1 |
14 |
khays |
/* ELF linking support for BFD.
|
2 |
|
|
Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
|
3 |
|
|
2005, 2006, 2007, 2008, 2009, 2010, 2011
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
21 |
|
|
MA 02110-1301, USA. */
|
22 |
|
|
|
23 |
|
|
#include "sysdep.h"
|
24 |
|
|
#include "bfd.h"
|
25 |
|
|
#include "bfdlink.h"
|
26 |
|
|
#include "libbfd.h"
|
27 |
|
|
#define ARCH_SIZE 0
|
28 |
|
|
#include "elf-bfd.h"
|
29 |
|
|
#include "safe-ctype.h"
|
30 |
|
|
#include "libiberty.h"
|
31 |
|
|
#include "objalloc.h"
|
32 |
|
|
|
33 |
|
|
/* This struct is used to pass information to routines called via
|
34 |
|
|
elf_link_hash_traverse which must return failure. */
|
35 |
|
|
|
36 |
|
|
struct elf_info_failed
|
37 |
|
|
{
|
38 |
|
|
struct bfd_link_info *info;
|
39 |
|
|
struct bfd_elf_version_tree *verdefs;
|
40 |
|
|
bfd_boolean failed;
|
41 |
|
|
};
|
42 |
|
|
|
43 |
|
|
/* This structure is used to pass information to
|
44 |
|
|
_bfd_elf_link_find_version_dependencies. */
|
45 |
|
|
|
46 |
|
|
struct elf_find_verdep_info
|
47 |
|
|
{
|
48 |
|
|
/* General link information. */
|
49 |
|
|
struct bfd_link_info *info;
|
50 |
|
|
/* The number of dependencies. */
|
51 |
|
|
unsigned int vers;
|
52 |
|
|
/* Whether we had a failure. */
|
53 |
|
|
bfd_boolean failed;
|
54 |
|
|
};
|
55 |
|
|
|
56 |
|
|
static bfd_boolean _bfd_elf_fix_symbol_flags
|
57 |
|
|
(struct elf_link_hash_entry *, struct elf_info_failed *);
|
58 |
|
|
|
59 |
|
|
/* Define a symbol in a dynamic linkage section. */
|
60 |
|
|
|
61 |
|
|
struct elf_link_hash_entry *
|
62 |
|
|
_bfd_elf_define_linkage_sym (bfd *abfd,
|
63 |
|
|
struct bfd_link_info *info,
|
64 |
|
|
asection *sec,
|
65 |
|
|
const char *name)
|
66 |
|
|
{
|
67 |
|
|
struct elf_link_hash_entry *h;
|
68 |
|
|
struct bfd_link_hash_entry *bh;
|
69 |
|
|
const struct elf_backend_data *bed;
|
70 |
|
|
|
71 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
|
72 |
|
|
if (h != NULL)
|
73 |
|
|
{
|
74 |
|
|
/* Zap symbol defined in an as-needed lib that wasn't linked.
|
75 |
|
|
This is a symptom of a larger problem: Absolute symbols
|
76 |
|
|
defined in shared libraries can't be overridden, because we
|
77 |
|
|
lose the link to the bfd which is via the symbol section. */
|
78 |
|
|
h->root.type = bfd_link_hash_new;
|
79 |
|
|
}
|
80 |
|
|
|
81 |
|
|
bh = &h->root;
|
82 |
|
|
if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
|
83 |
|
|
sec, 0, NULL, FALSE,
|
84 |
|
|
get_elf_backend_data (abfd)->collect,
|
85 |
|
|
&bh))
|
86 |
|
|
return NULL;
|
87 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
88 |
|
|
h->def_regular = 1;
|
89 |
|
|
h->non_elf = 0;
|
90 |
|
|
h->type = STT_OBJECT;
|
91 |
|
|
h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
|
92 |
|
|
|
93 |
|
|
bed = get_elf_backend_data (abfd);
|
94 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
95 |
|
|
return h;
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
bfd_boolean
|
99 |
|
|
_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
|
100 |
|
|
{
|
101 |
|
|
flagword flags;
|
102 |
|
|
asection *s;
|
103 |
|
|
struct elf_link_hash_entry *h;
|
104 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
105 |
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
106 |
|
|
|
107 |
|
|
/* This function may be called more than once. */
|
108 |
|
|
s = bfd_get_section_by_name (abfd, ".got");
|
109 |
|
|
if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
|
110 |
|
|
return TRUE;
|
111 |
|
|
|
112 |
|
|
flags = bed->dynamic_sec_flags;
|
113 |
|
|
|
114 |
|
|
s = bfd_make_section_with_flags (abfd,
|
115 |
|
|
(bed->rela_plts_and_copies_p
|
116 |
|
|
? ".rela.got" : ".rel.got"),
|
117 |
|
|
(bed->dynamic_sec_flags
|
118 |
|
|
| SEC_READONLY));
|
119 |
|
|
if (s == NULL
|
120 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
121 |
|
|
return FALSE;
|
122 |
|
|
htab->srelgot = s;
|
123 |
|
|
|
124 |
|
|
s = bfd_make_section_with_flags (abfd, ".got", flags);
|
125 |
|
|
if (s == NULL
|
126 |
|
|
|| !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
127 |
|
|
return FALSE;
|
128 |
|
|
htab->sgot = s;
|
129 |
|
|
|
130 |
|
|
if (bed->want_got_plt)
|
131 |
|
|
{
|
132 |
|
|
s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
|
133 |
|
|
if (s == NULL
|
134 |
|
|
|| !bfd_set_section_alignment (abfd, s,
|
135 |
|
|
bed->s->log_file_align))
|
136 |
|
|
return FALSE;
|
137 |
|
|
htab->sgotplt = s;
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
/* The first bit of the global offset table is the header. */
|
141 |
|
|
s->size += bed->got_header_size;
|
142 |
|
|
|
143 |
|
|
if (bed->want_got_sym)
|
144 |
|
|
{
|
145 |
|
|
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
|
146 |
|
|
(or .got.plt) section. We don't do this in the linker script
|
147 |
|
|
because we don't want to define the symbol if we are not creating
|
148 |
|
|
a global offset table. */
|
149 |
|
|
h = _bfd_elf_define_linkage_sym (abfd, info, s,
|
150 |
|
|
"_GLOBAL_OFFSET_TABLE_");
|
151 |
|
|
elf_hash_table (info)->hgot = h;
|
152 |
|
|
if (h == NULL)
|
153 |
|
|
return FALSE;
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
return TRUE;
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
160 |
|
|
static bfd_boolean
|
161 |
|
|
_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
|
162 |
|
|
{
|
163 |
|
|
struct elf_link_hash_table *hash_table;
|
164 |
|
|
|
165 |
|
|
hash_table = elf_hash_table (info);
|
166 |
|
|
if (hash_table->dynobj == NULL)
|
167 |
|
|
hash_table->dynobj = abfd;
|
168 |
|
|
|
169 |
|
|
if (hash_table->dynstr == NULL)
|
170 |
|
|
{
|
171 |
|
|
hash_table->dynstr = _bfd_elf_strtab_init ();
|
172 |
|
|
if (hash_table->dynstr == NULL)
|
173 |
|
|
return FALSE;
|
174 |
|
|
}
|
175 |
|
|
return TRUE;
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
/* Create some sections which will be filled in with dynamic linking
|
179 |
|
|
information. ABFD is an input file which requires dynamic sections
|
180 |
|
|
to be created. The dynamic sections take up virtual memory space
|
181 |
|
|
when the final executable is run, so we need to create them before
|
182 |
|
|
addresses are assigned to the output sections. We work out the
|
183 |
|
|
actual contents and size of these sections later. */
|
184 |
|
|
|
185 |
|
|
bfd_boolean
|
186 |
|
|
_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
187 |
|
|
{
|
188 |
|
|
flagword flags;
|
189 |
|
|
asection *s;
|
190 |
|
|
const struct elf_backend_data *bed;
|
191 |
|
|
|
192 |
|
|
if (! is_elf_hash_table (info->hash))
|
193 |
|
|
return FALSE;
|
194 |
|
|
|
195 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
196 |
|
|
return TRUE;
|
197 |
|
|
|
198 |
|
|
if (!_bfd_elf_link_create_dynstrtab (abfd, info))
|
199 |
|
|
return FALSE;
|
200 |
|
|
|
201 |
|
|
abfd = elf_hash_table (info)->dynobj;
|
202 |
|
|
bed = get_elf_backend_data (abfd);
|
203 |
|
|
|
204 |
|
|
flags = bed->dynamic_sec_flags;
|
205 |
|
|
|
206 |
|
|
/* A dynamically linked executable has a .interp section, but a
|
207 |
|
|
shared library does not. */
|
208 |
|
|
if (info->executable)
|
209 |
|
|
{
|
210 |
|
|
s = bfd_make_section_with_flags (abfd, ".interp",
|
211 |
|
|
flags | SEC_READONLY);
|
212 |
|
|
if (s == NULL)
|
213 |
|
|
return FALSE;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* Create sections to hold version informations. These are removed
|
217 |
|
|
if they are not needed. */
|
218 |
|
|
s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
|
219 |
|
|
flags | SEC_READONLY);
|
220 |
|
|
if (s == NULL
|
221 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
222 |
|
|
return FALSE;
|
223 |
|
|
|
224 |
|
|
s = bfd_make_section_with_flags (abfd, ".gnu.version",
|
225 |
|
|
flags | SEC_READONLY);
|
226 |
|
|
if (s == NULL
|
227 |
|
|
|| ! bfd_set_section_alignment (abfd, s, 1))
|
228 |
|
|
return FALSE;
|
229 |
|
|
|
230 |
|
|
s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
|
231 |
|
|
flags | SEC_READONLY);
|
232 |
|
|
if (s == NULL
|
233 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
234 |
|
|
return FALSE;
|
235 |
|
|
|
236 |
|
|
s = bfd_make_section_with_flags (abfd, ".dynsym",
|
237 |
|
|
flags | SEC_READONLY);
|
238 |
|
|
if (s == NULL
|
239 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
240 |
|
|
return FALSE;
|
241 |
|
|
|
242 |
|
|
s = bfd_make_section_with_flags (abfd, ".dynstr",
|
243 |
|
|
flags | SEC_READONLY);
|
244 |
|
|
if (s == NULL)
|
245 |
|
|
return FALSE;
|
246 |
|
|
|
247 |
|
|
s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
|
248 |
|
|
if (s == NULL
|
249 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
250 |
|
|
return FALSE;
|
251 |
|
|
|
252 |
|
|
/* The special symbol _DYNAMIC is always set to the start of the
|
253 |
|
|
.dynamic section. We could set _DYNAMIC in a linker script, but we
|
254 |
|
|
only want to define it if we are, in fact, creating a .dynamic
|
255 |
|
|
section. We don't want to define it if there is no .dynamic
|
256 |
|
|
section, since on some ELF platforms the start up code examines it
|
257 |
|
|
to decide how to initialize the process. */
|
258 |
|
|
if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
|
259 |
|
|
return FALSE;
|
260 |
|
|
|
261 |
|
|
if (info->emit_hash)
|
262 |
|
|
{
|
263 |
|
|
s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
|
264 |
|
|
if (s == NULL
|
265 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
266 |
|
|
return FALSE;
|
267 |
|
|
elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
if (info->emit_gnu_hash)
|
271 |
|
|
{
|
272 |
|
|
s = bfd_make_section_with_flags (abfd, ".gnu.hash",
|
273 |
|
|
flags | SEC_READONLY);
|
274 |
|
|
if (s == NULL
|
275 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
276 |
|
|
return FALSE;
|
277 |
|
|
/* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
|
278 |
|
|
4 32-bit words followed by variable count of 64-bit words, then
|
279 |
|
|
variable count of 32-bit words. */
|
280 |
|
|
if (bed->s->arch_size == 64)
|
281 |
|
|
elf_section_data (s)->this_hdr.sh_entsize = 0;
|
282 |
|
|
else
|
283 |
|
|
elf_section_data (s)->this_hdr.sh_entsize = 4;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
/* Let the backend create the rest of the sections. This lets the
|
287 |
|
|
backend set the right flags. The backend will normally create
|
288 |
|
|
the .got and .plt sections. */
|
289 |
|
|
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
|
290 |
|
|
return FALSE;
|
291 |
|
|
|
292 |
|
|
elf_hash_table (info)->dynamic_sections_created = TRUE;
|
293 |
|
|
|
294 |
|
|
return TRUE;
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/* Create dynamic sections when linking against a dynamic object. */
|
298 |
|
|
|
299 |
|
|
bfd_boolean
|
300 |
|
|
_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
301 |
|
|
{
|
302 |
|
|
flagword flags, pltflags;
|
303 |
|
|
struct elf_link_hash_entry *h;
|
304 |
|
|
asection *s;
|
305 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
306 |
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
307 |
|
|
|
308 |
|
|
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
|
309 |
|
|
.rel[a].bss sections. */
|
310 |
|
|
flags = bed->dynamic_sec_flags;
|
311 |
|
|
|
312 |
|
|
pltflags = flags;
|
313 |
|
|
if (bed->plt_not_loaded)
|
314 |
|
|
/* We do not clear SEC_ALLOC here because we still want the OS to
|
315 |
|
|
allocate space for the section; it's just that there's nothing
|
316 |
|
|
to read in from the object file. */
|
317 |
|
|
pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
|
318 |
|
|
else
|
319 |
|
|
pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
|
320 |
|
|
if (bed->plt_readonly)
|
321 |
|
|
pltflags |= SEC_READONLY;
|
322 |
|
|
|
323 |
|
|
s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
|
324 |
|
|
if (s == NULL
|
325 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
|
326 |
|
|
return FALSE;
|
327 |
|
|
htab->splt = s;
|
328 |
|
|
|
329 |
|
|
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
|
330 |
|
|
.plt section. */
|
331 |
|
|
if (bed->want_plt_sym)
|
332 |
|
|
{
|
333 |
|
|
h = _bfd_elf_define_linkage_sym (abfd, info, s,
|
334 |
|
|
"_PROCEDURE_LINKAGE_TABLE_");
|
335 |
|
|
elf_hash_table (info)->hplt = h;
|
336 |
|
|
if (h == NULL)
|
337 |
|
|
return FALSE;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
s = bfd_make_section_with_flags (abfd,
|
341 |
|
|
(bed->rela_plts_and_copies_p
|
342 |
|
|
? ".rela.plt" : ".rel.plt"),
|
343 |
|
|
flags | SEC_READONLY);
|
344 |
|
|
if (s == NULL
|
345 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
346 |
|
|
return FALSE;
|
347 |
|
|
htab->srelplt = s;
|
348 |
|
|
|
349 |
|
|
if (! _bfd_elf_create_got_section (abfd, info))
|
350 |
|
|
return FALSE;
|
351 |
|
|
|
352 |
|
|
if (bed->want_dynbss)
|
353 |
|
|
{
|
354 |
|
|
/* The .dynbss section is a place to put symbols which are defined
|
355 |
|
|
by dynamic objects, are referenced by regular objects, and are
|
356 |
|
|
not functions. We must allocate space for them in the process
|
357 |
|
|
image and use a R_*_COPY reloc to tell the dynamic linker to
|
358 |
|
|
initialize them at run time. The linker script puts the .dynbss
|
359 |
|
|
section into the .bss section of the final image. */
|
360 |
|
|
s = bfd_make_section_with_flags (abfd, ".dynbss",
|
361 |
|
|
(SEC_ALLOC
|
362 |
|
|
| SEC_LINKER_CREATED));
|
363 |
|
|
if (s == NULL)
|
364 |
|
|
return FALSE;
|
365 |
|
|
|
366 |
|
|
/* The .rel[a].bss section holds copy relocs. This section is not
|
367 |
|
|
normally needed. We need to create it here, though, so that the
|
368 |
|
|
linker will map it to an output section. We can't just create it
|
369 |
|
|
only if we need it, because we will not know whether we need it
|
370 |
|
|
until we have seen all the input files, and the first time the
|
371 |
|
|
main linker code calls BFD after examining all the input files
|
372 |
|
|
(size_dynamic_sections) the input sections have already been
|
373 |
|
|
mapped to the output sections. If the section turns out not to
|
374 |
|
|
be needed, we can discard it later. We will never need this
|
375 |
|
|
section when generating a shared object, since they do not use
|
376 |
|
|
copy relocs. */
|
377 |
|
|
if (! info->shared)
|
378 |
|
|
{
|
379 |
|
|
s = bfd_make_section_with_flags (abfd,
|
380 |
|
|
(bed->rela_plts_and_copies_p
|
381 |
|
|
? ".rela.bss" : ".rel.bss"),
|
382 |
|
|
flags | SEC_READONLY);
|
383 |
|
|
if (s == NULL
|
384 |
|
|
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
|
385 |
|
|
return FALSE;
|
386 |
|
|
}
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
return TRUE;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* Record a new dynamic symbol. We record the dynamic symbols as we
|
393 |
|
|
read the input files, since we need to have a list of all of them
|
394 |
|
|
before we can determine the final sizes of the output sections.
|
395 |
|
|
Note that we may actually call this function even though we are not
|
396 |
|
|
going to output any dynamic symbols; in some cases we know that a
|
397 |
|
|
symbol should be in the dynamic symbol table, but only if there is
|
398 |
|
|
one. */
|
399 |
|
|
|
400 |
|
|
bfd_boolean
|
401 |
|
|
bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
|
402 |
|
|
struct elf_link_hash_entry *h)
|
403 |
|
|
{
|
404 |
|
|
if (h->dynindx == -1)
|
405 |
|
|
{
|
406 |
|
|
struct elf_strtab_hash *dynstr;
|
407 |
|
|
char *p;
|
408 |
|
|
const char *name;
|
409 |
|
|
bfd_size_type indx;
|
410 |
|
|
|
411 |
|
|
/* XXX: The ABI draft says the linker must turn hidden and
|
412 |
|
|
internal symbols into STB_LOCAL symbols when producing the
|
413 |
|
|
DSO. However, if ld.so honors st_other in the dynamic table,
|
414 |
|
|
this would not be necessary. */
|
415 |
|
|
switch (ELF_ST_VISIBILITY (h->other))
|
416 |
|
|
{
|
417 |
|
|
case STV_INTERNAL:
|
418 |
|
|
case STV_HIDDEN:
|
419 |
|
|
if (h->root.type != bfd_link_hash_undefined
|
420 |
|
|
&& h->root.type != bfd_link_hash_undefweak)
|
421 |
|
|
{
|
422 |
|
|
h->forced_local = 1;
|
423 |
|
|
if (!elf_hash_table (info)->is_relocatable_executable)
|
424 |
|
|
return TRUE;
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
default:
|
428 |
|
|
break;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
h->dynindx = elf_hash_table (info)->dynsymcount;
|
432 |
|
|
++elf_hash_table (info)->dynsymcount;
|
433 |
|
|
|
434 |
|
|
dynstr = elf_hash_table (info)->dynstr;
|
435 |
|
|
if (dynstr == NULL)
|
436 |
|
|
{
|
437 |
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
438 |
|
|
elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
|
439 |
|
|
if (dynstr == NULL)
|
440 |
|
|
return FALSE;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* We don't put any version information in the dynamic string
|
444 |
|
|
table. */
|
445 |
|
|
name = h->root.root.string;
|
446 |
|
|
p = strchr (name, ELF_VER_CHR);
|
447 |
|
|
if (p != NULL)
|
448 |
|
|
/* We know that the p points into writable memory. In fact,
|
449 |
|
|
there are only a few symbols that have read-only names, being
|
450 |
|
|
those like _GLOBAL_OFFSET_TABLE_ that are created specially
|
451 |
|
|
by the backends. Most symbols will have names pointing into
|
452 |
|
|
an ELF string table read from a file, or to objalloc memory. */
|
453 |
|
|
*p = 0;
|
454 |
|
|
|
455 |
|
|
indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
|
456 |
|
|
|
457 |
|
|
if (p != NULL)
|
458 |
|
|
*p = ELF_VER_CHR;
|
459 |
|
|
|
460 |
|
|
if (indx == (bfd_size_type) -1)
|
461 |
|
|
return FALSE;
|
462 |
|
|
h->dynstr_index = indx;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
return TRUE;
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
/* Mark a symbol dynamic. */
|
469 |
|
|
|
470 |
|
|
static void
|
471 |
|
|
bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
|
472 |
|
|
struct elf_link_hash_entry *h,
|
473 |
|
|
Elf_Internal_Sym *sym)
|
474 |
|
|
{
|
475 |
|
|
struct bfd_elf_dynamic_list *d = info->dynamic_list;
|
476 |
|
|
|
477 |
|
|
/* It may be called more than once on the same H. */
|
478 |
|
|
if(h->dynamic || info->relocatable)
|
479 |
|
|
return;
|
480 |
|
|
|
481 |
|
|
if ((info->dynamic_data
|
482 |
|
|
&& (h->type == STT_OBJECT
|
483 |
|
|
|| (sym != NULL
|
484 |
|
|
&& ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
|
485 |
|
|
|| (d != NULL
|
486 |
|
|
&& h->root.type == bfd_link_hash_new
|
487 |
|
|
&& (*d->match) (&d->head, NULL, h->root.root.string)))
|
488 |
|
|
h->dynamic = 1;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/* Record an assignment to a symbol made by a linker script. We need
|
492 |
|
|
this in case some dynamic object refers to this symbol. */
|
493 |
|
|
|
494 |
|
|
bfd_boolean
|
495 |
|
|
bfd_elf_record_link_assignment (bfd *output_bfd,
|
496 |
|
|
struct bfd_link_info *info,
|
497 |
|
|
const char *name,
|
498 |
|
|
bfd_boolean provide,
|
499 |
|
|
bfd_boolean hidden)
|
500 |
|
|
{
|
501 |
|
|
struct elf_link_hash_entry *h, *hv;
|
502 |
|
|
struct elf_link_hash_table *htab;
|
503 |
|
|
const struct elf_backend_data *bed;
|
504 |
|
|
|
505 |
|
|
if (!is_elf_hash_table (info->hash))
|
506 |
|
|
return TRUE;
|
507 |
|
|
|
508 |
|
|
htab = elf_hash_table (info);
|
509 |
|
|
h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
|
510 |
|
|
if (h == NULL)
|
511 |
|
|
return provide;
|
512 |
|
|
|
513 |
|
|
switch (h->root.type)
|
514 |
|
|
{
|
515 |
|
|
case bfd_link_hash_defined:
|
516 |
|
|
case bfd_link_hash_defweak:
|
517 |
|
|
case bfd_link_hash_common:
|
518 |
|
|
break;
|
519 |
|
|
case bfd_link_hash_undefweak:
|
520 |
|
|
case bfd_link_hash_undefined:
|
521 |
|
|
/* Since we're defining the symbol, don't let it seem to have not
|
522 |
|
|
been defined. record_dynamic_symbol and size_dynamic_sections
|
523 |
|
|
may depend on this. */
|
524 |
|
|
h->root.type = bfd_link_hash_new;
|
525 |
|
|
if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
|
526 |
|
|
bfd_link_repair_undef_list (&htab->root);
|
527 |
|
|
break;
|
528 |
|
|
case bfd_link_hash_new:
|
529 |
|
|
bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
|
530 |
|
|
h->non_elf = 0;
|
531 |
|
|
break;
|
532 |
|
|
case bfd_link_hash_indirect:
|
533 |
|
|
/* We had a versioned symbol in a dynamic library. We make the
|
534 |
|
|
the versioned symbol point to this one. */
|
535 |
|
|
bed = get_elf_backend_data (output_bfd);
|
536 |
|
|
hv = h;
|
537 |
|
|
while (hv->root.type == bfd_link_hash_indirect
|
538 |
|
|
|| hv->root.type == bfd_link_hash_warning)
|
539 |
|
|
hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
|
540 |
|
|
/* We don't need to update h->root.u since linker will set them
|
541 |
|
|
later. */
|
542 |
|
|
h->root.type = bfd_link_hash_undefined;
|
543 |
|
|
hv->root.type = bfd_link_hash_indirect;
|
544 |
|
|
hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
|
545 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
|
546 |
|
|
break;
|
547 |
|
|
case bfd_link_hash_warning:
|
548 |
|
|
abort ();
|
549 |
|
|
break;
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/* If this symbol is being provided by the linker script, and it is
|
553 |
|
|
currently defined by a dynamic object, but not by a regular
|
554 |
|
|
object, then mark it as undefined so that the generic linker will
|
555 |
|
|
force the correct value. */
|
556 |
|
|
if (provide
|
557 |
|
|
&& h->def_dynamic
|
558 |
|
|
&& !h->def_regular)
|
559 |
|
|
h->root.type = bfd_link_hash_undefined;
|
560 |
|
|
|
561 |
|
|
/* If this symbol is not being provided by the linker script, and it is
|
562 |
|
|
currently defined by a dynamic object, but not by a regular object,
|
563 |
|
|
then clear out any version information because the symbol will not be
|
564 |
|
|
associated with the dynamic object any more. */
|
565 |
|
|
if (!provide
|
566 |
|
|
&& h->def_dynamic
|
567 |
|
|
&& !h->def_regular)
|
568 |
|
|
h->verinfo.verdef = NULL;
|
569 |
|
|
|
570 |
|
|
h->def_regular = 1;
|
571 |
|
|
|
572 |
|
|
if (provide && hidden)
|
573 |
|
|
{
|
574 |
|
|
bed = get_elf_backend_data (output_bfd);
|
575 |
|
|
h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
|
576 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
|
580 |
|
|
and executables. */
|
581 |
|
|
if (!info->relocatable
|
582 |
|
|
&& h->dynindx != -1
|
583 |
|
|
&& (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
|
584 |
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
|
585 |
|
|
h->forced_local = 1;
|
586 |
|
|
|
587 |
|
|
if ((h->def_dynamic
|
588 |
|
|
|| h->ref_dynamic
|
589 |
|
|
|| info->shared
|
590 |
|
|
|| (info->executable && elf_hash_table (info)->is_relocatable_executable))
|
591 |
|
|
&& h->dynindx == -1)
|
592 |
|
|
{
|
593 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
594 |
|
|
return FALSE;
|
595 |
|
|
|
596 |
|
|
/* If this is a weak defined symbol, and we know a corresponding
|
597 |
|
|
real symbol from the same dynamic object, make sure the real
|
598 |
|
|
symbol is also made into a dynamic symbol. */
|
599 |
|
|
if (h->u.weakdef != NULL
|
600 |
|
|
&& h->u.weakdef->dynindx == -1)
|
601 |
|
|
{
|
602 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
|
603 |
|
|
return FALSE;
|
604 |
|
|
}
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
return TRUE;
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
|
611 |
|
|
success, and 2 on a failure caused by attempting to record a symbol
|
612 |
|
|
in a discarded section, eg. a discarded link-once section symbol. */
|
613 |
|
|
|
614 |
|
|
int
|
615 |
|
|
bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
|
616 |
|
|
bfd *input_bfd,
|
617 |
|
|
long input_indx)
|
618 |
|
|
{
|
619 |
|
|
bfd_size_type amt;
|
620 |
|
|
struct elf_link_local_dynamic_entry *entry;
|
621 |
|
|
struct elf_link_hash_table *eht;
|
622 |
|
|
struct elf_strtab_hash *dynstr;
|
623 |
|
|
unsigned long dynstr_index;
|
624 |
|
|
char *name;
|
625 |
|
|
Elf_External_Sym_Shndx eshndx;
|
626 |
|
|
char esym[sizeof (Elf64_External_Sym)];
|
627 |
|
|
|
628 |
|
|
if (! is_elf_hash_table (info->hash))
|
629 |
|
|
return 0;
|
630 |
|
|
|
631 |
|
|
/* See if the entry exists already. */
|
632 |
|
|
for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
|
633 |
|
|
if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
|
634 |
|
|
return 1;
|
635 |
|
|
|
636 |
|
|
amt = sizeof (*entry);
|
637 |
|
|
entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
|
638 |
|
|
if (entry == NULL)
|
639 |
|
|
return 0;
|
640 |
|
|
|
641 |
|
|
/* Go find the symbol, so that we can find it's name. */
|
642 |
|
|
if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
|
643 |
|
|
1, input_indx, &entry->isym, esym, &eshndx))
|
644 |
|
|
{
|
645 |
|
|
bfd_release (input_bfd, entry);
|
646 |
|
|
return 0;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
if (entry->isym.st_shndx != SHN_UNDEF
|
650 |
|
|
&& entry->isym.st_shndx < SHN_LORESERVE)
|
651 |
|
|
{
|
652 |
|
|
asection *s;
|
653 |
|
|
|
654 |
|
|
s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
|
655 |
|
|
if (s == NULL || bfd_is_abs_section (s->output_section))
|
656 |
|
|
{
|
657 |
|
|
/* We can still bfd_release here as nothing has done another
|
658 |
|
|
bfd_alloc. We can't do this later in this function. */
|
659 |
|
|
bfd_release (input_bfd, entry);
|
660 |
|
|
return 2;
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
name = (bfd_elf_string_from_elf_section
|
665 |
|
|
(input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
|
666 |
|
|
entry->isym.st_name));
|
667 |
|
|
|
668 |
|
|
dynstr = elf_hash_table (info)->dynstr;
|
669 |
|
|
if (dynstr == NULL)
|
670 |
|
|
{
|
671 |
|
|
/* Create a strtab to hold the dynamic symbol names. */
|
672 |
|
|
elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
|
673 |
|
|
if (dynstr == NULL)
|
674 |
|
|
return 0;
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
|
678 |
|
|
if (dynstr_index == (unsigned long) -1)
|
679 |
|
|
return 0;
|
680 |
|
|
entry->isym.st_name = dynstr_index;
|
681 |
|
|
|
682 |
|
|
eht = elf_hash_table (info);
|
683 |
|
|
|
684 |
|
|
entry->next = eht->dynlocal;
|
685 |
|
|
eht->dynlocal = entry;
|
686 |
|
|
entry->input_bfd = input_bfd;
|
687 |
|
|
entry->input_indx = input_indx;
|
688 |
|
|
eht->dynsymcount++;
|
689 |
|
|
|
690 |
|
|
/* Whatever binding the symbol had before, it's now local. */
|
691 |
|
|
entry->isym.st_info
|
692 |
|
|
= ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
|
693 |
|
|
|
694 |
|
|
/* The dynindx will be set at the end of size_dynamic_sections. */
|
695 |
|
|
|
696 |
|
|
return 1;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Return the dynindex of a local dynamic symbol. */
|
700 |
|
|
|
701 |
|
|
long
|
702 |
|
|
_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
|
703 |
|
|
bfd *input_bfd,
|
704 |
|
|
long input_indx)
|
705 |
|
|
{
|
706 |
|
|
struct elf_link_local_dynamic_entry *e;
|
707 |
|
|
|
708 |
|
|
for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
|
709 |
|
|
if (e->input_bfd == input_bfd && e->input_indx == input_indx)
|
710 |
|
|
return e->dynindx;
|
711 |
|
|
return -1;
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
/* This function is used to renumber the dynamic symbols, if some of
|
715 |
|
|
them are removed because they are marked as local. This is called
|
716 |
|
|
via elf_link_hash_traverse. */
|
717 |
|
|
|
718 |
|
|
static bfd_boolean
|
719 |
|
|
elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
|
720 |
|
|
void *data)
|
721 |
|
|
{
|
722 |
|
|
size_t *count = (size_t *) data;
|
723 |
|
|
|
724 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
725 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
726 |
|
|
|
727 |
|
|
if (h->forced_local)
|
728 |
|
|
return TRUE;
|
729 |
|
|
|
730 |
|
|
if (h->dynindx != -1)
|
731 |
|
|
h->dynindx = ++(*count);
|
732 |
|
|
|
733 |
|
|
return TRUE;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
|
737 |
|
|
/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
|
738 |
|
|
STB_LOCAL binding. */
|
739 |
|
|
|
740 |
|
|
static bfd_boolean
|
741 |
|
|
elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
|
742 |
|
|
void *data)
|
743 |
|
|
{
|
744 |
|
|
size_t *count = (size_t *) data;
|
745 |
|
|
|
746 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
747 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
748 |
|
|
|
749 |
|
|
if (!h->forced_local)
|
750 |
|
|
return TRUE;
|
751 |
|
|
|
752 |
|
|
if (h->dynindx != -1)
|
753 |
|
|
h->dynindx = ++(*count);
|
754 |
|
|
|
755 |
|
|
return TRUE;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* Return true if the dynamic symbol for a given section should be
|
759 |
|
|
omitted when creating a shared library. */
|
760 |
|
|
bfd_boolean
|
761 |
|
|
_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
|
762 |
|
|
struct bfd_link_info *info,
|
763 |
|
|
asection *p)
|
764 |
|
|
{
|
765 |
|
|
struct elf_link_hash_table *htab;
|
766 |
|
|
|
767 |
|
|
switch (elf_section_data (p)->this_hdr.sh_type)
|
768 |
|
|
{
|
769 |
|
|
case SHT_PROGBITS:
|
770 |
|
|
case SHT_NOBITS:
|
771 |
|
|
/* If sh_type is yet undecided, assume it could be
|
772 |
|
|
SHT_PROGBITS/SHT_NOBITS. */
|
773 |
|
|
case SHT_NULL:
|
774 |
|
|
htab = elf_hash_table (info);
|
775 |
|
|
if (p == htab->tls_sec)
|
776 |
|
|
return FALSE;
|
777 |
|
|
|
778 |
|
|
if (htab->text_index_section != NULL)
|
779 |
|
|
return p != htab->text_index_section && p != htab->data_index_section;
|
780 |
|
|
|
781 |
|
|
if (strcmp (p->name, ".got") == 0
|
782 |
|
|
|| strcmp (p->name, ".got.plt") == 0
|
783 |
|
|
|| strcmp (p->name, ".plt") == 0)
|
784 |
|
|
{
|
785 |
|
|
asection *ip;
|
786 |
|
|
|
787 |
|
|
if (htab->dynobj != NULL
|
788 |
|
|
&& (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
|
789 |
|
|
&& (ip->flags & SEC_LINKER_CREATED)
|
790 |
|
|
&& ip->output_section == p)
|
791 |
|
|
return TRUE;
|
792 |
|
|
}
|
793 |
|
|
return FALSE;
|
794 |
|
|
|
795 |
|
|
/* There shouldn't be section relative relocations
|
796 |
|
|
against any other section. */
|
797 |
|
|
default:
|
798 |
|
|
return TRUE;
|
799 |
|
|
}
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* Assign dynsym indices. In a shared library we generate a section
|
803 |
|
|
symbol for each output section, which come first. Next come symbols
|
804 |
|
|
which have been forced to local binding. Then all of the back-end
|
805 |
|
|
allocated local dynamic syms, followed by the rest of the global
|
806 |
|
|
symbols. */
|
807 |
|
|
|
808 |
|
|
static unsigned long
|
809 |
|
|
_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
|
810 |
|
|
struct bfd_link_info *info,
|
811 |
|
|
unsigned long *section_sym_count)
|
812 |
|
|
{
|
813 |
|
|
unsigned long dynsymcount = 0;
|
814 |
|
|
|
815 |
|
|
if (info->shared || elf_hash_table (info)->is_relocatable_executable)
|
816 |
|
|
{
|
817 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
818 |
|
|
asection *p;
|
819 |
|
|
for (p = output_bfd->sections; p ; p = p->next)
|
820 |
|
|
if ((p->flags & SEC_EXCLUDE) == 0
|
821 |
|
|
&& (p->flags & SEC_ALLOC) != 0
|
822 |
|
|
&& !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
|
823 |
|
|
elf_section_data (p)->dynindx = ++dynsymcount;
|
824 |
|
|
else
|
825 |
|
|
elf_section_data (p)->dynindx = 0;
|
826 |
|
|
}
|
827 |
|
|
*section_sym_count = dynsymcount;
|
828 |
|
|
|
829 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
830 |
|
|
elf_link_renumber_local_hash_table_dynsyms,
|
831 |
|
|
&dynsymcount);
|
832 |
|
|
|
833 |
|
|
if (elf_hash_table (info)->dynlocal)
|
834 |
|
|
{
|
835 |
|
|
struct elf_link_local_dynamic_entry *p;
|
836 |
|
|
for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
|
837 |
|
|
p->dynindx = ++dynsymcount;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
841 |
|
|
elf_link_renumber_hash_table_dynsyms,
|
842 |
|
|
&dynsymcount);
|
843 |
|
|
|
844 |
|
|
/* There is an unused NULL entry at the head of the table which
|
845 |
|
|
we must account for in our count. Unless there weren't any
|
846 |
|
|
symbols, which means we'll have no table at all. */
|
847 |
|
|
if (dynsymcount != 0)
|
848 |
|
|
++dynsymcount;
|
849 |
|
|
|
850 |
|
|
elf_hash_table (info)->dynsymcount = dynsymcount;
|
851 |
|
|
return dynsymcount;
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
/* Merge st_other field. */
|
855 |
|
|
|
856 |
|
|
static void
|
857 |
|
|
elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
|
858 |
|
|
Elf_Internal_Sym *isym, bfd_boolean definition,
|
859 |
|
|
bfd_boolean dynamic)
|
860 |
|
|
{
|
861 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
862 |
|
|
|
863 |
|
|
/* If st_other has a processor-specific meaning, specific
|
864 |
|
|
code might be needed here. We never merge the visibility
|
865 |
|
|
attribute with the one from a dynamic object. */
|
866 |
|
|
if (bed->elf_backend_merge_symbol_attribute)
|
867 |
|
|
(*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
|
868 |
|
|
dynamic);
|
869 |
|
|
|
870 |
|
|
/* If this symbol has default visibility and the user has requested
|
871 |
|
|
we not re-export it, then mark it as hidden. */
|
872 |
|
|
if (definition
|
873 |
|
|
&& !dynamic
|
874 |
|
|
&& (abfd->no_export
|
875 |
|
|
|| (abfd->my_archive && abfd->my_archive->no_export))
|
876 |
|
|
&& ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
|
877 |
|
|
isym->st_other = (STV_HIDDEN
|
878 |
|
|
| (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
|
879 |
|
|
|
880 |
|
|
if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
|
881 |
|
|
{
|
882 |
|
|
unsigned char hvis, symvis, other, nvis;
|
883 |
|
|
|
884 |
|
|
/* Only merge the visibility. Leave the remainder of the
|
885 |
|
|
st_other field to elf_backend_merge_symbol_attribute. */
|
886 |
|
|
other = h->other & ~ELF_ST_VISIBILITY (-1);
|
887 |
|
|
|
888 |
|
|
/* Combine visibilities, using the most constraining one. */
|
889 |
|
|
hvis = ELF_ST_VISIBILITY (h->other);
|
890 |
|
|
symvis = ELF_ST_VISIBILITY (isym->st_other);
|
891 |
|
|
if (! hvis)
|
892 |
|
|
nvis = symvis;
|
893 |
|
|
else if (! symvis)
|
894 |
|
|
nvis = hvis;
|
895 |
|
|
else
|
896 |
|
|
nvis = hvis < symvis ? hvis : symvis;
|
897 |
|
|
|
898 |
|
|
h->other = other | nvis;
|
899 |
|
|
}
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
/* This function is called when we want to define a new symbol. It
|
903 |
|
|
handles the various cases which arise when we find a definition in
|
904 |
|
|
a dynamic object, or when there is already a definition in a
|
905 |
|
|
dynamic object. The new symbol is described by NAME, SYM, PSEC,
|
906 |
|
|
and PVALUE. We set SYM_HASH to the hash table entry. We set
|
907 |
|
|
OVERRIDE if the old symbol is overriding a new definition. We set
|
908 |
|
|
TYPE_CHANGE_OK if it is OK for the type to change. We set
|
909 |
|
|
SIZE_CHANGE_OK if it is OK for the size to change. By OK to
|
910 |
|
|
change, we mean that we shouldn't warn if the type or size does
|
911 |
|
|
change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
|
912 |
|
|
object is overridden by a regular object. */
|
913 |
|
|
|
914 |
|
|
bfd_boolean
|
915 |
|
|
_bfd_elf_merge_symbol (bfd *abfd,
|
916 |
|
|
struct bfd_link_info *info,
|
917 |
|
|
const char *name,
|
918 |
|
|
Elf_Internal_Sym *sym,
|
919 |
|
|
asection **psec,
|
920 |
|
|
bfd_vma *pvalue,
|
921 |
|
|
unsigned int *pold_alignment,
|
922 |
|
|
struct elf_link_hash_entry **sym_hash,
|
923 |
|
|
bfd_boolean *skip,
|
924 |
|
|
bfd_boolean *override,
|
925 |
|
|
bfd_boolean *type_change_ok,
|
926 |
|
|
bfd_boolean *size_change_ok)
|
927 |
|
|
{
|
928 |
|
|
asection *sec, *oldsec;
|
929 |
|
|
struct elf_link_hash_entry *h;
|
930 |
|
|
struct elf_link_hash_entry *flip;
|
931 |
|
|
int bind;
|
932 |
|
|
bfd *oldbfd;
|
933 |
|
|
bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
|
934 |
|
|
bfd_boolean newweak, oldweak, newfunc, oldfunc;
|
935 |
|
|
const struct elf_backend_data *bed;
|
936 |
|
|
|
937 |
|
|
*skip = FALSE;
|
938 |
|
|
*override = FALSE;
|
939 |
|
|
|
940 |
|
|
sec = *psec;
|
941 |
|
|
bind = ELF_ST_BIND (sym->st_info);
|
942 |
|
|
|
943 |
|
|
/* Silently discard TLS symbols from --just-syms. There's no way to
|
944 |
|
|
combine a static TLS block with a new TLS block for this executable. */
|
945 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_TLS
|
946 |
|
|
&& sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
|
947 |
|
|
{
|
948 |
|
|
*skip = TRUE;
|
949 |
|
|
return TRUE;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
if (! bfd_is_und_section (sec))
|
953 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
|
954 |
|
|
else
|
955 |
|
|
h = ((struct elf_link_hash_entry *)
|
956 |
|
|
bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
|
957 |
|
|
if (h == NULL)
|
958 |
|
|
return FALSE;
|
959 |
|
|
*sym_hash = h;
|
960 |
|
|
|
961 |
|
|
bed = get_elf_backend_data (abfd);
|
962 |
|
|
|
963 |
|
|
/* This code is for coping with dynamic objects, and is only useful
|
964 |
|
|
if we are doing an ELF link. */
|
965 |
|
|
if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
|
966 |
|
|
return TRUE;
|
967 |
|
|
|
968 |
|
|
/* For merging, we only care about real symbols. */
|
969 |
|
|
|
970 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
971 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
972 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
973 |
|
|
|
974 |
|
|
/* We have to check it for every instance since the first few may be
|
975 |
|
|
refereences and not all compilers emit symbol type for undefined
|
976 |
|
|
symbols. */
|
977 |
|
|
bfd_elf_link_mark_dynamic_symbol (info, h, sym);
|
978 |
|
|
|
979 |
|
|
/* If we just created the symbol, mark it as being an ELF symbol.
|
980 |
|
|
Other than that, there is nothing to do--there is no merge issue
|
981 |
|
|
with a newly defined symbol--so we just return. */
|
982 |
|
|
|
983 |
|
|
if (h->root.type == bfd_link_hash_new)
|
984 |
|
|
{
|
985 |
|
|
h->non_elf = 0;
|
986 |
|
|
return TRUE;
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
|
990 |
|
|
existing symbol. */
|
991 |
|
|
|
992 |
|
|
switch (h->root.type)
|
993 |
|
|
{
|
994 |
|
|
default:
|
995 |
|
|
oldbfd = NULL;
|
996 |
|
|
oldsec = NULL;
|
997 |
|
|
break;
|
998 |
|
|
|
999 |
|
|
case bfd_link_hash_undefined:
|
1000 |
|
|
case bfd_link_hash_undefweak:
|
1001 |
|
|
oldbfd = h->root.u.undef.abfd;
|
1002 |
|
|
oldsec = NULL;
|
1003 |
|
|
break;
|
1004 |
|
|
|
1005 |
|
|
case bfd_link_hash_defined:
|
1006 |
|
|
case bfd_link_hash_defweak:
|
1007 |
|
|
oldbfd = h->root.u.def.section->owner;
|
1008 |
|
|
oldsec = h->root.u.def.section;
|
1009 |
|
|
break;
|
1010 |
|
|
|
1011 |
|
|
case bfd_link_hash_common:
|
1012 |
|
|
oldbfd = h->root.u.c.p->section->owner;
|
1013 |
|
|
oldsec = h->root.u.c.p->section;
|
1014 |
|
|
break;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
/* Differentiate strong and weak symbols. */
|
1018 |
|
|
newweak = bind == STB_WEAK;
|
1019 |
|
|
oldweak = (h->root.type == bfd_link_hash_defweak
|
1020 |
|
|
|| h->root.type == bfd_link_hash_undefweak);
|
1021 |
|
|
|
1022 |
|
|
/* In cases involving weak versioned symbols, we may wind up trying
|
1023 |
|
|
to merge a symbol with itself. Catch that here, to avoid the
|
1024 |
|
|
confusion that results if we try to override a symbol with
|
1025 |
|
|
itself. The additional tests catch cases like
|
1026 |
|
|
_GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
|
1027 |
|
|
dynamic object, which we do want to handle here. */
|
1028 |
|
|
if (abfd == oldbfd
|
1029 |
|
|
&& (newweak || oldweak)
|
1030 |
|
|
&& ((abfd->flags & DYNAMIC) == 0
|
1031 |
|
|
|| !h->def_regular))
|
1032 |
|
|
return TRUE;
|
1033 |
|
|
|
1034 |
|
|
/* NEWDYN and OLDDYN indicate whether the new or old symbol,
|
1035 |
|
|
respectively, is from a dynamic object. */
|
1036 |
|
|
|
1037 |
|
|
newdyn = (abfd->flags & DYNAMIC) != 0;
|
1038 |
|
|
|
1039 |
|
|
olddyn = FALSE;
|
1040 |
|
|
if (oldbfd != NULL)
|
1041 |
|
|
olddyn = (oldbfd->flags & DYNAMIC) != 0;
|
1042 |
|
|
else if (oldsec != NULL)
|
1043 |
|
|
{
|
1044 |
|
|
/* This handles the special SHN_MIPS_{TEXT,DATA} section
|
1045 |
|
|
indices used by MIPS ELF. */
|
1046 |
|
|
olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
/* NEWDEF and OLDDEF indicate whether the new or old symbol,
|
1050 |
|
|
respectively, appear to be a definition rather than reference. */
|
1051 |
|
|
|
1052 |
|
|
newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
|
1053 |
|
|
|
1054 |
|
|
olddef = (h->root.type != bfd_link_hash_undefined
|
1055 |
|
|
&& h->root.type != bfd_link_hash_undefweak
|
1056 |
|
|
&& h->root.type != bfd_link_hash_common);
|
1057 |
|
|
|
1058 |
|
|
/* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
|
1059 |
|
|
respectively, appear to be a function. */
|
1060 |
|
|
|
1061 |
|
|
newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
|
1062 |
|
|
&& bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
|
1063 |
|
|
|
1064 |
|
|
oldfunc = (h->type != STT_NOTYPE
|
1065 |
|
|
&& bed->is_function_type (h->type));
|
1066 |
|
|
|
1067 |
|
|
/* When we try to create a default indirect symbol from the dynamic
|
1068 |
|
|
definition with the default version, we skip it if its type and
|
1069 |
|
|
the type of existing regular definition mismatch. We only do it
|
1070 |
|
|
if the existing regular definition won't be dynamic. */
|
1071 |
|
|
if (pold_alignment == NULL
|
1072 |
|
|
&& !info->shared
|
1073 |
|
|
&& !info->export_dynamic
|
1074 |
|
|
&& !h->ref_dynamic
|
1075 |
|
|
&& newdyn
|
1076 |
|
|
&& newdef
|
1077 |
|
|
&& !olddyn
|
1078 |
|
|
&& (olddef || h->root.type == bfd_link_hash_common)
|
1079 |
|
|
&& ELF_ST_TYPE (sym->st_info) != h->type
|
1080 |
|
|
&& ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
|
1081 |
|
|
&& h->type != STT_NOTYPE
|
1082 |
|
|
&& !(newfunc && oldfunc))
|
1083 |
|
|
{
|
1084 |
|
|
*skip = TRUE;
|
1085 |
|
|
return TRUE;
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
/* Check TLS symbol. We don't check undefined symbol introduced by
|
1089 |
|
|
"ld -u". */
|
1090 |
|
|
if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
|
1091 |
|
|
&& ELF_ST_TYPE (sym->st_info) != h->type
|
1092 |
|
|
&& oldbfd != NULL)
|
1093 |
|
|
{
|
1094 |
|
|
bfd *ntbfd, *tbfd;
|
1095 |
|
|
bfd_boolean ntdef, tdef;
|
1096 |
|
|
asection *ntsec, *tsec;
|
1097 |
|
|
|
1098 |
|
|
if (h->type == STT_TLS)
|
1099 |
|
|
{
|
1100 |
|
|
ntbfd = abfd;
|
1101 |
|
|
ntsec = sec;
|
1102 |
|
|
ntdef = newdef;
|
1103 |
|
|
tbfd = oldbfd;
|
1104 |
|
|
tsec = oldsec;
|
1105 |
|
|
tdef = olddef;
|
1106 |
|
|
}
|
1107 |
|
|
else
|
1108 |
|
|
{
|
1109 |
|
|
ntbfd = oldbfd;
|
1110 |
|
|
ntsec = oldsec;
|
1111 |
|
|
ntdef = olddef;
|
1112 |
|
|
tbfd = abfd;
|
1113 |
|
|
tsec = sec;
|
1114 |
|
|
tdef = newdef;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
if (tdef && ntdef)
|
1118 |
|
|
(*_bfd_error_handler)
|
1119 |
|
|
(_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
|
1120 |
|
|
tbfd, tsec, ntbfd, ntsec, h->root.root.string);
|
1121 |
|
|
else if (!tdef && !ntdef)
|
1122 |
|
|
(*_bfd_error_handler)
|
1123 |
|
|
(_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
|
1124 |
|
|
tbfd, ntbfd, h->root.root.string);
|
1125 |
|
|
else if (tdef)
|
1126 |
|
|
(*_bfd_error_handler)
|
1127 |
|
|
(_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
|
1128 |
|
|
tbfd, tsec, ntbfd, h->root.root.string);
|
1129 |
|
|
else
|
1130 |
|
|
(*_bfd_error_handler)
|
1131 |
|
|
(_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
|
1132 |
|
|
tbfd, ntbfd, ntsec, h->root.root.string);
|
1133 |
|
|
|
1134 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1135 |
|
|
return FALSE;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* We need to remember if a symbol has a definition in a dynamic
|
1139 |
|
|
object or is weak in all dynamic objects. Internal and hidden
|
1140 |
|
|
visibility will make it unavailable to dynamic objects. */
|
1141 |
|
|
if (newdyn && !h->dynamic_def)
|
1142 |
|
|
{
|
1143 |
|
|
if (!bfd_is_und_section (sec))
|
1144 |
|
|
h->dynamic_def = 1;
|
1145 |
|
|
else
|
1146 |
|
|
{
|
1147 |
|
|
/* Check if this symbol is weak in all dynamic objects. If it
|
1148 |
|
|
is the first time we see it in a dynamic object, we mark
|
1149 |
|
|
if it is weak. Otherwise, we clear it. */
|
1150 |
|
|
if (!h->ref_dynamic)
|
1151 |
|
|
{
|
1152 |
|
|
if (bind == STB_WEAK)
|
1153 |
|
|
h->dynamic_weak = 1;
|
1154 |
|
|
}
|
1155 |
|
|
else if (bind != STB_WEAK)
|
1156 |
|
|
h->dynamic_weak = 0;
|
1157 |
|
|
}
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/* If the old symbol has non-default visibility, we ignore the new
|
1161 |
|
|
definition from a dynamic object. */
|
1162 |
|
|
if (newdyn
|
1163 |
|
|
&& ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
1164 |
|
|
&& !bfd_is_und_section (sec))
|
1165 |
|
|
{
|
1166 |
|
|
*skip = TRUE;
|
1167 |
|
|
/* Make sure this symbol is dynamic. */
|
1168 |
|
|
h->ref_dynamic = 1;
|
1169 |
|
|
/* A protected symbol has external availability. Make sure it is
|
1170 |
|
|
recorded as dynamic.
|
1171 |
|
|
|
1172 |
|
|
FIXME: Should we check type and size for protected symbol? */
|
1173 |
|
|
if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
|
1174 |
|
|
return bfd_elf_link_record_dynamic_symbol (info, h);
|
1175 |
|
|
else
|
1176 |
|
|
return TRUE;
|
1177 |
|
|
}
|
1178 |
|
|
else if (!newdyn
|
1179 |
|
|
&& ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
|
1180 |
|
|
&& h->def_dynamic)
|
1181 |
|
|
{
|
1182 |
|
|
/* If the new symbol with non-default visibility comes from a
|
1183 |
|
|
relocatable file and the old definition comes from a dynamic
|
1184 |
|
|
object, we remove the old definition. */
|
1185 |
|
|
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
|
1186 |
|
|
{
|
1187 |
|
|
/* Handle the case where the old dynamic definition is
|
1188 |
|
|
default versioned. We need to copy the symbol info from
|
1189 |
|
|
the symbol with default version to the normal one if it
|
1190 |
|
|
was referenced before. */
|
1191 |
|
|
if (h->ref_regular)
|
1192 |
|
|
{
|
1193 |
|
|
struct elf_link_hash_entry *vh = *sym_hash;
|
1194 |
|
|
|
1195 |
|
|
vh->root.type = h->root.type;
|
1196 |
|
|
h->root.type = bfd_link_hash_indirect;
|
1197 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
|
1198 |
|
|
/* Protected symbols will override the dynamic definition
|
1199 |
|
|
with default version. */
|
1200 |
|
|
if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
|
1201 |
|
|
{
|
1202 |
|
|
h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
|
1203 |
|
|
vh->dynamic_def = 1;
|
1204 |
|
|
vh->ref_dynamic = 1;
|
1205 |
|
|
}
|
1206 |
|
|
else
|
1207 |
|
|
{
|
1208 |
|
|
h->root.type = vh->root.type;
|
1209 |
|
|
vh->ref_dynamic = 0;
|
1210 |
|
|
/* We have to hide it here since it was made dynamic
|
1211 |
|
|
global with extra bits when the symbol info was
|
1212 |
|
|
copied from the old dynamic definition. */
|
1213 |
|
|
(*bed->elf_backend_hide_symbol) (info, vh, TRUE);
|
1214 |
|
|
}
|
1215 |
|
|
h = vh;
|
1216 |
|
|
}
|
1217 |
|
|
else
|
1218 |
|
|
h = *sym_hash;
|
1219 |
|
|
}
|
1220 |
|
|
|
1221 |
|
|
if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
|
1222 |
|
|
&& bfd_is_und_section (sec))
|
1223 |
|
|
{
|
1224 |
|
|
/* If the new symbol is undefined and the old symbol was
|
1225 |
|
|
also undefined before, we need to make sure
|
1226 |
|
|
_bfd_generic_link_add_one_symbol doesn't mess
|
1227 |
|
|
up the linker hash table undefs list. Since the old
|
1228 |
|
|
definition came from a dynamic object, it is still on the
|
1229 |
|
|
undefs list. */
|
1230 |
|
|
h->root.type = bfd_link_hash_undefined;
|
1231 |
|
|
h->root.u.undef.abfd = abfd;
|
1232 |
|
|
}
|
1233 |
|
|
else
|
1234 |
|
|
{
|
1235 |
|
|
h->root.type = bfd_link_hash_new;
|
1236 |
|
|
h->root.u.undef.abfd = NULL;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
if (h->def_dynamic)
|
1240 |
|
|
{
|
1241 |
|
|
h->def_dynamic = 0;
|
1242 |
|
|
h->ref_dynamic = 1;
|
1243 |
|
|
h->dynamic_def = 1;
|
1244 |
|
|
}
|
1245 |
|
|
/* FIXME: Should we check type and size for protected symbol? */
|
1246 |
|
|
h->size = 0;
|
1247 |
|
|
h->type = 0;
|
1248 |
|
|
return TRUE;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
if (bind == STB_GNU_UNIQUE)
|
1252 |
|
|
h->unique_global = 1;
|
1253 |
|
|
|
1254 |
|
|
/* If a new weak symbol definition comes from a regular file and the
|
1255 |
|
|
old symbol comes from a dynamic library, we treat the new one as
|
1256 |
|
|
strong. Similarly, an old weak symbol definition from a regular
|
1257 |
|
|
file is treated as strong when the new symbol comes from a dynamic
|
1258 |
|
|
library. Further, an old weak symbol from a dynamic library is
|
1259 |
|
|
treated as strong if the new symbol is from a dynamic library.
|
1260 |
|
|
This reflects the way glibc's ld.so works.
|
1261 |
|
|
|
1262 |
|
|
Do this before setting *type_change_ok or *size_change_ok so that
|
1263 |
|
|
we warn properly when dynamic library symbols are overridden. */
|
1264 |
|
|
|
1265 |
|
|
if (newdef && !newdyn && olddyn)
|
1266 |
|
|
newweak = FALSE;
|
1267 |
|
|
if (olddef && newdyn)
|
1268 |
|
|
oldweak = FALSE;
|
1269 |
|
|
|
1270 |
|
|
/* Allow changes between different types of function symbol. */
|
1271 |
|
|
if (newfunc && oldfunc)
|
1272 |
|
|
*type_change_ok = TRUE;
|
1273 |
|
|
|
1274 |
|
|
/* It's OK to change the type if either the existing symbol or the
|
1275 |
|
|
new symbol is weak. A type change is also OK if the old symbol
|
1276 |
|
|
is undefined and the new symbol is defined. */
|
1277 |
|
|
|
1278 |
|
|
if (oldweak
|
1279 |
|
|
|| newweak
|
1280 |
|
|
|| (newdef
|
1281 |
|
|
&& h->root.type == bfd_link_hash_undefined))
|
1282 |
|
|
*type_change_ok = TRUE;
|
1283 |
|
|
|
1284 |
|
|
/* It's OK to change the size if either the existing symbol or the
|
1285 |
|
|
new symbol is weak, or if the old symbol is undefined. */
|
1286 |
|
|
|
1287 |
|
|
if (*type_change_ok
|
1288 |
|
|
|| h->root.type == bfd_link_hash_undefined)
|
1289 |
|
|
*size_change_ok = TRUE;
|
1290 |
|
|
|
1291 |
|
|
/* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
|
1292 |
|
|
symbol, respectively, appears to be a common symbol in a dynamic
|
1293 |
|
|
object. If a symbol appears in an uninitialized section, and is
|
1294 |
|
|
not weak, and is not a function, then it may be a common symbol
|
1295 |
|
|
which was resolved when the dynamic object was created. We want
|
1296 |
|
|
to treat such symbols specially, because they raise special
|
1297 |
|
|
considerations when setting the symbol size: if the symbol
|
1298 |
|
|
appears as a common symbol in a regular object, and the size in
|
1299 |
|
|
the regular object is larger, we must make sure that we use the
|
1300 |
|
|
larger size. This problematic case can always be avoided in C,
|
1301 |
|
|
but it must be handled correctly when using Fortran shared
|
1302 |
|
|
libraries.
|
1303 |
|
|
|
1304 |
|
|
Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
|
1305 |
|
|
likewise for OLDDYNCOMMON and OLDDEF.
