1 |
14 |
khays |
/* Support for HPPA 64-bit ELF
|
2 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
3 |
|
|
2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
20 |
|
|
MA 02110-1301, USA. */
|
21 |
|
|
|
22 |
|
|
#include "alloca-conf.h"
|
23 |
|
|
#include "sysdep.h"
|
24 |
|
|
#include "bfd.h"
|
25 |
|
|
#include "libbfd.h"
|
26 |
|
|
#include "elf-bfd.h"
|
27 |
|
|
#include "elf/hppa.h"
|
28 |
|
|
#include "libhppa.h"
|
29 |
|
|
#include "elf64-hppa.h"
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
#define ARCH_SIZE 64
|
33 |
|
|
|
34 |
|
|
#define PLT_ENTRY_SIZE 0x10
|
35 |
|
|
#define DLT_ENTRY_SIZE 0x8
|
36 |
|
|
#define OPD_ENTRY_SIZE 0x20
|
37 |
|
|
|
38 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
|
39 |
|
|
|
40 |
|
|
/* The stub is supposed to load the target address and target's DP
|
41 |
|
|
value out of the PLT, then do an external branch to the target
|
42 |
|
|
address.
|
43 |
|
|
|
44 |
|
|
LDD PLTOFF(%r27),%r1
|
45 |
|
|
BVE (%r1)
|
46 |
|
|
LDD PLTOFF+8(%r27),%r27
|
47 |
|
|
|
48 |
|
|
Note that we must use the LDD with a 14 bit displacement, not the one
|
49 |
|
|
with a 5 bit displacement. */
|
50 |
|
|
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
51 |
|
|
0x53, 0x7b, 0x00, 0x00 };
|
52 |
|
|
|
53 |
|
|
struct elf64_hppa_link_hash_entry
|
54 |
|
|
{
|
55 |
|
|
struct elf_link_hash_entry eh;
|
56 |
|
|
|
57 |
|
|
/* Offsets for this symbol in various linker sections. */
|
58 |
|
|
bfd_vma dlt_offset;
|
59 |
|
|
bfd_vma plt_offset;
|
60 |
|
|
bfd_vma opd_offset;
|
61 |
|
|
bfd_vma stub_offset;
|
62 |
|
|
|
63 |
|
|
/* The index of the (possibly local) symbol in the input bfd and its
|
64 |
|
|
associated BFD. Needed so that we can have relocs against local
|
65 |
|
|
symbols in shared libraries. */
|
66 |
|
|
long sym_indx;
|
67 |
|
|
bfd *owner;
|
68 |
|
|
|
69 |
|
|
/* Dynamic symbols may need to have two different values. One for
|
70 |
|
|
the dynamic symbol table, one for the normal symbol table.
|
71 |
|
|
|
72 |
|
|
In such cases we store the symbol's real value and section
|
73 |
|
|
index here so we can restore the real value before we write
|
74 |
|
|
the normal symbol table. */
|
75 |
|
|
bfd_vma st_value;
|
76 |
|
|
int st_shndx;
|
77 |
|
|
|
78 |
|
|
/* Used to count non-got, non-plt relocations for delayed sizing
|
79 |
|
|
of relocation sections. */
|
80 |
|
|
struct elf64_hppa_dyn_reloc_entry
|
81 |
|
|
{
|
82 |
|
|
/* Next relocation in the chain. */
|
83 |
|
|
struct elf64_hppa_dyn_reloc_entry *next;
|
84 |
|
|
|
85 |
|
|
/* The type of the relocation. */
|
86 |
|
|
int type;
|
87 |
|
|
|
88 |
|
|
/* The input section of the relocation. */
|
89 |
|
|
asection *sec;
|
90 |
|
|
|
91 |
|
|
/* Number of relocs copied in this section. */
|
92 |
|
|
bfd_size_type count;
|
93 |
|
|
|
94 |
|
|
/* The index of the section symbol for the input section of
|
95 |
|
|
the relocation. Only needed when building shared libraries. */
|
96 |
|
|
int sec_symndx;
|
97 |
|
|
|
98 |
|
|
/* The offset within the input section of the relocation. */
|
99 |
|
|
bfd_vma offset;
|
100 |
|
|
|
101 |
|
|
/* The addend for the relocation. */
|
102 |
|
|
bfd_vma addend;
|
103 |
|
|
|
104 |
|
|
} *reloc_entries;
|
105 |
|
|
|
106 |
|
|
/* Nonzero if this symbol needs an entry in one of the linker
|
107 |
|
|
sections. */
|
108 |
|
|
unsigned want_dlt;
|
109 |
|
|
unsigned want_plt;
|
110 |
|
|
unsigned want_opd;
|
111 |
|
|
unsigned want_stub;
|
112 |
|
|
};
|
113 |
|
|
|
114 |
|
|
struct elf64_hppa_link_hash_table
|
115 |
|
|
{
|
116 |
|
|
struct elf_link_hash_table root;
|
117 |
|
|
|
118 |
|
|
/* Shortcuts to get to the various linker defined sections. */
|
119 |
|
|
asection *dlt_sec;
|
120 |
|
|
asection *dlt_rel_sec;
|
121 |
|
|
asection *plt_sec;
|
122 |
|
|
asection *plt_rel_sec;
|
123 |
|
|
asection *opd_sec;
|
124 |
|
|
asection *opd_rel_sec;
|
125 |
|
|
asection *other_rel_sec;
|
126 |
|
|
|
127 |
|
|
/* Offset of __gp within .plt section. When the PLT gets large we want
|
128 |
|
|
to slide __gp into the PLT section so that we can continue to use
|
129 |
|
|
single DP relative instructions to load values out of the PLT. */
|
130 |
|
|
bfd_vma gp_offset;
|
131 |
|
|
|
132 |
|
|
/* Note this is not strictly correct. We should create a stub section for
|
133 |
|
|
each input section with calls. The stub section should be placed before
|
134 |
|
|
the section with the call. */
|
135 |
|
|
asection *stub_sec;
|
136 |
|
|
|
137 |
|
|
bfd_vma text_segment_base;
|
138 |
|
|
bfd_vma data_segment_base;
|
139 |
|
|
|
140 |
|
|
/* We build tables to map from an input section back to its
|
141 |
|
|
symbol index. This is the BFD for which we currently have
|
142 |
|
|
a map. */
|
143 |
|
|
bfd *section_syms_bfd;
|
144 |
|
|
|
145 |
|
|
/* Array of symbol numbers for each input section attached to the
|
146 |
|
|
current BFD. */
|
147 |
|
|
int *section_syms;
|
148 |
|
|
};
|
149 |
|
|
|
150 |
|
|
#define hppa_link_hash_table(p) \
|
151 |
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
152 |
|
|
== HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
|
153 |
|
|
|
154 |
|
|
#define hppa_elf_hash_entry(ent) \
|
155 |
|
|
((struct elf64_hppa_link_hash_entry *)(ent))
|
156 |
|
|
|
157 |
|
|
#define eh_name(eh) \
|
158 |
|
|
(eh ? eh->root.root.string : "<undef>")
|
159 |
|
|
|
160 |
|
|
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
161 |
|
|
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
162 |
|
|
|
163 |
|
|
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
164 |
|
|
(bfd *abfd);
|
165 |
|
|
|
166 |
|
|
/* This must follow the definitions of the various derived linker
|
167 |
|
|
hash tables and shared functions. */
|
168 |
|
|
#include "elf-hppa.h"
|
169 |
|
|
|
170 |
|
|
static bfd_boolean elf64_hppa_object_p
|
171 |
|
|
(bfd *);
|
172 |
|
|
|
173 |
|
|
static void elf64_hppa_post_process_headers
|
174 |
|
|
(bfd *, struct bfd_link_info *);
|
175 |
|
|
|
176 |
|
|
static bfd_boolean elf64_hppa_create_dynamic_sections
|
177 |
|
|
(bfd *, struct bfd_link_info *);
|
178 |
|
|
|
179 |
|
|
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
|
180 |
|
|
(struct bfd_link_info *, struct elf_link_hash_entry *);
|
181 |
|
|
|
182 |
|
|
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
|
183 |
|
|
(struct elf_link_hash_entry *, void *);
|
184 |
|
|
|
185 |
|
|
static bfd_boolean elf64_hppa_size_dynamic_sections
|
186 |
|
|
(bfd *, struct bfd_link_info *);
|
187 |
|
|
|
188 |
|
|
static int elf64_hppa_link_output_symbol_hook
|
189 |
|
|
(struct bfd_link_info *, const char *, Elf_Internal_Sym *,
|
190 |
|
|
asection *, struct elf_link_hash_entry *);
|
191 |
|
|
|
192 |
|
|
static bfd_boolean elf64_hppa_finish_dynamic_symbol
|
193 |
|
|
(bfd *, struct bfd_link_info *,
|
194 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *);
|
195 |
|
|
|
196 |
|
|
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
|
197 |
|
|
(const Elf_Internal_Rela *);
|
198 |
|
|
|
199 |
|
|
static bfd_boolean elf64_hppa_finish_dynamic_sections
|
200 |
|
|
(bfd *, struct bfd_link_info *);
|
201 |
|
|
|
202 |
|
|
static bfd_boolean elf64_hppa_check_relocs
|
203 |
|
|
(bfd *, struct bfd_link_info *,
|
204 |
|
|
asection *, const Elf_Internal_Rela *);
|
205 |
|
|
|
206 |
|
|
static bfd_boolean elf64_hppa_dynamic_symbol_p
|
207 |
|
|
(struct elf_link_hash_entry *, struct bfd_link_info *);
|
208 |
|
|
|
209 |
|
|
static bfd_boolean elf64_hppa_mark_exported_functions
|
210 |
|
|
(struct elf_link_hash_entry *, void *);
|
211 |
|
|
|
212 |
|
|
static bfd_boolean elf64_hppa_finalize_opd
|
213 |
|
|
(struct elf_link_hash_entry *, void *);
|
214 |
|
|
|
215 |
|
|
static bfd_boolean elf64_hppa_finalize_dlt
|
216 |
|
|
(struct elf_link_hash_entry *, void *);
|
217 |
|
|
|
218 |
|
|
static bfd_boolean allocate_global_data_dlt
|
219 |
|
|
(struct elf_link_hash_entry *, void *);
|
220 |
|
|
|
221 |
|
|
static bfd_boolean allocate_global_data_plt
|
222 |
|
|
(struct elf_link_hash_entry *, void *);
|
223 |
|
|
|
224 |
|
|
static bfd_boolean allocate_global_data_stub
|
225 |
|
|
(struct elf_link_hash_entry *, void *);
|
226 |
|
|
|
227 |
|
|
static bfd_boolean allocate_global_data_opd
|
228 |
|
|
(struct elf_link_hash_entry *, void *);
|
229 |
|
|
|
230 |
|
|
static bfd_boolean get_reloc_section
|
231 |
|
|
(bfd *, struct elf64_hppa_link_hash_table *, asection *);
|
232 |
|
|
|
233 |
|
|
static bfd_boolean count_dyn_reloc
|
234 |
|
|
(bfd *, struct elf64_hppa_link_hash_entry *,
|
235 |
|
|
int, asection *, int, bfd_vma, bfd_vma);
|
236 |
|
|
|
237 |
|
|
static bfd_boolean allocate_dynrel_entries
|
238 |
|
|
(struct elf_link_hash_entry *, void *);
|
239 |
|
|
|
240 |
|
|
static bfd_boolean elf64_hppa_finalize_dynreloc
|
241 |
|
|
(struct elf_link_hash_entry *, void *);
|
242 |
|
|
|
243 |
|
|
static bfd_boolean get_opd
|
244 |
|
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
245 |
|
|
|
246 |
|
|
static bfd_boolean get_plt
|
247 |
|
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
248 |
|
|
|
249 |
|
|
static bfd_boolean get_dlt
|
250 |
|
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
251 |
|
|
|
252 |
|
|
static bfd_boolean get_stub
|
253 |
|
|
(bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
|
254 |
|
|
|
255 |
|
|
static int elf64_hppa_elf_get_symbol_type
|
256 |
|
|
(Elf_Internal_Sym *, int);
|
257 |
|
|
|
258 |
|
|
/* Initialize an entry in the link hash table. */
|
259 |
|
|
|
260 |
|
|
static struct bfd_hash_entry *
|
261 |
|
|
hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
|
262 |
|
|
struct bfd_hash_table *table,
|
263 |
|
|
const char *string)
|
264 |
|
|
{
|
265 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
266 |
|
|
subclass. */
|
267 |
|
|
if (entry == NULL)
|
268 |
|
|
{
|
269 |
|
|
entry = bfd_hash_allocate (table,
|
270 |
|
|
sizeof (struct elf64_hppa_link_hash_entry));
|
271 |
|
|
if (entry == NULL)
|
272 |
|
|
return entry;
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
/* Call the allocation method of the superclass. */
|
276 |
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
277 |
|
|
if (entry != NULL)
|
278 |
|
|
{
|
279 |
|
|
struct elf64_hppa_link_hash_entry *hh;
|
280 |
|
|
|
281 |
|
|
/* Initialize our local data. All zeros. */
|
282 |
|
|
hh = hppa_elf_hash_entry (entry);
|
283 |
|
|
memset (&hh->dlt_offset, 0,
|
284 |
|
|
(sizeof (struct elf64_hppa_link_hash_entry)
|
285 |
|
|
- offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
return entry;
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* Create the derived linker hash table. The PA64 ELF port uses this
|
292 |
|
|
derived hash table to keep information specific to the PA ElF
|
293 |
|
|
linker (without using static variables). */
|
294 |
|
|
|
295 |
|
|
static struct bfd_link_hash_table*
|
296 |
|
|
elf64_hppa_hash_table_create (bfd *abfd)
|
297 |
|
|
{
|
298 |
|
|
struct elf64_hppa_link_hash_table *htab;
|
299 |
|
|
bfd_size_type amt = sizeof (*htab);
|
300 |
|
|
|
301 |
|
|
htab = bfd_zalloc (abfd, amt);
|
302 |
|
|
if (htab == NULL)
|
303 |
|
|
return NULL;
|
304 |
|
|
|
305 |
|
|
if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
|
306 |
|
|
hppa64_link_hash_newfunc,
|
307 |
|
|
sizeof (struct elf64_hppa_link_hash_entry),
|
308 |
|
|
HPPA64_ELF_DATA))
|
309 |
|
|
{
|
310 |
|
|
bfd_release (abfd, htab);
|
311 |
|
|
return NULL;
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
htab->text_segment_base = (bfd_vma) -1;
|
315 |
|
|
htab->data_segment_base = (bfd_vma) -1;
|
316 |
|
|
|
317 |
|
|
return &htab->root.root;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
321 |
|
|
|
322 |
|
|
Additionally we set the default architecture and machine. */
|
323 |
|
|
static bfd_boolean
|
324 |
|
|
elf64_hppa_object_p (bfd *abfd)
|
325 |
|
|
{
|
326 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
327 |
|
|
unsigned int flags;
|
328 |
|
|
|
329 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
330 |
|
|
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
331 |
|
|
{
|
332 |
|
|
/* GCC on hppa-linux produces binaries with OSABI=Linux,
|
333 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
334 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
|
335 |
|
|
&& i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
336 |
|
|
return FALSE;
|
337 |
|
|
}
|
338 |
|
|
else
|
339 |
|
|
{
|
340 |
|
|
/* HPUX produces binaries with OSABI=HPUX,
|
341 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
342 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
|
343 |
|
|
&& i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
344 |
|
|
return FALSE;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
flags = i_ehdrp->e_flags;
|
348 |
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
349 |
|
|
{
|
350 |
|
|
case EFA_PARISC_1_0:
|
351 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
352 |
|
|
case EFA_PARISC_1_1:
|
353 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
354 |
|
|
case EFA_PARISC_2_0:
|
355 |
|
|
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
|
356 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
357 |
|
|
else
|
358 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
359 |
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
360 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
361 |
|
|
}
|
362 |
|
|
/* Don't be fussy. */
|
363 |
|
|
return TRUE;
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
/* Given section type (hdr->sh_type), return a boolean indicating
|
367 |
|
|
whether or not the section is an elf64-hppa specific section. */
|
368 |
|
|
static bfd_boolean
|
369 |
|
|
elf64_hppa_section_from_shdr (bfd *abfd,
|
370 |
|
|
Elf_Internal_Shdr *hdr,
|
371 |
|
|
const char *name,
|
372 |
|
|
int shindex)
|
373 |
|
|
{
|
374 |
|
|
switch (hdr->sh_type)
|
375 |
|
|
{
|
376 |
|
|
case SHT_PARISC_EXT:
|
377 |
|
|
if (strcmp (name, ".PARISC.archext") != 0)
|
378 |
|
|
return FALSE;
|
379 |
|
|
break;
|
380 |
|
|
case SHT_PARISC_UNWIND:
|
381 |
|
|
if (strcmp (name, ".PARISC.unwind") != 0)
|
382 |
|
|
return FALSE;
|
383 |
|
|
break;
|
384 |
|
|
case SHT_PARISC_DOC:
|
385 |
|
|
case SHT_PARISC_ANNOT:
|
386 |
|
|
default:
|
387 |
|
|
return FALSE;
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
391 |
|
|
return FALSE;
|
392 |
|
|
|
393 |
|
|
return TRUE;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/* SEC is a section containing relocs for an input BFD when linking; return
|
397 |
|
|
a suitable section for holding relocs in the output BFD for a link. */
|
398 |
|
|
|
399 |
|
|
static bfd_boolean
|
400 |
|
|
get_reloc_section (bfd *abfd,
|
401 |
|
|
struct elf64_hppa_link_hash_table *hppa_info,
|
402 |
|
|
asection *sec)
|
403 |
|
|
{
|
404 |
|
|
const char *srel_name;
|
405 |
|
|
asection *srel;
|
406 |
|
|
bfd *dynobj;
|
407 |
|
|
|
408 |
|
|
srel_name = (bfd_elf_string_from_elf_section
|
409 |
|
|
(abfd, elf_elfheader(abfd)->e_shstrndx,
|
410 |
|
|
_bfd_elf_single_rel_hdr(sec)->sh_name));
|
411 |
|
|
if (srel_name == NULL)
|
412 |
|
|
return FALSE;
|
413 |
|
|
|
414 |
|
|
dynobj = hppa_info->root.dynobj;
|
415 |
|
|
if (!dynobj)
|
416 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
417 |
|
|
|
418 |
|
|
srel = bfd_get_section_by_name (dynobj, srel_name);
|
419 |
|
|
if (srel == NULL)
|
420 |
|
|
{
|
421 |
|
|
srel = bfd_make_section_with_flags (dynobj, srel_name,
|
422 |
|
|
(SEC_ALLOC
|
423 |
|
|
| SEC_LOAD
|
424 |
|
|
| SEC_HAS_CONTENTS
|
425 |
|
|
| SEC_IN_MEMORY
|
426 |
|
|
| SEC_LINKER_CREATED
|
427 |
|
|
| SEC_READONLY));
|
428 |
|
|
if (srel == NULL
|
429 |
|
|
|| !bfd_set_section_alignment (dynobj, srel, 3))
|
430 |
|
|
return FALSE;
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
hppa_info->other_rel_sec = srel;
|
434 |
|
|
return TRUE;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
/* Add a new entry to the list of dynamic relocations against DYN_H.
|
438 |
|
|
|
439 |
|
|
We use this to keep a record of all the FPTR relocations against a
|
440 |
|
|
particular symbol so that we can create FPTR relocations in the
|
441 |
|
|
output file. */
|
442 |
|
|
|
443 |
|
|
static bfd_boolean
|
444 |
|
|
count_dyn_reloc (bfd *abfd,
|
445 |
|
|
struct elf64_hppa_link_hash_entry *hh,
|
446 |
|
|
int type,
|
447 |
|
|
asection *sec,
|
448 |
|
|
int sec_symndx,
|
449 |
|
|
bfd_vma offset,
|
450 |
|
|
bfd_vma addend)
|
451 |
|
|
{
|
452 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
453 |
|
|
|
454 |
|
|
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
455 |
|
|
bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
|
456 |
|
|
if (!rent)
|
457 |
|
|
return FALSE;
|
458 |
|
|
|
459 |
|
|
rent->next = hh->reloc_entries;
|
460 |
|
|
rent->type = type;
|
461 |
|
|
rent->sec = sec;
|
462 |
|
|
rent->sec_symndx = sec_symndx;
|
463 |
|
|
rent->offset = offset;
|
464 |
|
|
rent->addend = addend;
|
465 |
|
|
hh->reloc_entries = rent;
|
466 |
|
|
|
467 |
|
|
return TRUE;
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/* Return a pointer to the local DLT, PLT and OPD reference counts
|
471 |
|
|
for ABFD. Returns NULL if the storage allocation fails. */
|
472 |
|
|
|
473 |
|
|
static bfd_signed_vma *
|
474 |
|
|
hppa64_elf_local_refcounts (bfd *abfd)
|
475 |
|
|
{
|
476 |
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
477 |
|
|
bfd_signed_vma *local_refcounts;
|
478 |
|
|
|
479 |
|
|
local_refcounts = elf_local_got_refcounts (abfd);
|
480 |
|
|
if (local_refcounts == NULL)
|
481 |
|
|
{
|
482 |
|
|
bfd_size_type size;
|
483 |
|
|
|
484 |
|
|
/* Allocate space for local DLT, PLT and OPD reference
|
485 |
|
|
counts. Done this way to save polluting elf_obj_tdata
|
486 |
|
|
with another target specific pointer. */
|
487 |
|
|
size = symtab_hdr->sh_info;
|
488 |
|
|
size *= 3 * sizeof (bfd_signed_vma);
|
489 |
|
|
local_refcounts = bfd_zalloc (abfd, size);
|
490 |
|
|
elf_local_got_refcounts (abfd) = local_refcounts;
|
491 |
|
|
}
|
492 |
|
|
return local_refcounts;
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
/* Scan the RELOCS and record the type of dynamic entries that each
|
496 |
|
|
referenced symbol needs. */
|
497 |
|
|
|
498 |
|
|
static bfd_boolean
|
499 |
|
|
elf64_hppa_check_relocs (bfd *abfd,
|
500 |
|
|
struct bfd_link_info *info,
|
501 |
|
|
asection *sec,
|
502 |
|
|
const Elf_Internal_Rela *relocs)
|
503 |
|
|
{
|
504 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
505 |
|
|
const Elf_Internal_Rela *relend;
|
506 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
507 |
|
|
const Elf_Internal_Rela *rel;
|
508 |
|
|
unsigned int sec_symndx;
|
509 |
|
|
|
510 |
|
|
if (info->relocatable)
|
511 |
|
|
return TRUE;
|
512 |
|
|
|
513 |
|
|
/* If this is the first dynamic object found in the link, create
|
514 |
|
|
the special sections required for dynamic linking. */
|
515 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
516 |
|
|
{
|
517 |
|
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
518 |
|
|
return FALSE;
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
hppa_info = hppa_link_hash_table (info);
|
522 |
|
|
if (hppa_info == NULL)
|
523 |
|
|
return FALSE;
|
524 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
525 |
|
|
|
526 |
|
|
/* If necessary, build a new table holding section symbols indices
|
527 |
|
|
for this BFD. */
|
528 |
|
|
|
529 |
|
|
if (info->shared && hppa_info->section_syms_bfd != abfd)
|
530 |
|
|
{
|
531 |
|
|
unsigned long i;
|
532 |
|
|
unsigned int highest_shndx;
|
533 |
|
|
Elf_Internal_Sym *local_syms = NULL;
|
534 |
|
|
Elf_Internal_Sym *isym, *isymend;
|
535 |
|
|
bfd_size_type amt;
|
536 |
|
|
|
537 |
|
|
/* We're done with the old cache of section index to section symbol
|
538 |
|
|
index information. Free it.
