bfd_vma relocation = 0;
|
945 |
|
|
bfd_reloc_status_type r = bfd_reloc_undefined;
|
946 |
|
|
bfd_vma phys_page;
|
947 |
|
|
bfd_vma phys_addr;
|
948 |
|
|
bfd_vma insn_addr;
|
949 |
|
|
bfd_vma insn_page;
|
950 |
|
|
bfd_boolean is_far = FALSE;
|
951 |
|
|
struct elf_link_hash_entry *h;
|
952 |
|
|
|
953 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
954 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
955 |
|
|
|
956 |
|
|
if (r_type == R_M68HC11_GNU_VTENTRY
|
957 |
|
|
|| r_type == R_M68HC11_GNU_VTINHERIT )
|
958 |
|
|
continue;
|
959 |
|
|
|
960 |
|
|
(*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
|
961 |
|
|
howto = arel.howto;
|
962 |
|
|
|
963 |
|
|
h = NULL;
|
964 |
|
|
sym = NULL;
|
965 |
|
|
sec = NULL;
|
966 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
967 |
|
|
{
|
968 |
|
|
sym = local_syms + r_symndx;
|
969 |
|
|
sec = local_sections[r_symndx];
|
970 |
|
|
relocation = (sec->output_section->vma
|
971 |
|
|
+ sec->output_offset
|
972 |
|
|
+ sym->st_value);
|
973 |
|
|
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
974 |
|
|
}
|
975 |
|
|
else
|
976 |
|
|
{
|
977 |
|
|
bfd_boolean unresolved_reloc, warned;
|
978 |
|
|
|
979 |
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
980 |
|
|
r_symndx, symtab_hdr, sym_hashes,
|
981 |
|
|
h, sec, relocation, unresolved_reloc,
|
982 |
|
|
warned);
|
983 |
|
|
|
984 |
|
|
is_far = (h && (h->other & STO_M68HC12_FAR));
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
if (sec != NULL && elf_discarded_section (sec))
|
988 |
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
989 |
|
|
rel, relend, howto, contents);
|
990 |
|
|
|
991 |
|
|
if (info->relocatable)
|
992 |
|
|
{
|
993 |
|
|
/* This is a relocatable link. We don't have to change
|
994 |
|
|
anything, unless the reloc is against a section symbol,
|
995 |
|
|
in which case we have to adjust according to where the
|
996 |
|
|
section symbol winds up in the output section. */
|
997 |
|
|
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
998 |
|
|
rel->r_addend += sec->output_offset;
|
999 |
|
|
continue;
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
if (h != NULL)
|
1003 |
|
|
name = h->root.root.string;
|
1004 |
|
|
else
|
1005 |
|
|
{
|
1006 |
|
|
name = (bfd_elf_string_from_elf_section
|
1007 |
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
1008 |
|
|
if (name == NULL || *name == '\0')
|
1009 |
|
|
name = bfd_section_name (input_bfd, sec);
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
|
1013 |
|
|
{
|
1014 |
|
|
struct elf32_m68hc11_stub_hash_entry* stub;
|
1015 |
|
|
|
1016 |
|
|
stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
|
1017 |
|
|
name, FALSE, FALSE);
|
1018 |
|
|
if (stub)
|
1019 |
|
|
{
|
1020 |
|
|
relocation = stub->stub_offset
|
1021 |
|
|
+ stub->stub_sec->output_section->vma
|
1022 |
|
|
+ stub->stub_sec->output_offset;
|
1023 |
|
|
is_far = FALSE;
|
1024 |
|
|
}
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* Do the memory bank mapping. */
|
1028 |
|
|
phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
|
1029 |
|
|
phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
|
1030 |
|
|
switch (r_type)
|
1031 |
|
|
{
|
1032 |
|
|
case R_M68HC11_24:
|
1033 |
|
|
/* Reloc used by 68HC12 call instruction. */
|
1034 |
|
|
bfd_put_16 (input_bfd, phys_addr,
|
1035 |
|
|
(bfd_byte*) contents + rel->r_offset);
|
1036 |
|
|
bfd_put_8 (input_bfd, phys_page,
|
1037 |
|
|
(bfd_byte*) contents + rel->r_offset + 2);
|
1038 |
|
|
r = bfd_reloc_ok;
|
1039 |
|
|
r_type = R_M68HC11_NONE;
|
1040 |
|
|
break;
|
1041 |
|
|
|
1042 |
|
|
case R_M68HC11_NONE:
|
1043 |
|
|
r = bfd_reloc_ok;
|
1044 |
|
|
break;
|
1045 |
|
|
|
1046 |
|
|
case R_M68HC11_LO16:
|
1047 |
|
|
/* Reloc generated by %addr(expr) gas to obtain the
|
1048 |
|
|