|
1306 |
|
|
|
1307 |
|
|
Note that this test is just a heuristic, and that it is quite
|
1308 |
|
|
possible to have an uninitialized symbol in a shared object which
|
1309 |
|
|
is really a definition, rather than a common symbol. This could
|
1310 |
|
|
lead to some minor confusion when the symbol really is a common
|
1311 |
|
|
symbol in some regular object. However, I think it will be
|
1312 |
|
|
harmless. */
|
1313 |
|
|
|
1314 |
|
|
if (newdyn
|
1315 |
|
|
&& newdef
|
1316 |
|
|
&& !newweak
|
1317 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
1318 |
|
|
&& (sec->flags & SEC_LOAD) == 0
|
1319 |
|
|
&& sym->st_size > 0
|
1320 |
|
|
&& !newfunc)
|
1321 |
|
|
newdyncommon = TRUE;
|
1322 |
|
|
else
|
1323 |
|
|
newdyncommon = FALSE;
|
1324 |
|
|
|
1325 |
|
|
if (olddyn
|
1326 |
|
|
&& olddef
|
1327 |
|
|
&& h->root.type == bfd_link_hash_defined
|
1328 |
|
|
&& h->def_dynamic
|
1329 |
|
|
&& (h->root.u.def.section->flags & SEC_ALLOC) != 0
|
1330 |
|
|
&& (h->root.u.def.section->flags & SEC_LOAD) == 0
|
1331 |
|
|
&& h->size > 0
|
1332 |
|
|
&& !oldfunc)
|
1333 |
|
|
olddyncommon = TRUE;
|
1334 |
|
|
else
|
1335 |
|
|
olddyncommon = FALSE;
|
1336 |
|
|
|
1337 |
|
|
/* We now know everything about the old and new symbols. We ask the
|
1338 |
|
|
backend to check if we can merge them. */
|
1339 |
|
|
if (bed->merge_symbol
|
1340 |
|
|
&& !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
|
1341 |
|
|
pold_alignment, skip, override,
|
1342 |
|
|
type_change_ok, size_change_ok,
|
1343 |
|
|
&newdyn, &newdef, &newdyncommon, &newweak,
|
1344 |
|
|
abfd, &sec,
|
1345 |
|
|
&olddyn, &olddef, &olddyncommon, &oldweak,
|
1346 |
|
|
oldbfd, &oldsec))
|
1347 |
|
|
return FALSE;
|
1348 |
|
|
|
1349 |
|
|
/* If both the old and the new symbols look like common symbols in a
|
1350 |
|
|
dynamic object, set the size of the symbol to the larger of the
|
1351 |
|
|
two. */
|
1352 |
|
|
|
1353 |
|
|
if (olddyncommon
|
1354 |
|
|
&& newdyncommon
|
1355 |
|
|
&& sym->st_size != h->size)
|
1356 |
|
|
{
|
1357 |
|
|
/* Since we think we have two common symbols, issue a multiple
|
1358 |
|
|
common warning if desired. Note that we only warn if the
|
1359 |
|
|
size is different. If the size is the same, we simply let
|
1360 |
|
|
the old symbol override the new one as normally happens with
|
1361 |
|
|
symbols defined in dynamic objects. */
|
1362 |
|
|
|
1363 |
|
|
if (! ((*info->callbacks->multiple_common)
|
1364 |
|
|
(info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
|
1365 |
|
|
return FALSE;
|
1366 |
|
|
|
1367 |
|
|
if (sym->st_size > h->size)
|
1368 |
|
|
h->size = sym->st_size;
|
1369 |
|
|
|
1370 |
|
|
*size_change_ok = TRUE;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
/* If we are looking at a dynamic object, and we have found a
|
1374 |
|
|
definition, we need to see if the symbol was already defined by
|
1375 |
|
|
some other object. If so, we want to use the existing
|
1376 |
|
|
definition, and we do not want to report a multiple symbol
|
1377 |
|
|
definition error; we do this by clobbering *PSEC to be
|
1378 |
|
|
bfd_und_section_ptr.
|
1379 |
|
|
|
1380 |
|
|
We treat a common symbol as a definition if the symbol in the
|
1381 |
|
|
shared library is a function, since common symbols always
|
1382 |
|
|
represent variables; this can cause confusion in principle, but
|
1383 |
|
|
any such confusion would seem to indicate an erroneous program or
|
1384 |
|
|
shared library. We also permit a common symbol in a regular
|
1385 |
|
|
object to override a weak symbol in a shared object. */
|
1386 |
|
|
|
1387 |
|
|
if (newdyn
|
1388 |
|
|
&& newdef
|
1389 |
|
|
&& (olddef
|
1390 |
|
|
|| (h->root.type == bfd_link_hash_common
|
1391 |
|
|
&& (newweak || newfunc))))
|
1392 |
|
|
{
|
1393 |
|
|
*override = TRUE;
|
1394 |
|
|
newdef = FALSE;
|
1395 |
|
|
newdyncommon = FALSE;
|
1396 |
|
|
|
1397 |
|
|
*psec = sec = bfd_und_section_ptr;
|
1398 |
|
|
*size_change_ok = TRUE;
|
1399 |
|
|
|
1400 |
|
|
/* If we get here when the old symbol is a common symbol, then
|
1401 |
|
|
we are explicitly letting it override a weak symbol or
|
1402 |
|
|
function in a dynamic object, and we don't want to warn about
|
1403 |
|
|
a type change. If the old symbol is a defined symbol, a type
|
1404 |
|
|
change warning may still be appropriate. */
|
1405 |
|
|
|
1406 |
|
|
if (h->root.type == bfd_link_hash_common)
|
1407 |
|
|
*type_change_ok = TRUE;
|
1408 |
|
|
}
|
1409 |
|
|
|
1410 |
|
|
/* Handle the special case of an old common symbol merging with a
|
1411 |
|
|
new symbol which looks like a common symbol in a shared object.
|
1412 |
|
|
We change *PSEC and *PVALUE to make the new symbol look like a
|
1413 |
|
|
common symbol, and let _bfd_generic_link_add_one_symbol do the
|
1414 |
|
|
right thing. */
|
1415 |
|
|
|
1416 |
|
|
if (newdyncommon
|
1417 |
|
|
&& h->root.type == bfd_link_hash_common)
|
1418 |
|
|
{
|
1419 |
|
|
*override = TRUE;
|
1420 |
|
|
newdef = FALSE;
|
1421 |
|
|
newdyncommon = FALSE;
|
1422 |
|
|
*pvalue = sym->st_size;
|
1423 |
|
|
*psec = sec = bed->common_section (oldsec);
|
1424 |
|
|
*size_change_ok = TRUE;
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/* Skip weak definitions of symbols that are already defined. */
|
1428 |
|
|
if (newdef && olddef && newweak)
|
1429 |
|
|
{
|
1430 |
|
|
/* Don't skip new non-IR weak syms. */
|
1431 |
|
|
if (!((oldbfd->flags & BFD_PLUGIN) != 0
|
1432 |
|
|
&& (abfd->flags & BFD_PLUGIN) == 0))
|
1433 |
|
|
*skip = TRUE;
|
1434 |
|
|
|
1435 |
|
|
/* Merge st_other. If the symbol already has a dynamic index,
|
1436 |
|
|
but visibility says it should not be visible, turn it into a
|
1437 |
|
|
local symbol. */
|
1438 |
|
|
elf_merge_st_other (abfd, h, sym, newdef, newdyn);
|
1439 |
|
|
if (h->dynindx != -1)
|
1440 |
|
|
switch (ELF_ST_VISIBILITY (h->other))
|
1441 |
|
|
{
|
1442 |
|
|
case STV_INTERNAL:
|
1443 |
|
|
case STV_HIDDEN:
|
1444 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
1445 |
|
|
break;
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
/* If the old symbol is from a dynamic object, and the new symbol is
|
1450 |
|
|
a definition which is not from a dynamic object, then the new
|
1451 |
|
|
symbol overrides the old symbol. Symbols from regular files
|
1452 |
|
|
always take precedence over symbols from dynamic objects, even if
|
1453 |
|
|
they are defined after the dynamic object in the link.
|
1454 |
|
|
|
1455 |
|
|
As above, we again permit a common symbol in a regular object to
|
1456 |
|
|
override a definition in a shared object if the shared object
|
1457 |
|
|
symbol is a function or is weak. */
|
1458 |
|
|
|
1459 |
|
|
flip = NULL;
|
1460 |
|
|
if (!newdyn
|
1461 |
|
|
&& (newdef
|
1462 |
|
|
|| (bfd_is_com_section (sec)
|
1463 |
|
|
&& (oldweak || oldfunc)))
|
1464 |
|
|
&& olddyn
|
1465 |
|
|
&& olddef
|
1466 |
|
|
&& h->def_dynamic)
|
1467 |
|
|
{
|
1468 |
|
|
/* Change the hash table entry to undefined, and let
|
1469 |
|
|
_bfd_generic_link_add_one_symbol do the right thing with the
|
1470 |
|
|
new definition. */
|
1471 |
|
|
|
1472 |
|
|
h->root.type = bfd_link_hash_undefined;
|
1473 |
|
|
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
1474 |
|
|
*size_change_ok = TRUE;
|
1475 |
|
|
|
1476 |
|
|
olddef = FALSE;
|
1477 |
|
|
olddyncommon = FALSE;
|
1478 |
|
|
|
1479 |
|
|
/* We again permit a type change when a common symbol may be
|
1480 |
|
|
overriding a function. */
|
1481 |
|
|
|
1482 |
|
|
if (bfd_is_com_section (sec))
|
1483 |
|
|
{
|
1484 |
|
|
if (oldfunc)
|
1485 |
|
|
{
|
1486 |
|
|
/* If a common symbol overrides a function, make sure
|
1487 |
|
|
that it isn't defined dynamically nor has type
|
1488 |
|
|
function. */
|
1489 |
|
|
h->def_dynamic = 0;
|
1490 |
|
|
h->type = STT_NOTYPE;
|
1491 |
|
|
}
|
1492 |
|
|
*type_change_ok = TRUE;
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
|
1496 |
|
|
flip = *sym_hash;
|
1497 |
|
|
else
|
1498 |
|
|
/* This union may have been set to be non-NULL when this symbol
|
1499 |
|
|
was seen in a dynamic object. We must force the union to be
|
1500 |
|
|
NULL, so that it is correct for a regular symbol. */
|
1501 |
|
|
h->verinfo.vertree = NULL;
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
/* Handle the special case of a new common symbol merging with an
|
1505 |
|
|
old symbol that looks like it might be a common symbol defined in
|
1506 |
|
|
a shared object. Note that we have already handled the case in
|
1507 |
|
|
which a new common symbol should simply override the definition
|
1508 |
|
|
in the shared library. */
|
1509 |
|
|
|
1510 |
|
|
if (! newdyn
|
1511 |
|
|
&& bfd_is_com_section (sec)
|
1512 |
|
|
&& olddyncommon)
|
1513 |
|
|
{
|
1514 |
|
|
/* It would be best if we could set the hash table entry to a
|
1515 |
|
|
common symbol, but we don't know what to use for the section
|
1516 |
|
|
or the alignment. */
|
1517 |
|
|
if (! ((*info->callbacks->multiple_common)
|
1518 |
|
|
(info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
|
1519 |
|
|
return FALSE;
|
1520 |
|
|
|
1521 |
|
|
/* If the presumed common symbol in the dynamic object is
|
1522 |
|
|
larger, pretend that the new symbol has its size. */
|
1523 |
|
|
|
1524 |
|
|
if (h->size > *pvalue)
|
1525 |
|
|
*pvalue = h->size;
|
1526 |
|
|
|
1527 |
|
|
/* We need to remember the alignment required by the symbol
|
1528 |
|
|
in the dynamic object. */
|
1529 |
|
|
BFD_ASSERT (pold_alignment);
|
1530 |
|
|
*pold_alignment = h->root.u.def.section->alignment_power;
|
1531 |
|
|
|
1532 |
|
|
olddef = FALSE;
|
1533 |
|
|
olddyncommon = FALSE;
|
1534 |
|
|
|
1535 |
|
|
h->root.type = bfd_link_hash_undefined;
|
1536 |
|
|
h->root.u.undef.abfd = h->root.u.def.section->owner;
|
1537 |
|
|
|
1538 |
|
|
*size_change_ok = TRUE;
|
1539 |
|
|
*type_change_ok = TRUE;
|
1540 |
|
|
|
1541 |
|
|
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
|
1542 |
|
|
flip = *sym_hash;
|
1543 |
|
|
else
|
1544 |
|
|
h->verinfo.vertree = NULL;
|
1545 |
|
|
}
|
1546 |
|
|
|
1547 |
|
|
if (flip != NULL)
|
1548 |
|
|
{
|
1549 |
|
|
/* Handle the case where we had a versioned symbol in a dynamic
|
1550 |
|
|
library and now find a definition in a normal object. In this
|
1551 |
|
|
case, we make the versioned symbol point to the normal one. */
|
1552 |
|
|
flip->root.type = h->root.type;
|
1553 |
|
|
flip->root.u.undef.abfd = h->root.u.undef.abfd;
|
1554 |
|
|
h->root.type = bfd_link_hash_indirect;
|
1555 |
|
|
h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
|
1556 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
|
1557 |
|
|
if (h->def_dynamic)
|
1558 |
|
|
{
|
1559 |
|
|
h->def_dynamic = 0;
|
1560 |
|
|
flip->ref_dynamic = 1;
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
return TRUE;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/* This function is called to create an indirect symbol from the
|
1568 |
|
|
default for the symbol with the default version if needed. The
|
1569 |
|
|
symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
|
1570 |
|
|
set DYNSYM if the new indirect symbol is dynamic. */
|
1571 |
|
|
|
1572 |
|
|
static bfd_boolean
|
1573 |
|
|
_bfd_elf_add_default_symbol (bfd *abfd,
|
1574 |
|
|
struct bfd_link_info *info,
|
1575 |
|
|
struct elf_link_hash_entry *h,
|
1576 |
|
|
const char *name,
|
1577 |
|
|
Elf_Internal_Sym *sym,
|
1578 |
|
|
asection **psec,
|
1579 |
|
|
bfd_vma *value,
|
1580 |
|
|
bfd_boolean *dynsym,
|
1581 |
|
|
bfd_boolean override)
|
1582 |
|
|
{
|
1583 |
|
|
bfd_boolean type_change_ok;
|
1584 |
|
|
bfd_boolean size_change_ok;
|
1585 |
|
|
bfd_boolean skip;
|
1586 |
|
|
char *shortname;
|
1587 |
|
|
struct elf_link_hash_entry *hi;
|
1588 |
|
|
struct bfd_link_hash_entry *bh;
|
1589 |
|
|
const struct elf_backend_data *bed;
|
1590 |
|
|
bfd_boolean collect;
|
1591 |
|
|
bfd_boolean dynamic;
|
1592 |
|
|
char *p;
|
1593 |
|
|
size_t len, shortlen;
|
1594 |
|
|
asection *sec;
|
1595 |
|
|
|
1596 |
|
|
/* If this symbol has a version, and it is the default version, we
|
1597 |
|
|
create an indirect symbol from the default name to the fully
|
1598 |
|
|
decorated name. This will cause external references which do not
|
1599 |
|
|
specify a version to be bound to this version of the symbol. */
|
1600 |
|
|
p = strchr (name, ELF_VER_CHR);
|
1601 |
|
|
if (p == NULL || p[1] != ELF_VER_CHR)
|
1602 |
|
|
return TRUE;
|
1603 |
|
|
|
1604 |
|
|
if (override)
|
1605 |
|
|
{
|
1606 |
|
|
/* We are overridden by an old definition. We need to check if we
|
1607 |
|
|
need to create the indirect symbol from the default name. */
|
1608 |
|
|
hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
|
1609 |
|
|
FALSE, FALSE);
|
1610 |
|
|
BFD_ASSERT (hi != NULL);
|
1611 |
|
|
if (hi == h)
|
1612 |
|
|
return TRUE;
|
1613 |
|
|
while (hi->root.type == bfd_link_hash_indirect
|
1614 |
|
|
|| hi->root.type == bfd_link_hash_warning)
|
1615 |
|
|
{
|
1616 |
|
|
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1617 |
|
|
if (hi == h)
|
1618 |
|
|
return TRUE;
|
1619 |
|
|
}
|
1620 |
|
|
}
|
1621 |
|
|
|
1622 |
|
|
bed = get_elf_backend_data (abfd);
|
1623 |
|
|
collect = bed->collect;
|
1624 |
|
|
dynamic = (abfd->flags & DYNAMIC) != 0;
|
1625 |
|
|
|
1626 |
|
|
shortlen = p - name;
|
1627 |
|
|
shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
|
1628 |
|
|
if (shortname == NULL)
|
1629 |
|
|
return FALSE;
|
1630 |
|
|
memcpy (shortname, name, shortlen);
|
1631 |
|
|
shortname[shortlen] = '\0';
|
1632 |
|
|
|
1633 |
|
|
/* We are going to create a new symbol. Merge it with any existing
|
1634 |
|
|
symbol with this name. For the purposes of the merge, act as
|
1635 |
|
|
though we were defining the symbol we just defined, although we
|
1636 |
|
|
actually going to define an indirect symbol. */
|
1637 |
|
|
type_change_ok = FALSE;
|
1638 |
|
|
size_change_ok = FALSE;
|
1639 |
|
|
sec = *psec;
|
1640 |
|
|
if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
|
1641 |
|
|
NULL, &hi, &skip, &override,
|
1642 |
|
|
&type_change_ok, &size_change_ok))
|
1643 |
|
|
return FALSE;
|
1644 |
|
|
|
1645 |
|
|
if (skip)
|
1646 |
|
|
goto nondefault;
|
1647 |
|
|
|
1648 |
|
|
if (! override)
|
1649 |
|
|
{
|
1650 |
|
|
bh = &hi->root;
|
1651 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
1652 |
|
|
(info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
|
1653 |
|
|
0, name, FALSE, collect, &bh)))
|
1654 |
|
|
return FALSE;
|
1655 |
|
|
hi = (struct elf_link_hash_entry *) bh;
|
1656 |
|
|
}
|
1657 |
|
|
else
|
1658 |
|
|
{
|
1659 |
|
|
/* In this case the symbol named SHORTNAME is overriding the
|
1660 |
|
|
indirect symbol we want to add. We were planning on making
|
1661 |
|
|
SHORTNAME an indirect symbol referring to NAME. SHORTNAME
|
1662 |
|
|
is the name without a version. NAME is the fully versioned
|
1663 |
|
|
name, and it is the default version.
|
1664 |
|
|
|
1665 |
|
|
Overriding means that we already saw a definition for the
|
1666 |
|
|
symbol SHORTNAME in a regular object, and it is overriding
|
1667 |
|
|
the symbol defined in the dynamic object.
|
1668 |
|
|
|
1669 |
|
|
When this happens, we actually want to change NAME, the
|
1670 |
|
|
symbol we just added, to refer to SHORTNAME. This will cause
|
1671 |
|
|
references to NAME in the shared object to become references
|
1672 |
|
|
to SHORTNAME in the regular object. This is what we expect
|
1673 |
|
|
when we override a function in a shared object: that the
|
1674 |
|
|
references in the shared object will be mapped to the
|
1675 |
|
|
definition in the regular object. */
|
1676 |
|
|
|
1677 |
|
|
while (hi->root.type == bfd_link_hash_indirect
|
1678 |
|
|
|| hi->root.type == bfd_link_hash_warning)
|
1679 |
|
|
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1680 |
|
|
|
1681 |
|
|
h->root.type = bfd_link_hash_indirect;
|
1682 |
|
|
h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
|
1683 |
|
|
if (h->def_dynamic)
|
1684 |
|
|
{
|
1685 |
|
|
h->def_dynamic = 0;
|
1686 |
|
|
hi->ref_dynamic = 1;
|
1687 |
|
|
if (hi->ref_regular
|
1688 |
|
|
|| hi->def_regular)
|
1689 |
|
|
{
|
1690 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, hi))
|
1691 |
|
|
return FALSE;
|
1692 |
|
|
}
|
1693 |
|
|
}
|
1694 |
|
|
|
1695 |
|
|
/* Now set HI to H, so that the following code will set the
|
1696 |
|
|
other fields correctly. */
|
1697 |
|
|
hi = h;
|
1698 |
|
|
}
|
1699 |
|
|
|
1700 |
|
|
/* Check if HI is a warning symbol. */
|
1701 |
|
|
if (hi->root.type == bfd_link_hash_warning)
|
1702 |
|
|
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1703 |
|
|
|
1704 |
|
|
/* If there is a duplicate definition somewhere, then HI may not
|
1705 |
|
|
point to an indirect symbol. We will have reported an error to
|
1706 |
|
|
the user in that case. */
|
1707 |
|
|
|
1708 |
|
|
if (hi->root.type == bfd_link_hash_indirect)
|
1709 |
|
|
{
|
1710 |
|
|
struct elf_link_hash_entry *ht;
|
1711 |
|
|
|
1712 |
|
|
ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
|
1713 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
|
1714 |
|
|
|
1715 |
|
|
/* See if the new flags lead us to realize that the symbol must
|
1716 |
|
|
be dynamic. */
|
1717 |
|
|
if (! *dynsym)
|
1718 |
|
|
{
|
1719 |
|
|
if (! dynamic)
|
1720 |
|
|
{
|
1721 |
|
|
if (! info->executable
|
1722 |
|
|
|| hi->ref_dynamic)
|
1723 |
|
|
*dynsym = TRUE;
|
1724 |
|
|
}
|
1725 |
|
|
else
|
1726 |
|
|
{
|
1727 |
|
|
if (hi->ref_regular)
|
1728 |
|
|
*dynsym = TRUE;
|
1729 |
|
|
}
|
1730 |
|
|
}
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/* We also need to define an indirection from the nondefault version
|
1734 |
|
|
of the symbol. */
|
1735 |
|
|
|
1736 |
|
|
nondefault:
|
1737 |
|
|
len = strlen (name);
|
1738 |
|
|
shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
|
1739 |
|
|
if (shortname == NULL)
|
1740 |
|
|
return FALSE;
|
1741 |
|
|
memcpy (shortname, name, shortlen);
|
1742 |
|
|
memcpy (shortname + shortlen, p + 1, len - shortlen);
|
1743 |
|
|
|
1744 |
|
|
/* Once again, merge with any existing symbol. */
|
1745 |
|
|
type_change_ok = FALSE;
|
1746 |
|
|
size_change_ok = FALSE;
|
1747 |
|
|
sec = *psec;
|
1748 |
|
|
if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
|
1749 |
|
|
NULL, &hi, &skip, &override,
|
1750 |
|
|
&type_change_ok, &size_change_ok))
|
1751 |
|
|
return FALSE;
|
1752 |
|
|
|
1753 |
|
|
if (skip)
|
1754 |
|
|
return TRUE;
|
1755 |
|
|
|
1756 |
|
|
if (override)
|
1757 |
|
|
{
|
1758 |
|
|
/* Here SHORTNAME is a versioned name, so we don't expect to see
|
1759 |
|
|
the type of override we do in the case above unless it is
|
1760 |
|
|
overridden by a versioned definition. */
|
1761 |
|
|
if (hi->root.type != bfd_link_hash_defined
|
1762 |
|
|
&& hi->root.type != bfd_link_hash_defweak)
|
1763 |
|
|
(*_bfd_error_handler)
|
1764 |
|
|
(_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
|
1765 |
|
|
abfd, shortname);
|
1766 |
|
|
}
|
1767 |
|
|
else
|
1768 |
|
|
{
|
1769 |
|
|
bh = &hi->root;
|
1770 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
1771 |
|
|
(info, abfd, shortname, BSF_INDIRECT,
|
1772 |
|
|
bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
|
1773 |
|
|
return FALSE;
|
1774 |
|
|
hi = (struct elf_link_hash_entry *) bh;
|
1775 |
|
|
|
1776 |
|
|
/* If there is a duplicate definition somewhere, then HI may not
|
1777 |
|
|
point to an indirect symbol. We will have reported an error
|
1778 |
|
|
to the user in that case. */
|
1779 |
|
|
|
1780 |
|
|
if (hi->root.type == bfd_link_hash_indirect)
|
1781 |
|
|
{
|
1782 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
|
1783 |
|
|
|
1784 |
|
|
/* See if the new flags lead us to realize that the symbol
|
1785 |
|
|
must be dynamic. */
|
1786 |
|
|
if (! *dynsym)
|
1787 |
|
|
{
|
1788 |
|
|
if (! dynamic)
|
1789 |
|
|
{
|
1790 |
|
|
if (! info->executable
|
1791 |
|
|
|| hi->ref_dynamic)
|
1792 |
|
|
*dynsym = TRUE;
|
1793 |
|
|
}
|
1794 |
|
|
else
|
1795 |
|
|
{
|
1796 |
|
|
if (hi->ref_regular)
|
1797 |
|
|
*dynsym = TRUE;
|
1798 |
|
|
}
|
1799 |
|
|
}
|
1800 |
|
|
}
|
1801 |
|
|
}
|
1802 |
|
|
|
1803 |
|
|
return TRUE;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
/* This routine is used to export all defined symbols into the dynamic
|
1807 |
|
|
symbol table. It is called via elf_link_hash_traverse. */
|
1808 |
|
|
|
1809 |
|
|
static bfd_boolean
|
1810 |
|
|
_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
|
1811 |
|
|
{
|
1812 |
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
1813 |
|
|
|
1814 |
|
|
/* Ignore this if we won't export it. */
|
1815 |
|
|
if (!eif->info->export_dynamic && !h->dynamic)
|
1816 |
|
|
return TRUE;
|
1817 |
|
|
|
1818 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
1819 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
1820 |
|
|
return TRUE;
|
1821 |
|
|
|
1822 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
1823 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1824 |
|
|
|
1825 |
|
|
if (h->dynindx == -1
|
1826 |
|
|
&& (h->def_regular
|
1827 |
|
|
|| h->ref_regular))
|
1828 |
|
|
{
|
1829 |
|
|
bfd_boolean hide;
|
1830 |
|
|
|
1831 |
|
|
if (eif->verdefs == NULL
|
1832 |
|
|
|| (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
|
1833 |
|
|
&& !hide))
|
1834 |
|
|
{
|
1835 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
1836 |
|
|
{
|
1837 |
|
|
eif->failed = TRUE;
|
1838 |
|
|
return FALSE;
|
1839 |
|
|
}
|
1840 |
|
|
}
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
return TRUE;
|
1844 |
|
|
}
|
1845 |
|
|
|
1846 |
|
|
/* Look through the symbols which are defined in other shared
|
1847 |
|
|
libraries and referenced here. Update the list of version
|
1848 |
|
|
dependencies. This will be put into the .gnu.version_r section.
|
1849 |
|
|
This function is called via elf_link_hash_traverse. */
|
1850 |
|
|
|
1851 |
|
|
static bfd_boolean
|
1852 |
|
|
_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
|
1853 |
|
|
void *data)
|
1854 |
|
|
{
|
1855 |
|
|
struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
|
1856 |
|
|
Elf_Internal_Verneed *t;
|
1857 |
|
|
Elf_Internal_Vernaux *a;
|
1858 |
|
|
bfd_size_type amt;
|
1859 |
|
|
|
1860 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
1861 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1862 |
|
|
|
1863 |
|
|
/* We only care about symbols defined in shared objects with version
|
1864 |
|
|
information. */
|
1865 |
|
|
if (!h->def_dynamic
|
1866 |
|
|
|| h->def_regular
|
1867 |
|
|
|| h->dynindx == -1
|
1868 |
|
|
|| h->verinfo.verdef == NULL)
|
1869 |
|
|
return TRUE;
|
1870 |
|
|
|
1871 |
|
|
/* See if we already know about this version. */
|
1872 |
|
|
for (t = elf_tdata (rinfo->info->output_bfd)->verref;
|
1873 |
|
|
t != NULL;
|
1874 |
|
|
t = t->vn_nextref)
|
1875 |
|
|
{
|
1876 |
|
|
if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
|
1877 |
|
|
continue;
|
1878 |
|
|
|
1879 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
1880 |
|
|
if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
|
1881 |
|
|
return TRUE;
|
1882 |
|
|
|
1883 |
|
|
break;
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
/* This is a new version. Add it to tree we are building. */
|
1887 |
|
|
|
1888 |
|
|
if (t == NULL)
|
1889 |
|
|
{
|
1890 |
|
|
amt = sizeof *t;
|
1891 |
|
|
t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
|
1892 |
|
|
if (t == NULL)
|
1893 |
|
|
{
|
1894 |
|
|
rinfo->failed = TRUE;
|
1895 |
|
|
return FALSE;
|
1896 |
|
|
}
|
1897 |
|
|
|
1898 |
|
|
t->vn_bfd = h->verinfo.verdef->vd_bfd;
|
1899 |
|
|
t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
|
1900 |
|
|
elf_tdata (rinfo->info->output_bfd)->verref = t;
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
amt = sizeof *a;
|
1904 |
|
|
a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
|
1905 |
|
|
if (a == NULL)
|
1906 |
|
|
{
|
1907 |
|
|
rinfo->failed = TRUE;
|
1908 |
|
|
return FALSE;
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
/* Note that we are copying a string pointer here, and testing it
|
1912 |
|
|
above. If bfd_elf_string_from_elf_section is ever changed to
|
1913 |
|
|
discard the string data when low in memory, this will have to be
|
1914 |
|
|
fixed. */
|
1915 |
|
|
a->vna_nodename = h->verinfo.verdef->vd_nodename;
|
1916 |
|
|
|
1917 |
|
|
a->vna_flags = h->verinfo.verdef->vd_flags;
|
1918 |
|
|
a->vna_nextptr = t->vn_auxptr;
|
1919 |
|
|
|
1920 |
|
|
h->verinfo.verdef->vd_exp_refno = rinfo->vers;
|
1921 |
|
|
++rinfo->vers;
|
1922 |
|
|
|
1923 |
|
|
a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
|
1924 |
|
|
|
1925 |
|
|
t->vn_auxptr = a;
|
1926 |
|
|
|
1927 |
|
|
return TRUE;
|
1928 |
|
|
}
|
1929 |
|
|
|
1930 |
|
|
/* Figure out appropriate versions for all the symbols. We may not
|
1931 |
|
|
have the version number script until we have read all of the input
|
1932 |
|
|
files, so until that point we don't know which symbols should be
|
1933 |
|
|
local. This function is called via elf_link_hash_traverse. */
|
1934 |
|
|
|
1935 |
|
|
static bfd_boolean
|
1936 |
|
|
_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
|
1937 |
|
|
{
|
1938 |
|
|
struct elf_info_failed *sinfo;
|
1939 |
|
|
struct bfd_link_info *info;
|
1940 |
|
|
const struct elf_backend_data *bed;
|
1941 |
|
|
struct elf_info_failed eif;
|
1942 |
|
|
char *p;
|
1943 |
|
|
bfd_size_type amt;
|
1944 |
|
|
|
1945 |
|
|
sinfo = (struct elf_info_failed *) data;
|
1946 |
|
|
info = sinfo->info;
|
1947 |
|
|
|
1948 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
1949 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1950 |
|
|
|
1951 |
|
|
/* Fix the symbol flags. */
|
1952 |
|
|
eif.failed = FALSE;
|
1953 |
|
|
eif.info = info;
|
1954 |
|
|
if (! _bfd_elf_fix_symbol_flags (h, &eif))
|
1955 |
|
|
{
|
1956 |
|
|
if (eif.failed)
|
1957 |
|
|
sinfo->failed = TRUE;
|
1958 |
|
|
return FALSE;
|
1959 |
|
|
}
|
1960 |
|
|
|
1961 |
|
|
/* We only need version numbers for symbols defined in regular
|
1962 |
|
|
objects. */
|
1963 |
|
|
if (!h->def_regular)
|
1964 |
|
|
return TRUE;
|
1965 |
|
|
|
1966 |
|
|
bed = get_elf_backend_data (info->output_bfd);
|
1967 |
|
|
p = strchr (h->root.root.string, ELF_VER_CHR);
|
1968 |
|
|
if (p != NULL && h->verinfo.vertree == NULL)
|
1969 |
|
|
{
|
1970 |
|
|
struct bfd_elf_version_tree *t;
|
1971 |
|
|
bfd_boolean hidden;
|
1972 |
|
|
|
1973 |
|
|
hidden = TRUE;
|
1974 |
|
|
|
1975 |
|
|
/* There are two consecutive ELF_VER_CHR characters if this is
|
1976 |
|
|
not a hidden symbol. */
|
1977 |
|
|
++p;
|
1978 |
|
|
if (*p == ELF_VER_CHR)
|
1979 |
|
|
{
|
1980 |
|
|
hidden = FALSE;
|
1981 |
|
|
++p;
|
1982 |
|
|
}
|
1983 |
|
|
|
1984 |
|
|
/* If there is no version string, we can just return out. */
|
1985 |
|
|
if (*p == '\0')
|
1986 |
|
|
{
|
1987 |
|
|
if (hidden)
|
1988 |
|
|
h->hidden = 1;
|
1989 |
|
|
return TRUE;
|
1990 |
|
|
}
|
1991 |
|
|
|
1992 |
|
|
/* Look for the version. If we find it, it is no longer weak. */
|
1993 |
|
|
for (t = sinfo->verdefs; t != NULL; t = t->next)
|
1994 |
|
|
{
|
1995 |
|
|
if (strcmp (t->name, p) == 0)
|
1996 |
|
|
{
|
1997 |
|
|
size_t len;
|
1998 |
|
|
char *alc;
|
1999 |
|
|
struct bfd_elf_version_expr *d;
|
2000 |
|
|
|
2001 |
|
|
len = p - h->root.root.string;
|
2002 |
|
|
alc = (char *) bfd_malloc (len);
|
2003 |
|
|
if (alc == NULL)
|
2004 |
|
|
{
|
2005 |
|
|
sinfo->failed = TRUE;
|
2006 |
|
|
return FALSE;
|
2007 |
|
|
}
|
2008 |
|
|
memcpy (alc, h->root.root.string, len - 1);
|
2009 |
|
|
alc[len - 1] = '\0';
|
2010 |
|
|
if (alc[len - 2] == ELF_VER_CHR)
|
2011 |
|
|
alc[len - 2] = '\0';
|
2012 |
|
|
|
2013 |
|
|
h->verinfo.vertree = t;
|
2014 |
|
|
t->used = TRUE;
|
2015 |
|
|
d = NULL;
|
2016 |
|
|
|
2017 |
|
|
if (t->globals.list != NULL)
|
2018 |
|
|
d = (*t->match) (&t->globals, NULL, alc);
|
2019 |
|
|
|
2020 |
|
|
/* See if there is anything to force this symbol to
|
2021 |
|
|
local scope. */
|
2022 |
|
|
if (d == NULL && t->locals.list != NULL)
|
2023 |
|
|
{
|
2024 |
|
|
d = (*t->match) (&t->locals, NULL, alc);
|
2025 |
|
|
if (d != NULL
|
2026 |
|
|
&& h->dynindx != -1
|
2027 |
|
|
&& ! info->export_dynamic)
|
2028 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
free (alc);
|
2032 |
|
|
break;
|
2033 |
|
|
}
|
2034 |
|
|
}
|
2035 |
|
|
|
2036 |
|
|
/* If we are building an application, we need to create a
|
2037 |
|
|
version node for this version. */
|
2038 |
|
|
if (t == NULL && info->executable)
|
2039 |
|
|
{
|
2040 |
|
|
struct bfd_elf_version_tree **pp;
|
2041 |
|
|
int version_index;
|
2042 |
|
|
|
2043 |
|
|
/* If we aren't going to export this symbol, we don't need
|
2044 |
|
|
to worry about it. */
|
2045 |
|
|
if (h->dynindx == -1)
|
2046 |
|
|
return TRUE;
|
2047 |
|
|
|
2048 |
|
|
amt = sizeof *t;
|
2049 |
|
|
t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
|
2050 |
|
|
if (t == NULL)
|
2051 |
|
|
{
|
2052 |
|
|
sinfo->failed = TRUE;
|
2053 |
|
|
return FALSE;
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
t->name = p;
|
2057 |
|
|
t->name_indx = (unsigned int) -1;
|
2058 |
|
|
t->used = TRUE;
|
2059 |
|
|
|
2060 |
|
|
version_index = 1;
|
2061 |
|
|
/* Don't count anonymous version tag. */
|
2062 |
|
|
if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
|
2063 |
|
|
version_index = 0;
|
2064 |
|
|
for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
|
2065 |
|
|
++version_index;
|
2066 |
|
|
t->vernum = version_index;
|
2067 |
|
|
|
2068 |
|
|
*pp = t;
|
2069 |
|
|
|
2070 |
|
|
h->verinfo.vertree = t;
|
2071 |
|
|
}
|
2072 |
|
|
else if (t == NULL)
|
2073 |
|
|
{
|
2074 |
|
|
/* We could not find the version for a symbol when
|
2075 |
|
|
generating a shared archive. Return an error. */
|
2076 |
|
|
(*_bfd_error_handler)
|
2077 |
|
|
(_("%B: version node not found for symbol %s"),
|
2078 |
|
|
info->output_bfd, h->root.root.string);
|
2079 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2080 |
|
|
sinfo->failed = TRUE;
|
2081 |
|
|
return FALSE;
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
if (hidden)
|
2085 |
|
|
h->hidden = 1;
|
2086 |
|
|
}
|
2087 |
|
|
|
2088 |
|
|
/* If we don't have a version for this symbol, see if we can find
|
2089 |
|
|
something. */
|
2090 |
|
|
if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
|
2091 |
|
|
{
|
2092 |
|
|
bfd_boolean hide;
|
2093 |
|
|
|
2094 |
|
|
h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
|
2095 |
|
|
h->root.root.string, &hide);
|
2096 |
|
|
if (h->verinfo.vertree != NULL && hide)
|
2097 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
return TRUE;
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
/* Read and swap the relocs from the section indicated by SHDR. This
|
2104 |
|
|
may be either a REL or a RELA section. The relocations are
|
2105 |
|
|
translated into RELA relocations and stored in INTERNAL_RELOCS,
|
2106 |
|
|
which should have already been allocated to contain enough space.
|
2107 |
|
|
The EXTERNAL_RELOCS are a buffer where the external form of the
|
2108 |
|
|
relocations should be stored.
|
2109 |
|
|
|
2110 |
|
|
Returns FALSE if something goes wrong. */
|
2111 |
|
|
|
2112 |
|
|
static bfd_boolean
|
2113 |
|
|
elf_link_read_relocs_from_section (bfd *abfd,
|
2114 |
|
|
asection *sec,
|
2115 |
|
|
Elf_Internal_Shdr *shdr,
|
2116 |
|
|
void *external_relocs,
|
2117 |
|
|
Elf_Internal_Rela *internal_relocs)
|
2118 |
|
|
{
|
2119 |
|
|
const struct elf_backend_data *bed;
|
2120 |
|
|
void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
|
2121 |
|
|
const bfd_byte *erela;
|
2122 |
|
|
const bfd_byte *erelaend;
|
2123 |
|
|
Elf_Internal_Rela *irela;
|
2124 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2125 |
|
|
size_t nsyms;
|
2126 |
|
|
|
2127 |
|
|
/* Position ourselves at the start of the section. */
|
2128 |
|
|
if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
|
2129 |
|
|
return FALSE;
|
2130 |
|
|
|
2131 |
|
|
/* Read the relocations. */
|
2132 |
|
|
if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
|
2133 |
|
|
return FALSE;
|
2134 |
|
|
|
2135 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
2136 |
|
|
nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
|
2137 |
|
|
|
2138 |
|
|
bed = get_elf_backend_data (abfd);
|
2139 |
|
|
|
2140 |
|
|
/* Convert the external relocations to the internal format. */
|
2141 |
|
|
if (shdr->sh_entsize == bed->s->sizeof_rel)
|
2142 |
|
|
swap_in = bed->s->swap_reloc_in;
|
2143 |
|
|
else if (shdr->sh_entsize == bed->s->sizeof_rela)
|
2144 |
|
|
swap_in = bed->s->swap_reloca_in;
|
2145 |
|
|
else
|
2146 |
|
|
{
|
2147 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
2148 |
|
|
return FALSE;
|
2149 |
|
|
}
|
2150 |
|
|
|
2151 |
|
|
erela = (const bfd_byte *) external_relocs;
|
2152 |
|
|
erelaend = erela + shdr->sh_size;
|
2153 |
|
|
irela = internal_relocs;
|
2154 |
|
|
while (erela < erelaend)
|
2155 |
|
|
{
|
2156 |
|
|
bfd_vma r_symndx;
|
2157 |
|
|
|
2158 |
|
|
(*swap_in) (abfd, erela, irela);
|
2159 |
|
|
r_symndx = ELF32_R_SYM (irela->r_info);
|
2160 |
|
|
if (bed->s->arch_size == 64)
|
2161 |
|
|
r_symndx >>= 24;
|
2162 |
|
|
if (nsyms > 0)
|
2163 |
|
|
{
|
2164 |
|
|
if ((size_t) r_symndx >= nsyms)
|
2165 |
|
|
{
|
2166 |
|
|
(*_bfd_error_handler)
|
2167 |
|
|
(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
|
2168 |
|
|
" for offset 0x%lx in section `%A'"),
|
2169 |
|
|
abfd, sec,
|
2170 |
|
|
(unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
|
2171 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2172 |
|
|
return FALSE;
|
2173 |
|
|
}
|
2174 |
|
|
}
|
2175 |
|
|
else if (r_symndx != STN_UNDEF)
|
2176 |
|
|
{
|
2177 |
|
|
(*_bfd_error_handler)
|
2178 |
|
|
(_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
|
2179 |
|
|
" when the object file has no symbol table"),
|
2180 |
|
|
abfd, sec,
|
2181 |
|
|
(unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
|
2182 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2183 |
|
|
return FALSE;
|
2184 |
|
|
}
|
2185 |
|
|
irela += bed->s->int_rels_per_ext_rel;
|
2186 |
|
|
erela += shdr->sh_entsize;
|
2187 |
|
|
}
|
2188 |
|
|
|
2189 |
|
|
return TRUE;
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
/* Read and swap the relocs for a section O. They may have been
|
2193 |
|
|
cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
|
2194 |
|
|
not NULL, they are used as buffers to read into. They are known to
|
2195 |
|
|
be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
|
2196 |
|
|
the return value is allocated using either malloc or bfd_alloc,
|
2197 |
|
|
according to the KEEP_MEMORY argument. If O has two relocation
|
2198 |
|
|
sections (both REL and RELA relocations), then the REL_HDR
|
2199 |
|
|
relocations will appear first in INTERNAL_RELOCS, followed by the
|
2200 |
|
|
RELA_HDR relocations. */
|
2201 |
|
|
|
2202 |
|
|
Elf_Internal_Rela *
|
2203 |
|
|
_bfd_elf_link_read_relocs (bfd *abfd,
|
2204 |
|
|
asection *o,
|
2205 |
|
|
void *external_relocs,
|
2206 |
|
|
Elf_Internal_Rela *internal_relocs,
|
2207 |
|
|
bfd_boolean keep_memory)
|
2208 |
|
|
{
|
2209 |
|
|
void *alloc1 = NULL;
|
2210 |
|
|
Elf_Internal_Rela *alloc2 = NULL;
|
2211 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
2212 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
2213 |
|
|
Elf_Internal_Rela *internal_rela_relocs;
|
2214 |
|
|
|
2215 |
|
|
if (esdo->relocs != NULL)
|
2216 |
|
|
return esdo->relocs;
|
2217 |
|
|
|
2218 |
|
|
if (o->reloc_count == 0)
|
2219 |
|
|
return NULL;
|
2220 |
|
|
|
2221 |
|
|
if (internal_relocs == NULL)
|
2222 |
|
|
{
|
2223 |
|
|
bfd_size_type size;
|
2224 |
|
|
|
2225 |
|
|
size = o->reloc_count;
|
2226 |
|
|
size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
|
2227 |
|
|
if (keep_memory)
|
2228 |
|
|
internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
|
2229 |
|
|
else
|
2230 |
|
|
internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
|
2231 |
|
|
if (internal_relocs == NULL)
|
2232 |
|
|
goto error_return;
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
if (external_relocs == NULL)
|
2236 |
|
|
{
|
2237 |
|
|
bfd_size_type size = 0;
|
2238 |
|
|
|
2239 |
|
|
if (esdo->rel.hdr)
|
2240 |
|
|
size += esdo->rel.hdr->sh_size;
|
2241 |
|
|
if (esdo->rela.hdr)
|
2242 |
|
|
size += esdo->rela.hdr->sh_size;
|
2243 |
|
|
|
2244 |
|
|
alloc1 = bfd_malloc (size);
|
2245 |
|
|
if (alloc1 == NULL)
|
2246 |
|
|
goto error_return;
|
2247 |
|
|
external_relocs = alloc1;
|
2248 |
|
|
}
|
2249 |
|
|
|
2250 |
|
|
internal_rela_relocs = internal_relocs;
|
2251 |
|
|
if (esdo->rel.hdr)
|
2252 |
|
|
{
|
2253 |
|
|
if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
|
2254 |
|
|
external_relocs,
|
2255 |
|
|
internal_relocs))
|
2256 |
|
|
goto error_return;
|
2257 |
|
|
external_relocs = (((bfd_byte *) external_relocs)
|
2258 |
|
|
+ esdo->rel.hdr->sh_size);
|
2259 |
|
|
internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
|
2260 |
|
|
* bed->s->int_rels_per_ext_rel);
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
if (esdo->rela.hdr
|
2264 |
|
|
&& (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
|
2265 |
|
|
external_relocs,
|
2266 |
|
|
internal_rela_relocs)))
|
2267 |
|
|
goto error_return;
|
2268 |
|
|
|
2269 |
|
|
/* Cache the results for next time, if we can. */
|
2270 |
|
|
if (keep_memory)
|
2271 |
|
|
esdo->relocs = internal_relocs;
|
2272 |
|
|
|
2273 |
|
|
if (alloc1 != NULL)
|
2274 |
|
|
free (alloc1);
|
2275 |
|
|
|
2276 |
|
|
/* Don't free alloc2, since if it was allocated we are passing it
|
2277 |
|
|
back (under the name of internal_relocs). */
|
2278 |
|
|
|
2279 |
|
|
return internal_relocs;
|
2280 |
|
|
|
2281 |
|
|
error_return:
|
2282 |
|
|
if (alloc1 != NULL)
|
2283 |
|
|
free (alloc1);
|
2284 |
|
|
if (alloc2 != NULL)
|
2285 |
|
|
{
|
2286 |
|
|
if (keep_memory)
|
2287 |
|
|
bfd_release (abfd, alloc2);
|
2288 |
|
|
else
|
2289 |
|
|
free (alloc2);
|
2290 |
|
|
}
|
2291 |
|
|
return NULL;
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
/* Compute the size of, and allocate space for, REL_HDR which is the
|
2295 |
|
|
section header for a section containing relocations for O. */
|
2296 |
|
|
|
2297 |
|
|
static bfd_boolean
|
2298 |
|
|
_bfd_elf_link_size_reloc_section (bfd *abfd,
|
2299 |
|
|
struct bfd_elf_section_reloc_data *reldata)
|
2300 |
|
|
{
|
2301 |
|
|
Elf_Internal_Shdr *rel_hdr = reldata->hdr;
|
2302 |
|
|
|
2303 |
|
|
/* That allows us to calculate the size of the section. */
|
2304 |
|
|
rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
|
2305 |
|
|
|
2306 |
|
|
/* The contents field must last into write_object_contents, so we
|
2307 |
|
|
allocate it with bfd_alloc rather than malloc. Also since we
|
2308 |
|
|
cannot be sure that the contents will actually be filled in,
|
2309 |
|
|
we zero the allocated space. */
|
2310 |
|
|
rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
|
2311 |
|
|
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
|
2312 |
|
|
return FALSE;
|
2313 |
|
|
|
2314 |
|
|
if (reldata->hashes == NULL && reldata->count)
|
2315 |
|
|
{
|
2316 |
|
|
struct elf_link_hash_entry **p;
|
2317 |
|
|
|
2318 |
|
|
p = (struct elf_link_hash_entry **)
|
2319 |
|
|
bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
|
2320 |
|
|
if (p == NULL)
|
2321 |
|
|
return FALSE;
|
2322 |
|
|
|
2323 |
|
|
reldata->hashes = p;
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
return TRUE;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
|
2330 |
|
|
originated from the section given by INPUT_REL_HDR) to the
|
2331 |
|
|
OUTPUT_BFD. */
|
2332 |
|
|
|
2333 |
|
|
bfd_boolean
|
2334 |
|
|
_bfd_elf_link_output_relocs (bfd *output_bfd,
|
2335 |
|
|
asection *input_section,
|
2336 |
|
|
Elf_Internal_Shdr *input_rel_hdr,
|
2337 |
|
|
Elf_Internal_Rela *internal_relocs,
|
2338 |
|
|
struct elf_link_hash_entry **rel_hash
|
2339 |
|
|
ATTRIBUTE_UNUSED)
|
2340 |
|
|
{
|
2341 |
|
|
Elf_Internal_Rela *irela;
|
2342 |
|
|
Elf_Internal_Rela *irelaend;
|
2343 |
|
|
bfd_byte *erel;
|
2344 |
|
|
struct bfd_elf_section_reloc_data *output_reldata;
|
2345 |
|
|
asection *output_section;
|
2346 |
|
|
const struct elf_backend_data *bed;
|
2347 |
|
|
void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
|
2348 |
|
|
struct bfd_elf_section_data *esdo;
|
2349 |
|
|
|
2350 |
|
|
output_section = input_section->output_section;
|
2351 |
|
|
|
2352 |
|
|
bed = get_elf_backend_data (output_bfd);
|
2353 |
|
|
esdo = elf_section_data (output_section);
|
2354 |
|
|
if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
|
2355 |
|
|
{
|
2356 |
|
|
output_reldata = &esdo->rel;
|
2357 |
|
|
swap_out = bed->s->swap_reloc_out;
|
2358 |
|
|
}
|
2359 |
|
|
else if (esdo->rela.hdr
|
2360 |
|
|
&& esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
|
2361 |
|
|
{
|
2362 |
|
|
output_reldata = &esdo->rela;
|
2363 |
|
|
swap_out = bed->s->swap_reloca_out;
|
2364 |
|
|
}
|
2365 |
|
|
else
|
2366 |
|
|
{
|
2367 |
|
|
(*_bfd_error_handler)
|
2368 |
|
|
(_("%B: relocation size mismatch in %B section %A"),
|
2369 |
|
|
output_bfd, input_section->owner, input_section);
|
2370 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
2371 |
|
|
return FALSE;
|
2372 |
|
|
}
|
2373 |
|
|
|
2374 |
|
|
erel = output_reldata->hdr->contents;
|
2375 |
|
|
erel += output_reldata->count * input_rel_hdr->sh_entsize;
|
2376 |
|
|
irela = internal_relocs;
|
2377 |
|
|
irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
|
2378 |
|
|
* bed->s->int_rels_per_ext_rel);
|
2379 |
|
|
while (irela < irelaend)
|
2380 |
|
|
{
|
2381 |
|
|
(*swap_out) (output_bfd, irela, erel);
|
2382 |
|
|
irela += bed->s->int_rels_per_ext_rel;
|
2383 |
|
|
erel += input_rel_hdr->sh_entsize;
|
2384 |
|
|
}
|
2385 |
|
|
|
2386 |
|
|
/* Bump the counter, so that we know where to add the next set of
|
2387 |
|
|
relocations. */
|
2388 |
|
|
output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
|
2389 |
|
|
|
2390 |
|
|
return TRUE;
|
2391 |
|
|
}
|
2392 |
|
|
|
2393 |
|
|
/* Make weak undefined symbols in PIE dynamic. */
|
2394 |
|
|
|
2395 |
|
|
bfd_boolean
|
2396 |
|
|
_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
|
2397 |
|
|
struct elf_link_hash_entry *h)
|
2398 |
|
|
{
|
2399 |
|
|
if (info->pie
|
2400 |
|
|
&& h->dynindx == -1
|
2401 |
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
2402 |
|
|
return bfd_elf_link_record_dynamic_symbol (info, h);
|
2403 |
|
|
|
2404 |
|
|
return TRUE;
|
2405 |
|
|
}
|
2406 |
|
|
|
2407 |
|
|
/* Fix up the flags for a symbol. This handles various cases which
|
2408 |
|
|
can only be fixed after all the input files are seen. This is
|
2409 |
|
|
currently called by both adjust_dynamic_symbol and
|
2410 |
|
|
assign_sym_version, which is unnecessary but perhaps more robust in
|
2411 |
|
|
the face of future changes. */
|
2412 |
|
|
|
2413 |
|
|
static bfd_boolean
|
2414 |
|
|
_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
|
2415 |
|
|
struct elf_info_failed *eif)
|
2416 |
|
|
{
|
2417 |
|
|
const struct elf_backend_data *bed;
|
2418 |
|
|
|
2419 |
|
|
/* If this symbol was mentioned in a non-ELF file, try to set
|
2420 |
|
|
DEF_REGULAR and REF_REGULAR correctly. This is the only way to
|
2421 |
|
|
permit a non-ELF file to correctly refer to a symbol defined in
|
2422 |
|
|
an ELF dynamic object. */
|
2423 |
|
|
if (h->non_elf)
|
2424 |
|
|
{
|
2425 |
|
|
while (h->root.type == bfd_link_hash_indirect)
|
2426 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2427 |
|
|
|
2428 |
|
|
if (h->root.type != bfd_link_hash_defined
|
2429 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
2430 |
|
|
{
|
2431 |
|
|
h->ref_regular = 1;
|
2432 |
|
|
h->ref_regular_nonweak = 1;
|
2433 |
|
|
}
|
2434 |
|
|
else
|
2435 |
|
|
{
|
2436 |
|
|
if (h->root.u.def.section->owner != NULL
|
2437 |
|
|
&& (bfd_get_flavour (h->root.u.def.section->owner)
|
2438 |
|
|
== bfd_target_elf_flavour))
|
2439 |
|
|
{
|
2440 |
|
|
h->ref_regular = 1;
|
2441 |
|
|
h->ref_regular_nonweak = 1;
|
2442 |
|
|
}
|
2443 |
|
|
else
|
2444 |
|
|
h->def_regular = 1;
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
if (h->dynindx == -1
|
2448 |
|
|
&& (h->def_dynamic
|
2449 |
|
|
|| h->ref_dynamic))
|
2450 |
|
|
{
|
2451 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
|
2452 |
|
|
{
|
2453 |
|
|
eif->failed = TRUE;
|
2454 |
|
|
return FALSE;
|
2455 |
|
|
}
|
2456 |
|
|
}
|
2457 |
|
|
}
|
2458 |
|
|
else
|
2459 |
|
|
{
|
2460 |
|
|
/* Unfortunately, NON_ELF is only correct if the symbol
|
2461 |
|
|
was first seen in a non-ELF file. Fortunately, if the symbol
|
2462 |
|
|
was first seen in an ELF file, we're probably OK unless the
|
2463 |
|
|
symbol was defined in a non-ELF file. Catch that case here.
|
2464 |
|
|
FIXME: We're still in trouble if the symbol was first seen in
|
2465 |
|
|
a dynamic object, and then later in a non-ELF regular object. */
|
2466 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
2467 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2468 |
|
|
&& !h->def_regular
|
2469 |
|
|
&& (h->root.u.def.section->owner != NULL
|
2470 |
|
|
? (bfd_get_flavour (h->root.u.def.section->owner)
|
2471 |
|
|
!= bfd_target_elf_flavour)
|
2472 |
|
|
: (bfd_is_abs_section (h->root.u.def.section)
|
2473 |
|
|
&& !h->def_dynamic)))
|
2474 |
|
|
h->def_regular = 1;
|
2475 |
|
|
}
|
2476 |
|
|
|
2477 |
|
|
/* Backend specific symbol fixup. */
|
2478 |
|
|
bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
|
2479 |
|
|
if (bed->elf_backend_fixup_symbol
|
2480 |
|
|
&& !(*bed->elf_backend_fixup_symbol) (eif->info, h))
|
2481 |
|
|
return FALSE;
|
2482 |
|
|
|
2483 |
|
|
/* If this is a final link, and the symbol was defined as a common
|
2484 |
|
|
symbol in a regular object file, and there was no definition in
|
2485 |
|
|
any dynamic object, then the linker will have allocated space for
|
2486 |
|
|
the symbol in a common section but the DEF_REGULAR
|
2487 |
|
|
flag will not have been set. */
|
2488 |
|
|
if (h->root.type == bfd_link_hash_defined
|
2489 |
|
|
&& !h->def_regular
|
2490 |
|
|
&& h->ref_regular
|
2491 |
|
|
&& !h->def_dynamic
|
2492 |
|
|
&& (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
|
2493 |
|
|
h->def_regular = 1;
|
2494 |
|
|
|
2495 |
|
|
/* If -Bsymbolic was used (which means to bind references to global
|
2496 |
|
|
symbols to the definition within the shared object), and this
|
2497 |
|
|
symbol was defined in a regular object, then it actually doesn't
|
2498 |
|
|
need a PLT entry. Likewise, if the symbol has non-default
|
2499 |
|
|
visibility. If the symbol has hidden or internal visibility, we
|
2500 |
|
|
will force it local. */
|
2501 |
|
|
if (h->needs_plt
|
2502 |
|
|
&& eif->info->shared
|
2503 |
|
|
&& is_elf_hash_table (eif->info->hash)
|
2504 |
|
|
&& (SYMBOLIC_BIND (eif->info, h)
|
2505 |
|
|
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
2506 |
|
|
&& h->def_regular)
|
2507 |
|
|
{
|
2508 |
|
|
bfd_boolean force_local;
|
2509 |
|
|
|
2510 |
|
|
force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
|
2511 |
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
|
2512 |
|
|
(*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
|
2513 |
|
|
}
|
2514 |
|
|
|
2515 |
|
|
/* If a weak undefined symbol has non-default visibility, we also
|
2516 |
|
|
hide it from the dynamic linker. */
|
2517 |
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
2518 |
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
2519 |
|
|
(*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
|
2520 |
|
|
|
2521 |
|
|
/* If this is a weak defined symbol in a dynamic object, and we know
|
2522 |
|
|
the real definition in the dynamic object, copy interesting flags
|
2523 |
|
|
over to the real definition. */
|
2524 |
|
|
if (h->u.weakdef != NULL)
|
2525 |
|
|
{
|
2526 |
|
|
struct elf_link_hash_entry *weakdef;
|
2527 |
|
|
|
2528 |
|
|
weakdef = h->u.weakdef;
|
2529 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
2530 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2531 |
|
|
|
2532 |
|
|
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
2533 |
|
|
|| h->root.type == bfd_link_hash_defweak);
|
2534 |
|
|
BFD_ASSERT (weakdef->def_dynamic);
|
2535 |
|
|
|
2536 |
|
|
/* If the real definition is defined by a regular object file,
|
2537 |
|
|
don't do anything special. See the longer description in
|
2538 |
|
|
_bfd_elf_adjust_dynamic_symbol, below. */
|
2539 |
|
|
if (weakdef->def_regular)
|
2540 |
|
|
h->u.weakdef = NULL;
|
2541 |
|
|
else
|
2542 |
|
|
{
|
2543 |
|
|
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|
2544 |
|
|
|| weakdef->root.type == bfd_link_hash_defweak);
|
2545 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
|
2546 |
|
|
}
|
2547 |
|
|
}
|
2548 |
|
|
|
2549 |
|
|
return TRUE;
|
2550 |
|
|
}
|
2551 |
|
|
|
2552 |
|
|
/* Make the backend pick a good value for a dynamic symbol. This is
|
2553 |
|
|
called via elf_link_hash_traverse, and also calls itself
|
2554 |
|
|
recursively. */
|
2555 |
|
|
|
2556 |
|
|
static bfd_boolean
|
2557 |
|
|
_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
|
2558 |
|
|
{
|
2559 |
|
|
struct elf_info_failed *eif = (struct elf_info_failed *) data;
|
2560 |
|
|
bfd *dynobj;
|
2561 |
|
|
const struct elf_backend_data *bed;
|
2562 |
|
|
|
2563 |
|
|
if (! is_elf_hash_table (eif->info->hash))
|
2564 |
|
|
return FALSE;
|
2565 |
|
|
|
2566 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
2567 |
|
|
{
|
2568 |
|
|
h->got = elf_hash_table (eif->info)->init_got_offset;
|
2569 |
|
|
h->plt = elf_hash_table (eif->info)->init_plt_offset;
|
2570 |
|
|
|
2571 |
|
|
/* When warning symbols are created, they **replace** the "real"
|
2572 |
|
|
entry in the hash table, thus we never get to see the real
|
2573 |
|
|
symbol in a hash traversal. So look at it now. */
|
2574 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2575 |
|
|
}
|
2576 |
|
|
|
2577 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
2578 |
|
|
if (h->root.type == bfd_link_hash_indirect)
|
2579 |
|
|
return TRUE;
|
2580 |
|
|
|
2581 |
|
|
/* Fix the symbol flags. */
|
2582 |
|
|
if (! _bfd_elf_fix_symbol_flags (h, eif))
|
2583 |
|
|
return FALSE;
|
2584 |
|
|
|
2585 |
|
|
/* If this symbol does not require a PLT entry, and it is not
|
2586 |
|
|
defined by a dynamic object, or is not referenced by a regular
|
2587 |
|
|
object, ignore it. We do have to handle a weak defined symbol,
|
2588 |
|
|
even if no regular object refers to it, if we decided to add it
|
2589 |
|
|
to the dynamic symbol table. FIXME: Do we normally need to worry
|
2590 |
|
|
about symbols which are defined by one dynamic object and
|
2591 |
|
|
referenced by another one? */
|
2592 |
|
|
if (!h->needs_plt
|
2593 |
|
|
&& h->type != STT_GNU_IFUNC
|
2594 |
|
|
&& (h->def_regular
|
2595 |
|
|
|| !h->def_dynamic
|
2596 |
|
|
|| (!h->ref_regular
|
2597 |
|
|
&& (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
|
2598 |
|
|
{
|
2599 |
|
|
h->plt = elf_hash_table (eif->info)->init_plt_offset;
|
2600 |
|
|
return TRUE;
|
2601 |
|
|
}
|
2602 |
|
|
|
2603 |
|
|
/* If we've already adjusted this symbol, don't do it again. This
|
2604 |
|
|
can happen via a recursive call. */
|
2605 |
|
|
if (h->dynamic_adjusted)
|
2606 |
|
|
return TRUE;
|
2607 |
|
|
|
2608 |
|
|
/* Don't look at this symbol again. Note that we must set this
|
2609 |
|
|
after checking the above conditions, because we may look at a
|
2610 |
|
|
symbol once, decide not to do anything, and then get called
|
2611 |
|
|
recursively later after REF_REGULAR is set below. */
|
2612 |
|
|
h->dynamic_adjusted = 1;
|
2613 |
|
|
|
2614 |
|
|
/* If this is a weak definition, and we know a real definition, and
|
2615 |
|
|
the real symbol is not itself defined by a regular object file,
|
2616 |
|
|
then get a good value for the real definition. We handle the
|
2617 |
|
|
real symbol first, for the convenience of the backend routine.