|
539 |
|
|
|
540 |
|
|
?!? Note we leak the last section_syms array. Presumably we
|
541 |
|
|
could free it in one of the later routines in this file. */
|
542 |
|
|
if (hppa_info->section_syms)
|
543 |
|
|
free (hppa_info->section_syms);
|
544 |
|
|
|
545 |
|
|
/* Read this BFD's local symbols. */
|
546 |
|
|
if (symtab_hdr->sh_info != 0)
|
547 |
|
|
{
|
548 |
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
549 |
|
|
if (local_syms == NULL)
|
550 |
|
|
local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
551 |
|
|
symtab_hdr->sh_info, 0,
|
552 |
|
|
NULL, NULL, NULL);
|
553 |
|
|
if (local_syms == NULL)
|
554 |
|
|
return FALSE;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/* Record the highest section index referenced by the local symbols. */
|
558 |
|
|
highest_shndx = 0;
|
559 |
|
|
isymend = local_syms + symtab_hdr->sh_info;
|
560 |
|
|
for (isym = local_syms; isym < isymend; isym++)
|
561 |
|
|
{
|
562 |
|
|
if (isym->st_shndx > highest_shndx
|
563 |
|
|
&& isym->st_shndx < SHN_LORESERVE)
|
564 |
|
|
highest_shndx = isym->st_shndx;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* Allocate an array to hold the section index to section symbol index
|
568 |
|
|
mapping. Bump by one since we start counting at zero. */
|
569 |
|
|
highest_shndx++;
|
570 |
|
|
amt = highest_shndx;
|
571 |
|
|
amt *= sizeof (int);
|
572 |
|
|
hppa_info->section_syms = (int *) bfd_malloc (amt);
|
573 |
|
|
|
574 |
|
|
/* Now walk the local symbols again. If we find a section symbol,
|
575 |
|
|
record the index of the symbol into the section_syms array. */
|
576 |
|
|
for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
|
577 |
|
|
{
|
578 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
579 |
|
|
hppa_info->section_syms[isym->st_shndx] = i;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/* We are finished with the local symbols. */
|
583 |
|
|
if (local_syms != NULL
|
584 |
|
|
&& symtab_hdr->contents != (unsigned char *) local_syms)
|
585 |
|
|
{
|
586 |
|
|
if (! info->keep_memory)
|
587 |
|
|
free (local_syms);
|
588 |
|
|
else
|
589 |
|
|
{
|
590 |
|
|
/* Cache the symbols for elf_link_input_bfd. */
|
591 |
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/* Record which BFD we built the section_syms mapping for. */
|
596 |
|
|
hppa_info->section_syms_bfd = abfd;
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
/* Record the symbol index for this input section. We may need it for
|
600 |
|
|
relocations when building shared libraries. When not building shared
|
601 |
|
|
libraries this value is never really used, but assign it to zero to
|
602 |
|
|
prevent out of bounds memory accesses in other routines. */
|
603 |
|
|
if (info->shared)
|
604 |
|
|
{
|
605 |
|
|
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
606 |
|
|
|
607 |
|
|
/* If we did not find a section symbol for this section, then
|
608 |
|
|
something went terribly wrong above. */
|
609 |
|
|
if (sec_symndx == SHN_BAD)
|
610 |
|
|
return FALSE;
|
611 |
|
|
|
612 |
|
|
if (sec_symndx < SHN_LORESERVE)
|
613 |
|
|
sec_symndx = hppa_info->section_syms[sec_symndx];
|
614 |
|
|
else
|
615 |
|
|
sec_symndx = 0;
|
616 |
|
|
}
|
617 |
|
|
else
|
618 |
|
|
sec_symndx = 0;
|
619 |
|
|
|
620 |
|
|
relend = relocs + sec->reloc_count;
|
621 |
|
|
for (rel = relocs; rel < relend; ++rel)
|
622 |
|
|
{
|
623 |
|
|
enum
|
624 |
|
|
{
|
625 |
|
|
NEED_DLT = 1,
|
626 |
|
|
NEED_PLT = 2,
|
627 |
|
|
NEED_STUB = 4,
|
628 |
|
|
NEED_OPD = 8,
|
629 |
|
|
NEED_DYNREL = 16,
|
630 |
|
|
};
|
631 |
|
|
|
632 |
|
|
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
633 |
|
|
struct elf64_hppa_link_hash_entry *hh;
|
634 |
|
|
int need_entry;
|
635 |
|
|
bfd_boolean maybe_dynamic;
|
636 |
|
|
int dynrel_type = R_PARISC_NONE;
|
637 |
|
|
static reloc_howto_type *howto;
|
638 |
|
|
|
639 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
640 |
|
|
{
|
641 |
|
|
/* We're dealing with a global symbol -- find its hash entry
|
642 |
|
|
and mark it as being referenced. */
|
643 |
|
|
long indx = r_symndx - symtab_hdr->sh_info;
|
644 |
|
|
hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
|
645 |
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
646 |
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
647 |
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
648 |
|
|
|
649 |
|
|
hh->eh.ref_regular = 1;
|
650 |
|
|
}
|
651 |
|
|
else
|
652 |
|
|
hh = NULL;
|
653 |
|
|
|
654 |
|
|
/* We can only get preliminary data on whether a symbol is
|
655 |
|
|
locally or externally defined, as not all of the input files
|
656 |
|
|
have yet been processed. Do something with what we know, as
|
657 |
|
|
this may help reduce memory usage and processing time later. */
|
658 |
|
|
maybe_dynamic = FALSE;
|
659 |
|
|
if (hh && ((info->shared
|
660 |
|
|
&& (!info->symbolic
|
661 |
|
|
|| info->unresolved_syms_in_shared_libs == RM_IGNORE))
|
662 |
|
|
|| !hh->eh.def_regular
|
663 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
664 |
|
|
maybe_dynamic = TRUE;
|
665 |
|
|
|
666 |
|
|
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
667 |
|
|
need_entry = 0;
|
668 |
|
|
switch (howto->type)
|
669 |
|
|
{
|
670 |
|
|
/* These are simple indirect references to symbols through the
|
671 |
|
|
DLT. We need to create a DLT entry for any symbols which
|
672 |
|
|
appears in a DLTIND relocation. */
|
673 |
|
|
case R_PARISC_DLTIND21L:
|
674 |
|
|
case R_PARISC_DLTIND14R:
|
675 |
|
|
case R_PARISC_DLTIND14F:
|
676 |
|
|
case R_PARISC_DLTIND14WR:
|
677 |
|
|
case R_PARISC_DLTIND14DR:
|
678 |
|
|
need_entry = NEED_DLT;
|
679 |
|
|
break;
|
680 |
|
|
|
681 |
|
|
/* ?!? These need a DLT entry. But I have no idea what to do with
|
682 |
|
|
the "link time TP value. */
|
683 |
|
|
case R_PARISC_LTOFF_TP21L:
|
684 |
|
|
case R_PARISC_LTOFF_TP14R:
|
685 |
|
|
case R_PARISC_LTOFF_TP14F:
|
686 |
|
|
case R_PARISC_LTOFF_TP64:
|
687 |
|
|
case R_PARISC_LTOFF_TP14WR:
|
688 |
|
|
case R_PARISC_LTOFF_TP14DR:
|
689 |
|
|
case R_PARISC_LTOFF_TP16F:
|
690 |
|
|
case R_PARISC_LTOFF_TP16WF:
|
691 |
|
|
case R_PARISC_LTOFF_TP16DF:
|
692 |
|
|
need_entry = NEED_DLT;
|
693 |
|
|
break;
|
694 |
|
|
|
695 |
|
|
/* These are function calls. Depending on their precise target we
|
696 |
|
|
may need to make a stub for them. The stub uses the PLT, so we
|
697 |
|
|
need to create PLT entries for these symbols too. */
|
698 |
|
|
case R_PARISC_PCREL12F:
|
699 |
|
|
case R_PARISC_PCREL17F:
|
700 |
|
|
case R_PARISC_PCREL22F:
|
701 |
|
|
case R_PARISC_PCREL32:
|
702 |
|
|
case R_PARISC_PCREL64:
|
703 |
|
|
case R_PARISC_PCREL21L:
|
704 |
|
|
case R_PARISC_PCREL17R:
|
705 |
|
|
case R_PARISC_PCREL17C:
|
706 |
|
|
case R_PARISC_PCREL14R:
|
707 |
|
|
case R_PARISC_PCREL14F:
|
708 |
|
|
case R_PARISC_PCREL22C:
|
709 |
|
|
case R_PARISC_PCREL14WR:
|
710 |
|
|
case R_PARISC_PCREL14DR:
|
711 |
|
|
case R_PARISC_PCREL16F:
|
712 |
|
|
case R_PARISC_PCREL16WF:
|
713 |
|
|
case R_PARISC_PCREL16DF:
|
714 |
|
|
/* Function calls might need to go through the .plt, and
|
715 |
|
|
might need a long branch stub. */
|
716 |
|
|
if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
|
717 |
|
|
need_entry = (NEED_PLT | NEED_STUB);
|
718 |
|
|
else
|
719 |
|
|
need_entry = 0;
|
720 |
|
|
break;
|
721 |
|
|
|
722 |
|
|
case R_PARISC_PLTOFF21L:
|
723 |
|
|
case R_PARISC_PLTOFF14R:
|
724 |
|
|
case R_PARISC_PLTOFF14F:
|
725 |
|
|
case R_PARISC_PLTOFF14WR:
|
726 |
|
|
case R_PARISC_PLTOFF14DR:
|
727 |
|
|
case R_PARISC_PLTOFF16F:
|
728 |
|
|
case R_PARISC_PLTOFF16WF:
|
729 |
|
|
case R_PARISC_PLTOFF16DF:
|
730 |
|
|
need_entry = (NEED_PLT);
|
731 |
|
|
break;
|
732 |
|
|
|
733 |
|
|
case R_PARISC_DIR64:
|
734 |
|
|
if (info->shared || maybe_dynamic)
|
735 |
|
|
need_entry = (NEED_DYNREL);
|
736 |
|
|
dynrel_type = R_PARISC_DIR64;
|
737 |
|
|
break;
|
738 |
|
|
|
739 |
|
|
/* This is an indirect reference through the DLT to get the address
|
740 |
|
|
of a OPD descriptor. Thus we need to make a DLT entry that points
|
741 |
|
|
to an OPD entry. */
|
742 |
|
|
case R_PARISC_LTOFF_FPTR21L:
|
743 |
|
|
case R_PARISC_LTOFF_FPTR14R:
|
744 |
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
745 |
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
746 |
|
|
case R_PARISC_LTOFF_FPTR32:
|
747 |
|
|
case R_PARISC_LTOFF_FPTR64:
|
748 |
|
|
case R_PARISC_LTOFF_FPTR16F:
|
749 |
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
750 |
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
751 |
|
|
if (info->shared || maybe_dynamic)
|
752 |
|
|
need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
|
753 |
|
|
else
|
754 |
|
|
need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
|
755 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
756 |
|
|
break;
|
757 |
|
|
|
758 |
|
|
/* This is a simple OPD entry. */
|
759 |
|
|
case R_PARISC_FPTR64:
|
760 |
|
|
if (info->shared || maybe_dynamic)
|
761 |
|
|
need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
|
762 |
|
|
else
|
763 |
|
|
need_entry = (NEED_OPD | NEED_PLT);
|
764 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
765 |
|
|
break;
|
766 |
|
|
|
767 |
|
|
/* Add more cases as needed. */
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
if (!need_entry)
|
771 |
|
|
continue;
|
772 |
|
|
|
773 |
|
|
if (hh)
|
774 |
|
|
{
|
775 |
|
|
/* Stash away enough information to be able to find this symbol
|
776 |
|
|
regardless of whether or not it is local or global. */
|
777 |
|
|
hh->owner = abfd;
|
778 |
|
|
hh->sym_indx = r_symndx;
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/* Create what's needed. */
|
782 |
|
|
if (need_entry & NEED_DLT)
|
783 |
|
|
{
|
784 |
|
|
/* Allocate space for a DLT entry, as well as a dynamic
|
785 |
|
|
relocation for this entry. */
|
786 |
|
|
if (! hppa_info->dlt_sec
|
787 |
|
|
&& ! get_dlt (abfd, info, hppa_info))
|
788 |
|
|
goto err_out;
|
789 |
|
|
|
790 |
|
|
if (hh != NULL)
|
791 |
|
|
{
|
792 |
|
|
hh->want_dlt = 1;
|
793 |
|
|
hh->eh.got.refcount += 1;
|
794 |
|
|
}
|
795 |
|
|
else
|
796 |
|
|
{
|
797 |
|
|
bfd_signed_vma *local_dlt_refcounts;
|
798 |
|
|
|
799 |
|
|
/* This is a DLT entry for a local symbol. */
|
800 |
|
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
801 |
|
|
if (local_dlt_refcounts == NULL)
|
802 |
|
|
return FALSE;
|
803 |
|
|
local_dlt_refcounts[r_symndx] += 1;
|
804 |
|
|
}
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
if (need_entry & NEED_PLT)
|
808 |
|
|
{
|
809 |
|
|
if (! hppa_info->plt_sec
|
810 |
|
|
&& ! get_plt (abfd, info, hppa_info))
|
811 |
|
|
goto err_out;
|
812 |
|
|
|
813 |
|
|
if (hh != NULL)
|
814 |
|
|
{
|
815 |
|
|
hh->want_plt = 1;
|
816 |
|
|
hh->eh.needs_plt = 1;
|
817 |
|
|
hh->eh.plt.refcount += 1;
|
818 |
|
|
}
|
819 |
|
|
else
|
820 |
|
|
{
|
821 |
|
|
bfd_signed_vma *local_dlt_refcounts;
|
822 |
|
|
bfd_signed_vma *local_plt_refcounts;
|
823 |
|
|
|
824 |
|
|
/* This is a PLT entry for a local symbol. */
|
825 |
|
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
826 |
|
|
if (local_dlt_refcounts == NULL)
|
827 |
|
|
return FALSE;
|
828 |
|
|
local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
|
829 |
|
|
local_plt_refcounts[r_symndx] += 1;
|
830 |
|
|
}
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
if (need_entry & NEED_STUB)
|
834 |
|
|
{
|
835 |
|
|
if (! hppa_info->stub_sec
|
836 |
|
|
&& ! get_stub (abfd, info, hppa_info))
|
837 |
|
|
goto err_out;
|
838 |
|
|
if (hh)
|
839 |
|
|
hh->want_stub = 1;
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
if (need_entry & NEED_OPD)
|
843 |
|
|
{
|
844 |
|
|
if (! hppa_info->opd_sec
|
845 |
|
|
&& ! get_opd (abfd, info, hppa_info))
|
846 |
|
|
goto err_out;
|
847 |
|
|
|
848 |
|
|
/* FPTRs are not allocated by the dynamic linker for PA64,
|
849 |
|
|
though it is possible that will change in the future. */
|
850 |
|
|
|
851 |
|
|
if (hh != NULL)
|
852 |
|
|
hh->want_opd = 1;
|
853 |
|
|
else
|
854 |
|
|
{
|
855 |
|
|
bfd_signed_vma *local_dlt_refcounts;
|
856 |
|
|
bfd_signed_vma *local_opd_refcounts;
|
857 |
|
|
|
858 |
|
|
/* This is a OPD for a local symbol. */
|
859 |
|
|
local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
|
860 |
|
|
if (local_dlt_refcounts == NULL)
|
861 |
|
|
return FALSE;
|
862 |
|
|
local_opd_refcounts = (local_dlt_refcounts
|
863 |
|
|
+ 2 * symtab_hdr->sh_info);
|
864 |
|
|
local_opd_refcounts[r_symndx] += 1;
|
865 |
|
|
}
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* Add a new dynamic relocation to the chain of dynamic
|
869 |
|
|
relocations for this symbol. */
|
870 |
|
|
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
871 |
|
|
{
|
872 |
|
|
if (! hppa_info->other_rel_sec
|
873 |
|
|
&& ! get_reloc_section (abfd, hppa_info, sec))
|
874 |
|
|
goto err_out;
|
875 |
|
|
|
876 |
|
|
/* Count dynamic relocations against global symbols. */
|
877 |
|
|
if (hh != NULL
|
878 |
|
|
&& !count_dyn_reloc (abfd, hh, dynrel_type, sec,
|
879 |
|
|
sec_symndx, rel->r_offset, rel->r_addend))
|
880 |
|
|
goto err_out;
|
881 |
|
|
|
882 |
|
|
/* If we are building a shared library and we just recorded
|
883 |
|
|
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
884 |
|
|
section symbol for this section ends up in the dynamic
|
885 |
|
|
symbol table. */
|
886 |
|
|
if (info->shared && dynrel_type == R_PARISC_FPTR64
|
887 |
|
|
&& ! (bfd_elf_link_record_local_dynamic_symbol
|
888 |
|
|
(info, abfd, sec_symndx)))
|
889 |
|
|
return FALSE;
|
890 |
|
|
}
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
return TRUE;
|
894 |
|
|
|
895 |
|
|
err_out:
|
896 |
|
|
return FALSE;
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
struct elf64_hppa_allocate_data
|
900 |
|
|
{
|
901 |
|
|
struct bfd_link_info *info;
|
902 |
|
|
bfd_size_type ofs;
|
903 |
|
|
};
|
904 |
|
|
|
905 |
|
|
/* Should we do dynamic things to this symbol? */
|
906 |
|
|
|
907 |
|
|
static bfd_boolean
|
908 |
|
|
elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
|
909 |
|
|
struct bfd_link_info *info)
|
910 |
|
|
{
|
911 |
|
|
/* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
|
912 |
|
|
and relocations that retrieve a function descriptor? Assume the
|
913 |
|
|
worst for now. */
|
914 |
|
|
if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
|
915 |
|
|
{
|
916 |
|
|
/* ??? Why is this here and not elsewhere is_local_label_name. */
|
917 |
|
|
if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
|
918 |
|
|
return FALSE;
|
919 |
|
|
|
920 |
|
|
return TRUE;
|
921 |
|
|
}
|
922 |
|
|
else
|
923 |
|
|
return FALSE;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/* Mark all functions exported by this file so that we can later allocate
|
927 |
|
|
entries in .opd for them. */
|
928 |
|
|
|
929 |
|
|
static bfd_boolean
|
930 |
|
|
elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
|
931 |
|
|
{
|
932 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
933 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
934 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
935 |
|
|
|
936 |
|
|
hppa_info = hppa_link_hash_table (info);
|
937 |
|
|
if (hppa_info == NULL)
|
938 |
|
|
return FALSE;
|
939 |
|
|
|
940 |
|
|
if (eh->root.type == bfd_link_hash_warning)
|
941 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
942 |
|
|
|
943 |
|
|
if (eh
|
944 |
|
|
&& (eh->root.type == bfd_link_hash_defined
|
945 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
946 |
|
|
&& eh->root.u.def.section->output_section != NULL
|
947 |
|
|
&& eh->type == STT_FUNC)
|
948 |
|
|
{
|
949 |
|
|
if (! hppa_info->opd_sec
|
950 |
|
|
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
951 |
|
|
return FALSE;
|
952 |
|
|
|
953 |
|
|
hh->want_opd = 1;
|
954 |
|
|
|
955 |
|
|
/* Put a flag here for output_symbol_hook. */
|
956 |
|
|
hh->st_shndx = -1;
|
957 |
|
|
eh->needs_plt = 1;
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
return TRUE;
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/* Allocate space for a DLT entry. */
|
964 |
|
|
|
965 |
|
|
static bfd_boolean
|
966 |
|
|
allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
|
967 |
|
|
{
|
968 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
969 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
970 |
|
|
|
971 |
|
|
if (hh->want_dlt)
|
972 |
|
|
{
|
973 |
|
|
if (x->info->shared)
|
974 |
|
|
{
|
975 |
|
|
/* Possibly add the symbol to the local dynamic symbol
|
976 |
|
|
table since we might need to create a dynamic relocation
|
977 |
|
|
against it. */
|
978 |
|
|
if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
|
979 |
|
|
{
|
980 |
|
|
bfd *owner = eh->root.u.def.section->owner;
|
981 |
|
|
|
982 |
|
|
if (! (bfd_elf_link_record_local_dynamic_symbol
|
983 |
|
|
(x->info, owner, hh->sym_indx)))
|
984 |
|
|
return FALSE;
|
985 |
|
|
}
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
hh->dlt_offset = x->ofs;
|
989 |
|
|
x->ofs += DLT_ENTRY_SIZE;
|
990 |
|
|
}
|
991 |
|
|
return TRUE;
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
/* Allocate space for a DLT.PLT entry. */
|
995 |
|
|
|
996 |
|
|
static bfd_boolean
|
997 |
|
|
allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
|
998 |
|
|
{
|
999 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1000 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
|
1001 |
|
|
|
1002 |
|
|
if (hh->want_plt
|
1003 |
|
|
&& elf64_hppa_dynamic_symbol_p (eh, x->info)
|
1004 |
|
|
&& !((eh->root.type == bfd_link_hash_defined
|
1005 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
1006 |
|
|
&& eh->root.u.def.section->output_section != NULL))
|
1007 |
|
|
{
|
1008 |
|
|
hh->plt_offset = x->ofs;
|
1009 |
|
|
x->ofs += PLT_ENTRY_SIZE;
|
1010 |
|
|
if (hh->plt_offset < 0x2000)
|
1011 |
|
|
{
|
1012 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1013 |
|
|
|
1014 |
|
|
hppa_info = hppa_link_hash_table (x->info);
|
1015 |
|
|
if (hppa_info == NULL)
|
1016 |
|
|
return FALSE;
|
1017 |
|
|
|
1018 |
|
|
hppa_info->gp_offset = hh->plt_offset;
|
1019 |
|
|
}
|
1020 |
|
|
}
|
1021 |
|
|
else
|
1022 |
|
|
hh->want_plt = 0;
|
1023 |
|
|
|
1024 |
|
|
return TRUE;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* Allocate space for a STUB entry. */
|
1028 |
|
|
|
1029 |
|
|
static bfd_boolean
|
1030 |
|
|
allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
|
1031 |
|
|
{
|
1032 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1033 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1034 |
|
|
|
1035 |
|
|
if (hh->want_stub
|
1036 |
|
|
&& elf64_hppa_dynamic_symbol_p (eh, x->info)
|
1037 |
|
|
&& !((eh->root.type == bfd_link_hash_defined
|
1038 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
1039 |
|
|
&& eh->root.u.def.section->output_section != NULL))
|
1040 |
|
|
{
|
1041 |
|
|
hh->stub_offset = x->ofs;
|
1042 |
|
|
x->ofs += sizeof (plt_stub);
|
1043 |
|
|
}
|
1044 |
|
|
else
|
1045 |
|
|
hh->want_stub = 0;
|
1046 |
|
|
return TRUE;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
/* Allocate space for a FPTR entry. */
|
1050 |
|
|
|
1051 |
|
|
static bfd_boolean
|
1052 |
|
|
allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
|
1053 |
|
|
{
|
1054 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1055 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1056 |
|
|
|
1057 |
|
|
if (hh && hh->want_opd)
|
1058 |
|
|
{
|
1059 |
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
1060 |
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
1061 |
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
1062 |
|
|
|
1063 |
|
|
/* We never need an opd entry for a symbol which is not
|
1064 |
|
|
defined by this output file. */
|
1065 |
|