address as mapped in the memory bank window. */
|
1049 |
|
|
relocation = phys_addr;
|
1050 |
|
|
break;
|
1051 |
|
|
|
1052 |
|
|
case R_M68HC11_PAGE:
|
1053 |
|
|
/* Reloc generated by %page(expr) gas to obtain the
|
1054 |
|
|
page number associated with the address. */
|
1055 |
|
|
relocation = phys_page;
|
1056 |
|
|
break;
|
1057 |
|
|
|
1058 |
|
|
case R_M68HC11_16:
|
1059 |
|
|
/* Get virtual address of instruction having the relocation. */
|
1060 |
|
|
if (is_far)
|
1061 |
|
|
{
|
1062 |
|
|
const char* msg;
|
1063 |
|
|
char* buf;
|
1064 |
|
|
msg = _("Reference to the far symbol `%s' using a wrong "
|
1065 |
|
|
"relocation may result in incorrect execution");
|
1066 |
|
|
buf = alloca (strlen (msg) + strlen (name) + 10);
|
1067 |
|
|
sprintf (buf, msg, name);
|
1068 |
|
|
|
1069 |
|
|
(* info->callbacks->warning)
|
1070 |
|
|
(info, buf, name, input_bfd, NULL, rel->r_offset);
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Get virtual address of instruction having the relocation. */
|
1074 |
|
|
insn_addr = input_section->output_section->vma
|
1075 |
|
|
+ input_section->output_offset
|
1076 |
|
|
+ rel->r_offset;
|
1077 |
|
|
|
1078 |
|
|
insn_page = m68hc11_phys_page (pinfo, insn_addr);
|
1079 |
|
|
|
1080 |
|
|
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
|
1081 |
|
|
&& m68hc11_addr_is_banked (pinfo, insn_addr)
|
1082 |
|
|
&& phys_page != insn_page)
|
1083 |
|
|
{
|
1084 |
|
|
const char* msg;
|
1085 |
|
|
char* buf;
|
1086 |
|
|
|
1087 |
|
|
msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
|
1088 |
|
|
"as current banked address [%lx:%04lx] (%lx)");
|
1089 |
|
|
|
1090 |
|
|
buf = alloca (strlen (msg) + 128);
|
1091 |
|
|
sprintf (buf, msg, phys_page, phys_addr,
|
1092 |
|
|
(long) (relocation + rel->r_addend),
|
1093 |
|
|
insn_page, m68hc11_phys_addr (pinfo, insn_addr),
|
1094 |
|
|
(long) (insn_addr));
|
1095 |
|
|
if (!((*info->callbacks->warning)
|
1096 |
|
|
(info, buf, name, input_bfd, input_section,
|
1097 |
|
|
rel->r_offset)))
|
1098 |
|
|
return FALSE;
|
1099 |
|
|
break;
|
1100 |
|
|
}
|
1101 |
|
|
if (phys_page != 0 && insn_page == 0)
|
1102 |
|
|
{
|
1103 |
|
|
const char* msg;
|
1104 |
|
|
char* buf;
|
1105 |
|
|
|
1106 |
|
|
msg = _("reference to a banked address [%lx:%04lx] in the "
|
1107 |
|
|
"normal address space at %04lx");
|
1108 |
|
|
|
1109 |
|
|
buf = alloca (strlen (msg) + 128);
|
1110 |
|
|
sprintf (buf, msg, phys_page, phys_addr, insn_addr);
|
1111 |
|
|
if (!((*info->callbacks->warning)
|
1112 |
|
|
(info, buf, name, input_bfd, input_section,
|
1113 |
|
|
insn_addr)))
|
1114 |
|
|
return FALSE;
|
1115 |
|
|
|
1116 |
|
|
relocation = phys_addr;
|
1117 |
|
|
break;
|
1118 |
|
|
}
|
1119 |
|
|
|
1120 |
|
|
/* If this is a banked address use the phys_addr so that
|
1121 |
|
|
we stay in the banked window. */
|
1122 |
|
|
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
|
1123 |
|
|
relocation = phys_addr;
|
1124 |
|
|
break;
|
1125 |
|
|
}
|
1126 |
|
|
if (r_type != R_M68HC11_NONE)
|
1127 |
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
1128 |
|
|
contents, rel->r_offset,
|
1129 |
|
|
relocation, rel->r_addend);
|
1130 |
|
|
|
1131 |
|
|
if (r != bfd_reloc_ok)
|
1132 |
|
|
{
|
1133 |
|
|
const char * msg = (const char *) 0;
|
1134 |
|
|
|
1135 |
|
|
switch (r)
|
1136 |
|
|
{
|
1137 |
|
|
case bfd_reloc_overflow:
|
1138 |
|
|
if (!((*info->callbacks->reloc_overflow)
|
1139 |
|
|
(info, NULL, name, howto->name, (bfd_vma) 0,
|
1140 |
|
|
input_bfd, input_section, rel->r_offset)))
|
1141 |
|
|
return FALSE;
|
1142 |
|
|
break;
|
1143 |
|
|
|
1144 |
|
|
case bfd_reloc_undefined:
|
1145 |
|
|
if (!((*info->callbacks->undefined_symbol)
|
1146 |
|
|
(info, name, input_bfd, input_section,
|
1147 |
|
|
rel->r_offset, TRUE)))
|
1148 |
|
|
return FALSE;
|
1149 |
|
|
break;
|
1150 |
|
|
|
1151 |