|
2618 |
|
|
|
2619 |
|
|
Note that there is a confusing case here. If the real definition
|
2620 |
|
|
is defined by a regular object file, we don't get the real symbol
|
2621 |
|
|
from the dynamic object, but we do get the weak symbol. If the
|
2622 |
|
|
processor backend uses a COPY reloc, then if some routine in the
|
2623 |
|
|
dynamic object changes the real symbol, we will not see that
|
2624 |
|
|
change in the corresponding weak symbol. This is the way other
|
2625 |
|
|
ELF linkers work as well, and seems to be a result of the shared
|
2626 |
|
|
library model.
|
2627 |
|
|
|
2628 |
|
|
I will clarify this issue. Most SVR4 shared libraries define the
|
2629 |
|
|
variable _timezone and define timezone as a weak synonym. The
|
2630 |
|
|
tzset call changes _timezone. If you write
|
2631 |
|
|
extern int timezone;
|
2632 |
|
|
int _timezone = 5;
|
2633 |
|
|
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
|
2634 |
|
|
you might expect that, since timezone is a synonym for _timezone,
|
2635 |
|
|
the same number will print both times. However, if the processor
|
2636 |
|
|
backend uses a COPY reloc, then actually timezone will be copied
|
2637 |
|
|
into your process image, and, since you define _timezone
|
2638 |
|
|
yourself, _timezone will not. Thus timezone and _timezone will
|
2639 |
|
|
wind up at different memory locations. The tzset call will set
|
2640 |
|
|
_timezone, leaving timezone unchanged. */
|
2641 |
|
|
|
2642 |
|
|
if (h->u.weakdef != NULL)
|
2643 |
|
|
{
|
2644 |
|
|
/* If we get to this point, we know there is an implicit
|
2645 |
|
|
reference by a regular object file via the weak symbol H.
|
2646 |
|
|
FIXME: Is this really true? What if the traversal finds
|
2647 |
|
|
H->U.WEAKDEF before it finds H? */
|
2648 |
|
|
h->u.weakdef->ref_regular = 1;
|
2649 |
|
|
|
2650 |
|
|
if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
|
2651 |
|
|
return FALSE;
|
2652 |
|
|
}
|
2653 |
|
|
|
2654 |
|
|
/* If a symbol has no type and no size and does not require a PLT
|
2655 |
|
|
entry, then we are probably about to do the wrong thing here: we
|
2656 |
|
|
are probably going to create a COPY reloc for an empty object.
|
2657 |
|
|
This case can arise when a shared object is built with assembly
|
2658 |
|
|
code, and the assembly code fails to set the symbol type. */
|
2659 |
|
|
if (h->size == 0
|
2660 |
|
|
&& h->type == STT_NOTYPE
|
2661 |
|
|
&& !h->needs_plt)
|
2662 |
|
|
(*_bfd_error_handler)
|
2663 |
|
|
(_("warning: type and size of dynamic symbol `%s' are not defined"),
|
2664 |
|
|
h->root.root.string);
|
2665 |
|
|
|
2666 |
|
|
dynobj = elf_hash_table (eif->info)->dynobj;
|
2667 |
|
|
bed = get_elf_backend_data (dynobj);
|
2668 |
|
|
|
2669 |
|
|
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
|
2670 |
|
|
{
|
2671 |
|
|
eif->failed = TRUE;
|
2672 |
|
|
return FALSE;
|
2673 |
|
|
}
|
2674 |
|
|
|
2675 |
|
|
return TRUE;
|
2676 |
|
|
}
|
2677 |
|
|
|
2678 |
|
|
/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
|
2679 |
|
|
DYNBSS. */
|
2680 |
|
|
|
2681 |
|
|
bfd_boolean
|
2682 |
|
|
_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
|
2683 |
|
|
asection *dynbss)
|
2684 |
|
|
{
|
2685 |
|
|
unsigned int power_of_two;
|
2686 |
|
|
bfd_vma mask;
|
2687 |
|
|
asection *sec = h->root.u.def.section;
|
2688 |
|
|
|
2689 |
|
|
/* The section aligment of definition is the maximum alignment
|
2690 |
|
|
requirement of symbols defined in the section. Since we don't
|
2691 |
|
|
know the symbol alignment requirement, we start with the
|
2692 |
|
|
maximum alignment and check low bits of the symbol address
|
2693 |
|
|
for the minimum alignment. */
|
2694 |
|
|
power_of_two = bfd_get_section_alignment (sec->owner, sec);
|
2695 |
|
|
mask = ((bfd_vma) 1 << power_of_two) - 1;
|
2696 |
|
|
while ((h->root.u.def.value & mask) != 0)
|
2697 |
|
|
{
|
2698 |
|
|
mask >>= 1;
|
2699 |
|
|
--power_of_two;
|
2700 |
|
|
}
|
2701 |
|
|
|
2702 |
|
|
if (power_of_two > bfd_get_section_alignment (dynbss->owner,
|
2703 |
|
|
dynbss))
|
2704 |
|
|
{
|
2705 |
|
|
/* Adjust the section alignment if needed. */
|
2706 |
|
|
if (! bfd_set_section_alignment (dynbss->owner, dynbss,
|
2707 |
|
|
power_of_two))
|
2708 |
|
|
return FALSE;
|
2709 |
|
|
}
|
2710 |
|
|
|
2711 |
|
|
/* We make sure that the symbol will be aligned properly. */
|
2712 |
|
|
dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
|
2713 |
|
|
|
2714 |
|
|
/* Define the symbol as being at this point in DYNBSS. */
|
2715 |
|
|
h->root.u.def.section = dynbss;
|
2716 |
|
|
h->root.u.def.value = dynbss->size;
|
2717 |
|
|
|
2718 |
|
|
/* Increment the size of DYNBSS to make room for the symbol. */
|
2719 |
|
|
dynbss->size += h->size;
|
2720 |
|
|
|
2721 |
|
|
return TRUE;
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/* Adjust all external symbols pointing into SEC_MERGE sections
|
2725 |
|
|
to reflect the object merging within the sections. */
|
2726 |
|
|
|
2727 |
|
|
static bfd_boolean
|
2728 |
|
|
_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
|
2729 |
|
|
{
|
2730 |
|
|
asection *sec;
|
2731 |
|
|
|
2732 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
2733 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2734 |
|
|
|
2735 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
2736 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
2737 |
|
|
&& ((sec = h->root.u.def.section)->flags & SEC_MERGE)
|
2738 |
|
|
&& sec->sec_info_type == ELF_INFO_TYPE_MERGE)
|
2739 |
|
|
{
|
2740 |
|
|
bfd *output_bfd = (bfd *) data;
|
2741 |
|
|
|
2742 |
|
|
h->root.u.def.value =
|
2743 |
|
|
_bfd_merged_section_offset (output_bfd,
|
2744 |
|
|
&h->root.u.def.section,
|
2745 |
|
|
elf_section_data (sec)->sec_info,
|
2746 |
|
|
h->root.u.def.value);
|
2747 |
|
|
}
|
2748 |
|
|
|
2749 |
|
|
return TRUE;
|
2750 |
|
|
}
|
2751 |
|
|
|
2752 |
|
|
/* Returns false if the symbol referred to by H should be considered
|
2753 |
|
|
to resolve local to the current module, and true if it should be
|
2754 |
|
|
considered to bind dynamically. */
|
2755 |
|
|
|
2756 |
|
|
bfd_boolean
|
2757 |
|
|
_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
|
2758 |
|
|
struct bfd_link_info *info,
|
2759 |
|
|
bfd_boolean not_local_protected)
|
2760 |
|
|
{
|
2761 |
|
|
bfd_boolean binding_stays_local_p;
|
2762 |
|
|
const struct elf_backend_data *bed;
|
2763 |
|
|
struct elf_link_hash_table *hash_table;
|
2764 |
|
|
|
2765 |
|
|
if (h == NULL)
|
2766 |
|
|
return FALSE;
|
2767 |
|
|
|
2768 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
2769 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
2770 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
2771 |
|
|
|
2772 |
|
|
/* If it was forced local, then clearly it's not dynamic. */
|
2773 |
|
|
if (h->dynindx == -1)
|
2774 |
|
|
return FALSE;
|
2775 |
|
|
if (h->forced_local)
|
2776 |
|
|
return FALSE;
|
2777 |
|
|
|
2778 |
|
|
/* Identify the cases where name binding rules say that a
|
2779 |
|
|
visible symbol resolves locally. */
|
2780 |
|
|
binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
|
2781 |
|
|
|
2782 |
|
|
switch (ELF_ST_VISIBILITY (h->other))
|
2783 |
|
|
{
|
2784 |
|
|
case STV_INTERNAL:
|
2785 |
|
|
case STV_HIDDEN:
|
2786 |
|
|
return FALSE;
|
2787 |
|
|
|
2788 |
|
|
case STV_PROTECTED:
|
2789 |
|
|
hash_table = elf_hash_table (info);
|
2790 |
|
|
if (!is_elf_hash_table (hash_table))
|
2791 |
|
|
return FALSE;
|
2792 |
|
|
|
2793 |
|
|
bed = get_elf_backend_data (hash_table->dynobj);
|
2794 |
|
|
|
2795 |
|
|
/* Proper resolution for function pointer equality may require
|
2796 |
|
|
that these symbols perhaps be resolved dynamically, even though
|
2797 |
|
|
we should be resolving them to the current module. */
|
2798 |
|
|
if (!not_local_protected || !bed->is_function_type (h->type))
|
2799 |
|
|
binding_stays_local_p = TRUE;
|
2800 |
|
|
break;
|
2801 |
|
|
|
2802 |
|
|
default:
|
2803 |
|
|
break;
|
2804 |
|
|
}
|
2805 |
|
|
|
2806 |
|
|
/* If it isn't defined locally, then clearly it's dynamic. */
|
2807 |
|
|
if (!h->def_regular && !ELF_COMMON_DEF_P (h))
|
2808 |
|
|
return TRUE;
|
2809 |
|
|
|
2810 |
|
|
/* Otherwise, the symbol is dynamic if binding rules don't tell
|
2811 |
|
|
us that it remains local. */
|
2812 |
|
|
return !binding_stays_local_p;
|
2813 |
|
|
}
|
2814 |
|
|
|
2815 |
|
|
/* Return true if the symbol referred to by H should be considered
|
2816 |
|
|
to resolve local to the current module, and false otherwise. Differs
|
2817 |
|
|
from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
|
2818 |
|
|
undefined symbols. The two functions are virtually identical except
|
2819 |
|
|
for the place where forced_local and dynindx == -1 are tested. If
|
2820 |
|
|
either of those tests are true, _bfd_elf_dynamic_symbol_p will say
|
2821 |
|
|
the symbol is local, while _bfd_elf_symbol_refs_local_p will say
|
2822 |
|
|
the symbol is local only for defined symbols.
|
2823 |
|
|
It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
|
2824 |
|
|
!_bfd_elf_symbol_refs_local_p, except that targets differ in their
|
2825 |
|
|
treatment of undefined weak symbols. For those that do not make
|
2826 |
|
|
undefined weak symbols dynamic, both functions may return false. */
|
2827 |
|
|
|
2828 |
|
|
bfd_boolean
|
2829 |
|
|
_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
|
2830 |
|
|
struct bfd_link_info *info,
|
2831 |
|
|
bfd_boolean local_protected)
|
2832 |
|
|
{
|
2833 |
|
|
const struct elf_backend_data *bed;
|
2834 |
|
|
struct elf_link_hash_table *hash_table;
|
2835 |
|
|
|
2836 |
|
|
/* If it's a local sym, of course we resolve locally. */
|
2837 |
|
|
if (h == NULL)
|
2838 |
|
|
return TRUE;
|
2839 |
|
|
|
2840 |
|
|
/* STV_HIDDEN or STV_INTERNAL ones must be local. */
|
2841 |
|
|
if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
|
2842 |
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
|
2843 |
|
|
return TRUE;
|
2844 |
|
|
|
2845 |
|
|
/* Common symbols that become definitions don't get the DEF_REGULAR
|
2846 |
|
|
flag set, so test it first, and don't bail out. */
|
2847 |
|
|
if (ELF_COMMON_DEF_P (h))
|
2848 |
|
|
/* Do nothing. */;
|
2849 |
|
|
/* If we don't have a definition in a regular file, then we can't
|
2850 |
|
|
resolve locally. The sym is either undefined or dynamic. */
|
2851 |
|
|
else if (!h->def_regular)
|
2852 |
|
|
return FALSE;
|
2853 |
|
|
|
2854 |
|
|
/* Forced local symbols resolve locally. */
|
2855 |
|
|
if (h->forced_local)
|
2856 |
|
|
return TRUE;
|
2857 |
|
|
|
2858 |
|
|
/* As do non-dynamic symbols. */
|
2859 |
|
|
if (h->dynindx == -1)
|
2860 |
|
|
return TRUE;
|
2861 |
|
|
|
2862 |
|
|
/* At this point, we know the symbol is defined and dynamic. In an
|
2863 |
|
|
executable it must resolve locally, likewise when building symbolic
|
2864 |
|
|
shared libraries. */
|
2865 |
|
|
if (info->executable || SYMBOLIC_BIND (info, h))
|
2866 |
|
|
return TRUE;
|
2867 |
|
|
|
2868 |
|
|
/* Now deal with defined dynamic symbols in shared libraries. Ones
|
2869 |
|
|
with default visibility might not resolve locally. */
|
2870 |
|
|
if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
2871 |
|
|
return FALSE;
|
2872 |
|
|
|
2873 |
|
|
hash_table = elf_hash_table (info);
|
2874 |
|
|
if (!is_elf_hash_table (hash_table))
|
2875 |
|
|
return TRUE;
|
2876 |
|
|
|
2877 |
|
|
bed = get_elf_backend_data (hash_table->dynobj);
|
2878 |
|
|
|
2879 |
|
|
/* STV_PROTECTED non-function symbols are local. */
|
2880 |
|
|
if (!bed->is_function_type (h->type))
|
2881 |
|
|
return TRUE;
|
2882 |
|
|
|
2883 |
|
|
/* Function pointer equality tests may require that STV_PROTECTED
|
2884 |
|
|
symbols be treated as dynamic symbols. If the address of a
|
2885 |
|
|
function not defined in an executable is set to that function's
|
2886 |
|
|
plt entry in the executable, then the address of the function in
|
2887 |
|
|
a shared library must also be the plt entry in the executable. */
|
2888 |
|
|
return local_protected;
|
2889 |
|
|
}
|
2890 |
|
|
|
2891 |
|
|
/* Caches some TLS segment info, and ensures that the TLS segment vma is
|
2892 |
|
|
aligned. Returns the first TLS output section. */
|
2893 |
|
|
|
2894 |
|
|
struct bfd_section *
|
2895 |
|
|
_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
|
2896 |
|
|
{
|
2897 |
|
|
struct bfd_section *sec, *tls;
|
2898 |
|
|
unsigned int align = 0;
|
2899 |
|
|
|
2900 |
|
|
for (sec = obfd->sections; sec != NULL; sec = sec->next)
|
2901 |
|
|
if ((sec->flags & SEC_THREAD_LOCAL) != 0)
|
2902 |
|
|
break;
|
2903 |
|
|
tls = sec;
|
2904 |
|
|
|
2905 |
|
|
for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
|
2906 |
|
|
if (sec->alignment_power > align)
|
2907 |
|
|
align = sec->alignment_power;
|
2908 |
|
|
|
2909 |
|
|
elf_hash_table (info)->tls_sec = tls;
|
2910 |
|
|
|
2911 |
|
|
/* Ensure the alignment of the first section is the largest alignment,
|
2912 |
|
|
so that the tls segment starts aligned. */
|
2913 |
|
|
if (tls != NULL)
|
2914 |
|
|
tls->alignment_power = align;
|
2915 |
|
|
|
2916 |
|
|
return tls;
|
2917 |
|
|
}
|
2918 |
|
|
|
2919 |
|
|
/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
|
2920 |
|
|
static bfd_boolean
|
2921 |
|
|
is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
|
2922 |
|
|
Elf_Internal_Sym *sym)
|
2923 |
|
|
{
|
2924 |
|
|
const struct elf_backend_data *bed;
|
2925 |
|
|
|
2926 |
|
|
/* Local symbols do not count, but target specific ones might. */
|
2927 |
|
|
if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
|
2928 |
|
|
&& ELF_ST_BIND (sym->st_info) < STB_LOOS)
|
2929 |
|
|
return FALSE;
|
2930 |
|
|
|
2931 |
|
|
bed = get_elf_backend_data (abfd);
|
2932 |
|
|
/* Function symbols do not count. */
|
2933 |
|
|
if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
|
2934 |
|
|
return FALSE;
|
2935 |
|
|
|
2936 |
|
|
/* If the section is undefined, then so is the symbol. */
|
2937 |
|
|
if (sym->st_shndx == SHN_UNDEF)
|
2938 |
|
|
return FALSE;
|
2939 |
|
|
|
2940 |
|
|
/* If the symbol is defined in the common section, then
|
2941 |
|
|
it is a common definition and so does not count. */
|
2942 |
|
|
if (bed->common_definition (sym))
|
2943 |
|
|
return FALSE;
|
2944 |
|
|
|
2945 |
|
|
/* If the symbol is in a target specific section then we
|
2946 |
|
|
must rely upon the backend to tell us what it is. */
|
2947 |
|
|
if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
|
2948 |
|
|
/* FIXME - this function is not coded yet:
|
2949 |
|
|
|
2950 |
|
|
return _bfd_is_global_symbol_definition (abfd, sym);
|
2951 |
|
|
|
2952 |
|
|
Instead for now assume that the definition is not global,
|
2953 |
|
|
Even if this is wrong, at least the linker will behave
|
2954 |
|
|
in the same way that it used to do. */
|
2955 |
|
|
return FALSE;
|
2956 |
|
|
|
2957 |
|
|
return TRUE;
|
2958 |
|
|
}
|
2959 |
|
|
|
2960 |
|
|
/* Search the symbol table of the archive element of the archive ABFD
|
2961 |
|
|
whose archive map contains a mention of SYMDEF, and determine if
|
2962 |
|
|
the symbol is defined in this element. */
|
2963 |
|
|
static bfd_boolean
|
2964 |
|
|
elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
|
2965 |
|
|
{
|
2966 |
|
|
Elf_Internal_Shdr * hdr;
|
2967 |
|
|
bfd_size_type symcount;
|
2968 |
|
|
bfd_size_type extsymcount;
|
2969 |
|
|
bfd_size_type extsymoff;
|
2970 |
|
|
Elf_Internal_Sym *isymbuf;
|
2971 |
|
|
Elf_Internal_Sym *isym;
|
2972 |
|
|
Elf_Internal_Sym *isymend;
|
2973 |
|
|
bfd_boolean result;
|
2974 |
|
|
|
2975 |
|
|
abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
2976 |
|
|
if (abfd == NULL)
|
2977 |
|
|
return FALSE;
|
2978 |
|
|
|
2979 |
|
|
if (! bfd_check_format (abfd, bfd_object))
|
2980 |
|
|
return FALSE;
|
2981 |
|
|
|
2982 |
|
|
/* If we have already included the element containing this symbol in the
|
2983 |
|
|
link then we do not need to include it again. Just claim that any symbol
|
2984 |
|
|
it contains is not a definition, so that our caller will not decide to
|
2985 |
|
|
(re)include this element. */
|
2986 |
|
|
if (abfd->archive_pass)
|
2987 |
|
|
return FALSE;
|
2988 |
|
|
|
2989 |
|
|
/* Select the appropriate symbol table. */
|
2990 |
|
|
if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
|
2991 |
|
|
hdr = &elf_tdata (abfd)->symtab_hdr;
|
2992 |
|
|
else
|
2993 |
|
|
hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
2994 |
|
|
|
2995 |
|
|
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
2996 |
|
|
|
2997 |
|
|
/* The sh_info field of the symtab header tells us where the
|
2998 |
|
|
external symbols start. We don't care about the local symbols. */
|
2999 |
|
|
if (elf_bad_symtab (abfd))
|
3000 |
|
|
{
|
3001 |
|
|
extsymcount = symcount;
|
3002 |
|
|
extsymoff = 0;
|
3003 |
|
|
}
|
3004 |
|
|
else
|
3005 |
|
|
{
|
3006 |
|
|
extsymcount = symcount - hdr->sh_info;
|
3007 |
|
|
extsymoff = hdr->sh_info;
|
3008 |
|
|
}
|
3009 |
|
|
|
3010 |
|
|
if (extsymcount == 0)
|
3011 |
|
|
return FALSE;
|
3012 |
|
|
|
3013 |
|
|
/* Read in the symbol table. */
|
3014 |
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
|
3015 |
|
|
NULL, NULL, NULL);
|
3016 |
|
|
if (isymbuf == NULL)
|
3017 |
|
|
return FALSE;
|
3018 |
|
|
|
3019 |
|
|
/* Scan the symbol table looking for SYMDEF. */
|
3020 |
|
|
result = FALSE;
|
3021 |
|
|
for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
|
3022 |
|
|
{
|
3023 |
|
|
const char *name;
|
3024 |
|
|
|
3025 |
|
|
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
|
3026 |
|
|
isym->st_name);
|
3027 |
|
|
if (name == NULL)
|
3028 |
|
|
break;
|
3029 |
|
|
|
3030 |
|
|
if (strcmp (name, symdef->name) == 0)
|
3031 |
|
|
{
|
3032 |
|
|
result = is_global_data_symbol_definition (abfd, isym);
|
3033 |
|
|
break;
|
3034 |
|
|
}
|
3035 |
|
|
}
|
3036 |
|
|
|
3037 |
|
|
free (isymbuf);
|
3038 |
|
|
|
3039 |
|
|
return result;
|
3040 |
|
|
}
|
3041 |
|
|
|
3042 |
|
|
/* Add an entry to the .dynamic table. */
|
3043 |
|
|
|
3044 |
|
|
bfd_boolean
|
3045 |
|
|
_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
|
3046 |
|
|
bfd_vma tag,
|
3047 |
|
|
bfd_vma val)
|
3048 |
|
|
{
|
3049 |
|
|
struct elf_link_hash_table *hash_table;
|
3050 |
|
|
const struct elf_backend_data *bed;
|
3051 |
|
|
asection *s;
|
3052 |
|
|
bfd_size_type newsize;
|
3053 |
|
|
bfd_byte *newcontents;
|
3054 |
|
|
Elf_Internal_Dyn dyn;
|
3055 |
|
|
|
3056 |
|
|
hash_table = elf_hash_table (info);
|
3057 |
|
|
if (! is_elf_hash_table (hash_table))
|
3058 |
|
|
return FALSE;
|
3059 |
|
|
|
3060 |
|
|
bed = get_elf_backend_data (hash_table->dynobj);
|
3061 |
|
|
s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
|
3062 |
|
|
BFD_ASSERT (s != NULL);
|
3063 |
|
|
|
3064 |
|
|
newsize = s->size + bed->s->sizeof_dyn;
|
3065 |
|
|
newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
|
3066 |
|
|
if (newcontents == NULL)
|
3067 |
|
|
return FALSE;
|
3068 |
|
|
|
3069 |
|
|
dyn.d_tag = tag;
|
3070 |
|
|
dyn.d_un.d_val = val;
|
3071 |
|
|
bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
|
3072 |
|
|
|
3073 |
|
|
s->size = newsize;
|
3074 |
|
|
s->contents = newcontents;
|
3075 |
|
|
|
3076 |
|
|
return TRUE;
|
3077 |
|
|
}
|
3078 |
|
|
|
3079 |
|
|
/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
|
3080 |
|
|
otherwise just check whether one already exists. Returns -1 on error,
|
3081 |
|
|
1 if a DT_NEEDED tag already exists, and 0 on success. */
|
3082 |
|
|
|
3083 |
|
|
static int
|
3084 |
|
|
elf_add_dt_needed_tag (bfd *abfd,
|
3085 |
|
|
struct bfd_link_info *info,
|
3086 |
|
|
const char *soname,
|
3087 |
|
|
bfd_boolean do_it)
|
3088 |
|
|
{
|
3089 |
|
|
struct elf_link_hash_table *hash_table;
|
3090 |
|
|
bfd_size_type oldsize;
|
3091 |
|
|
bfd_size_type strindex;
|
3092 |
|
|
|
3093 |
|
|
if (!_bfd_elf_link_create_dynstrtab (abfd, info))
|
3094 |
|
|
return -1;
|
3095 |
|
|
|
3096 |
|
|
hash_table = elf_hash_table (info);
|
3097 |
|
|
oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
|
3098 |
|
|
strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
|
3099 |
|
|
if (strindex == (bfd_size_type) -1)
|
3100 |
|
|
return -1;
|
3101 |
|
|
|
3102 |
|
|
if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
|
3103 |
|
|
{
|
3104 |
|
|
asection *sdyn;
|
3105 |
|
|
const struct elf_backend_data *bed;
|
3106 |
|
|
bfd_byte *extdyn;
|
3107 |
|
|
|
3108 |
|
|
bed = get_elf_backend_data (hash_table->dynobj);
|
3109 |
|
|
sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
|
3110 |
|
|
if (sdyn != NULL)
|
3111 |
|
|
for (extdyn = sdyn->contents;
|
3112 |
|
|
extdyn < sdyn->contents + sdyn->size;
|
3113 |
|
|
extdyn += bed->s->sizeof_dyn)
|
3114 |
|
|
{
|
3115 |
|
|
Elf_Internal_Dyn dyn;
|
3116 |
|
|
|
3117 |
|
|
bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
|
3118 |
|
|
if (dyn.d_tag == DT_NEEDED
|
3119 |
|
|
&& dyn.d_un.d_val == strindex)
|
3120 |
|
|
{
|
3121 |
|
|
_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
|
3122 |
|
|
return 1;
|
3123 |
|
|
}
|
3124 |
|
|
}
|
3125 |
|
|
}
|
3126 |
|
|
|
3127 |
|
|
if (do_it)
|
3128 |
|
|
{
|
3129 |
|
|
if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
|
3130 |
|
|
return -1;
|
3131 |
|
|
|
3132 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
|
3133 |
|
|
return -1;
|
3134 |
|
|
}
|
3135 |
|
|
else
|
3136 |
|
|
/* We were just checking for existence of the tag. */
|
3137 |
|
|
_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
|
3138 |
|
|
|
3139 |
|
|
return 0;
|
3140 |
|
|
}
|
3141 |
|
|
|
3142 |
|
|
static bfd_boolean
|
3143 |
|
|
on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
|
3144 |
|
|
{
|
3145 |
|
|
for (; needed != NULL; needed = needed->next)
|
3146 |
|
|
if (strcmp (soname, needed->name) == 0)
|
3147 |
|
|
return TRUE;
|
3148 |
|
|
|
3149 |
|
|
return FALSE;
|
3150 |
|
|
}
|
3151 |
|
|
|
3152 |
|
|
/* Sort symbol by value and section. */
|
3153 |
|
|
static int
|
3154 |
|
|
elf_sort_symbol (const void *arg1, const void *arg2)
|
3155 |
|
|
{
|
3156 |
|
|
const struct elf_link_hash_entry *h1;
|
3157 |
|
|
const struct elf_link_hash_entry *h2;
|
3158 |
|
|
bfd_signed_vma vdiff;
|
3159 |
|
|
|
3160 |
|
|
h1 = *(const struct elf_link_hash_entry **) arg1;
|
3161 |
|
|
h2 = *(const struct elf_link_hash_entry **) arg2;
|
3162 |
|
|
vdiff = h1->root.u.def.value - h2->root.u.def.value;
|
3163 |
|
|
if (vdiff != 0)
|
3164 |
|
|
return vdiff > 0 ? 1 : -1;
|
3165 |
|
|
else
|
3166 |
|
|
{
|
3167 |
|
|
long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
|
3168 |
|
|
if (sdiff != 0)
|
3169 |
|
|
return sdiff > 0 ? 1 : -1;
|
3170 |
|
|
}
|
3171 |
|
|
return 0;
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
/* This function is used to adjust offsets into .dynstr for
|
3175 |
|
|
dynamic symbols. This is called via elf_link_hash_traverse. */
|
3176 |
|
|
|
3177 |
|
|
static bfd_boolean
|
3178 |
|
|
elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
|
3179 |
|
|
{
|
3180 |
|
|
struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
|
3181 |
|
|
|
3182 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
3183 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
3184 |
|
|
|
3185 |
|
|
if (h->dynindx != -1)
|
3186 |
|
|
h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
|
3187 |
|
|
return TRUE;
|
3188 |
|
|
}
|
3189 |
|
|
|
3190 |
|
|
/* Assign string offsets in .dynstr, update all structures referencing
|
3191 |
|
|
them. */
|
3192 |
|
|
|
3193 |
|
|
static bfd_boolean
|
3194 |
|
|
elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
|
3195 |
|
|
{
|
3196 |
|
|
struct elf_link_hash_table *hash_table = elf_hash_table (info);
|
3197 |
|
|
struct elf_link_local_dynamic_entry *entry;
|
3198 |
|
|
struct elf_strtab_hash *dynstr = hash_table->dynstr;
|
3199 |
|
|
bfd *dynobj = hash_table->dynobj;
|
3200 |
|
|
asection *sdyn;
|
3201 |
|
|
bfd_size_type size;
|
3202 |
|
|
const struct elf_backend_data *bed;
|
3203 |
|
|
bfd_byte *extdyn;
|
3204 |
|
|
|
3205 |
|
|
_bfd_elf_strtab_finalize (dynstr);
|
3206 |
|
|
size = _bfd_elf_strtab_size (dynstr);
|
3207 |
|
|
|
3208 |
|
|
bed = get_elf_backend_data (dynobj);
|
3209 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
3210 |
|
|
BFD_ASSERT (sdyn != NULL);
|
3211 |
|
|
|
3212 |
|
|
/* Update all .dynamic entries referencing .dynstr strings. */
|
3213 |
|
|
for (extdyn = sdyn->contents;
|
3214 |
|
|
extdyn < sdyn->contents + sdyn->size;
|
3215 |
|
|
extdyn += bed->s->sizeof_dyn)
|
3216 |
|
|
{
|
3217 |
|
|
Elf_Internal_Dyn dyn;
|
3218 |
|
|
|
3219 |
|
|
bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
|
3220 |
|
|
switch (dyn.d_tag)
|
3221 |
|
|
{
|
3222 |
|
|
case DT_STRSZ:
|
3223 |
|
|
dyn.d_un.d_val = size;
|
3224 |
|
|
break;
|
3225 |
|
|
case DT_NEEDED:
|
3226 |
|
|
case DT_SONAME:
|
3227 |
|
|
case DT_RPATH:
|
3228 |
|
|
case DT_RUNPATH:
|
3229 |
|
|
case DT_FILTER:
|
3230 |
|
|
case DT_AUXILIARY:
|
3231 |
|
|
case DT_AUDIT:
|
3232 |
|
|
case DT_DEPAUDIT:
|
3233 |
|
|
dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
|
3234 |
|
|
break;
|
3235 |
|
|
default:
|
3236 |
|
|
continue;
|
3237 |
|
|
}
|
3238 |
|
|
bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
|
3239 |
|
|
}
|
3240 |
|
|
|
3241 |
|
|
/* Now update local dynamic symbols. */
|
3242 |
|
|
for (entry = hash_table->dynlocal; entry ; entry = entry->next)
|
3243 |
|
|
entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
|
3244 |
|
|
entry->isym.st_name);
|
3245 |
|
|
|
3246 |
|
|
/* And the rest of dynamic symbols. */
|
3247 |
|
|
elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
|
3248 |
|
|
|
3249 |
|
|
/* Adjust version definitions. */
|
3250 |
|
|
if (elf_tdata (output_bfd)->cverdefs)
|
3251 |
|
|
{
|
3252 |
|
|
asection *s;
|
3253 |
|
|
bfd_byte *p;
|
3254 |
|
|
bfd_size_type i;
|
3255 |
|
|
Elf_Internal_Verdef def;
|
3256 |
|
|
Elf_Internal_Verdaux defaux;
|
3257 |
|
|
|
3258 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
|
3259 |
|
|
p = s->contents;
|
3260 |
|
|
do
|
3261 |
|
|
{
|
3262 |
|
|
_bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
|
3263 |
|
|
&def);
|
3264 |
|
|
p += sizeof (Elf_External_Verdef);
|
3265 |
|
|
if (def.vd_aux != sizeof (Elf_External_Verdef))
|
3266 |
|
|
continue;
|
3267 |
|
|
for (i = 0; i < def.vd_cnt; ++i)
|
3268 |
|
|
{
|
3269 |
|
|
_bfd_elf_swap_verdaux_in (output_bfd,
|
3270 |
|
|
(Elf_External_Verdaux *) p, &defaux);
|
3271 |
|
|
defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
|
3272 |
|
|
defaux.vda_name);
|
3273 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd,
|
3274 |
|
|
&defaux, (Elf_External_Verdaux *) p);
|
3275 |
|
|
p += sizeof (Elf_External_Verdaux);
|
3276 |
|
|
}
|
3277 |
|
|
}
|
3278 |
|
|
while (def.vd_next);
|
3279 |
|
|
}
|
3280 |
|
|
|
3281 |
|
|
/* Adjust version references. */
|
3282 |
|
|
if (elf_tdata (output_bfd)->verref)
|
3283 |
|
|
{
|
3284 |
|
|
asection *s;
|
3285 |
|
|
bfd_byte *p;
|
3286 |
|
|
bfd_size_type i;
|
3287 |
|
|
Elf_Internal_Verneed need;
|
3288 |
|
|
Elf_Internal_Vernaux needaux;
|
3289 |
|
|
|
3290 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
|
3291 |
|
|
p = s->contents;
|
3292 |
|
|
do
|
3293 |
|
|
{
|
3294 |
|
|
_bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
|
3295 |
|
|
&need);
|
3296 |
|
|
need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
|
3297 |
|
|
_bfd_elf_swap_verneed_out (output_bfd, &need,
|
3298 |
|
|
(Elf_External_Verneed *) p);
|
3299 |
|
|
p += sizeof (Elf_External_Verneed);
|
3300 |
|
|
for (i = 0; i < need.vn_cnt; ++i)
|
3301 |
|
|
{
|
3302 |
|
|
_bfd_elf_swap_vernaux_in (output_bfd,
|
3303 |
|
|
(Elf_External_Vernaux *) p, &needaux);
|
3304 |
|
|
needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
|
3305 |
|
|
needaux.vna_name);
|
3306 |
|
|
_bfd_elf_swap_vernaux_out (output_bfd,
|
3307 |
|
|
&needaux,
|
3308 |
|
|
(Elf_External_Vernaux *) p);
|
3309 |
|
|
p += sizeof (Elf_External_Vernaux);
|
3310 |
|
|
}
|
3311 |
|
|
}
|
3312 |
|
|
while (need.vn_next);
|
3313 |
|
|
}
|
3314 |
|
|
|
3315 |
|
|
return TRUE;
|
3316 |
|
|
}
|
3317 |
|
|
|
3318 |
|
|
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
|
3319 |
|
|
The default is to only match when the INPUT and OUTPUT are exactly
|
3320 |
|
|
the same target. */
|
3321 |
|
|
|
3322 |
|
|
bfd_boolean
|
3323 |
|
|
_bfd_elf_default_relocs_compatible (const bfd_target *input,
|
3324 |
|
|
const bfd_target *output)
|
3325 |
|
|
{
|
3326 |
|
|
return input == output;
|
3327 |
|
|
}
|
3328 |
|
|
|
3329 |
|
|
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
|
3330 |
|
|
This version is used when different targets for the same architecture
|
3331 |
|
|
are virtually identical. */
|
3332 |
|
|
|
3333 |
|
|
bfd_boolean
|
3334 |
|
|
_bfd_elf_relocs_compatible (const bfd_target *input,
|
3335 |
|
|
const bfd_target *output)
|
3336 |
|
|
{
|
3337 |
|
|
const struct elf_backend_data *obed, *ibed;
|
3338 |
|
|
|
3339 |
|
|
if (input == output)
|
3340 |
|
|
return TRUE;
|
3341 |
|
|
|
3342 |
|
|
ibed = xvec_get_elf_backend_data (input);
|
3343 |
|
|
obed = xvec_get_elf_backend_data (output);
|
3344 |
|
|
|
3345 |
|
|
if (ibed->arch != obed->arch)
|
3346 |
|
|
return FALSE;
|
3347 |
|
|
|
3348 |
|
|
/* If both backends are using this function, deem them compatible. */
|
3349 |
|
|
return ibed->relocs_compatible == obed->relocs_compatible;
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
/* Add symbols from an ELF object file to the linker hash table. */
|
3353 |
|
|
|
3354 |
|
|
static bfd_boolean
|
3355 |
|
|
elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
|
3356 |
|
|
{
|
3357 |
|
|
Elf_Internal_Ehdr *ehdr;
|
3358 |
|
|
Elf_Internal_Shdr *hdr;
|
3359 |
|
|
bfd_size_type symcount;
|
3360 |
|
|
bfd_size_type extsymcount;
|
3361 |
|
|
bfd_size_type extsymoff;
|
3362 |
|
|
struct elf_link_hash_entry **sym_hash;
|
3363 |
|
|
bfd_boolean dynamic;
|
3364 |
|
|
Elf_External_Versym *extversym = NULL;
|
3365 |
|
|
Elf_External_Versym *ever;
|
3366 |
|
|
struct elf_link_hash_entry *weaks;
|
3367 |
|
|
struct elf_link_hash_entry **nondeflt_vers = NULL;
|
3368 |
|
|
bfd_size_type nondeflt_vers_cnt = 0;
|
3369 |
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
3370 |
|
|
Elf_Internal_Sym *isym;
|
3371 |
|
|
Elf_Internal_Sym *isymend;
|
3372 |
|
|
const struct elf_backend_data *bed;
|
3373 |
|
|
bfd_boolean add_needed;
|
3374 |
|
|
struct elf_link_hash_table *htab;
|
3375 |
|
|
bfd_size_type amt;
|
3376 |
|
|
void *alloc_mark = NULL;
|
3377 |
|
|
struct bfd_hash_entry **old_table = NULL;
|
3378 |
|
|
unsigned int old_size = 0;
|
3379 |
|
|
unsigned int old_count = 0;
|
3380 |
|
|
void *old_tab = NULL;
|
3381 |
|
|
void *old_hash;
|
3382 |
|
|
void *old_ent;
|
3383 |
|
|
struct bfd_link_hash_entry *old_undefs = NULL;
|
3384 |
|
|
struct bfd_link_hash_entry *old_undefs_tail = NULL;
|
3385 |
|
|
long old_dynsymcount = 0;
|
3386 |
|
|
size_t tabsize = 0;
|
3387 |
|
|
size_t hashsize = 0;
|
3388 |
|
|
|
3389 |
|
|
htab = elf_hash_table (info);
|
3390 |
|
|
bed = get_elf_backend_data (abfd);
|
3391 |
|
|
|
3392 |
|
|
if ((abfd->flags & DYNAMIC) == 0)
|
3393 |
|
|
dynamic = FALSE;
|
3394 |
|
|
else
|
3395 |
|
|
{
|
3396 |
|
|
dynamic = TRUE;
|
3397 |
|
|
|
3398 |
|
|
/* You can't use -r against a dynamic object. Also, there's no
|
3399 |
|
|
hope of using a dynamic object which does not exactly match
|
3400 |
|
|
the format of the output file. */
|
3401 |
|
|
if (info->relocatable
|
3402 |
|
|
|| !is_elf_hash_table (htab)
|
3403 |
|
|
|| info->output_bfd->xvec != abfd->xvec)
|
3404 |
|
|
{
|
3405 |
|
|
if (info->relocatable)
|
3406 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
3407 |
|
|
else
|
3408 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
3409 |
|
|
goto error_return;
|
3410 |
|
|
}
|
3411 |
|
|
}
|
3412 |
|
|
|
3413 |
|
|
ehdr = elf_elfheader (abfd);
|
3414 |
|
|
if (info->warn_alternate_em
|
3415 |
|
|
&& bed->elf_machine_code != ehdr->e_machine
|
3416 |
|
|
&& ((bed->elf_machine_alt1 != 0
|
3417 |
|
|
&& ehdr->e_machine == bed->elf_machine_alt1)
|
3418 |
|
|
|| (bed->elf_machine_alt2 != 0
|
3419 |
|
|
&& ehdr->e_machine == bed->elf_machine_alt2)))
|
3420 |
|
|
info->callbacks->einfo
|
3421 |
|
|
(_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
|
3422 |
|
|
ehdr->e_machine, abfd, bed->elf_machine_code);
|
3423 |
|
|
|
3424 |
|
|
/* As a GNU extension, any input sections which are named
|
3425 |
|
|
.gnu.warning.SYMBOL are treated as warning symbols for the given
|
3426 |
|
|
symbol. This differs from .gnu.warning sections, which generate
|
3427 |
|
|
warnings when they are included in an output file. */
|
3428 |
|
|
/* PR 12761: Also generate this warning when building shared libraries. */
|
3429 |
|
|
if (info->executable || info->shared)
|
3430 |
|
|
{
|
3431 |
|
|
asection *s;
|
3432 |
|
|
|
3433 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
3434 |
|
|
{
|
3435 |
|
|
const char *name;
|
3436 |
|
|
|
3437 |
|
|
name = bfd_get_section_name (abfd, s);
|
3438 |
|
|
if (CONST_STRNEQ (name, ".gnu.warning."))
|
3439 |
|
|
{
|
3440 |
|
|
char *msg;
|
3441 |
|
|
bfd_size_type sz;
|
3442 |
|
|
|
3443 |
|
|
name += sizeof ".gnu.warning." - 1;
|
3444 |
|
|
|
3445 |
|
|
/* If this is a shared object, then look up the symbol
|
3446 |
|
|
in the hash table. If it is there, and it is already
|
3447 |
|
|
been defined, then we will not be using the entry
|
3448 |
|
|
from this shared object, so we don't need to warn.
|
3449 |
|
|
FIXME: If we see the definition in a regular object
|
3450 |
|
|
later on, we will warn, but we shouldn't. The only
|
3451 |
|
|
fix is to keep track of what warnings we are supposed
|
3452 |
|
|
to emit, and then handle them all at the end of the
|
3453 |
|
|
link. */
|
3454 |
|
|
if (dynamic)
|
3455 |
|
|
{
|
3456 |
|
|
struct elf_link_hash_entry *h;
|
3457 |
|
|
|
3458 |
|
|
h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
|
3459 |
|
|
|
3460 |
|
|
/* FIXME: What about bfd_link_hash_common? */
|
3461 |
|
|
if (h != NULL
|
3462 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
3463 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
3464 |
|
|
{
|
3465 |
|
|
/* We don't want to issue this warning. Clobber
|
3466 |
|
|
the section size so that the warning does not
|
3467 |
|
|
get copied into the output file. */
|
3468 |
|
|
s->size = 0;
|
3469 |
|
|
continue;
|
3470 |
|
|
}
|
3471 |
|
|
}
|
3472 |
|
|
|
3473 |
|
|
sz = s->size;
|
3474 |
|
|
msg = (char *) bfd_alloc (abfd, sz + 1);
|
3475 |
|
|
if (msg == NULL)
|
3476 |
|
|
goto error_return;
|
3477 |
|
|
|
3478 |
|
|
if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
|
3479 |
|
|
goto error_return;
|
3480 |
|
|
|
3481 |
|
|
msg[sz] = '\0';
|
3482 |
|
|
|
3483 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
3484 |
|
|
(info, abfd, name, BSF_WARNING, s, 0, msg,
|
3485 |
|
|
FALSE, bed->collect, NULL)))
|
3486 |
|
|
goto error_return;
|
3487 |
|
|
|
3488 |
|
|
if (! info->relocatable)
|
3489 |
|
|
{
|
3490 |
|
|
/* Clobber the section size so that the warning does
|
3491 |
|
|
not get copied into the output file. */
|
3492 |
|
|
s->size = 0;
|
3493 |
|
|
|
3494 |
|
|
/* Also set SEC_EXCLUDE, so that symbols defined in
|
3495 |
|
|
the warning section don't get copied to the output. */
|
3496 |
|
|
s->flags |= SEC_EXCLUDE;
|
3497 |
|
|
}
|
3498 |
|
|
}
|
3499 |
|
|
}
|
3500 |
|
|
}
|
3501 |
|
|
|
3502 |
|
|
add_needed = TRUE;
|
3503 |
|
|
if (! dynamic)
|
3504 |
|
|
{
|
3505 |
|
|
/* If we are creating a shared library, create all the dynamic
|
3506 |
|
|
sections immediately. We need to attach them to something,
|
3507 |
|
|
so we attach them to this BFD, provided it is the right
|
3508 |
|
|
format. FIXME: If there are no input BFD's of the same
|
3509 |
|
|
format as the output, we can't make a shared library. */
|
3510 |
|
|
if (info->shared
|
3511 |
|
|
&& is_elf_hash_table (htab)
|
3512 |
|
|
&& info->output_bfd->xvec == abfd->xvec
|
3513 |
|
|
&& !htab->dynamic_sections_created)
|
3514 |
|
|
{
|
3515 |
|
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
3516 |
|
|
goto error_return;
|
3517 |
|
|
}
|
3518 |
|
|
}
|
3519 |
|
|
else if (!is_elf_hash_table (htab))
|
3520 |
|
|
goto error_return;
|
3521 |
|
|
else
|
3522 |
|
|
{
|
3523 |
|
|
asection *s;
|
3524 |
|
|
const char *soname = NULL;
|
3525 |
|
|
char *audit = NULL;
|
3526 |
|
|
struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
|
3527 |
|
|
int ret;
|
3528 |
|
|
|
3529 |
|
|
/* ld --just-symbols and dynamic objects don't mix very well.
|
3530 |
|
|
ld shouldn't allow it. */
|
3531 |
|
|
if ((s = abfd->sections) != NULL
|
3532 |
|
|
&& s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
|
3533 |
|
|
abort ();
|
3534 |
|
|
|
3535 |
|
|
/* If this dynamic lib was specified on the command line with
|
3536 |
|
|
--as-needed in effect, then we don't want to add a DT_NEEDED
|
3537 |
|
|
tag unless the lib is actually used. Similary for libs brought
|
3538 |
|
|
in by another lib's DT_NEEDED. When --no-add-needed is used
|
3539 |
|
|
on a dynamic lib, we don't want to add a DT_NEEDED entry for
|
3540 |
|
|
any dynamic library in DT_NEEDED tags in the dynamic lib at
|
3541 |
|
|
all. */
|
3542 |
|
|
add_needed = (elf_dyn_lib_class (abfd)
|
3543 |
|
|
& (DYN_AS_NEEDED | DYN_DT_NEEDED
|
3544 |
|
|
| DYN_NO_NEEDED)) == 0;
|
3545 |
|
|
|
3546 |
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
3547 |
|
|
if (s != NULL)
|
3548 |
|
|
{
|
3549 |
|
|
bfd_byte *dynbuf;
|
3550 |
|
|
bfd_byte *extdyn;
|
3551 |
|
|
unsigned int elfsec;
|
3552 |
|
|
unsigned long shlink;
|
3553 |
|
|
|
3554 |
|
|
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
|
3555 |
|
|
{
|
3556 |
|
|
error_free_dyn:
|
3557 |
|
|
free (dynbuf);
|
3558 |
|
|
goto error_return;
|
3559 |
|
|
}
|
3560 |
|
|
|
3561 |
|
|
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
3562 |
|
|
if (elfsec == SHN_BAD)
|
3563 |
|
|
goto error_free_dyn;
|
3564 |
|
|
shlink = elf_elfsections (abfd)[elfsec]->sh_link;
|
3565 |
|
|
|
3566 |
|
|
for (extdyn = dynbuf;
|
3567 |
|
|
extdyn < dynbuf + s->size;
|
3568 |
|
|
extdyn += bed->s->sizeof_dyn)
|
3569 |
|
|
{
|
3570 |
|
|
Elf_Internal_Dyn dyn;
|
3571 |
|
|
|
3572 |
|
|
bed->s->swap_dyn_in (abfd, extdyn, &dyn);
|
3573 |
|
|
if (dyn.d_tag == DT_SONAME)
|
3574 |
|
|
{
|
3575 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
3576 |
|
|
soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
3577 |
|
|
if (soname == NULL)
|
3578 |
|
|
goto error_free_dyn;
|
3579 |
|
|
}
|
3580 |
|
|
if (dyn.d_tag == DT_NEEDED)
|
3581 |
|
|
{
|
3582 |
|
|
struct bfd_link_needed_list *n, **pn;
|
3583 |
|
|
char *fnm, *anm;
|
3584 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
3585 |
|
|
|
3586 |
|
|
amt = sizeof (struct bfd_link_needed_list);
|
3587 |
|
|
n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
|
3588 |
|
|
fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
3589 |
|
|
if (n == NULL || fnm == NULL)
|
3590 |
|
|
goto error_free_dyn;
|
3591 |
|
|
amt = strlen (fnm) + 1;
|
3592 |
|
|
anm = (char *) bfd_alloc (abfd, amt);
|
3593 |
|
|
if (anm == NULL)
|
3594 |
|
|
goto error_free_dyn;
|
3595 |
|
|
memcpy (anm, fnm, amt);
|
3596 |
|
|
n->name = anm;
|
3597 |
|
|
n->by = abfd;
|
3598 |
|
|
n->next = NULL;
|
3599 |
|
|
for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
|
3600 |
|
|
;
|
3601 |
|
|
*pn = n;
|
3602 |
|
|
}
|
3603 |
|
|
if (dyn.d_tag == DT_RUNPATH)
|
3604 |
|
|
{
|
3605 |
|
|
struct bfd_link_needed_list *n, **pn;
|
3606 |
|
|
char *fnm, *anm;
|
3607 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
3608 |
|
|
|
3609 |
|
|
amt = sizeof (struct bfd_link_needed_list);
|
3610 |
|
|
n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
|
3611 |
|
|
fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
3612 |
|
|
if (n == NULL || fnm == NULL)
|
3613 |
|
|
goto error_free_dyn;
|
3614 |
|
|
amt = strlen (fnm) + 1;
|
3615 |
|
|
anm = (char *) bfd_alloc (abfd, amt);
|
3616 |
|
|
if (anm == NULL)
|
3617 |
|
|
goto error_free_dyn;
|
3618 |
|
|
memcpy (anm, fnm, amt);
|
3619 |
|
|
n->name = anm;
|
3620 |
|
|
n->by = abfd;
|
3621 |
|
|
n->next = NULL;
|
3622 |
|
|
for (pn = & runpath;
|
3623 |
|
|
*pn != NULL;
|
3624 |
|
|
pn = &(*pn)->next)
|
3625 |
|
|
;
|
3626 |
|
|
*pn = n;
|
3627 |
|
|
}
|
3628 |
|
|
/* Ignore DT_RPATH if we have seen DT_RUNPATH. */
|
3629 |
|
|
if (!runpath && dyn.d_tag == DT_RPATH)
|
3630 |
|
|
{
|
3631 |
|
|
struct bfd_link_needed_list *n, **pn;
|
3632 |
|
|
char *fnm, *anm;
|
3633 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
3634 |
|
|
|
3635 |
|
|
amt = sizeof (struct bfd_link_needed_list);
|
3636 |
|
|
n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
|
3637 |
|
|
fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
3638 |
|
|
if (n == NULL || fnm == NULL)
|
3639 |
|
|
goto error_free_dyn;
|
3640 |
|
|
amt = strlen (fnm) + 1;
|
3641 |
|
|
anm = (char *) bfd_alloc (abfd, amt);
|
3642 |
|
|
if (anm == NULL)
|
3643 |
|
|
goto error_free_dyn;
|
3644 |
|
|
memcpy (anm, fnm, amt);
|
3645 |
|
|
n->name = anm;
|
3646 |
|
|
n->by = abfd;
|
3647 |
|
|
n->next = NULL;
|
3648 |
|
|
for (pn = & rpath;
|
3649 |
|
|
*pn != NULL;
|
3650 |
|
|
pn = &(*pn)->next)
|
3651 |
|
|
;
|
3652 |
|
|
*pn = n;
|
3653 |
|
|
}
|
3654 |
|
|
if (dyn.d_tag == DT_AUDIT)
|
3655 |
|
|
{
|
3656 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
3657 |
|
|
audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
3658 |
|
|
}
|
3659 |
|
|
}
|
3660 |
|
|
|
3661 |
|
|
free (dynbuf);
|
3662 |
|
|
}
|
3663 |
|
|
|
3664 |
|
|
/* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
|
3665 |
|
|
frees all more recently bfd_alloc'd blocks as well. */
|
3666 |
|
|
if (runpath)
|
3667 |
|
|
rpath = runpath;
|
3668 |
|
|
|
3669 |
|
|
if (rpath)
|
3670 |
|
|
{
|
3671 |
|
|
struct bfd_link_needed_list **pn;
|
3672 |
|
|
for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
|
3673 |
|
|
;
|
3674 |
|
|
*pn = rpath;
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
/* We do not want to include any of the sections in a dynamic
|
3678 |
|
|
object in the output file. We hack by simply clobbering the
|
3679 |
|
|
list of sections in the BFD. This could be handled more
|
3680 |
|
|
cleanly by, say, a new section flag; the existing
|
3681 |
|
|
SEC_NEVER_LOAD flag is not the one we want, because that one
|
3682 |
|
|
still implies that the section takes up space in the output
|
3683 |
|
|
file. */
|
3684 |
|
|
bfd_section_list_clear (abfd);
|
3685 |
|
|
|
3686 |
|
|
/* Find the name to use in a DT_NEEDED entry that refers to this
|
3687 |
|
|
object. If the object has a DT_SONAME entry, we use it.