|
if (hh && (hh->eh.root.type == bfd_link_hash_undefined
|
1066 |
|
|
|| hh->eh.root.type == bfd_link_hash_undefweak
|
1067 |
|
|
|| hh->eh.root.u.def.section->output_section == NULL))
|
1068 |
|
|
hh->want_opd = 0;
|
1069 |
|
|
|
1070 |
|
|
/* If we are creating a shared library, took the address of a local
|
1071 |
|
|
function or might export this function from this object file, then
|
1072 |
|
|
we have to create an opd descriptor. */
|
1073 |
|
|
else if (x->info->shared
|
1074 |
|
|
|| hh == NULL
|
1075 |
|
|
|| (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
|
1076 |
|
|
|| (hh->eh.root.type == bfd_link_hash_defined
|
1077 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
1078 |
|
|
{
|
1079 |
|
|
/* If we are creating a shared library, then we will have to
|
1080 |
|
|
create a runtime relocation for the symbol to properly
|
1081 |
|
|
initialize the .opd entry. Make sure the symbol gets
|
1082 |
|
|
added to the dynamic symbol table. */
|
1083 |
|
|
if (x->info->shared
|
1084 |
|
|
&& (hh == NULL || (hh->eh.dynindx == -1)))
|
1085 |
|
|
{
|
1086 |
|
|
bfd *owner;
|
1087 |
|
|
/* PR 6511: Default to using the dynamic symbol table. */
|
1088 |
|
|
owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
|
1089 |
|
|
|
1090 |
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
1091 |
|
|
(x->info, owner, hh->sym_indx))
|
1092 |
|
|
return FALSE;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
/* This may not be necessary or desirable anymore now that
|
1096 |
|
|
we have some support for dealing with section symbols
|
1097 |
|
|
in dynamic relocs. But name munging does make the result
|
1098 |
|
|
much easier to debug. ie, the EPLT reloc will reference
|
1099 |
|
|
a symbol like .foobar, instead of .text + offset. */
|
1100 |
|
|
if (x->info->shared && eh)
|
1101 |
|
|
{
|
1102 |
|
|
char *new_name;
|
1103 |
|
|
struct elf_link_hash_entry *nh;
|
1104 |
|
|
|
1105 |
|
|
new_name = alloca (strlen (eh->root.root.string) + 2);
|
1106 |
|
|
new_name[0] = '.';
|
1107 |
|
|
strcpy (new_name + 1, eh->root.root.string);
|
1108 |
|
|
|
1109 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
1110 |
|
|
new_name, TRUE, TRUE, TRUE);
|
1111 |
|
|
|
1112 |
|
|
nh->root.type = eh->root.type;
|
1113 |
|
|
nh->root.u.def.value = eh->root.u.def.value;
|
1114 |
|
|
nh->root.u.def.section = eh->root.u.def.section;
|
1115 |
|
|
|
1116 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
|
1117 |
|
|
return FALSE;
|
1118 |
|
|
|
1119 |
|
|
}
|
1120 |
|
|
hh->opd_offset = x->ofs;
|
1121 |
|
|
x->ofs += OPD_ENTRY_SIZE;
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
/* Otherwise we do not need an opd entry. */
|
1125 |
|
|
else
|
1126 |
|
|
hh->want_opd = 0;
|
1127 |
|
|
}
|
1128 |
|
|
return TRUE;
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
1132 |
|
|
EI_ABIVERSION may not be strictly necessary. */
|
1133 |
|
|
|
1134 |
|
|
static void
|
1135 |
|
|
elf64_hppa_post_process_headers (bfd *abfd,
|
1136 |
|
|
struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
|
1137 |
|
|
{
|
1138 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
1139 |
|
|
|
1140 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
1141 |
|
|
|
1142 |
|
|
i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
|
1143 |
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Create function descriptor section (.opd). This section is called .opd
|
1147 |
|
|
because it contains "official procedure descriptors". The "official"
|
1148 |
|
|
refers to the fact that these descriptors are used when taking the address
|
1149 |
|
|
of a procedure, thus ensuring a unique address for each procedure. */
|
1150 |
|
|
|
1151 |
|
|
static bfd_boolean
|
1152 |
|
|
get_opd (bfd *abfd,
|
1153 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1154 |
|
|
struct elf64_hppa_link_hash_table *hppa_info)
|
1155 |
|
|
{
|
1156 |
|
|
asection *opd;
|
1157 |
|
|
bfd *dynobj;
|
1158 |
|
|
|
1159 |
|
|
opd = hppa_info->opd_sec;
|
1160 |
|
|
if (!opd)
|
1161 |
|
|
{
|
1162 |
|
|
dynobj = hppa_info->root.dynobj;
|
1163 |
|
|
if (!dynobj)
|
1164 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1165 |
|
|
|
1166 |
|
|
opd = bfd_make_section_with_flags (dynobj, ".opd",
|
1167 |
|
|
(SEC_ALLOC
|
1168 |
|
|
| SEC_LOAD
|
1169 |
|
|
| SEC_HAS_CONTENTS
|
1170 |
|
|
| SEC_IN_MEMORY
|
1171 |
|
|
| SEC_LINKER_CREATED));
|
1172 |
|
|
if (!opd
|
1173 |
|
|
|| !bfd_set_section_alignment (abfd, opd, 3))
|
1174 |
|
|
{
|
1175 |
|
|
BFD_ASSERT (0);
|
1176 |
|
|
return FALSE;
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
hppa_info->opd_sec = opd;
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
return TRUE;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
/* Create the PLT section. */
|
1186 |
|
|
|
1187 |
|
|
static bfd_boolean
|
1188 |
|
|
get_plt (bfd *abfd,
|
1189 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1190 |
|
|
struct elf64_hppa_link_hash_table *hppa_info)
|
1191 |
|
|
{
|
1192 |
|
|
asection *plt;
|
1193 |
|
|
bfd *dynobj;
|
1194 |
|
|
|
1195 |
|
|
plt = hppa_info->plt_sec;
|
1196 |
|
|
if (!plt)
|
1197 |
|
|
{
|
1198 |
|
|
dynobj = hppa_info->root.dynobj;
|
1199 |
|
|
if (!dynobj)
|
1200 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1201 |
|
|
|
1202 |
|
|
plt = bfd_make_section_with_flags (dynobj, ".plt",
|
1203 |
|
|
(SEC_ALLOC
|
1204 |
|
|
| SEC_LOAD
|
1205 |
|
|
| SEC_HAS_CONTENTS
|
1206 |
|
|
| SEC_IN_MEMORY
|
1207 |
|
|
| SEC_LINKER_CREATED));
|
1208 |
|
|
if (!plt
|
1209 |
|
|
|| !bfd_set_section_alignment (abfd, plt, 3))
|
1210 |
|
|
{
|
1211 |
|
|
BFD_ASSERT (0);
|
1212 |
|
|
return FALSE;
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
hppa_info->plt_sec = plt;
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
return TRUE;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
/* Create the DLT section. */
|
1222 |
|
|
|
1223 |
|
|
static bfd_boolean
|
1224 |
|
|
get_dlt (bfd *abfd,
|
1225 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1226 |
|
|
struct elf64_hppa_link_hash_table *hppa_info)
|
1227 |
|
|
{
|
1228 |
|
|
asection *dlt;
|
1229 |
|
|
bfd *dynobj;
|
1230 |
|
|
|
1231 |
|
|
dlt = hppa_info->dlt_sec;
|
1232 |
|
|
if (!dlt)
|
1233 |
|
|
{
|
1234 |
|
|
dynobj = hppa_info->root.dynobj;
|
1235 |
|
|
if (!dynobj)
|
1236 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1237 |
|
|
|
1238 |
|
|
dlt = bfd_make_section_with_flags (dynobj, ".dlt",
|
1239 |
|
|
(SEC_ALLOC
|
1240 |
|
|
| SEC_LOAD
|
1241 |
|
|
| SEC_HAS_CONTENTS
|
1242 |
|
|
| SEC_IN_MEMORY
|
1243 |
|
|
| SEC_LINKER_CREATED));
|
1244 |
|
|
if (!dlt
|
1245 |
|
|
|| !bfd_set_section_alignment (abfd, dlt, 3))
|
1246 |
|
|
{
|
1247 |
|
|
BFD_ASSERT (0);
|
1248 |
|
|
return FALSE;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
hppa_info->dlt_sec = dlt;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
return TRUE;
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
/* Create the stubs section. */
|
1258 |
|
|
|
1259 |
|
|
static bfd_boolean
|
1260 |
|
|
get_stub (bfd *abfd,
|
1261 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1262 |
|
|
struct elf64_hppa_link_hash_table *hppa_info)
|
1263 |
|
|
{
|
1264 |
|
|
asection *stub;
|
1265 |
|
|
bfd *dynobj;
|
1266 |
|
|
|
1267 |
|
|
stub = hppa_info->stub_sec;
|
1268 |
|
|
if (!stub)
|
1269 |
|
|
{
|
1270 |
|
|
dynobj = hppa_info->root.dynobj;
|
1271 |
|
|
if (!dynobj)
|
1272 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1273 |
|
|
|
1274 |
|
|
stub = bfd_make_section_with_flags (dynobj, ".stub",
|
1275 |
|
|
(SEC_ALLOC | SEC_LOAD
|
1276 |
|
|
| SEC_HAS_CONTENTS
|
1277 |
|
|
| SEC_IN_MEMORY
|
1278 |
|
|
| SEC_READONLY
|
1279 |
|
|
| SEC_LINKER_CREATED));
|
1280 |
|
|
if (!stub
|
1281 |
|
|
|| !bfd_set_section_alignment (abfd, stub, 3))
|
1282 |
|
|
{
|
1283 |
|
|
BFD_ASSERT (0);
|
1284 |
|
|
return FALSE;
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
hppa_info->stub_sec = stub;
|
1288 |
|
|
}
|
1289 |
|
|
|
1290 |
|
|
return TRUE;
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* Create sections necessary for dynamic linking. This is only a rough
|
1294 |
|
|
cut and will likely change as we learn more about the somewhat
|
1295 |
|
|
unusual dynamic linking scheme HP uses.
|
1296 |
|
|
|
1297 |
|
|
.stub:
|
1298 |
|
|
Contains code to implement cross-space calls. The first time one
|
1299 |
|
|
of the stubs is used it will call into the dynamic linker, later
|
1300 |
|
|
calls will go straight to the target.
|
1301 |
|
|
|
1302 |
|
|
The only stub we support right now looks like
|
1303 |
|
|
|
1304 |
|
|
ldd OFFSET(%dp),%r1
|
1305 |
|
|
bve %r0(%r1)
|
1306 |
|
|
ldd OFFSET+8(%dp),%dp
|
1307 |
|
|
|
1308 |
|
|
Other stubs may be needed in the future. We may want the remove
|
1309 |
|
|
the break/nop instruction. It is only used right now to keep the
|
1310 |
|
|
offset of a .plt entry and a .stub entry in sync.
|
1311 |
|
|
|
1312 |
|
|
.dlt:
|
1313 |
|
|
This is what most people call the .got. HP used a different name.
|
1314 |
|
|
Losers.
|
1315 |
|
|
|
1316 |
|
|
.rela.dlt:
|
1317 |
|
|
Relocations for the DLT.
|
1318 |
|
|
|
1319 |
|
|
.plt:
|
1320 |
|
|
Function pointers as address,gp pairs.
|
1321 |
|
|
|
1322 |
|
|
.rela.plt:
|
1323 |
|
|
Should contain dynamic IPLT (and EPLT?) relocations.
|
1324 |
|
|
|
1325 |
|
|
.opd:
|
1326 |
|
|
FPTRS
|
1327 |
|
|
|
1328 |
|
|
.rela.opd:
|
1329 |
|
|
EPLT relocations for symbols exported from shared libraries. */
|
1330 |
|
|
|
1331 |
|
|
static bfd_boolean
|
1332 |
|
|
elf64_hppa_create_dynamic_sections (bfd *abfd,
|
1333 |
|
|
struct bfd_link_info *info)
|
1334 |
|
|
{
|
1335 |
|
|
asection *s;
|
1336 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1337 |
|
|
|
1338 |
|
|
hppa_info = hppa_link_hash_table (info);
|
1339 |
|
|
if (hppa_info == NULL)
|
1340 |
|
|
return FALSE;
|
1341 |
|
|
|
1342 |
|
|
if (! get_stub (abfd, info, hppa_info))
|
1343 |
|
|
return FALSE;
|
1344 |
|
|
|
1345 |
|
|
if (! get_dlt (abfd, info, hppa_info))
|
1346 |
|
|
return FALSE;
|
1347 |
|
|
|
1348 |
|
|
if (! get_plt (abfd, info, hppa_info))
|
1349 |
|
|
return FALSE;
|
1350 |
|
|
|
1351 |
|
|
if (! get_opd (abfd, info, hppa_info))
|
1352 |
|
|
return FALSE;
|
1353 |
|
|
|
1354 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.dlt",
|
1355 |
|
|
(SEC_ALLOC | SEC_LOAD
|
1356 |
|
|
| SEC_HAS_CONTENTS
|
1357 |
|
|
| SEC_IN_MEMORY
|
1358 |
|
|
| SEC_READONLY
|
1359 |
|
|
| SEC_LINKER_CREATED));
|
1360 |
|
|
if (s == NULL
|
1361 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1362 |
|
|
return FALSE;
|
1363 |
|
|
hppa_info->dlt_rel_sec = s;
|
1364 |
|
|
|
1365 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.plt",
|
1366 |
|
|
(SEC_ALLOC | SEC_LOAD
|
1367 |
|
|
| SEC_HAS_CONTENTS
|
1368 |
|
|
| SEC_IN_MEMORY
|
1369 |
|
|
| SEC_READONLY
|
1370 |
|
|
| SEC_LINKER_CREATED));
|
1371 |
|
|
if (s == NULL
|
1372 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1373 |
|
|
return FALSE;
|
1374 |
|
|
hppa_info->plt_rel_sec = s;
|
1375 |
|
|
|
1376 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.data",
|
1377 |
|
|
(SEC_ALLOC | SEC_LOAD
|
1378 |
|
|
| SEC_HAS_CONTENTS
|
1379 |
|
|
| SEC_IN_MEMORY
|
1380 |
|
|
| SEC_READONLY
|
1381 |
|
|
| SEC_LINKER_CREATED));
|
1382 |
|
|
if (s == NULL
|
1383 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1384 |
|
|
return FALSE;
|
1385 |
|
|
hppa_info->other_rel_sec = s;
|
1386 |
|
|
|
1387 |
|
|
s = bfd_make_section_with_flags (abfd, ".rela.opd",
|
1388 |
|
|
(SEC_ALLOC | SEC_LOAD
|
1389 |
|
|
| SEC_HAS_CONTENTS
|
1390 |
|
|
| SEC_IN_MEMORY
|
1391 |
|
|
| SEC_READONLY
|
1392 |
|
|
| SEC_LINKER_CREATED));
|
1393 |
|
|
if (s == NULL
|
1394 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1395 |
|
|
return FALSE;
|
1396 |
|
|
hppa_info->opd_rel_sec = s;
|
1397 |
|
|
|
1398 |
|
|
return TRUE;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/* Allocate dynamic relocations for those symbols that turned out
|
1402 |
|
|
to be dynamic. */
|
1403 |
|
|
|
1404 |
|
|
static bfd_boolean
|
1405 |
|
|
allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
|
1406 |
|
|
{
|
1407 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1408 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1409 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1410 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
1411 |
|
|
bfd_boolean dynamic_symbol, shared;
|
1412 |
|
|
|
1413 |
|
|
hppa_info = hppa_link_hash_table (x->info);
|
1414 |
|
|
if (hppa_info == NULL)
|
1415 |
|
|
return FALSE;
|
1416 |
|
|
|
1417 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
|
1418 |
|
|
shared = x->info->shared;
|
1419 |
|
|
|
1420 |
|
|
/* We may need to allocate relocations for a non-dynamic symbol
|
1421 |
|
|
when creating a shared library. */
|
1422 |
|
|
if (!dynamic_symbol && !shared)
|
1423 |
|
|
return TRUE;
|
1424 |
|
|
|
1425 |
|
|
/* Take care of the normal data relocations. */
|
1426 |
|
|
|
1427 |
|
|
for (rent = hh->reloc_entries; rent; rent = rent->next)
|
1428 |
|
|
{
|
1429 |
|
|
/* Allocate one iff we are building a shared library, the relocation
|
1430 |
|
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
1431 |
|
|
if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
1432 |
|
|
continue;
|
1433 |
|
|
|
1434 |
|
|
hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
|
1435 |
|
|
|
1436 |
|
|
/* Make sure this symbol gets into the dynamic symbol table if it is
|
1437 |
|
|
not already recorded. ?!? This should not be in the loop since
|
1438 |
|
|
the symbol need only be added once. */
|
1439 |
|
|
if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
|
1440 |
|
|
if (!bfd_elf_link_record_local_dynamic_symbol
|
1441 |
|
|
(x->info, rent->sec->owner, hh->sym_indx))
|
1442 |
|
|
return FALSE;
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
/* Take care of the GOT and PLT relocations. */
|
1446 |
|
|
|
1447 |
|
|
if ((dynamic_symbol || shared) && hh->want_dlt)
|
1448 |
|
|
hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
|
1449 |
|
|
|
1450 |
|
|
/* If we are building a shared library, then every symbol that has an
|
1451 |
|
|
opd entry will need an EPLT relocation to relocate the symbol's address
|
1452 |
|
|
and __gp value based on the runtime load address. */
|
1453 |
|
|
if (shared && hh->want_opd)
|
1454 |
|
|
hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
|
1455 |
|
|
|
1456 |
|
|
if (hh->want_plt && dynamic_symbol)
|
1457 |
|
|
{
|
1458 |
|
|
bfd_size_type t = 0;
|
1459 |
|
|
|
1460 |
|
|
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
1461 |
|
|
shared libraries get two REL relocations. Local symbols in
|
1462 |
|
|
main applications get nothing. */
|
1463 |
|
|
if (dynamic_symbol)
|
1464 |
|
|
t = sizeof (Elf64_External_Rela);
|
1465 |
|
|
else if (shared)
|
1466 |
|
|
t = 2 * sizeof (Elf64_External_Rela);
|
1467 |
|
|
|
1468 |
|
|
hppa_info->plt_rel_sec->size += t;
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
return TRUE;
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
1475 |
|
|
regular object. */
|
1476 |
|
|
|
1477 |
|
|
static bfd_boolean
|
1478 |
|
|
elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1479 |
|
|
struct elf_link_hash_entry *eh)
|
1480 |
|
|
{
|
1481 |
|
|
/* ??? Undefined symbols with PLT entries should be re-defined
|
1482 |
|
|
to be the PLT entry. */
|
1483 |
|
|
|
1484 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
1485 |
|
|
processor independent code will have arranged for us to see the
|
1486 |
|
|
real definition first, and we can just use the same value. */
|
1487 |
|
|
if (eh->u.weakdef != NULL)
|
1488 |
|
|
{
|
1489 |
|
|
BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
|
1490 |
|
|
|| eh->u.weakdef->root.type == bfd_link_hash_defweak);
|
1491 |
|
|
eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
|
1492 |
|
|
eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
|
1493 |
|
|
return TRUE;
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* If this is a reference to a symbol defined by a dynamic object which
|
1497 |
|
|
is not a function, we might allocate the symbol in our .dynbss section
|
1498 |
|
|
and allocate a COPY dynamic relocation.
|
1499 |
|
|
|
1500 |
|
|
But PA64 code is canonically PIC, so as a rule we can avoid this sort
|
1501 |
|
|
of hackery. */
|
1502 |
|
|
|
1503 |
|
|
return TRUE;
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
/* This function is called via elf_link_hash_traverse to mark millicode
|
1507 |
|
|
symbols with a dynindx of -1 and to remove the string table reference
|
1508 |
|
|
from the dynamic symbol table. If the symbol is not a millicode symbol,
|
1509 |
|
|
elf64_hppa_mark_exported_functions is called. */
|
1510 |
|
|
|
1511 |
|
|
static bfd_boolean
|
1512 |
|
|
elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
|
1513 |
|
|
void *data)
|
1514 |
|
|
{
|
1515 |
|
|
struct elf_link_hash_entry *elf = eh;
|
1516 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
1517 |
|
|
|
1518 |
|
|
if (elf->root.type == bfd_link_hash_warning)
|
1519 |
|
|
elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
|
1520 |
|
|
|
1521 |
|
|
if (elf->type == STT_PARISC_MILLI)
|
1522 |
|
|
{
|
1523 |
|
|
if (elf->dynindx != -1)
|
1524 |
|
|
{
|
1525 |
|
|
elf->dynindx = -1;
|
1526 |
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
1527 |
|
|
elf->dynstr_index);
|
1528 |
|
|
}
|
1529 |
|
|
return TRUE;
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
return elf64_hppa_mark_exported_functions (eh, data);
|
1533 |
|
|
}
|
1534 |
|
|
|
1535 |
|
|
/* Set the final sizes of the dynamic sections and allocate memory for
|
1536 |
|
|
the contents of our special sections. */
|
1537 |
|
|
|
1538 |
|
|
static bfd_boolean
|
1539 |
|
|
elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
|
1540 |
|
|
{
|
1541 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1542 |
|
|
struct elf64_hppa_allocate_data data;
|
1543 |
|
|
bfd *dynobj;
|
1544 |
|
|
bfd *ibfd;
|
1545 |
|
|
asection *sec;
|
1546 |
|
|
bfd_boolean plt;
|
1547 |
|
|
bfd_boolean relocs;
|
1548 |
|
|
bfd_boolean reltext;
|
1549 |
|
|
|
1550 |
|
|
hppa_info = hppa_link_hash_table (info);
|
1551 |
|
|
if (hppa_info == NULL)
|
1552 |
|
|
return FALSE;
|
1553 |
|
|
|
1554 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
1555 |
|
|
BFD_ASSERT (dynobj != NULL);
|
1556 |
|
|
|
1557 |
|
|
/* Mark each function this program exports so that we will allocate
|
1558 |
|
|
space in the .opd section for each function's FPTR. If we are
|
1559 |
|
|
creating dynamic sections, change the dynamic index of millicode
|
1560 |
|
|
symbols to -1 and remove them from the string table for .dynstr.
|
1561 |
|
|
|
1562 |
|
|
We have to traverse the main linker hash table since we have to
|
1563 |
|
|
find functions which may not have been mentioned in any relocs. */
|
1564 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1565 |
|
|
(elf_hash_table (info)->dynamic_sections_created
|
1566 |
|
|
? elf64_hppa_mark_milli_and_exported_functions
|
1567 |
|
|
: elf64_hppa_mark_exported_functions),
|
1568 |
|
|
info);
|
1569 |
|
|
|
1570 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1571 |
|
|
{
|
1572 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
1573 |
|
|
if (info->executable)
|
1574 |
|
|
{
|
1575 |
|
|
sec = bfd_get_section_by_name (dynobj, ".interp");
|
1576 |
|
|
BFD_ASSERT (sec != NULL);
|
1577 |
|
|
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
1578 |
|
|
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
1579 |
|
|
}
|
1580 |
|
|
}
|
1581 |
|
|
else
|
1582 |
|
|
{
|
1583 |
|
|
/* We may have created entries in the .rela.got section.