|
|
case bfd_reloc_outofrange:
|
1152 |
|
|
msg = _ ("internal error: out of range error");
|
1153 |
|
|
goto common_error;
|
1154 |
|
|
|
1155 |
|
|
case bfd_reloc_notsupported:
|
1156 |
|
|
msg = _ ("internal error: unsupported relocation error");
|
1157 |
|
|
goto common_error;
|
1158 |
|
|
|
1159 |
|
|
case bfd_reloc_dangerous:
|
1160 |
|
|
msg = _ ("internal error: dangerous error");
|
1161 |
|
|
goto common_error;
|
1162 |
|
|
|
1163 |
|
|
default:
|
1164 |
|
|
msg = _ ("internal error: unknown error");
|
1165 |
|
|
/* fall through */
|
1166 |
|
|
|
1167 |
|
|
common_error:
|
1168 |
|
|
if (!((*info->callbacks->warning)
|
1169 |
|
|
(info, msg, name, input_bfd, input_section,
|
1170 |
|
|
rel->r_offset)))
|
1171 |
|
|
return FALSE;
|
1172 |
|
|
break;
|
1173 |
|
|
}
|
1174 |
|
|
}
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
return TRUE;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
|
1181 |
|
|
|
1182 |
|
|
/* Set and control ELF flags in ELF header. */
|
1183 |
|
|
|
1184 |
|
|
bfd_boolean
|
1185 |
|
|
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
|
1186 |
|
|
{
|
1187 |
|
|
BFD_ASSERT (!elf_flags_init (abfd)
|
1188 |
|
|
|| elf_elfheader (abfd)->e_flags == flags);
|
1189 |
|
|
|
1190 |
|
|
elf_elfheader (abfd)->e_flags = flags;
|
1191 |
|
|
elf_flags_init (abfd) = TRUE;
|
1192 |
|
|
return TRUE;
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
/* Merge backend specific data from an object file to the output
|
1196 |
|
|
object file when linking. */
|
1197 |
|
|
|
1198 |
|
|
bfd_boolean
|
1199 |
|
|
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
1200 |
|
|
{
|
1201 |
|
|
flagword old_flags;
|
1202 |
|
|
flagword new_flags;
|
1203 |
|
|
bfd_boolean ok = TRUE;
|
1204 |
|
|
|
1205 |
|
|
/* Check if we have the same endianness */
|
1206 |
|
|
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
|
1207 |
|
|
return FALSE;
|
1208 |
|
|
|
1209 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
1210 |
|
|
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
1211 |
|
|
return TRUE;
|
1212 |
|
|
|
1213 |
|
|
new_flags = elf_elfheader (ibfd)->e_flags;
|
1214 |
|
|
elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
|
1215 |
|
|
old_flags = elf_elfheader (obfd)->e_flags;
|
1216 |
|
|
|
1217 |
|
|
if (! elf_flags_init (obfd))
|
1218 |
|
|
{
|
1219 |
|
|
elf_flags_init (obfd) = TRUE;
|
1220 |
|
|
elf_elfheader (obfd)->e_flags = new_flags;
|
1221 |
|
|
elf_elfheader (obfd)->e_ident[EI_CLASS]
|
1222 |
|
|
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
|
1223 |
|
|
|
1224 |
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
1225 |
|
|
&& bfd_get_arch_info (obfd)->the_default)
|
1226 |
|
|
{
|
1227 |
|
|
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
1228 |
|
|
bfd_get_mach (ibfd)))
|
1229 |
|
|
return FALSE;
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
return TRUE;
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
/* Check ABI compatibility. */
|
1236 |
|
|
if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
|
1237 |
|
|
{
|
1238 |
|
|
(*_bfd_error_handler)
|
1239 |
|
|
(_("%B: linking files compiled for 16-bit integers (-mshort) "
|
1240 |
|
|
"and others for 32-bit integers"), ibfd);
|
1241 |
|
|
ok = FALSE;
|
1242 |
|
|
}
|
1243 |
|
|
if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
|
1244 |
|
|
{
|
1245 |
|
|
(*_bfd_error_handler)
|
1246 |
|
|
(_("%B: linking files compiled for 32-bit double (-fshort-double) "
|
1247 |
|
|
"and others for 64-bit double"), ibfd);
|
1248 |
|
|
ok = FALSE;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* Processor compatibility. */
|
1252 |
|
|
if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
|
1253 |
|
|
{
|
1254 |
|
|
(*_bfd_error_handler)
|
1255 |
|
|
(_("%B: linking files compiled for HCS12 with "
|
1256 |
|
|