|
3688 |
|
|
Otherwise, if the generic linker stuck something in
|
3689 |
|
|
elf_dt_name, we use that. Otherwise, we just use the file
|
3690 |
|
|
name. */
|
3691 |
|
|
if (soname == NULL || *soname == '\0')
|
3692 |
|
|
{
|
3693 |
|
|
soname = elf_dt_name (abfd);
|
3694 |
|
|
if (soname == NULL || *soname == '\0')
|
3695 |
|
|
soname = bfd_get_filename (abfd);
|
3696 |
|
|
}
|
3697 |
|
|
|
3698 |
|
|
/* Save the SONAME because sometimes the linker emulation code
|
3699 |
|
|
will need to know it. */
|
3700 |
|
|
elf_dt_name (abfd) = soname;
|
3701 |
|
|
|
3702 |
|
|
ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
|
3703 |
|
|
if (ret < 0)
|
3704 |
|
|
goto error_return;
|
3705 |
|
|
|
3706 |
|
|
/* If we have already included this dynamic object in the
|
3707 |
|
|
link, just ignore it. There is no reason to include a
|
3708 |
|
|
particular dynamic object more than once. */
|
3709 |
|
|
if (ret > 0)
|
3710 |
|
|
return TRUE;
|
3711 |
|
|
|
3712 |
|
|
/* Save the DT_AUDIT entry for the linker emulation code. */
|
3713 |
|
|
elf_dt_audit (abfd) = audit;
|
3714 |
|
|
}
|
3715 |
|
|
|
3716 |
|
|
/* If this is a dynamic object, we always link against the .dynsym
|
3717 |
|
|
symbol table, not the .symtab symbol table. The dynamic linker
|
3718 |
|
|
will only see the .dynsym symbol table, so there is no reason to
|
3719 |
|
|
look at .symtab for a dynamic object. */
|
3720 |
|
|
|
3721 |
|
|
if (! dynamic || elf_dynsymtab (abfd) == 0)
|
3722 |
|
|
hdr = &elf_tdata (abfd)->symtab_hdr;
|
3723 |
|
|
else
|
3724 |
|
|
hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
3725 |
|
|
|
3726 |
|
|
symcount = hdr->sh_size / bed->s->sizeof_sym;
|
3727 |
|
|
|
3728 |
|
|
/* The sh_info field of the symtab header tells us where the
|
3729 |
|
|
external symbols start. We don't care about the local symbols at
|
3730 |
|
|
this point. */
|
3731 |
|
|
if (elf_bad_symtab (abfd))
|
3732 |
|
|
{
|
3733 |
|
|
extsymcount = symcount;
|
3734 |
|
|
extsymoff = 0;
|
3735 |
|
|
}
|
3736 |
|
|
else
|
3737 |
|
|
{
|
3738 |
|
|
extsymcount = symcount - hdr->sh_info;
|
3739 |
|
|
extsymoff = hdr->sh_info;
|
3740 |
|
|
}
|
3741 |
|
|
|
3742 |
|
|
sym_hash = NULL;
|
3743 |
|
|
if (extsymcount != 0)
|
3744 |
|
|
{
|
3745 |
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
|
3746 |
|
|
NULL, NULL, NULL);
|
3747 |
|
|
if (isymbuf == NULL)
|
3748 |
|
|
goto error_return;
|
3749 |
|
|
|
3750 |
|
|
/* We store a pointer to the hash table entry for each external
|
3751 |
|
|
symbol. */
|
3752 |
|
|
amt = extsymcount * sizeof (struct elf_link_hash_entry *);
|
3753 |
|
|
sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
|
3754 |
|
|
if (sym_hash == NULL)
|
3755 |
|
|
goto error_free_sym;
|
3756 |
|
|
elf_sym_hashes (abfd) = sym_hash;
|
3757 |
|
|
}
|
3758 |
|
|
|
3759 |
|
|
if (dynamic)
|
3760 |
|
|
{
|
3761 |
|
|
/* Read in any version definitions. */
|
3762 |
|
|
if (!_bfd_elf_slurp_version_tables (abfd,
|
3763 |
|
|
info->default_imported_symver))
|
3764 |
|
|
goto error_free_sym;
|
3765 |
|
|
|
3766 |
|
|
/* Read in the symbol versions, but don't bother to convert them
|
3767 |
|
|
to internal format. */
|
3768 |
|
|
if (elf_dynversym (abfd) != 0)
|
3769 |
|
|
{
|
3770 |
|
|
Elf_Internal_Shdr *versymhdr;
|
3771 |
|
|
|
3772 |
|
|
versymhdr = &elf_tdata (abfd)->dynversym_hdr;
|
3773 |
|
|
extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
|
3774 |
|
|
if (extversym == NULL)
|
3775 |
|
|
goto error_free_sym;
|
3776 |
|
|
amt = versymhdr->sh_size;
|
3777 |
|
|
if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
|
3778 |
|
|
|| bfd_bread (extversym, amt, abfd) != amt)
|
3779 |
|
|
goto error_free_vers;
|
3780 |
|
|
}
|
3781 |
|
|
}
|
3782 |
|
|
|
3783 |
|
|
/* If we are loading an as-needed shared lib, save the symbol table
|
3784 |
|
|
state before we start adding symbols. If the lib turns out
|
3785 |
|
|
to be unneeded, restore the state. */
|
3786 |
|
|
if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
|
3787 |
|
|
{
|
3788 |
|
|
unsigned int i;
|
3789 |
|
|
size_t entsize;
|
3790 |
|
|
|
3791 |
|
|
for (entsize = 0, i = 0; i < htab->root.table.size; i++)
|
3792 |
|
|
{
|
3793 |
|
|
struct bfd_hash_entry *p;
|
3794 |
|
|
struct elf_link_hash_entry *h;
|
3795 |
|
|
|
3796 |
|
|
for (p = htab->root.table.table[i]; p != NULL; p = p->next)
|
3797 |
|
|
{
|
3798 |
|
|
h = (struct elf_link_hash_entry *) p;
|
3799 |
|
|
entsize += htab->root.table.entsize;
|
3800 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
3801 |
|
|
entsize += htab->root.table.entsize;
|
3802 |
|
|
}
|
3803 |
|
|
}
|
3804 |
|
|
|
3805 |
|
|
tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
|
3806 |
|
|
hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
|
3807 |
|
|
old_tab = bfd_malloc (tabsize + entsize + hashsize);
|
3808 |
|
|
if (old_tab == NULL)
|
3809 |
|
|
goto error_free_vers;
|
3810 |
|
|
|
3811 |
|
|
/* Remember the current objalloc pointer, so that all mem for
|
3812 |
|
|
symbols added can later be reclaimed. */
|
3813 |
|
|
alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
|
3814 |
|
|
if (alloc_mark == NULL)
|
3815 |
|
|
goto error_free_vers;
|
3816 |
|
|
|
3817 |
|
|
/* Make a special call to the linker "notice" function to
|
3818 |
|
|
tell it that we are about to handle an as-needed lib. */
|
3819 |
|
|
if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
|
3820 |
|
|
notice_as_needed, 0, NULL))
|
3821 |
|
|
goto error_free_vers;
|
3822 |
|
|
|
3823 |
|
|
/* Clone the symbol table and sym hashes. Remember some
|
3824 |
|
|
pointers into the symbol table, and dynamic symbol count. */
|
3825 |
|
|
old_hash = (char *) old_tab + tabsize;
|
3826 |
|
|
old_ent = (char *) old_hash + hashsize;
|
3827 |
|
|
memcpy (old_tab, htab->root.table.table, tabsize);
|
3828 |
|
|
memcpy (old_hash, sym_hash, hashsize);
|
3829 |
|
|
old_undefs = htab->root.undefs;
|
3830 |
|
|
old_undefs_tail = htab->root.undefs_tail;
|
3831 |
|
|
old_table = htab->root.table.table;
|
3832 |
|
|
old_size = htab->root.table.size;
|
3833 |
|
|
old_count = htab->root.table.count;
|
3834 |
|
|
old_dynsymcount = htab->dynsymcount;
|
3835 |
|
|
|
3836 |
|
|
for (i = 0; i < htab->root.table.size; i++)
|
3837 |
|
|
{
|
3838 |
|
|
struct bfd_hash_entry *p;
|
3839 |
|
|
struct elf_link_hash_entry *h;
|
3840 |
|
|
|
3841 |
|
|
for (p = htab->root.table.table[i]; p != NULL; p = p->next)
|
3842 |
|
|
{
|
3843 |
|
|
memcpy (old_ent, p, htab->root.table.entsize);
|
3844 |
|
|
old_ent = (char *) old_ent + htab->root.table.entsize;
|
3845 |
|
|
h = (struct elf_link_hash_entry *) p;
|
3846 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
3847 |
|
|
{
|
3848 |
|
|
memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
|
3849 |
|
|
old_ent = (char *) old_ent + htab->root.table.entsize;
|
3850 |
|
|
}
|
3851 |
|
|
}
|
3852 |
|
|
}
|
3853 |
|
|
}
|
3854 |
|
|
|
3855 |
|
|
weaks = NULL;
|
3856 |
|
|
ever = extversym != NULL ? extversym + extsymoff : NULL;
|
3857 |
|
|
for (isym = isymbuf, isymend = isymbuf + extsymcount;
|
3858 |
|
|
isym < isymend;
|
3859 |
|
|
isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
|
3860 |
|
|
{
|
3861 |
|
|
int bind;
|
3862 |
|
|
bfd_vma value;
|
3863 |
|
|
asection *sec, *new_sec;
|
3864 |
|
|
flagword flags;
|
3865 |
|
|
const char *name;
|
3866 |
|
|
struct elf_link_hash_entry *h;
|
3867 |
|
|
bfd_boolean definition;
|
3868 |
|
|
bfd_boolean size_change_ok;
|
3869 |
|
|
bfd_boolean type_change_ok;
|
3870 |
|
|
bfd_boolean new_weakdef;
|
3871 |
|
|
bfd_boolean override;
|
3872 |
|
|
bfd_boolean common;
|
3873 |
|
|
unsigned int old_alignment;
|
3874 |
|
|
bfd *old_bfd;
|
3875 |
|
|
bfd * undef_bfd = NULL;
|
3876 |
|
|
|
3877 |
|
|
override = FALSE;
|
3878 |
|
|
|
3879 |
|
|
flags = BSF_NO_FLAGS;
|
3880 |
|
|
sec = NULL;
|
3881 |
|
|
value = isym->st_value;
|
3882 |
|
|
*sym_hash = NULL;
|
3883 |
|
|
common = bed->common_definition (isym);
|
3884 |
|
|
|
3885 |
|
|
bind = ELF_ST_BIND (isym->st_info);
|
3886 |
|
|
switch (bind)
|
3887 |
|
|
{
|
3888 |
|
|
case STB_LOCAL:
|
3889 |
|
|
/* This should be impossible, since ELF requires that all
|
3890 |
|
|
global symbols follow all local symbols, and that sh_info
|
3891 |
|
|
point to the first global symbol. Unfortunately, Irix 5
|
3892 |
|
|
screws this up. */
|
3893 |
|
|
continue;
|
3894 |
|
|
|
3895 |
|
|
case STB_GLOBAL:
|
3896 |
|
|
if (isym->st_shndx != SHN_UNDEF && !common)
|
3897 |
|
|
flags = BSF_GLOBAL;
|
3898 |
|
|
break;
|
3899 |
|
|
|
3900 |
|
|
case STB_WEAK:
|
3901 |
|
|
flags = BSF_WEAK;
|
3902 |
|
|
break;
|
3903 |
|
|
|
3904 |
|
|
case STB_GNU_UNIQUE:
|
3905 |
|
|
flags = BSF_GNU_UNIQUE;
|
3906 |
|
|
break;
|
3907 |
|
|
|
3908 |
|
|
default:
|
3909 |
|
|
/* Leave it up to the processor backend. */
|
3910 |
|
|
break;
|
3911 |
|
|
}
|
3912 |
|
|
|
3913 |
|
|
if (isym->st_shndx == SHN_UNDEF)
|
3914 |
|
|
sec = bfd_und_section_ptr;
|
3915 |
|
|
else if (isym->st_shndx == SHN_ABS)
|
3916 |
|
|
sec = bfd_abs_section_ptr;
|
3917 |
|
|
else if (isym->st_shndx == SHN_COMMON)
|
3918 |
|
|
{
|
3919 |
|
|
sec = bfd_com_section_ptr;
|
3920 |
|
|
/* What ELF calls the size we call the value. What ELF
|
3921 |
|
|
calls the value we call the alignment. */
|
3922 |
|
|
value = isym->st_size;
|
3923 |
|
|
}
|
3924 |
|
|
else
|
3925 |
|
|
{
|
3926 |
|
|
sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
3927 |
|
|
if (sec == NULL)
|
3928 |
|
|
sec = bfd_abs_section_ptr;
|
3929 |
|
|
else if (sec->kept_section)
|
3930 |
|
|
{
|
3931 |
|
|
/* Symbols from discarded section are undefined. We keep
|
3932 |
|
|
its visibility. */
|
3933 |
|
|
sec = bfd_und_section_ptr;
|
3934 |
|
|
isym->st_shndx = SHN_UNDEF;
|
3935 |
|
|
}
|
3936 |
|
|
else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
|
3937 |
|
|
value -= sec->vma;
|
3938 |
|
|
}
|
3939 |
|
|
|
3940 |
|
|
name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
|
3941 |
|
|
isym->st_name);
|
3942 |
|
|
if (name == NULL)
|
3943 |
|
|
goto error_free_vers;
|
3944 |
|
|
|
3945 |
|
|
if (isym->st_shndx == SHN_COMMON
|
3946 |
|
|
&& (abfd->flags & BFD_PLUGIN) != 0)
|
3947 |
|
|
{
|
3948 |
|
|
asection *xc = bfd_get_section_by_name (abfd, "COMMON");
|
3949 |
|
|
|
3950 |
|
|
if (xc == NULL)
|
3951 |
|
|
{
|
3952 |
|
|
flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
|
3953 |
|
|
| SEC_EXCLUDE);
|
3954 |
|
|
xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
|
3955 |
|
|
if (xc == NULL)
|
3956 |
|
|
goto error_free_vers;
|
3957 |
|
|
}
|
3958 |
|
|
sec = xc;
|
3959 |
|
|
}
|
3960 |
|
|
else if (isym->st_shndx == SHN_COMMON
|
3961 |
|
|
&& ELF_ST_TYPE (isym->st_info) == STT_TLS
|
3962 |
|
|
&& !info->relocatable)
|
3963 |
|
|
{
|
3964 |
|
|
asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
|
3965 |
|
|
|
3966 |
|
|
if (tcomm == NULL)
|
3967 |
|
|
{
|
3968 |
|
|
flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
|
3969 |
|
|
| SEC_LINKER_CREATED);
|
3970 |
|
|
tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
|
3971 |
|
|
if (tcomm == NULL)
|
3972 |
|
|
goto error_free_vers;
|
3973 |
|
|
}
|
3974 |
|
|
sec = tcomm;
|
3975 |
|
|
}
|
3976 |
|
|
else if (bed->elf_add_symbol_hook)
|
3977 |
|
|
{
|
3978 |
|
|
if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
|
3979 |
|
|
&sec, &value))
|
3980 |
|
|
goto error_free_vers;
|
3981 |
|
|
|
3982 |
|
|
/* The hook function sets the name to NULL if this symbol
|
3983 |
|
|
should be skipped for some reason. */
|
3984 |
|
|
if (name == NULL)
|
3985 |
|
|
continue;
|
3986 |
|
|
}
|
3987 |
|
|
|
3988 |
|
|
/* Sanity check that all possibilities were handled. */
|
3989 |
|
|
if (sec == NULL)
|
3990 |
|
|
{
|
3991 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3992 |
|
|
goto error_free_vers;
|
3993 |
|
|
}
|
3994 |
|
|
|
3995 |
|
|
if (bfd_is_und_section (sec)
|
3996 |
|
|
|| bfd_is_com_section (sec))
|
3997 |
|
|
definition = FALSE;
|
3998 |
|
|
else
|
3999 |
|
|
definition = TRUE;
|
4000 |
|
|
|
4001 |
|
|
size_change_ok = FALSE;
|
4002 |
|
|
type_change_ok = bed->type_change_ok;
|
4003 |
|
|
old_alignment = 0;
|
4004 |
|
|
old_bfd = NULL;
|
4005 |
|
|
new_sec = sec;
|
4006 |
|
|
|
4007 |
|
|
if (is_elf_hash_table (htab))
|
4008 |
|
|
{
|
4009 |
|
|
Elf_Internal_Versym iver;
|
4010 |
|
|
unsigned int vernum = 0;
|
4011 |
|
|
bfd_boolean skip;
|
4012 |
|
|
|
4013 |
|
|
/* If this is a definition of a symbol which was previously
|
4014 |
|
|
referenced in a non-weak manner then make a note of the bfd
|
4015 |
|
|
that contained the reference. This is used if we need to
|
4016 |
|
|
refer to the source of the reference later on. */
|
4017 |
|
|
if (! bfd_is_und_section (sec))
|
4018 |
|
|
{
|
4019 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
|
4020 |
|
|
|
4021 |
|
|
if (h != NULL
|
4022 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
4023 |
|
|
&& h->root.u.undef.abfd)
|
4024 |
|
|
undef_bfd = h->root.u.undef.abfd;
|
4025 |
|
|
}
|
4026 |
|
|
|
4027 |
|
|
if (ever == NULL)
|
4028 |
|
|
{
|
4029 |
|
|
if (info->default_imported_symver)
|
4030 |
|
|
/* Use the default symbol version created earlier. */
|
4031 |
|
|
iver.vs_vers = elf_tdata (abfd)->cverdefs;
|
4032 |
|
|
else
|
4033 |
|
|
iver.vs_vers = 0;
|
4034 |
|
|
}
|
4035 |
|
|
else
|
4036 |
|
|
_bfd_elf_swap_versym_in (abfd, ever, &iver);
|
4037 |
|
|
|
4038 |
|
|
vernum = iver.vs_vers & VERSYM_VERSION;
|
4039 |
|
|
|
4040 |
|
|
/* If this is a hidden symbol, or if it is not version
|
4041 |
|
|
1, we append the version name to the symbol name.
|
4042 |
|
|
However, we do not modify a non-hidden absolute symbol
|
4043 |
|
|
if it is not a function, because it might be the version
|
4044 |
|
|
symbol itself. FIXME: What if it isn't? */
|
4045 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) != 0
|
4046 |
|
|
|| (vernum > 1
|
4047 |
|
|
&& (!bfd_is_abs_section (sec)
|
4048 |
|
|
|| bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
|
4049 |
|
|
{
|
4050 |
|
|
const char *verstr;
|
4051 |
|
|
size_t namelen, verlen, newlen;
|
4052 |
|
|
char *newname, *p;
|
4053 |
|
|
|
4054 |
|
|
if (isym->st_shndx != SHN_UNDEF)
|
4055 |
|
|
{
|
4056 |
|
|
if (vernum > elf_tdata (abfd)->cverdefs)
|
4057 |
|
|
verstr = NULL;
|
4058 |
|
|
else if (vernum > 1)
|
4059 |
|
|
verstr =
|
4060 |
|
|
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
|
4061 |
|
|
else
|
4062 |
|
|
verstr = "";
|
4063 |
|
|
|
4064 |
|
|
if (verstr == NULL)
|
4065 |
|
|
{
|
4066 |
|
|
(*_bfd_error_handler)
|
4067 |
|
|
(_("%B: %s: invalid version %u (max %d)"),
|
4068 |
|
|
abfd, name, vernum,
|
4069 |
|
|
elf_tdata (abfd)->cverdefs);
|
4070 |
|
|
bfd_set_error (bfd_error_bad_value);
|
4071 |
|
|
goto error_free_vers;
|
4072 |
|
|
}
|
4073 |
|
|
}
|
4074 |
|
|
else
|
4075 |
|
|
{
|
4076 |
|
|
/* We cannot simply test for the number of
|
4077 |
|
|
entries in the VERNEED section since the
|
4078 |
|
|
numbers for the needed versions do not start
|
4079 |
|
|
at 0. */
|
4080 |
|
|
Elf_Internal_Verneed *t;
|
4081 |
|
|
|
4082 |
|
|
verstr = NULL;
|
4083 |
|
|
for (t = elf_tdata (abfd)->verref;
|
4084 |
|
|
t != NULL;
|
4085 |
|
|
t = t->vn_nextref)
|
4086 |
|
|
{
|
4087 |
|
|
Elf_Internal_Vernaux *a;
|
4088 |
|
|
|
4089 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
4090 |
|
|
{
|
4091 |
|
|
if (a->vna_other == vernum)
|
4092 |
|
|
{
|
4093 |
|
|
verstr = a->vna_nodename;
|
4094 |
|
|
break;
|
4095 |
|
|
}
|
4096 |
|
|
}
|
4097 |
|
|
if (a != NULL)
|
4098 |
|
|
break;
|
4099 |
|
|
}
|
4100 |
|
|
if (verstr == NULL)
|
4101 |
|
|
{
|
4102 |
|
|
(*_bfd_error_handler)
|
4103 |
|
|
(_("%B: %s: invalid needed version %d"),
|
4104 |
|
|
abfd, name, vernum);
|
4105 |
|
|
bfd_set_error (bfd_error_bad_value);
|
4106 |
|
|
goto error_free_vers;
|
4107 |
|
|
}
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
namelen = strlen (name);
|
4111 |
|
|
verlen = strlen (verstr);
|
4112 |
|
|
newlen = namelen + verlen + 2;
|
4113 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) == 0
|
4114 |
|
|
&& isym->st_shndx != SHN_UNDEF)
|
4115 |
|
|
++newlen;
|
4116 |
|
|
|
4117 |
|
|
newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
|
4118 |
|
|
if (newname == NULL)
|
4119 |
|
|
goto error_free_vers;
|
4120 |
|
|
memcpy (newname, name, namelen);
|
4121 |
|
|
p = newname + namelen;
|
4122 |
|
|
*p++ = ELF_VER_CHR;
|
4123 |
|
|
/* If this is a defined non-hidden version symbol,
|
4124 |
|
|
we add another @ to the name. This indicates the
|
4125 |
|
|
default version of the symbol. */
|
4126 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) == 0
|
4127 |
|
|
&& isym->st_shndx != SHN_UNDEF)
|
4128 |
|
|
*p++ = ELF_VER_CHR;
|
4129 |
|
|
memcpy (p, verstr, verlen + 1);
|
4130 |
|
|
|
4131 |
|
|
name = newname;
|
4132 |
|
|
}
|
4133 |
|
|
|
4134 |
|
|
/* If necessary, make a second attempt to locate the bfd
|
4135 |
|
|
containing an unresolved, non-weak reference to the
|
4136 |
|
|
current symbol. */
|
4137 |
|
|
if (! bfd_is_und_section (sec) && undef_bfd == NULL)
|
4138 |
|
|
{
|
4139 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
|
4140 |
|
|
|
4141 |
|
|
if (h != NULL
|
4142 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
4143 |
|
|
&& h->root.u.undef.abfd)
|
4144 |
|
|
undef_bfd = h->root.u.undef.abfd;
|
4145 |
|
|
}
|
4146 |
|
|
|
4147 |
|
|
if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
|
4148 |
|
|
&value, &old_alignment,
|
4149 |
|
|
sym_hash, &skip, &override,
|
4150 |
|
|
&type_change_ok, &size_change_ok))
|
4151 |
|
|
goto error_free_vers;
|
4152 |
|
|
|
4153 |
|
|
if (skip)
|
4154 |
|
|
continue;
|
4155 |
|
|
|
4156 |
|
|
if (override)
|
4157 |
|
|
definition = FALSE;
|
4158 |
|
|
|
4159 |
|
|
h = *sym_hash;
|
4160 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
4161 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
4162 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
4163 |
|
|
|
4164 |
|
|
/* Remember the old alignment if this is a common symbol, so
|
4165 |
|
|
that we don't reduce the alignment later on. We can't
|
4166 |
|
|
check later, because _bfd_generic_link_add_one_symbol
|
4167 |
|
|
will set a default for the alignment which we want to
|
4168 |
|
|
override. We also remember the old bfd where the existing
|
4169 |
|
|
definition comes from. */
|
4170 |
|
|
switch (h->root.type)
|
4171 |
|
|
{
|
4172 |
|
|
default:
|
4173 |
|
|
break;
|
4174 |
|
|
|
4175 |
|
|
case bfd_link_hash_defined:
|
4176 |
|
|
case bfd_link_hash_defweak:
|
4177 |
|
|
old_bfd = h->root.u.def.section->owner;
|
4178 |
|
|
break;
|
4179 |
|
|
|
4180 |
|
|
case bfd_link_hash_common:
|
4181 |
|
|
old_bfd = h->root.u.c.p->section->owner;
|
4182 |
|
|
old_alignment = h->root.u.c.p->alignment_power;
|
4183 |
|
|
break;
|
4184 |
|
|
}
|
4185 |
|
|
|
4186 |
|
|
if (elf_tdata (abfd)->verdef != NULL
|
4187 |
|
|
&& ! override
|
4188 |
|
|
&& vernum > 1
|
4189 |
|
|
&& definition)
|
4190 |
|
|
h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
|
4191 |
|
|
}
|
4192 |
|
|
|
4193 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
4194 |
|
|
(info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
|
4195 |
|
|
(struct bfd_link_hash_entry **) sym_hash)))
|
4196 |
|
|
goto error_free_vers;
|
4197 |
|
|
|
4198 |
|
|
h = *sym_hash;
|
4199 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
4200 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
4201 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
4202 |
|
|
|
4203 |
|
|
*sym_hash = h;
|
4204 |
|
|
if (is_elf_hash_table (htab))
|
4205 |
|
|
h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
|
4206 |
|
|
|
4207 |
|
|
new_weakdef = FALSE;
|
4208 |
|
|
if (dynamic
|
4209 |
|
|
&& definition
|
4210 |
|
|
&& (flags & BSF_WEAK) != 0
|
4211 |
|
|
&& !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
|
4212 |
|
|
&& is_elf_hash_table (htab)
|
4213 |
|
|
&& h->u.weakdef == NULL)
|
4214 |
|
|
{
|
4215 |
|
|
/* Keep a list of all weak defined non function symbols from
|
4216 |
|
|
a dynamic object, using the weakdef field. Later in this
|
4217 |
|
|
function we will set the weakdef field to the correct
|
4218 |
|
|
value. We only put non-function symbols from dynamic
|
4219 |
|
|
objects on this list, because that happens to be the only
|
4220 |
|
|
time we need to know the normal symbol corresponding to a
|
4221 |
|
|
weak symbol, and the information is time consuming to
|
4222 |
|
|
figure out. If the weakdef field is not already NULL,
|
4223 |
|
|
then this symbol was already defined by some previous
|
4224 |
|
|
dynamic object, and we will be using that previous
|
4225 |
|
|
definition anyhow. */
|
4226 |
|
|
|
4227 |
|
|
h->u.weakdef = weaks;
|
4228 |
|
|
weaks = h;
|
4229 |
|
|
new_weakdef = TRUE;
|
4230 |
|
|
}
|
4231 |
|
|
|
4232 |
|
|
/* Set the alignment of a common symbol. */
|
4233 |
|
|
if ((common || bfd_is_com_section (sec))
|
4234 |
|
|
&& h->root.type == bfd_link_hash_common)
|
4235 |
|
|
{
|
4236 |
|
|
unsigned int align;
|
4237 |
|
|
|
4238 |
|
|
if (common)
|
4239 |
|
|
align = bfd_log2 (isym->st_value);
|
4240 |
|
|
else
|
4241 |
|
|
{
|
4242 |
|
|
/* The new symbol is a common symbol in a shared object.
|
4243 |
|
|
We need to get the alignment from the section. */
|
4244 |
|
|
align = new_sec->alignment_power;
|
4245 |
|
|
}
|
4246 |
|
|
if (align > old_alignment)
|
4247 |
|
|
h->root.u.c.p->alignment_power = align;
|
4248 |
|
|
else
|
4249 |
|
|
h->root.u.c.p->alignment_power = old_alignment;
|
4250 |
|
|
}
|
4251 |
|
|
|
4252 |
|
|
if (is_elf_hash_table (htab))
|
4253 |
|
|
{
|
4254 |
|
|
bfd_boolean dynsym;
|
4255 |
|
|
|
4256 |
|
|
/* Check the alignment when a common symbol is involved. This
|
4257 |
|
|
can change when a common symbol is overridden by a normal
|
4258 |
|
|
definition or a common symbol is ignored due to the old
|
4259 |
|
|
normal definition. We need to make sure the maximum
|
4260 |
|
|
alignment is maintained. */
|
4261 |
|
|
if ((old_alignment || common)
|
4262 |
|
|
&& h->root.type != bfd_link_hash_common)
|
4263 |
|
|
{
|
4264 |
|
|
unsigned int common_align;
|
4265 |
|
|
unsigned int normal_align;
|
4266 |
|
|
unsigned int symbol_align;
|
4267 |
|
|
bfd *normal_bfd;
|
4268 |
|
|
bfd *common_bfd;
|
4269 |
|
|
|
4270 |
|
|
symbol_align = ffs (h->root.u.def.value) - 1;
|
4271 |
|
|
if (h->root.u.def.section->owner != NULL
|
4272 |
|
|
&& (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
|
4273 |
|
|
{
|
4274 |
|
|
normal_align = h->root.u.def.section->alignment_power;
|
4275 |
|
|
if (normal_align > symbol_align)
|
4276 |
|
|
normal_align = symbol_align;
|
4277 |
|
|
}
|
4278 |
|
|
else
|
4279 |
|
|
normal_align = symbol_align;
|
4280 |
|
|
|
4281 |
|
|
if (old_alignment)
|
4282 |
|
|
{
|
4283 |
|
|
common_align = old_alignment;
|
4284 |
|
|
common_bfd = old_bfd;
|
4285 |
|
|
normal_bfd = abfd;
|
4286 |
|
|
}
|
4287 |
|
|
else
|
4288 |
|
|
{
|
4289 |
|
|
common_align = bfd_log2 (isym->st_value);
|
4290 |
|
|
common_bfd = abfd;
|
4291 |
|
|
normal_bfd = old_bfd;
|
4292 |
|
|
}
|
4293 |
|
|
|
4294 |
|
|
if (normal_align < common_align)
|
4295 |
|
|
{
|
4296 |
|
|
/* PR binutils/2735 */
|
4297 |
|
|
if (normal_bfd == NULL)
|
4298 |
|
|
(*_bfd_error_handler)
|
4299 |
|
|
(_("Warning: alignment %u of common symbol `%s' in %B"
|
4300 |
|
|
" is greater than the alignment (%u) of its section %A"),
|
4301 |
|
|
common_bfd, h->root.u.def.section,
|
4302 |
|
|
1 << common_align, name, 1 << normal_align);
|
4303 |
|
|
else
|
4304 |
|
|
(*_bfd_error_handler)
|
4305 |
|
|
(_("Warning: alignment %u of symbol `%s' in %B"
|
4306 |
|
|
" is smaller than %u in %B"),
|
4307 |
|
|
normal_bfd, common_bfd,
|
4308 |
|
|
1 << normal_align, name, 1 << common_align);
|
4309 |
|
|
}
|
4310 |
|
|
}
|
4311 |
|
|
|
4312 |
|
|
/* Remember the symbol size if it isn't undefined. */
|
4313 |
|
|
if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
|
4314 |
|
|
&& (definition || h->size == 0))
|
4315 |
|
|
{
|
4316 |
|
|
if (h->size != 0
|
4317 |
|
|
&& h->size != isym->st_size
|
4318 |
|
|
&& ! size_change_ok)
|
4319 |
|
|
(*_bfd_error_handler)
|
4320 |
|
|
(_("Warning: size of symbol `%s' changed"
|
4321 |
|
|
" from %lu in %B to %lu in %B"),
|
4322 |
|
|
old_bfd, abfd,
|
4323 |
|
|
name, (unsigned long) h->size,
|
4324 |
|
|
(unsigned long) isym->st_size);
|
4325 |
|
|
|
4326 |
|
|
h->size = isym->st_size;
|
4327 |
|
|
}
|
4328 |
|
|
|
4329 |
|
|
/* If this is a common symbol, then we always want H->SIZE
|
4330 |
|
|
to be the size of the common symbol. The code just above
|
4331 |
|
|
won't fix the size if a common symbol becomes larger. We
|
4332 |
|
|
don't warn about a size change here, because that is
|
4333 |
|
|
covered by --warn-common. Allow changed between different
|
4334 |
|
|
function types. */
|
4335 |
|
|
if (h->root.type == bfd_link_hash_common)
|
4336 |
|
|
h->size = h->root.u.c.size;
|
4337 |
|
|
|
4338 |
|
|
if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
|
4339 |
|
|
&& (definition || h->type == STT_NOTYPE))
|
4340 |
|
|
{
|
4341 |
|
|
unsigned int type = ELF_ST_TYPE (isym->st_info);
|
4342 |
|
|
|
4343 |
|
|
/* Turn an IFUNC symbol from a DSO into a normal FUNC
|
4344 |
|
|
symbol. */
|
4345 |
|
|
if (type == STT_GNU_IFUNC
|
4346 |
|
|
&& (abfd->flags & DYNAMIC) != 0)
|
4347 |
|
|
type = STT_FUNC;
|
4348 |
|
|
|
4349 |
|
|
if (h->type != type)
|
4350 |
|
|
{
|
4351 |
|
|
if (h->type != STT_NOTYPE && ! type_change_ok)
|
4352 |
|
|
(*_bfd_error_handler)
|
4353 |
|
|
(_("Warning: type of symbol `%s' changed"
|
4354 |
|
|
" from %d to %d in %B"),
|
4355 |
|
|
abfd, name, h->type, type);
|
4356 |
|
|
|
4357 |
|
|
h->type = type;
|
4358 |
|
|
}
|
4359 |
|
|
}
|
4360 |
|
|
|
4361 |
|
|
/* Merge st_other field. */
|
4362 |
|
|
elf_merge_st_other (abfd, h, isym, definition, dynamic);
|
4363 |
|
|
|
4364 |
|
|
/* Set a flag in the hash table entry indicating the type of
|
4365 |
|
|
reference or definition we just found. Keep a count of
|
4366 |
|
|
the number of dynamic symbols we find. A dynamic symbol
|
4367 |
|
|
is one which is referenced or defined by both a regular
|
4368 |
|
|
object and a shared object. */
|
4369 |
|
|
dynsym = FALSE;
|
4370 |
|
|
if (! dynamic)
|
4371 |
|
|
{
|
4372 |
|
|
if (! definition)
|
4373 |
|
|
{
|
4374 |
|
|
h->ref_regular = 1;
|
4375 |
|
|
if (bind != STB_WEAK)
|
4376 |
|
|
h->ref_regular_nonweak = 1;
|
4377 |
|
|
}
|
4378 |
|
|
else
|
4379 |
|
|
{
|
4380 |
|
|
h->def_regular = 1;
|
4381 |
|
|
if (h->def_dynamic)
|
4382 |
|
|
{
|
4383 |
|
|
h->def_dynamic = 0;
|
4384 |
|
|
h->ref_dynamic = 1;
|
4385 |
|
|
h->dynamic_def = 1;
|
4386 |
|
|
}
|
4387 |
|
|
}
|
4388 |
|
|
if (! info->executable
|
4389 |
|
|
|| h->def_dynamic
|
4390 |
|
|
|| h->ref_dynamic)
|
4391 |
|
|
dynsym = TRUE;
|
4392 |
|
|
}
|
4393 |
|
|
else
|
4394 |
|
|
{
|
4395 |
|
|
if (! definition)
|
4396 |
|
|
h->ref_dynamic = 1;
|
4397 |
|
|
else
|
4398 |
|
|
h->def_dynamic = 1;
|
4399 |
|
|
if (h->def_regular
|
4400 |
|
|
|| h->ref_regular
|
4401 |
|
|
|| (h->u.weakdef != NULL
|
4402 |
|
|
&& ! new_weakdef
|
4403 |
|
|
&& h->u.weakdef->dynindx != -1))
|
4404 |
|
|
dynsym = TRUE;
|
4405 |
|
|
}
|
4406 |
|
|
|
4407 |
|
|
if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
|
4408 |
|
|
{
|
4409 |
|
|
/* We don't want to make debug symbol dynamic. */
|
4410 |
|
|
dynsym = FALSE;
|
4411 |
|
|
}
|
4412 |
|
|
|
4413 |
|
|
if (definition)
|
4414 |
|
|
h->target_internal = isym->st_target_internal;
|
4415 |
|
|
|
4416 |
|
|
/* Check to see if we need to add an indirect symbol for
|
4417 |
|
|
the default name. */
|
4418 |
|
|
if (definition || h->root.type == bfd_link_hash_common)
|
4419 |
|
|
if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
|
4420 |
|
|
&sec, &value, &dynsym,
|
4421 |
|
|
override))
|
4422 |
|
|
goto error_free_vers;
|
4423 |
|
|
|
4424 |
|
|
if (definition && !dynamic)
|
4425 |
|
|
{
|
4426 |
|
|
char *p = strchr (name, ELF_VER_CHR);
|
4427 |
|
|
if (p != NULL && p[1] != ELF_VER_CHR)
|
4428 |
|
|
{
|
4429 |
|
|
/* Queue non-default versions so that .symver x, x@FOO
|
4430 |
|
|
aliases can be checked. */
|
4431 |
|
|
if (!nondeflt_vers)
|
4432 |
|
|
{
|
4433 |
|
|
amt = ((isymend - isym + 1)
|
4434 |
|
|
* sizeof (struct elf_link_hash_entry *));
|
4435 |
|
|
nondeflt_vers =
|
4436 |
|
|
(struct elf_link_hash_entry **) bfd_malloc (amt);
|
4437 |
|
|
if (!nondeflt_vers)
|
4438 |
|
|
goto error_free_vers;
|
4439 |
|
|
}
|
4440 |
|
|
nondeflt_vers[nondeflt_vers_cnt++] = h;
|
4441 |
|
|
}
|
4442 |
|
|
}
|
4443 |
|
|
|
4444 |
|
|
if (dynsym && h->dynindx == -1)
|
4445 |
|
|
{
|
4446 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
4447 |
|
|
goto error_free_vers;
|
4448 |
|
|
if (h->u.weakdef != NULL
|
4449 |
|
|
&& ! new_weakdef
|
4450 |
|
|
&& h->u.weakdef->dynindx == -1)
|
4451 |
|
|
{
|
4452 |
|
|
if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
|
4453 |
|
|
goto error_free_vers;
|
4454 |
|
|
}
|
4455 |
|
|
}
|
4456 |
|
|
else if (dynsym && h->dynindx != -1)
|
4457 |
|
|
/* If the symbol already has a dynamic index, but
|
4458 |
|
|
visibility says it should not be visible, turn it into
|
4459 |
|
|
a local symbol. */
|
4460 |
|
|
switch (ELF_ST_VISIBILITY (h->other))
|
4461 |
|
|
{
|
4462 |
|
|
case STV_INTERNAL:
|
4463 |
|
|
case STV_HIDDEN:
|
4464 |
|
|
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
|
4465 |
|
|
dynsym = FALSE;
|
4466 |
|
|
break;
|
4467 |
|
|
}
|
4468 |
|
|
|
4469 |
|
|
if (!add_needed
|
4470 |
|
|
&& definition
|
4471 |
|
|
&& ((dynsym
|
4472 |
|
|
&& h->ref_regular)
|
4473 |
|
|
|| (h->ref_dynamic
|
4474 |
|
|
&& (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
|
4475 |
|
|
&& !on_needed_list (elf_dt_name (abfd), htab->needed))))
|
4476 |
|
|
{
|
4477 |
|
|
int ret;
|
4478 |
|
|
const char *soname = elf_dt_name (abfd);
|
4479 |
|
|
|
4480 |
|
|
/* A symbol from a library loaded via DT_NEEDED of some
|
4481 |
|
|
other library is referenced by a regular object.
|
4482 |
|
|
Add a DT_NEEDED entry for it. Issue an error if
|
4483 |
|
|
--no-add-needed is used and the reference was not
|
4484 |
|
|
a weak one. */
|
4485 |
|
|
if (undef_bfd != NULL
|
4486 |
|
|
&& (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
|
4487 |
|
|
{
|
4488 |
|
|
(*_bfd_error_handler)
|
4489 |
|
|
(_("%B: undefined reference to symbol '%s'"),
|
4490 |
|
|
undef_bfd, name);
|
4491 |
|
|
(*_bfd_error_handler)
|
4492 |
|
|
(_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
|
4493 |
|
|
abfd, name);
|
4494 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
4495 |
|
|
goto error_free_vers;
|
4496 |
|
|
}
|
4497 |
|
|
|
4498 |
|
|
elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
|
4499 |
|
|
(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
|
4500 |
|
|
|
4501 |
|
|
add_needed = TRUE;
|
4502 |
|
|
ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
|
4503 |
|
|
if (ret < 0)
|
4504 |
|
|
goto error_free_vers;
|
4505 |
|
|
|
4506 |
|
|
BFD_ASSERT (ret == 0);
|
4507 |
|
|
}
|
4508 |
|
|
}
|
4509 |
|
|
}
|
4510 |
|
|
|
4511 |
|
|
if (extversym != NULL)
|
4512 |
|
|
{
|
4513 |
|
|
free (extversym);
|
4514 |
|
|
extversym = NULL;
|
4515 |
|
|
}
|
4516 |
|
|
|
4517 |
|
|
if (isymbuf != NULL)
|
4518 |
|
|
{
|
4519 |
|
|
free (isymbuf);
|
4520 |
|
|
isymbuf = NULL;
|
4521 |
|
|
}
|
4522 |
|
|
|
4523 |
|
|
if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
|
4524 |
|
|
{
|
4525 |
|
|
unsigned int i;
|
4526 |
|
|
|
4527 |
|
|
/* Restore the symbol table. */
|
4528 |
|
|
if (bed->as_needed_cleanup)
|
4529 |
|
|
(*bed->as_needed_cleanup) (abfd, info);
|
4530 |
|
|
old_hash = (char *) old_tab + tabsize;
|
4531 |
|
|
old_ent = (char *) old_hash + hashsize;
|
4532 |
|
|
sym_hash = elf_sym_hashes (abfd);
|
4533 |
|
|
htab->root.table.table = old_table;
|
4534 |
|
|
htab->root.table.size = old_size;
|
4535 |
|
|
htab->root.table.count = old_count;
|
4536 |
|
|
memcpy (htab->root.table.table, old_tab, tabsize);
|
4537 |
|
|
memcpy (sym_hash, old_hash, hashsize);
|
4538 |
|
|
htab->root.undefs = old_undefs;
|
4539 |
|
|
htab->root.undefs_tail = old_undefs_tail;
|
4540 |
|
|
for (i = 0; i < htab->root.table.size; i++)
|
4541 |
|
|
{
|
4542 |
|
|
struct bfd_hash_entry *p;
|
4543 |
|
|
struct elf_link_hash_entry *h;
|
4544 |
|
|
|
4545 |
|
|
for (p = htab->root.table.table[i]; p != NULL; p = p->next)
|
4546 |
|
|
{
|
4547 |
|
|
h = (struct elf_link_hash_entry *) p;
|
4548 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
4549 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
4550 |
|
|
if (h->dynindx >= old_dynsymcount)
|
4551 |
|
|
_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
|
4552 |
|
|
|
4553 |
|
|
memcpy (p, old_ent, htab->root.table.entsize);
|
4554 |
|
|
old_ent = (char *) old_ent + htab->root.table.entsize;
|
4555 |
|
|
h = (struct elf_link_hash_entry *) p;
|
4556 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
4557 |
|
|
{
|
4558 |
|
|
memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
|
4559 |
|
|
old_ent = (char *) old_ent + htab->root.table.entsize;
|
4560 |
|
|
}
|
4561 |
|
|
}
|
4562 |
|
|
}
|
4563 |
|
|
|
4564 |
|
|
/* Make a special call to the linker "notice" function to
|
4565 |
|
|
tell it that symbols added for crefs may need to be removed. */
|
4566 |
|
|
if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
|
4567 |
|
|
notice_not_needed, 0, NULL))
|
4568 |
|
|
goto error_free_vers;
|
4569 |
|
|
|
4570 |
|
|
free (old_tab);
|
4571 |
|
|
objalloc_free_block ((struct objalloc *) htab->root.table.memory,
|
4572 |
|
|
alloc_mark);
|
4573 |
|
|
if (nondeflt_vers != NULL)
|
4574 |
|
|
free (nondeflt_vers);
|
4575 |
|
|
return TRUE;
|
4576 |
|
|
}
|
4577 |
|
|
|
4578 |
|
|
if (old_tab != NULL)
|
4579 |
|
|
{
|
4580 |
|
|
if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
|
4581 |
|
|
notice_needed, 0, NULL))
|
4582 |
|
|
goto error_free_vers;
|
4583 |
|
|
free (old_tab);
|
4584 |
|
|
old_tab = NULL;
|
4585 |
|
|
}
|
4586 |
|
|
|
4587 |
|
|
/* Now that all the symbols from this input file are created, handle
|
4588 |
|
|
.symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
|
4589 |
|
|
if (nondeflt_vers != NULL)
|
4590 |
|
|
{
|
4591 |
|
|
bfd_size_type cnt, symidx;
|
4592 |
|
|
|
4593 |
|
|
for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
|
4594 |
|
|
{
|
4595 |
|
|
struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
|
4596 |
|
|
char *shortname, *p;
|
4597 |
|
|
|
4598 |
|
|
p = strchr (h->root.root.string, ELF_VER_CHR);
|
4599 |
|
|
if (p == NULL
|
4600 |
|
|
|| (h->root.type != bfd_link_hash_defined
|
4601 |
|
|
&& h->root.type != bfd_link_hash_defweak))
|
4602 |
|
|
continue;
|
4603 |
|
|
|
4604 |
|
|
amt = p - h->root.root.string;
|
4605 |
|
|
shortname = (char *) bfd_malloc (amt + 1);
|
4606 |
|
|
if (!shortname)
|
4607 |
|
|
goto error_free_vers;
|
4608 |
|
|
memcpy (shortname, h->root.root.string, amt);
|
4609 |
|
|
shortname[amt] = '\0';
|
4610 |
|
|
|
4611 |
|
|
hi = (struct elf_link_hash_entry *)
|
4612 |
|
|
bfd_link_hash_lookup (&htab->root, shortname,
|
4613 |
|
|
FALSE, FALSE, FALSE);
|
4614 |
|
|
if (hi != NULL
|
4615 |
|
|
&& hi->root.type == h->root.type
|
4616 |
|
|
&& hi->root.u.def.value == h->root.u.def.value
|
4617 |
|
|
&& hi->root.u.def.section == h->root.u.def.section)
|
4618 |
|
|
{
|
4619 |
|
|
(*bed->elf_backend_hide_symbol) (info, hi, TRUE);
|
4620 |
|
|
hi->root.type = bfd_link_hash_indirect;
|
4621 |
|
|
hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
|
4622 |
|
|
(*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
|
4623 |
|
|
sym_hash = elf_sym_hashes (abfd);
|
4624 |
|
|
if (sym_hash)
|
4625 |
|
|
for (symidx = 0; symidx < extsymcount; ++symidx)
|
4626 |
|
|
if (sym_hash[symidx] == hi)
|
4627 |
|
|
{
|
4628 |
|
|
sym_hash[symidx] = h;
|
4629 |
|
|
break;
|
4630 |
|
|
}
|
4631 |
|
|
}
|
4632 |
|
|
free (shortname);
|
4633 |
|
|
}
|
4634 |
|
|
free (nondeflt_vers);
|
4635 |
|
|
nondeflt_vers = NULL;
|
4636 |
|
|
}
|
4637 |
|
|
|
4638 |
|
|
/* Now set the weakdefs field correctly for all the weak defined
|
4639 |
|
|
symbols we found. The only way to do this is to search all the
|
4640 |
|
|
symbols. Since we only need the information for non functions in
|
4641 |
|
|
dynamic objects, that's the only time we actually put anything on
|
4642 |
|
|
the list WEAKS. We need this information so that if a regular
|
4643 |
|
|
object refers to a symbol defined weakly in a dynamic object, the
|
4644 |
|
|
real symbol in the dynamic object is also put in the dynamic
|
4645 |
|
|
symbols; we also must arrange for both symbols to point to the
|
4646 |
|
|
same memory location. We could handle the general case of symbol
|
4647 |
|
|
aliasing, but a general symbol alias can only be generated in
|
4648 |
|
|
assembler code, handling it correctly would be very time
|
4649 |
|
|
consuming, and other ELF linkers don't handle general aliasing
|
4650 |
|
|
either. */
|
4651 |
|
|
if (weaks != NULL)
|
4652 |
|
|
{
|
4653 |
|
|
struct elf_link_hash_entry **hpp;
|
4654 |
|
|
struct elf_link_hash_entry **hppend;
|
4655 |
|
|
struct elf_link_hash_entry **sorted_sym_hash;
|
4656 |
|
|
struct elf_link_hash_entry *h;
|
4657 |
|
|
size_t sym_count;
|
4658 |
|
|
|
4659 |
|
|
/* Since we have to search the whole symbol list for each weak
|
4660 |
|
|
defined symbol, search time for N weak defined symbols will be
|
4661 |
|
|
O(N^2). Binary search will cut it down to O(NlogN). */
|
4662 |
|
|
amt = extsymcount * sizeof (struct elf_link_hash_entry *);
|
4663 |
|
|
sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
|
4664 |
|
|
if (sorted_sym_hash == NULL)
|
4665 |
|
|
goto error_return;
|
4666 |
|
|
sym_hash = sorted_sym_hash;
|
4667 |
|
|
hpp = elf_sym_hashes (abfd);
|
4668 |
|
|
hppend = hpp + extsymcount;
|
4669 |
|
|
sym_count = 0;
|
4670 |
|
|
for (; hpp < hppend; hpp++)
|
4671 |
|
|
{
|
4672 |
|
|
h = *hpp;
|
4673 |
|
|
if (h != NULL
|
4674 |
|
|
&& h->root.type == bfd_link_hash_defined
|
4675 |
|
|
&& !bed->is_function_type (h->type))
|
4676 |
|
|
{
|
4677 |
|
|
*sym_hash = h;
|
4678 |
|
|
sym_hash++;
|
4679 |
|
|
sym_count++;
|
4680 |
|
|
}
|
4681 |
|
|
}
|
4682 |
|
|
|
4683 |
|
|
qsort (sorted_sym_hash, sym_count,
|
4684 |
|
|
sizeof (struct elf_link_hash_entry *),
|
4685 |
|
|
elf_sort_symbol);
|
4686 |
|
|
|
4687 |
|
|
while (weaks != NULL)
|
4688 |
|
|
{
|
4689 |
|
|
struct elf_link_hash_entry *hlook;
|
4690 |
|
|
asection *slook;
|
4691 |
|
|
bfd_vma vlook;
|
4692 |
|
|
long ilook;
|
4693 |
|
|
size_t i, j, idx;
|
4694 |
|
|
|
4695 |
|
|
hlook = weaks;
|
4696 |
|
|
weaks = hlook->u.weakdef;
|
4697 |
|
|
hlook->u.weakdef = NULL;
|
4698 |
|
|
|
4699 |
|
|
BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
|
4700 |
|
|
|| hlook->root.type == bfd_link_hash_defweak
|
4701 |
|
|
|| hlook->root.type == bfd_link_hash_common
|
4702 |
|
|
|| hlook->root.type == bfd_link_hash_indirect);
|
4703 |
|
|
slook = hlook->root.u.def.section;
|
4704 |
|
|
vlook = hlook->root.u.def.value;
|
4705 |
|
|
|
4706 |
|
|
ilook = -1;
|
4707 |
|
|
i = 0;
|
4708 |
|
|
j = sym_count;
|
4709 |
|
|
while (i < j)
|
4710 |
|
|
{
|
4711 |
|
|
bfd_signed_vma vdiff;
|
4712 |
|
|
idx = (i + j) / 2;
|
4713 |
|
|
h = sorted_sym_hash [idx];
|
4714 |
|
|
vdiff = vlook - h->root.u.def.value;
|
4715 |
|
|
if (vdiff < 0)
|
4716 |
|
|
j = idx;
|
4717 |
|
|
else if (vdiff > 0)
|
4718 |
|
|
i = idx + 1;
|
4719 |
|
|
else
|
4720 |
|
|
{
|
4721 |
|
|
long sdiff = slook->id - h->root.u.def.section->id;
|
4722 |
|
|
if (sdiff < 0)
|
4723 |
|
|
j = idx;
|
4724 |
|
|
else if (sdiff > 0)
|
4725 |
|
|
i = idx + 1;
|
4726 |
|
|
else
|
4727 |
|
|
{
|
4728 |
|
|
ilook = idx;
|
4729 |
|
|
break;
|
4730 |
|
|
}
|
4731 |
|
|
}
|
4732 |
|
|
}
|
4733 |
|
|
|
4734 |
|
|
/* We didn't find a value/section match. */
|
4735 |
|
|
if (ilook == -1)
|
4736 |
|
|
continue;
|
4737 |
|
|
|
4738 |
|
|
for (i = ilook; i < sym_count; i++)
|
4739 |
|
|
{
|
4740 |
|
|
h = sorted_sym_hash [i];
|
4741 |
|
|
|
4742 |
|
|
/* Stop if value or section doesn't match. */
|
4743 |
|
|
if (h->root.u.def.value != vlook
|
4744 |
|
|
|| h->root.u.def.section != slook)
|
4745 |
|
|
break;
|
4746 |
|
|
else if (h != hlook)
|
4747 |
|
|
{
|
4748 |
|
|
hlook->u.weakdef = h;
|
4749 |
|
|
|
4750 |
|
|
/* If the weak definition is in the list of dynamic
|
4751 |
|
|
symbols, make sure the real definition is put
|
4752 |
|
|
there as well. */
|
4753 |
|
|
if (hlook->dynindx != -1 && h->dynindx == -1)
|
4754 |
|
|
{
|
4755 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
4756 |
|
|
{
|
4757 |
|
|
err_free_sym_hash:
|
4758 |
|
|
free (sorted_sym_hash);
|
4759 |
|
|
goto error_return;
|
4760 |
|
|
}
|
4761 |
|
|
}
|
4762 |
|
|
|
4763 |
|
|
/* If the real definition is in the list of dynamic
|
4764 |
|
|
symbols, make sure the weak definition is put
|
4765 |
|
|
there as well. If we don't do this, then the
|
4766 |
|
|
dynamic loader might not merge the entries for the
|
4767 |
|
|
real definition and the weak definition. */
|
4768 |
|
|
if (h->dynindx != -1 && hlook->dynindx == -1)
|
4769 |
|
|
{
|
4770 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
|
4771 |
|
|
goto err_free_sym_hash;
|
4772 |
|
|
}
|
4773 |
|
|
break;
|
4774 |
|
|
}
|
4775 |
|
|
}
|
4776 |
|
|
}
|
4777 |
|
|
|
4778 |
|
|
free (sorted_sym_hash);
|
4779 |
|
|
}
|
4780 |
|
|
|
4781 |
|
|
if (bed->check_directives
|
4782 |
|
|
&& !(*bed->check_directives) (abfd, info))
|
4783 |
|
|
return FALSE;
|
4784 |
|
|
|
4785 |
|
|
/* If this object is the same format as the output object, and it is
|
4786 |
|
|
not a shared library, then let the backend look through the
|
4787 |
|
|
relocs.
|
4788 |
|
|
|
4789 |
|
|
This is required to build global offset table entries and to
|
4790 |
|
|
arrange for dynamic relocs. It is not required for the
|
4791 |
|
|
particular common case of linking non PIC code, even when linking
|
4792 |
|
|
against shared libraries, but unfortunately there is no way of
|
4793 |
|
|
knowing whether an object file has been compiled PIC or not.
|
4794 |
|
|
Looking through the relocs is not particularly time consuming.
|
4795 |
|
|
The problem is that we must either (1) keep the relocs in memory,
|
4796 |
|
|
which causes the linker to require additional runtime memory or
|
4797 |
|
|
(2) read the relocs twice from the input file, which wastes time.
|
4798 |
|
|
This would be a good case for using mmap.
|
4799 |
|
|
|
4800 |
|
|
I have no idea how to handle linking PIC code into a file of a
|
4801 |
|
|
different format. It probably can't be done. */
|
4802 |
|
|
if (! dynamic
|
4803 |
|
|
&& is_elf_hash_table (htab)
|
4804 |
|
|
&& bed->check_relocs != NULL
|
4805 |
|
|
&& elf_object_id (abfd) == elf_hash_table_id (htab)
|
4806 |
|
|
&& (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
|
4807 |
|
|
{
|
4808 |
|
|
asection *o;
|
4809 |
|
|
|
4810 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
4811 |
|
|
{
|
4812 |
|
|
Elf_Internal_Rela *internal_relocs;
|
4813 |
|
|
bfd_boolean ok;
|
4814 |
|
|
|
4815 |
|
|
if ((o->flags & SEC_RELOC) == 0
|
4816 |
|
|
|| o->reloc_count == 0
|
4817 |
|
|
|| ((info->strip == strip_all || info->strip == strip_debugger)
|
4818 |
|
|
&& (o->flags & SEC_DEBUGGING) != 0)
|
4819 |
|
|
|| bfd_is_abs_section (o->output_section))
|
4820 |
|
|
continue;
|
4821 |
|
|
|
4822 |
|
|
internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
|
4823 |
|
|
info->keep_memory);
|
4824 |
|
|
if (internal_relocs == NULL)
|
4825 |
|
|
goto error_return;
|
4826 |
|
|
|
4827 |
|
|
ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
|
4828 |
|
|
|
4829 |
|
|
if (elf_section_data (o)->relocs != internal_relocs)
|
4830 |
|
|
free (internal_relocs);
|
4831 |
|
|
|
4832 |
|
|
if (! ok)
|
4833 |
|
|
goto error_return;
|
4834 |
|
|
}
|
4835 |
|
|
}
|
4836 |
|
|
|
4837 |
|
|
/* If this is a non-traditional link, try to optimize the handling
|
4838 |
|
|
of the .stab/.stabstr sections. */
|
4839 |
|
|
if (! dynamic
|
4840 |
|
|
&& ! info->traditional_format
|
4841 |
|
|
&& is_elf_hash_table (htab)
|
4842 |
|
|
&& (info->strip != strip_all && info->strip != strip_debugger))
|
4843 |
|
|
{
|
4844 |
|
|
asection *stabstr;
|
4845 |
|
|
|
4846 |
|
|
stabstr = bfd_get_section_by_name (abfd, ".stabstr");
|
4847 |
|
|
if (stabstr != NULL)
|
4848 |
|
|
{
|
4849 |
|
|
bfd_size_type string_offset = 0;
|
4850 |
|
|
asection *stab;
|
4851 |
|
|
|
4852 |
|
|
for (stab = abfd->sections; stab; stab = stab->next)
|
4853 |
|
|
if (CONST_STRNEQ (stab->name, ".stab")
|
4854 |
|
|
&& (!stab->name[5] ||
|
4855 |
|
|
(stab->name[5] == '.' && ISDIGIT (stab->name[6])))
|
4856 |
|
|
&& (stab->flags & SEC_MERGE) == 0
|
4857 |
|
|
&& !bfd_is_abs_section (stab->output_section))
|
4858 |
|
|
{
|
4859 |
|
|
struct bfd_elf_section_data *secdata;
|
4860 |
|
|
|
4861 |
|
|
secdata = elf_section_data (stab);
|
4862 |
|
|
if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
|
4863 |
|
|
stabstr, &secdata->sec_info,
|
4864 |
|
|
&string_offset))
|
4865 |
|
|
goto error_return;
|
4866 |
|
|
if (secdata->sec_info)
|
4867 |
|
|
stab->sec_info_type = ELF_INFO_TYPE_STABS;
|
4868 |
|
|
}
|
4869 |
|
|
}
|
4870 |
|
|
}
|
4871 |
|
|
|
4872 |
|
|
if (is_elf_hash_table (htab) && add_needed)
|
4873 |
|
|
{
|
4874 |
|
|
/* Add this bfd to the loaded list. */
|
4875 |
|
|
struct elf_link_loaded_list *n;
|
4876 |
|
|
|
4877 |
|
|
n = (struct elf_link_loaded_list *)
|
4878 |
|
|
bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
|
4879 |
|
|
if (n == NULL)
|
4880 |
|
|
goto error_return;
|
4881 |
|
|
n->abfd = abfd;
|
4882 |
|
|
n->next = htab->loaded;
|
4883 |
|
|
htab->loaded = n;
|
4884 |
|
|
}
|
4885 |
|
|
|
4886 |
|
|
return TRUE;
|
4887 |
|
|
|
4888 |
|
|
error_free_vers:
|
4889 |
|
|
if (old_tab != NULL)
|
4890 |
|
|
free (old_tab);
|
4891 |
|
|
if (nondeflt_vers != NULL)
|
4892 |
|
|
free (nondeflt_vers);
|
4893 |
|
|
if (extversym != NULL)
|
4894 |
|
|
free (extversym);
|
4895 |
|
|
error_free_sym:
|
4896 |
|
|
if (isymbuf != NULL)
|
4897 |
|
|
free (isymbuf);
|
4898 |
|
|
error_return:
|
4899 |
|
|
return FALSE;
|
4900 |
|
|
}
|
4901 |
|
|
|
4902 |
|
|
/* Return the linker hash table entry of a symbol that might be
|
4903 |
|
|
satisfied by an archive symbol. Return -1 on error. */
|
4904 |
|
|
|
4905 |
|
|
struct elf_link_hash_entry *
|
4906 |
|
|
_bfd_elf_archive_symbol_lookup (bfd *abfd,
|
4907 |
|
|
struct bfd_link_info *info,
|
4908 |
|
|
const char *name)
|
4909 |
|
|
{
|
4910 |
|
|
struct elf_link_hash_entry *h;
|
4911 |
|
|
char *p, *copy;
|
4912 |
|
|
size_t len, first;
|
4913 |
|
|
|
4914 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
|
4915 |
|
|
if (h != NULL)
|
4916 |
|
|
return h;
|
4917 |
|
|
|
4918 |
|
|
/* If this is a default version (the name contains @@), look up the
|
4919 |
|
|
symbol again with only one `@' as well as without the version.
|
4920 |
|
|
The effect is that references to the symbol with and without the
|
4921 |
|
|
version will be matched by the default symbol in the archive. */
|
4922 |
|
|
|
4923 |
|
|
p = strchr (name, ELF_VER_CHR);
|
4924 |
|
|
if (p == NULL || p[1] != ELF_VER_CHR)
|
4925 |
|
|
return h;
|
4926 |
|
|
|
4927 |
|
|
/* First check with only one `@'. */
|
4928 |
|
|
len = strlen (name);
|
4929 |
|
|
copy = (char *) bfd_alloc (abfd, len);
|
4930 |
|
|
if (copy == NULL)
|
4931 |
|
|
return (struct elf_link_hash_entry *) 0 - 1;
|
4932 |
|
|
|
4933 |
|
|
first = p - name + 1;
|
4934 |
|
|
memcpy (copy, name, first);
|
4935 |
|
|
memcpy (copy + first, name + first + 1, len - first);
|
4936 |
|
|
|
4937 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
|
4938 |
|
|
if (h == NULL)
|
4939 |
|
|
{
|
4940 |
|
|
/* We also need to check references to the symbol without the
|
4941 |
|
|
version. */
|
4942 |
|
|
copy[first - 1] = '\0';
|
4943 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), copy,
|
4944 |
|
|
FALSE, FALSE, FALSE);
|
4945 |
|
|
}
|
4946 |
|
|
|
4947 |
|
|
bfd_release (abfd, copy);
|
4948 |
|
|
return h;
|
4949 |
|
|
}
|
4950 |
|
|
|
4951 |
|
|
/* Add symbols from an ELF archive file to the linker hash table. We
|
4952 |
|
|
don't use _bfd_generic_link_add_archive_symbols because of a
|
4953 |
|
|
problem which arises on UnixWare. The UnixWare libc.so is an
|
4954 |
|
|
archive which includes an entry libc.so.1 which defines a bunch of
|
4955 |
|
|
symbols. The libc.so archive also includes a number of other
|
4956 |
|
|
object files, which also define symbols, some of which are the same
|
4957 |
|
|
as those defined in libc.so.1. Correct linking requires that we
|
4958 |
|
|
consider each object file in turn, and include it if it defines any
|
4959 |
|
|
symbols we need. _bfd_generic_link_add_archive_symbols does not do
|
4960 |
|
|
this; it looks through the list of undefined symbols, and includes
|
4961 |
|
|
any object file which defines them. When this algorithm is used on
|
4962 |
|
|
UnixWare, it winds up pulling in libc.so.1 early and defining a
|
4963 |
|
|
bunch of symbols. This means that some of the other objects in the
|
4964 |
|
|
archive are not included in the link, which is incorrect since they
|
4965 |
|
|
precede libc.so.1 in the archive.
|
4966 |
|
|
|
4967 |
|
|
Fortunately, ELF archive handling is simpler than that done by
|
4968 |
|
|
_bfd_generic_link_add_archive_symbols, which has to allow for a.out
|
4969 |
|
|
oddities. In ELF, if we find a symbol in the archive map, and the
|
4970 |
|
|
symbol is currently undefined, we know that we must pull in that
|
4971 |
|
|
object file.