|
1584 |
|
|
However, if we are not creating the dynamic sections, we will
|
1585 |
|
|
not actually use these entries. Reset the size of .rela.dlt,
|
1586 |
|
|
which will cause it to get stripped from the output file
|
1587 |
|
|
below. */
|
1588 |
|
|
sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
1589 |
|
|
if (sec != NULL)
|
1590 |
|
|
sec->size = 0;
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
/* Set up DLT, PLT and OPD offsets for local syms, and space for local
|
1594 |
|
|
dynamic relocs. */
|
1595 |
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
1596 |
|
|
{
|
1597 |
|
|
bfd_signed_vma *local_dlt;
|
1598 |
|
|
bfd_signed_vma *end_local_dlt;
|
1599 |
|
|
bfd_signed_vma *local_plt;
|
1600 |
|
|
bfd_signed_vma *end_local_plt;
|
1601 |
|
|
bfd_signed_vma *local_opd;
|
1602 |
|
|
bfd_signed_vma *end_local_opd;
|
1603 |
|
|
bfd_size_type locsymcount;
|
1604 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1605 |
|
|
asection *srel;
|
1606 |
|
|
|
1607 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
1608 |
|
|
continue;
|
1609 |
|
|
|
1610 |
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
1611 |
|
|
{
|
1612 |
|
|
struct elf64_hppa_dyn_reloc_entry *hdh_p;
|
1613 |
|
|
|
1614 |
|
|
for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
|
1615 |
|
|
elf_section_data (sec)->local_dynrel);
|
1616 |
|
|
hdh_p != NULL;
|
1617 |
|
|
hdh_p = hdh_p->next)
|
1618 |
|
|
{
|
1619 |
|
|
if (!bfd_is_abs_section (hdh_p->sec)
|
1620 |
|
|
&& bfd_is_abs_section (hdh_p->sec->output_section))
|
1621 |
|
|
{
|
1622 |
|
|
/* Input section has been discarded, either because
|
1623 |
|
|
it is a copy of a linkonce section or due to
|
1624 |
|
|
linker script /DISCARD/, so we'll be discarding
|
1625 |
|
|
the relocs too. */
|
1626 |
|
|
}
|
1627 |
|
|
else if (hdh_p->count != 0)
|
1628 |
|
|
{
|
1629 |
|
|
srel = elf_section_data (hdh_p->sec)->sreloc;
|
1630 |
|
|
srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
|
1631 |
|
|
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
|
1632 |
|
|
info->flags |= DF_TEXTREL;
|
1633 |
|
|
}
|
1634 |
|
|
}
|
1635 |
|
|
}
|
1636 |
|
|
|
1637 |
|
|
local_dlt = elf_local_got_refcounts (ibfd);
|
1638 |
|
|
if (!local_dlt)
|
1639 |
|
|
continue;
|
1640 |
|
|
|
1641 |
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
1642 |
|
|
locsymcount = symtab_hdr->sh_info;
|
1643 |
|
|
end_local_dlt = local_dlt + locsymcount;
|
1644 |
|
|
sec = hppa_info->dlt_sec;
|
1645 |
|
|
srel = hppa_info->dlt_rel_sec;
|
1646 |
|
|
for (; local_dlt < end_local_dlt; ++local_dlt)
|
1647 |
|
|
{
|
1648 |
|
|
if (*local_dlt > 0)
|
1649 |
|
|
{
|
1650 |
|
|
*local_dlt = sec->size;
|
1651 |
|
|
sec->size += DLT_ENTRY_SIZE;
|
1652 |
|
|
if (info->shared)
|
1653 |
|
|
{
|
1654 |
|
|
srel->size += sizeof (Elf64_External_Rela);
|
1655 |
|
|
}
|
1656 |
|
|
}
|
1657 |
|
|
else
|
1658 |
|
|
*local_dlt = (bfd_vma) -1;
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
local_plt = end_local_dlt;
|
1662 |
|
|
end_local_plt = local_plt + locsymcount;
|
1663 |
|
|
if (! hppa_info->root.dynamic_sections_created)
|
1664 |
|
|
{
|
1665 |
|
|
/* Won't be used, but be safe. */
|
1666 |
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
1667 |
|
|
*local_plt = (bfd_vma) -1;
|
1668 |
|
|
}
|
1669 |
|
|
else
|
1670 |
|
|
{
|
1671 |
|
|
sec = hppa_info->plt_sec;
|
1672 |
|
|
srel = hppa_info->plt_rel_sec;
|
1673 |
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
1674 |
|
|
{
|
1675 |
|
|
if (*local_plt > 0)
|
1676 |
|
|
{
|
1677 |
|
|
*local_plt = sec->size;
|
1678 |
|
|
sec->size += PLT_ENTRY_SIZE;
|
1679 |
|
|
if (info->shared)
|
1680 |
|
|
srel->size += sizeof (Elf64_External_Rela);
|
1681 |
|
|
}
|
1682 |
|
|
else
|
1683 |
|
|
*local_plt = (bfd_vma) -1;
|
1684 |
|
|
}
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
local_opd = end_local_plt;
|
1688 |
|
|
end_local_opd = local_opd + locsymcount;
|
1689 |
|
|
if (! hppa_info->root.dynamic_sections_created)
|
1690 |
|
|
{
|
1691 |
|
|
/* Won't be used, but be safe. */
|
1692 |
|
|
for (; local_opd < end_local_opd; ++local_opd)
|
1693 |
|
|
*local_opd = (bfd_vma) -1;
|
1694 |
|
|
}
|
1695 |
|
|
else
|
1696 |
|
|
{
|
1697 |
|
|
sec = hppa_info->opd_sec;
|
1698 |
|
|
srel = hppa_info->opd_rel_sec;
|
1699 |
|
|
for (; local_opd < end_local_opd; ++local_opd)
|
1700 |
|
|
{
|
1701 |
|
|
if (*local_opd > 0)
|
1702 |
|
|
{
|
1703 |
|
|
*local_opd = sec->size;
|
1704 |
|
|
sec->size += OPD_ENTRY_SIZE;
|
1705 |
|
|
if (info->shared)
|
1706 |
|
|
srel->size += sizeof (Elf64_External_Rela);
|
1707 |
|
|
}
|
1708 |
|
|
else
|
1709 |
|
|
*local_opd = (bfd_vma) -1;
|
1710 |
|
|
}
|
1711 |
|
|
}
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
/* Allocate the GOT entries. */
|
1715 |
|
|
|
1716 |
|
|
data.info = info;
|
1717 |
|
|
if (hppa_info->dlt_sec)
|
1718 |
|
|
{
|
1719 |
|
|
data.ofs = hppa_info->dlt_sec->size;
|
1720 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1721 |
|
|
allocate_global_data_dlt, &data);
|
1722 |
|
|
hppa_info->dlt_sec->size = data.ofs;
|
1723 |
|
|
}
|
1724 |
|
|
|
1725 |
|
|
if (hppa_info->plt_sec)
|
1726 |
|
|
{
|
1727 |
|
|
data.ofs = hppa_info->plt_sec->size;
|
1728 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1729 |
|
|
allocate_global_data_plt, &data);
|
1730 |
|
|
hppa_info->plt_sec->size = data.ofs;
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
if (hppa_info->stub_sec)
|
1734 |
|
|
{
|
1735 |
|
|
data.ofs = 0x0;
|
1736 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1737 |
|
|
allocate_global_data_stub, &data);
|
1738 |
|
|
hppa_info->stub_sec->size = data.ofs;
|
1739 |
|
|
}
|
1740 |
|
|
|
1741 |
|
|
/* Allocate space for entries in the .opd section. */
|
1742 |
|
|
if (hppa_info->opd_sec)
|
1743 |
|
|
{
|
1744 |
|
|
data.ofs = hppa_info->opd_sec->size;
|
1745 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1746 |
|
|
allocate_global_data_opd, &data);
|
1747 |
|
|
hppa_info->opd_sec->size = data.ofs;
|
1748 |
|
|
}
|
1749 |
|
|
|
1750 |
|
|
/* Now allocate space for dynamic relocations, if necessary. */
|
1751 |
|
|
if (hppa_info->root.dynamic_sections_created)
|
1752 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1753 |
|
|
allocate_dynrel_entries, &data);
|
1754 |
|
|
|
1755 |
|
|
/* The sizes of all the sections are set. Allocate memory for them. */
|
1756 |
|
|
plt = FALSE;
|
1757 |
|
|
relocs = FALSE;
|
1758 |
|
|
reltext = FALSE;
|
1759 |
|
|
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
|
1760 |
|
|
{
|
1761 |
|
|
const char *name;
|
1762 |
|
|
|
1763 |
|
|
if ((sec->flags & SEC_LINKER_CREATED) == 0)
|
1764 |
|
|
continue;
|
1765 |
|
|
|
1766 |
|
|
/* It's OK to base decisions on the section name, because none
|
1767 |
|
|
of the dynobj section names depend upon the input files. */
|
1768 |
|
|
name = bfd_get_section_name (dynobj, sec);
|
1769 |
|
|
|
1770 |
|
|
if (strcmp (name, ".plt") == 0)
|
1771 |
|
|
{
|
1772 |
|
|
/* Remember whether there is a PLT. */
|
1773 |
|
|
plt = sec->size != 0;
|
1774 |
|
|
}
|
1775 |
|
|
else if (strcmp (name, ".opd") == 0
|
1776 |
|
|
|| CONST_STRNEQ (name, ".dlt")
|
1777 |
|
|
|| strcmp (name, ".stub") == 0
|
1778 |
|
|
|| strcmp (name, ".got") == 0)
|
1779 |
|
|
{
|
1780 |
|
|
/* Strip this section if we don't need it; see the comment below. */
|
1781 |
|
|
}
|
1782 |
|
|
else if (CONST_STRNEQ (name, ".rela"))
|
1783 |
|
|
{
|
1784 |
|
|
if (sec->size != 0)
|
1785 |
|
|
{
|
1786 |
|
|
asection *target;
|
1787 |
|
|
|
1788 |
|
|
/* Remember whether there are any reloc sections other
|
1789 |
|
|
than .rela.plt. */
|
1790 |
|
|
if (strcmp (name, ".rela.plt") != 0)
|
1791 |
|
|
{
|
1792 |
|
|
const char *outname;
|
1793 |
|
|
|
1794 |
|
|
relocs = TRUE;
|
1795 |
|
|
|
1796 |
|
|
/* If this relocation section applies to a read only
|
1797 |
|
|
section, then we probably need a DT_TEXTREL
|
1798 |
|
|
entry. The entries in the .rela.plt section
|
1799 |
|
|
really apply to the .got section, which we
|
1800 |
|
|
created ourselves and so know is not readonly. */
|
1801 |
|
|
outname = bfd_get_section_name (output_bfd,
|
1802 |
|
|
sec->output_section);
|
1803 |
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
1804 |
|
|
if (target != NULL
|
1805 |
|
|
&& (target->flags & SEC_READONLY) != 0
|
1806 |
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
1807 |
|
|
reltext = TRUE;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
/* We use the reloc_count field as a counter if we need
|
1811 |
|
|
to copy relocs into the output file. */
|
1812 |
|
|
sec->reloc_count = 0;
|
1813 |
|
|
}
|
1814 |
|
|
}
|
1815 |
|
|
else
|
1816 |
|
|
{
|
1817 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
1818 |
|
|
continue;
|
1819 |
|
|
}
|
1820 |
|
|
|
1821 |
|
|
if (sec->size == 0)
|
1822 |
|
|
{
|
1823 |
|
|
/* If we don't need this section, strip it from the
|
1824 |
|
|
output file. This is mostly to handle .rela.bss and
|
1825 |
|
|
.rela.plt. We must create both sections in
|
1826 |
|
|
create_dynamic_sections, because they must be created
|
1827 |
|
|
before the linker maps input sections to output
|
1828 |
|
|
sections. The linker does that before
|
1829 |
|
|
adjust_dynamic_symbol is called, and it is that
|
1830 |
|
|
function which decides whether anything needs to go
|
1831 |
|
|
into these sections. */
|
1832 |
|
|
sec->flags |= SEC_EXCLUDE;
|
1833 |
|
|
continue;
|
1834 |
|
|
}
|
1835 |
|
|
|
1836 |
|
|
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
|
1837 |
|
|
continue;
|
1838 |
|
|
|
1839 |
|
|
/* Allocate memory for the section contents if it has not
|
1840 |
|
|
been allocated already. We use bfd_zalloc here in case
|
1841 |
|
|
unused entries are not reclaimed before the section's
|
1842 |
|
|
contents are written out. This should not happen, but this
|
1843 |
|
|
way if it does, we get a R_PARISC_NONE reloc instead of
|
1844 |
|
|
garbage. */
|
1845 |
|
|
if (sec->contents == NULL)
|
1846 |
|
|
{
|
1847 |
|
|
sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
|
1848 |
|
|
if (sec->contents == NULL)
|
1849 |
|
|
return FALSE;
|
1850 |
|
|
}
|
1851 |
|
|
}
|
1852 |
|
|
|
1853 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1854 |
|
|
{
|
1855 |
|
|
/* Always create a DT_PLTGOT. It actually has nothing to do with
|
1856 |
|
|
the PLT, it is how we communicate the __gp value of a load
|
1857 |
|
|
module to the dynamic linker. */
|
1858 |
|
|
#define add_dynamic_entry(TAG, VAL) \
|
1859 |
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
1860 |
|
|
|
1861 |
|
|
if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
|
1862 |
|
|
|| !add_dynamic_entry (DT_PLTGOT, 0))
|
1863 |
|
|
return FALSE;
|
1864 |
|
|
|
1865 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
1866 |
|
|
values later, in elf64_hppa_finish_dynamic_sections, but we
|
1867 |
|
|
must add the entries now so that we get the correct size for
|
1868 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
1869 |
|
|
dynamic linker and used by the debugger. */
|
1870 |
|
|
if (! info->shared)
|
1871 |
|
|
{
|
1872 |
|
|
if (!add_dynamic_entry (DT_DEBUG, 0)
|
1873 |
|
|
|| !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
|
1874 |
|
|
|| !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
|
1875 |
|
|
return FALSE;
|
1876 |
|
|
}
|
1877 |
|
|
|
1878 |
|
|
/* Force DT_FLAGS to always be set.
|
1879 |
|
|
Required by HPUX 11.00 patch PHSS_26559. */
|
1880 |
|
|
if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
|
1881 |
|
|
return FALSE;
|
1882 |
|
|
|
1883 |
|
|
if (plt)
|
1884 |
|
|
{
|
1885 |
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
1886 |
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
1887 |
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
1888 |
|
|
return FALSE;
|
1889 |
|
|
}
|
1890 |
|
|
|
1891 |
|
|
if (relocs)
|
1892 |
|
|
{
|
1893 |
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
1894 |
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
1895 |
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
|
1896 |
|
|
return FALSE;
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
if (reltext)
|
1900 |
|
|
{
|
1901 |
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
1902 |
|
|
return FALSE;
|
1903 |
|
|
info->flags |= DF_TEXTREL;
|
1904 |
|
|
}
|
1905 |
|
|
}
|
1906 |
|
|
#undef add_dynamic_entry
|
1907 |
|
|
|
1908 |
|
|
return TRUE;
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
/* Called after we have output the symbol into the dynamic symbol
|
1912 |
|
|
table, but before we output the symbol into the normal symbol
|
1913 |
|
|
table.
|
1914 |
|
|
|
1915 |
|
|
For some symbols we had to change their address when outputting
|
1916 |
|
|
the dynamic symbol table. We undo that change here so that
|
1917 |
|
|
the symbols have their expected value in the normal symbol
|
1918 |
|
|
table. Ick. */
|
1919 |
|
|
|
1920 |
|
|
static int
|
1921 |
|
|
elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1922 |
|
|
const char *name,
|
1923 |
|
|
Elf_Internal_Sym *sym,
|
1924 |
|
|
asection *input_sec ATTRIBUTE_UNUSED,
|
1925 |
|
|
struct elf_link_hash_entry *eh)
|
1926 |
|
|
{
|
1927 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1928 |
|
|
|
1929 |
|
|
/* We may be called with the file symbol or section symbols.
|
1930 |
|
|
They never need munging, so it is safe to ignore them. */
|
1931 |
|
|
if (!name || !eh)
|
1932 |
|
|
return 1;
|
1933 |
|
|
|
1934 |
|
|
/* Function symbols for which we created .opd entries *may* have been
|
1935 |
|
|
munged by finish_dynamic_symbol and have to be un-munged here.
|
1936 |
|
|
|
1937 |
|
|
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
1938 |
|
|
into non-dynamic ones, so we initialize st_shndx to -1 in
|
1939 |
|
|
mark_exported_functions and check to see if it was overwritten
|
1940 |
|
|
here instead of just checking eh->dynindx. */
|
1941 |
|
|
if (hh->want_opd && hh->st_shndx != -1)
|
1942 |
|
|
{
|
1943 |
|
|
/* Restore the saved value and section index. */
|
1944 |
|
|
sym->st_value = hh->st_value;
|
1945 |
|
|
sym->st_shndx = hh->st_shndx;
|
1946 |
|
|
}
|
1947 |
|
|
|
1948 |
|
|
return 1;
|
1949 |
|
|
}
|
1950 |
|
|
|
1951 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
1952 |
|
|
dynamic sections here. */
|
1953 |
|
|
|
1954 |
|
|
static bfd_boolean
|
1955 |
|
|
elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
|
1956 |
|
|
struct bfd_link_info *info,
|
1957 |
|
|
struct elf_link_hash_entry *eh,
|
1958 |
|
|
Elf_Internal_Sym *sym)
|
1959 |
|
|
{
|
1960 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
1961 |
|
|
asection *stub, *splt, *sopd, *spltrel;
|
1962 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1963 |
|
|
|
1964 |
|
|
hppa_info = hppa_link_hash_table (info);
|
1965 |
|
|
if (hppa_info == NULL)
|
1966 |
|
|
return FALSE;
|
1967 |
|
|
|
1968 |
|
|
stub = hppa_info->stub_sec;
|
1969 |
|
|
splt = hppa_info->plt_sec;
|
1970 |
|
|
sopd = hppa_info->opd_sec;
|
1971 |
|
|
spltrel = hppa_info->plt_rel_sec;
|
1972 |
|
|
|
1973 |
|
|
/* Incredible. It is actually necessary to NOT use the symbol's real
|
1974 |
|
|
value when building the dynamic symbol table for a shared library.
|
1975 |
|
|
At least for symbols that refer to functions.
|
1976 |
|
|
|
1977 |
|
|
We will store a new value and section index into the symbol long
|
1978 |
|
|
enough to output it into the dynamic symbol table, then we restore
|
1979 |
|
|
the original values (in elf64_hppa_link_output_symbol_hook). */
|
1980 |
|
|
if (hh->want_opd)
|
1981 |
|
|
{
|
1982 |
|
|
BFD_ASSERT (sopd != NULL);
|
1983 |
|
|
|
1984 |
|
|
/* Save away the original value and section index so that we
|
1985 |
|
|
can restore them later. */
|
1986 |
|
|
hh->st_value = sym->st_value;
|
1987 |
|
|
hh->st_shndx = sym->st_shndx;
|
1988 |
|
|
|
1989 |
|
|
/* For the dynamic symbol table entry, we want the value to be
|
1990 |
|
|
address of this symbol's entry within the .opd section. */
|
1991 |
|
|
sym->st_value = (hh->opd_offset
|
1992 |
|
|
+ sopd->output_offset
|
1993 |
|
|
+ sopd->output_section->vma);
|
1994 |
|
|
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
1995 |
|
|
sopd->output_section);
|
1996 |
|
|
}
|
1997 |
|
|
|
1998 |
|
|
/* Initialize a .plt entry if requested. */
|
1999 |
|
|
if (hh->want_plt
|
2000 |
|
|
&& elf64_hppa_dynamic_symbol_p (eh, info))
|
2001 |
|
|
{
|
2002 |
|
|
bfd_vma value;
|
2003 |
|
|
Elf_Internal_Rela rel;
|
2004 |
|
|
bfd_byte *loc;
|
2005 |
|
|
|
2006 |
|
|
BFD_ASSERT (splt != NULL && spltrel != NULL);
|
2007 |
|
|
|
2008 |
|
|
/* We do not actually care about the value in the PLT entry
|
2009 |
|
|
if we are creating a shared library and the symbol is
|
2010 |
|
|
still undefined, we create a dynamic relocation to fill
|
2011 |
|
|
in the correct value. */
|
2012 |
|
|
if (info->shared && eh->root.type == bfd_link_hash_undefined)
|
2013 |
|
|
value = 0;
|
2014 |
|
|
else
|
2015 |
|
|
value = (eh->root.u.def.value + eh->root.u.def.section->vma);
|
2016 |
|
|
|
2017 |
|
|
/* Fill in the entry in the procedure linkage table.
|
2018 |
|
|
|
2019 |
|
|
The format of a plt entry is
|
2020 |
|
|
<funcaddr> <__gp>.
|
2021 |
|
|
|
2022 |
|
|
plt_offset is the offset within the PLT section at which to
|
2023 |
|
|
install the PLT entry.
|
2024 |
|
|
|
2025 |
|
|
We are modifying the in-memory PLT contents here, so we do not add
|
2026 |
|
|
in the output_offset of the PLT section. */
|
2027 |
|
|
|
2028 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
|
2029 |
|
|
value = _bfd_get_gp_value (splt->output_section->owner);
|
2030 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
|
2031 |
|
|
|
2032 |
|
|
/* Create a dynamic IPLT relocation for this entry.
|
2033 |
|
|
|
2034 |
|
|
We are creating a relocation in the output file's PLT section,
|
2035 |
|
|
which is included within the DLT secton. So we do need to include
|
2036 |
|
|
the PLT's output_offset in the computation of the relocation's
|
2037 |
|
|
address. */
|
2038 |
|
|
rel.r_offset = (hh->plt_offset + splt->output_offset
|
2039 |
|
|
+ splt->output_section->vma);
|
2040 |
|
|
rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
|
2041 |
|
|
rel.r_addend = 0;
|
2042 |
|
|
|
2043 |
|
|
loc = spltrel->contents;
|
2044 |
|
|
loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
2045 |
|
|
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* Initialize an external call stub entry if requested. */
|
2049 |
|
|
if (hh->want_stub
|
2050 |
|
|
&& elf64_hppa_dynamic_symbol_p (eh, info))
|
2051 |
|
|
{
|
2052 |
|
|
bfd_vma value;
|
2053 |
|
|
int insn;
|
2054 |
|
|
unsigned int max_offset;
|
2055 |
|
|
|
2056 |
|
|
BFD_ASSERT (stub != NULL);
|
2057 |
|
|
|
2058 |
|
|
/* Install the generic stub template.
|
2059 |
|
|
|
2060 |
|
|
We are modifying the contents of the stub section, so we do not
|
2061 |
|
|
need to include the stub section's output_offset here. */
|
2062 |
|
|
memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
|
2063 |
|
|
|
2064 |
|
|
/* Fix up the first ldd instruction.
|
2065 |
|
|
|
2066 |
|
|
We are modifying the contents of the STUB section in memory,
|
2067 |
|
|
so we do not need to include its output offset in this computation.
|
2068 |
|
|
|
2069 |
|
|
Note the plt_offset value is the value of the PLT entry relative to
|
2070 |
|
|
the start of the PLT section. These instructions will reference
|
2071 |
|
|
data relative to the value of __gp, which may not necessarily have
|
2072 |
|
|
the same address as the start of the PLT section.
|
2073 |
|
|
|
2074 |
|
|
gp_offset contains the offset of __gp within the PLT section. */
|
2075 |
|
|
value = hh->plt_offset - hppa_info->gp_offset;
|
2076 |
|
|
|
2077 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
|
2078 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
2079 |
|
|
{
|
2080 |
|
|
/* Wide mode allows 16 bit offsets. */
|
2081 |
|
|
max_offset = 32768;
|
2082 |
|
|
insn &= ~ 0xfff1;
|
2083 |
|
|
insn |= re_assemble_16 ((int) value);
|
2084 |
|
|
}
|
2085 |
|
|
else
|
2086 |
|
|
{
|
2087 |
|
|
max_offset = 8192;
|
2088 |
|
|
insn &= ~ 0x3ff1;
|
2089 |
|
|
insn |= re_assemble_14 ((int) value);
|
2090 |
|
|
}
|
2091 |
|
|
|
2092 |
|
|
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
2093 |
|
|
{
|
2094 |
|
|
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
2095 |
|
|
hh->eh.root.root.string,
|
2096 |
|
|
(long) value);
|
2097 |
|
|
return FALSE;
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
2101 |
|
|
stub->contents + hh->stub_offset);
|
2102 |
|
|
|
2103 |
|
|
/* Fix up the second ldd instruction. */
|
2104 |
|
|
value += 8;
|
2105 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
|
2106 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
2107 |
|
|
{
|
2108 |
|
|
insn &= ~ 0xfff1;
|
2109 |
|
|
insn |= re_assemble_16 ((int) value);
|
2110 |
|
|
}
|
2111 |
|
|
else
|
2112 |
|
|
{
|
2113 |
|
|
insn &= ~ 0x3ff1;
|
2114 |
|
|
insn |= re_assemble_14 ((int) value);
|
2115 |
|
|
}
|
2116 |
|
|
bfd_put_32 (stub->owner, (bfd_vma) insn,
|
2117 |
|
|
stub->contents + hh->stub_offset + 8);
|
2118 |
|
|
}
|
2119 |
|
|
|
2120 |
|
|
return TRUE;
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
/* The .opd section contains FPTRs for each function this file
|
2124 |
|
|
exports. Initialize the FPTR entries. */
|
2125 |
|
|
|
2126 |
|
|
static bfd_boolean
|
2127 |
|
|
elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
|
2128 |
|
|
{
|
2129 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
2130 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2131 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2132 |
|
|
asection *sopd;
|
2133 |
|
|
asection *sopdrel;
|
2134 |
|
|
|
2135 |
|
|
hppa_info = hppa_link_hash_table (info);
|
2136 |
|
|
if (hppa_info == NULL)
|
2137 |
|
|
return FALSE;
|
2138 |
|
|
|
2139 |
|
|
sopd = hppa_info->opd_sec;
|
2140 |
|
|
sopdrel = hppa_info->opd_rel_sec;
|
2141 |
|
|
|
2142 |
|
|
if (hh->want_opd)
|
2143 |
|
|
{
|
2144 |
|
|
bfd_vma value;
|
2145 |
|
|
|
2146 |
|
|
/* The first two words of an .opd entry are zero.