"others compiled for HC12"), ibfd);
|
1257 |
|
|
ok = FALSE;
|
1258 |
|
|
}
|
1259 |
|
|
new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
|
1260 |
|
|
| (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
|
1261 |
|
|
|
1262 |
|
|
elf_elfheader (obfd)->e_flags = new_flags;
|
1263 |
|
|
|
1264 |
|
|
new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
1265 |
|
|
old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
1266 |
|
|
|
1267 |
|
|
/* Warn about any other mismatches */
|
1268 |
|
|
if (new_flags != old_flags)
|
1269 |
|
|
{
|
1270 |
|
|
(*_bfd_error_handler)
|
1271 |
|
|
(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
|
1272 |
|
|
ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
|
1273 |
|
|
ok = FALSE;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
if (! ok)
|
1277 |
|
|
{
|
1278 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1279 |
|
|
return FALSE;
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
return TRUE;
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
bfd_boolean
|
1286 |
|
|
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
|
1287 |
|
|
{
|
1288 |
|
|
FILE *file = (FILE *) ptr;
|
1289 |
|
|
|
1290 |
|
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
1291 |
|
|
|
1292 |
|
|
/* Print normal ELF private data. */
|
1293 |
|
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
1294 |
|
|
|
1295 |
|
|
/* xgettext:c-format */
|
1296 |
|
|
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
1297 |
|
|
|
1298 |
|
|
if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
|
1299 |
|
|
fprintf (file, _("[abi=32-bit int, "));
|
1300 |
|
|
else
|
1301 |
|
|
fprintf (file, _("[abi=16-bit int, "));
|
1302 |
|
|
|
1303 |
|
|
if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
|
1304 |
|
|
fprintf (file, _("64-bit double, "));
|
1305 |
|
|
else
|
1306 |
|
|
fprintf (file, _("32-bit double, "));
|
1307 |
|
|
|
1308 |
|
|
if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
|
1309 |
|
|
fprintf (file, _("cpu=HC11]"));
|
1310 |
|
|
else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
|
1311 |
|
|
fprintf (file, _("cpu=HCS12]"));
|
1312 |
|
|
else
|
1313 |
|
|
fprintf (file, _("cpu=HC12]"));
|
1314 |
|
|
|
1315 |
|
|
if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
|
1316 |
|
|
fprintf (file, _(" [memory=bank-model]"));
|
1317 |
|
|
else
|
1318 |
|
|
fprintf (file, _(" [memory=flat]"));
|
1319 |
|
|
|
1320 |
|
|
fputc ('\n', file);
|
1321 |
|
|
|
1322 |
|
|
return TRUE;
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
|
1326 |
|
|
asection *asect, void *arg)
|
1327 |
|
|
{
|
1328 |
|
|
struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
|
1329 |
|
|
|
1330 |
|
|
if (asect->vma >= p->pinfo->bank_virtual)
|
1331 |
|
|
p->use_memory_banks = TRUE;
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
/* Tweak the OSABI field of the elf header. */
|
1335 |
|
|
|
1336 |
|
|
void
|
1337 |
|
|
elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
|
1338 |
|
|
{
|
1339 |
|
|
struct m68hc11_scan_param param;
|
1340 |
|
|
struct m68hc11_elf_link_hash_table *htab;
|
1341 |
|
|
|
1342 |
|
|
if (link_info == NULL)
|
1343 |
|
|
return;
|
1344 |
|
|
|
1345 |
|
|
htab = m68hc11_elf_hash_table (link_info);
|
1346 |
|
|
if (htab == NULL)
|
1347 |
|
|
return;
|
1348 |
|
|
|
1349 |
|
|
m68hc11_elf_get_bank_parameters (link_info);
|
1350 |
|
|
|
1351 |
|
|
param.use_memory_banks = FALSE;
|
1352 |
|
|
param.pinfo = & htab->pinfo;
|
1353 |
|
|
|
1354 |
|
|
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
1355 |
|
|
|
1356 |
|
|
if (param.use_memory_banks)
|
1357 |
|
|
{
|
1358 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
1359 |
|
|
|
1360 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
1361 |
|
|
i_ehdrp->e_flags |= E_M68HC12_BANKS;
|
1362 |
|
|
}
|
1363 |
|
|
}
|