|
4972 |
|
|
|
4973 |
|
|
Unfortunately, we do have to make multiple passes over the symbol
|
4974 |
|
|
table until nothing further is resolved. */
|
4975 |
|
|
|
4976 |
|
|
static bfd_boolean
|
4977 |
|
|
elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
|
4978 |
|
|
{
|
4979 |
|
|
symindex c;
|
4980 |
|
|
bfd_boolean *defined = NULL;
|
4981 |
|
|
bfd_boolean *included = NULL;
|
4982 |
|
|
carsym *symdefs;
|
4983 |
|
|
bfd_boolean loop;
|
4984 |
|
|
bfd_size_type amt;
|
4985 |
|
|
const struct elf_backend_data *bed;
|
4986 |
|
|
struct elf_link_hash_entry * (*archive_symbol_lookup)
|
4987 |
|
|
(bfd *, struct bfd_link_info *, const char *);
|
4988 |
|
|
|
4989 |
|
|
if (! bfd_has_map (abfd))
|
4990 |
|
|
{
|
4991 |
|
|
/* An empty archive is a special case. */
|
4992 |
|
|
if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
|
4993 |
|
|
return TRUE;
|
4994 |
|
|
bfd_set_error (bfd_error_no_armap);
|
4995 |
|
|
return FALSE;
|
4996 |
|
|
}
|
4997 |
|
|
|
4998 |
|
|
/* Keep track of all symbols we know to be already defined, and all
|
4999 |
|
|
files we know to be already included. This is to speed up the
|
5000 |
|
|
second and subsequent passes. */
|
5001 |
|
|
c = bfd_ardata (abfd)->symdef_count;
|
5002 |
|
|
if (c == 0)
|
5003 |
|
|
return TRUE;
|
5004 |
|
|
amt = c;
|
5005 |
|
|
amt *= sizeof (bfd_boolean);
|
5006 |
|
|
defined = (bfd_boolean *) bfd_zmalloc (amt);
|
5007 |
|
|
included = (bfd_boolean *) bfd_zmalloc (amt);
|
5008 |
|
|
if (defined == NULL || included == NULL)
|
5009 |
|
|
goto error_return;
|
5010 |
|
|
|
5011 |
|
|
symdefs = bfd_ardata (abfd)->symdefs;
|
5012 |
|
|
bed = get_elf_backend_data (abfd);
|
5013 |
|
|
archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
|
5014 |
|
|
|
5015 |
|
|
do
|
5016 |
|
|
{
|
5017 |
|
|
file_ptr last;
|
5018 |
|
|
symindex i;
|
5019 |
|
|
carsym *symdef;
|
5020 |
|
|
carsym *symdefend;
|
5021 |
|
|
|
5022 |
|
|
loop = FALSE;
|
5023 |
|
|
last = -1;
|
5024 |
|
|
|
5025 |
|
|
symdef = symdefs;
|
5026 |
|
|
symdefend = symdef + c;
|
5027 |
|
|
for (i = 0; symdef < symdefend; symdef++, i++)
|
5028 |
|
|
{
|
5029 |
|
|
struct elf_link_hash_entry *h;
|
5030 |
|
|
bfd *element;
|
5031 |
|
|
struct bfd_link_hash_entry *undefs_tail;
|
5032 |
|
|
symindex mark;
|
5033 |
|
|
|
5034 |
|
|
if (defined[i] || included[i])
|
5035 |
|
|
continue;
|
5036 |
|
|
if (symdef->file_offset == last)
|
5037 |
|
|
{
|
5038 |
|
|
included[i] = TRUE;
|
5039 |
|
|
continue;
|
5040 |
|
|
}
|
5041 |
|
|
|
5042 |
|
|
h = archive_symbol_lookup (abfd, info, symdef->name);
|
5043 |
|
|
if (h == (struct elf_link_hash_entry *) 0 - 1)
|
5044 |
|
|
goto error_return;
|
5045 |
|
|
|
5046 |
|
|
if (h == NULL)
|
5047 |
|
|
continue;
|
5048 |
|
|
|
5049 |
|
|
if (h->root.type == bfd_link_hash_common)
|
5050 |
|
|
{
|
5051 |
|
|
/* We currently have a common symbol. The archive map contains
|
5052 |
|
|
a reference to this symbol, so we may want to include it. We
|
5053 |
|
|
only want to include it however, if this archive element
|
5054 |
|
|
contains a definition of the symbol, not just another common
|
5055 |
|
|
declaration of it.
|
5056 |
|
|
|
5057 |
|
|
Unfortunately some archivers (including GNU ar) will put
|
5058 |
|
|
declarations of common symbols into their archive maps, as
|
5059 |
|
|
well as real definitions, so we cannot just go by the archive
|
5060 |
|
|
map alone. Instead we must read in the element's symbol
|
5061 |
|
|
table and check that to see what kind of symbol definition
|
5062 |
|
|
this is. */
|
5063 |
|
|
if (! elf_link_is_defined_archive_symbol (abfd, symdef))
|
5064 |
|
|
continue;
|
5065 |
|
|
}
|
5066 |
|
|
else if (h->root.type != bfd_link_hash_undefined)
|
5067 |
|
|
{
|
5068 |
|
|
if (h->root.type != bfd_link_hash_undefweak)
|
5069 |
|
|
defined[i] = TRUE;
|
5070 |
|
|
continue;
|
5071 |
|
|
}
|
5072 |
|
|
|
5073 |
|
|
/* We need to include this archive member. */
|
5074 |
|
|
element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
|
5075 |
|
|
if (element == NULL)
|
5076 |
|
|
goto error_return;
|
5077 |
|
|
|
5078 |
|
|
if (! bfd_check_format (element, bfd_object))
|
5079 |
|
|
goto error_return;
|
5080 |
|
|
|
5081 |
|
|
/* Doublecheck that we have not included this object
|
5082 |
|
|
already--it should be impossible, but there may be
|
5083 |
|
|
something wrong with the archive. */
|
5084 |
|
|
if (element->archive_pass != 0)
|
5085 |
|
|
{
|
5086 |
|
|
bfd_set_error (bfd_error_bad_value);
|
5087 |
|
|
goto error_return;
|
5088 |
|
|
}
|
5089 |
|
|
element->archive_pass = 1;
|
5090 |
|
|
|
5091 |
|
|
undefs_tail = info->hash->undefs_tail;
|
5092 |
|
|
|
5093 |
|
|
if (!(*info->callbacks
|
5094 |
|
|
->add_archive_element) (info, element, symdef->name, &element))
|
5095 |
|
|
goto error_return;
|
5096 |
|
|
if (!bfd_link_add_symbols (element, info))
|
5097 |
|
|
goto error_return;
|
5098 |
|
|
|
5099 |
|
|
/* If there are any new undefined symbols, we need to make
|
5100 |
|
|
another pass through the archive in order to see whether
|
5101 |
|
|
they can be defined. FIXME: This isn't perfect, because
|
5102 |
|
|
common symbols wind up on undefs_tail and because an
|
5103 |
|
|
undefined symbol which is defined later on in this pass
|
5104 |
|
|
does not require another pass. This isn't a bug, but it
|
5105 |
|
|
does make the code less efficient than it could be. */
|
5106 |
|
|
if (undefs_tail != info->hash->undefs_tail)
|
5107 |
|
|
loop = TRUE;
|
5108 |
|
|
|
5109 |
|
|
/* Look backward to mark all symbols from this object file
|
5110 |
|
|
which we have already seen in this pass. */
|
5111 |
|
|
mark = i;
|
5112 |
|
|
do
|
5113 |
|
|
{
|
5114 |
|
|
included[mark] = TRUE;
|
5115 |
|
|
if (mark == 0)
|
5116 |
|
|
break;
|
5117 |
|
|
--mark;
|
5118 |
|
|
}
|
5119 |
|
|
while (symdefs[mark].file_offset == symdef->file_offset);
|
5120 |
|
|
|
5121 |
|
|
/* We mark subsequent symbols from this object file as we go
|
5122 |
|
|
on through the loop. */
|
5123 |
|
|
last = symdef->file_offset;
|
5124 |
|
|
}
|
5125 |
|
|
}
|
5126 |
|
|
while (loop);
|
5127 |
|
|
|
5128 |
|
|
free (defined);
|
5129 |
|
|
free (included);
|
5130 |
|
|
|
5131 |
|
|
return TRUE;
|
5132 |
|
|
|
5133 |
|
|
error_return:
|
5134 |
|
|
if (defined != NULL)
|
5135 |
|
|
free (defined);
|
5136 |
|
|
if (included != NULL)
|
5137 |
|
|
free (included);
|
5138 |
|
|
return FALSE;
|
5139 |
|
|
}
|
5140 |
|
|
|
5141 |
|
|
/* Given an ELF BFD, add symbols to the global hash table as
|
5142 |
|
|
appropriate. */
|
5143 |
|
|
|
5144 |
|
|
bfd_boolean
|
5145 |
|
|
bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
|
5146 |
|
|
{
|
5147 |
|
|
switch (bfd_get_format (abfd))
|
5148 |
|
|
{
|
5149 |
|
|
case bfd_object:
|
5150 |
|
|
return elf_link_add_object_symbols (abfd, info);
|
5151 |
|
|
case bfd_archive:
|
5152 |
|
|
return elf_link_add_archive_symbols (abfd, info);
|
5153 |
|
|
default:
|
5154 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
5155 |
|
|
return FALSE;
|
5156 |
|
|
}
|
5157 |
|
|
}
|
5158 |
|
|
|
5159 |
|
|
struct hash_codes_info
|
5160 |
|
|
{
|
5161 |
|
|
unsigned long *hashcodes;
|
5162 |
|
|
bfd_boolean error;
|
5163 |
|
|
};
|
5164 |
|
|
|
5165 |
|
|
/* This function will be called though elf_link_hash_traverse to store
|
5166 |
|
|
all hash value of the exported symbols in an array. */
|
5167 |
|
|
|
5168 |
|
|
static bfd_boolean
|
5169 |
|
|
elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
|
5170 |
|
|
{
|
5171 |
|
|
struct hash_codes_info *inf = (struct hash_codes_info *) data;
|
5172 |
|
|
const char *name;
|
5173 |
|
|
char *p;
|
5174 |
|
|
unsigned long ha;
|
5175 |
|
|
char *alc = NULL;
|
5176 |
|
|
|
5177 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
5178 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
5179 |
|
|
|
5180 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
5181 |
|
|
if (h->dynindx == -1)
|
5182 |
|
|
return TRUE;
|
5183 |
|
|
|
5184 |
|
|
name = h->root.root.string;
|
5185 |
|
|
p = strchr (name, ELF_VER_CHR);
|
5186 |
|
|
if (p != NULL)
|
5187 |
|
|
{
|
5188 |
|
|
alc = (char *) bfd_malloc (p - name + 1);
|
5189 |
|
|
if (alc == NULL)
|
5190 |
|
|
{
|
5191 |
|
|
inf->error = TRUE;
|
5192 |
|
|
return FALSE;
|
5193 |
|
|
}
|
5194 |
|
|
memcpy (alc, name, p - name);
|
5195 |
|
|
alc[p - name] = '\0';
|
5196 |
|
|
name = alc;
|
5197 |
|
|
}
|
5198 |
|
|
|
5199 |
|
|
/* Compute the hash value. */
|
5200 |
|
|
ha = bfd_elf_hash (name);
|
5201 |
|
|
|
5202 |
|
|
/* Store the found hash value in the array given as the argument. */
|
5203 |
|
|
*(inf->hashcodes)++ = ha;
|
5204 |
|
|
|
5205 |
|
|
/* And store it in the struct so that we can put it in the hash table
|
5206 |
|
|
later. */
|
5207 |
|
|
h->u.elf_hash_value = ha;
|
5208 |
|
|
|
5209 |
|
|
if (alc != NULL)
|
5210 |
|
|
free (alc);
|
5211 |
|
|
|
5212 |
|
|
return TRUE;
|
5213 |
|
|
}
|
5214 |
|
|
|
5215 |
|
|
struct collect_gnu_hash_codes
|
5216 |
|
|
{
|
5217 |
|
|
bfd *output_bfd;
|
5218 |
|
|
const struct elf_backend_data *bed;
|
5219 |
|
|
unsigned long int nsyms;
|
5220 |
|
|
unsigned long int maskbits;
|
5221 |
|
|
unsigned long int *hashcodes;
|
5222 |
|
|
unsigned long int *hashval;
|
5223 |
|
|
unsigned long int *indx;
|
5224 |
|
|
unsigned long int *counts;
|
5225 |
|
|
bfd_vma *bitmask;
|
5226 |
|
|
bfd_byte *contents;
|
5227 |
|
|
long int min_dynindx;
|
5228 |
|
|
unsigned long int bucketcount;
|
5229 |
|
|
unsigned long int symindx;
|
5230 |
|
|
long int local_indx;
|
5231 |
|
|
long int shift1, shift2;
|
5232 |
|
|
unsigned long int mask;
|
5233 |
|
|
bfd_boolean error;
|
5234 |
|
|
};
|
5235 |
|
|
|
5236 |
|
|
/* This function will be called though elf_link_hash_traverse to store
|
5237 |
|
|
all hash value of the exported symbols in an array. */
|
5238 |
|
|
|
5239 |
|
|
static bfd_boolean
|
5240 |
|
|
elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
|
5241 |
|
|
{
|
5242 |
|
|
struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
|
5243 |
|
|
const char *name;
|
5244 |
|
|
char *p;
|
5245 |
|
|
unsigned long ha;
|
5246 |
|
|
char *alc = NULL;
|
5247 |
|
|
|
5248 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
5249 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
5250 |
|
|
|
5251 |
|
|
/* Ignore indirect symbols. These are added by the versioning code. */
|
5252 |
|
|
if (h->dynindx == -1)
|
5253 |
|
|
return TRUE;
|
5254 |
|
|
|
5255 |
|
|
/* Ignore also local symbols and undefined symbols. */
|
5256 |
|
|
if (! (*s->bed->elf_hash_symbol) (h))
|
5257 |
|
|
return TRUE;
|
5258 |
|
|
|
5259 |
|
|
name = h->root.root.string;
|
5260 |
|
|
p = strchr (name, ELF_VER_CHR);
|
5261 |
|
|
if (p != NULL)
|
5262 |
|
|
{
|
5263 |
|
|
alc = (char *) bfd_malloc (p - name + 1);
|
5264 |
|
|
if (alc == NULL)
|
5265 |
|
|
{
|
5266 |
|
|
s->error = TRUE;
|
5267 |
|
|
return FALSE;
|
5268 |
|
|
}
|
5269 |
|
|
memcpy (alc, name, p - name);
|
5270 |
|
|
alc[p - name] = '\0';
|
5271 |
|
|
name = alc;
|
5272 |
|
|
}
|
5273 |
|
|
|
5274 |
|
|
/* Compute the hash value. */
|
5275 |
|
|
ha = bfd_elf_gnu_hash (name);
|
5276 |
|
|
|
5277 |
|
|
/* Store the found hash value in the array for compute_bucket_count,
|
5278 |
|
|
and also for .dynsym reordering purposes. */
|
5279 |
|
|
s->hashcodes[s->nsyms] = ha;
|
5280 |
|
|
s->hashval[h->dynindx] = ha;
|
5281 |
|
|
++s->nsyms;
|
5282 |
|
|
if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
|
5283 |
|
|
s->min_dynindx = h->dynindx;
|
5284 |
|
|
|
5285 |
|
|
if (alc != NULL)
|
5286 |
|
|
free (alc);
|
5287 |
|
|
|
5288 |
|
|
return TRUE;
|
5289 |
|
|
}
|
5290 |
|
|
|
5291 |
|
|
/* This function will be called though elf_link_hash_traverse to do
|
5292 |
|
|
final dynaminc symbol renumbering. */
|
5293 |
|
|
|
5294 |
|
|
static bfd_boolean
|
5295 |
|
|
elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
|
5296 |
|
|
{
|
5297 |
|
|
struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
|
5298 |
|
|
unsigned long int bucket;
|
5299 |
|
|
unsigned long int val;
|
5300 |
|
|
|
5301 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
5302 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
5303 |
|
|
|
5304 |
|
|
/* Ignore indirect symbols. */
|
5305 |
|
|
if (h->dynindx == -1)
|
5306 |
|
|
return TRUE;
|
5307 |
|
|
|
5308 |
|
|
/* Ignore also local symbols and undefined symbols. */
|
5309 |
|
|
if (! (*s->bed->elf_hash_symbol) (h))
|
5310 |
|
|
{
|
5311 |
|
|
if (h->dynindx >= s->min_dynindx)
|
5312 |
|
|
h->dynindx = s->local_indx++;
|
5313 |
|
|
return TRUE;
|
5314 |
|
|
}
|
5315 |
|
|
|
5316 |
|
|
bucket = s->hashval[h->dynindx] % s->bucketcount;
|
5317 |
|
|
val = (s->hashval[h->dynindx] >> s->shift1)
|
5318 |
|
|
& ((s->maskbits >> s->shift1) - 1);
|
5319 |
|
|
s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
|
5320 |
|
|
s->bitmask[val]
|
5321 |
|
|
|= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
|
5322 |
|
|
val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
|
5323 |
|
|
if (s->counts[bucket] == 1)
|
5324 |
|
|
/* Last element terminates the chain. */
|
5325 |
|
|
val |= 1;
|
5326 |
|
|
bfd_put_32 (s->output_bfd, val,
|
5327 |
|
|
s->contents + (s->indx[bucket] - s->symindx) * 4);
|
5328 |
|
|
--s->counts[bucket];
|
5329 |
|
|
h->dynindx = s->indx[bucket]++;
|
5330 |
|
|
return TRUE;
|
5331 |
|
|
}
|
5332 |
|
|
|
5333 |
|
|
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
|
5334 |
|
|
|
5335 |
|
|
bfd_boolean
|
5336 |
|
|
_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
|
5337 |
|
|
{
|
5338 |
|
|
return !(h->forced_local
|
5339 |
|
|
|| h->root.type == bfd_link_hash_undefined
|
5340 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
5341 |
|
|
|| ((h->root.type == bfd_link_hash_defined
|
5342 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
5343 |
|
|
&& h->root.u.def.section->output_section == NULL));
|
5344 |
|
|
}
|
5345 |
|
|
|
5346 |
|
|
/* Array used to determine the number of hash table buckets to use
|
5347 |
|
|
based on the number of symbols there are. If there are fewer than
|
5348 |
|
|
3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
|
5349 |
|
|
fewer than 37 we use 17 buckets, and so forth. We never use more
|
5350 |
|
|
than 32771 buckets. */
|
5351 |
|
|
|
5352 |
|
|
static const size_t elf_buckets[] =
|
5353 |
|
|
{
|
5354 |
|
|
1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
|
5355 |
|
|
16411, 32771, 0
|
5356 |
|
|
};
|
5357 |
|
|
|
5358 |
|
|
/* Compute bucket count for hashing table. We do not use a static set
|
5359 |
|
|
of possible tables sizes anymore. Instead we determine for all
|
5360 |
|
|
possible reasonable sizes of the table the outcome (i.e., the
|
5361 |
|
|
number of collisions etc) and choose the best solution. The
|
5362 |
|
|
weighting functions are not too simple to allow the table to grow
|
5363 |
|
|
without bounds. Instead one of the weighting factors is the size.
|
5364 |
|
|
Therefore the result is always a good payoff between few collisions
|
5365 |
|
|
(= short chain lengths) and table size. */
|
5366 |
|
|
static size_t
|
5367 |
|
|
compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
5368 |
|
|
unsigned long int *hashcodes ATTRIBUTE_UNUSED,
|
5369 |
|
|
unsigned long int nsyms,
|
5370 |
|
|
int gnu_hash)
|
5371 |
|
|
{
|
5372 |
|
|
size_t best_size = 0;
|
5373 |
|
|
unsigned long int i;
|
5374 |
|
|
|
5375 |
|
|
/* We have a problem here. The following code to optimize the table
|
5376 |
|
|
size requires an integer type with more the 32 bits. If
|
5377 |
|
|
BFD_HOST_U_64_BIT is set we know about such a type. */
|
5378 |
|
|
#ifdef BFD_HOST_U_64_BIT
|
5379 |
|
|
if (info->optimize)
|
5380 |
|
|
{
|
5381 |
|
|
size_t minsize;
|
5382 |
|
|
size_t maxsize;
|
5383 |
|
|
BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
|
5384 |
|
|
bfd *dynobj = elf_hash_table (info)->dynobj;
|
5385 |
|
|
size_t dynsymcount = elf_hash_table (info)->dynsymcount;
|
5386 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
|
5387 |
|
|
unsigned long int *counts;
|
5388 |
|
|
bfd_size_type amt;
|
5389 |
|
|
unsigned int no_improvement_count = 0;
|
5390 |
|
|
|
5391 |
|
|
/* Possible optimization parameters: if we have NSYMS symbols we say
|
5392 |
|
|
that the hashing table must at least have NSYMS/4 and at most
|
5393 |
|
|
2*NSYMS buckets. */
|
5394 |
|
|
minsize = nsyms / 4;
|
5395 |
|
|
if (minsize == 0)
|
5396 |
|
|
minsize = 1;
|
5397 |
|
|
best_size = maxsize = nsyms * 2;
|
5398 |
|
|
if (gnu_hash)
|
5399 |
|
|
{
|
5400 |
|
|
if (minsize < 2)
|
5401 |
|
|
minsize = 2;
|
5402 |
|
|
if ((best_size & 31) == 0)
|
5403 |
|
|
++best_size;
|
5404 |
|
|
}
|
5405 |
|
|
|
5406 |
|
|
/* Create array where we count the collisions in. We must use bfd_malloc
|
5407 |
|
|
since the size could be large. */
|
5408 |
|
|
amt = maxsize;
|
5409 |
|
|
amt *= sizeof (unsigned long int);
|
5410 |
|
|
counts = (unsigned long int *) bfd_malloc (amt);
|
5411 |
|
|
if (counts == NULL)
|
5412 |
|
|
return 0;
|
5413 |
|
|
|
5414 |
|
|
/* Compute the "optimal" size for the hash table. The criteria is a
|
5415 |
|
|
minimal chain length. The minor criteria is (of course) the size
|
5416 |
|
|
of the table. */
|
5417 |
|
|
for (i = minsize; i < maxsize; ++i)
|
5418 |
|
|
{
|
5419 |
|
|
/* Walk through the array of hashcodes and count the collisions. */
|
5420 |
|
|
BFD_HOST_U_64_BIT max;
|
5421 |
|
|
unsigned long int j;
|
5422 |
|
|
unsigned long int fact;
|
5423 |
|
|
|
5424 |
|
|
if (gnu_hash && (i & 31) == 0)
|
5425 |
|
|
continue;
|
5426 |
|
|
|
5427 |
|
|
memset (counts, '\0', i * sizeof (unsigned long int));
|
5428 |
|
|
|
5429 |
|
|
/* Determine how often each hash bucket is used. */
|
5430 |
|
|
for (j = 0; j < nsyms; ++j)
|
5431 |
|
|
++counts[hashcodes[j] % i];
|
5432 |
|
|
|
5433 |
|
|
/* For the weight function we need some information about the
|
5434 |
|
|
pagesize on the target. This is information need not be 100%
|
5435 |
|
|
accurate. Since this information is not available (so far) we
|
5436 |
|
|
define it here to a reasonable default value. If it is crucial
|
5437 |
|
|
to have a better value some day simply define this value. */
|
5438 |
|
|
# ifndef BFD_TARGET_PAGESIZE
|
5439 |
|
|
# define BFD_TARGET_PAGESIZE (4096)
|
5440 |
|
|
# endif
|
5441 |
|
|
|
5442 |
|
|
/* We in any case need 2 + DYNSYMCOUNT entries for the size values
|
5443 |
|
|
and the chains. */
|
5444 |
|
|
max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
|
5445 |
|
|
|
5446 |
|
|
# if 1
|
5447 |
|
|
/* Variant 1: optimize for short chains. We add the squares
|
5448 |
|
|
of all the chain lengths (which favors many small chain
|
5449 |
|
|
over a few long chains). */
|
5450 |
|
|
for (j = 0; j < i; ++j)
|
5451 |
|
|
max += counts[j] * counts[j];
|
5452 |
|
|
|
5453 |
|
|
/* This adds penalties for the overall size of the table. */
|
5454 |
|
|
fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
|
5455 |
|
|
max *= fact * fact;
|
5456 |
|
|
# else
|
5457 |
|
|
/* Variant 2: Optimize a lot more for small table. Here we
|
5458 |
|
|
also add squares of the size but we also add penalties for
|
5459 |
|
|
empty slots (the +1 term). */
|
5460 |
|
|
for (j = 0; j < i; ++j)
|
5461 |
|
|
max += (1 + counts[j]) * (1 + counts[j]);
|
5462 |
|
|
|
5463 |
|
|
/* The overall size of the table is considered, but not as
|
5464 |
|
|
strong as in variant 1, where it is squared. */
|
5465 |
|
|
fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
|
5466 |
|
|
max *= fact;
|
5467 |
|
|
# endif
|
5468 |
|
|
|
5469 |
|
|
/* Compare with current best results. */
|
5470 |
|
|
if (max < best_chlen)
|
5471 |
|
|
{
|
5472 |
|
|
best_chlen = max;
|
5473 |
|
|
best_size = i;
|
5474 |
|
|
no_improvement_count = 0;
|
5475 |
|
|
}
|
5476 |
|
|
/* PR 11843: Avoid futile long searches for the best bucket size
|
5477 |
|
|
when there are a large number of symbols. */
|
5478 |
|
|
else if (++no_improvement_count == 100)
|
5479 |
|
|
break;
|
5480 |
|
|
}
|
5481 |
|
|
|
5482 |
|
|
free (counts);
|
5483 |
|
|
}
|
5484 |
|
|
else
|
5485 |
|
|
#endif /* defined (BFD_HOST_U_64_BIT) */
|
5486 |
|
|
{
|
5487 |
|
|
/* This is the fallback solution if no 64bit type is available or if we
|
5488 |
|
|
are not supposed to spend much time on optimizations. We select the
|
5489 |
|
|
bucket count using a fixed set of numbers. */
|
5490 |
|
|
for (i = 0; elf_buckets[i] != 0; i++)
|
5491 |
|
|
{
|
5492 |
|
|
best_size = elf_buckets[i];
|
5493 |
|
|
if (nsyms < elf_buckets[i + 1])
|
5494 |
|
|
break;
|
5495 |
|
|
}
|
5496 |
|
|
if (gnu_hash && best_size < 2)
|
5497 |
|
|
best_size = 2;
|
5498 |
|
|
}
|
5499 |
|
|
|
5500 |
|
|
return best_size;
|
5501 |
|
|
}
|
5502 |
|
|
|
5503 |
|
|
/* Size any SHT_GROUP section for ld -r. */
|
5504 |
|
|
|
5505 |
|
|
bfd_boolean
|
5506 |
|
|
_bfd_elf_size_group_sections (struct bfd_link_info *info)
|
5507 |
|
|
{
|
5508 |
|
|
bfd *ibfd;
|
5509 |
|
|
|
5510 |
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
5511 |
|
|
if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
|
5512 |
|
|
&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
|
5513 |
|
|
return FALSE;
|
5514 |
|
|
return TRUE;
|
5515 |
|
|
}
|
5516 |
|
|
|
5517 |
|
|
/* Set up the sizes and contents of the ELF dynamic sections. This is
|
5518 |
|
|
called by the ELF linker emulation before_allocation routine. We
|
5519 |
|
|
must set the sizes of the sections before the linker sets the
|
5520 |
|
|
addresses of the various sections. */
|
5521 |
|
|
|
5522 |
|
|
bfd_boolean
|
5523 |
|
|
bfd_elf_size_dynamic_sections (bfd *output_bfd,
|
5524 |
|
|
const char *soname,
|
5525 |
|
|
const char *rpath,
|
5526 |
|
|
const char *filter_shlib,
|
5527 |
|
|
const char *audit,
|
5528 |
|
|
const char *depaudit,
|
5529 |
|
|
const char * const *auxiliary_filters,
|
5530 |
|
|
struct bfd_link_info *info,
|
5531 |
|
|
asection **sinterpptr,
|
5532 |
|
|
struct bfd_elf_version_tree *verdefs)
|
5533 |
|
|
{
|
5534 |
|
|
bfd_size_type soname_indx;
|
5535 |
|
|
bfd *dynobj;
|
5536 |
|
|
const struct elf_backend_data *bed;
|
5537 |
|
|
struct elf_info_failed asvinfo;
|
5538 |
|
|
|
5539 |
|
|
*sinterpptr = NULL;
|
5540 |
|
|
|
5541 |
|
|
soname_indx = (bfd_size_type) -1;
|
5542 |
|
|
|
5543 |
|
|
if (!is_elf_hash_table (info->hash))
|
5544 |
|
|
return TRUE;
|
5545 |
|
|
|
5546 |
|
|
bed = get_elf_backend_data (output_bfd);
|
5547 |
|
|
if (info->execstack)
|
5548 |
|
|
elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
|
5549 |
|
|
else if (info->noexecstack)
|
5550 |
|
|
elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
|
5551 |
|
|
else
|
5552 |
|
|
{
|
5553 |
|
|
bfd *inputobj;
|
5554 |
|
|
asection *notesec = NULL;
|
5555 |
|
|
int exec = 0;
|
5556 |
|
|
|
5557 |
|
|
for (inputobj = info->input_bfds;
|
5558 |
|
|
inputobj;
|
5559 |
|
|
inputobj = inputobj->link_next)
|
5560 |
|
|
{
|
5561 |
|
|
asection *s;
|
5562 |
|
|
|
5563 |
|
|
if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
|
5564 |
|
|
continue;
|
5565 |
|
|
s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
|
5566 |
|
|
if (s)
|
5567 |
|
|
{
|
5568 |
|
|
if (s->flags & SEC_CODE)
|
5569 |
|
|
exec = PF_X;
|
5570 |
|
|
notesec = s;
|
5571 |
|
|
}
|
5572 |
|
|
else if (bed->default_execstack)
|
5573 |
|
|
exec = PF_X;
|
5574 |
|
|
}
|
5575 |
|
|
if (notesec)
|
5576 |
|
|
{
|
5577 |
|
|
elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
|
5578 |
|
|
if (exec && info->relocatable
|
5579 |
|
|
&& notesec->output_section != bfd_abs_section_ptr)
|
5580 |
|
|
notesec->output_section->flags |= SEC_CODE;
|
5581 |
|
|
}
|
5582 |
|
|
}
|
5583 |
|
|
|
5584 |
|
|
/* Any syms created from now on start with -1 in
|
5585 |
|
|
got.refcount/offset and plt.refcount/offset. */
|
5586 |
|
|
elf_hash_table (info)->init_got_refcount
|
5587 |
|
|
= elf_hash_table (info)->init_got_offset;
|
5588 |
|
|
elf_hash_table (info)->init_plt_refcount
|
5589 |
|
|
= elf_hash_table (info)->init_plt_offset;
|
5590 |
|
|
|
5591 |
|
|
if (info->relocatable
|
5592 |
|
|
&& !_bfd_elf_size_group_sections (info))
|
5593 |
|
|
return FALSE;
|
5594 |
|
|
|
5595 |
|
|
/* The backend may have to create some sections regardless of whether
|
5596 |
|
|
we're dynamic or not. */
|
5597 |
|
|
if (bed->elf_backend_always_size_sections
|
5598 |
|
|
&& ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
|
5599 |
|
|
return FALSE;
|
5600 |
|
|
|
5601 |
|
|
if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
|
5602 |
|
|
return FALSE;
|
5603 |
|
|
|
5604 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
5605 |
|
|
|
5606 |
|
|
/* If there were no dynamic objects in the link, there is nothing to
|
5607 |
|
|
do here. */
|
5608 |
|
|
if (dynobj == NULL)
|
5609 |
|
|
return TRUE;
|
5610 |
|
|
|
5611 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
5612 |
|
|
{
|
5613 |
|
|
struct elf_info_failed eif;
|
5614 |
|
|
struct elf_link_hash_entry *h;
|
5615 |
|
|
asection *dynstr;
|
5616 |
|
|
struct bfd_elf_version_tree *t;
|
5617 |
|
|
struct bfd_elf_version_expr *d;
|
5618 |
|
|
asection *s;
|
5619 |
|
|
bfd_boolean all_defined;
|
5620 |
|
|
|
5621 |
|
|
*sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
|
5622 |
|
|
BFD_ASSERT (*sinterpptr != NULL || !info->executable);
|
5623 |
|
|
|
5624 |
|
|
if (soname != NULL)
|
5625 |
|
|
{
|
5626 |
|
|
soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
5627 |
|
|
soname, TRUE);
|
5628 |
|
|
if (soname_indx == (bfd_size_type) -1
|
5629 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
|
5630 |
|
|
return FALSE;
|
5631 |
|
|
}
|
5632 |
|
|
|
5633 |
|
|
if (info->symbolic)
|
5634 |
|
|
{
|
5635 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
|
5636 |
|
|
return FALSE;
|
5637 |
|
|
info->flags |= DF_SYMBOLIC;
|
5638 |
|
|
}
|
5639 |
|
|
|
5640 |
|
|
if (rpath != NULL)
|
5641 |
|
|
{
|
5642 |
|
|
bfd_size_type indx;
|
5643 |
|
|
|
5644 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
|
5645 |
|
|
TRUE);
|
5646 |
|
|
if (indx == (bfd_size_type) -1
|
5647 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
|
5648 |
|
|
return FALSE;
|
5649 |
|
|
|
5650 |
|
|
if (info->new_dtags)
|
5651 |
|
|
{
|
5652 |
|
|
_bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
|
5653 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
|
5654 |
|
|
return FALSE;
|
5655 |
|
|
}
|
5656 |
|
|
}
|
5657 |
|
|
|
5658 |
|
|
if (filter_shlib != NULL)
|
5659 |
|
|
{
|
5660 |
|
|
bfd_size_type indx;
|
5661 |
|
|
|
5662 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
5663 |
|
|
filter_shlib, TRUE);
|
5664 |
|
|
if (indx == (bfd_size_type) -1
|
5665 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
|
5666 |
|
|
return FALSE;
|
5667 |
|
|
}
|
5668 |
|
|
|
5669 |
|
|
if (auxiliary_filters != NULL)
|
5670 |
|
|
{
|
5671 |
|
|
const char * const *p;
|
5672 |
|
|
|
5673 |
|
|
for (p = auxiliary_filters; *p != NULL; p++)
|
5674 |
|
|
{
|
5675 |
|
|
bfd_size_type indx;
|
5676 |
|
|
|
5677 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
5678 |
|
|
*p, TRUE);
|
5679 |
|
|
if (indx == (bfd_size_type) -1
|
5680 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
|
5681 |
|
|
return FALSE;
|
5682 |
|
|
}
|
5683 |
|
|
}
|
5684 |
|
|
|
5685 |
|
|
if (audit != NULL)
|
5686 |
|
|
{
|
5687 |
|
|
bfd_size_type indx;
|
5688 |
|
|
|
5689 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
|
5690 |
|
|
TRUE);
|
5691 |
|
|
if (indx == (bfd_size_type) -1
|
5692 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
|
5693 |
|
|
return FALSE;
|
5694 |
|
|
}
|
5695 |
|
|
|
5696 |
|
|
if (depaudit != NULL)
|
5697 |
|
|
{
|
5698 |
|
|
bfd_size_type indx;
|
5699 |
|
|
|
5700 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
|
5701 |
|
|
TRUE);
|
5702 |
|
|
if (indx == (bfd_size_type) -1
|
5703 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
|
5704 |
|
|
return FALSE;
|
5705 |
|
|
}
|
5706 |
|
|
|
5707 |
|
|
eif.info = info;
|
5708 |
|
|
eif.verdefs = verdefs;
|
5709 |
|
|
eif.failed = FALSE;
|
5710 |
|
|
|
5711 |
|
|
/* If we are supposed to export all symbols into the dynamic symbol
|
5712 |
|
|
table (this is not the normal case), then do so. */
|
5713 |
|
|
if (info->export_dynamic
|
5714 |
|
|
|| (info->executable && info->dynamic))
|
5715 |
|
|
{
|
5716 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
5717 |
|
|
_bfd_elf_export_symbol,
|
5718 |
|
|
&eif);
|
5719 |
|
|
if (eif.failed)
|
5720 |
|
|
return FALSE;
|
5721 |
|
|
}
|
5722 |
|
|
|
5723 |
|
|
/* Make all global versions with definition. */
|
5724 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
5725 |
|
|
for (d = t->globals.list; d != NULL; d = d->next)
|
5726 |
|
|
if (!d->symver && d->literal)
|
5727 |
|
|
{
|
5728 |
|
|
const char *verstr, *name;
|
5729 |
|
|
size_t namelen, verlen, newlen;
|
5730 |
|
|
char *newname, *p, leading_char;
|
5731 |
|
|
struct elf_link_hash_entry *newh;
|
5732 |
|
|
|
5733 |
|
|
leading_char = bfd_get_symbol_leading_char (output_bfd);
|
5734 |
|
|
name = d->pattern;
|
5735 |
|
|
namelen = strlen (name) + (leading_char != '\0');
|
5736 |
|
|
verstr = t->name;
|
5737 |
|
|
verlen = strlen (verstr);
|
5738 |
|
|
newlen = namelen + verlen + 3;
|
5739 |
|
|
|
5740 |
|
|
newname = (char *) bfd_malloc (newlen);
|
5741 |
|
|
if (newname == NULL)
|
5742 |
|
|
return FALSE;
|
5743 |
|
|
newname[0] = leading_char;
|
5744 |
|
|
memcpy (newname + (leading_char != '\0'), name, namelen);
|
5745 |
|
|
|
5746 |
|
|
/* Check the hidden versioned definition. */
|
5747 |
|
|
p = newname + namelen;
|
5748 |
|
|
*p++ = ELF_VER_CHR;
|
5749 |
|
|
memcpy (p, verstr, verlen + 1);
|
5750 |
|
|
newh = elf_link_hash_lookup (elf_hash_table (info),
|
5751 |
|
|
newname, FALSE, FALSE,
|
5752 |
|
|
FALSE);
|
5753 |
|
|
if (newh == NULL
|
5754 |
|
|
|| (newh->root.type != bfd_link_hash_defined
|
5755 |
|
|
&& newh->root.type != bfd_link_hash_defweak))
|
5756 |
|
|
{
|
5757 |
|
|
/* Check the default versioned definition. */
|
5758 |
|
|
*p++ = ELF_VER_CHR;
|
5759 |
|
|
memcpy (p, verstr, verlen + 1);
|
5760 |
|
|
newh = elf_link_hash_lookup (elf_hash_table (info),
|
5761 |
|
|
newname, FALSE, FALSE,
|
5762 |
|
|
FALSE);
|
5763 |
|
|
}
|
5764 |
|
|
free (newname);
|
5765 |
|
|
|
5766 |
|
|
/* Mark this version if there is a definition and it is
|
5767 |
|
|
not defined in a shared object. */
|
5768 |
|
|
if (newh != NULL
|
5769 |
|
|
&& !newh->def_dynamic
|
5770 |
|
|
&& (newh->root.type == bfd_link_hash_defined
|
5771 |
|
|
|| newh->root.type == bfd_link_hash_defweak))
|
5772 |
|
|
d->symver = 1;
|
5773 |
|
|
}
|
5774 |
|
|
|
5775 |
|
|
/* Attach all the symbols to their version information. */
|
5776 |
|
|
asvinfo.info = info;
|
5777 |
|
|
asvinfo.verdefs = verdefs;
|
5778 |
|
|
asvinfo.failed = FALSE;
|
5779 |
|
|
|
5780 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
5781 |
|
|
_bfd_elf_link_assign_sym_version,
|
5782 |
|
|
&asvinfo);
|
5783 |
|
|
if (asvinfo.failed)
|
5784 |
|
|
return FALSE;
|
5785 |
|
|
|
5786 |
|
|
if (!info->allow_undefined_version)
|
5787 |
|
|
{
|
5788 |
|
|
/* Check if all global versions have a definition. */
|
5789 |
|
|
all_defined = TRUE;
|
5790 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
5791 |
|
|
for (d = t->globals.list; d != NULL; d = d->next)
|
5792 |
|
|
if (d->literal && !d->symver && !d->script)
|
5793 |
|
|
{
|
5794 |
|
|
(*_bfd_error_handler)
|
5795 |
|
|
(_("%s: undefined version: %s"),
|
5796 |
|
|
d->pattern, t->name);
|
5797 |
|
|
all_defined = FALSE;
|
5798 |
|
|
}
|
5799 |
|
|
|
5800 |
|
|
if (!all_defined)
|
5801 |
|
|
{
|
5802 |
|
|
bfd_set_error (bfd_error_bad_value);
|
5803 |
|
|
return FALSE;
|
5804 |
|
|
}
|
5805 |
|
|
}
|
5806 |
|
|
|
5807 |
|
|
/* Find all symbols which were defined in a dynamic object and make
|
5808 |
|
|
the backend pick a reasonable value for them. */
|
5809 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
5810 |
|
|
_bfd_elf_adjust_dynamic_symbol,
|
5811 |
|
|
&eif);
|
5812 |
|
|
if (eif.failed)
|
5813 |
|
|
return FALSE;
|
5814 |
|
|
|
5815 |
|
|
/* Add some entries to the .dynamic section. We fill in some of the
|
5816 |
|
|
values later, in bfd_elf_final_link, but we must add the entries
|
5817 |
|
|
now so that we know the final size of the .dynamic section. */
|
5818 |
|
|
|
5819 |
|
|
/* If there are initialization and/or finalization functions to
|
5820 |
|
|
call then add the corresponding DT_INIT/DT_FINI entries. */
|
5821 |
|
|
h = (info->init_function
|
5822 |
|
|
? elf_link_hash_lookup (elf_hash_table (info),
|
5823 |
|
|
info->init_function, FALSE,
|
5824 |
|
|
FALSE, FALSE)
|
5825 |
|
|
: NULL);
|
5826 |
|
|
if (h != NULL
|
5827 |
|
|
&& (h->ref_regular
|
5828 |
|
|
|| h->def_regular))
|
5829 |
|
|
{
|
5830 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
|
5831 |
|
|
return FALSE;
|
5832 |
|
|
}
|
5833 |
|
|
h = (info->fini_function
|
5834 |
|
|
? elf_link_hash_lookup (elf_hash_table (info),
|
5835 |
|
|
info->fini_function, FALSE,
|
5836 |
|
|
FALSE, FALSE)
|
5837 |
|
|
: NULL);
|
5838 |
|
|
if (h != NULL
|
5839 |
|
|
&& (h->ref_regular
|
5840 |
|
|
|| h->def_regular))
|
5841 |
|
|
{
|
5842 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
|
5843 |
|
|
return FALSE;
|
5844 |
|
|
}
|
5845 |
|
|
|
5846 |
|
|
s = bfd_get_section_by_name (output_bfd, ".preinit_array");
|
5847 |
|
|
if (s != NULL && s->linker_has_input)
|
5848 |
|
|
{
|
5849 |
|
|
/* DT_PREINIT_ARRAY is not allowed in shared library. */
|
5850 |
|
|
if (! info->executable)
|
5851 |
|
|
{
|
5852 |
|
|
bfd *sub;
|
5853 |
|
|
asection *o;
|
5854 |
|
|
|
5855 |
|
|
for (sub = info->input_bfds; sub != NULL;
|
5856 |
|
|
sub = sub->link_next)
|
5857 |
|
|
if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
|
5858 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
5859 |
|
|
if (elf_section_data (o)->this_hdr.sh_type
|
5860 |
|
|
== SHT_PREINIT_ARRAY)
|
5861 |
|
|
{
|
5862 |
|
|
(*_bfd_error_handler)
|
5863 |
|
|
(_("%B: .preinit_array section is not allowed in DSO"),
|
5864 |
|
|
sub);
|
5865 |
|
|
break;
|
5866 |
|
|
}
|
5867 |
|
|
|
5868 |
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
5869 |
|
|
return FALSE;
|
5870 |
|
|
}
|
5871 |
|
|
|
5872 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
|
5873 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
|
5874 |
|
|
return FALSE;
|
5875 |
|
|
}
|
5876 |
|
|
s = bfd_get_section_by_name (output_bfd, ".init_array");
|
5877 |
|
|
if (s != NULL && s->linker_has_input)
|
5878 |
|
|
{
|
5879 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
|
5880 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
|
5881 |
|
|
return FALSE;
|
5882 |
|
|
}
|
5883 |
|
|
s = bfd_get_section_by_name (output_bfd, ".fini_array");
|
5884 |
|
|
if (s != NULL && s->linker_has_input)
|
5885 |
|
|
{
|
5886 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
|
5887 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
|
5888 |
|
|
return FALSE;
|
5889 |
|
|
}
|
5890 |
|
|
|
5891 |
|
|
dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
|
5892 |
|
|
/* If .dynstr is excluded from the link, we don't want any of
|
5893 |
|
|
these tags. Strictly, we should be checking each section
|
5894 |
|
|
individually; This quick check covers for the case where
|
5895 |
|
|
someone does a /DISCARD/ : { *(*) }. */
|
5896 |
|
|
if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
|
5897 |
|
|
{
|
5898 |
|
|
bfd_size_type strsize;
|
5899 |
|
|
|
5900 |
|
|
strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
|
5901 |
|
|
if ((info->emit_hash
|
5902 |
|
|
&& !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
|
5903 |
|
|
|| (info->emit_gnu_hash
|
5904 |
|
|
&& !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
|
5905 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
|
5906 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
|
5907 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
|
5908 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
|
5909 |
|
|
bed->s->sizeof_sym))
|
5910 |
|
|
return FALSE;
|
5911 |
|
|
}
|
5912 |
|
|
}
|
5913 |
|
|
|
5914 |
|
|
/* The backend must work out the sizes of all the other dynamic
|
5915 |
|
|
sections. */
|
5916 |
|
|
if (bed->elf_backend_size_dynamic_sections
|
5917 |
|
|
&& ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
|
5918 |
|
|
return FALSE;
|
5919 |
|
|
|
5920 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
5921 |
|
|
{
|
5922 |
|
|
unsigned long section_sym_count;
|
5923 |
|
|
asection *s;
|
5924 |
|
|
|
5925 |
|
|
/* Set up the version definition section. */
|
5926 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
|
5927 |
|
|
BFD_ASSERT (s != NULL);
|
5928 |
|
|
|
5929 |
|
|
/* We may have created additional version definitions if we are
|
5930 |
|
|
just linking a regular application. */
|
5931 |
|
|
verdefs = asvinfo.verdefs;
|
5932 |
|
|
|
5933 |
|
|
/* Skip anonymous version tag. */
|
5934 |
|
|
if (verdefs != NULL && verdefs->vernum == 0)
|
5935 |
|
|
verdefs = verdefs->next;
|
5936 |
|
|
|
5937 |
|
|
if (verdefs == NULL && !info->create_default_symver)
|
5938 |
|
|
s->flags |= SEC_EXCLUDE;
|
5939 |
|
|
else
|
5940 |
|
|
{
|
5941 |
|
|
unsigned int cdefs;
|
5942 |
|
|
bfd_size_type size;
|
5943 |
|
|
struct bfd_elf_version_tree *t;
|
5944 |
|
|
bfd_byte *p;
|
5945 |
|
|
Elf_Internal_Verdef def;
|
5946 |
|
|
Elf_Internal_Verdaux defaux;
|
5947 |
|
|
struct bfd_link_hash_entry *bh;
|
5948 |
|
|
struct elf_link_hash_entry *h;
|
5949 |
|
|
const char *name;
|
5950 |
|
|
|
5951 |
|
|
cdefs = 0;
|
5952 |
|
|
size = 0;
|
5953 |
|
|
|
5954 |
|
|
/* Make space for the base version. */
|
5955 |
|
|
size += sizeof (Elf_External_Verdef);
|
5956 |
|
|
size += sizeof (Elf_External_Verdaux);
|
5957 |
|
|
++cdefs;
|
5958 |
|
|
|
5959 |
|
|
/* Make space for the default version. */
|
5960 |
|
|
if (info->create_default_symver)
|
5961 |
|
|
{
|
5962 |
|
|
size += sizeof (Elf_External_Verdef);
|
5963 |
|
|
++cdefs;
|
5964 |
|
|
}
|
5965 |
|
|
|
5966 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
5967 |
|
|
{
|
5968 |
|
|
struct bfd_elf_version_deps *n;
|
5969 |
|
|
|
5970 |
|
|
/* Don't emit base version twice. */
|
5971 |
|
|
if (t->vernum == 0)
|
5972 |
|
|
continue;
|
5973 |
|
|
|
5974 |
|
|
size += sizeof (Elf_External_Verdef);
|
5975 |
|
|
size += sizeof (Elf_External_Verdaux);
|
5976 |
|
|
++cdefs;
|
5977 |
|
|
|
5978 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
5979 |
|
|
size += sizeof (Elf_External_Verdaux);
|
5980 |
|
|
}
|
5981 |
|
|
|
5982 |
|
|
s->size = size;
|
5983 |
|
|
s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
|
5984 |
|
|
if (s->contents == NULL && s->size != 0)
|
5985 |
|
|
return FALSE;
|
5986 |
|
|
|
5987 |
|
|
/* Fill in the version definition section. */
|
5988 |
|
|
|
5989 |
|
|
p = s->contents;
|
5990 |
|
|
|
5991 |
|
|
def.vd_version = VER_DEF_CURRENT;
|
5992 |
|
|
def.vd_flags = VER_FLG_BASE;
|
5993 |
|
|
def.vd_ndx = 1;
|
5994 |
|
|
def.vd_cnt = 1;
|
5995 |
|
|
if (info->create_default_symver)
|
5996 |
|
|
{
|
5997 |
|
|
def.vd_aux = 2 * sizeof (Elf_External_Verdef);
|
5998 |
|
|
def.vd_next = sizeof (Elf_External_Verdef);
|
5999 |
|
|
}
|
6000 |
|
|
else
|
6001 |
|
|
{
|
6002 |
|
|
def.vd_aux = sizeof (Elf_External_Verdef);
|
6003 |
|
|
def.vd_next = (sizeof (Elf_External_Verdef)
|
6004 |
|
|
+ sizeof (Elf_External_Verdaux));
|
6005 |
|
|
}
|
6006 |
|
|
|
6007 |
|
|
if (soname_indx != (bfd_size_type) -1)
|
6008 |
|
|
{
|
6009 |
|
|
_bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
|
6010 |
|
|
soname_indx);
|
6011 |
|
|
def.vd_hash = bfd_elf_hash (soname);
|
6012 |
|
|
defaux.vda_name = soname_indx;
|
6013 |
|
|
name = soname;
|
6014 |
|
|
}
|
6015 |
|
|
else
|
6016 |
|
|
{
|
6017 |
|
|
bfd_size_type indx;
|
6018 |
|
|
|
6019 |
|
|
name = lbasename (output_bfd->filename);
|
6020 |
|
|
def.vd_hash = bfd_elf_hash (name);
|
6021 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
6022 |
|
|
name, FALSE);
|
6023 |
|
|
if (indx == (bfd_size_type) -1)
|
6024 |
|
|
return FALSE;
|
6025 |
|
|
defaux.vda_name = indx;
|
6026 |
|
|
}
|
6027 |
|
|
defaux.vda_next = 0;
|
6028 |
|
|
|
6029 |
|
|
_bfd_elf_swap_verdef_out (output_bfd, &def,
|
6030 |
|
|
(Elf_External_Verdef *) p);
|
6031 |
|
|
p += sizeof (Elf_External_Verdef);
|
6032 |
|
|
if (info->create_default_symver)
|
6033 |
|
|
{
|
6034 |
|
|
/* Add a symbol representing this version. */
|
6035 |
|
|
bh = NULL;
|
6036 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
6037 |
|
|
(info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
|
6038 |
|
|
0, NULL, FALSE,
|
6039 |
|
|
get_elf_backend_data (dynobj)->collect, &bh)))
|
6040 |
|
|
return FALSE;
|
6041 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6042 |
|
|
h->non_elf = 0;
|
6043 |
|
|
h->def_regular = 1;
|
6044 |
|
|
h->type = STT_OBJECT;
|
6045 |
|
|
h->verinfo.vertree = NULL;
|
6046 |
|
|
|
6047 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6048 |
|
|
return FALSE;
|
6049 |
|
|
|
6050 |
|
|
/* Create a duplicate of the base version with the same
|
6051 |
|
|
aux block, but different flags. */
|
6052 |
|
|
def.vd_flags = 0;
|
6053 |
|
|
def.vd_ndx = 2;
|
6054 |
|
|
def.vd_aux = sizeof (Elf_External_Verdef);
|
6055 |
|
|
if (verdefs)
|
6056 |
|
|
def.vd_next = (sizeof (Elf_External_Verdef)
|
6057 |
|
|
+ sizeof (Elf_External_Verdaux));
|
6058 |
|
|
else
|
6059 |
|
|
def.vd_next = 0;
|
6060 |
|
|
_bfd_elf_swap_verdef_out (output_bfd, &def,
|
6061 |
|
|
(Elf_External_Verdef *) p);
|
6062 |
|
|
p += sizeof (Elf_External_Verdef);
|
6063 |
|
|
}
|
6064 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
6065 |
|
|
(Elf_External_Verdaux *) p);
|
6066 |
|
|
p += sizeof (Elf_External_Verdaux);
|
6067 |
|
|
|
6068 |
|
|
for (t = verdefs; t != NULL; t = t->next)
|
6069 |
|
|
{
|
6070 |
|
|
unsigned int cdeps;
|
6071 |
|
|
struct bfd_elf_version_deps *n;
|
6072 |
|
|
|
6073 |
|
|
/* Don't emit the base version twice. */
|
6074 |
|
|
if (t->vernum == 0)
|
6075 |
|
|
continue;
|
6076 |
|
|
|
6077 |
|
|
cdeps = 0;
|
6078 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
6079 |
|
|
++cdeps;
|
6080 |
|
|
|
6081 |
|
|
/* Add a symbol representing this version. */
|
6082 |
|
|
bh = NULL;
|
6083 |
|
|
if (! (_bfd_generic_link_add_one_symbol
|
6084 |
|
|
(info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
|
6085 |
|
|
0, NULL, FALSE,
|
6086 |
|
|
get_elf_backend_data (dynobj)->collect, &bh)))
|
6087 |
|
|
return FALSE;
|
6088 |
|
|
h = (struct elf_link_hash_entry *) bh;
|
6089 |
|
|
h->non_elf = 0;
|
6090 |
|
|
h->def_regular = 1;
|
6091 |
|
|
h->type = STT_OBJECT;
|
6092 |
|
|
h->verinfo.vertree = t;
|
6093 |
|
|
|
6094 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
6095 |
|
|
return FALSE;
|
6096 |
|
|
|
6097 |
|
|
def.vd_version = VER_DEF_CURRENT;
|
6098 |
|
|
def.vd_flags = 0;
|
6099 |
|
|
if (t->globals.list == NULL
|
6100 |
|
|
&& t->locals.list == NULL
|
6101 |
|
|
&& ! t->used)
|
6102 |
|
|
def.vd_flags |= VER_FLG_WEAK;
|
6103 |
|
|
def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
|
6104 |
|
|
def.vd_cnt = cdeps + 1;
|
6105 |
|
|
def.vd_hash = bfd_elf_hash (t->name);
|
6106 |
|
|
def.vd_aux = sizeof (Elf_External_Verdef);
|
6107 |
|
|
def.vd_next = 0;
|
6108 |
|
|
|
6109 |
|
|
/* If a basever node is next, it *must* be the last node in
|
6110 |
|
|
the chain, otherwise Verdef construction breaks. */
|
6111 |
|
|
if (t->next != NULL && t->next->vernum == 0)
|
6112 |
|
|
BFD_ASSERT (t->next->next == NULL);
|
6113 |
|
|
|
6114 |
|
|
if (t->next != NULL && t->next->vernum != 0)
|
6115 |
|
|
def.vd_next = (sizeof (Elf_External_Verdef)
|
6116 |
|
|
+ (cdeps + 1) * sizeof (Elf_External_Verdaux));
|
6117 |
|
|
|
6118 |
|
|
_bfd_elf_swap_verdef_out (output_bfd, &def,
|
6119 |
|
|
(Elf_External_Verdef *) p);
|
6120 |
|
|
p += sizeof (Elf_External_Verdef);
|
6121 |
|
|
|
6122 |
|
|
defaux.vda_name = h->dynstr_index;
|
6123 |
|
|
_bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
|
6124 |
|
|
h->dynstr_index);
|
6125 |
|
|
defaux.vda_next = 0;
|
6126 |
|
|
if (t->deps != NULL)
|
6127 |
|
|
defaux.vda_next = sizeof (Elf_External_Verdaux);
|
6128 |
|
|
t->name_indx = defaux.vda_name;
|
6129 |
|
|
|
6130 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
6131 |
|
|
(Elf_External_Verdaux *) p);
|
6132 |
|
|
p += sizeof (Elf_External_Verdaux);
|
6133 |
|
|
|
6134 |
|
|
for (n = t->deps; n != NULL; n = n->next)
|
6135 |
|
|
{
|
6136 |
|
|
if (n->version_needed == NULL)
|
6137 |
|
|
{
|
6138 |
|
|
/* This can happen if there was an error in the
|
6139 |
|
|
version script. */
|
6140 |
|
|
defaux.vda_name = 0;
|
6141 |
|
|
}
|
6142 |
|
|
else
|
6143 |
|
|
{
|
6144 |
|
|
defaux.vda_name = n->version_needed->name_indx;
|
6145 |
|
|
_bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
|
6146 |
|
|
defaux.vda_name);
|
6147 |
|
|
}
|
6148 |
|
|
if (n->next == NULL)
|
6149 |
|
|
defaux.vda_next = 0;
|
6150 |
|
|
else
|
6151 |
|
|
defaux.vda_next = sizeof (Elf_External_Verdaux);
|
6152 |
|
|
|
6153 |
|
|
_bfd_elf_swap_verdaux_out (output_bfd, &defaux,
|
6154 |
|
|
(Elf_External_Verdaux *) p);
|
6155 |
|
|
p += sizeof (Elf_External_Verdaux);
|
6156 |
|
|
}
|
6157 |
|
|
}
|
6158 |
|
|
|
6159 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
|
6160 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
|
6161 |
|
|
return FALSE;
|
6162 |
|
|
|
6163 |
|
|
elf_tdata (output_bfd)->cverdefs = cdefs;
|
6164 |
|
|
}
|
6165 |
|
|
|
6166 |
|
|
if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
|
6167 |
|
|
{
|
6168 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
|
6169 |
|
|
return FALSE;
|
6170 |
|
|
}
|
6171 |
|
|
else if (info->flags & DF_BIND_NOW)
|
6172 |
|
|
{
|
6173 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
|
6174 |
|
|
return FALSE;
|
6175 |
|
|
}
|
6176 |
|
|
|
6177 |
|
|
if (info->flags_1)
|
6178 |
|
|
{
|
6179 |
|
|
if (info->executable)
|
6180 |
|
|
info->flags_1 &= ~ (DF_1_INITFIRST
|
6181 |
|
|
| DF_1_NODELETE
|
6182 |
|
|
| DF_1_NOOPEN);
|
6183 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
|
6184 |
|
|
return FALSE;
|
6185 |
|
|
}
|
6186 |
|
|
|
6187 |
|
|
/* Work out the size of the version reference section. */
|
6188 |
|
|
|
6189 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
|
6190 |
|
|
BFD_ASSERT (s != NULL);
|
6191 |
|
|
{
|
6192 |
|
|
struct elf_find_verdep_info sinfo;
|
6193 |
|
|
|
6194 |
|
|
sinfo.info = info;
|
6195 |
|
|
sinfo.vers = elf_tdata (output_bfd)->cverdefs;
|
6196 |
|
|
if (sinfo.vers == 0)
|
6197 |
|
|
sinfo.vers = 1;
|
6198 |
|
|
sinfo.failed = FALSE;
|
6199 |
|
|
|
6200 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6201 |
|
|
_bfd_elf_link_find_version_dependencies,
|
6202 |
|
|
&sinfo);
|
6203 |
|
|
if (sinfo.failed)
|
6204 |
|
|
return FALSE;
|
6205 |
|
|
|
6206 |
|
|
if (elf_tdata (output_bfd)->verref == NULL)
|
6207 |
|
|
s->flags |= SEC_EXCLUDE;
|
6208 |
|
|
else
|
6209 |
|
|
{
|
6210 |
|
|
Elf_Internal_Verneed *t;
|
6211 |
|
|
unsigned int size;
|
6212 |
|
|
unsigned int crefs;
|
6213 |
|
|
bfd_byte *p;
|
6214 |
|
|
|
6215 |
|
|
/* Build the version dependency section. */
|
6216 |
|
|
size = 0;
|
6217 |
|
|
crefs = 0;
|
6218 |
|
|
for (t = elf_tdata (output_bfd)->verref;
|
6219 |
|
|
t != NULL;
|
6220 |
|
|
t = t->vn_nextref)
|
6221 |
|
|
{
|
6222 |
|
|
Elf_Internal_Vernaux *a;
|
6223 |
|
|
|
6224 |
|
|
size += sizeof (Elf_External_Verneed);
|
6225 |
|
|
++crefs;
|
6226 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
6227 |
|
|
size += sizeof (Elf_External_Vernaux);
|
6228 |
|
|
}
|
6229 |
|
|
|
6230 |
|
|
s->size = size;
|
6231 |
|
|
s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
|
6232 |
|
|
if (s->contents == NULL)
|
6233 |
|
|
return FALSE;
|
6234 |
|
|
|
6235 |
|
|
p = s->contents;
|
6236 |
|
|
for (t = elf_tdata (output_bfd)->verref;
|
6237 |
|
|
t != NULL;
|
6238 |
|
|
t = t->vn_nextref)
|
6239 |
|
|
{
|
6240 |
|
|
unsigned int caux;
|
6241 |
|
|
Elf_Internal_Vernaux *a;
|
6242 |
|
|
bfd_size_type indx;
|
6243 |
|
|
|
6244 |
|
|
caux = 0;
|
6245 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
6246 |
|
|
++caux;
|
6247 |
|
|
|
6248 |
|
|
t->vn_version = VER_NEED_CURRENT;
|
6249 |
|
|
t->vn_cnt = caux;
|
6250 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
6251 |
|
|
elf_dt_name (t->vn_bfd) != NULL
|
6252 |
|
|
? elf_dt_name (t->vn_bfd)
|
6253 |
|
|
: lbasename (t->vn_bfd->filename),
|
6254 |
|
|
FALSE);
|
6255 |
|
|
if (indx == (bfd_size_type) -1)
|
6256 |
|
|
return FALSE;
|
6257 |
|
|
t->vn_file = indx;
|
6258 |
|
|
t->vn_aux = sizeof (Elf_External_Verneed);
|
6259 |
|
|
if (t->vn_nextref == NULL)
|
6260 |
|
|
t->vn_next = 0;
|
6261 |
|
|
else
|
6262 |
|
|
t->vn_next = (sizeof (Elf_External_Verneed)
|
6263 |
|
|
+ caux * sizeof (Elf_External_Vernaux));
|
6264 |
|
|
|
6265 |
|
|
_bfd_elf_swap_verneed_out (output_bfd, t,
|
6266 |
|
|
(Elf_External_Verneed *) p);
|
6267 |
|
|
p += sizeof (Elf_External_Verneed);
|
6268 |
|
|
|
6269 |
|
|
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
6270 |
|
|
{
|
6271 |
|
|
a->vna_hash = bfd_elf_hash (a->vna_nodename);
|
6272 |
|
|
indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
|
6273 |
|
|
a->vna_nodename, FALSE);
|
6274 |
|
|
if (indx == (bfd_size_type) -1)
|
6275 |
|
|
return FALSE;
|
6276 |
|
|
a->vna_name = indx;
|
6277 |
|
|
if (a->vna_nextptr == NULL)
|
6278 |
|
|
a->vna_next = 0;
|
6279 |
|
|
else
|
6280 |
|
|
a->vna_next = sizeof (Elf_External_Vernaux);
|
6281 |
|
|
|
6282 |
|
|
_bfd_elf_swap_vernaux_out (output_bfd, a,
|
6283 |
|
|
(Elf_External_Vernaux *) p);
|
6284 |
|
|
p += sizeof (Elf_External_Vernaux);
|
6285 |
|
|
}
|
6286 |
|
|
}
|
6287 |
|
|
|
6288 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
|
6289 |
|
|
|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
|
6290 |
|
|
return FALSE;
|
6291 |
|
|
|
6292 |
|
|
elf_tdata (output_bfd)->cverrefs = crefs;
|
6293 |
|
|
}
|
6294 |
|
|
}
|
6295 |
|
|
|
6296 |
|
|
if ((elf_tdata (output_bfd)->cverrefs == 0
|
6297 |
|
|
&& elf_tdata (output_bfd)->cverdefs == 0)
|
6298 |
|
|
|| _bfd_elf_link_renumber_dynsyms (output_bfd, info,
|
6299 |
|
|
§ion_sym_count) == 0)
|
6300 |
|
|
{
|
6301 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version");
|
6302 |
|
|
s->flags |= SEC_EXCLUDE;
|
6303 |
|
|
}
|
6304 |
|
|
}
|
6305 |
|
|
return TRUE;
|
6306 |
|
|
}
|
6307 |
|
|
|
6308 |
|
|
/* Find the first non-excluded output section. We'll use its
|
6309 |
|
|
section symbol for some emitted relocs. */
|
6310 |
|
|
void
|
6311 |
|
|
_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
|
6312 |
|
|
{
|
6313 |
|
|
asection *s;
|
6314 |
|
|
|
6315 |
|
|
for (s = output_bfd->sections; s != NULL; s = s->next)
|
6316 |
|
|
if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
|
6317 |
|
|
&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
|
6318 |
|
|
{
|
6319 |
|
|
elf_hash_table (info)->text_index_section = s;
|
6320 |
|
|
break;
|
6321 |
|
|
}
|
6322 |
|
|
}
|
6323 |
|
|
|
6324 |
|
|
/* Find two non-excluded output sections, one for code, one for data.