|
2147 |
|
|
|
2148 |
|
|
We are modifying the contents of the OPD section in memory, so we
|
2149 |
|
|
do not need to include its output offset in this computation. */
|
2150 |
|
|
memset (sopd->contents + hh->opd_offset, 0, 16);
|
2151 |
|
|
|
2152 |
|
|
value = (eh->root.u.def.value
|
2153 |
|
|
+ eh->root.u.def.section->output_section->vma
|
2154 |
|
|
+ eh->root.u.def.section->output_offset);
|
2155 |
|
|
|
2156 |
|
|
/* The next word is the address of the function. */
|
2157 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
|
2158 |
|
|
|
2159 |
|
|
/* The last word is our local __gp value. */
|
2160 |
|
|
value = _bfd_get_gp_value (sopd->output_section->owner);
|
2161 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
/* If we are generating a shared library, we must generate EPLT relocations
|
2165 |
|
|
for each entry in the .opd, even for static functions (they may have
|
2166 |
|
|
had their address taken). */
|
2167 |
|
|
if (info->shared && hh->want_opd)
|
2168 |
|
|
{
|
2169 |
|
|
Elf_Internal_Rela rel;
|
2170 |
|
|
bfd_byte *loc;
|
2171 |
|
|
int dynindx;
|
2172 |
|
|
|
2173 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2174 |
|
|
which case we have to look up it's dynamic symbol index off
|
2175 |
|
|
the local symbol hash table. */
|
2176 |
|
|
if (eh->dynindx != -1)
|
2177 |
|
|
dynindx = eh->dynindx;
|
2178 |
|
|
else
|
2179 |
|
|
dynindx
|
2180 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
2181 |
|
|
hh->sym_indx);
|
2182 |
|
|
|
2183 |
|
|
/* The offset of this relocation is the absolute address of the
|
2184 |
|
|
.opd entry for this symbol. */
|
2185 |
|
|
rel.r_offset = (hh->opd_offset + sopd->output_offset
|
2186 |
|
|
+ sopd->output_section->vma);
|
2187 |
|
|
|
2188 |
|
|
/* If H is non-null, then we have an external symbol.
|
2189 |
|
|
|
2190 |
|
|
It is imperative that we use a different dynamic symbol for the
|
2191 |
|
|
EPLT relocation if the symbol has global scope.
|
2192 |
|
|
|
2193 |
|
|
In the dynamic symbol table, the function symbol will have a value
|
2194 |
|
|
which is address of the function's .opd entry.
|
2195 |
|
|
|
2196 |
|
|
Thus, we can not use that dynamic symbol for the EPLT relocation
|
2197 |
|
|
(if we did, the data in the .opd would reference itself rather
|
2198 |
|
|
than the actual address of the function). Instead we have to use
|
2199 |
|
|
a new dynamic symbol which has the same value as the original global
|
2200 |
|
|
function symbol.
|
2201 |
|
|
|
2202 |
|
|
We prefix the original symbol with a "." and use the new symbol in
|
2203 |
|
|
the EPLT relocation. This new symbol has already been recorded in
|
2204 |
|
|
the symbol table, we just have to look it up and use it.
|
2205 |
|
|
|
2206 |
|
|
We do not have such problems with static functions because we do
|
2207 |
|
|
not make their addresses in the dynamic symbol table point to
|
2208 |
|
|
the .opd entry. Ultimately this should be safe since a static
|
2209 |
|
|
function can not be directly referenced outside of its shared
|
2210 |
|
|
library.
|
2211 |
|
|
|
2212 |
|
|
We do have to play similar games for FPTR relocations in shared
|
2213 |
|
|
libraries, including those for static symbols. See the FPTR
|
2214 |
|
|
handling in elf64_hppa_finalize_dynreloc. */
|
2215 |
|
|
if (eh)
|
2216 |
|
|
{
|
2217 |
|
|
char *new_name;
|
2218 |
|
|
struct elf_link_hash_entry *nh;
|
2219 |
|
|
|
2220 |
|
|
new_name = alloca (strlen (eh->root.root.string) + 2);
|
2221 |
|
|
new_name[0] = '.';
|
2222 |
|
|
strcpy (new_name + 1, eh->root.root.string);
|
2223 |
|
|
|
2224 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (info),
|
2225 |
|
|
new_name, TRUE, TRUE, FALSE);
|
2226 |
|
|
|
2227 |
|
|
/* All we really want from the new symbol is its dynamic
|
2228 |
|
|
symbol index. */
|
2229 |
|
|
if (nh)
|
2230 |
|
|
dynindx = nh->dynindx;
|
2231 |
|
|
}
|
2232 |
|
|
|
2233 |
|
|
rel.r_addend = 0;
|
2234 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
2235 |
|
|
|
2236 |
|
|
loc = sopdrel->contents;
|
2237 |
|
|
loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
2238 |
|
|
bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
|
2239 |
|
|
}
|
2240 |
|
|
return TRUE;
|
2241 |
|
|
}
|
2242 |
|
|
|
2243 |
|
|
/* The .dlt section contains addresses for items referenced through the
|
2244 |
|
|
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
2245 |
|
|
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
2246 |
|
|
|
2247 |
|
|
static bfd_boolean
|
2248 |
|
|
elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
|
2249 |
|
|
{
|
2250 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
2251 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2252 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2253 |
|
|
asection *sdlt, *sdltrel;
|
2254 |
|
|
|
2255 |
|
|
hppa_info = hppa_link_hash_table (info);
|
2256 |
|
|
if (hppa_info == NULL)
|
2257 |
|
|
return FALSE;
|
2258 |
|
|
|
2259 |
|
|
sdlt = hppa_info->dlt_sec;
|
2260 |
|
|
sdltrel = hppa_info->dlt_rel_sec;
|
2261 |
|
|
|
2262 |
|
|
/* H/DYN_H may refer to a local variable and we know it's
|
2263 |
|
|
address, so there is no need to create a relocation. Just install
|
2264 |
|
|
the proper value into the DLT, note this shortcut can not be
|
2265 |
|
|
skipped when building a shared library. */
|
2266 |
|
|
if (! info->shared && hh && hh->want_dlt)
|
2267 |
|
|
{
|
2268 |
|
|
bfd_vma value;
|
2269 |
|
|
|
2270 |
|
|
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
2271 |
|
|
to point to the FPTR entry in the .opd section.
|
2272 |
|
|
|
2273 |
|
|
We include the OPD's output offset in this computation as
|
2274 |
|
|
we are referring to an absolute address in the resulting
|
2275 |
|
|
object file. */
|
2276 |
|
|
if (hh->want_opd)
|
2277 |
|
|
{
|
2278 |
|
|
value = (hh->opd_offset
|
2279 |
|
|
+ hppa_info->opd_sec->output_offset
|
2280 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
2281 |
|
|
}
|
2282 |
|
|
else if ((eh->root.type == bfd_link_hash_defined
|
2283 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
2284 |
|
|
&& eh->root.u.def.section)
|
2285 |
|
|
{
|
2286 |
|
|
value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
|
2287 |
|
|
if (eh->root.u.def.section->output_section)
|
2288 |
|
|
value += eh->root.u.def.section->output_section->vma;
|
2289 |
|
|
else
|
2290 |
|
|
value += eh->root.u.def.section->vma;
|
2291 |
|
|
}
|
2292 |
|
|
else
|
2293 |
|
|
/* We have an undefined function reference. */
|
2294 |
|
|
value = 0;
|
2295 |
|
|
|
2296 |
|
|
/* We do not need to include the output offset of the DLT section
|
2297 |
|
|
here because we are modifying the in-memory contents. */
|
2298 |
|
|
bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* Create a relocation for the DLT entry associated with this symbol.
|
2302 |
|
|
When building a shared library the symbol does not have to be dynamic. */
|
2303 |
|
|
if (hh->want_dlt
|
2304 |
|
|
&& (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
|
2305 |
|
|
{
|
2306 |
|
|
Elf_Internal_Rela rel;
|
2307 |
|
|
bfd_byte *loc;
|
2308 |
|
|
int dynindx;
|
2309 |
|
|
|
2310 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2311 |
|
|
which case we have to look up it's dynamic symbol index off
|
2312 |
|
|
the local symbol hash table. */
|
2313 |
|
|
if (eh && eh->dynindx != -1)
|
2314 |
|
|
dynindx = eh->dynindx;
|
2315 |
|
|
else
|
2316 |
|
|
dynindx
|
2317 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
2318 |
|
|
hh->sym_indx);
|
2319 |
|
|
|
2320 |
|
|
/* Create a dynamic relocation for this entry. Do include the output
|
2321 |
|
|
offset of the DLT entry since we need an absolute address in the
|
2322 |
|
|
resulting object file. */
|
2323 |
|
|
rel.r_offset = (hh->dlt_offset + sdlt->output_offset
|
2324 |
|
|
+ sdlt->output_section->vma);
|
2325 |
|
|
if (eh && eh->type == STT_FUNC)
|
2326 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
2327 |
|
|
else
|
2328 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
2329 |
|
|
rel.r_addend = 0;
|
2330 |
|
|
|
2331 |
|
|
loc = sdltrel->contents;
|
2332 |
|
|
loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
|
2333 |
|
|
bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
|
2334 |
|
|
}
|
2335 |
|
|
return TRUE;
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
2339 |
|
|
for dynamic functions used to initialize static data. */
|
2340 |
|
|
|
2341 |
|
|
static bfd_boolean
|
2342 |
|
|
elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
|
2343 |
|
|
void *data)
|
2344 |
|
|
{
|
2345 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
2346 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2347 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2348 |
|
|
int dynamic_symbol;
|
2349 |
|
|
|
2350 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
|
2351 |
|
|
|
2352 |
|
|
if (!dynamic_symbol && !info->shared)
|
2353 |
|
|
return TRUE;
|
2354 |
|
|
|
2355 |
|
|
if (hh->reloc_entries)
|
2356 |
|
|
{
|
2357 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
2358 |
|
|
int dynindx;
|
2359 |
|
|
|
2360 |
|
|
hppa_info = hppa_link_hash_table (info);
|
2361 |
|
|
if (hppa_info == NULL)
|
2362 |
|
|
return FALSE;
|
2363 |
|
|
|
2364 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2365 |
|
|
which case we have to look up it's dynamic symbol index off
|
2366 |
|
|
the local symbol hash table. */
|
2367 |
|
|
if (eh->dynindx != -1)
|
2368 |
|
|
dynindx = eh->dynindx;
|
2369 |
|
|
else
|
2370 |
|
|
dynindx
|
2371 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
|
2372 |
|
|
hh->sym_indx);
|
2373 |
|
|
|
2374 |
|
|
for (rent = hh->reloc_entries; rent; rent = rent->next)
|
2375 |
|
|
{
|
2376 |
|
|
Elf_Internal_Rela rel;
|
2377 |
|
|
bfd_byte *loc;
|
2378 |
|
|
|
2379 |
|
|
/* Allocate one iff we are building a shared library, the relocation
|
2380 |
|
|
isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
|
2381 |
|
|
if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
2382 |
|
|
continue;
|
2383 |
|
|
|
2384 |
|
|
/* Create a dynamic relocation for this entry.
|
2385 |
|
|
|
2386 |
|
|
We need the output offset for the reloc's section because
|
2387 |
|
|
we are creating an absolute address in the resulting object
|
2388 |
|
|
file. */
|
2389 |
|
|
rel.r_offset = (rent->offset + rent->sec->output_offset
|
2390 |
|
|
+ rent->sec->output_section->vma);
|
2391 |
|
|
|
2392 |
|
|
/* An FPTR64 relocation implies that we took the address of
|
2393 |
|
|
a function and that the function has an entry in the .opd
|
2394 |
|
|
section. We want the FPTR64 relocation to reference the
|
2395 |
|
|
entry in .opd.
|
2396 |
|
|
|
2397 |
|
|
We could munge the symbol value in the dynamic symbol table
|
2398 |
|
|
(in fact we already do for functions with global scope) to point
|
2399 |
|
|
to the .opd entry. Then we could use that dynamic symbol in
|
2400 |
|
|
this relocation.
|
2401 |
|
|
|
2402 |
|
|
Or we could do something sensible, not munge the symbol's
|
2403 |
|
|
address and instead just use a different symbol to reference
|
2404 |
|
|
the .opd entry. At least that seems sensible until you
|
2405 |
|
|
realize there's no local dynamic symbols we can use for that
|
2406 |
|
|
purpose. Thus the hair in the check_relocs routine.
|
2407 |
|
|
|
2408 |
|
|
We use a section symbol recorded by check_relocs as the
|
2409 |
|
|
base symbol for the relocation. The addend is the difference
|
2410 |
|
|
between the section symbol and the address of the .opd entry. */
|
2411 |
|
|
if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
|
2412 |
|
|
{
|
2413 |
|
|
bfd_vma value, value2;
|
2414 |
|
|
|
2415 |
|
|
/* First compute the address of the opd entry for this symbol. */
|
2416 |
|
|
value = (hh->opd_offset
|
2417 |
|
|
+ hppa_info->opd_sec->output_section->vma
|
2418 |
|
|
+ hppa_info->opd_sec->output_offset);
|
2419 |
|
|
|
2420 |
|
|
/* Compute the value of the start of the section with
|
2421 |
|
|
the relocation. */
|
2422 |
|
|
value2 = (rent->sec->output_section->vma
|
2423 |
|
|
+ rent->sec->output_offset);
|
2424 |
|
|
|
2425 |
|
|
/* Compute the difference between the start of the section
|
2426 |
|
|
with the relocation and the opd entry. */
|
2427 |
|
|
value -= value2;
|
2428 |
|
|
|
2429 |
|
|
/* The result becomes the addend of the relocation. */
|
2430 |
|
|
rel.r_addend = value;
|
2431 |
|
|
|
2432 |
|
|
/* The section symbol becomes the symbol for the dynamic
|
2433 |
|
|
relocation. */
|
2434 |
|
|
dynindx
|
2435 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info,
|
2436 |
|
|
rent->sec->owner,
|
2437 |
|
|
rent->sec_symndx);
|
2438 |
|
|
}
|
2439 |
|
|
else
|
2440 |
|
|
rel.r_addend = rent->addend;
|
2441 |
|
|
|
2442 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, rent->type);
|
2443 |
|
|
|
2444 |
|
|
loc = hppa_info->other_rel_sec->contents;
|
2445 |
|
|
loc += (hppa_info->other_rel_sec->reloc_count++
|
2446 |
|
|
* sizeof (Elf64_External_Rela));
|
2447 |
|
|
bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
|
2448 |
|
|
&rel, loc);
|
2449 |
|
|
}
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
return TRUE;
|
2453 |
|
|
}
|
2454 |
|
|
|
2455 |
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
2456 |
|
|
dynamic linker, before writing them out. */
|
2457 |
|
|
|
2458 |
|
|
static enum elf_reloc_type_class
|
2459 |
|
|
elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
|
2460 |
|
|
{
|
2461 |
|
|
if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
|
2462 |
|
|
return reloc_class_relative;
|
2463 |
|
|
|
2464 |
|
|
switch ((int) ELF64_R_TYPE (rela->r_info))
|
2465 |
|
|
{
|
2466 |
|
|
case R_PARISC_IPLT:
|
2467 |
|
|
return reloc_class_plt;
|
2468 |
|
|
case R_PARISC_COPY:
|
2469 |
|
|
return reloc_class_copy;
|
2470 |
|
|
default:
|
2471 |
|
|
return reloc_class_normal;
|
2472 |
|
|
}
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
/* Finish up the dynamic sections. */
|
2476 |
|
|
|
2477 |
|
|
static bfd_boolean
|
2478 |
|
|
elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
|
2479 |
|
|
struct bfd_link_info *info)
|
2480 |
|
|
{
|
2481 |
|
|
bfd *dynobj;
|
2482 |
|
|
asection *sdyn;
|
2483 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2484 |
|
|
|
2485 |
|
|
hppa_info = hppa_link_hash_table (info);
|
2486 |
|
|
if (hppa_info == NULL)
|
2487 |
|
|
return FALSE;
|
2488 |
|
|
|
2489 |
|
|
/* Finalize the contents of the .opd section. */
|
2490 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2491 |
|
|
elf64_hppa_finalize_opd,
|
2492 |
|
|
info);
|
2493 |
|
|
|
2494 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2495 |
|
|
elf64_hppa_finalize_dynreloc,
|
2496 |
|
|
info);
|
2497 |
|
|
|
2498 |
|
|
/* Finalize the contents of the .dlt section. */
|
2499 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2500 |
|
|
/* Finalize the contents of the .dlt section. */
|
2501 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
2502 |
|
|
elf64_hppa_finalize_dlt,
|
2503 |
|
|
info);
|
2504 |
|
|
|
2505 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
2506 |
|
|
|
2507 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2508 |
|
|
{
|
2509 |
|
|
Elf64_External_Dyn *dyncon, *dynconend;
|
2510 |
|
|
|
2511 |
|
|
BFD_ASSERT (sdyn != NULL);
|
2512 |
|
|
|
2513 |
|
|
dyncon = (Elf64_External_Dyn *) sdyn->contents;
|
2514 |
|
|
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
|
2515 |
|
|
for (; dyncon < dynconend; dyncon++)
|
2516 |
|
|
{
|
2517 |
|
|
Elf_Internal_Dyn dyn;
|
2518 |
|
|
asection *s;
|
2519 |
|
|
|
2520 |
|
|
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
|
2521 |
|
|
|
2522 |
|
|
switch (dyn.d_tag)
|
2523 |
|
|
{
|
2524 |
|
|
default:
|
2525 |
|
|
break;
|
2526 |
|
|
|
2527 |
|
|
case DT_HP_LOAD_MAP:
|
2528 |
|
|
/* Compute the absolute address of 16byte scratchpad area
|
2529 |
|
|
for the dynamic linker.
|
2530 |
|
|
|
2531 |
|
|
By convention the linker script will allocate the scratchpad
|
2532 |
|
|
area at the start of the .data section. So all we have to
|
2533 |
|
|
to is find the start of the .data section. */
|
2534 |
|
|
s = bfd_get_section_by_name (output_bfd, ".data");
|
2535 |
|
|
dyn.d_un.d_ptr = s->vma;
|
2536 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2537 |
|
|
break;
|
2538 |
|
|
|
2539 |
|
|
case DT_PLTGOT:
|
2540 |
|
|
/* HP's use PLTGOT to set the GOT register. */
|
2541 |
|
|
dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
|
2542 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2543 |
|
|
break;
|
2544 |
|
|
|
2545 |
|
|
case DT_JMPREL:
|
2546 |
|
|
s = hppa_info->plt_rel_sec;
|
2547 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
2548 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2549 |
|
|
break;
|
2550 |
|
|
|
2551 |
|
|
case DT_PLTRELSZ:
|
2552 |
|
|
s = hppa_info->plt_rel_sec;
|
2553 |
|
|
dyn.d_un.d_val = s->size;
|
2554 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2555 |
|
|
break;
|
2556 |
|
|
|
2557 |
|
|
case DT_RELA:
|
2558 |
|
|
s = hppa_info->other_rel_sec;
|
2559 |
|
|
if (! s || ! s->size)
|
2560 |
|
|
s = hppa_info->dlt_rel_sec;
|
2561 |
|
|
if (! s || ! s->size)
|
2562 |
|
|
s = hppa_info->opd_rel_sec;
|
2563 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
2564 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2565 |
|
|
break;
|
2566 |
|
|
|
2567 |
|
|
case DT_RELASZ:
|
2568 |
|
|
s = hppa_info->other_rel_sec;
|
2569 |
|
|
dyn.d_un.d_val = s->size;
|
2570 |
|
|
s = hppa_info->dlt_rel_sec;
|
2571 |
|
|
dyn.d_un.d_val += s->size;
|
2572 |
|
|
s = hppa_info->opd_rel_sec;
|
2573 |
|
|
dyn.d_un.d_val += s->size;
|
2574 |
|
|
/* There is some question about whether or not the size of
|
2575 |
|
|
the PLT relocs should be included here. HP's tools do
|
2576 |
|
|
it, so we'll emulate them. */
|
2577 |
|
|
s = hppa_info->plt_rel_sec;
|
2578 |
|
|
dyn.d_un.d_val += s->size;
|
2579 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2580 |
|
|
break;
|
2581 |
|
|
|
2582 |
|
|
}
|
2583 |
|
|
}
|
2584 |
|
|
}
|
2585 |
|
|
|
2586 |
|
|
return TRUE;
|
2587 |
|
|
}
|
2588 |
|
|
|
2589 |
|
|
/* Support for core dump NOTE sections. */
|
2590 |
|
|
|
2591 |
|
|
static bfd_boolean
|
2592 |
|
|
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
2593 |
|
|
{
|
2594 |
|
|
int offset;
|
2595 |
|
|
size_t size;
|
2596 |
|
|
|
2597 |
|
|
switch (note->descsz)
|
2598 |
|
|
{
|
2599 |
|
|
default:
|
2600 |
|
|
return FALSE;
|
2601 |
|
|
|
2602 |
|
|
case 760: /* Linux/hppa */
|
2603 |
|
|
/* pr_cursig */
|
2604 |
|
|
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
2605 |
|
|
|
2606 |
|
|
/* pr_pid */
|
2607 |
|
|
elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
|
2608 |
|
|
|
2609 |
|
|
/* pr_reg */
|
2610 |
|
|
offset = 112;
|
2611 |
|
|
size = 640;
|
2612 |
|
|
|
2613 |
|
|
break;
|
2614 |
|
|
}
|
2615 |
|
|
|
2616 |
|
|
/* Make a ".reg/999" section. */
|
2617 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
2618 |
|
|
size, note->descpos + offset);
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
static bfd_boolean
|
2622 |
|
|
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
2623 |
|
|
{
|
2624 |
|
|
char * command;
|
2625 |
|
|
int n;
|
2626 |
|
|
|
2627 |
|
|
switch (note->descsz)
|
2628 |
|
|
{
|
2629 |
|
|
default:
|
2630 |
|
|
return FALSE;
|
2631 |
|
|
|
2632 |
|
|
case 136: /* Linux/hppa elf_prpsinfo. */
|
2633 |
|
|
elf_tdata (abfd)->core_program
|
2634 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
|
2635 |
|
|
elf_tdata (abfd)->core_command
|
2636 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
|
2637 |
|
|
}
|
2638 |
|
|
|
2639 |
|
|
/* Note that for some reason, a spurious space is tacked
|
2640 |
|
|
onto the end of the args in some (at least one anyway)
|
2641 |
|
|
implementations, so strip it off if it exists. */
|
2642 |
|
|
command = elf_tdata (abfd)->core_command;
|
2643 |
|
|
n = strlen (command);
|
2644 |
|
|
|
2645 |
|
|
if (0 < n && command[n - 1] == ' ')
|
2646 |
|
|
command[n - 1] = '\0';
|
2647 |
|
|
|
2648 |
|
|
return TRUE;
|
2649 |
|
|
}
|
2650 |
|
|
|
2651 |
|
|
/* Return the number of additional phdrs we will need.
|
2652 |
|
|
|
2653 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
2654 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
2655 |
|
|
|
2656 |
|
|
This routine indicates that the backend needs one additional program
|
2657 |
|
|
header for that case.
|
2658 |
|
|
|
2659 |
|
|
Note we do not have access to the link info structure here, so we have
|
2660 |
|
|
to guess whether or not we are building a shared library based on the
|
2661 |
|
|
existence of a .interp section. */
|
2662 |
|
|
|
2663 |
|
|
static int
|
2664 |
|
|
elf64_hppa_additional_program_headers (bfd *abfd,
|
2665 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
2666 |
|
|
{
|
2667 |
|
|
asection *s;
|
2668 |
|
|
|
2669 |
|
|
/* If we are creating a shared library, then we have to create a
|
2670 |
|
|
PT_PHDR segment. HP's dynamic linker chokes without it. */
|
2671 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
2672 |
|
|
if (! s)
|
2673 |
|
|
return 1;
|
2674 |
|
|
return 0;
|
2675 |
|
|
}
|
2676 |
|
|
|
2677 |
|
|
/* Allocate and initialize any program headers required by this
|
2678 |
|
|
specific backend.
|
2679 |
|
|
|
2680 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
2681 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
2682 |
|
|
|
2683 |
|
|
This allocates the PT_PHDR and initializes it in a manner suitable
|
2684 |
|
|
for the HP linker.
|
2685 |
|
|
|
2686 |
|
|
Note we do not have access to the link info structure here, so we have
|
2687 |
|
|
to guess whether or not we are building a shared library based on the
|
2688 |
|
|
existence of a .interp section. */
|
2689 |
|
|
|
2690 |
|
|
static bfd_boolean
|
2691 |
|
|
elf64_hppa_modify_segment_map (bfd *abfd,
|
2692 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
2693 |
|
|
{
|
2694 |
|
|
struct elf_segment_map *m;
|
2695 |
|
|
asection *s;
|
2696 |
|
|
|
2697 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
2698 |
|
|
if (! s)
|
2699 |
|
|
{
|
2700 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
2701 |
|
|
if (m->p_type == PT_PHDR)
|
2702 |
|
|
break;
|
2703 |
|
|
if (m == NULL)
|
2704 |
|
|
{
|
2705 |
|
|
m = ((struct elf_segment_map *)
|
2706 |
|
|
bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
|
2707 |
|
|
if (m == NULL)
|
2708 |
|
|
return FALSE;
|
2709 |
|
|
|
2710 |
|
|
m->p_type = PT_PHDR;
|
2711 |
|
|
m->p_flags = PF_R | PF_X;
|
2712 |
|
|
m->p_flags_valid = 1;
|
2713 |
|
|
m->p_paddr_valid = 1;
|
2714 |
|
|
m->includes_phdrs = 1;
|
2715 |
|
|
|
2716 |
|
|
m->next = elf_tdata (abfd)->segment_map;
|
2717 |
|
|
elf_tdata (abfd)->segment_map = m;
|
2718 |
|
|
}
|
2719 |
|
|
}
|
2720 |
|
|
|
2721 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
2722 |
|
|
if (m->p_type == PT_LOAD)
|
2723 |
|
|
{
|
2724 |
|
|
unsigned int i;
|
2725 |
|
|
|
2726 |
|
|
for (i = 0; i < m->count; i++)
|
2727 |
|
|
{
|
2728 |
|
|
/* The code "hint" is not really a hint. It is a requirement
|
2729 |
|
|
for certain versions of the HP dynamic linker. Worse yet,
|
2730 |
|
|
it must be set even if the shared library does not have
|
2731 |
|
|
any code in its "text" segment (thus the check for .hash
|
2732 |
|
|
to catch this situation). */
|
2733 |
|
|
if (m->sections[i]->flags & SEC_CODE
|
2734 |
|
|
|| (strcmp (m->sections[i]->name, ".hash") == 0))
|
2735 |
|
|
m->p_flags |= (PF_X | PF_HP_CODE);
|
2736 |
|
|
}
|
2737 |
|
|
}
|
2738 |
|
|
|
2739 |
|
|
return TRUE;
|
2740 |
|
|
}
|
2741 |
|
|
|
2742 |
|
|
/* Called when writing out an object file to decide the type of a
|
2743 |
|
|
symbol. */
|
2744 |
|
|
static int
|
2745 |
|
|
elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
|
2746 |
|
|
int type)
|
2747 |
|
|
{
|
2748 |
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
2749 |
|
|
return STT_PARISC_MILLI;
|
2750 |
|
|
else
|
2751 |
|
|
return type;
|
2752 |
|
|
}
|
2753 |
|
|
|
2754 |
|
|
/* Support HP specific sections for core files. */
|
2755 |
|
|
|
2756 |
|
|
static bfd_boolean
|
2757 |
|
|
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
|
2758 |
|
|
const char *typename)
|
2759 |
|
|
{
|
2760 |
|
|
if (hdr->p_type == PT_HP_CORE_KERNEL)
|
2761 |
|
|
{
|
2762 |
|
|
asection *sect;
|
2763 |
|
|
|
2764 |
|
|
if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
|
2765 |
|
|
return FALSE;
|
2766 |
|
|
|
2767 |
|
|
sect = bfd_make_section_anyway (abfd, ".kernel");
|
2768 |
|
|
if (sect == NULL)
|
2769 |
|
|
return FALSE;
|
2770 |
|
|
sect->size = hdr->p_filesz;
|
2771 |
|
|
sect->filepos = hdr->p_offset;
|
2772 |
|
|
sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
|
2773 |
|
|
return TRUE;
|
2774 |
|
|
}
|
2775 |
|
|
|
2776 |
|
|
if (hdr->p_type == PT_HP_CORE_PROC)
|
2777 |
|
|
{
|
2778 |
|
|
int sig;
|
2779 |
|
|
|
2780 |
|
|
if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
|
2781 |
|
|
return FALSE;
|
2782 |
|
|
if (bfd_bread (&sig, 4, abfd) != 4)
|
2783 |
|
|
return FALSE;
|
2784 |
|
|
|
2785 |
|
|
elf_tdata (abfd)->core_signal = sig;
|
2786 |
|
|
|
2787 |
|
|
if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
|
2788 |
|
|
return FALSE;
|
2789 |
|
|
|
2790 |
|
|
/* GDB uses the ".reg" section to read register contents. */
|
2791 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
|
2792 |
|
|
hdr->p_offset);
|
2793 |
|
|
}
|
2794 |
|
|
|
2795 |
|
|
if (hdr->p_type == PT_HP_CORE_LOADABLE
|
2796 |
|
|
|| hdr->p_type == PT_HP_CORE_STACK
|
2797 |
|
|
|| hdr->p_type == PT_HP_CORE_MMF)
|
2798 |
|
|
hdr->p_type = PT_LOAD;
|
2799 |
|
|
|
2800 |
|
|
return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
|
2801 |
|
|
}
|
2802 |
|
|
|
2803 |
|
|
/* Hook called by the linker routine which adds symbols from an object
|
2804 |
|
|
file. HP's libraries define symbols with HP specific section
|
2805 |
|
|
indices, which we have to handle. */
|
2806 |
|
|
|
2807 |
|
|
static bfd_boolean
|
2808 |
|
|
elf_hppa_add_symbol_hook (bfd *abfd,
|
2809 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
2810 |
|
|
Elf_Internal_Sym *sym,
|
2811 |
|
|
const char **namep ATTRIBUTE_UNUSED,
|
2812 |
|
|
flagword *flagsp ATTRIBUTE_UNUSED,
|
2813 |
|
|
asection **secp,
|
2814 |
|
|
bfd_vma *valp)
|
2815 |
|
|
{
|
2816 |
|
|
unsigned int sec_index = sym->st_shndx;
|
2817 |
|
|
|
2818 |
|
|
switch (sec_index)
|
2819 |
|
|
{
|
2820 |
|
|
case SHN_PARISC_ANSI_COMMON:
|
2821 |
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
|
2822 |
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
2823 |
|
|
*valp = sym->st_size;
|
2824 |
|
|
break;
|
2825 |
|
|
|
2826 |
|
|
case SHN_PARISC_HUGE_COMMON:
|
2827 |
|
|
*secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
|
2828 |
|
|
(*secp)->flags |= SEC_IS_COMMON;
|
2829 |
|
|
*valp = sym->st_size;
|
2830 |
|
|
break;
|
2831 |
|
|
}
|
2832 |
|
|
|
2833 |
|
|
return TRUE;
|
2834 |
|
|
}
|
2835 |
|
|
|
2836 |
|
|
static bfd_boolean
|
2837 |
|
|
elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
2838 |
|
|
void *data)
|
2839 |
|
|
{
|
2840 |
|
|
struct bfd_link_info *info = data;
|
2841 |
|
|
|
2842 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
2843 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2844 |
|
|
|
2845 |
|
|
/* If we are not creating a shared library, and this symbol is
|
2846 |
|
|
referenced by a shared library but is not defined anywhere, then
|
2847 |
|
|
the generic code will warn that it is undefined.
|
2848 |
|
|
|
2849 |
|
|
This behavior is undesirable on HPs since the standard shared
|
2850 |
|
|
libraries contain references to undefined symbols.
|
2851 |
|
|
|
2852 |
|
|
So we twiddle the flags associated with such symbols so that they
|
2853 |
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
2854 |
|
|
|
2855 |
|
|
Ultimately we should have better controls over the generic ELF BFD
|
2856 |
|
|
linker code. */
|
2857 |
|
|
if (! info->relocatable
|
2858 |
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
2859 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
2860 |
|
|
&& h->ref_dynamic
|
2861 |
|
|
&& !h->ref_regular)
|
2862 |
|
|
{
|
2863 |
|
|
h->ref_dynamic = 0;
|
2864 |
|
|
h->pointer_equality_needed = 1;
|
2865 |
|
|
}
|
2866 |
|
|
|
2867 |
|
|
return TRUE;
|
2868 |
|
|
}
|
2869 |
|
|
|
2870 |
|
|
static bfd_boolean
|
2871 |
|
|
elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
|
2872 |
|
|
void *data)
|
2873 |
|
|
{
|
2874 |
|
|
struct bfd_link_info *info = data;
|
2875 |
|
|
|
2876 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
2877 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2878 |
|
|
|
2879 |
|
|
/* If we are not creating a shared library, and this symbol is
|
2880 |
|
|
referenced by a shared library but is not defined anywhere, then
|
2881 |
|
|
the generic code will warn that it is undefined.
|
2882 |
|
|
|
2883 |
|
|
This behavior is undesirable on HPs since the standard shared
|
2884 |
|
|
libraries contain references to undefined symbols.
|
2885 |
|
|
|
2886 |
|
|
So we twiddle the flags associated with such symbols so that they
|
2887 |
|
|
will not trigger the warning. ?!? FIXME. This is horribly fragile.
|
2888 |
|
|
|
2889 |
|
|
Ultimately we should have better controls over the generic ELF BFD
|
2890 |
|
|
linker code. */
|
2891 |
|
|
if (! info->relocatable
|
2892 |
|
|
&& info->unresolved_syms_in_shared_libs != RM_IGNORE
|
2893 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
2894 |
|
|
&& !h->ref_dynamic
|
2895 |
|
|
&& !h->ref_regular
|
2896 |
|
|
&& h->pointer_equality_needed)
|
2897 |
|
|
{
|
2898 |
|
|
h->ref_dynamic = 1;
|
2899 |
|
|
h->pointer_equality_needed = 0;
|
2900 |
|
|
}
|
2901 |
|
|
|
2902 |
|
|
return TRUE;
|
2903 |
|
|
}
|
2904 |
|
|
|
2905 |
|
|
static bfd_boolean
|
2906 |
|
|
elf_hppa_is_dynamic_loader_symbol (const char *name)
|
2907 |
|
|
{
|
2908 |
|
|
return (! strcmp (name, "__CPU_REVISION")
|
2909 |
|
|
|| ! strcmp (name, "__CPU_KEYBITS_1")
|
2910 |
|
|
|| ! strcmp (name, "__SYSTEM_ID_D")
|
2911 |
|
|
|| ! strcmp (name, "__FPU_MODEL")
|
2912 |
|
|
|| ! strcmp (name, "__FPU_REVISION")
|
2913 |
|
|
|| ! strcmp (name, "__ARGC")
|
2914 |
|
|
|| ! strcmp (name, "__ARGV")
|
2915 |
|
|
|| ! strcmp (name, "__ENVP")
|
2916 |
|
|
|| ! strcmp (name, "__TLS_SIZE_D")
|
2917 |
|
|
|| ! strcmp (name, "__LOAD_INFO")
|
2918 |
|
|
|| ! strcmp (name, "__systab"));
|
2919 |
|
|
}
|
2920 |
|
|
|
2921 |
|
|
/* Record the lowest address for the data and text segments. */
|
2922 |
|
|
static void
|
2923 |
|
|
elf_hppa_record_segment_addrs (bfd *abfd,
|
2924 |
|
|
asection *section,
|
2925 |
|
|
void *data)
|
2926 |
|
|
{
|
2927 |
|
|
struct elf64_hppa_link_hash_table *hppa_info = data;
|
2928 |
|
|
|
2929 |
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
2930 |
|
|
{
|
2931 |
|
|
bfd_vma value;
|
2932 |
|
|
Elf_Internal_Phdr *p;
|
2933 |
|
|
|
2934 |
|
|
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
|
2935 |
|
|
BFD_ASSERT (p != NULL);
|
2936 |
|
|
value = p->p_vaddr;
|
2937 |
|
|
|
2938 |
|
|
if (section->flags & SEC_READONLY)
|
2939 |
|
|
{
|
2940 |
|
|
if (value < hppa_info->text_segment_base)
|
2941 |
|
|
hppa_info->text_segment_base = value;
|
2942 |
|
|
}
|
2943 |
|
|
else
|
2944 |
|
|
{
|
2945 |
|
|
if (value < hppa_info->data_segment_base)
|
2946 |
|
|
hppa_info->data_segment_base = value;
|
2947 |
|
|
}
|
2948 |
|
|
}
|
2949 |
|
|
}
|
2950 |
|
|
|
2951 |
|
|
/* Called after we have seen all the input files/sections, but before
|
2952 |
|
|
final symbol resolution and section placement has been determined.
|
2953 |
|
|
|
2954 |
|
|
We use this hook to (possibly) provide a value for __gp, then we
|
2955 |
|
|
fall back to the generic ELF final link routine. */
|
2956 |
|
|
|
2957 |
|
|
static bfd_boolean
|
2958 |
|
|
elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
|
2959 |
|
|
{
|
2960 |
|
|
bfd_boolean retval;
|
2961 |
|
|
struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
|
2962 |
|
|
|
2963 |
|
|
if (hppa_info == NULL)
|
2964 |
|
|
return FALSE;
|
2965 |
|
|
|
2966 |
|
|
if (! info->relocatable)
|
2967 |
|
|
{
|
2968 |
|
|
struct elf_link_hash_entry *gp;
|
2969 |
|
|
bfd_vma gp_val;
|
2970 |
|
|
|
2971 |
|
|
/* The linker script defines a value for __gp iff it was referenced
|
2972 |
|
|
by one of the objects being linked. First try to find the symbol
|
2973 |
|
|
in the hash table. If that fails, just compute the value __gp
|
2974 |
|
|
should have had. */
|
2975 |
|
|
gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
|
2976 |
|
|
FALSE, FALSE);
|
2977 |
|
|
|
2978 |
|
|
if (gp)
|
2979 |
|
|
{
|
2980 |
|
|
|
2981 |
|
|
/* Adjust the value of __gp as we may want to slide it into the
|
2982 |
|
|
.plt section so that the stubs can access PLT entries without
|
2983 |
|
|
using an addil sequence. */
|
2984 |
|
|
gp->root.u.def.value += hppa_info->gp_offset;
|
2985 |
|
|
|
2986 |
|
|
gp_val = (gp->root.u.def.section->output_section->vma
|
2987 |
|
|
+ gp->root.u.def.section->output_offset
|
2988 |
|
|
+ gp->root.u.def.value);
|
2989 |
|
|
}
|
2990 |
|
|
else
|
2991 |
|
|
{
|
2992 |
|
|
asection *sec;
|
2993 |
|
|
|
2994 |
|
|
/* First look for a .plt section. If found, then __gp is the
|
2995 |
|
|
address of the .plt + gp_offset.
|
2996 |
|
|
|
2997 |
|
|
If no .plt is found, then look for .dlt, .opd and .data (in
|
2998 |
|
|
that order) and set __gp to the base address of whichever
|
2999 |
|
|
section is found first. */
|
3000 |
|
|
|
3001 |
|
|
sec = hppa_info->plt_sec;
|
3002 |
|
|
if (sec && ! (sec->flags & SEC_EXCLUDE))
|
3003 |
|
|
gp_val = (sec->output_offset
|
3004 |
|
|
+ sec->output_section->vma
|
3005 |
|
|
+ hppa_info->gp_offset);
|
3006 |
|
|
else
|
3007 |
|
|
{
|
3008 |
|
|
sec = hppa_info->dlt_sec;
|
3009 |
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
3010 |
|
|
sec = hppa_info->opd_sec;
|
3011 |
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
3012 |
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
3013 |
|
|
if (!sec || (sec->flags & SEC_EXCLUDE))
|
3014 |
|
|
gp_val = 0;
|
3015 |
|
|
else
|
3016 |
|
|
gp_val = sec->output_offset + sec->output_section->vma;
|
3017 |
|
|
}
|
3018 |
|
|
}
|
3019 |
|
|
|
3020 |
|
|
/* Install whatever value we found/computed for __gp. */
|
3021 |
|
|
_bfd_set_gp_value (abfd, gp_val);
|
3022 |
|
|
}
|
3023 |
|
|
|
3024 |
|
|
/* We need to know the base of the text and data segments so that we
|
3025 |
|
|
can perform SEGREL relocations. We will record the base addresses
|
3026 |
|
|
when we encounter the first SEGREL relocation. */
|
3027 |
|
|
hppa_info->text_segment_base = (bfd_vma)-1;
|
3028 |
|
|
hppa_info->data_segment_base = (bfd_vma)-1;
|
3029 |
|
|
|
3030 |
|
|
/* HP's shared libraries have references to symbols that are not
|
3031 |
|
|
defined anywhere. The generic ELF BFD linker code will complain
|
3032 |
|
|
about such symbols.
|
3033 |
|
|
|
3034 |
|
|
So we detect the losing case and arrange for the flags on the symbol
|
3035 |
|
|
to indicate that it was never referenced. This keeps the generic
|
3036 |
|
|
ELF BFD link code happy and appears to not create any secondary
|
3037 |
|
|
problems. Ultimately we need a way to control the behavior of the
|
3038 |
|
|
generic ELF BFD link code better. */
|
3039 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
3040 |
|
|
elf_hppa_unmark_useless_dynamic_symbols,
|
3041 |
|
|
info);
|
3042 |
|
|
|
3043 |
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
3044 |
|
|
retval = bfd_elf_final_link (abfd, info);
|
3045 |
|
|
|
3046 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
3047 |
|
|
elf_hppa_remark_useless_dynamic_symbols,
|
3048 |
|
|
info);
|
3049 |
|
|
|
3050 |
|
|
/* If we're producing a final executable, sort the contents of the
|
3051 |
|
|
unwind section. */
|
3052 |
|
|
if (retval && !info->relocatable)
|
3053 |
|
|
retval = elf_hppa_sort_unwind (abfd);
|
3054 |
|
|
|
3055 |
|
|
return retval;
|
3056 |
|
|
}
|
3057 |
|
|
|
3058 |
|
|
/* Relocate the given INSN. VALUE should be the actual value we want
|
3059 |
|
|
to insert into the instruction, ie by this point we should not be
|
3060 |
|
|
concerned with computing an offset relative to the DLT, PC, etc.
|
3061 |
|
|
Instead this routine is meant to handle the bit manipulations needed
|
3062 |
|
|
to insert the relocation into the given instruction. */
|
3063 |
|
|
|
3064 |
|
|
static int
|
3065 |
|
|
elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
|
3066 |
|
|
{
|
3067 |
|
|
switch (r_type)
|
3068 |
|
|
{
|
3069 |
|
|
/* This is any 22 bit branch. In PA2.0 syntax it corresponds to
|
3070 |
|
|
the "B" instruction. */
|
3071 |
|
|
case R_PARISC_PCREL22F:
|
3072 |
|
|
case R_PARISC_PCREL22C:
|
3073 |
|
|
return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
|
3074 |
|
|
|
3075 |
|
|
/* This is any 12 bit branch. */
|
3076 |
|
|
case R_PARISC_PCREL12F:
|
3077 |
|
|
return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
|
3078 |
|
|
|
3079 |
|
|
/* This is any 17 bit branch. In PA2.0 syntax it also corresponds
|
3080 |
|
|
to the "B" instruction as well as BE. */
|
3081 |
|
|
case R_PARISC_PCREL17F:
|
3082 |
|
|
case R_PARISC_DIR17F:
|
3083 |
|
|
case R_PARISC_DIR17R:
|
3084 |
|
|
case R_PARISC_PCREL17C:
|
3085 |
|
|
case R_PARISC_PCREL17R:
|
3086 |
|
|
return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
|
3087 |
|
|
|
3088 |
|
|
/* ADDIL or LDIL instructions. */
|
3089 |
|
|
case R_PARISC_DLTREL21L:
|
3090 |
|
|
case R_PARISC_DLTIND21L:
|
3091 |
|
|
case R_PARISC_LTOFF_FPTR21L:
|
3092 |
|
|
case R_PARISC_PCREL21L:
|
3093 |
|
|
case R_PARISC_LTOFF_TP21L:
|
3094 |
|
|
case R_PARISC_DPREL21L:
|
3095 |
|
|
case R_PARISC_PLTOFF21L:
|
3096 |
|
|
case R_PARISC_DIR21L:
|
3097 |
|
|
return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
|
3098 |
|
|
|
3099 |
|
|
/* LDO and integer loads/stores with 14 bit displacements. */
|
3100 |
|
|
case R_PARISC_DLTREL14R:
|
3101 |
|
|
case R_PARISC_DLTREL14F:
|
3102 |
|
|
case R_PARISC_DLTIND14R:
|
3103 |
|
|
case R_PARISC_DLTIND14F:
|
3104 |
|
|
case R_PARISC_LTOFF_FPTR14R:
|
3105 |
|
|
case R_PARISC_PCREL14R:
|
3106 |
|
|
case R_PARISC_PCREL14F:
|
3107 |
|
|
case R_PARISC_LTOFF_TP14R:
|
3108 |
|
|
case R_PARISC_LTOFF_TP14F:
|
3109 |
|
|
case R_PARISC_DPREL14R:
|
3110 |
|
|
case R_PARISC_DPREL14F:
|
3111 |
|
|
case R_PARISC_PLTOFF14R:
|
3112 |
|
|
case R_PARISC_PLTOFF14F:
|
3113 |
|
|
case R_PARISC_DIR14R:
|
3114 |
|
|
case R_PARISC_DIR14F:
|
3115 |
|
|
return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
|
3116 |
|
|
|
3117 |
|
|
/* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
|
3118 |
|
|
case R_PARISC_LTOFF_FPTR16F:
|
3119 |
|
|
case R_PARISC_PCREL16F:
|
3120 |
|
|
case R_PARISC_LTOFF_TP16F:
|
3121 |
|
|
case R_PARISC_GPREL16F:
|
3122 |
|
|
case R_PARISC_PLTOFF16F:
|
3123 |
|
|
case R_PARISC_DIR16F:
|
3124 |
|
|
case R_PARISC_LTOFF16F:
|
3125 |
|
|
return (insn & ~0xffff) | re_assemble_16 (sym_value);
|
3126 |
|
|
|
3127 |
|
|
/* Doubleword loads and stores with a 14 bit displacement. */
|
3128 |
|
|
case R_PARISC_DLTREL14DR:
|
3129 |
|
|
case R_PARISC_DLTIND14DR:
|
3130 |
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
3131 |
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
3132 |
|
|
case R_PARISC_PCREL14DR:
|
3133 |
|
|
case R_PARISC_PCREL16DF:
|
3134 |
|
|
case R_PARISC_LTOFF_TP14DR:
|
3135 |
|
|
case R_PARISC_LTOFF_TP16DF:
|
3136 |
|
|
case R_PARISC_DPREL14DR:
|
3137 |
|
|
case R_PARISC_GPREL16DF:
|
3138 |
|
|
case R_PARISC_PLTOFF14DR:
|
3139 |
|
|
case R_PARISC_PLTOFF16DF:
|
3140 |
|
|
case R_PARISC_DIR14DR:
|
3141 |
|
|
case R_PARISC_DIR16DF:
|
3142 |
|
|
case R_PARISC_LTOFF16DF:
|
3143 |
|
|
return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
|
3144 |
|
|
| ((sym_value & 0x1ff8) << 1));
|
3145 |
|
|
|
3146 |
|
|
/* Floating point single word load/store instructions. */
|
3147 |
|
|
case R_PARISC_DLTREL14WR:
|
3148 |
|
|
case R_PARISC_DLTIND14WR:
|
3149 |
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
3150 |
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
3151 |
|
|
case R_PARISC_PCREL14WR:
|
3152 |
|
|
case R_PARISC_PCREL16WF:
|
3153 |
|
|
case R_PARISC_LTOFF_TP14WR:
|
3154 |
|
|
case R_PARISC_LTOFF_TP16WF:
|
3155 |
|
|
case R_PARISC_DPREL14WR:
|
3156 |
|
|
case R_PARISC_GPREL16WF:
|
3157 |
|
|
case R_PARISC_PLTOFF14WR:
|
3158 |
|
|
case R_PARISC_PLTOFF16WF:
|
3159 |
|
|
case R_PARISC_DIR16WF:
|
3160 |
|
|
case R_PARISC_DIR14WR:
|
3161 |
|
|
case R_PARISC_LTOFF16WF:
|
3162 |
|
|
return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
|
3163 |
|
|
| ((sym_value & 0x1ffc) << 1));
|
3164 |
|
|
|
3165 |
|
|
default:
|
3166 |
|
|
return insn;
|
3167 |
|
|
}
|
3168 |
|
|
}
|
3169 |
|
|
|
3170 |
|
|
/* Compute the value for a relocation (REL) during a final link stage,
|
3171 |
|
|
then insert the value into the proper location in CONTENTS.