|
6325 |
|
|
We'll use their section symbols for some emitted relocs. */
|
6326 |
|
|
void
|
6327 |
|
|
_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
|
6328 |
|
|
{
|
6329 |
|
|
asection *s;
|
6330 |
|
|
|
6331 |
|
|
/* Data first, since setting text_index_section changes
|
6332 |
|
|
_bfd_elf_link_omit_section_dynsym. */
|
6333 |
|
|
for (s = output_bfd->sections; s != NULL; s = s->next)
|
6334 |
|
|
if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
|
6335 |
|
|
&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
|
6336 |
|
|
{
|
6337 |
|
|
elf_hash_table (info)->data_index_section = s;
|
6338 |
|
|
break;
|
6339 |
|
|
}
|
6340 |
|
|
|
6341 |
|
|
for (s = output_bfd->sections; s != NULL; s = s->next)
|
6342 |
|
|
if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
|
6343 |
|
|
== (SEC_ALLOC | SEC_READONLY))
|
6344 |
|
|
&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
|
6345 |
|
|
{
|
6346 |
|
|
elf_hash_table (info)->text_index_section = s;
|
6347 |
|
|
break;
|
6348 |
|
|
}
|
6349 |
|
|
|
6350 |
|
|
if (elf_hash_table (info)->text_index_section == NULL)
|
6351 |
|
|
elf_hash_table (info)->text_index_section
|
6352 |
|
|
= elf_hash_table (info)->data_index_section;
|
6353 |
|
|
}
|
6354 |
|
|
|
6355 |
|
|
bfd_boolean
|
6356 |
|
|
bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
|
6357 |
|
|
{
|
6358 |
|
|
const struct elf_backend_data *bed;
|
6359 |
|
|
|
6360 |
|
|
if (!is_elf_hash_table (info->hash))
|
6361 |
|
|
return TRUE;
|
6362 |
|
|
|
6363 |
|
|
bed = get_elf_backend_data (output_bfd);
|
6364 |
|
|
(*bed->elf_backend_init_index_section) (output_bfd, info);
|
6365 |
|
|
|
6366 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
6367 |
|
|
{
|
6368 |
|
|
bfd *dynobj;
|
6369 |
|
|
asection *s;
|
6370 |
|
|
bfd_size_type dynsymcount;
|
6371 |
|
|
unsigned long section_sym_count;
|
6372 |
|
|
unsigned int dtagcount;
|
6373 |
|
|
|
6374 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
6375 |
|
|
|
6376 |
|
|
/* Assign dynsym indicies. In a shared library we generate a
|
6377 |
|
|
section symbol for each output section, which come first.
|
6378 |
|
|
Next come all of the back-end allocated local dynamic syms,
|
6379 |
|
|
followed by the rest of the global symbols. */
|
6380 |
|
|
|
6381 |
|
|
dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
|
6382 |
|
|
§ion_sym_count);
|
6383 |
|
|
|
6384 |
|
|
/* Work out the size of the symbol version section. */
|
6385 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.version");
|
6386 |
|
|
BFD_ASSERT (s != NULL);
|
6387 |
|
|
if (dynsymcount != 0
|
6388 |
|
|
&& (s->flags & SEC_EXCLUDE) == 0)
|
6389 |
|
|
{
|
6390 |
|
|
s->size = dynsymcount * sizeof (Elf_External_Versym);
|
6391 |
|
|
s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
|
6392 |
|
|
if (s->contents == NULL)
|
6393 |
|
|
return FALSE;
|
6394 |
|
|
|
6395 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
|
6396 |
|
|
return FALSE;
|
6397 |
|
|
}
|
6398 |
|
|
|
6399 |
|
|
/* Set the size of the .dynsym and .hash sections. We counted
|
6400 |
|
|
the number of dynamic symbols in elf_link_add_object_symbols.
|
6401 |
|
|
We will build the contents of .dynsym and .hash when we build
|
6402 |
|
|
the final symbol table, because until then we do not know the
|
6403 |
|
|
correct value to give the symbols. We built the .dynstr
|
6404 |
|
|
section as we went along in elf_link_add_object_symbols. */
|
6405 |
|
|
s = bfd_get_section_by_name (dynobj, ".dynsym");
|
6406 |
|
|
BFD_ASSERT (s != NULL);
|
6407 |
|
|
s->size = dynsymcount * bed->s->sizeof_sym;
|
6408 |
|
|
|
6409 |
|
|
if (dynsymcount != 0)
|
6410 |
|
|
{
|
6411 |
|
|
s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
|
6412 |
|
|
if (s->contents == NULL)
|
6413 |
|
|
return FALSE;
|
6414 |
|
|
|
6415 |
|
|
/* The first entry in .dynsym is a dummy symbol.
|
6416 |
|
|
Clear all the section syms, in case we don't output them all. */
|
6417 |
|
|
++section_sym_count;
|
6418 |
|
|
memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
|
6419 |
|
|
}
|
6420 |
|
|
|
6421 |
|
|
elf_hash_table (info)->bucketcount = 0;
|
6422 |
|
|
|
6423 |
|
|
/* Compute the size of the hashing table. As a side effect this
|
6424 |
|
|
computes the hash values for all the names we export. */
|
6425 |
|
|
if (info->emit_hash)
|
6426 |
|
|
{
|
6427 |
|
|
unsigned long int *hashcodes;
|
6428 |
|
|
struct hash_codes_info hashinf;
|
6429 |
|
|
bfd_size_type amt;
|
6430 |
|
|
unsigned long int nsyms;
|
6431 |
|
|
size_t bucketcount;
|
6432 |
|
|
size_t hash_entry_size;
|
6433 |
|
|
|
6434 |
|
|
/* Compute the hash values for all exported symbols. At the same
|
6435 |
|
|
time store the values in an array so that we could use them for
|
6436 |
|
|
optimizations. */
|
6437 |
|
|
amt = dynsymcount * sizeof (unsigned long int);
|
6438 |
|
|
hashcodes = (unsigned long int *) bfd_malloc (amt);
|
6439 |
|
|
if (hashcodes == NULL)
|
6440 |
|
|
return FALSE;
|
6441 |
|
|
hashinf.hashcodes = hashcodes;
|
6442 |
|
|
hashinf.error = FALSE;
|
6443 |
|
|
|
6444 |
|
|
/* Put all hash values in HASHCODES. */
|
6445 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6446 |
|
|
elf_collect_hash_codes, &hashinf);
|
6447 |
|
|
if (hashinf.error)
|
6448 |
|
|
{
|
6449 |
|
|
free (hashcodes);
|
6450 |
|
|
return FALSE;
|
6451 |
|
|
}
|
6452 |
|
|
|
6453 |
|
|
nsyms = hashinf.hashcodes - hashcodes;
|
6454 |
|
|
bucketcount
|
6455 |
|
|
= compute_bucket_count (info, hashcodes, nsyms, 0);
|
6456 |
|
|
free (hashcodes);
|
6457 |
|
|
|
6458 |
|
|
if (bucketcount == 0)
|
6459 |
|
|
return FALSE;
|
6460 |
|
|
|
6461 |
|
|
elf_hash_table (info)->bucketcount = bucketcount;
|
6462 |
|
|
|
6463 |
|
|
s = bfd_get_section_by_name (dynobj, ".hash");
|
6464 |
|
|
BFD_ASSERT (s != NULL);
|
6465 |
|
|
hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
|
6466 |
|
|
s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
|
6467 |
|
|
s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
|
6468 |
|
|
if (s->contents == NULL)
|
6469 |
|
|
return FALSE;
|
6470 |
|
|
|
6471 |
|
|
bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
|
6472 |
|
|
bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
|
6473 |
|
|
s->contents + hash_entry_size);
|
6474 |
|
|
}
|
6475 |
|
|
|
6476 |
|
|
if (info->emit_gnu_hash)
|
6477 |
|
|
{
|
6478 |
|
|
size_t i, cnt;
|
6479 |
|
|
unsigned char *contents;
|
6480 |
|
|
struct collect_gnu_hash_codes cinfo;
|
6481 |
|
|
bfd_size_type amt;
|
6482 |
|
|
size_t bucketcount;
|
6483 |
|
|
|
6484 |
|
|
memset (&cinfo, 0, sizeof (cinfo));
|
6485 |
|
|
|
6486 |
|
|
/* Compute the hash values for all exported symbols. At the same
|
6487 |
|
|
time store the values in an array so that we could use them for
|
6488 |
|
|
optimizations. */
|
6489 |
|
|
amt = dynsymcount * 2 * sizeof (unsigned long int);
|
6490 |
|
|
cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
|
6491 |
|
|
if (cinfo.hashcodes == NULL)
|
6492 |
|
|
return FALSE;
|
6493 |
|
|
|
6494 |
|
|
cinfo.hashval = cinfo.hashcodes + dynsymcount;
|
6495 |
|
|
cinfo.min_dynindx = -1;
|
6496 |
|
|
cinfo.output_bfd = output_bfd;
|
6497 |
|
|
cinfo.bed = bed;
|
6498 |
|
|
|
6499 |
|
|
/* Put all hash values in HASHCODES. */
|
6500 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6501 |
|
|
elf_collect_gnu_hash_codes, &cinfo);
|
6502 |
|
|
if (cinfo.error)
|
6503 |
|
|
{
|
6504 |
|
|
free (cinfo.hashcodes);
|
6505 |
|
|
return FALSE;
|
6506 |
|
|
}
|
6507 |
|
|
|
6508 |
|
|
bucketcount
|
6509 |
|
|
= compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
|
6510 |
|
|
|
6511 |
|
|
if (bucketcount == 0)
|
6512 |
|
|
{
|
6513 |
|
|
free (cinfo.hashcodes);
|
6514 |
|
|
return FALSE;
|
6515 |
|
|
}
|
6516 |
|
|
|
6517 |
|
|
s = bfd_get_section_by_name (dynobj, ".gnu.hash");
|
6518 |
|
|
BFD_ASSERT (s != NULL);
|
6519 |
|
|
|
6520 |
|
|
if (cinfo.nsyms == 0)
|
6521 |
|
|
{
|
6522 |
|
|
/* Empty .gnu.hash section is special. */
|
6523 |
|
|
BFD_ASSERT (cinfo.min_dynindx == -1);
|
6524 |
|
|
free (cinfo.hashcodes);
|
6525 |
|
|
s->size = 5 * 4 + bed->s->arch_size / 8;
|
6526 |
|
|
contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
|
6527 |
|
|
if (contents == NULL)
|
6528 |
|
|
return FALSE;
|
6529 |
|
|
s->contents = contents;
|
6530 |
|
|
/* 1 empty bucket. */
|
6531 |
|
|
bfd_put_32 (output_bfd, 1, contents);
|
6532 |
|
|
/* SYMIDX above the special symbol 0. */
|
6533 |
|
|
bfd_put_32 (output_bfd, 1, contents + 4);
|
6534 |
|
|
/* Just one word for bitmask. */
|
6535 |
|
|
bfd_put_32 (output_bfd, 1, contents + 8);
|
6536 |
|
|
/* Only hash fn bloom filter. */
|
6537 |
|
|
bfd_put_32 (output_bfd, 0, contents + 12);
|
6538 |
|
|
/* No hashes are valid - empty bitmask. */
|
6539 |
|
|
bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
|
6540 |
|
|
/* No hashes in the only bucket. */
|
6541 |
|
|
bfd_put_32 (output_bfd, 0,
|
6542 |
|
|
contents + 16 + bed->s->arch_size / 8);
|
6543 |
|
|
}
|
6544 |
|
|
else
|
6545 |
|
|
{
|
6546 |
|
|
unsigned long int maskwords, maskbitslog2, x;
|
6547 |
|
|
BFD_ASSERT (cinfo.min_dynindx != -1);
|
6548 |
|
|
|
6549 |
|
|
x = cinfo.nsyms;
|
6550 |
|
|
maskbitslog2 = 1;
|
6551 |
|
|
while ((x >>= 1) != 0)
|
6552 |
|
|
++maskbitslog2;
|
6553 |
|
|
if (maskbitslog2 < 3)
|
6554 |
|
|
maskbitslog2 = 5;
|
6555 |
|
|
else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
|
6556 |
|
|
maskbitslog2 = maskbitslog2 + 3;
|
6557 |
|
|
else
|
6558 |
|
|
maskbitslog2 = maskbitslog2 + 2;
|
6559 |
|
|
if (bed->s->arch_size == 64)
|
6560 |
|
|
{
|
6561 |
|
|
if (maskbitslog2 == 5)
|
6562 |
|
|
maskbitslog2 = 6;
|
6563 |
|
|
cinfo.shift1 = 6;
|
6564 |
|
|
}
|
6565 |
|
|
else
|
6566 |
|
|
cinfo.shift1 = 5;
|
6567 |
|
|
cinfo.mask = (1 << cinfo.shift1) - 1;
|
6568 |
|
|
cinfo.shift2 = maskbitslog2;
|
6569 |
|
|
cinfo.maskbits = 1 << maskbitslog2;
|
6570 |
|
|
maskwords = 1 << (maskbitslog2 - cinfo.shift1);
|
6571 |
|
|
amt = bucketcount * sizeof (unsigned long int) * 2;
|
6572 |
|
|
amt += maskwords * sizeof (bfd_vma);
|
6573 |
|
|
cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
|
6574 |
|
|
if (cinfo.bitmask == NULL)
|
6575 |
|
|
{
|
6576 |
|
|
free (cinfo.hashcodes);
|
6577 |
|
|
return FALSE;
|
6578 |
|
|
}
|
6579 |
|
|
|
6580 |
|
|
cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
|
6581 |
|
|
cinfo.indx = cinfo.counts + bucketcount;
|
6582 |
|
|
cinfo.symindx = dynsymcount - cinfo.nsyms;
|
6583 |
|
|
memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
|
6584 |
|
|
|
6585 |
|
|
/* Determine how often each hash bucket is used. */
|
6586 |
|
|
memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
|
6587 |
|
|
for (i = 0; i < cinfo.nsyms; ++i)
|
6588 |
|
|
++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
|
6589 |
|
|
|
6590 |
|
|
for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
|
6591 |
|
|
if (cinfo.counts[i] != 0)
|
6592 |
|
|
{
|
6593 |
|
|
cinfo.indx[i] = cnt;
|
6594 |
|
|
cnt += cinfo.counts[i];
|
6595 |
|
|
}
|
6596 |
|
|
BFD_ASSERT (cnt == dynsymcount);
|
6597 |
|
|
cinfo.bucketcount = bucketcount;
|
6598 |
|
|
cinfo.local_indx = cinfo.min_dynindx;
|
6599 |
|
|
|
6600 |
|
|
s->size = (4 + bucketcount + cinfo.nsyms) * 4;
|
6601 |
|
|
s->size += cinfo.maskbits / 8;
|
6602 |
|
|
contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
|
6603 |
|
|
if (contents == NULL)
|
6604 |
|
|
{
|
6605 |
|
|
free (cinfo.bitmask);
|
6606 |
|
|
free (cinfo.hashcodes);
|
6607 |
|
|
return FALSE;
|
6608 |
|
|
}
|
6609 |
|
|
|
6610 |
|
|
s->contents = contents;
|
6611 |
|
|
bfd_put_32 (output_bfd, bucketcount, contents);
|
6612 |
|
|
bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
|
6613 |
|
|
bfd_put_32 (output_bfd, maskwords, contents + 8);
|
6614 |
|
|
bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
|
6615 |
|
|
contents += 16 + cinfo.maskbits / 8;
|
6616 |
|
|
|
6617 |
|
|
for (i = 0; i < bucketcount; ++i)
|
6618 |
|
|
{
|
6619 |
|
|
if (cinfo.counts[i] == 0)
|
6620 |
|
|
bfd_put_32 (output_bfd, 0, contents);
|
6621 |
|
|
else
|
6622 |
|
|
bfd_put_32 (output_bfd, cinfo.indx[i], contents);
|
6623 |
|
|
contents += 4;
|
6624 |
|
|
}
|
6625 |
|
|
|
6626 |
|
|
cinfo.contents = contents;
|
6627 |
|
|
|
6628 |
|
|
/* Renumber dynamic symbols, populate .gnu.hash section. */
|
6629 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
6630 |
|
|
elf_renumber_gnu_hash_syms, &cinfo);
|
6631 |
|
|
|
6632 |
|
|
contents = s->contents + 16;
|
6633 |
|
|
for (i = 0; i < maskwords; ++i)
|
6634 |
|
|
{
|
6635 |
|
|
bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
|
6636 |
|
|
contents);
|
6637 |
|
|
contents += bed->s->arch_size / 8;
|
6638 |
|
|
}
|
6639 |
|
|
|
6640 |
|
|
free (cinfo.bitmask);
|
6641 |
|
|
free (cinfo.hashcodes);
|
6642 |
|
|
}
|
6643 |
|
|
}
|
6644 |
|
|
|
6645 |
|
|
s = bfd_get_section_by_name (dynobj, ".dynstr");
|
6646 |
|
|
BFD_ASSERT (s != NULL);
|
6647 |
|
|
|
6648 |
|
|
elf_finalize_dynstr (output_bfd, info);
|
6649 |
|
|
|
6650 |
|
|
s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
|
6651 |
|
|
|
6652 |
|
|
for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
|
6653 |
|
|
if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
|
6654 |
|
|
return FALSE;
|
6655 |
|
|
}
|
6656 |
|
|
|
6657 |
|
|
return TRUE;
|
6658 |
|
|
}
|
6659 |
|
|
|
6660 |
|
|
/* Indicate that we are only retrieving symbol values from this
|
6661 |
|
|
section. */
|
6662 |
|
|
|
6663 |
|
|
void
|
6664 |
|
|
_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
|
6665 |
|
|
{
|
6666 |
|
|
if (is_elf_hash_table (info->hash))
|
6667 |
|
|
sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
|
6668 |
|
|
_bfd_generic_link_just_syms (sec, info);
|
6669 |
|
|
}
|
6670 |
|
|
|
6671 |
|
|
/* Make sure sec_info_type is cleared if sec_info is cleared too. */
|
6672 |
|
|
|
6673 |
|
|
static void
|
6674 |
|
|
merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
|
6675 |
|
|
asection *sec)
|
6676 |
|
|
{
|
6677 |
|
|
BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
|
6678 |
|
|
sec->sec_info_type = ELF_INFO_TYPE_NONE;
|
6679 |
|
|
}
|
6680 |
|
|
|
6681 |
|
|
/* Finish SHF_MERGE section merging. */
|
6682 |
|
|
|
6683 |
|
|
bfd_boolean
|
6684 |
|
|
_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
|
6685 |
|
|
{
|
6686 |
|
|
bfd *ibfd;
|
6687 |
|
|
asection *sec;
|
6688 |
|
|
|
6689 |
|
|
if (!is_elf_hash_table (info->hash))
|
6690 |
|
|
return FALSE;
|
6691 |
|
|
|
6692 |
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
6693 |
|
|
if ((ibfd->flags & DYNAMIC) == 0)
|
6694 |
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
6695 |
|
|
if ((sec->flags & SEC_MERGE) != 0
|
6696 |
|
|
&& !bfd_is_abs_section (sec->output_section))
|
6697 |
|
|
{
|
6698 |
|
|
struct bfd_elf_section_data *secdata;
|
6699 |
|
|
|
6700 |
|
|
secdata = elf_section_data (sec);
|
6701 |
|
|
if (! _bfd_add_merge_section (abfd,
|
6702 |
|
|
&elf_hash_table (info)->merge_info,
|
6703 |
|
|
sec, &secdata->sec_info))
|
6704 |
|
|
return FALSE;
|
6705 |
|
|
else if (secdata->sec_info)
|
6706 |
|
|
sec->sec_info_type = ELF_INFO_TYPE_MERGE;
|
6707 |
|
|
}
|
6708 |
|
|
|
6709 |
|
|
if (elf_hash_table (info)->merge_info != NULL)
|
6710 |
|
|
_bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
|
6711 |
|
|
merge_sections_remove_hook);
|
6712 |
|
|
return TRUE;
|
6713 |
|
|
}
|
6714 |
|
|
|
6715 |
|
|
/* Create an entry in an ELF linker hash table. */
|
6716 |
|
|
|
6717 |
|
|
struct bfd_hash_entry *
|
6718 |
|
|
_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
|
6719 |
|
|
struct bfd_hash_table *table,
|
6720 |
|
|
const char *string)
|
6721 |
|
|
{
|
6722 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
6723 |
|
|
subclass. */
|
6724 |
|
|
if (entry == NULL)
|
6725 |
|
|
{
|
6726 |
|
|
entry = (struct bfd_hash_entry *)
|
6727 |
|
|
bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
|
6728 |
|
|
if (entry == NULL)
|
6729 |
|
|
return entry;
|
6730 |
|
|
}
|
6731 |
|
|
|
6732 |
|
|
/* Call the allocation method of the superclass. */
|
6733 |
|
|
entry = _bfd_link_hash_newfunc (entry, table, string);
|
6734 |
|
|
if (entry != NULL)
|
6735 |
|
|
{
|
6736 |
|
|
struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
|
6737 |
|
|
struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
|
6738 |
|
|
|
6739 |
|
|
/* Set local fields. */
|
6740 |
|
|
ret->indx = -1;
|
6741 |
|
|
ret->dynindx = -1;
|
6742 |
|
|
ret->got = htab->init_got_refcount;
|
6743 |
|
|
ret->plt = htab->init_plt_refcount;
|
6744 |
|
|
memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
|
6745 |
|
|
- offsetof (struct elf_link_hash_entry, size)));
|
6746 |
|
|
/* Assume that we have been called by a non-ELF symbol reader.
|
6747 |
|
|
This flag is then reset by the code which reads an ELF input
|
6748 |
|
|
file. This ensures that a symbol created by a non-ELF symbol
|
6749 |
|
|
reader will have the flag set correctly. */
|
6750 |
|
|
ret->non_elf = 1;
|
6751 |
|
|
}
|
6752 |
|
|
|
6753 |
|
|
return entry;
|
6754 |
|
|
}
|
6755 |
|
|
|
6756 |
|
|
/* Copy data from an indirect symbol to its direct symbol, hiding the
|
6757 |
|
|
old indirect symbol. Also used for copying flags to a weakdef. */
|
6758 |
|
|
|
6759 |
|
|
void
|
6760 |
|
|
_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
|
6761 |
|
|
struct elf_link_hash_entry *dir,
|
6762 |
|
|
struct elf_link_hash_entry *ind)
|
6763 |
|
|
{
|
6764 |
|
|
struct elf_link_hash_table *htab;
|
6765 |
|
|
|
6766 |
|
|
/* Copy down any references that we may have already seen to the
|
6767 |
|
|
symbol which just became indirect. */
|
6768 |
|
|
|
6769 |
|
|
dir->ref_dynamic |= ind->ref_dynamic;
|
6770 |
|
|
dir->ref_regular |= ind->ref_regular;
|
6771 |
|
|
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
|
6772 |
|
|
dir->non_got_ref |= ind->non_got_ref;
|
6773 |
|
|
dir->needs_plt |= ind->needs_plt;
|
6774 |
|
|
dir->pointer_equality_needed |= ind->pointer_equality_needed;
|
6775 |
|
|
|
6776 |
|
|
if (ind->root.type != bfd_link_hash_indirect)
|
6777 |
|
|
return;
|
6778 |
|
|
|
6779 |
|
|
/* Copy over the global and procedure linkage table refcount entries.
|
6780 |
|
|
These may have been already set up by a check_relocs routine. */
|
6781 |
|
|
htab = elf_hash_table (info);
|
6782 |
|
|
if (ind->got.refcount > htab->init_got_refcount.refcount)
|
6783 |
|
|
{
|
6784 |
|
|
if (dir->got.refcount < 0)
|
6785 |
|
|
dir->got.refcount = 0;
|
6786 |
|
|
dir->got.refcount += ind->got.refcount;
|
6787 |
|
|
ind->got.refcount = htab->init_got_refcount.refcount;
|
6788 |
|
|
}
|
6789 |
|
|
|
6790 |
|
|
if (ind->plt.refcount > htab->init_plt_refcount.refcount)
|
6791 |
|
|
{
|
6792 |
|
|
if (dir->plt.refcount < 0)
|
6793 |
|
|
dir->plt.refcount = 0;
|
6794 |
|
|
dir->plt.refcount += ind->plt.refcount;
|
6795 |
|
|
ind->plt.refcount = htab->init_plt_refcount.refcount;
|
6796 |
|
|
}
|
6797 |
|
|
|
6798 |
|
|
if (ind->dynindx != -1)
|
6799 |
|
|
{
|
6800 |
|
|
if (dir->dynindx != -1)
|
6801 |
|
|
_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
|
6802 |
|
|
dir->dynindx = ind->dynindx;
|
6803 |
|
|
dir->dynstr_index = ind->dynstr_index;
|
6804 |
|
|
ind->dynindx = -1;
|
6805 |
|
|
ind->dynstr_index = 0;
|
6806 |
|
|
}
|
6807 |
|
|
}
|
6808 |
|
|
|
6809 |
|
|
void
|
6810 |
|
|
_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
|
6811 |
|
|
struct elf_link_hash_entry *h,
|
6812 |
|
|
bfd_boolean force_local)
|
6813 |
|
|
{
|
6814 |
|
|
/* STT_GNU_IFUNC symbol must go through PLT. */
|
6815 |
|
|
if (h->type != STT_GNU_IFUNC)
|
6816 |
|
|
{
|
6817 |
|
|
h->plt = elf_hash_table (info)->init_plt_offset;
|
6818 |
|
|
h->needs_plt = 0;
|
6819 |
|
|
}
|
6820 |
|
|
if (force_local)
|
6821 |
|
|
{
|
6822 |
|
|
h->forced_local = 1;
|
6823 |
|
|
if (h->dynindx != -1)
|
6824 |
|
|
{
|
6825 |
|
|
h->dynindx = -1;
|
6826 |
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
6827 |
|
|
h->dynstr_index);
|
6828 |
|
|
}
|
6829 |
|
|
}
|
6830 |
|
|
}
|
6831 |
|
|
|
6832 |
|
|
/* Initialize an ELF linker hash table. */
|
6833 |
|
|
|
6834 |
|
|
bfd_boolean
|
6835 |
|
|
_bfd_elf_link_hash_table_init
|
6836 |
|
|
(struct elf_link_hash_table *table,
|
6837 |
|
|
bfd *abfd,
|
6838 |
|
|
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
6839 |
|
|
struct bfd_hash_table *,
|
6840 |
|
|
const char *),
|
6841 |
|
|
unsigned int entsize,
|
6842 |
|
|
enum elf_target_id target_id)
|
6843 |
|
|
{
|
6844 |
|
|
bfd_boolean ret;
|
6845 |
|
|
int can_refcount = get_elf_backend_data (abfd)->can_refcount;
|
6846 |
|
|
|
6847 |
|
|
memset (table, 0, sizeof * table);
|
6848 |
|
|
table->init_got_refcount.refcount = can_refcount - 1;
|
6849 |
|
|
table->init_plt_refcount.refcount = can_refcount - 1;
|
6850 |
|
|
table->init_got_offset.offset = -(bfd_vma) 1;
|
6851 |
|
|
table->init_plt_offset.offset = -(bfd_vma) 1;
|
6852 |
|
|
/* The first dynamic symbol is a dummy. */
|
6853 |
|
|
table->dynsymcount = 1;
|
6854 |
|
|
|
6855 |
|
|
ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
|
6856 |
|
|
|
6857 |
|
|
table->root.type = bfd_link_elf_hash_table;
|
6858 |
|
|
table->hash_table_id = target_id;
|
6859 |
|
|
|
6860 |
|
|
return ret;
|
6861 |
|
|
}
|
6862 |
|
|
|
6863 |
|
|
/* Create an ELF linker hash table. */
|
6864 |
|
|
|
6865 |
|
|
struct bfd_link_hash_table *
|
6866 |
|
|
_bfd_elf_link_hash_table_create (bfd *abfd)
|
6867 |
|
|
{
|
6868 |
|
|
struct elf_link_hash_table *ret;
|
6869 |
|
|
bfd_size_type amt = sizeof (struct elf_link_hash_table);
|
6870 |
|
|
|
6871 |
|
|
ret = (struct elf_link_hash_table *) bfd_malloc (amt);
|
6872 |
|
|
if (ret == NULL)
|
6873 |
|
|
return NULL;
|
6874 |
|
|
|
6875 |
|
|
if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
|
6876 |
|
|
sizeof (struct elf_link_hash_entry),
|
6877 |
|
|
GENERIC_ELF_DATA))
|
6878 |
|
|
{
|
6879 |
|
|
free (ret);
|
6880 |
|
|
return NULL;
|
6881 |
|
|
}
|
6882 |
|
|
|
6883 |
|
|
return &ret->root;
|
6884 |
|
|
}
|
6885 |
|
|
|
6886 |
|
|
/* This is a hook for the ELF emulation code in the generic linker to
|
6887 |
|
|
tell the backend linker what file name to use for the DT_NEEDED
|
6888 |
|
|
entry for a dynamic object. */
|
6889 |
|
|
|
6890 |
|
|
void
|
6891 |
|
|
bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
|
6892 |
|
|
{
|
6893 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
6894 |
|
|
&& bfd_get_format (abfd) == bfd_object)
|
6895 |
|
|
elf_dt_name (abfd) = name;
|
6896 |
|
|
}
|
6897 |
|
|
|
6898 |
|
|
int
|
6899 |
|
|
bfd_elf_get_dyn_lib_class (bfd *abfd)
|
6900 |
|
|
{
|
6901 |
|
|
int lib_class;
|
6902 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
6903 |
|
|
&& bfd_get_format (abfd) == bfd_object)
|
6904 |
|
|
lib_class = elf_dyn_lib_class (abfd);
|
6905 |
|
|
else
|
6906 |
|
|
lib_class = 0;
|
6907 |
|
|
return lib_class;
|
6908 |
|
|
}
|
6909 |
|
|
|
6910 |
|
|
void
|
6911 |
|
|
bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
|
6912 |
|
|
{
|
6913 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
6914 |
|
|
&& bfd_get_format (abfd) == bfd_object)
|
6915 |
|
|
elf_dyn_lib_class (abfd) = lib_class;
|
6916 |
|
|
}
|
6917 |
|
|
|
6918 |
|
|
/* Get the list of DT_NEEDED entries for a link. This is a hook for
|
6919 |
|
|
the linker ELF emulation code. */
|
6920 |
|
|
|
6921 |
|
|
struct bfd_link_needed_list *
|
6922 |
|
|
bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
|
6923 |
|
|
struct bfd_link_info *info)
|
6924 |
|
|
{
|
6925 |
|
|
if (! is_elf_hash_table (info->hash))
|
6926 |
|
|
return NULL;
|
6927 |
|
|
return elf_hash_table (info)->needed;
|
6928 |
|
|
}
|
6929 |
|
|
|
6930 |
|
|
/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
|
6931 |
|
|
hook for the linker ELF emulation code. */
|
6932 |
|
|
|
6933 |
|
|
struct bfd_link_needed_list *
|
6934 |
|
|
bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
|
6935 |
|
|
struct bfd_link_info *info)
|
6936 |
|
|
{
|
6937 |
|
|
if (! is_elf_hash_table (info->hash))
|
6938 |
|
|
return NULL;
|
6939 |
|
|
return elf_hash_table (info)->runpath;
|
6940 |
|
|
}
|
6941 |
|
|
|
6942 |
|
|
/* Get the name actually used for a dynamic object for a link. This
|
6943 |
|
|
is the SONAME entry if there is one. Otherwise, it is the string
|
6944 |
|
|
passed to bfd_elf_set_dt_needed_name, or it is the filename. */
|
6945 |
|
|
|
6946 |
|
|
const char *
|
6947 |
|
|
bfd_elf_get_dt_soname (bfd *abfd)
|
6948 |
|
|
{
|
6949 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
6950 |
|
|
&& bfd_get_format (abfd) == bfd_object)
|
6951 |
|
|
return elf_dt_name (abfd);
|
6952 |
|
|
return NULL;
|
6953 |
|
|
}
|
6954 |
|
|
|
6955 |
|
|
/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
|
6956 |
|
|
the ELF linker emulation code. */
|
6957 |
|
|
|
6958 |
|
|
bfd_boolean
|
6959 |
|
|
bfd_elf_get_bfd_needed_list (bfd *abfd,
|
6960 |
|
|
struct bfd_link_needed_list **pneeded)
|
6961 |
|
|
{
|
6962 |
|
|
asection *s;
|
6963 |
|
|
bfd_byte *dynbuf = NULL;
|
6964 |
|
|
unsigned int elfsec;
|
6965 |
|
|
unsigned long shlink;
|
6966 |
|
|
bfd_byte *extdyn, *extdynend;
|
6967 |
|
|
size_t extdynsize;
|
6968 |
|
|
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
|
6969 |
|
|
|
6970 |
|
|
*pneeded = NULL;
|
6971 |
|
|
|
6972 |
|
|
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
|
6973 |
|
|
|| bfd_get_format (abfd) != bfd_object)
|
6974 |
|
|
return TRUE;
|
6975 |
|
|
|
6976 |
|
|
s = bfd_get_section_by_name (abfd, ".dynamic");
|
6977 |
|
|
if (s == NULL || s->size == 0)
|
6978 |
|
|
return TRUE;
|
6979 |
|
|
|
6980 |
|
|
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
|
6981 |
|
|
goto error_return;
|
6982 |
|
|
|
6983 |
|
|
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
6984 |
|
|
if (elfsec == SHN_BAD)
|
6985 |
|
|
goto error_return;
|
6986 |
|
|
|
6987 |
|
|
shlink = elf_elfsections (abfd)[elfsec]->sh_link;
|
6988 |
|
|
|
6989 |
|
|
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
|
6990 |
|
|
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
|
6991 |
|
|
|
6992 |
|
|
extdyn = dynbuf;
|
6993 |
|
|
extdynend = extdyn + s->size;
|
6994 |
|
|
for (; extdyn < extdynend; extdyn += extdynsize)
|
6995 |
|
|
{
|
6996 |
|
|
Elf_Internal_Dyn dyn;
|
6997 |
|
|
|
6998 |
|
|
(*swap_dyn_in) (abfd, extdyn, &dyn);
|
6999 |
|
|
|
7000 |
|
|
if (dyn.d_tag == DT_NULL)
|
7001 |
|
|
break;
|
7002 |
|
|
|
7003 |
|
|
if (dyn.d_tag == DT_NEEDED)
|
7004 |
|
|
{
|
7005 |
|
|
const char *string;
|
7006 |
|
|
struct bfd_link_needed_list *l;
|
7007 |
|
|
unsigned int tagv = dyn.d_un.d_val;
|
7008 |
|
|
bfd_size_type amt;
|
7009 |
|
|
|
7010 |
|
|
string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
7011 |
|
|
if (string == NULL)
|
7012 |
|
|
goto error_return;
|
7013 |
|
|
|
7014 |
|
|
amt = sizeof *l;
|
7015 |
|
|
l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
|
7016 |
|
|
if (l == NULL)
|
7017 |
|
|
goto error_return;
|
7018 |
|
|
|
7019 |
|
|
l->by = abfd;
|
7020 |
|
|
l->name = string;
|
7021 |
|
|
l->next = *pneeded;
|
7022 |
|
|
*pneeded = l;
|
7023 |
|
|
}
|
7024 |
|
|
}
|
7025 |
|
|
|
7026 |
|
|
free (dynbuf);
|
7027 |
|
|
|
7028 |
|
|
return TRUE;
|
7029 |
|
|
|
7030 |
|
|
error_return:
|
7031 |
|
|
if (dynbuf != NULL)
|
7032 |
|
|
free (dynbuf);
|
7033 |
|
|
return FALSE;
|
7034 |
|
|
}
|
7035 |
|
|
|
7036 |
|
|
struct elf_symbuf_symbol
|
7037 |
|
|
{
|
7038 |
|
|
unsigned long st_name; /* Symbol name, index in string tbl */
|
7039 |
|
|
unsigned char st_info; /* Type and binding attributes */
|
7040 |
|
|
unsigned char st_other; /* Visibilty, and target specific */
|
7041 |
|
|
};
|
7042 |
|
|
|
7043 |
|
|
struct elf_symbuf_head
|
7044 |
|
|
{
|
7045 |
|
|
struct elf_symbuf_symbol *ssym;
|
7046 |
|
|
bfd_size_type count;
|
7047 |
|
|
unsigned int st_shndx;
|
7048 |
|
|
};
|
7049 |
|
|
|
7050 |
|
|
struct elf_symbol
|
7051 |
|
|
{
|
7052 |
|
|
union
|
7053 |
|
|
{
|
7054 |
|
|
Elf_Internal_Sym *isym;
|
7055 |
|
|
struct elf_symbuf_symbol *ssym;
|
7056 |
|
|
} u;
|
7057 |
|
|
const char *name;
|
7058 |
|
|
};
|
7059 |
|
|
|
7060 |
|
|
/* Sort references to symbols by ascending section number. */
|
7061 |
|
|
|
7062 |
|
|
static int
|
7063 |
|
|
elf_sort_elf_symbol (const void *arg1, const void *arg2)
|
7064 |
|
|
{
|
7065 |
|
|
const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
|
7066 |
|
|
const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
|
7067 |
|
|
|
7068 |
|
|
return s1->st_shndx - s2->st_shndx;
|
7069 |
|
|
}
|
7070 |
|
|
|
7071 |
|
|
static int
|
7072 |
|
|
elf_sym_name_compare (const void *arg1, const void *arg2)
|
7073 |
|
|
{
|
7074 |
|
|
const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
|
7075 |
|
|
const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
|
7076 |
|
|
return strcmp (s1->name, s2->name);
|
7077 |
|
|
}
|
7078 |
|
|
|
7079 |
|
|
static struct elf_symbuf_head *
|
7080 |
|
|
elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
|
7081 |
|
|
{
|
7082 |
|
|
Elf_Internal_Sym **ind, **indbufend, **indbuf;
|
7083 |
|
|
struct elf_symbuf_symbol *ssym;
|
7084 |
|
|
struct elf_symbuf_head *ssymbuf, *ssymhead;
|
7085 |
|
|
bfd_size_type i, shndx_count, total_size;
|
7086 |
|
|
|
7087 |
|
|
indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
|
7088 |
|
|
if (indbuf == NULL)
|
7089 |
|
|
return NULL;
|
7090 |
|
|
|
7091 |
|
|
for (ind = indbuf, i = 0; i < symcount; i++)
|
7092 |
|
|
if (isymbuf[i].st_shndx != SHN_UNDEF)
|
7093 |
|
|
*ind++ = &isymbuf[i];
|
7094 |
|
|
indbufend = ind;
|
7095 |
|
|
|
7096 |
|
|
qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
|
7097 |
|
|
elf_sort_elf_symbol);
|
7098 |
|
|
|
7099 |
|
|
shndx_count = 0;
|
7100 |
|
|
if (indbufend > indbuf)
|
7101 |
|
|
for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
|
7102 |
|
|
if (ind[0]->st_shndx != ind[1]->st_shndx)
|
7103 |
|
|
shndx_count++;
|
7104 |
|
|
|
7105 |
|
|
total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
|
7106 |
|
|
+ (indbufend - indbuf) * sizeof (*ssym));
|
7107 |
|
|
ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
|
7108 |
|
|
if (ssymbuf == NULL)
|
7109 |
|
|
{
|
7110 |
|
|
free (indbuf);
|
7111 |
|
|
return NULL;
|
7112 |
|
|
}
|
7113 |
|
|
|
7114 |
|
|
ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
|
7115 |
|
|
ssymbuf->ssym = NULL;
|
7116 |
|
|
ssymbuf->count = shndx_count;
|
7117 |
|
|
ssymbuf->st_shndx = 0;
|
7118 |
|
|
for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
|
7119 |
|
|
{
|
7120 |
|
|
if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
|
7121 |
|
|
{
|
7122 |
|
|
ssymhead++;
|
7123 |
|
|
ssymhead->ssym = ssym;
|
7124 |
|
|
ssymhead->count = 0;
|
7125 |
|
|
ssymhead->st_shndx = (*ind)->st_shndx;
|
7126 |
|
|
}
|
7127 |
|
|
ssym->st_name = (*ind)->st_name;
|
7128 |
|
|
ssym->st_info = (*ind)->st_info;
|
7129 |
|
|
ssym->st_other = (*ind)->st_other;
|
7130 |
|
|
ssymhead->count++;
|
7131 |
|
|
}
|
7132 |
|
|
BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
|
7133 |
|
|
&& (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
|
7134 |
|
|
== total_size));
|
7135 |
|
|
|
7136 |
|
|
free (indbuf);
|
7137 |
|
|
return ssymbuf;
|
7138 |
|
|
}
|
7139 |
|
|
|
7140 |
|
|
/* Check if 2 sections define the same set of local and global
|
7141 |
|
|
symbols. */
|
7142 |
|
|
|
7143 |
|
|
static bfd_boolean
|
7144 |
|
|
bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
|
7145 |
|
|
struct bfd_link_info *info)
|
7146 |
|
|
{
|
7147 |
|
|
bfd *bfd1, *bfd2;
|
7148 |
|
|
const struct elf_backend_data *bed1, *bed2;
|
7149 |
|
|
Elf_Internal_Shdr *hdr1, *hdr2;
|
7150 |
|
|
bfd_size_type symcount1, symcount2;
|
7151 |
|
|
Elf_Internal_Sym *isymbuf1, *isymbuf2;
|
7152 |
|
|
struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
|
7153 |
|
|
Elf_Internal_Sym *isym, *isymend;
|
7154 |
|
|
struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
|
7155 |
|
|
bfd_size_type count1, count2, i;
|
7156 |
|
|
unsigned int shndx1, shndx2;
|
7157 |
|
|
bfd_boolean result;
|
7158 |
|
|
|
7159 |
|
|
bfd1 = sec1->owner;
|
7160 |
|
|
bfd2 = sec2->owner;
|
7161 |
|
|
|
7162 |
|
|
/* Both sections have to be in ELF. */
|
7163 |
|
|
if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
|
7164 |
|
|
|| bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
|
7165 |
|
|
return FALSE;
|
7166 |
|
|
|
7167 |
|
|
if (elf_section_type (sec1) != elf_section_type (sec2))
|
7168 |
|
|
return FALSE;
|
7169 |
|
|
|
7170 |
|
|
shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
|
7171 |
|
|
shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
|
7172 |
|
|
if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
|
7173 |
|
|
return FALSE;
|
7174 |
|
|
|
7175 |
|
|
bed1 = get_elf_backend_data (bfd1);
|
7176 |
|
|
bed2 = get_elf_backend_data (bfd2);
|
7177 |
|
|
hdr1 = &elf_tdata (bfd1)->symtab_hdr;
|
7178 |
|
|
symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
|
7179 |
|
|
hdr2 = &elf_tdata (bfd2)->symtab_hdr;
|
7180 |
|
|
symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
|
7181 |
|
|
|
7182 |
|
|
if (symcount1 == 0 || symcount2 == 0)
|
7183 |
|
|
return FALSE;
|
7184 |
|
|
|
7185 |
|
|
result = FALSE;
|
7186 |
|
|
isymbuf1 = NULL;
|
7187 |
|
|
isymbuf2 = NULL;
|
7188 |
|
|
ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
|
7189 |
|
|
ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
|
7190 |
|
|
|
7191 |
|
|
if (ssymbuf1 == NULL)
|
7192 |
|
|
{
|
7193 |
|
|
isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
|
7194 |
|
|
NULL, NULL, NULL);
|
7195 |
|
|
if (isymbuf1 == NULL)
|
7196 |
|
|
goto done;
|
7197 |
|
|
|
7198 |
|
|
if (!info->reduce_memory_overheads)
|
7199 |
|
|
elf_tdata (bfd1)->symbuf = ssymbuf1
|
7200 |
|
|
= elf_create_symbuf (symcount1, isymbuf1);
|
7201 |
|
|
}
|
7202 |
|
|
|
7203 |
|
|
if (ssymbuf1 == NULL || ssymbuf2 == NULL)
|
7204 |
|
|
{
|
7205 |
|
|
isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
|
7206 |
|
|
NULL, NULL, NULL);
|
7207 |
|
|
if (isymbuf2 == NULL)
|
7208 |
|
|
goto done;
|
7209 |
|
|
|
7210 |
|
|
if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
|
7211 |
|
|
elf_tdata (bfd2)->symbuf = ssymbuf2
|
7212 |
|
|
= elf_create_symbuf (symcount2, isymbuf2);
|
7213 |
|
|
}
|
7214 |
|
|
|
7215 |
|
|
if (ssymbuf1 != NULL && ssymbuf2 != NULL)
|
7216 |
|
|
{
|
7217 |
|
|
/* Optimized faster version. */
|
7218 |
|
|
bfd_size_type lo, hi, mid;
|
7219 |
|
|
struct elf_symbol *symp;
|
7220 |
|
|
struct elf_symbuf_symbol *ssym, *ssymend;
|
7221 |
|
|
|
7222 |
|
|
lo = 0;
|
7223 |
|
|
hi = ssymbuf1->count;
|
7224 |
|
|
ssymbuf1++;
|
7225 |
|
|
count1 = 0;
|
7226 |
|
|
while (lo < hi)
|
7227 |
|
|
{
|
7228 |
|
|
mid = (lo + hi) / 2;
|
7229 |
|
|
if (shndx1 < ssymbuf1[mid].st_shndx)
|
7230 |
|
|
hi = mid;
|
7231 |
|
|
else if (shndx1 > ssymbuf1[mid].st_shndx)
|
7232 |
|
|
lo = mid + 1;
|
7233 |
|
|
else
|
7234 |
|
|
{
|
7235 |
|
|
count1 = ssymbuf1[mid].count;
|
7236 |
|
|
ssymbuf1 += mid;
|
7237 |
|
|
break;
|
7238 |
|
|
}
|
7239 |
|
|
}
|
7240 |
|
|
|
7241 |
|
|
lo = 0;
|
7242 |
|
|
hi = ssymbuf2->count;
|
7243 |
|
|
ssymbuf2++;
|
7244 |
|
|
count2 = 0;
|
7245 |
|
|
while (lo < hi)
|
7246 |
|
|
{
|
7247 |
|
|
mid = (lo + hi) / 2;
|
7248 |
|
|
if (shndx2 < ssymbuf2[mid].st_shndx)
|
7249 |
|
|
hi = mid;
|
7250 |
|
|
else if (shndx2 > ssymbuf2[mid].st_shndx)
|
7251 |
|
|
lo = mid + 1;
|
7252 |
|
|
else
|
7253 |
|
|
{
|
7254 |
|
|
count2 = ssymbuf2[mid].count;
|
7255 |
|
|
ssymbuf2 += mid;
|
7256 |
|
|
break;
|
7257 |
|
|
}
|
7258 |
|
|
}
|
7259 |
|
|
|
7260 |
|
|
if (count1 == 0 || count2 == 0 || count1 != count2)
|
7261 |
|
|
goto done;
|
7262 |
|
|
|
7263 |
|
|
symtable1 = (struct elf_symbol *)
|
7264 |
|
|
bfd_malloc (count1 * sizeof (struct elf_symbol));
|
7265 |
|
|
symtable2 = (struct elf_symbol *)
|
7266 |
|
|
bfd_malloc (count2 * sizeof (struct elf_symbol));
|
7267 |
|
|
if (symtable1 == NULL || symtable2 == NULL)
|
7268 |
|
|
goto done;
|
7269 |
|
|
|
7270 |
|
|
symp = symtable1;
|
7271 |
|
|
for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
|
7272 |
|
|
ssym < ssymend; ssym++, symp++)
|
7273 |
|
|
{
|
7274 |
|
|
symp->u.ssym = ssym;
|
7275 |
|
|
symp->name = bfd_elf_string_from_elf_section (bfd1,
|
7276 |
|
|
hdr1->sh_link,
|
7277 |
|
|
ssym->st_name);
|
7278 |
|
|
}
|
7279 |
|
|
|
7280 |
|
|
symp = symtable2;
|
7281 |
|
|
for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
|
7282 |
|
|
ssym < ssymend; ssym++, symp++)
|
7283 |
|
|
{
|
7284 |
|
|
symp->u.ssym = ssym;
|
7285 |
|
|
symp->name = bfd_elf_string_from_elf_section (bfd2,
|
7286 |
|
|
hdr2->sh_link,
|
7287 |
|
|
ssym->st_name);
|
7288 |
|
|
}
|
7289 |
|
|
|
7290 |
|
|
/* Sort symbol by name. */
|
7291 |
|
|
qsort (symtable1, count1, sizeof (struct elf_symbol),
|
7292 |
|
|
elf_sym_name_compare);
|
7293 |
|
|
qsort (symtable2, count1, sizeof (struct elf_symbol),
|
7294 |
|
|
elf_sym_name_compare);
|
7295 |
|
|
|
7296 |
|
|
for (i = 0; i < count1; i++)
|
7297 |
|
|
/* Two symbols must have the same binding, type and name. */
|
7298 |
|
|
if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
|
7299 |
|
|
|| symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
|
7300 |
|
|
|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
|
7301 |
|
|
goto done;
|
7302 |
|
|
|
7303 |
|
|
result = TRUE;
|
7304 |
|
|
goto done;
|
7305 |
|
|
}
|
7306 |
|
|
|
7307 |
|
|
symtable1 = (struct elf_symbol *)
|
7308 |
|
|
bfd_malloc (symcount1 * sizeof (struct elf_symbol));
|
7309 |
|
|
symtable2 = (struct elf_symbol *)
|
7310 |
|
|
bfd_malloc (symcount2 * sizeof (struct elf_symbol));
|
7311 |
|
|
if (symtable1 == NULL || symtable2 == NULL)
|
7312 |
|
|
goto done;
|
7313 |
|
|
|
7314 |
|
|
/* Count definitions in the section. */
|
7315 |
|
|
count1 = 0;
|
7316 |
|
|
for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
|
7317 |
|
|
if (isym->st_shndx == shndx1)
|
7318 |
|
|
symtable1[count1++].u.isym = isym;
|
7319 |
|
|
|
7320 |
|
|
count2 = 0;
|
7321 |
|
|
for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
|
7322 |
|
|
if (isym->st_shndx == shndx2)
|
7323 |
|
|
symtable2[count2++].u.isym = isym;
|
7324 |
|
|
|
7325 |
|
|
if (count1 == 0 || count2 == 0 || count1 != count2)
|
7326 |
|
|
goto done;
|
7327 |
|
|
|
7328 |
|
|
for (i = 0; i < count1; i++)
|
7329 |
|
|
symtable1[i].name
|
7330 |
|
|
= bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
|
7331 |
|
|
symtable1[i].u.isym->st_name);
|
7332 |
|
|
|
7333 |
|
|
for (i = 0; i < count2; i++)
|
7334 |
|
|
symtable2[i].name
|
7335 |
|
|
= bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
|
7336 |
|
|
symtable2[i].u.isym->st_name);
|
7337 |
|
|
|
7338 |
|
|
/* Sort symbol by name. */
|
7339 |
|
|
qsort (symtable1, count1, sizeof (struct elf_symbol),
|
7340 |
|
|
elf_sym_name_compare);
|
7341 |
|
|
qsort (symtable2, count1, sizeof (struct elf_symbol),
|
7342 |
|
|
elf_sym_name_compare);
|
7343 |
|
|
|
7344 |
|
|
for (i = 0; i < count1; i++)
|
7345 |
|
|
/* Two symbols must have the same binding, type and name. */
|
7346 |
|
|
if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
|
7347 |
|
|
|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
|
7348 |
|
|
|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
|
7349 |
|
|
goto done;
|
7350 |
|
|
|
7351 |
|
|
result = TRUE;
|
7352 |
|
|
|
7353 |
|
|
done:
|
7354 |
|
|
if (symtable1)
|
7355 |
|
|
free (symtable1);
|
7356 |
|
|
if (symtable2)
|
7357 |
|
|
free (symtable2);
|
7358 |
|
|
if (isymbuf1)
|
7359 |
|
|
free (isymbuf1);
|
7360 |
|
|
if (isymbuf2)
|
7361 |
|
|
free (isymbuf2);
|
7362 |
|
|
|
7363 |
|
|
return result;
|
7364 |
|
|
}
|
7365 |
|
|
|
7366 |
|
|
/* Return TRUE if 2 section types are compatible. */
|
7367 |
|
|
|
7368 |
|
|
bfd_boolean
|
7369 |
|
|
_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
|
7370 |
|
|
bfd *bbfd, const asection *bsec)
|
7371 |
|
|
{
|
7372 |
|
|
if (asec == NULL
|
7373 |
|
|
|| bsec == NULL
|
7374 |
|
|
|| abfd->xvec->flavour != bfd_target_elf_flavour
|
7375 |
|
|
|| bbfd->xvec->flavour != bfd_target_elf_flavour)
|
7376 |
|
|
return TRUE;
|
7377 |
|
|
|
7378 |
|
|
return elf_section_type (asec) == elf_section_type (bsec);
|
7379 |
|
|
}
|
7380 |
|
|
|
7381 |
|
|
/* Final phase of ELF linker. */
|
7382 |
|
|
|
7383 |
|
|
/* A structure we use to avoid passing large numbers of arguments. */
|
7384 |
|
|
|
7385 |
|
|
struct elf_final_link_info
|
7386 |
|
|
{
|
7387 |
|
|
/* General link information. */
|
7388 |
|
|
struct bfd_link_info *info;
|
7389 |
|
|
/* Output BFD. */
|
7390 |
|
|
bfd *output_bfd;
|
7391 |
|
|
/* Symbol string table. */
|
7392 |
|
|
struct bfd_strtab_hash *symstrtab;
|
7393 |
|
|
/* .dynsym section. */
|
7394 |
|
|
asection *dynsym_sec;
|
7395 |
|
|
/* .hash section. */
|
7396 |
|
|
asection *hash_sec;
|
7397 |
|
|
/* symbol version section (.gnu.version). */
|
7398 |
|
|
asection *symver_sec;
|
7399 |
|
|
/* Buffer large enough to hold contents of any section. */
|
7400 |
|
|
bfd_byte *contents;
|
7401 |
|
|
/* Buffer large enough to hold external relocs of any section. */
|
7402 |
|
|
void *external_relocs;
|
7403 |
|
|
/* Buffer large enough to hold internal relocs of any section. */
|
7404 |
|
|
Elf_Internal_Rela *internal_relocs;
|
7405 |
|
|
/* Buffer large enough to hold external local symbols of any input
|
7406 |
|
|
BFD. */
|
7407 |
|
|
bfd_byte *external_syms;
|
7408 |
|
|
/* And a buffer for symbol section indices. */
|
7409 |
|
|
Elf_External_Sym_Shndx *locsym_shndx;
|
7410 |
|
|
/* Buffer large enough to hold internal local symbols of any input
|
7411 |
|
|
BFD. */
|
7412 |
|
|
Elf_Internal_Sym *internal_syms;
|
7413 |
|
|
/* Array large enough to hold a symbol index for each local symbol
|
7414 |
|
|
of any input BFD. */
|
7415 |
|
|
long *indices;
|
7416 |
|
|
/* Array large enough to hold a section pointer for each local
|
7417 |
|
|
symbol of any input BFD. */
|
7418 |
|
|
asection **sections;
|
7419 |
|
|
/* Buffer to hold swapped out symbols. */
|
7420 |
|
|
bfd_byte *symbuf;
|
7421 |
|
|
/* And one for symbol section indices. */
|
7422 |
|
|
Elf_External_Sym_Shndx *symshndxbuf;
|
7423 |
|
|
/* Number of swapped out symbols in buffer. */
|
7424 |
|
|
size_t symbuf_count;
|
7425 |
|
|
/* Number of symbols which fit in symbuf. */
|
7426 |
|
|
size_t symbuf_size;
|
7427 |
|
|
/* And same for symshndxbuf. */
|
7428 |
|
|
size_t shndxbuf_size;
|
7429 |
|
|
};
|
7430 |
|
|
|
7431 |
|
|
/* This struct is used to pass information to elf_link_output_extsym. */
|
7432 |
|
|
|
7433 |
|
|
struct elf_outext_info
|
7434 |
|
|
{
|
7435 |
|
|
bfd_boolean failed;
|
7436 |
|
|
bfd_boolean localsyms;
|
7437 |
|
|
struct elf_final_link_info *finfo;
|
7438 |
|
|
};
|
7439 |
|
|
|
7440 |
|
|
|
7441 |
|
|
/* Support for evaluating a complex relocation.