|
3172 |
|
|
|
3173 |
|
|
VALUE is a tentative value for the relocation and may be overridden
|
3174 |
|
|
and modified here based on the specific relocation to be performed.
|
3175 |
|
|
|
3176 |
|
|
For example we do conversions for PC-relative branches in this routine
|
3177 |
|
|
or redirection of calls to external routines to stubs.
|
3178 |
|
|
|
3179 |
|
|
The work of actually applying the relocation is left to a helper
|
3180 |
|
|
routine in an attempt to reduce the complexity and size of this
|
3181 |
|
|
function. */
|
3182 |
|
|
|
3183 |
|
|
static bfd_reloc_status_type
|
3184 |
|
|
elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
|
3185 |
|
|
bfd *input_bfd,
|
3186 |
|
|
bfd *output_bfd,
|
3187 |
|
|
asection *input_section,
|
3188 |
|
|
bfd_byte *contents,
|
3189 |
|
|
bfd_vma value,
|
3190 |
|
|
struct bfd_link_info *info,
|
3191 |
|
|
asection *sym_sec,
|
3192 |
|
|
struct elf_link_hash_entry *eh)
|
3193 |
|
|
{
|
3194 |
|
|
struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
|
3195 |
|
|
struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
|
3196 |
|
|
bfd_vma *local_offsets;
|
3197 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
3198 |
|
|
int insn;
|
3199 |
|
|
bfd_vma max_branch_offset = 0;
|
3200 |
|
|
bfd_vma offset = rel->r_offset;
|
3201 |
|
|
bfd_signed_vma addend = rel->r_addend;
|
3202 |
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
3203 |
|
|
unsigned int r_symndx = ELF_R_SYM (rel->r_info);
|
3204 |
|
|
unsigned int r_type = howto->type;
|
3205 |
|
|
bfd_byte *hit_data = contents + offset;
|
3206 |
|
|
|
3207 |
|
|
if (hppa_info == NULL)
|
3208 |
|
|
return bfd_reloc_notsupported;
|
3209 |
|
|
|
3210 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
3211 |
|
|
local_offsets = elf_local_got_offsets (input_bfd);
|
3212 |
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
3213 |
|
|
|
3214 |
|
|
switch (r_type)
|
3215 |
|
|
{
|
3216 |
|
|
case R_PARISC_NONE:
|
3217 |
|
|
break;
|
3218 |
|
|
|
3219 |
|
|
/* Basic function call support.
|
3220 |
|
|
|
3221 |
|
|
Note for a call to a function defined in another dynamic library
|
3222 |
|
|
we want to redirect the call to a stub. */
|
3223 |
|
|
|
3224 |
|
|
/* PC relative relocs without an implicit offset. */
|
3225 |
|
|
case R_PARISC_PCREL21L:
|
3226 |
|
|
case R_PARISC_PCREL14R:
|
3227 |
|
|
case R_PARISC_PCREL14F:
|
3228 |
|
|
case R_PARISC_PCREL14WR:
|
3229 |
|
|
case R_PARISC_PCREL14DR:
|
3230 |
|
|
case R_PARISC_PCREL16F:
|
3231 |
|
|
case R_PARISC_PCREL16WF:
|
3232 |
|
|
case R_PARISC_PCREL16DF:
|
3233 |
|
|
{
|
3234 |
|
|
/* If this is a call to a function defined in another dynamic
|
3235 |
|
|
library, then redirect the call to the local stub for this
|
3236 |
|
|
function. */
|
3237 |
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
3238 |
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
3239 |
|
|
+ hppa_info->stub_sec->output_section->vma);
|
3240 |
|
|
|
3241 |
|
|
/* Turn VALUE into a proper PC relative address. */
|
3242 |
|
|
value -= (offset + input_section->output_offset
|
3243 |
|
|
+ input_section->output_section->vma);
|
3244 |
|
|
|
3245 |
|
|
/* Adjust for any field selectors. */
|
3246 |
|
|
if (r_type == R_PARISC_PCREL21L)
|
3247 |
|
|
value = hppa_field_adjust (value, -8 + addend, e_lsel);
|
3248 |
|
|
else if (r_type == R_PARISC_PCREL14F
|
3249 |
|
|
|| r_type == R_PARISC_PCREL16F
|
3250 |
|
|
|| r_type == R_PARISC_PCREL16WF
|
3251 |
|
|
|| r_type == R_PARISC_PCREL16DF)
|
3252 |
|
|
value = hppa_field_adjust (value, -8 + addend, e_fsel);
|
3253 |
|
|
else
|
3254 |
|
|
value = hppa_field_adjust (value, -8 + addend, e_rsel);
|
3255 |
|
|
|
3256 |
|
|
/* Apply the relocation to the given instruction. */
|
3257 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3258 |
|
|
break;
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
case R_PARISC_PCREL12F:
|
3262 |
|
|
case R_PARISC_PCREL22F:
|
3263 |
|
|
case R_PARISC_PCREL17F:
|
3264 |
|
|
case R_PARISC_PCREL22C:
|
3265 |
|
|
case R_PARISC_PCREL17C:
|
3266 |
|
|
case R_PARISC_PCREL17R:
|
3267 |
|
|
{
|
3268 |
|
|
/* If this is a call to a function defined in another dynamic
|
3269 |
|
|
library, then redirect the call to the local stub for this
|
3270 |
|
|
function. */
|
3271 |
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
3272 |
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
3273 |
|
|
+ hppa_info->stub_sec->output_section->vma);
|
3274 |
|
|
|
3275 |
|
|
/* Turn VALUE into a proper PC relative address. */
|
3276 |
|
|
value -= (offset + input_section->output_offset
|
3277 |
|
|
+ input_section->output_section->vma);
|
3278 |
|
|
addend -= 8;
|
3279 |
|
|
|
3280 |
|
|
if (r_type == (unsigned int) R_PARISC_PCREL22F)
|
3281 |
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
3282 |
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
3283 |
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
3284 |
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
3285 |
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
3286 |
|
|
|
3287 |
|
|
/* Make sure we can reach the branch target. */
|
3288 |
|
|
if (max_branch_offset != 0
|
3289 |
|
|
&& value + addend + max_branch_offset >= 2*max_branch_offset)
|
3290 |
|
|
{
|
3291 |
|
|
(*_bfd_error_handler)
|
3292 |
|
|
(_("%B(%A+0x%lx): cannot reach %s"),
|
3293 |
|
|
input_bfd,
|
3294 |
|
|
input_section,
|
3295 |
|
|
offset,
|
3296 |
|
|
eh->root.root.string);
|
3297 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3298 |
|
|
return bfd_reloc_notsupported;
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
/* Adjust for any field selectors. */
|
3302 |
|
|
if (r_type == R_PARISC_PCREL17R)
|
3303 |
|
|
value = hppa_field_adjust (value, addend, e_rsel);
|
3304 |
|
|
else
|
3305 |
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
3306 |
|
|
|
3307 |
|
|
/* All branches are implicitly shifted by 2 places. */
|
3308 |
|
|
value >>= 2;
|
3309 |
|
|
|
3310 |
|
|
/* Apply the relocation to the given instruction. */
|
3311 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3312 |
|
|
break;
|
3313 |
|
|
}
|
3314 |
|
|
|
3315 |
|
|
/* Indirect references to data through the DLT. */
|
3316 |
|
|
case R_PARISC_DLTIND14R:
|
3317 |
|
|
case R_PARISC_DLTIND14F:
|
3318 |
|
|
case R_PARISC_DLTIND14DR:
|
3319 |
|
|
case R_PARISC_DLTIND14WR:
|
3320 |
|
|
case R_PARISC_DLTIND21L:
|
3321 |
|
|
case R_PARISC_LTOFF_FPTR14R:
|
3322 |
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
3323 |
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
3324 |
|
|
case R_PARISC_LTOFF_FPTR21L:
|
3325 |
|
|
case R_PARISC_LTOFF_FPTR16F:
|
3326 |
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
3327 |
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
3328 |
|
|
case R_PARISC_LTOFF_TP21L:
|
3329 |
|
|
case R_PARISC_LTOFF_TP14R:
|
3330 |
|
|
case R_PARISC_LTOFF_TP14F:
|
3331 |
|
|
case R_PARISC_LTOFF_TP14WR:
|
3332 |
|
|
case R_PARISC_LTOFF_TP14DR:
|
3333 |
|
|
case R_PARISC_LTOFF_TP16F:
|
3334 |
|
|
case R_PARISC_LTOFF_TP16WF:
|
3335 |
|
|
case R_PARISC_LTOFF_TP16DF:
|
3336 |
|
|
case R_PARISC_LTOFF16F:
|
3337 |
|
|
case R_PARISC_LTOFF16WF:
|
3338 |
|
|
case R_PARISC_LTOFF16DF:
|
3339 |
|
|
{
|
3340 |
|
|
bfd_vma off;
|
3341 |
|
|
|
3342 |
|
|
/* If this relocation was against a local symbol, then we still
|
3343 |
|
|
have not set up the DLT entry (it's not convenient to do so
|
3344 |
|
|
in the "finalize_dlt" routine because it is difficult to get
|
3345 |
|
|
to the local symbol's value).
|
3346 |
|
|
|
3347 |
|
|
So, if this is a local symbol (h == NULL), then we need to
|
3348 |
|
|
fill in its DLT entry.
|
3349 |
|
|
|
3350 |
|
|
Similarly we may still need to set up an entry in .opd for
|
3351 |
|
|
a local function which had its address taken. */
|
3352 |
|
|
if (hh == NULL)
|
3353 |
|
|
{
|
3354 |
|
|
bfd_vma *local_opd_offsets, *local_dlt_offsets;
|
3355 |
|
|
|
3356 |
|
|
if (local_offsets == NULL)
|
3357 |
|
|
abort ();
|
3358 |
|
|
|
3359 |
|
|
/* Now do .opd creation if needed. */
|
3360 |
|
|
if (r_type == R_PARISC_LTOFF_FPTR14R
|
3361 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR14DR
|
3362 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR14WR
|
3363 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
3364 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
3365 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
3366 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF)
|
3367 |
|
|
{
|
3368 |
|
|
local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
|
3369 |
|
|
off = local_opd_offsets[r_symndx];
|
3370 |
|
|
|
3371 |
|
|
/* The last bit records whether we've already initialised
|
3372 |
|
|
this local .opd entry. */
|
3373 |
|
|
if ((off & 1) != 0)
|
3374 |
|
|
{
|
3375 |
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
3376 |
|
|
off &= ~1;
|
3377 |
|
|
}
|
3378 |
|
|
else
|
3379 |
|
|
{
|
3380 |
|
|
local_opd_offsets[r_symndx] |= 1;
|
3381 |
|
|
|
3382 |
|
|
/* The first two words of an .opd entry are zero. */
|
3383 |
|
|
memset (hppa_info->opd_sec->contents + off, 0, 16);
|
3384 |
|
|
|
3385 |
|
|
/* The next word is the address of the function. */
|
3386 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
3387 |
|
|
(hppa_info->opd_sec->contents + off + 16));
|
3388 |
|
|
|
3389 |
|
|
/* The last word is our local __gp value. */
|
3390 |
|
|
value = _bfd_get_gp_value
|
3391 |
|
|
(hppa_info->opd_sec->output_section->owner);
|
3392 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
3393 |
|
|
(hppa_info->opd_sec->contents + off + 24));
|
3394 |
|
|
}
|
3395 |
|
|
|
3396 |
|
|
/* The DLT value is the address of the .opd entry. */
|
3397 |
|
|
value = (off
|
3398 |
|
|
+ hppa_info->opd_sec->output_offset
|
3399 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
3400 |
|
|
addend = 0;
|
3401 |
|
|
}
|
3402 |
|
|
|
3403 |
|
|
local_dlt_offsets = local_offsets;
|
3404 |
|
|
off = local_dlt_offsets[r_symndx];
|
3405 |
|
|
|
3406 |
|
|
if ((off & 1) != 0)
|
3407 |
|
|
{
|
3408 |
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
3409 |
|
|
off &= ~1;
|
3410 |
|
|
}
|
3411 |
|
|
else
|
3412 |
|
|
{
|
3413 |
|
|
local_dlt_offsets[r_symndx] |= 1;
|
3414 |
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
3415 |
|
|
value + addend,
|
3416 |
|
|
hppa_info->dlt_sec->contents + off);
|
3417 |
|
|
}
|
3418 |
|
|
}
|
3419 |
|
|
else
|
3420 |
|
|
off = hh->dlt_offset;
|
3421 |
|
|
|
3422 |
|
|
/* We want the value of the DLT offset for this symbol, not
|
3423 |
|
|
the symbol's actual address. Note that __gp may not point
|
3424 |
|
|
to the start of the DLT, so we have to compute the absolute
|
3425 |
|
|
address, then subtract out the value of __gp. */
|
3426 |
|
|
value = (off
|
3427 |
|
|
+ hppa_info->dlt_sec->output_offset
|
3428 |
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
3429 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3430 |
|
|
|
3431 |
|
|
/* All DLTIND relocations are basically the same at this point,
|
3432 |
|
|
except that we need different field selectors for the 21bit
|
3433 |
|
|
version vs the 14bit versions. */
|
3434 |
|
|
if (r_type == R_PARISC_DLTIND21L
|
3435 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR21L
|
3436 |
|
|
|| r_type == R_PARISC_LTOFF_TP21L)
|
3437 |
|
|
value = hppa_field_adjust (value, 0, e_lsel);
|
3438 |
|
|
else if (r_type == R_PARISC_DLTIND14F
|
3439 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16F
|
3440 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16WF
|
3441 |
|
|
|| r_type == R_PARISC_LTOFF_FPTR16DF
|
3442 |
|
|
|| r_type == R_PARISC_LTOFF16F
|
3443 |
|
|
|| r_type == R_PARISC_LTOFF16DF
|
3444 |
|
|
|| r_type == R_PARISC_LTOFF16WF
|
3445 |
|
|
|| r_type == R_PARISC_LTOFF_TP16F
|
3446 |
|
|
|| r_type == R_PARISC_LTOFF_TP16WF
|
3447 |
|
|
|| r_type == R_PARISC_LTOFF_TP16DF)
|
3448 |
|
|
value = hppa_field_adjust (value, 0, e_fsel);
|
3449 |
|
|
else
|
3450 |
|
|
value = hppa_field_adjust (value, 0, e_rsel);
|
3451 |
|
|
|
3452 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3453 |
|
|
break;
|
3454 |
|
|
}
|
3455 |
|
|
|
3456 |
|
|
case R_PARISC_DLTREL14R:
|
3457 |
|
|
case R_PARISC_DLTREL14F:
|
3458 |
|
|
case R_PARISC_DLTREL14DR:
|
3459 |
|
|
case R_PARISC_DLTREL14WR:
|
3460 |
|
|
case R_PARISC_DLTREL21L:
|
3461 |
|
|
case R_PARISC_DPREL21L:
|
3462 |
|
|
case R_PARISC_DPREL14WR:
|
3463 |
|
|
case R_PARISC_DPREL14DR:
|
3464 |
|
|
case R_PARISC_DPREL14R:
|
3465 |
|
|
case R_PARISC_DPREL14F:
|
3466 |
|
|
case R_PARISC_GPREL16F:
|
3467 |
|
|
case R_PARISC_GPREL16WF:
|
3468 |
|
|
case R_PARISC_GPREL16DF:
|
3469 |
|
|
{
|
3470 |
|
|
/* Subtract out the global pointer value to make value a DLT
|
3471 |
|
|
relative address. */
|
3472 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3473 |
|
|
|
3474 |
|
|
/* All DLTREL relocations are basically the same at this point,
|
3475 |
|
|
except that we need different field selectors for the 21bit
|
3476 |
|
|
version vs the 14bit versions. */
|
3477 |
|
|
if (r_type == R_PARISC_DLTREL21L
|
3478 |
|
|
|| r_type == R_PARISC_DPREL21L)
|
3479 |
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
3480 |
|
|
else if (r_type == R_PARISC_DLTREL14F
|
3481 |
|
|
|| r_type == R_PARISC_DPREL14F
|
3482 |
|
|
|| r_type == R_PARISC_GPREL16F
|
3483 |
|
|
|| r_type == R_PARISC_GPREL16WF
|
3484 |
|
|
|| r_type == R_PARISC_GPREL16DF)
|
3485 |
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
3486 |
|
|
else
|
3487 |
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
3488 |
|
|
|
3489 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3490 |
|
|
break;
|
3491 |
|
|
}
|
3492 |
|
|
|
3493 |
|
|
case R_PARISC_DIR21L:
|
3494 |
|
|
case R_PARISC_DIR17R:
|
3495 |
|
|
case R_PARISC_DIR17F:
|
3496 |
|
|
case R_PARISC_DIR14R:
|
3497 |
|
|
case R_PARISC_DIR14F:
|
3498 |
|
|
case R_PARISC_DIR14WR:
|
3499 |
|
|
case R_PARISC_DIR14DR:
|
3500 |
|
|
case R_PARISC_DIR16F:
|
3501 |
|
|
case R_PARISC_DIR16WF:
|
3502 |
|
|
case R_PARISC_DIR16DF:
|
3503 |
|
|
{
|
3504 |
|
|
/* All DIR relocations are basically the same at this point,
|
3505 |
|
|
except that branch offsets need to be divided by four, and
|
3506 |
|
|
we need different field selectors. Note that we don't
|
3507 |
|
|
redirect absolute calls to local stubs. */
|
3508 |
|
|
|
3509 |
|
|
if (r_type == R_PARISC_DIR21L)
|
3510 |
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
3511 |
|
|
else if (r_type == R_PARISC_DIR17F
|
3512 |
|
|
|| r_type == R_PARISC_DIR16F
|
3513 |
|
|
|| r_type == R_PARISC_DIR16WF
|
3514 |
|
|
|| r_type == R_PARISC_DIR16DF
|
3515 |
|
|
|| r_type == R_PARISC_DIR14F)
|
3516 |
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
3517 |
|
|
else
|
3518 |
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
3519 |
|
|
|
3520 |
|
|
if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
|
3521 |
|
|
/* All branches are implicitly shifted by 2 places. */
|
3522 |
|
|
value >>= 2;
|
3523 |
|
|
|
3524 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3525 |
|
|
break;
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
case R_PARISC_PLTOFF21L:
|
3529 |
|
|
case R_PARISC_PLTOFF14R:
|
3530 |
|
|
case R_PARISC_PLTOFF14F:
|
3531 |
|
|
case R_PARISC_PLTOFF14WR:
|
3532 |
|
|
case R_PARISC_PLTOFF14DR:
|
3533 |
|
|
case R_PARISC_PLTOFF16F:
|
3534 |
|
|
case R_PARISC_PLTOFF16WF:
|
3535 |
|
|
case R_PARISC_PLTOFF16DF:
|
3536 |
|
|
{
|
3537 |
|
|
/* We want the value of the PLT offset for this symbol, not
|
3538 |
|
|
the symbol's actual address. Note that __gp may not point
|
3539 |
|
|
to the start of the DLT, so we have to compute the absolute
|
3540 |
|
|
address, then subtract out the value of __gp. */
|
3541 |
|
|
value = (hh->plt_offset
|
3542 |
|
|
+ hppa_info->plt_sec->output_offset
|
3543 |
|
|
+ hppa_info->plt_sec->output_section->vma);
|
3544 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3545 |
|
|
|
3546 |
|
|
/* All PLTOFF relocations are basically the same at this point,
|
3547 |
|
|
except that we need different field selectors for the 21bit
|
3548 |
|
|
version vs the 14bit versions. */
|
3549 |
|
|
if (r_type == R_PARISC_PLTOFF21L)
|
3550 |
|
|
value = hppa_field_adjust (value, addend, e_lrsel);
|
3551 |
|
|
else if (r_type == R_PARISC_PLTOFF14F
|
3552 |
|
|
|| r_type == R_PARISC_PLTOFF16F
|
3553 |
|
|
|| r_type == R_PARISC_PLTOFF16WF
|
3554 |
|
|
|| r_type == R_PARISC_PLTOFF16DF)
|
3555 |
|
|
value = hppa_field_adjust (value, addend, e_fsel);
|
3556 |
|
|
else
|
3557 |
|
|
value = hppa_field_adjust (value, addend, e_rrsel);
|
3558 |
|
|
|
3559 |
|
|
insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
|
3560 |
|
|
break;
|
3561 |
|
|
}
|
3562 |
|
|
|
3563 |
|
|
case R_PARISC_LTOFF_FPTR32:
|
3564 |
|
|
{
|
3565 |
|
|
/* We may still need to create the FPTR itself if it was for
|
3566 |
|
|
a local symbol. */
|
3567 |
|
|
if (hh == NULL)
|
3568 |
|
|
{
|
3569 |
|
|
/* The first two words of an .opd entry are zero. */
|
3570 |
|
|
memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
|
3571 |
|
|
|
3572 |
|
|
/* The next word is the address of the function. */
|
3573 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
3574 |
|
|
(hppa_info->opd_sec->contents
|
3575 |
|
|
+ hh->opd_offset + 16));
|
3576 |
|
|
|
3577 |
|
|
/* The last word is our local __gp value. */
|
3578 |
|
|
value = _bfd_get_gp_value
|
3579 |
|
|
(hppa_info->opd_sec->output_section->owner);
|
3580 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
3581 |
|
|
hppa_info->opd_sec->contents + hh->opd_offset + 24);
|
3582 |
|
|
|
3583 |
|
|
/* The DLT value is the address of the .opd entry. */
|
3584 |
|
|
value = (hh->opd_offset
|
3585 |
|
|
+ hppa_info->opd_sec->output_offset
|
3586 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
3587 |
|
|
|
3588 |
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
3589 |
|
|
value,
|
3590 |
|
|
hppa_info->dlt_sec->contents + hh->dlt_offset);
|
3591 |
|
|
}
|
3592 |
|
|
|
3593 |
|
|
/* We want the value of the DLT offset for this symbol, not
|
3594 |
|
|
the symbol's actual address. Note that __gp may not point
|
3595 |
|
|
to the start of the DLT, so we have to compute the absolute
|
3596 |
|
|
address, then subtract out the value of __gp. */
|
3597 |
|
|
value = (hh->dlt_offset
|
3598 |
|
|
+ hppa_info->dlt_sec->output_offset
|
3599 |
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
3600 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3601 |
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
3602 |
|
|
return bfd_reloc_ok;
|
3603 |
|
|
}
|
3604 |
|
|
|
3605 |
|
|
case R_PARISC_LTOFF_FPTR64:
|
3606 |
|
|
case R_PARISC_LTOFF_TP64:
|
3607 |
|
|
{
|
3608 |
|
|
/* We may still need to create the FPTR itself if it was for
|
3609 |
|
|
a local symbol. */
|
3610 |
|
|
if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
|
3611 |
|
|
{
|
3612 |
|
|
/* The first two words of an .opd entry are zero. */
|
3613 |
|
|
memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
|
3614 |
|
|
|
3615 |
|
|
/* The next word is the address of the function. */
|
3616 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
3617 |
|
|
(hppa_info->opd_sec->contents
|
3618 |
|
|
+ hh->opd_offset + 16));
|
3619 |
|
|
|
3620 |
|
|
/* The last word is our local __gp value. */
|
3621 |
|
|
value = _bfd_get_gp_value
|
3622 |
|
|
(hppa_info->opd_sec->output_section->owner);
|
3623 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
3624 |
|
|
hppa_info->opd_sec->contents + hh->opd_offset + 24);
|
3625 |
|
|
|
3626 |
|
|
/* The DLT value is the address of the .opd entry. */
|
3627 |
|
|
value = (hh->opd_offset
|
3628 |
|
|
+ hppa_info->opd_sec->output_offset
|
3629 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
3630 |
|
|
|
3631 |
|
|
bfd_put_64 (hppa_info->dlt_sec->owner,
|
3632 |
|
|
value,
|
3633 |
|
|
hppa_info->dlt_sec->contents + hh->dlt_offset);
|
3634 |
|
|
}
|
3635 |
|
|
|
3636 |
|
|
/* We want the value of the DLT offset for this symbol, not
|
3637 |
|
|
the symbol's actual address. Note that __gp may not point
|
3638 |
|
|
to the start of the DLT, so we have to compute the absolute
|
3639 |
|
|
address, then subtract out the value of __gp. */
|
3640 |
|
|
value = (hh->dlt_offset
|
3641 |
|
|
+ hppa_info->dlt_sec->output_offset
|
3642 |
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
3643 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3644 |
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
3645 |
|
|
return bfd_reloc_ok;
|
3646 |
|
|
}
|
3647 |
|
|
|
3648 |
|
|
case R_PARISC_DIR32:
|
3649 |
|
|
bfd_put_32 (input_bfd, value + addend, hit_data);
|
3650 |
|
|
return bfd_reloc_ok;
|
3651 |
|
|
|
3652 |
|
|
case R_PARISC_DIR64:
|
3653 |
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
3654 |
|
|
return bfd_reloc_ok;
|
3655 |
|
|
|
3656 |
|
|
case R_PARISC_GPREL64:
|
3657 |
|
|
/* Subtract out the global pointer value to make value a DLT
|
3658 |
|
|
relative address. */
|
3659 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3660 |
|
|
|
3661 |
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
3662 |
|
|
return bfd_reloc_ok;
|
3663 |
|
|
|
3664 |
|
|
case R_PARISC_LTOFF64:
|
3665 |
|
|
/* We want the value of the DLT offset for this symbol, not
|
3666 |
|
|
the symbol's actual address. Note that __gp may not point
|
3667 |
|
|
to the start of the DLT, so we have to compute the absolute
|
3668 |
|
|
address, then subtract out the value of __gp. */
|
3669 |
|
|
value = (hh->dlt_offset
|
3670 |
|
|
+ hppa_info->dlt_sec->output_offset
|
3671 |
|
|
+ hppa_info->dlt_sec->output_section->vma);
|
3672 |
|
|
value -= _bfd_get_gp_value (output_bfd);
|
3673 |
|
|
|
3674 |
|
|
bfd_put_64 (input_bfd, value + addend, hit_data);
|
3675 |
|
|
return bfd_reloc_ok;
|
3676 |
|
|
|
3677 |
|
|
case R_PARISC_PCREL32:
|
3678 |
|
|
{
|
3679 |
|
|
/* If this is a call to a function defined in another dynamic
|
3680 |
|
|
library, then redirect the call to the local stub for this
|
3681 |
|
|
function. */
|
3682 |
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
3683 |
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
3684 |
|
|
+ hppa_info->stub_sec->output_section->vma);
|
3685 |
|
|
|
3686 |
|
|
/* Turn VALUE into a proper PC relative address. */
|
3687 |
|
|
value -= (offset + input_section->output_offset
|
3688 |
|
|
+ input_section->output_section->vma);
|
3689 |
|
|
|
3690 |
|
|
value += addend;
|
3691 |
|
|
value -= 8;
|
3692 |
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
3693 |
|
|
return bfd_reloc_ok;
|
3694 |
|
|
}
|
3695 |
|
|
|
3696 |
|
|
case R_PARISC_PCREL64:
|
3697 |
|
|
{
|
3698 |
|
|
/* If this is a call to a function defined in another dynamic
|
3699 |
|
|
library, then redirect the call to the local stub for this
|
3700 |
|
|
function. */
|
3701 |
|
|
if (sym_sec == NULL || sym_sec->output_section == NULL)
|
3702 |
|
|
value = (hh->stub_offset + hppa_info->stub_sec->output_offset
|
3703 |
|
|
+ hppa_info->stub_sec->output_section->vma);
|
3704 |
|
|
|
3705 |
|
|
/* Turn VALUE into a proper PC relative address. */
|
3706 |
|
|
value -= (offset + input_section->output_offset
|
3707 |
|
|
+ input_section->output_section->vma);
|
3708 |
|
|
|
3709 |
|
|
value += addend;
|
3710 |
|
|
value -= 8;
|
3711 |
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
3712 |
|
|
return bfd_reloc_ok;
|
3713 |
|
|
}
|
3714 |
|
|
|
3715 |
|
|
case R_PARISC_FPTR64:
|
3716 |
|
|
{
|
3717 |
|
|
bfd_vma off;
|
3718 |
|
|
|
3719 |
|
|
/* We may still need to create the FPTR itself if it was for
|
3720 |
|
|
a local symbol. */
|
3721 |
|
|
if (hh == NULL)
|
3722 |
|
|
{
|
3723 |
|
|
bfd_vma *local_opd_offsets;
|
3724 |
|
|
|
3725 |
|
|
if (local_offsets == NULL)
|
3726 |
|
|
abort ();
|
3727 |
|
|
|
3728 |
|
|
local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
|
3729 |
|
|
off = local_opd_offsets[r_symndx];
|
3730 |
|
|
|
3731 |
|
|
/* The last bit records whether we've already initialised
|
3732 |
|
|
this local .opd entry. */
|
3733 |
|
|
if ((off & 1) != 0)
|
3734 |
|
|
{
|
3735 |
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
3736 |
|
|
off &= ~1;
|
3737 |
|
|
}
|
3738 |
|
|
else
|
3739 |
|
|
{
|
3740 |
|
|
/* The first two words of an .opd entry are zero. */
|
3741 |
|
|
memset (hppa_info->opd_sec->contents + off, 0, 16);
|
3742 |
|
|
|
3743 |
|
|
/* The next word is the address of the function. */
|
3744 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
|
3745 |
|
|
(hppa_info->opd_sec->contents + off + 16));
|
3746 |
|
|
|
3747 |
|
|
/* The last word is our local __gp value. */
|
3748 |
|
|
value = _bfd_get_gp_value
|
3749 |
|
|
(hppa_info->opd_sec->output_section->owner);
|
3750 |
|
|
bfd_put_64 (hppa_info->opd_sec->owner, value,
|
3751 |
|
|
hppa_info->opd_sec->contents + off + 24);
|
3752 |
|
|
}
|
3753 |
|
|
}
|
3754 |
|
|
else
|
3755 |
|
|
off = hh->opd_offset;
|
3756 |
|
|
|
3757 |
|
|
if (hh == NULL || hh->want_opd)
|
3758 |
|
|
/* We want the value of the OPD offset for this symbol. */
|
3759 |
|
|
value = (off
|
3760 |
|
|
+ hppa_info->opd_sec->output_offset
|
3761 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
3762 |
|
|
else
|
3763 |
|
|
/* We want the address of the symbol. */
|
3764 |
|
|
value += addend;
|
3765 |
|
|
|
3766 |
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
3767 |
|
|
return bfd_reloc_ok;
|
3768 |
|
|
}
|
3769 |
|
|
|
3770 |
|
|
case R_PARISC_SECREL32:
|
3771 |
|
|
if (sym_sec)
|
3772 |
|
|
value -= sym_sec->output_section->vma;
|
3773 |
|
|
bfd_put_32 (input_bfd, value + addend, hit_data);
|
3774 |
|
|
return bfd_reloc_ok;
|
3775 |
|
|
|
3776 |
|
|
case R_PARISC_SEGREL32:
|
3777 |
|
|
case R_PARISC_SEGREL64:
|
3778 |
|
|
{
|
3779 |
|
|
/* If this is the first SEGREL relocation, then initialize
|
3780 |
|
|
the segment base values. */
|
3781 |
|
|
if (hppa_info->text_segment_base == (bfd_vma) -1)
|
3782 |
|
|
bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
|
3783 |
|
|
hppa_info);
|
3784 |
|
|
|
3785 |
|
|
/* VALUE holds the absolute address. We want to include the
|
3786 |
|
|
addend, then turn it into a segment relative address.
|
3787 |
|
|
|
3788 |
|
|
The segment is derived from SYM_SEC. We assume that there are
|
3789 |
|
|
only two segments of note in the resulting executable/shlib.
|
3790 |
|
|
A readonly segment (.text) and a readwrite segment (.data). */
|
3791 |
|
|
value += addend;
|
3792 |
|
|
|
3793 |
|
|
if (sym_sec->flags & SEC_CODE)
|
3794 |
|
|
value -= hppa_info->text_segment_base;
|
3795 |
|
|
else
|
3796 |
|
|
value -= hppa_info->data_segment_base;
|
3797 |
|
|
|
3798 |
|
|
if (r_type == R_PARISC_SEGREL32)
|
3799 |
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
3800 |
|
|
else
|
3801 |
|
|
bfd_put_64 (input_bfd, value, hit_data);
|
3802 |
|
|
return bfd_reloc_ok;
|
3803 |
|
|
}
|
3804 |
|
|
|
3805 |
|
|
/* Something we don't know how to handle. */
|
3806 |
|
|
default:
|
3807 |
|
|
return bfd_reloc_notsupported;
|
3808 |
|
|
}
|
3809 |
|
|
|
3810 |
|
|
/* Update the instruction word. */
|
3811 |
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
3812 |
|
|
return bfd_reloc_ok;
|
3813 |
|
|
}
|
3814 |
|
|
|
3815 |
|
|
/* Relocate an HPPA ELF section. */
|
3816 |
|
|
|
3817 |
|
|
static bfd_boolean
|
3818 |
|
|
elf64_hppa_relocate_section (bfd *output_bfd,
|
3819 |
|
|
struct bfd_link_info *info,
|
3820 |
|
|
bfd *input_bfd,
|
3821 |
|
|
asection *input_section,
|
3822 |
|
|
bfd_byte *contents,
|
3823 |
|
|
Elf_Internal_Rela *relocs,
|
3824 |
|
|
Elf_Internal_Sym *local_syms,
|
3825 |
|
|
asection **local_sections)
|
3826 |
|
|
{
|
3827 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
3828 |
|
|
Elf_Internal_Rela *rel;
|
3829 |
|
|
Elf_Internal_Rela *relend;
|
3830 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
3831 |
|
|
|
3832 |
|
|
hppa_info = hppa_link_hash_table (info);
|
3833 |
|
|
if (hppa_info == NULL)
|
3834 |
|
|
return FALSE;
|
3835 |
|
|
|
3836 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
3837 |
|
|
|
3838 |
|
|
rel = relocs;
|
3839 |
|
|
relend = relocs + input_section->reloc_count;
|
3840 |
|
|
for (; rel < relend; rel++)
|
3841 |
|
|
{
|
3842 |
|
|
int r_type;
|
3843 |
|
|
reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
|
3844 |
|
|
unsigned long r_symndx;
|
3845 |
|
|
struct elf_link_hash_entry *eh;
|
3846 |
|
|
Elf_Internal_Sym *sym;
|
3847 |
|
|
asection *sym_sec;
|
3848 |
|
|
bfd_vma relocation;
|
3849 |
|
|
bfd_reloc_status_type r;
|
3850 |
|
|
|
3851 |
|
|
r_type = ELF_R_TYPE (rel->r_info);
|
3852 |
|
|
if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
|
3853 |
|
|
{
|
3854 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3855 |
|
|
return FALSE;
|
3856 |
|
|
}
|
3857 |
|
|
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|
3858 |
|
|
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
|
3859 |
|
|
continue;
|
3860 |
|
|
|
3861 |
|
|
/* This is a final link. */
|
3862 |
|
|
r_symndx = ELF_R_SYM (rel->r_info);
|
3863 |
|
|
eh = NULL;
|
3864 |
|
|
sym = NULL;
|
3865 |
|
|
sym_sec = NULL;
|
3866 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
3867 |
|
|
{
|
3868 |
|
|
/* This is a local symbol, hh defaults to NULL. */
|
3869 |
|
|
sym = local_syms + r_symndx;
|
3870 |
|
|
sym_sec = local_sections[r_symndx];
|
3871 |
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
|
3872 |
|
|
}
|
3873 |
|
|
else
|
3874 |
|
|
{
|
3875 |
|
|
/* This is not a local symbol. */
|
3876 |
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
|
3877 |
|
|
|
3878 |
|
|
/* It seems this can happen with erroneous or unsupported
|
3879 |
|
|
input (mixing a.out and elf in an archive, for example.) */
|
3880 |
|
|
if (sym_hashes == NULL)
|
3881 |
|
|
return FALSE;
|
3882 |
|
|
|
3883 |
|
|
eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
3884 |
|
|
|
3885 |
|
|
while (eh->root.type == bfd_link_hash_indirect
|
3886 |
|
|
|| eh->root.type == bfd_link_hash_warning)
|
3887 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
3888 |
|
|
|
3889 |
|
|
relocation = 0;
|
3890 |
|
|
if (eh->root.type == bfd_link_hash_defined
|
3891 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
3892 |
|
|
{
|
3893 |
|
|
sym_sec = eh->root.u.def.section;
|
3894 |
|
|
if (sym_sec != NULL
|
3895 |
|
|
&& sym_sec->output_section != NULL)
|
3896 |
|
|
relocation = (eh->root.u.def.value
|
3897 |
|
|
+ sym_sec->output_section->vma
|
3898 |
|
|
+ sym_sec->output_offset);
|
3899 |
|
|
}
|
3900 |
|
|
else if (eh->root.type == bfd_link_hash_undefweak)
|
3901 |
|
|
;
|
3902 |
|
|
else if (info->unresolved_syms_in_objects == RM_IGNORE
|
3903 |
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
|
3904 |
|
|
;
|
3905 |
|
|
else if (!info->relocatable
|
3906 |
|
|
&& elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
|
3907 |
|
|
continue;
|
3908 |
|
|
else if (!info->relocatable)
|
3909 |
|
|
{
|
3910 |
|
|
bfd_boolean err;
|
3911 |
|
|
err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
|
3912 |
|
|
|| ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
|
3913 |
|
|
if (!info->callbacks->undefined_symbol (info,
|
3914 |
|
|
eh->root.root.string,
|
3915 |
|
|
input_bfd,
|
3916 |
|
|
input_section,
|
3917 |
|
|
rel->r_offset, err))
|
3918 |
|
|
return FALSE;
|
3919 |
|
|
}
|
3920 |
|
|
|
3921 |
|
|
if (!info->relocatable
|
3922 |
|
|
&& relocation == 0
|
3923 |
|
|
&& eh->root.type != bfd_link_hash_defined
|
3924 |
|
|
&& eh->root.type != bfd_link_hash_defweak
|
3925 |
|
|
&& eh->root.type != bfd_link_hash_undefweak)
|
3926 |
|
|
{
|
3927 |
|
|
if (info->unresolved_syms_in_objects == RM_IGNORE
|
3928 |
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
|
3929 |
|
|
&& eh->type == STT_PARISC_MILLI)
|
3930 |
|
|
{
|
3931 |
|
|
if (! info->callbacks->undefined_symbol
|
3932 |
|
|
(info, eh_name (eh), input_bfd,
|
3933 |
|
|
input_section, rel->r_offset, FALSE))
|
3934 |
|
|
return FALSE;
|
3935 |
|
|
}
|
3936 |
|
|
}
|
3937 |
|
|
}
|
3938 |
|
|
|
3939 |
|
|
if (sym_sec != NULL && elf_discarded_section (sym_sec))
|
3940 |
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
3941 |
|
|
rel, relend, howto, contents);
|
3942 |
|
|
|
3943 |
|
|
if (info->relocatable)
|
3944 |
|
|
continue;
|
3945 |
|
|
|
3946 |
|
|
r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
|
3947 |
|
|
input_section, contents,
|
3948 |
|
|
relocation, info, sym_sec,
|
3949 |
|
|
eh);
|
3950 |
|
|
|
3951 |
|
|
if (r != bfd_reloc_ok)
|
3952 |
|
|
{
|
3953 |
|
|
switch (r)
|
3954 |
|
|
{
|
3955 |
|
|
default:
|
3956 |
|
|
abort ();
|
3957 |
|
|
case bfd_reloc_overflow:
|
3958 |
|
|
{
|
3959 |
|
|
const char *sym_name;
|
3960 |
|
|
|
3961 |
|
|
if (eh != NULL)
|
3962 |
|
|
sym_name = NULL;
|
3963 |
|
|
else
|
3964 |
|
|
{
|
3965 |
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
3966 |
|
|
symtab_hdr->sh_link,
|
3967 |
|
|
sym->st_name);
|
3968 |
|
|
if (sym_name == NULL)
|
3969 |
|
|
return FALSE;
|
3970 |
|
|
if (*sym_name == '\0')
|
3971 |
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
3972 |
|
|
}
|
3973 |
|
|
|
3974 |
|
|
if (!((*info->callbacks->reloc_overflow)
|
3975 |
|
|
(info, (eh ? &eh->root : NULL), sym_name,
|
3976 |
|
|
howto->name, (bfd_vma) 0, input_bfd,
|
3977 |
|
|
input_section, rel->r_offset)))
|
3978 |
|
|
return FALSE;
|
3979 |
|
|
}
|
3980 |
|
|
break;
|
3981 |
|
|
}
|
3982 |
|
|
}
|
3983 |
|
|
}
|
3984 |
|
|
return TRUE;
|
3985 |
|
|
}
|
3986 |
|
|
|
3987 |
|
|
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
|
3988 |
|
|
{
|
3989 |
|
|
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
3990 |
|
|
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
3991 |
|
|
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
3992 |
|
|
{ STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
3993 |
|
|
{ STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
3994 |
|
|
{ STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
|
3995 |
|
|
{ STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
|
3996 |
|
|
{ NULL, 0, 0, 0, 0 }
|
3997 |
|
|
};
|
3998 |
|
|
|
3999 |
|
|
/* The hash bucket size is the standard one, namely 4. */
|
4000 |
|
|
|
4001 |
|
|
const struct elf_size_info hppa64_elf_size_info =
|
4002 |
|
|
{
|
4003 |
|
|
sizeof (Elf64_External_Ehdr),
|
4004 |
|
|
sizeof (Elf64_External_Phdr),
|
4005 |
|
|
sizeof (Elf64_External_Shdr),
|
4006 |
|
|
sizeof (Elf64_External_Rel),
|
4007 |
|
|
sizeof (Elf64_External_Rela),
|
4008 |
|
|
sizeof (Elf64_External_Sym),
|
4009 |
|
|
sizeof (Elf64_External_Dyn),
|
4010 |
|
|
sizeof (Elf_External_Note),
|
4011 |
|
|
4,
|
4012 |
|
|
1,
|
4013 |
|
|
64, 3,
|
4014 |
|
|
ELFCLASS64, EV_CURRENT,
|
4015 |
|
|
bfd_elf64_write_out_phdrs,
|
4016 |
|
|
bfd_elf64_write_shdrs_and_ehdr,
|
4017 |
|
|
bfd_elf64_checksum_contents,
|
4018 |
|
|
bfd_elf64_write_relocs,
|
4019 |
|
|
bfd_elf64_swap_symbol_in,
|
4020 |
|
|
bfd_elf64_swap_symbol_out,
|
4021 |
|
|
bfd_elf64_slurp_reloc_table,
|
4022 |
|
|
bfd_elf64_slurp_symbol_table,
|
4023 |
|
|
bfd_elf64_swap_dyn_in,
|
4024 |
|
|
bfd_elf64_swap_dyn_out,
|
4025 |
|
|
bfd_elf64_swap_reloc_in,
|
4026 |
|
|
bfd_elf64_swap_reloc_out,
|
4027 |
|
|
bfd_elf64_swap_reloca_in,
|
4028 |
|
|
bfd_elf64_swap_reloca_out
|
4029 |
|
|
};
|
4030 |
|
|
|
4031 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_vec
|
4032 |
|
|
#define TARGET_BIG_NAME "elf64-hppa"
|
4033 |
|
|
#define ELF_ARCH bfd_arch_hppa
|
4034 |
|
|
#define ELF_TARGET_ID HPPA64_ELF_DATA
|
4035 |
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
4036 |
|
|
/* This is not strictly correct. The maximum page size for PA2.0 is
|
4037 |
|
|
64M. But everything still uses 4k. */
|
4038 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
4039 |
|
|
#define ELF_OSABI ELFOSABI_HPUX
|
4040 |
|
|
|
4041 |
|
|
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
4042 |
|
|
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
|
4043 |
|
|
#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
|
4044 |
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
4045 |
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
4046 |
|
|
|
4047 |
|
|
#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
|
4048 |
|
|
#define elf_backend_object_p elf64_hppa_object_p
|
4049 |
|
|
#define elf_backend_final_write_processing \
|
4050 |
|
|
elf_hppa_final_write_processing
|
4051 |
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
4052 |
|
|
#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
|
4053 |
|
|
|
4054 |
|
|
#define elf_backend_relocate_section elf_hppa_relocate_section
|
4055 |
|
|
|
4056 |
|
|
#define bfd_elf64_bfd_final_link elf_hppa_final_link
|
4057 |
|
|
|
4058 |
|
|
#define elf_backend_create_dynamic_sections \
|
4059 |
|
|
elf64_hppa_create_dynamic_sections
|
4060 |
|
|
#define elf_backend_post_process_headers elf64_hppa_post_process_headers
|
4061 |
|
|
|
4062 |
|
|
#define elf_backend_omit_section_dynsym \
|
4063 |
|
|
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
|
4064 |
|
|
#define elf_backend_adjust_dynamic_symbol \
|
4065 |
|
|
elf64_hppa_adjust_dynamic_symbol
|
4066 |
|
|
|
4067 |
|
|
#define elf_backend_size_dynamic_sections \
|
4068 |
|
|
elf64_hppa_size_dynamic_sections
|
4069 |
|
|
|
4070 |
|
|
#define elf_backend_finish_dynamic_symbol \
|
4071 |
|
|
elf64_hppa_finish_dynamic_symbol
|
4072 |
|
|
#define elf_backend_finish_dynamic_sections \
|
4073 |
|
|
elf64_hppa_finish_dynamic_sections
|
4074 |
|
|
#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
|
4075 |
|
|
#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
|
4076 |
|
|
|
4077 |
|
|
/* Stuff for the BFD linker: */
|
4078 |
|
|
#define bfd_elf64_bfd_link_hash_table_create \
|
4079 |
|
|
elf64_hppa_hash_table_create
|
4080 |
|
|
|
4081 |
|
|
#define elf_backend_check_relocs \
|
4082 |
|
|
elf64_hppa_check_relocs
|
4083 |
|
|
|
4084 |
|
|
#define elf_backend_size_info \
|
4085 |
|
|
hppa64_elf_size_info
|
4086 |
|
|
|
4087 |
|
|
#define elf_backend_additional_program_headers \
|
4088 |
|
|
elf64_hppa_additional_program_headers
|
4089 |
|
|
|
4090 |
|
|
#define elf_backend_modify_segment_map \
|
4091 |
|
|
elf64_hppa_modify_segment_map
|
4092 |
|
|
|
4093 |
|
|
#define elf_backend_link_output_symbol_hook \
|
4094 |
|
|
elf64_hppa_link_output_symbol_hook
|
4095 |
|
|
|
4096 |
|
|
#define elf_backend_want_got_plt 0
|
4097 |
|
|
#define elf_backend_plt_readonly 0
|
4098 |
|
|
#define elf_backend_want_plt_sym 0
|
4099 |
|
|
#define elf_backend_got_header_size 0
|
4100 |
|
|
#define elf_backend_type_change_ok TRUE
|
4101 |
|
|
#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
|
4102 |
|
|
#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
|
4103 |
|
|
#define elf_backend_rela_normal 1
|
4104 |
|
|
#define elf_backend_special_sections elf64_hppa_special_sections
|
4105 |
|
|
#define elf_backend_action_discarded elf_hppa_action_discarded
|
4106 |
|
|
#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
|
4107 |
|
|
|
4108 |
|
|
#define elf64_bed elf64_hppa_hpux_bed
|
4109 |
|
|
|
4110 |
|
|
#include "elf64-target.h"
|
4111 |
|
|
|
4112 |
|
|
#undef TARGET_BIG_SYM
|
4113 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
|
4114 |
|
|
#undef TARGET_BIG_NAME
|
4115 |
|
|
#define TARGET_BIG_NAME "elf64-hppa-linux"
|
4116 |
|
|
#undef ELF_OSABI
|
4117 |
|
|
#define ELF_OSABI ELFOSABI_LINUX
|
4118 |
|
|
#undef elf_backend_post_process_headers
|
4119 |
|
|
#define elf_backend_post_process_headers _bfd_elf_set_osabi
|
4120 |
|
|
#undef elf64_bed
|
4121 |
|
|
#define elf64_bed elf64_hppa_linux_bed
|
4122 |
|
|
|
4123 |
|
|
#include "elf64-target.h"
|