|
7442 |
|
|
|
7443 |
|
|
Complex relocations are generalized, self-describing relocations. The
|
7444 |
|
|
implementation of them consists of two parts: complex symbols, and the
|
7445 |
|
|
relocations themselves.
|
7446 |
|
|
|
7447 |
|
|
The relocations are use a reserved elf-wide relocation type code (R_RELC
|
7448 |
|
|
external / BFD_RELOC_RELC internal) and an encoding of relocation field
|
7449 |
|
|
information (start bit, end bit, word width, etc) into the addend. This
|
7450 |
|
|
information is extracted from CGEN-generated operand tables within gas.
|
7451 |
|
|
|
7452 |
|
|
Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
|
7453 |
|
|
internal) representing prefix-notation expressions, including but not
|
7454 |
|
|
limited to those sorts of expressions normally encoded as addends in the
|
7455 |
|
|
addend field. The symbol mangling format is:
|
7456 |
|
|
|
7457 |
|
|
<node> := <literal>
|
7458 |
|
|
| <unary-operator> ':' <node>
|
7459 |
|
|
| <binary-operator> ':' <node> ':' <node>
|
7460 |
|
|
;
|
7461 |
|
|
|
7462 |
|
|
<literal> := 's' <digits=N> ':' <N character symbol name>
|
7463 |
|
|
| 'S' <digits=N> ':' <N character section name>
|
7464 |
|
|
| '#' <hexdigits>
|
7465 |
|
|
;
|
7466 |
|
|
|
7467 |
|
|
<binary-operator> := as in C
|
7468 |
|
|
<unary-operator> := as in C, plus "0-" for unambiguous negation. */
|
7469 |
|
|
|
7470 |
|
|
static void
|
7471 |
|
|
set_symbol_value (bfd *bfd_with_globals,
|
7472 |
|
|
Elf_Internal_Sym *isymbuf,
|
7473 |
|
|
size_t locsymcount,
|
7474 |
|
|
size_t symidx,
|
7475 |
|
|
bfd_vma val)
|
7476 |
|
|
{
|
7477 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
7478 |
|
|
struct elf_link_hash_entry *h;
|
7479 |
|
|
size_t extsymoff = locsymcount;
|
7480 |
|
|
|
7481 |
|
|
if (symidx < locsymcount)
|
7482 |
|
|
{
|
7483 |
|
|
Elf_Internal_Sym *sym;
|
7484 |
|
|
|
7485 |
|
|
sym = isymbuf + symidx;
|
7486 |
|
|
if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
|
7487 |
|
|
{
|
7488 |
|
|
/* It is a local symbol: move it to the
|
7489 |
|
|
"absolute" section and give it a value. */
|
7490 |
|
|
sym->st_shndx = SHN_ABS;
|
7491 |
|
|
sym->st_value = val;
|
7492 |
|
|
return;
|
7493 |
|
|
}
|
7494 |
|
|
BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
|
7495 |
|
|
extsymoff = 0;
|
7496 |
|
|
}
|
7497 |
|
|
|
7498 |
|
|
/* It is a global symbol: set its link type
|
7499 |
|
|
to "defined" and give it a value. */
|
7500 |
|
|
|
7501 |
|
|
sym_hashes = elf_sym_hashes (bfd_with_globals);
|
7502 |
|
|
h = sym_hashes [symidx - extsymoff];
|
7503 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
7504 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
7505 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
7506 |
|
|
h->root.type = bfd_link_hash_defined;
|
7507 |
|
|
h->root.u.def.value = val;
|
7508 |
|
|
h->root.u.def.section = bfd_abs_section_ptr;
|
7509 |
|
|
}
|
7510 |
|
|
|
7511 |
|
|
static bfd_boolean
|
7512 |
|
|
resolve_symbol (const char *name,
|
7513 |
|
|
bfd *input_bfd,
|
7514 |
|
|
struct elf_final_link_info *finfo,
|
7515 |
|
|
bfd_vma *result,
|
7516 |
|
|
Elf_Internal_Sym *isymbuf,
|
7517 |
|
|
size_t locsymcount)
|
7518 |
|
|
{
|
7519 |
|
|
Elf_Internal_Sym *sym;
|
7520 |
|
|
struct bfd_link_hash_entry *global_entry;
|
7521 |
|
|
const char *candidate = NULL;
|
7522 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
7523 |
|
|
size_t i;
|
7524 |
|
|
|
7525 |
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
7526 |
|
|
|
7527 |
|
|
for (i = 0; i < locsymcount; ++ i)
|
7528 |
|
|
{
|
7529 |
|
|
sym = isymbuf + i;
|
7530 |
|
|
|
7531 |
|
|
if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
7532 |
|
|
continue;
|
7533 |
|
|
|
7534 |
|
|
candidate = bfd_elf_string_from_elf_section (input_bfd,
|
7535 |
|
|
symtab_hdr->sh_link,
|
7536 |
|
|
sym->st_name);
|
7537 |
|
|
#ifdef DEBUG
|
7538 |
|
|
printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
|
7539 |
|
|
name, candidate, (unsigned long) sym->st_value);
|
7540 |
|
|
#endif
|
7541 |
|
|
if (candidate && strcmp (candidate, name) == 0)
|
7542 |
|
|
{
|
7543 |
|
|
asection *sec = finfo->sections [i];
|
7544 |
|
|
|
7545 |
|
|
*result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
|
7546 |
|
|
*result += sec->output_offset + sec->output_section->vma;
|
7547 |
|
|
#ifdef DEBUG
|
7548 |
|
|
printf ("Found symbol with value %8.8lx\n",
|
7549 |
|
|
(unsigned long) *result);
|
7550 |
|
|
#endif
|
7551 |
|
|
return TRUE;
|
7552 |
|
|
}
|
7553 |
|
|
}
|
7554 |
|
|
|
7555 |
|
|
/* Hmm, haven't found it yet. perhaps it is a global. */
|
7556 |
|
|
global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
|
7557 |
|
|
FALSE, FALSE, TRUE);
|
7558 |
|
|
if (!global_entry)
|
7559 |
|
|
return FALSE;
|
7560 |
|
|
|
7561 |
|
|
if (global_entry->type == bfd_link_hash_defined
|
7562 |
|
|
|| global_entry->type == bfd_link_hash_defweak)
|
7563 |
|
|
{
|
7564 |
|
|
*result = (global_entry->u.def.value
|
7565 |
|
|
+ global_entry->u.def.section->output_section->vma
|
7566 |
|
|
+ global_entry->u.def.section->output_offset);
|
7567 |
|
|
#ifdef DEBUG
|
7568 |
|
|
printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
|
7569 |
|
|
global_entry->root.string, (unsigned long) *result);
|
7570 |
|
|
#endif
|
7571 |
|
|
return TRUE;
|
7572 |
|
|
}
|
7573 |
|
|
|
7574 |
|
|
return FALSE;
|
7575 |
|
|
}
|
7576 |
|
|
|
7577 |
|
|
static bfd_boolean
|
7578 |
|
|
resolve_section (const char *name,
|
7579 |
|
|
asection *sections,
|
7580 |
|
|
bfd_vma *result)
|
7581 |
|
|
{
|
7582 |
|
|
asection *curr;
|
7583 |
|
|
unsigned int len;
|
7584 |
|
|
|
7585 |
|
|
for (curr = sections; curr; curr = curr->next)
|
7586 |
|
|
if (strcmp (curr->name, name) == 0)
|
7587 |
|
|
{
|
7588 |
|
|
*result = curr->vma;
|
7589 |
|
|
return TRUE;
|
7590 |
|
|
}
|
7591 |
|
|
|
7592 |
|
|
/* Hmm. still haven't found it. try pseudo-section names. */
|
7593 |
|
|
for (curr = sections; curr; curr = curr->next)
|
7594 |
|
|
{
|
7595 |
|
|
len = strlen (curr->name);
|
7596 |
|
|
if (len > strlen (name))
|
7597 |
|
|
continue;
|
7598 |
|
|
|
7599 |
|
|
if (strncmp (curr->name, name, len) == 0)
|
7600 |
|
|
{
|
7601 |
|
|
if (strncmp (".end", name + len, 4) == 0)
|
7602 |
|
|
{
|
7603 |
|
|
*result = curr->vma + curr->size;
|
7604 |
|
|
return TRUE;
|
7605 |
|
|
}
|
7606 |
|
|
|
7607 |
|
|
/* Insert more pseudo-section names here, if you like. */
|
7608 |
|
|
}
|
7609 |
|
|
}
|
7610 |
|
|
|
7611 |
|
|
return FALSE;
|
7612 |
|
|
}
|
7613 |
|
|
|
7614 |
|
|
static void
|
7615 |
|
|
undefined_reference (const char *reftype, const char *name)
|
7616 |
|
|
{
|
7617 |
|
|
_bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
|
7618 |
|
|
reftype, name);
|
7619 |
|
|
}
|
7620 |
|
|
|
7621 |
|
|
static bfd_boolean
|
7622 |
|
|
eval_symbol (bfd_vma *result,
|
7623 |
|
|
const char **symp,
|
7624 |
|
|
bfd *input_bfd,
|
7625 |
|
|
struct elf_final_link_info *finfo,
|
7626 |
|
|
bfd_vma dot,
|
7627 |
|
|
Elf_Internal_Sym *isymbuf,
|
7628 |
|
|
size_t locsymcount,
|
7629 |
|
|
int signed_p)
|
7630 |
|
|
{
|
7631 |
|
|
size_t len;
|
7632 |
|
|
size_t symlen;
|
7633 |
|
|
bfd_vma a;
|
7634 |
|
|
bfd_vma b;
|
7635 |
|
|
char symbuf[4096];
|
7636 |
|
|
const char *sym = *symp;
|
7637 |
|
|
const char *symend;
|
7638 |
|
|
bfd_boolean symbol_is_section = FALSE;
|
7639 |
|
|
|
7640 |
|
|
len = strlen (sym);
|
7641 |
|
|
symend = sym + len;
|
7642 |
|
|
|
7643 |
|
|
if (len < 1 || len > sizeof (symbuf))
|
7644 |
|
|
{
|
7645 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
7646 |
|
|
return FALSE;
|
7647 |
|
|
}
|
7648 |
|
|
|
7649 |
|
|
switch (* sym)
|
7650 |
|
|
{
|
7651 |
|
|
case '.':
|
7652 |
|
|
*result = dot;
|
7653 |
|
|
*symp = sym + 1;
|
7654 |
|
|
return TRUE;
|
7655 |
|
|
|
7656 |
|
|
case '#':
|
7657 |
|
|
++sym;
|
7658 |
|
|
*result = strtoul (sym, (char **) symp, 16);
|
7659 |
|
|
return TRUE;
|
7660 |
|
|
|
7661 |
|
|
case 'S':
|
7662 |
|
|
symbol_is_section = TRUE;
|
7663 |
|
|
case 's':
|
7664 |
|
|
++sym;
|
7665 |
|
|
symlen = strtol (sym, (char **) symp, 10);
|
7666 |
|
|
sym = *symp + 1; /* Skip the trailing ':'. */
|
7667 |
|
|
|
7668 |
|
|
if (symend < sym || symlen + 1 > sizeof (symbuf))
|
7669 |
|
|
{
|
7670 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
7671 |
|
|
return FALSE;
|
7672 |
|
|
}
|
7673 |
|
|
|
7674 |
|
|
memcpy (symbuf, sym, symlen);
|
7675 |
|
|
symbuf[symlen] = '\0';
|
7676 |
|
|
*symp = sym + symlen;
|
7677 |
|
|
|
7678 |
|
|
/* Is it always possible, with complex symbols, that gas "mis-guessed"
|
7679 |
|
|
the symbol as a section, or vice-versa. so we're pretty liberal in our
|
7680 |
|
|
interpretation here; section means "try section first", not "must be a
|
7681 |
|
|
section", and likewise with symbol. */
|
7682 |
|
|
|
7683 |
|
|
if (symbol_is_section)
|
7684 |
|
|
{
|
7685 |
|
|
if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
|
7686 |
|
|
&& !resolve_symbol (symbuf, input_bfd, finfo, result,
|
7687 |
|
|
isymbuf, locsymcount))
|
7688 |
|
|
{
|
7689 |
|
|
undefined_reference ("section", symbuf);
|
7690 |
|
|
return FALSE;
|
7691 |
|
|
}
|
7692 |
|
|
}
|
7693 |
|
|
else
|
7694 |
|
|
{
|
7695 |
|
|
if (!resolve_symbol (symbuf, input_bfd, finfo, result,
|
7696 |
|
|
isymbuf, locsymcount)
|
7697 |
|
|
&& !resolve_section (symbuf, finfo->output_bfd->sections,
|
7698 |
|
|
result))
|
7699 |
|
|
{
|
7700 |
|
|
undefined_reference ("symbol", symbuf);
|
7701 |
|
|
return FALSE;
|
7702 |
|
|
}
|
7703 |
|
|
}
|
7704 |
|
|
|
7705 |
|
|
return TRUE;
|
7706 |
|
|
|
7707 |
|
|
/* All that remains are operators. */
|
7708 |
|
|
|
7709 |
|
|
#define UNARY_OP(op) \
|
7710 |
|
|
if (strncmp (sym, #op, strlen (#op)) == 0) \
|
7711 |
|
|
{ \
|
7712 |
|
|
sym += strlen (#op); \
|
7713 |
|
|
if (*sym == ':') \
|
7714 |
|
|
++sym; \
|
7715 |
|
|
*symp = sym; \
|
7716 |
|
|
if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
|
7717 |
|
|
isymbuf, locsymcount, signed_p)) \
|
7718 |
|
|
return FALSE; \
|
7719 |
|
|
if (signed_p) \
|
7720 |
|
|
*result = op ((bfd_signed_vma) a); \
|
7721 |
|
|
else \
|
7722 |
|
|
*result = op a; \
|
7723 |
|
|
return TRUE; \
|
7724 |
|
|
}
|
7725 |
|
|
|
7726 |
|
|
#define BINARY_OP(op) \
|
7727 |
|
|
if (strncmp (sym, #op, strlen (#op)) == 0) \
|
7728 |
|
|
{ \
|
7729 |
|
|
sym += strlen (#op); \
|
7730 |
|
|
if (*sym == ':') \
|
7731 |
|
|
++sym; \
|
7732 |
|
|
*symp = sym; \
|
7733 |
|
|
if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
|
7734 |
|
|
isymbuf, locsymcount, signed_p)) \
|
7735 |
|
|
return FALSE; \
|
7736 |
|
|
++*symp; \
|
7737 |
|
|
if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
|
7738 |
|
|
isymbuf, locsymcount, signed_p)) \
|
7739 |
|
|
return FALSE; \
|
7740 |
|
|
if (signed_p) \
|
7741 |
|
|
*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
|
7742 |
|
|
else \
|
7743 |
|
|
*result = a op b; \
|
7744 |
|
|
return TRUE; \
|
7745 |
|
|
}
|
7746 |
|
|
|
7747 |
|
|
default:
|
7748 |
|
|
UNARY_OP (0-);
|
7749 |
|
|
BINARY_OP (<<);
|
7750 |
|
|
BINARY_OP (>>);
|
7751 |
|
|
BINARY_OP (==);
|
7752 |
|
|
BINARY_OP (!=);
|
7753 |
|
|
BINARY_OP (<=);
|
7754 |
|
|
BINARY_OP (>=);
|
7755 |
|
|
BINARY_OP (&&);
|
7756 |
|
|
BINARY_OP (||);
|
7757 |
|
|
UNARY_OP (~);
|
7758 |
|
|
UNARY_OP (!);
|
7759 |
|
|
BINARY_OP (*);
|
7760 |
|
|
BINARY_OP (/);
|
7761 |
|
|
BINARY_OP (%);
|
7762 |
|
|
BINARY_OP (^);
|
7763 |
|
|
BINARY_OP (|);
|
7764 |
|
|
BINARY_OP (&);
|
7765 |
|
|
BINARY_OP (+);
|
7766 |
|
|
BINARY_OP (-);
|
7767 |
|
|
BINARY_OP (<);
|
7768 |
|
|
BINARY_OP (>);
|
7769 |
|
|
#undef UNARY_OP
|
7770 |
|
|
#undef BINARY_OP
|
7771 |
|
|
_bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
|
7772 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
7773 |
|
|
return FALSE;
|
7774 |
|
|
}
|
7775 |
|
|
}
|
7776 |
|
|
|
7777 |
|
|
static void
|
7778 |
|
|
put_value (bfd_vma size,
|
7779 |
|
|
unsigned long chunksz,
|
7780 |
|
|
bfd *input_bfd,
|
7781 |
|
|
bfd_vma x,
|
7782 |
|
|
bfd_byte *location)
|
7783 |
|
|
{
|
7784 |
|
|
location += (size - chunksz);
|
7785 |
|
|
|
7786 |
|
|
for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
|
7787 |
|
|
{
|
7788 |
|
|
switch (chunksz)
|
7789 |
|
|
{
|
7790 |
|
|
default:
|
7791 |
|
|
case 0:
|
7792 |
|
|
abort ();
|
7793 |
|
|
case 1:
|
7794 |
|
|
bfd_put_8 (input_bfd, x, location);
|
7795 |
|
|
break;
|
7796 |
|
|
case 2:
|
7797 |
|
|
bfd_put_16 (input_bfd, x, location);
|
7798 |
|
|
break;
|
7799 |
|
|
case 4:
|
7800 |
|
|
bfd_put_32 (input_bfd, x, location);
|
7801 |
|
|
break;
|
7802 |
|
|
case 8:
|
7803 |
|
|
#ifdef BFD64
|
7804 |
|
|
bfd_put_64 (input_bfd, x, location);
|
7805 |
|
|
#else
|
7806 |
|
|
abort ();
|
7807 |
|
|
#endif
|
7808 |
|
|
break;
|
7809 |
|
|
}
|
7810 |
|
|
}
|
7811 |
|
|
}
|
7812 |
|
|
|
7813 |
|
|
static bfd_vma
|
7814 |
|
|
get_value (bfd_vma size,
|
7815 |
|
|
unsigned long chunksz,
|
7816 |
|
|
bfd *input_bfd,
|
7817 |
|
|
bfd_byte *location)
|
7818 |
|
|
{
|
7819 |
|
|
bfd_vma x = 0;
|
7820 |
|
|
|
7821 |
|
|
for (; size; size -= chunksz, location += chunksz)
|
7822 |
|
|
{
|
7823 |
|
|
switch (chunksz)
|
7824 |
|
|
{
|
7825 |
|
|
default:
|
7826 |
|
|
case 0:
|
7827 |
|
|
abort ();
|
7828 |
|
|
case 1:
|
7829 |
|
|
x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
|
7830 |
|
|
break;
|
7831 |
|
|
case 2:
|
7832 |
|
|
x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
|
7833 |
|
|
break;
|
7834 |
|
|
case 4:
|
7835 |
|
|
x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
|
7836 |
|
|
break;
|
7837 |
|
|
case 8:
|
7838 |
|
|
#ifdef BFD64
|
7839 |
|
|
x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
|
7840 |
|
|
#else
|
7841 |
|
|
abort ();
|
7842 |
|
|
#endif
|
7843 |
|
|
break;
|
7844 |
|
|
}
|
7845 |
|
|
}
|
7846 |
|
|
return x;
|
7847 |
|
|
}
|
7848 |
|
|
|
7849 |
|
|
static void
|
7850 |
|
|
decode_complex_addend (unsigned long *start, /* in bits */
|
7851 |
|
|
unsigned long *oplen, /* in bits */
|
7852 |
|
|
unsigned long *len, /* in bits */
|
7853 |
|
|
unsigned long *wordsz, /* in bytes */
|
7854 |
|
|
unsigned long *chunksz, /* in bytes */
|
7855 |
|
|
unsigned long *lsb0_p,
|
7856 |
|
|
unsigned long *signed_p,
|
7857 |
|
|
unsigned long *trunc_p,
|
7858 |
|
|
unsigned long encoded)
|
7859 |
|
|
{
|
7860 |
|
|
* start = encoded & 0x3F;
|
7861 |
|
|
* len = (encoded >> 6) & 0x3F;
|
7862 |
|
|
* oplen = (encoded >> 12) & 0x3F;
|
7863 |
|
|
* wordsz = (encoded >> 18) & 0xF;
|
7864 |
|
|
* chunksz = (encoded >> 22) & 0xF;
|
7865 |
|
|
* lsb0_p = (encoded >> 27) & 1;
|
7866 |
|
|
* signed_p = (encoded >> 28) & 1;
|
7867 |
|
|
* trunc_p = (encoded >> 29) & 1;
|
7868 |
|
|
}
|
7869 |
|
|
|
7870 |
|
|
bfd_reloc_status_type
|
7871 |
|
|
bfd_elf_perform_complex_relocation (bfd *input_bfd,
|
7872 |
|
|
asection *input_section ATTRIBUTE_UNUSED,
|
7873 |
|
|
bfd_byte *contents,
|
7874 |
|
|
Elf_Internal_Rela *rel,
|
7875 |
|
|
bfd_vma relocation)
|
7876 |
|
|
{
|
7877 |
|
|
bfd_vma shift, x, mask;
|
7878 |
|
|
unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
|
7879 |
|
|
bfd_reloc_status_type r;
|
7880 |
|
|
|
7881 |
|
|
/* Perform this reloc, since it is complex.
|
7882 |
|
|
(this is not to say that it necessarily refers to a complex
|
7883 |
|
|
symbol; merely that it is a self-describing CGEN based reloc.
|
7884 |
|
|
i.e. the addend has the complete reloc information (bit start, end,
|
7885 |
|
|
word size, etc) encoded within it.). */
|
7886 |
|
|
|
7887 |
|
|
decode_complex_addend (&start, &oplen, &len, &wordsz,
|
7888 |
|
|
&chunksz, &lsb0_p, &signed_p,
|
7889 |
|
|
&trunc_p, rel->r_addend);
|
7890 |
|
|
|
7891 |
|
|
mask = (((1L << (len - 1)) - 1) << 1) | 1;
|
7892 |
|
|
|
7893 |
|
|
if (lsb0_p)
|
7894 |
|
|
shift = (start + 1) - len;
|
7895 |
|
|
else
|
7896 |
|
|
shift = (8 * wordsz) - (start + len);
|
7897 |
|
|
|
7898 |
|
|
/* FIXME: octets_per_byte. */
|
7899 |
|
|
x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
|
7900 |
|
|
|
7901 |
|
|
#ifdef DEBUG
|
7902 |
|
|
printf ("Doing complex reloc: "
|
7903 |
|
|
"lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
|
7904 |
|
|
"chunksz %ld, start %ld, len %ld, oplen %ld\n"
|
7905 |
|
|
" dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
|
7906 |
|
|
lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
|
7907 |
|
|
oplen, (unsigned long) x, (unsigned long) mask,
|
7908 |
|
|
(unsigned long) relocation);
|
7909 |
|
|
#endif
|
7910 |
|
|
|
7911 |
|
|
r = bfd_reloc_ok;
|
7912 |
|
|
if (! trunc_p)
|
7913 |
|
|
/* Now do an overflow check. */
|
7914 |
|
|
r = bfd_check_overflow ((signed_p
|
7915 |
|
|
? complain_overflow_signed
|
7916 |
|
|
: complain_overflow_unsigned),
|
7917 |
|
|
len, 0, (8 * wordsz),
|
7918 |
|
|
relocation);
|
7919 |
|
|
|
7920 |
|
|
/* Do the deed. */
|
7921 |
|
|
x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
|
7922 |
|
|
|
7923 |
|
|
#ifdef DEBUG
|
7924 |
|
|
printf (" relocation: %8.8lx\n"
|
7925 |
|
|
" shifted mask: %8.8lx\n"
|
7926 |
|
|
" shifted/masked reloc: %8.8lx\n"
|
7927 |
|
|
" result: %8.8lx\n",
|
7928 |
|
|
(unsigned long) relocation, (unsigned long) (mask << shift),
|
7929 |
|
|
(unsigned long) ((relocation & mask) << shift), (unsigned long) x);
|
7930 |
|
|
#endif
|
7931 |
|
|
/* FIXME: octets_per_byte. */
|
7932 |
|
|
put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
|
7933 |
|
|
return r;
|
7934 |
|
|
}
|
7935 |
|
|
|
7936 |
|
|
/* When performing a relocatable link, the input relocations are
|
7937 |
|
|
preserved. But, if they reference global symbols, the indices
|
7938 |
|
|
referenced must be updated. Update all the relocations found in
|
7939 |
|
|
RELDATA. */
|
7940 |
|
|
|
7941 |
|
|
static void
|
7942 |
|
|
elf_link_adjust_relocs (bfd *abfd,
|
7943 |
|
|
struct bfd_elf_section_reloc_data *reldata)
|
7944 |
|
|
{
|
7945 |
|
|
unsigned int i;
|
7946 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
7947 |
|
|
bfd_byte *erela;
|
7948 |
|
|
void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
|
7949 |
|
|
void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
|
7950 |
|
|
bfd_vma r_type_mask;
|
7951 |
|
|
int r_sym_shift;
|
7952 |
|
|
unsigned int count = reldata->count;
|
7953 |
|
|
struct elf_link_hash_entry **rel_hash = reldata->hashes;
|
7954 |
|
|
|
7955 |
|
|
if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
|
7956 |
|
|
{
|
7957 |
|
|
swap_in = bed->s->swap_reloc_in;
|
7958 |
|
|
swap_out = bed->s->swap_reloc_out;
|
7959 |
|
|
}
|
7960 |
|
|
else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
|
7961 |
|
|
{
|
7962 |
|
|
swap_in = bed->s->swap_reloca_in;
|
7963 |
|
|
swap_out = bed->s->swap_reloca_out;
|
7964 |
|
|
}
|
7965 |
|
|
else
|
7966 |
|
|
abort ();
|
7967 |
|
|
|
7968 |
|
|
if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
|
7969 |
|
|
abort ();
|
7970 |
|
|
|
7971 |
|
|
if (bed->s->arch_size == 32)
|
7972 |
|
|
{
|
7973 |
|
|
r_type_mask = 0xff;
|
7974 |
|
|
r_sym_shift = 8;
|
7975 |
|
|
}
|
7976 |
|
|
else
|
7977 |
|
|
{
|
7978 |
|
|
r_type_mask = 0xffffffff;
|
7979 |
|
|
r_sym_shift = 32;
|
7980 |
|
|
}
|
7981 |
|
|
|
7982 |
|
|
erela = reldata->hdr->contents;
|
7983 |
|
|
for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
|
7984 |
|
|
{
|
7985 |
|
|
Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
|
7986 |
|
|
unsigned int j;
|
7987 |
|
|
|
7988 |
|
|
if (*rel_hash == NULL)
|
7989 |
|
|
continue;
|
7990 |
|
|
|
7991 |
|
|
BFD_ASSERT ((*rel_hash)->indx >= 0);
|
7992 |
|
|
|
7993 |
|
|
(*swap_in) (abfd, erela, irela);
|
7994 |
|
|
for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
|
7995 |
|
|
irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
|
7996 |
|
|
| (irela[j].r_info & r_type_mask));
|
7997 |
|
|
(*swap_out) (abfd, irela, erela);
|
7998 |
|
|
}
|
7999 |
|
|
}
|
8000 |
|
|
|
8001 |
|
|
struct elf_link_sort_rela
|
8002 |
|
|
{
|
8003 |
|
|
union {
|
8004 |
|
|
bfd_vma offset;
|
8005 |
|
|
bfd_vma sym_mask;
|
8006 |
|
|
} u;
|
8007 |
|
|
enum elf_reloc_type_class type;
|
8008 |
|
|
/* We use this as an array of size int_rels_per_ext_rel. */
|
8009 |
|
|
Elf_Internal_Rela rela[1];
|
8010 |
|
|
};
|
8011 |
|
|
|
8012 |
|
|
static int
|
8013 |
|
|
elf_link_sort_cmp1 (const void *A, const void *B)
|
8014 |
|
|
{
|
8015 |
|
|
const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
|
8016 |
|
|
const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
|
8017 |
|
|
int relativea, relativeb;
|
8018 |
|
|
|
8019 |
|
|
relativea = a->type == reloc_class_relative;
|
8020 |
|
|
relativeb = b->type == reloc_class_relative;
|
8021 |
|
|
|
8022 |
|
|
if (relativea < relativeb)
|
8023 |
|
|
return 1;
|
8024 |
|
|
if (relativea > relativeb)
|
8025 |
|
|
return -1;
|
8026 |
|
|
if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
|
8027 |
|
|
return -1;
|
8028 |
|
|
if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
|
8029 |
|
|
return 1;
|
8030 |
|
|
if (a->rela->r_offset < b->rela->r_offset)
|
8031 |
|
|
return -1;
|
8032 |
|
|
if (a->rela->r_offset > b->rela->r_offset)
|
8033 |
|
|
return 1;
|
8034 |
|
|
return 0;
|
8035 |
|
|
}
|
8036 |
|
|
|
8037 |
|
|
static int
|
8038 |
|
|
elf_link_sort_cmp2 (const void *A, const void *B)
|
8039 |
|
|
{
|
8040 |
|
|
const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
|
8041 |
|
|
const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
|
8042 |
|
|
int copya, copyb;
|
8043 |
|
|
|
8044 |
|
|
if (a->u.offset < b->u.offset)
|
8045 |
|
|
return -1;
|
8046 |
|
|
if (a->u.offset > b->u.offset)
|
8047 |
|
|
return 1;
|
8048 |
|
|
copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
|
8049 |
|
|
copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
|
8050 |
|
|
if (copya < copyb)
|
8051 |
|
|
return -1;
|
8052 |
|
|
if (copya > copyb)
|
8053 |
|
|
return 1;
|
8054 |
|
|
if (a->rela->r_offset < b->rela->r_offset)
|
8055 |
|
|
return -1;
|
8056 |
|
|
if (a->rela->r_offset > b->rela->r_offset)
|
8057 |
|
|
return 1;
|
8058 |
|
|
return 0;
|
8059 |
|
|
}
|
8060 |
|
|
|
8061 |
|
|
static size_t
|
8062 |
|
|
elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
|
8063 |
|
|
{
|
8064 |
|
|
asection *dynamic_relocs;
|
8065 |
|
|
asection *rela_dyn;
|
8066 |
|
|
asection *rel_dyn;
|
8067 |
|
|
bfd_size_type count, size;
|
8068 |
|
|
size_t i, ret, sort_elt, ext_size;
|
8069 |
|
|
bfd_byte *sort, *s_non_relative, *p;
|
8070 |
|
|
struct elf_link_sort_rela *sq;
|
8071 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
8072 |
|
|
int i2e = bed->s->int_rels_per_ext_rel;
|
8073 |
|
|
void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
|
8074 |
|
|
void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
|
8075 |
|
|
struct bfd_link_order *lo;
|
8076 |
|
|
bfd_vma r_sym_mask;
|
8077 |
|
|
bfd_boolean use_rela;
|
8078 |
|
|
|
8079 |
|
|
/* Find a dynamic reloc section. */
|
8080 |
|
|
rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
|
8081 |
|
|
rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
|
8082 |
|
|
if (rela_dyn != NULL && rela_dyn->size > 0
|
8083 |
|
|
&& rel_dyn != NULL && rel_dyn->size > 0)
|
8084 |
|
|
{
|
8085 |
|
|
bfd_boolean use_rela_initialised = FALSE;
|
8086 |
|
|
|
8087 |
|
|
/* This is just here to stop gcc from complaining.
|
8088 |
|
|
It's initialization checking code is not perfect. */
|
8089 |
|
|
use_rela = TRUE;
|
8090 |
|
|
|
8091 |
|
|
/* Both sections are present. Examine the sizes
|
8092 |
|
|
of the indirect sections to help us choose. */
|
8093 |
|
|
for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
|
8094 |
|
|
if (lo->type == bfd_indirect_link_order)
|
8095 |
|
|
{
|
8096 |
|
|
asection *o = lo->u.indirect.section;
|
8097 |
|
|
|
8098 |
|
|
if ((o->size % bed->s->sizeof_rela) == 0)
|
8099 |
|
|
{
|
8100 |
|
|
if ((o->size % bed->s->sizeof_rel) == 0)
|
8101 |
|
|
/* Section size is divisible by both rel and rela sizes.
|
8102 |
|
|
It is of no help to us. */
|
8103 |
|
|
;
|
8104 |
|
|
else
|
8105 |
|
|
{
|
8106 |
|
|
/* Section size is only divisible by rela. */
|
8107 |
|
|
if (use_rela_initialised && (use_rela == FALSE))
|
8108 |
|
|
{
|
8109 |
|
|
_bfd_error_handler
|
8110 |
|
|
(_("%B: Unable to sort relocs - they are in more than one size"), abfd);
|
8111 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8112 |
|
|
return 0;
|
8113 |
|
|
}
|
8114 |
|
|
else
|
8115 |
|
|
{
|
8116 |
|
|
use_rela = TRUE;
|
8117 |
|
|
use_rela_initialised = TRUE;
|
8118 |
|
|
}
|
8119 |
|
|
}
|
8120 |
|
|
}
|
8121 |
|
|
else if ((o->size % bed->s->sizeof_rel) == 0)
|
8122 |
|
|
{
|
8123 |
|
|
/* Section size is only divisible by rel. */
|
8124 |
|
|
if (use_rela_initialised && (use_rela == TRUE))
|
8125 |
|
|
{
|
8126 |
|
|
_bfd_error_handler
|
8127 |
|
|
(_("%B: Unable to sort relocs - they are in more than one size"), abfd);
|
8128 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8129 |
|
|
return 0;
|
8130 |
|
|
}
|
8131 |
|
|
else
|
8132 |
|
|
{
|
8133 |
|
|
use_rela = FALSE;
|
8134 |
|
|
use_rela_initialised = TRUE;
|
8135 |
|
|
}
|
8136 |
|
|
}
|
8137 |
|
|
else
|
8138 |
|
|
{
|
8139 |
|
|
/* The section size is not divisible by either - something is wrong. */
|
8140 |
|
|
_bfd_error_handler
|
8141 |
|
|
(_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
|
8142 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8143 |
|
|
return 0;
|
8144 |
|
|
}
|
8145 |
|
|
}
|
8146 |
|
|
|
8147 |
|
|
for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
|
8148 |
|
|
if (lo->type == bfd_indirect_link_order)
|
8149 |
|
|
{
|
8150 |
|
|
asection *o = lo->u.indirect.section;
|
8151 |
|
|
|
8152 |
|
|
if ((o->size % bed->s->sizeof_rela) == 0)
|
8153 |
|
|
{
|
8154 |
|
|
if ((o->size % bed->s->sizeof_rel) == 0)
|
8155 |
|
|
/* Section size is divisible by both rel and rela sizes.
|
8156 |
|
|
It is of no help to us. */
|
8157 |
|
|
;
|
8158 |
|
|
else
|
8159 |
|
|
{
|
8160 |
|
|
/* Section size is only divisible by rela. */
|
8161 |
|
|
if (use_rela_initialised && (use_rela == FALSE))
|
8162 |
|
|
{
|
8163 |
|
|
_bfd_error_handler
|
8164 |
|
|
(_("%B: Unable to sort relocs - they are in more than one size"), abfd);
|
8165 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8166 |
|
|
return 0;
|
8167 |
|
|
}
|
8168 |
|
|
else
|
8169 |
|
|
{
|
8170 |
|
|
use_rela = TRUE;
|
8171 |
|
|
use_rela_initialised = TRUE;
|
8172 |
|
|
}
|
8173 |
|
|
}
|
8174 |
|
|
}
|
8175 |
|
|
else if ((o->size % bed->s->sizeof_rel) == 0)
|
8176 |
|
|
{
|
8177 |
|
|
/* Section size is only divisible by rel. */
|
8178 |
|
|
if (use_rela_initialised && (use_rela == TRUE))
|
8179 |
|
|
{
|
8180 |
|
|
_bfd_error_handler
|
8181 |
|
|
(_("%B: Unable to sort relocs - they are in more than one size"), abfd);
|
8182 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8183 |
|
|
return 0;
|
8184 |
|
|
}
|
8185 |
|
|
else
|
8186 |
|
|
{
|
8187 |
|
|
use_rela = FALSE;
|
8188 |
|
|
use_rela_initialised = TRUE;
|
8189 |
|
|
}
|
8190 |
|
|
}
|
8191 |
|
|
else
|
8192 |
|
|
{
|
8193 |
|
|
/* The section size is not divisible by either - something is wrong. */
|
8194 |
|
|
_bfd_error_handler
|
8195 |
|
|
(_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
|
8196 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
8197 |
|
|
return 0;
|
8198 |
|
|
}
|
8199 |
|
|
}
|
8200 |
|
|
|
8201 |
|
|
if (! use_rela_initialised)
|
8202 |
|
|
/* Make a guess. */
|
8203 |
|
|
use_rela = TRUE;
|
8204 |
|
|
}
|
8205 |
|
|
else if (rela_dyn != NULL && rela_dyn->size > 0)
|
8206 |
|
|
use_rela = TRUE;
|
8207 |
|
|
else if (rel_dyn != NULL && rel_dyn->size > 0)
|
8208 |
|
|
use_rela = FALSE;
|
8209 |
|
|
else
|
8210 |
|
|
return 0;
|
8211 |
|
|
|
8212 |
|
|
if (use_rela)
|
8213 |
|
|
{
|
8214 |
|
|
dynamic_relocs = rela_dyn;
|
8215 |
|
|
ext_size = bed->s->sizeof_rela;
|
8216 |
|
|
swap_in = bed->s->swap_reloca_in;
|
8217 |
|
|
swap_out = bed->s->swap_reloca_out;
|
8218 |
|
|
}
|
8219 |
|
|
else
|
8220 |
|
|
{
|
8221 |
|
|
dynamic_relocs = rel_dyn;
|
8222 |
|
|
ext_size = bed->s->sizeof_rel;
|
8223 |
|
|
swap_in = bed->s->swap_reloc_in;
|
8224 |
|
|
swap_out = bed->s->swap_reloc_out;
|
8225 |
|
|
}
|
8226 |
|
|
|
8227 |
|
|
size = 0;
|
8228 |
|
|
for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
|
8229 |
|
|
if (lo->type == bfd_indirect_link_order)
|
8230 |
|
|
size += lo->u.indirect.section->size;
|
8231 |
|
|
|
8232 |
|
|
if (size != dynamic_relocs->size)
|
8233 |
|
|
return 0;
|
8234 |
|
|
|
8235 |
|
|
sort_elt = (sizeof (struct elf_link_sort_rela)
|
8236 |
|
|
+ (i2e - 1) * sizeof (Elf_Internal_Rela));
|
8237 |
|
|
|
8238 |
|
|
count = dynamic_relocs->size / ext_size;
|
8239 |
|
|
if (count == 0)
|
8240 |
|
|
return 0;
|
8241 |
|
|
sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
|
8242 |
|
|
|
8243 |
|
|
if (sort == NULL)
|
8244 |
|
|
{
|
8245 |
|
|
(*info->callbacks->warning)
|
8246 |
|
|
(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
|
8247 |
|
|
return 0;
|
8248 |
|
|
}
|
8249 |
|
|
|
8250 |
|
|
if (bed->s->arch_size == 32)
|
8251 |
|
|
r_sym_mask = ~(bfd_vma) 0xff;
|
8252 |
|
|
else
|
8253 |
|
|
r_sym_mask = ~(bfd_vma) 0xffffffff;
|
8254 |
|
|
|
8255 |
|
|
for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
|
8256 |
|
|
if (lo->type == bfd_indirect_link_order)
|
8257 |
|
|
{
|
8258 |
|
|
bfd_byte *erel, *erelend;
|
8259 |
|
|
asection *o = lo->u.indirect.section;
|
8260 |
|
|
|
8261 |
|
|
if (o->contents == NULL && o->size != 0)
|
8262 |
|
|
{
|
8263 |
|
|
/* This is a reloc section that is being handled as a normal
|
8264 |
|
|
section. See bfd_section_from_shdr. We can't combine
|
8265 |
|
|
relocs in this case. */
|
8266 |
|
|
free (sort);
|
8267 |
|
|
return 0;
|
8268 |
|
|
}
|
8269 |
|
|
erel = o->contents;
|
8270 |
|
|
erelend = o->contents + o->size;
|
8271 |
|
|
/* FIXME: octets_per_byte. */
|
8272 |
|
|
p = sort + o->output_offset / ext_size * sort_elt;
|
8273 |
|
|
|
8274 |
|
|
while (erel < erelend)
|
8275 |
|
|
{
|
8276 |
|
|
struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
|
8277 |
|
|
|
8278 |
|
|
(*swap_in) (abfd, erel, s->rela);
|
8279 |
|
|
s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
|
8280 |
|
|
s->u.sym_mask = r_sym_mask;
|
8281 |
|
|
p += sort_elt;
|
8282 |
|
|
erel += ext_size;
|
8283 |
|
|
}
|
8284 |
|
|
}
|
8285 |
|
|
|
8286 |
|
|
qsort (sort, count, sort_elt, elf_link_sort_cmp1);
|
8287 |
|
|
|
8288 |
|
|
for (i = 0, p = sort; i < count; i++, p += sort_elt)
|
8289 |
|
|
{
|
8290 |
|
|
struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
|
8291 |
|
|
if (s->type != reloc_class_relative)
|
8292 |
|
|
break;
|
8293 |
|
|
}
|
8294 |
|
|
ret = i;
|
8295 |
|
|
s_non_relative = p;
|
8296 |
|
|
|
8297 |
|
|
sq = (struct elf_link_sort_rela *) s_non_relative;
|
8298 |
|
|
for (; i < count; i++, p += sort_elt)
|
8299 |
|
|
{
|
8300 |
|
|
struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
|
8301 |
|
|
if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
|
8302 |
|
|
sq = sp;
|
8303 |
|
|
sp->u.offset = sq->rela->r_offset;
|
8304 |
|
|
}
|
8305 |
|
|
|
8306 |
|
|
qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
|
8307 |
|
|
|
8308 |
|
|
for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
|
8309 |
|
|
if (lo->type == bfd_indirect_link_order)
|
8310 |
|
|
{
|
8311 |
|
|
bfd_byte *erel, *erelend;
|
8312 |
|
|
asection *o = lo->u.indirect.section;
|
8313 |
|
|
|
8314 |
|
|
erel = o->contents;
|
8315 |
|
|
erelend = o->contents + o->size;
|
8316 |
|
|
/* FIXME: octets_per_byte. */
|
8317 |
|
|
p = sort + o->output_offset / ext_size * sort_elt;
|
8318 |
|
|
while (erel < erelend)
|
8319 |
|
|
{
|
8320 |
|
|
struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
|
8321 |
|
|
(*swap_out) (abfd, s->rela, erel);
|
8322 |
|
|
p += sort_elt;
|
8323 |
|
|
erel += ext_size;
|
8324 |
|
|
}
|
8325 |
|
|
}
|
8326 |
|
|
|
8327 |
|
|
free (sort);
|
8328 |
|
|
*psec = dynamic_relocs;
|
8329 |
|
|
return ret;
|
8330 |
|
|
}
|
8331 |
|
|
|
8332 |
|
|
/* Flush the output symbols to the file. */
|
8333 |
|
|
|
8334 |
|
|
static bfd_boolean
|
8335 |
|
|
elf_link_flush_output_syms (struct elf_final_link_info *finfo,
|
8336 |
|
|
const struct elf_backend_data *bed)
|
8337 |
|
|
{
|
8338 |
|
|
if (finfo->symbuf_count > 0)
|
8339 |
|
|
{
|
8340 |
|
|
Elf_Internal_Shdr *hdr;
|
8341 |
|
|
file_ptr pos;
|
8342 |
|
|
bfd_size_type amt;
|
8343 |
|
|
|
8344 |
|
|
hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
|
8345 |
|
|
pos = hdr->sh_offset + hdr->sh_size;
|
8346 |
|
|
amt = finfo->symbuf_count * bed->s->sizeof_sym;
|
8347 |
|
|
if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
|
8348 |
|
|
|| bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
|
8349 |
|
|
return FALSE;
|
8350 |
|
|
|
8351 |
|
|
hdr->sh_size += amt;
|
8352 |
|
|
finfo->symbuf_count = 0;
|
8353 |
|
|
}
|
8354 |
|
|
|
8355 |
|
|
return TRUE;
|
8356 |
|
|
}
|
8357 |
|
|
|
8358 |
|
|
/* Add a symbol to the output symbol table. */
|
8359 |
|
|
|
8360 |
|
|
static int
|
8361 |
|
|
elf_link_output_sym (struct elf_final_link_info *finfo,
|
8362 |
|
|
const char *name,
|
8363 |
|
|
Elf_Internal_Sym *elfsym,
|
8364 |
|
|
asection *input_sec,
|
8365 |
|
|
struct elf_link_hash_entry *h)
|
8366 |
|
|
{
|
8367 |
|
|
bfd_byte *dest;
|
8368 |
|
|
Elf_External_Sym_Shndx *destshndx;
|
8369 |
|
|
int (*output_symbol_hook)
|
8370 |
|
|
(struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
|
8371 |
|
|
struct elf_link_hash_entry *);
|
8372 |
|
|
const struct elf_backend_data *bed;
|
8373 |
|
|
|
8374 |
|
|
bed = get_elf_backend_data (finfo->output_bfd);
|
8375 |
|
|
output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
|
8376 |
|
|
if (output_symbol_hook != NULL)
|
8377 |
|
|
{
|
8378 |
|
|
int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
|
8379 |
|
|
if (ret != 1)
|
8380 |
|
|
return ret;
|
8381 |
|
|
}
|
8382 |
|
|
|
8383 |
|
|
if (name == NULL || *name == '\0')
|
8384 |
|
|
elfsym->st_name = 0;
|
8385 |
|
|
else if (input_sec->flags & SEC_EXCLUDE)
|
8386 |
|
|
elfsym->st_name = 0;
|
8387 |
|
|
else
|
8388 |
|
|
{
|
8389 |
|
|
elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
|
8390 |
|
|
name, TRUE, FALSE);
|
8391 |
|
|
if (elfsym->st_name == (unsigned long) -1)
|
8392 |
|
|
return 0;
|
8393 |
|
|
}
|
8394 |
|
|
|
8395 |
|
|
if (finfo->symbuf_count >= finfo->symbuf_size)
|
8396 |
|
|
{
|
8397 |
|
|
if (! elf_link_flush_output_syms (finfo, bed))
|
8398 |
|
|
return 0;
|
8399 |
|
|
}
|
8400 |
|
|
|
8401 |
|
|
dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
|
8402 |
|
|
destshndx = finfo->symshndxbuf;
|
8403 |
|
|
if (destshndx != NULL)
|
8404 |
|
|
{
|
8405 |
|
|
if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
|
8406 |
|
|
{
|
8407 |
|
|
bfd_size_type amt;
|
8408 |
|
|
|
8409 |
|
|
amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
|
8410 |
|
|
destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
|
8411 |
|
|
amt * 2);
|
8412 |
|
|
if (destshndx == NULL)
|
8413 |
|
|
return 0;
|
8414 |
|
|
finfo->symshndxbuf = destshndx;
|
8415 |
|
|
memset ((char *) destshndx + amt, 0, amt);
|
8416 |
|
|
finfo->shndxbuf_size *= 2;
|
8417 |
|
|
}
|
8418 |
|
|
destshndx += bfd_get_symcount (finfo->output_bfd);
|
8419 |
|
|
}
|
8420 |
|
|
|
8421 |
|
|
bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
|
8422 |
|
|
finfo->symbuf_count += 1;
|
8423 |
|
|
bfd_get_symcount (finfo->output_bfd) += 1;
|
8424 |
|
|
|
8425 |
|
|
return 1;
|
8426 |
|
|
}
|
8427 |
|
|
|
8428 |
|
|
/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
|
8429 |
|
|
|
8430 |
|
|
static bfd_boolean
|
8431 |
|
|
check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
|
8432 |
|
|
{
|
8433 |
|
|
if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
|
8434 |
|
|
&& sym->st_shndx < SHN_LORESERVE)
|
8435 |
|
|
{
|
8436 |
|
|
/* The gABI doesn't support dynamic symbols in output sections
|
8437 |
|
|
beyond 64k. */
|
8438 |
|
|
(*_bfd_error_handler)
|
8439 |
|
|
(_("%B: Too many sections: %d (>= %d)"),
|
8440 |
|
|
abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
|
8441 |
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
8442 |
|
|
return FALSE;
|
8443 |
|
|
}
|
8444 |
|
|
return TRUE;
|
8445 |
|
|
}
|
8446 |
|
|
|
8447 |
|
|
/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
|
8448 |
|
|
allowing an unsatisfied unversioned symbol in the DSO to match a
|
8449 |
|
|
versioned symbol that would normally require an explicit version.
|
8450 |
|
|
We also handle the case that a DSO references a hidden symbol
|
8451 |
|
|
which may be satisfied by a versioned symbol in another DSO. */
|
8452 |
|
|
|
8453 |
|
|
static bfd_boolean
|
8454 |
|
|
elf_link_check_versioned_symbol (struct bfd_link_info *info,
|
8455 |
|
|
const struct elf_backend_data *bed,
|
8456 |
|
|
struct elf_link_hash_entry *h)
|
8457 |
|
|
{
|
8458 |
|
|
bfd *abfd;
|
8459 |
|
|
struct elf_link_loaded_list *loaded;
|
8460 |
|
|
|
8461 |
|
|
if (!is_elf_hash_table (info->hash))
|
8462 |
|
|
return FALSE;
|
8463 |
|
|
|
8464 |
|
|
switch (h->root.type)
|
8465 |
|
|
{
|
8466 |
|
|
default:
|
8467 |
|
|
abfd = NULL;
|
8468 |
|
|
break;
|
8469 |
|
|
|
8470 |
|
|
case bfd_link_hash_undefined:
|
8471 |
|
|
case bfd_link_hash_undefweak:
|
8472 |
|
|
abfd = h->root.u.undef.abfd;
|
8473 |
|
|
if ((abfd->flags & DYNAMIC) == 0
|
8474 |
|
|
|| (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
|
8475 |
|
|
return FALSE;
|
8476 |
|
|
break;
|
8477 |
|
|
|
8478 |
|
|
case bfd_link_hash_defined:
|
8479 |
|
|
case bfd_link_hash_defweak:
|
8480 |
|
|
abfd = h->root.u.def.section->owner;
|
8481 |
|
|
break;
|
8482 |
|
|
|
8483 |
|
|
case bfd_link_hash_common:
|
8484 |
|
|
abfd = h->root.u.c.p->section->owner;
|
8485 |
|
|
break;
|
8486 |
|
|
}
|
8487 |
|
|
BFD_ASSERT (abfd != NULL);
|
8488 |
|
|
|
8489 |
|
|
for (loaded = elf_hash_table (info)->loaded;
|
8490 |
|
|
loaded != NULL;
|
8491 |
|
|
loaded = loaded->next)
|
8492 |
|
|
{
|
8493 |
|
|
bfd *input;
|
8494 |
|
|
Elf_Internal_Shdr *hdr;
|
8495 |
|
|
bfd_size_type symcount;
|
8496 |
|
|
bfd_size_type extsymcount;
|
8497 |
|
|
bfd_size_type extsymoff;
|
8498 |
|
|
Elf_Internal_Shdr *versymhdr;
|
8499 |
|
|
Elf_Internal_Sym *isym;
|
8500 |
|
|
Elf_Internal_Sym *isymend;
|
8501 |
|
|
Elf_Internal_Sym *isymbuf;
|
8502 |
|
|
Elf_External_Versym *ever;
|
8503 |
|
|
Elf_External_Versym *extversym;
|
8504 |
|
|
|
8505 |
|
|
input = loaded->abfd;
|
8506 |
|
|
|
8507 |
|
|
/* We check each DSO for a possible hidden versioned definition. */
|
8508 |
|
|
if (input == abfd
|
8509 |
|
|
|| (input->flags & DYNAMIC) == 0
|
8510 |
|
|
|| elf_dynversym (input) == 0)
|
8511 |
|
|
continue;
|
8512 |
|
|
|
8513 |
|
|
hdr = &elf_tdata (input)->dynsymtab_hdr;
|
8514 |
|
|
|
8515 |
|
|
symcount = hdr->sh_size / bed->s->sizeof_sym;
|
8516 |
|
|
if (elf_bad_symtab (input))
|
8517 |
|
|
{
|
8518 |
|
|
extsymcount = symcount;
|
8519 |
|
|
extsymoff = 0;
|
8520 |
|
|
}
|
8521 |
|
|
else
|
8522 |
|
|
{
|
8523 |
|
|
extsymcount = symcount - hdr->sh_info;
|
8524 |
|
|
extsymoff = hdr->sh_info;
|
8525 |
|
|
}
|
8526 |
|
|
|
8527 |
|
|
if (extsymcount == 0)
|
8528 |
|
|
continue;
|
8529 |
|
|
|
8530 |
|
|
isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
|
8531 |
|
|
NULL, NULL, NULL);
|
8532 |
|
|
if (isymbuf == NULL)
|
8533 |
|
|
return FALSE;
|
8534 |
|
|
|
8535 |
|
|
/* Read in any version definitions. */
|
8536 |
|
|
versymhdr = &elf_tdata (input)->dynversym_hdr;
|
8537 |
|
|
extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
|
8538 |
|
|
if (extversym == NULL)
|
8539 |
|
|
goto error_ret;
|
8540 |
|
|
|
8541 |
|
|
if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
|
8542 |
|
|
|| (bfd_bread (extversym, versymhdr->sh_size, input)
|
8543 |
|
|
!= versymhdr->sh_size))
|
8544 |
|
|
{
|
8545 |
|
|
free (extversym);
|
8546 |
|
|
error_ret:
|
8547 |
|
|
free (isymbuf);
|
8548 |
|
|
return FALSE;
|
8549 |
|
|
}
|
8550 |
|
|
|
8551 |
|
|
ever = extversym + extsymoff;
|
8552 |
|
|
isymend = isymbuf + extsymcount;
|
8553 |
|
|
for (isym = isymbuf; isym < isymend; isym++, ever++)
|
8554 |
|
|
{
|
8555 |
|
|
const char *name;
|
8556 |
|
|
Elf_Internal_Versym iver;
|
8557 |
|
|
unsigned short version_index;
|
8558 |
|
|
|
8559 |
|
|
if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
|
8560 |
|
|
|| isym->st_shndx == SHN_UNDEF)
|
8561 |
|
|
continue;
|
8562 |
|
|
|
8563 |
|
|
name = bfd_elf_string_from_elf_section (input,
|
8564 |
|
|
hdr->sh_link,
|
8565 |
|
|
isym->st_name);
|
8566 |
|
|
if (strcmp (name, h->root.root.string) != 0)
|
8567 |
|
|
continue;
|
8568 |
|
|
|
8569 |
|
|
_bfd_elf_swap_versym_in (input, ever, &iver);
|
8570 |
|
|
|
8571 |
|
|
if ((iver.vs_vers & VERSYM_HIDDEN) == 0
|
8572 |
|
|
&& !(h->def_regular
|
8573 |
|
|
&& h->forced_local))
|
8574 |
|
|
{
|
8575 |
|
|
/* If we have a non-hidden versioned sym, then it should
|
8576 |
|
|
have provided a definition for the undefined sym unless
|
8577 |
|
|
it is defined in a non-shared object and forced local.
|
8578 |
|
|
*/
|
8579 |
|
|
abort ();
|
8580 |
|
|
}
|
8581 |
|
|
|
8582 |
|
|
version_index = iver.vs_vers & VERSYM_VERSION;
|
8583 |
|
|
if (version_index == 1 || version_index == 2)
|
8584 |
|
|
{
|
8585 |
|
|
/* This is the base or first version. We can use it. */
|
8586 |
|
|
free (extversym);
|
8587 |
|
|
free (isymbuf);
|
8588 |
|
|
return TRUE;
|
8589 |
|
|
}
|
8590 |
|
|
}
|
8591 |
|
|
|
8592 |
|
|
free (extversym);
|
8593 |
|
|
free (isymbuf);
|
8594 |
|
|
}
|
8595 |
|
|
|
8596 |
|
|
return FALSE;
|
8597 |
|
|
}
|
8598 |
|
|
|
8599 |
|
|
/* Add an external symbol to the symbol table. This is called from
|
8600 |
|
|
the hash table traversal routine. When generating a shared object,
|
8601 |
|
|
we go through the symbol table twice. The first time we output
|
8602 |
|
|
anything that might have been forced to local scope in a version
|
8603 |
|
|
script. The second time we output the symbols that are still
|
8604 |
|
|
global symbols. */
|
8605 |
|
|
|
8606 |
|
|
static bfd_boolean
|
8607 |
|
|
elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
|
8608 |
|
|
{
|
8609 |
|
|
struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
|
8610 |
|
|
struct elf_final_link_info *finfo = eoinfo->finfo;
|
8611 |
|
|
bfd_boolean strip;
|
8612 |
|
|
Elf_Internal_Sym sym;
|
8613 |
|
|
asection *input_sec;
|
8614 |
|
|
const struct elf_backend_data *bed;
|
8615 |
|
|
long indx;
|
8616 |
|
|
int ret;
|
8617 |
|
|
|
8618 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
8619 |
|
|
{
|
8620 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
8621 |
|
|
if (h->root.type == bfd_link_hash_new)
|
8622 |
|
|
return TRUE;
|
8623 |
|
|
}
|
8624 |
|
|
|
8625 |
|
|
/* Decide whether to output this symbol in this pass. */
|
8626 |
|
|
if (eoinfo->localsyms)
|
8627 |
|
|
{
|
8628 |
|
|
if (!h->forced_local)
|
8629 |
|
|
return TRUE;
|
8630 |
|
|
}
|
8631 |
|
|
else
|
8632 |
|
|
{
|
8633 |
|
|
if (h->forced_local)
|
8634 |
|
|
return TRUE;
|
8635 |
|
|
}
|
8636 |
|
|
|
8637 |
|
|
bed = get_elf_backend_data (finfo->output_bfd);
|
8638 |
|
|
|
8639 |
|
|
if (h->root.type == bfd_link_hash_undefined)
|
8640 |
|
|
{
|
8641 |
|
|
/* If we have an undefined symbol reference here then it must have
|
8642 |
|
|
come from a shared library that is being linked in. (Undefined
|
8643 |
|
|
references in regular files have already been handled unless
|
8644 |
|
|
they are in unreferenced sections which are removed by garbage
|
8645 |
|
|
collection). */
|
8646 |
|
|
bfd_boolean ignore_undef = FALSE;
|
8647 |
|
|
|
8648 |
|
|
/* Some symbols may be special in that the fact that they're
|
8649 |
|
|
undefined can be safely ignored - let backend determine that. */
|
8650 |
|
|
if (bed->elf_backend_ignore_undef_symbol)
|
8651 |
|
|
ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
|
8652 |
|
|
|
8653 |
|
|
/* If we are reporting errors for this situation then do so now. */
|
8654 |
|
|
if (!ignore_undef
|
8655 |
|
|
&& h->ref_dynamic
|
8656 |
|
|
&& (!h->ref_regular || finfo->info->gc_sections)
|
8657 |
|
|
&& ! elf_link_check_versioned_symbol (finfo->info, bed, h)
|
8658 |
|
|
&& finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
|
8659 |
|
|
{
|
8660 |
|
|
if (! (finfo->info->callbacks->undefined_symbol
|
8661 |
|
|
(finfo->info, h->root.root.string,
|
8662 |
|
|
h->ref_regular ? NULL : h->root.u.undef.abfd,
|
8663 |
|
|
NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
|
8664 |
|
|
{
|
8665 |
|
|
bfd_set_error (bfd_error_bad_value);
|
8666 |
|
|
eoinfo->failed = TRUE;
|
8667 |
|
|
return FALSE;
|
8668 |
|
|
}
|
8669 |
|
|
}
|
8670 |
|
|
}
|
8671 |
|
|
|
8672 |
|
|
/* We should also warn if a forced local symbol is referenced from
|
8673 |
|
|
shared libraries. */
|
8674 |
|
|
if (! finfo->info->relocatable
|
8675 |
|
|
&& (! finfo->info->shared)
|
8676 |
|
|
&& h->forced_local
|
8677 |
|
|
&& h->ref_dynamic
|
8678 |
|
|
&& !h->dynamic_def
|
8679 |
|
|
&& !h->dynamic_weak
|
8680 |
|
|
&& ! elf_link_check_versioned_symbol (finfo->info, bed, h))
|
8681 |
|
|
{
|
8682 |
|
|
bfd *def_bfd;
|
8683 |
|
|
const char *msg;
|
8684 |
|
|
|
8685 |
|
|
if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
|
8686 |
|
|
msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
|
8687 |
|
|
else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
|
8688 |
|
|
msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
|
8689 |
|
|
else
|
8690 |
|
|
msg = _("%B: local symbol `%s' in %B is referenced by DSO");
|
8691 |
|
|
def_bfd = finfo->output_bfd;
|
8692 |
|
|
if (h->root.u.def.section != bfd_abs_section_ptr)
|
8693 |
|
|
def_bfd = h->root.u.def.section->owner;
|
8694 |
|
|
(*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
|
8695 |
|
|
h->root.root.string);
|
8696 |
|
|
bfd_set_error (bfd_error_bad_value);
|
8697 |
|
|
eoinfo->failed = TRUE;
|
8698 |
|
|
return FALSE;
|
8699 |
|
|
}
|
8700 |
|
|
|
8701 |
|
|
/* We don't want to output symbols that have never been mentioned by
|
8702 |
|
|
a regular file, or that we have been told to strip. However, if
|
8703 |
|
|
h->indx is set to -2, the symbol is used by a reloc and we must
|
8704 |
|
|
output it. */
|
8705 |
|
|
if (h->indx == -2)
|
8706 |
|
|
strip = FALSE;
|
8707 |
|
|
else if ((h->def_dynamic
|
8708 |
|
|
|| h->ref_dynamic
|
8709 |
|
|
|| h->root.type == bfd_link_hash_new)
|
8710 |
|
|
&& !h->def_regular
|
8711 |
|
|
&& !h->ref_regular)
|
8712 |
|
|
strip = TRUE;
|
8713 |
|
|
else if (finfo->info->strip == strip_all)
|
8714 |
|
|
strip = TRUE;
|
8715 |
|
|
else if (finfo->info->strip == strip_some
|
8716 |
|
|
&& bfd_hash_lookup (finfo->info->keep_hash,
|
8717 |
|
|
h->root.root.string, FALSE, FALSE) == NULL)
|
8718 |
|
|
strip = TRUE;
|
8719 |
|
|
else if (finfo->info->strip_discarded
|
8720 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
8721 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
8722 |
|
|
&& elf_discarded_section (h->root.u.def.section))
|
8723 |
|
|
strip = TRUE;
|
8724 |
|
|
else if ((h->root.type == bfd_link_hash_undefined
|
8725 |
|
|
|| h->root.type == bfd_link_hash_undefweak)
|
8726 |
|
|
&& h->root.u.undef.abfd != NULL
|
8727 |
|
|
&& (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
|
8728 |
|
|
strip = TRUE;
|
8729 |
|
|
else
|
8730 |
|
|
strip = FALSE;
|
8731 |
|
|
|
8732 |
|
|
/* If we're stripping it, and it's not a dynamic symbol, there's
|
8733 |
|
|
nothing else to do unless it is a forced local symbol or a
|
8734 |
|
|
STT_GNU_IFUNC symbol. */
|
8735 |
|
|
if (strip
|
8736 |
|
|
&& h->dynindx == -1
|
8737 |
|
|
&& h->type != STT_GNU_IFUNC
|
8738 |
|
|
&& !h->forced_local)
|
8739 |
|
|
return TRUE;
|
8740 |
|
|
|
8741 |
|
|
sym.st_value = 0;
|
8742 |
|
|
sym.st_size = h->size;
|
8743 |
|
|
sym.st_other = h->other;
|
8744 |
|
|
if (h->forced_local)
|
8745 |
|
|
{
|
8746 |
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
|
8747 |
|
|
/* Turn off visibility on local symbol. */
|
8748 |
|
|
sym.st_other &= ~ELF_ST_VISIBILITY (-1);
|
8749 |
|
|
}
|
8750 |
|
|
else if (h->unique_global)
|
8751 |
|
|
sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
|
8752 |
|
|
else if (h->root.type == bfd_link_hash_undefweak
|
8753 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
8754 |
|
|
sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
|
8755 |
|
|
else
|
8756 |
|
|
sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
|
8757 |
|
|
sym.st_target_internal = h->target_internal;
|
8758 |
|
|
|
8759 |
|
|
switch (h->root.type)
|
8760 |
|
|
{
|
8761 |
|
|
default:
|
8762 |
|
|
case bfd_link_hash_new:
|
8763 |
|
|
case bfd_link_hash_warning:
|
8764 |
|
|
abort ();
|
8765 |
|
|
return FALSE;
|
8766 |
|
|
|
8767 |
|
|
case bfd_link_hash_undefined:
|
8768 |
|
|
case bfd_link_hash_undefweak:
|
8769 |
|
|
input_sec = bfd_und_section_ptr;
|
8770 |
|
|
sym.st_shndx = SHN_UNDEF;
|
8771 |
|
|
break;
|
8772 |
|
|
|
8773 |
|
|
case bfd_link_hash_defined:
|
8774 |
|
|
case bfd_link_hash_defweak:
|
8775 |
|
|
{
|
8776 |
|
|
input_sec = h->root.u.def.section;
|
8777 |
|
|
if (input_sec->output_section != NULL)
|
8778 |
|
|
{
|
8779 |
|
|
sym.st_shndx =
|
8780 |
|
|
_bfd_elf_section_from_bfd_section (finfo->output_bfd,
|
8781 |
|
|
input_sec->output_section);
|
8782 |
|
|
if (sym.st_shndx == SHN_BAD)
|
8783 |
|
|
{
|
8784 |
|
|
(*_bfd_error_handler)
|
8785 |
|
|
(_("%B: could not find output section %A for input section %A"),
|
8786 |
|
|
finfo->output_bfd, input_sec->output_section, input_sec);
|
8787 |
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
8788 |
|
|
eoinfo->failed = TRUE;
|
8789 |
|
|
return FALSE;
|
8790 |
|
|
}
|
8791 |
|
|
|
8792 |
|
|
/* ELF symbols in relocatable files are section relative,
|
8793 |
|
|
but in nonrelocatable files they are virtual
|
8794 |
|
|
addresses. */
|
8795 |
|
|
sym.st_value = h->root.u.def.value + input_sec->output_offset;
|
8796 |
|
|
if (! finfo->info->relocatable)
|
8797 |
|
|
{
|
8798 |
|
|
sym.st_value += input_sec->output_section->vma;
|
8799 |
|
|
if (h->type == STT_TLS)
|
8800 |
|
|
{
|
8801 |
|
|
asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
|
8802 |
|
|
if (tls_sec != NULL)
|
8803 |
|
|
sym.st_value -= tls_sec->vma;
|
8804 |
|
|
else
|
8805 |
|
|
{
|
8806 |
|
|
/* The TLS section may have been garbage collected. */
|
8807 |
|
|
BFD_ASSERT (finfo->info->gc_sections
|
8808 |
|
|
&& !input_sec->gc_mark);
|
8809 |
|
|
}
|
8810 |
|
|
}
|
8811 |
|
|
}
|
8812 |
|
|
}
|
8813 |
|
|
else
|
8814 |
|
|
{
|
8815 |
|
|
BFD_ASSERT (input_sec->owner == NULL
|
8816 |
|
|
|| (input_sec->owner->flags & DYNAMIC) != 0);
|
8817 |
|
|
sym.st_shndx = SHN_UNDEF;
|
8818 |
|
|
input_sec = bfd_und_section_ptr;
|
8819 |
|
|
}
|
8820 |
|
|
}
|
8821 |
|
|
break;
|
8822 |
|
|
|
8823 |
|
|
case bfd_link_hash_common:
|
8824 |
|
|
input_sec = h->root.u.c.p->section;
|
8825 |
|
|
sym.st_shndx = bed->common_section_index (input_sec);
|
8826 |
|
|
sym.st_value = 1 << h->root.u.c.p->alignment_power;
|
8827 |
|
|
break;
|
8828 |
|
|
|
8829 |
|
|
case bfd_link_hash_indirect:
|
8830 |
|
|
/* These symbols are created by symbol versioning. They point
|
8831 |
|
|
to the decorated version of the name. For example, if the
|
8832 |
|
|
symbol foo@@GNU_1.2 is the default, which should be used when
|
8833 |
|
|
foo is used with no version, then we add an indirect symbol
|
8834 |
|
|
foo which points to foo@@GNU_1.2. We ignore these symbols,
|
8835 |
|
|
since the indirected symbol is already in the hash table. */
|
8836 |
|
|
return TRUE;
|
8837 |
|
|
}
|
8838 |
|
|
|
8839 |
|
|
/* Give the processor backend a chance to tweak the symbol value,
|
8840 |
|
|
and also to finish up anything that needs to be done for this
|
8841 |
|
|
symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
|
8842 |
|
|
forced local syms when non-shared is due to a historical quirk.
|
8843 |
|
|
STT_GNU_IFUNC symbol must go through PLT. */
|
8844 |
|
|
if ((h->type == STT_GNU_IFUNC
|
8845 |
|
|
&& h->def_regular
|
8846 |
|
|
&& !finfo->info->relocatable)
|
8847 |
|
|
|| ((h->dynindx != -1
|
8848 |
|
|
|| h->forced_local)
|
8849 |
|
|
&& ((finfo->info->shared
|
8850 |
|
|
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
8851 |
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
8852 |
|
|
|| !h->forced_local)
|
8853 |
|
|
&& elf_hash_table (finfo->info)->dynamic_sections_created))
|
8854 |
|
|
{
|
8855 |
|
|
if (! ((*bed->elf_backend_finish_dynamic_symbol)
|
8856 |
|
|
(finfo->output_bfd, finfo->info, h, &sym)))
|
8857 |
|
|
{
|
8858 |
|
|
eoinfo->failed = TRUE;
|
8859 |
|
|
return FALSE;
|
8860 |
|
|
}
|
8861 |
|
|
}
|
8862 |
|
|
|
8863 |
|
|
/* If we are marking the symbol as undefined, and there are no
|
8864 |
|
|
non-weak references to this symbol from a regular object, then
|
8865 |
|
|
mark the symbol as weak undefined; if there are non-weak
|
8866 |
|
|
references, mark the symbol as strong. We can't do this earlier,
|
8867 |
|
|
because it might not be marked as undefined until the
|
8868 |
|
|
finish_dynamic_symbol routine gets through with it. */
|
8869 |
|
|
if (sym.st_shndx == SHN_UNDEF
|
8870 |
|
|
&& h->ref_regular
|
8871 |
|
|
&& (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
|
8872 |
|
|
|| ELF_ST_BIND (sym.st_info) == STB_WEAK))
|
8873 |
|
|
{
|
8874 |
|
|
int bindtype;
|
8875 |
|
|
unsigned int type = ELF_ST_TYPE (sym.st_info);
|
8876 |
|
|
|
8877 |
|
|
/* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
|
8878 |
|
|
if (type == STT_GNU_IFUNC)
|
8879 |
|
|
type = STT_FUNC;
|
8880 |
|
|
|
8881 |
|
|
if (h->ref_regular_nonweak)
|
8882 |
|
|
bindtype = STB_GLOBAL;
|
8883 |
|
|
else
|
8884 |
|
|
bindtype = STB_WEAK;
|
8885 |
|
|
sym.st_info = ELF_ST_INFO (bindtype, type);
|
8886 |
|
|
}
|
8887 |
|
|
|
8888 |
|
|
/* If this is a symbol defined in a dynamic library, don't use the
|
8889 |
|
|
symbol size from the dynamic library. Relinking an executable
|
8890 |
|
|
against a new library may introduce gratuitous changes in the
|
8891 |
|
|
executable's symbols if we keep the size. */
|
8892 |
|
|
if (sym.st_shndx == SHN_UNDEF
|
8893 |
|
|
&& !h->def_regular
|
8894 |
|
|
&& h->def_dynamic)
|
8895 |
|
|
sym.st_size = 0;
|
8896 |
|
|
|
8897 |
|
|
/* If a non-weak symbol with non-default visibility is not defined
|
8898 |
|
|
locally, it is a fatal error. */
|
8899 |
|
|
if (! finfo->info->relocatable
|
8900 |
|
|
&& ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
|
8901 |
|
|
&& ELF_ST_BIND (sym.st_info) != STB_WEAK
|
8902 |
|
|
&& h->root.type == bfd_link_hash_undefined
|
8903 |
|
|
&& !h->def_regular)
|
8904 |
|
|
{
|
8905 |
|
|
const char *msg;
|
8906 |
|
|
|
8907 |
|
|
if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
|
8908 |
|
|
msg = _("%B: protected symbol `%s' isn't defined");
|
8909 |
|
|
else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
|
8910 |
|
|
msg = _("%B: internal symbol `%s' isn't defined");
|
8911 |
|
|
else
|
8912 |
|
|
msg = _("%B: hidden symbol `%s' isn't defined");
|
8913 |
|
|
(*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
|
8914 |
|
|
bfd_set_error (bfd_error_bad_value);
|
8915 |
|
|
eoinfo->failed = TRUE;
|
8916 |
|
|
return FALSE;
|
8917 |
|
|
}
|
8918 |
|
|
|
8919 |
|
|
/* If this symbol should be put in the .dynsym section, then put it
|
8920 |
|
|
there now. We already know the symbol index. We also fill in
|
8921 |
|
|
the entry in the .hash section. */
|
8922 |
|
|
if (h->dynindx != -1
|
8923 |
|
|
&& elf_hash_table (finfo->info)->dynamic_sections_created)
|
8924 |
|
|
{
|
8925 |
|
|
bfd_byte *esym;
|
8926 |
|
|
|
8927 |
|
|
sym.st_name = h->dynstr_index;
|
8928 |
|
|
esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
|
8929 |
|
|
if (! check_dynsym (finfo->output_bfd, &sym))
|
8930 |
|
|
{
|
8931 |
|
|
eoinfo->failed = TRUE;
|
8932 |
|
|
return FALSE;
|
8933 |
|
|
}
|
8934 |
|
|
bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
|
8935 |
|
|
|
8936 |
|
|
if (finfo->hash_sec != NULL)
|
8937 |
|
|
{
|
8938 |
|
|
size_t hash_entry_size;
|
8939 |
|
|
bfd_byte *bucketpos;
|
8940 |
|
|
bfd_vma chain;
|
8941 |
|
|
size_t bucketcount;
|
8942 |
|
|
size_t bucket;
|
8943 |
|
|
|
8944 |
|
|
bucketcount = elf_hash_table (finfo->info)->bucketcount;
|
8945 |
|
|
bucket = h->u.elf_hash_value % bucketcount;
|
8946 |
|
|
|
8947 |
|
|
hash_entry_size
|
8948 |
|
|
= elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
|
8949 |
|
|
bucketpos = ((bfd_byte *) finfo->hash_sec->contents
|
8950 |
|
|
+ (bucket + 2) * hash_entry_size);
|
8951 |
|
|
chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
|
8952 |
|
|
bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
|
8953 |
|
|
bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
|
8954 |
|
|
((bfd_byte *) finfo->hash_sec->contents
|
8955 |
|
|
+ (bucketcount + 2 + h->dynindx) * hash_entry_size));
|
8956 |
|
|
}
|
8957 |
|
|
|
8958 |
|
|
if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
|
8959 |
|
|
{
|
8960 |
|
|
Elf_Internal_Versym iversym;
|
8961 |
|
|
Elf_External_Versym *eversym;
|
8962 |
|
|
|
8963 |
|
|
if (!h->def_regular)
|
8964 |
|
|
{
|
8965 |
|
|
if (h->verinfo.verdef == NULL)
|
8966 |
|
|
iversym.vs_vers = 0;
|
8967 |
|
|
else
|
8968 |
|
|
iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
|
8969 |
|
|
}
|
8970 |
|
|
else
|
8971 |
|
|
{
|
8972 |
|
|
if (h->verinfo.vertree == NULL)
|
8973 |
|
|
iversym.vs_vers = 1;
|
8974 |
|
|
else
|
8975 |
|
|
iversym.vs_vers = h->verinfo.vertree->vernum + 1;
|
8976 |
|
|
if (finfo->info->create_default_symver)
|
8977 |
|
|
iversym.vs_vers++;
|
8978 |
|
|
}
|
8979 |
|
|
|
8980 |
|
|
if (h->hidden)
|
8981 |
|
|
iversym.vs_vers |= VERSYM_HIDDEN;
|
8982 |
|
|
|
8983 |
|
|
eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
|
8984 |
|
|
eversym += h->dynindx;
|
8985 |
|
|
_bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
|
8986 |
|
|
}
|
8987 |
|
|
}
|
8988 |
|
|
|
8989 |
|
|
/* If we're stripping it, then it was just a dynamic symbol, and
|
8990 |
|
|
there's nothing else to do. */
|
8991 |
|
|
if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
|
8992 |
|
|
return TRUE;
|
8993 |
|
|
|
8994 |
|
|
indx = bfd_get_symcount (finfo->output_bfd);
|
8995 |
|
|
ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
|
8996 |
|
|
if (ret == 0)
|
8997 |
|
|
{
|
8998 |
|
|
eoinfo->failed = TRUE;
|
8999 |
|
|
return FALSE;
|
9000 |
|
|
}
|
9001 |
|
|
else if (ret == 1)
|
9002 |
|
|
h->indx = indx;
|
9003 |
|
|
else if (h->indx == -2)
|
9004 |
|
|
abort();
|
9005 |
|
|
|
9006 |
|
|
return TRUE;
|
9007 |
|
|
}
|
9008 |
|
|
|
9009 |
|
|
/* Return TRUE if special handling is done for relocs in SEC against
|
9010 |
|
|
symbols defined in discarded sections. */
|
9011 |
|
|
|
9012 |
|
|
static bfd_boolean
|
9013 |
|
|
elf_section_ignore_discarded_relocs (asection *sec)
|
9014 |
|
|
{
|
9015 |
|
|
const struct elf_backend_data *bed;
|
9016 |
|
|
|
9017 |
|
|
switch (sec->sec_info_type)
|
9018 |
|
|
{
|
9019 |
|
|
case ELF_INFO_TYPE_STABS:
|
9020 |
|
|
case ELF_INFO_TYPE_EH_FRAME:
|
9021 |
|
|
return TRUE;
|
9022 |
|
|
default:
|
9023 |
|
|
break;
|
9024 |
|
|
}
|
9025 |
|
|
|
9026 |
|
|
bed = get_elf_backend_data (sec->owner);
|
9027 |
|
|
if (bed->elf_backend_ignore_discarded_relocs != NULL
|
9028 |
|
|
&& (*bed->elf_backend_ignore_discarded_relocs) (sec))
|
9029 |
|
|
return TRUE;
|
9030 |
|
|
|
9031 |
|
|
return FALSE;
|
9032 |
|
|
}
|
9033 |
|
|
|
9034 |
|
|
/* Return a mask saying how ld should treat relocations in SEC against
|
9035 |
|
|
symbols defined in discarded sections. If this function returns
|
9036 |
|
|
COMPLAIN set, ld will issue a warning message. If this function
|
9037 |
|
|
returns PRETEND set, and the discarded section was link-once and the
|
9038 |
|
|
same size as the kept link-once section, ld will pretend that the
|
9039 |
|
|
symbol was actually defined in the kept section. Otherwise ld will
|
9040 |
|
|
zero the reloc (at least that is the intent, but some cooperation by
|
9041 |
|
|
the target dependent code is needed, particularly for REL targets). */
|
9042 |
|
|
|
9043 |
|
|
unsigned int
|
9044 |
|
|
_bfd_elf_default_action_discarded (asection *sec)
|
9045 |
|
|
{
|
9046 |
|
|
if (sec->flags & SEC_DEBUGGING)
|
9047 |
|
|
return PRETEND;
|
9048 |
|
|
|
9049 |
|
|
if (strcmp (".eh_frame", sec->name) == 0)
|
9050 |
|
|
return 0;
|
9051 |
|
|
|
9052 |
|
|
if (strcmp (".gcc_except_table", sec->name) == 0)
|
9053 |
|
|
return 0;
|
9054 |
|
|
|
9055 |
|
|
return COMPLAIN | PRETEND;
|
9056 |
|
|
}
|
9057 |
|
|
|
9058 |
|
|
/* Find a match between a section and a member of a section group. */
|
9059 |
|
|
|
9060 |
|
|
static asection *
|
9061 |
|
|
match_group_member (asection *sec, asection *group,
|
9062 |
|
|
struct bfd_link_info *info)
|
9063 |
|
|
{
|
9064 |
|
|
asection *first = elf_next_in_group (group);
|
9065 |
|
|
asection *s = first;
|
9066 |
|
|
|
9067 |
|
|
while (s != NULL)
|
9068 |
|
|
{
|
9069 |
|
|
if (bfd_elf_match_symbols_in_sections (s, sec, info))
|
9070 |
|
|
return s;
|
9071 |
|
|
|
9072 |
|
|
s = elf_next_in_group (s);
|
9073 |
|
|
if (s == first)
|
9074 |
|
|
break;
|
9075 |
|
|
}
|
9076 |
|
|
|
9077 |
|
|
return NULL;
|
9078 |
|
|
}
|
9079 |
|
|
|
9080 |
|
|
/* Check if the kept section of a discarded section SEC can be used
|
9081 |
|
|
to replace it. Return the replacement if it is OK. Otherwise return
|
9082 |
|
|
NULL. */
|
9083 |
|
|
|
9084 |
|
|
asection *
|
9085 |
|
|
_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
|
9086 |
|
|
{
|
9087 |
|
|
asection *kept;
|
9088 |
|
|
|
9089 |
|
|
kept = sec->kept_section;
|
9090 |
|
|
if (kept != NULL)
|
9091 |
|
|
{
|
9092 |
|
|
if ((kept->flags & SEC_GROUP) != 0)
|
9093 |
|
|
kept = match_group_member (sec, kept, info);
|
9094 |
|
|
if (kept != NULL
|
9095 |
|
|
&& ((sec->rawsize != 0 ? sec->rawsize : sec->size)
|
9096 |
|
|
!= (kept->rawsize != 0 ? kept->rawsize : kept->size)))
|
9097 |
|
|
kept = NULL;
|
9098 |
|
|
sec->kept_section = kept;
|
9099 |
|
|
}
|
9100 |
|
|
return kept;
|
9101 |
|
|
}
|
9102 |
|
|
|
9103 |
|
|
/* Link an input file into the linker output file. This function
|
9104 |
|
|
handles all the sections and relocations of the input file at once.
|
9105 |
|
|
This is so that we only have to read the local symbols once, and
|
9106 |
|
|
don't have to keep them in memory. */
|
9107 |
|
|
|
9108 |
|
|
static bfd_boolean
|
9109 |
|
|
elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
|
9110 |
|
|
{
|
9111 |
|
|
int (*relocate_section)
|
9112 |
|
|
(bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
9113 |
|
|
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
|
9114 |
|
|
bfd *output_bfd;
|
9115 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
9116 |
|
|
size_t locsymcount;
|
9117 |
|
|
size_t extsymoff;
|
9118 |
|
|
Elf_Internal_Sym *isymbuf;
|
9119 |
|
|
Elf_Internal_Sym *isym;
|
9120 |
|
|
Elf_Internal_Sym *isymend;
|
9121 |
|
|
long *pindex;
|
9122 |
|
|
asection **ppsection;
|
9123 |
|
|
asection *o;
|
9124 |
|
|
const struct elf_backend_data *bed;
|
9125 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
9126 |
|
|
bfd_size_type address_size;
|
9127 |
|
|
bfd_vma r_type_mask;
|
9128 |
|
|
int r_sym_shift;
|
9129 |
|
|
|
9130 |
|
|
output_bfd = finfo->output_bfd;
|
9131 |
|
|
bed = get_elf_backend_data (output_bfd);
|
9132 |
|
|
relocate_section = bed->elf_backend_relocate_section;
|
9133 |
|
|
|
9134 |
|
|
/* If this is a dynamic object, we don't want to do anything here:
|
9135 |
|
|
we don't want the local symbols, and we don't want the section
|
9136 |
|
|
contents. */
|
9137 |
|
|
if ((input_bfd->flags & DYNAMIC) != 0)
|
9138 |
|
|
return TRUE;
|
9139 |
|
|
|
9140 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
9141 |
|
|
if (elf_bad_symtab (input_bfd))
|
9142 |
|
|
{
|
9143 |
|
|
locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
|
9144 |
|
|
extsymoff = 0;
|
9145 |
|
|
}
|
9146 |
|
|
else
|
9147 |
|
|
{
|
9148 |
|
|
locsymcount = symtab_hdr->sh_info;
|
9149 |
|
|
extsymoff = symtab_hdr->sh_info;
|
9150 |
|
|
}
|
9151 |
|
|
|
9152 |
|
|
/* Read the local symbols. */
|
9153 |
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
9154 |
|
|
if (isymbuf == NULL && locsymcount != 0)
|
9155 |
|
|
{
|
9156 |
|
|
isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
|
9157 |
|
|
finfo->internal_syms,
|
9158 |
|
|
finfo->external_syms,
|
9159 |
|
|
finfo->locsym_shndx);
|
9160 |
|
|
if (isymbuf == NULL)
|
9161 |
|
|
return FALSE;
|
9162 |
|
|
}
|
9163 |
|
|
|
9164 |
|
|
/* Find local symbol sections and adjust values of symbols in
|
9165 |
|
|
SEC_MERGE sections. Write out those local symbols we know are
|
9166 |
|
|
going into the output file. */
|
9167 |
|
|
isymend = isymbuf + locsymcount;
|
9168 |
|
|
for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
|
9169 |
|
|
isym < isymend;
|
9170 |
|
|
isym++, pindex++, ppsection++)
|
9171 |
|
|
{
|
9172 |
|
|
asection *isec;
|
9173 |
|
|
const char *name;
|
9174 |
|
|
Elf_Internal_Sym osym;
|
9175 |
|
|
long indx;
|
9176 |
|
|
int ret;
|
9177 |
|
|
|
9178 |
|
|
*pindex = -1;
|
9179 |
|
|
|
9180 |
|
|
if (elf_bad_symtab (input_bfd))
|
9181 |
|
|
{
|
9182 |
|
|
if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
|
9183 |
|
|
{
|
9184 |
|
|
*ppsection = NULL;
|
9185 |
|
|
continue;
|
9186 |
|
|
}
|
9187 |
|
|
}
|
9188 |
|
|
|
9189 |
|
|
if (isym->st_shndx == SHN_UNDEF)
|
9190 |
|
|
isec = bfd_und_section_ptr;
|
9191 |
|
|
else if (isym->st_shndx == SHN_ABS)
|
9192 |
|
|
isec = bfd_abs_section_ptr;
|
9193 |
|
|
else if (isym->st_shndx == SHN_COMMON)
|
9194 |
|
|
isec = bfd_com_section_ptr;
|
9195 |
|
|
else
|
9196 |
|
|
{
|
9197 |
|
|
isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
|
9198 |
|
|
if (isec == NULL)
|
9199 |
|
|
{
|
9200 |
|
|
/* Don't attempt to output symbols with st_shnx in the
|
9201 |
|
|
reserved range other than SHN_ABS and SHN_COMMON. */
|
9202 |
|
|
*ppsection = NULL;
|
9203 |
|
|
continue;
|
9204 |
|
|
}
|
9205 |
|
|
else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
|
9206 |
|
|
&& ELF_ST_TYPE (isym->st_info) != STT_SECTION)
|
9207 |
|
|
isym->st_value =
|
9208 |
|
|
_bfd_merged_section_offset (output_bfd, &isec,
|
9209 |
|
|
elf_section_data (isec)->sec_info,
|
9210 |
|
|
isym->st_value);
|
9211 |
|
|
}
|
9212 |
|
|
|
9213 |
|
|
*ppsection = isec;
|
9214 |
|
|
|
9215 |
|
|
/* Don't output the first, undefined, symbol. */
|
9216 |
|
|
if (ppsection == finfo->sections)
|
9217 |
|
|
continue;
|
9218 |
|
|
|
9219 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
9220 |
|
|
{
|
9221 |
|
|
/* We never output section symbols. Instead, we use the
|
9222 |
|
|
section symbol of the corresponding section in the output
|
9223 |
|
|
file. */
|
9224 |
|
|
continue;
|
9225 |
|
|
}
|
9226 |
|
|
|
9227 |
|
|
/* If we are stripping all symbols, we don't want to output this
|
9228 |
|
|
one. */
|
9229 |
|
|
if (finfo->info->strip == strip_all)
|
9230 |
|
|
continue;
|
9231 |
|
|
|
9232 |
|
|
/* If we are discarding all local symbols, we don't want to
|
9233 |
|
|
output this one. If we are generating a relocatable output
|
9234 |
|
|
file, then some of the local symbols may be required by
|
9235 |
|
|
relocs; we output them below as we discover that they are
|
9236 |
|
|
needed. */
|
9237 |
|
|
if (finfo->info->discard == discard_all)
|
9238 |
|
|
continue;
|
9239 |
|
|
|
9240 |
|
|
/* If this symbol is defined in a section which we are
|
9241 |
|
|
discarding, we don't need to keep it. */
|
9242 |
|
|
if (isym->st_shndx != SHN_UNDEF
|
9243 |
|
|
&& isym->st_shndx < SHN_LORESERVE
|
9244 |
|
|
&& bfd_section_removed_from_list (output_bfd,
|
9245 |
|
|
isec->output_section))
|
9246 |
|
|
continue;
|
9247 |
|
|
|
9248 |
|
|
/* Get the name of the symbol. */
|
9249 |
|
|
name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
|
9250 |
|
|
isym->st_name);
|
9251 |
|
|
if (name == NULL)
|
9252 |
|
|
return FALSE;
|
9253 |
|
|
|
9254 |
|
|
/* See if we are discarding symbols with this name. */
|
9255 |
|
|
if ((finfo->info->strip == strip_some
|
9256 |
|
|
&& (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
|
9257 |
|
|
== NULL))
|
9258 |
|
|
|| (((finfo->info->discard == discard_sec_merge
|
9259 |
|
|
&& (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
|
9260 |
|
|
|| finfo->info->discard == discard_l)
|
9261 |
|
|
&& bfd_is_local_label_name (input_bfd, name)))
|
9262 |
|
|
continue;
|
9263 |
|
|
|
9264 |
|
|
osym = *isym;
|
9265 |
|
|
|
9266 |
|
|
/* Adjust the section index for the output file. */
|
9267 |
|
|
osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
9268 |
|
|
isec->output_section);
|
9269 |
|
|
if (osym.st_shndx == SHN_BAD)
|
9270 |
|
|
return FALSE;
|
9271 |
|
|
|
9272 |
|
|
/* ELF symbols in relocatable files are section relative, but
|
9273 |
|
|
in executable files they are virtual addresses. Note that
|
9274 |
|
|
this code assumes that all ELF sections have an associated
|
9275 |
|
|
BFD section with a reasonable value for output_offset; below
|
9276 |
|
|
we assume that they also have a reasonable value for
|
9277 |
|
|
output_section. Any special sections must be set up to meet
|
9278 |
|
|
these requirements. */
|
9279 |
|
|
osym.st_value += isec->output_offset;
|
9280 |
|
|
if (! finfo->info->relocatable)
|
9281 |
|
|
{
|
9282 |
|
|
osym.st_value += isec->output_section->vma;
|
9283 |
|
|
if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
|
9284 |
|
|
{
|
9285 |
|
|
/* STT_TLS symbols are relative to PT_TLS segment base. */
|
9286 |
|
|
BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
|
9287 |
|
|
osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
|
9288 |
|
|
}
|
9289 |
|
|
}
|
9290 |
|
|
|
9291 |
|
|
indx = bfd_get_symcount (output_bfd);
|
9292 |
|
|
ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
|
9293 |
|
|
if (ret == 0)
|
9294 |
|
|
return FALSE;
|
9295 |
|
|
else if (ret == 1)
|
9296 |
|
|
*pindex = indx;
|
9297 |
|
|
}
|
9298 |
|
|
|
9299 |
|
|
if (bed->s->arch_size == 32)
|
9300 |
|
|
{
|
9301 |
|
|
r_type_mask = 0xff;
|
9302 |
|
|
r_sym_shift = 8;
|
9303 |
|
|
address_size = 4;
|
9304 |
|
|
}
|
9305 |
|
|
else
|
9306 |
|
|
{
|
9307 |
|
|
r_type_mask = 0xffffffff;
|
9308 |
|
|
r_sym_shift = 32;
|
9309 |
|
|
address_size = 8;
|
9310 |
|
|
}
|
9311 |
|
|
|
9312 |
|
|
/* Relocate the contents of each section. */
|
9313 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
9314 |
|
|
for (o = input_bfd->sections; o != NULL; o = o->next)
|
9315 |
|
|
{
|
9316 |
|
|
bfd_byte *contents;
|
9317 |
|
|
|
9318 |
|
|
if (! o->linker_mark)
|
9319 |
|
|
{
|
9320 |
|
|
/* This section was omitted from the link. */
|
9321 |
|
|
continue;
|
9322 |
|
|
}
|
9323 |
|
|
|
9324 |
|
|
if (finfo->info->relocatable
|
9325 |
|
|
&& (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
|
9326 |
|
|
{
|
9327 |
|
|
/* Deal with the group signature symbol. */
|
9328 |
|
|
struct bfd_elf_section_data *sec_data = elf_section_data (o);
|
9329 |
|
|
unsigned long symndx = sec_data->this_hdr.sh_info;
|
9330 |
|
|
asection *osec = o->output_section;
|
9331 |
|
|
|
9332 |
|
|
if (symndx >= locsymcount
|
9333 |
|
|
|| (elf_bad_symtab (input_bfd)
|
9334 |
|
|
&& finfo->sections[symndx] == NULL))
|
9335 |
|
|
{
|
9336 |
|
|
struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
|
9337 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
9338 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
9339 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
9340 |
|
|
/* Arrange for symbol to be output. */
|
9341 |
|
|
h->indx = -2;
|
9342 |
|
|
elf_section_data (osec)->this_hdr.sh_info = -2;
|
9343 |
|
|
}
|
9344 |
|
|
else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
|
9345 |
|
|
{
|
9346 |
|
|
/* We'll use the output section target_index. */
|
9347 |
|
|
asection *sec = finfo->sections[symndx]->output_section;
|
9348 |
|
|
elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
|
9349 |
|
|
}
|
9350 |
|
|
else
|
9351 |
|
|
{
|
9352 |
|
|
if (finfo->indices[symndx] == -1)
|
9353 |
|
|
{
|
9354 |
|
|
/* Otherwise output the local symbol now. */
|
9355 |
|
|
Elf_Internal_Sym sym = isymbuf[symndx];
|
9356 |
|
|
asection *sec = finfo->sections[symndx]->output_section;
|
9357 |
|
|
const char *name;
|
9358 |
|
|
long indx;
|
9359 |
|
|
int ret;
|
9360 |
|
|
|
9361 |
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
9362 |
|
|
symtab_hdr->sh_link,
|
9363 |
|
|
sym.st_name);
|
9364 |
|
|
if (name == NULL)
|
9365 |
|
|
return FALSE;
|
9366 |
|
|
|
9367 |
|
|
sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
9368 |
|
|
sec);
|
9369 |
|
|
if (sym.st_shndx == SHN_BAD)
|
9370 |
|
|
return FALSE;
|
9371 |
|
|
|
9372 |
|
|
sym.st_value += o->output_offset;
|
9373 |
|
|
|
9374 |
|
|
indx = bfd_get_symcount (output_bfd);
|
9375 |
|
|
ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
|
9376 |
|
|
if (ret == 0)
|
9377 |
|
|
return FALSE;
|
9378 |
|
|
else if (ret == 1)
|
9379 |
|
|
finfo->indices[symndx] = indx;
|
9380 |
|
|
else
|
9381 |
|
|
abort ();
|
9382 |
|
|
}
|
9383 |
|
|
elf_section_data (osec)->this_hdr.sh_info
|
9384 |
|
|
= finfo->indices[symndx];
|
9385 |
|
|
}
|
9386 |
|
|
}
|
9387 |
|
|
|
9388 |
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
9389 |
|
|
|| (o->size == 0 && (o->flags & SEC_RELOC) == 0))
|
9390 |
|
|
continue;
|
9391 |
|
|
|
9392 |
|
|
if ((o->flags & SEC_LINKER_CREATED) != 0)
|
9393 |
|
|
{
|
9394 |
|
|
/* Section was created by _bfd_elf_link_create_dynamic_sections
|
9395 |
|
|
or somesuch. */
|
9396 |
|
|
continue;
|
9397 |
|
|
}
|
9398 |
|
|
|
9399 |
|
|
/* Get the contents of the section. They have been cached by a
|
9400 |
|
|
relaxation routine. Note that o is a section in an input
|
9401 |
|
|
file, so the contents field will not have been set by any of
|
9402 |
|
|
the routines which work on output files. */
|
9403 |
|
|
if (elf_section_data (o)->this_hdr.contents != NULL)
|
9404 |
|
|
contents = elf_section_data (o)->this_hdr.contents;
|
9405 |
|
|
else
|
9406 |
|
|
{
|
9407 |
|
|
contents = finfo->contents;
|
9408 |
|
|
if (! bfd_get_full_section_contents (input_bfd, o, &contents))
|
9409 |
|
|
return FALSE;
|
9410 |
|
|
}
|
9411 |
|
|
|
9412 |
|
|
if ((o->flags & SEC_RELOC) != 0)
|
9413 |
|
|
{
|
9414 |
|
|
Elf_Internal_Rela *internal_relocs;
|
9415 |
|
|
Elf_Internal_Rela *rel, *relend;
|
9416 |
|
|
int action_discarded;
|
9417 |
|
|
int ret;
|
9418 |
|
|
|
9419 |
|
|
/* Get the swapped relocs. */
|
9420 |
|
|
internal_relocs
|
9421 |
|
|
= _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
|
9422 |
|
|
finfo->internal_relocs, FALSE);
|
9423 |
|
|
if (internal_relocs == NULL
|
9424 |
|
|
&& o->reloc_count > 0)
|
9425 |
|
|
return FALSE;
|
9426 |
|
|
|
9427 |
|
|
/* We need to reverse-copy input .ctors/.dtors sections if
|
9428 |
|
|
they are placed in .init_array/.finit_array for output. */
|
9429 |
|
|
if (o->size > address_size
|
9430 |
|
|
&& ((strncmp (o->name, ".ctors", 6) == 0
|
9431 |
|
|
&& strcmp (o->output_section->name,
|
9432 |
|
|
".init_array") == 0)
|
9433 |
|
|
|| (strncmp (o->name, ".dtors", 6) == 0
|
9434 |
|
|
&& strcmp (o->output_section->name,
|
9435 |
|
|
".fini_array") == 0))
|
9436 |
|
|
&& (o->name[6] == 0 || o->name[6] == '.'))
|
9437 |
|
|
{
|
9438 |
|
|
if (o->size != o->reloc_count * address_size)
|
9439 |
|
|
{
|
9440 |
|
|
(*_bfd_error_handler)
|
9441 |
|
|
(_("error: %B: size of section %A is not "
|
9442 |
|
|
"multiple of address size"),
|
9443 |
|
|
input_bfd, o);
|
9444 |
|
|
bfd_set_error (bfd_error_on_input);
|
9445 |
|
|
return FALSE;
|
9446 |
|
|
}
|
9447 |
|
|
o->flags |= SEC_ELF_REVERSE_COPY;
|
9448 |
|
|
}
|
9449 |
|
|
|
9450 |
|
|
action_discarded = -1;
|
9451 |
|
|
if (!elf_section_ignore_discarded_relocs (o))
|
9452 |
|
|
action_discarded = (*bed->action_discarded) (o);
|
9453 |
|
|
|
9454 |
|
|
/* Run through the relocs evaluating complex reloc symbols and
|
9455 |
|
|
looking for relocs against symbols from discarded sections
|
9456 |
|
|
or section symbols from removed link-once sections.
|
9457 |
|
|
Complain about relocs against discarded sections. Zero
|
9458 |
|
|
relocs against removed link-once sections. */
|
9459 |
|
|
|
9460 |
|
|
rel = internal_relocs;
|
9461 |
|
|
relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
|
9462 |
|
|
for ( ; rel < relend; rel++)
|
9463 |
|
|
{
|
9464 |
|
|
unsigned long r_symndx = rel->r_info >> r_sym_shift;
|
9465 |
|
|
unsigned int s_type;
|
9466 |
|
|
asection **ps, *sec;
|
9467 |
|
|
struct elf_link_hash_entry *h = NULL;
|
9468 |
|
|
const char *sym_name;
|
9469 |
|
|
|
9470 |
|
|
if (r_symndx == STN_UNDEF)
|
9471 |
|
|
continue;
|
9472 |
|
|
|
9473 |
|
|
if (r_symndx >= locsymcount
|
9474 |
|
|
|| (elf_bad_symtab (input_bfd)
|
9475 |
|
|
&& finfo->sections[r_symndx] == NULL))
|
9476 |
|
|
{
|
9477 |
|
|
h = sym_hashes[r_symndx - extsymoff];
|
9478 |
|
|
|
9479 |
|
|
/* Badly formatted input files can contain relocs that
|
9480 |
|
|
reference non-existant symbols. Check here so that
|
9481 |
|
|
we do not seg fault. */
|
9482 |
|
|
if (h == NULL)
|
9483 |
|
|
{
|
9484 |
|
|
char buffer [32];
|
9485 |
|
|
|
9486 |
|
|
sprintf_vma (buffer, rel->r_info);
|
9487 |
|
|
(*_bfd_error_handler)
|
9488 |
|
|
(_("error: %B contains a reloc (0x%s) for section %A "
|
9489 |
|
|
"that references a non-existent global symbol"),
|
9490 |
|
|
input_bfd, o, buffer);
|
9491 |
|
|
bfd_set_error (bfd_error_bad_value);
|
9492 |
|
|
return FALSE;
|
9493 |
|
|
}
|
9494 |
|
|
|
9495 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
9496 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
9497 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
9498 |
|
|
|
9499 |
|
|
s_type = h->type;
|
9500 |
|
|
|
9501 |
|
|
ps = NULL;
|
9502 |
|
|
if (h->root.type == bfd_link_hash_defined
|
9503 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
9504 |
|
|
ps = &h->root.u.def.section;
|
9505 |
|
|
|
9506 |
|
|
sym_name = h->root.root.string;
|
9507 |
|
|
}
|
9508 |
|
|
else
|
9509 |
|
|
{
|
9510 |
|
|
Elf_Internal_Sym *sym = isymbuf + r_symndx;
|
9511 |
|
|
|
9512 |
|
|
s_type = ELF_ST_TYPE (sym->st_info);
|
9513 |
|
|
ps = &finfo->sections[r_symndx];
|
9514 |
|
|
sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
|
9515 |
|
|
sym, *ps);
|
9516 |
|
|
}
|
9517 |
|
|
|
9518 |
|
|
if ((s_type == STT_RELC || s_type == STT_SRELC)
|
9519 |
|
|
&& !finfo->info->relocatable)
|
9520 |
|
|
{
|
9521 |
|
|
bfd_vma val;
|
9522 |
|
|
bfd_vma dot = (rel->r_offset
|
9523 |
|
|
+ o->output_offset + o->output_section->vma);
|
9524 |
|
|
#ifdef DEBUG
|
9525 |
|
|
printf ("Encountered a complex symbol!");
|
9526 |
|
|
printf (" (input_bfd %s, section %s, reloc %ld\n",
|
9527 |
|
|
input_bfd->filename, o->name,
|
9528 |
|
|
(long) (rel - internal_relocs));
|
9529 |
|
|
printf (" symbol: idx %8.8lx, name %s\n",
|
9530 |
|
|
r_symndx, sym_name);
|
9531 |
|
|
printf (" reloc : info %8.8lx, addr %8.8lx\n",
|
9532 |
|
|
(unsigned long) rel->r_info,
|
9533 |
|
|
(unsigned long) rel->r_offset);
|
9534 |
|
|
#endif
|
9535 |
|
|
if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
|
9536 |
|
|
isymbuf, locsymcount, s_type == STT_SRELC))
|
9537 |
|
|
return FALSE;
|
9538 |
|
|
|
9539 |
|
|
/* Symbol evaluated OK. Update to absolute value. */
|
9540 |
|
|
set_symbol_value (input_bfd, isymbuf, locsymcount,
|
9541 |
|
|
r_symndx, val);
|
9542 |
|
|
continue;
|
9543 |
|
|
}
|
9544 |
|
|
|
9545 |
|
|
if (action_discarded != -1 && ps != NULL)
|
9546 |
|
|
{
|
9547 |
|
|
/* Complain if the definition comes from a
|
9548 |
|
|
discarded section. */
|
9549 |
|
|
if ((sec = *ps) != NULL && elf_discarded_section (sec))
|
9550 |
|
|
{
|
9551 |
|
|
BFD_ASSERT (r_symndx != STN_UNDEF);
|
9552 |
|
|
if (action_discarded & COMPLAIN)
|
9553 |
|
|
(*finfo->info->callbacks->einfo)
|
9554 |
|
|
(_("%X`%s' referenced in section `%A' of %B: "
|
9555 |
|
|
"defined in discarded section `%A' of %B\n"),
|
9556 |
|
|
sym_name, o, input_bfd, sec, sec->owner);
|
9557 |
|
|
|
9558 |
|
|
/* Try to do the best we can to support buggy old
|
9559 |
|
|
versions of gcc. Pretend that the symbol is
|
9560 |
|
|
really defined in the kept linkonce section.
|
9561 |
|
|
FIXME: This is quite broken. Modifying the
|
9562 |
|
|
symbol here means we will be changing all later
|
9563 |
|
|
uses of the symbol, not just in this section. */
|
9564 |
|
|
if (action_discarded & PRETEND)
|
9565 |
|
|
{
|
9566 |
|
|
asection *kept;
|
9567 |
|
|
|
9568 |
|
|
kept = _bfd_elf_check_kept_section (sec,
|
9569 |
|
|
finfo->info);
|
9570 |
|
|
if (kept != NULL)
|
9571 |
|
|
{
|
9572 |
|
|
*ps = kept;
|
9573 |
|
|
continue;
|
9574 |
|
|
}
|
9575 |
|
|
}
|
9576 |
|
|
}
|
9577 |
|
|
}
|
9578 |
|
|
}
|
9579 |
|
|
|
9580 |
|
|
/* Relocate the section by invoking a back end routine.
|
9581 |
|
|
|
9582 |
|
|
The back end routine is responsible for adjusting the
|
9583 |
|
|
section contents as necessary, and (if using Rela relocs
|
9584 |
|
|
and generating a relocatable output file) adjusting the
|
9585 |
|
|
reloc addend as necessary.
|
9586 |
|
|
|
9587 |
|
|
The back end routine does not have to worry about setting
|
9588 |
|
|
the reloc address or the reloc symbol index.
|
9589 |
|
|
|
9590 |
|
|
The back end routine is given a pointer to the swapped in
|
9591 |
|
|
internal symbols, and can access the hash table entries
|
9592 |
|
|
for the external symbols via elf_sym_hashes (input_bfd).
|
9593 |
|
|
|
9594 |
|
|
When generating relocatable output, the back end routine
|
9595 |
|
|
must handle STB_LOCAL/STT_SECTION symbols specially. The
|
9596 |
|
|
output symbol is going to be a section symbol
|
9597 |
|
|
corresponding to the output section, which will require
|
9598 |
|
|
the addend to be adjusted. */
|
9599 |
|
|
|
9600 |
|
|
ret = (*relocate_section) (output_bfd, finfo->info,
|
9601 |
|
|
input_bfd, o, contents,
|
9602 |
|
|
internal_relocs,
|
9603 |
|
|
isymbuf,
|
9604 |
|
|
finfo->sections);
|
9605 |
|
|
if (!ret)
|
9606 |
|
|
return FALSE;
|
9607 |
|
|
|
9608 |
|
|
if (ret == 2
|
9609 |
|
|
|| finfo->info->relocatable
|
9610 |
|
|
|| finfo->info->emitrelocations)
|
9611 |
|
|
{
|
9612 |
|
|
Elf_Internal_Rela *irela;
|
9613 |
|
|
Elf_Internal_Rela *irelaend, *irelamid;
|
9614 |
|
|
bfd_vma last_offset;
|
9615 |
|
|
struct elf_link_hash_entry **rel_hash;
|
9616 |
|
|
struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
|
9617 |
|
|
Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
|
9618 |
|
|
unsigned int next_erel;
|
9619 |
|
|
bfd_boolean rela_normal;
|
9620 |
|
|
struct bfd_elf_section_data *esdi, *esdo;
|
9621 |
|
|
|
9622 |
|
|
esdi = elf_section_data (o);
|
9623 |
|
|
esdo = elf_section_data (o->output_section);
|
9624 |
|
|
rela_normal = FALSE;
|
9625 |
|
|
|
9626 |
|
|
/* Adjust the reloc addresses and symbol indices. */
|
9627 |
|
|
|
9628 |
|
|
irela = internal_relocs;
|
9629 |
|
|
irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
|
9630 |
|
|
rel_hash = esdo->rel.hashes + esdo->rel.count;
|
9631 |
|
|
/* We start processing the REL relocs, if any. When we reach
|
9632 |
|
|
IRELAMID in the loop, we switch to the RELA relocs. */
|
9633 |
|
|
irelamid = irela;
|
9634 |
|
|
if (esdi->rel.hdr != NULL)
|
9635 |
|
|
irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
|
9636 |
|
|
* bed->s->int_rels_per_ext_rel);
|
9637 |
|
|
rel_hash_list = rel_hash;
|
9638 |
|
|
rela_hash_list = NULL;
|
9639 |
|
|
last_offset = o->output_offset;
|
9640 |
|
|
if (!finfo->info->relocatable)
|
9641 |
|
|
last_offset += o->output_section->vma;
|
9642 |
|
|
for (next_erel = 0; irela < irelaend; irela++, next_erel++)
|
9643 |
|
|
{
|
9644 |
|
|
unsigned long r_symndx;
|
9645 |
|
|
asection *sec;
|
9646 |
|
|
Elf_Internal_Sym sym;
|
9647 |
|
|
|
9648 |
|
|
if (next_erel == bed->s->int_rels_per_ext_rel)
|
9649 |
|
|
{
|
9650 |
|
|
rel_hash++;
|
9651 |
|
|
next_erel = 0;
|
9652 |
|
|
}
|
9653 |
|
|
|
9654 |
|
|
if (irela == irelamid)
|
9655 |
|
|
{
|
9656 |
|
|
rel_hash = esdo->rela.hashes + esdo->rela.count;
|
9657 |
|
|
rela_hash_list = rel_hash;
|
9658 |
|
|
rela_normal = bed->rela_normal;
|
9659 |
|
|
}
|
9660 |
|
|
|
9661 |
|
|
irela->r_offset = _bfd_elf_section_offset (output_bfd,
|
9662 |
|
|
finfo->info, o,
|
9663 |
|
|
irela->r_offset);
|
9664 |
|
|
if (irela->r_offset >= (bfd_vma) -2)
|
9665 |
|
|
{
|
9666 |
|
|
/* This is a reloc for a deleted entry or somesuch.
|
9667 |
|
|
Turn it into an R_*_NONE reloc, at the same
|
9668 |
|
|
offset as the last reloc. elf_eh_frame.c and
|
9669 |
|
|
bfd_elf_discard_info rely on reloc offsets
|
9670 |
|
|
being ordered. */
|
9671 |
|
|
irela->r_offset = last_offset;
|
9672 |
|
|
irela->r_info = 0;
|
9673 |
|
|
irela->r_addend = 0;
|
9674 |
|
|
continue;
|
9675 |
|
|
}
|
9676 |
|
|
|
9677 |
|
|
irela->r_offset += o->output_offset;
|
9678 |
|
|
|
9679 |
|
|
/* Relocs in an executable have to be virtual addresses. */
|
9680 |
|
|
if (!finfo->info->relocatable)
|
9681 |
|
|
irela->r_offset += o->output_section->vma;
|
9682 |
|
|
|
9683 |
|
|
last_offset = irela->r_offset;
|
9684 |
|
|
|
9685 |
|
|
r_symndx = irela->r_info >> r_sym_shift;
|
9686 |
|
|
if (r_symndx == STN_UNDEF)
|
9687 |
|
|
continue;
|
9688 |
|
|
|
9689 |
|
|
if (r_symndx >= locsymcount
|
9690 |
|
|
|| (elf_bad_symtab (input_bfd)
|
9691 |
|
|
&& finfo->sections[r_symndx] == NULL))
|
9692 |
|
|
{
|
9693 |
|
|
struct elf_link_hash_entry *rh;
|
9694 |
|
|
unsigned long indx;
|
9695 |
|
|
|
9696 |
|
|
/* This is a reloc against a global symbol. We
|
9697 |
|
|
have not yet output all the local symbols, so
|
9698 |
|
|
we do not know the symbol index of any global
|
9699 |
|
|
symbol. We set the rel_hash entry for this
|
9700 |
|
|
reloc to point to the global hash table entry
|
9701 |
|
|
for this symbol. The symbol index is then
|
9702 |
|
|
set at the end of bfd_elf_final_link. */
|
9703 |
|
|
indx = r_symndx - extsymoff;
|
9704 |
|
|
rh = elf_sym_hashes (input_bfd)[indx];
|
9705 |
|
|
while (rh->root.type == bfd_link_hash_indirect
|
9706 |
|
|
|| rh->root.type == bfd_link_hash_warning)
|
9707 |
|
|
rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
|
9708 |
|
|
|
9709 |
|
|
/* Setting the index to -2 tells
|
9710 |
|
|
elf_link_output_extsym that this symbol is
|
9711 |
|
|
used by a reloc. */
|
9712 |
|
|
BFD_ASSERT (rh->indx < 0);
|
9713 |
|
|
rh->indx = -2;
|
9714 |
|
|
|
9715 |
|
|
*rel_hash = rh;
|
9716 |
|
|
|
9717 |
|
|
continue;
|
9718 |
|
|
}
|
9719 |
|
|
|
9720 |
|
|
/* This is a reloc against a local symbol. */
|
9721 |
|
|
|
9722 |
|
|
*rel_hash = NULL;
|
9723 |
|
|
sym = isymbuf[r_symndx];
|
9724 |
|
|
sec = finfo->sections[r_symndx];
|
9725 |
|
|
if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
|
9726 |
|
|
{
|
9727 |
|
|
/* I suppose the backend ought to fill in the
|
9728 |
|
|
section of any STT_SECTION symbol against a
|
9729 |
|
|
processor specific section. */
|
9730 |
|
|
r_symndx = STN_UNDEF;
|
9731 |
|
|
if (bfd_is_abs_section (sec))
|
9732 |
|
|
;
|
9733 |
|
|
else if (sec == NULL || sec->owner == NULL)
|
9734 |
|
|
{
|
9735 |
|
|
bfd_set_error (bfd_error_bad_value);
|
9736 |
|
|
return FALSE;
|
9737 |
|
|
}
|
9738 |
|
|
else
|
9739 |
|
|
{
|
9740 |
|
|
asection *osec = sec->output_section;
|
9741 |
|
|
|
9742 |
|
|
/* If we have discarded a section, the output
|
9743 |
|
|
section will be the absolute section. In
|
9744 |
|
|
case of discarded SEC_MERGE sections, use
|
9745 |
|
|
the kept section. relocate_section should
|
9746 |
|
|
have already handled discarded linkonce
|
9747 |
|
|
sections. */
|
9748 |
|
|
if (bfd_is_abs_section (osec)
|
9749 |
|
|
&& sec->kept_section != NULL
|
9750 |
|
|
&& sec->kept_section->output_section != NULL)
|
9751 |
|
|
{
|
9752 |
|
|
osec = sec->kept_section->output_section;
|
9753 |
|
|
irela->r_addend -= osec->vma;
|
9754 |
|
|
}
|
9755 |
|
|
|
9756 |
|
|
if (!bfd_is_abs_section (osec))
|
9757 |
|
|
{
|
9758 |
|
|
r_symndx = osec->target_index;
|
9759 |
|
|
if (r_symndx == STN_UNDEF)
|
9760 |
|
|
{
|
9761 |
|
|
struct elf_link_hash_table *htab;
|
9762 |
|
|
asection *oi;
|
9763 |
|
|
|
9764 |
|
|
htab = elf_hash_table (finfo->info);
|
9765 |
|
|
oi = htab->text_index_section;
|
9766 |
|
|
if ((osec->flags & SEC_READONLY) == 0
|
9767 |
|
|
&& htab->data_index_section != NULL)
|
9768 |
|
|
oi = htab->data_index_section;
|
9769 |
|
|
|
9770 |
|
|
if (oi != NULL)
|
9771 |
|
|
{
|
9772 |
|
|
irela->r_addend += osec->vma - oi->vma;
|
9773 |
|
|
r_symndx = oi->target_index;
|
9774 |
|
|
}
|
9775 |
|
|
}
|
9776 |
|
|
|
9777 |
|
|
BFD_ASSERT (r_symndx != STN_UNDEF);
|
9778 |
|
|
}
|
9779 |
|
|
}
|
9780 |
|
|
|
9781 |
|
|
/* Adjust the addend according to where the
|
9782 |
|
|
section winds up in the output section. */
|
9783 |
|
|
if (rela_normal)
|
9784 |
|
|
irela->r_addend += sec->output_offset;
|
9785 |
|
|
}
|
9786 |
|
|
else
|
9787 |
|
|
{
|
9788 |
|
|
if (finfo->indices[r_symndx] == -1)
|
9789 |
|
|
{
|
9790 |
|
|
unsigned long shlink;
|
9791 |
|
|
const char *name;
|
9792 |
|
|
asection *osec;
|
9793 |
|
|
long indx;
|
9794 |
|
|
|
9795 |
|
|
if (finfo->info->strip == strip_all)
|
9796 |
|
|
{
|
9797 |
|
|
/* You can't do ld -r -s. */
|
9798 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
9799 |
|
|
return FALSE;
|
9800 |
|
|
}
|
9801 |
|
|
|
9802 |
|
|
/* This symbol was skipped earlier, but
|
9803 |
|
|
since it is needed by a reloc, we
|
9804 |
|
|
must output it now. */
|
9805 |
|
|
shlink = symtab_hdr->sh_link;
|
9806 |
|
|
name = (bfd_elf_string_from_elf_section
|
9807 |
|
|
(input_bfd, shlink, sym.st_name));
|
9808 |
|
|
if (name == NULL)
|
9809 |
|
|
return FALSE;
|
9810 |
|
|
|
9811 |
|
|
osec = sec->output_section;
|
9812 |
|
|
sym.st_shndx =
|
9813 |
|
|
_bfd_elf_section_from_bfd_section (output_bfd,
|
9814 |
|
|
osec);
|
9815 |
|
|
if (sym.st_shndx == SHN_BAD)
|
9816 |
|
|
return FALSE;
|
9817 |
|
|
|
9818 |
|
|
sym.st_value += sec->output_offset;
|
9819 |
|
|
if (! finfo->info->relocatable)
|
9820 |
|
|
{
|
9821 |
|
|
sym.st_value += osec->vma;
|
9822 |
|
|
if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
|
9823 |
|
|
{
|
9824 |
|
|
/* STT_TLS symbols are relative to PT_TLS
|
9825 |
|
|
segment base. */
|
9826 |
|
|
BFD_ASSERT (elf_hash_table (finfo->info)
|
9827 |
|
|
->tls_sec != NULL);
|
9828 |
|
|
sym.st_value -= (elf_hash_table (finfo->info)
|
9829 |
|
|
->tls_sec->vma);
|
9830 |
|
|
}
|
9831 |
|
|
}
|
9832 |
|
|
|
9833 |
|
|
indx = bfd_get_symcount (output_bfd);
|
9834 |
|
|
ret = elf_link_output_sym (finfo, name, &sym, sec,
|
9835 |
|
|
NULL);
|
9836 |
|
|
if (ret == 0)
|
9837 |
|
|
return FALSE;
|
9838 |
|
|
else if (ret == 1)
|
9839 |
|
|
finfo->indices[r_symndx] = indx;
|
9840 |
|
|
else
|
9841 |
|
|
abort ();
|
9842 |
|
|
}
|
9843 |
|
|
|
9844 |
|
|
r_symndx = finfo->indices[r_symndx];
|
9845 |
|
|
}
|
9846 |
|
|
|
9847 |
|
|
irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
|
9848 |
|
|
| (irela->r_info & r_type_mask));
|
9849 |
|
|
}
|
9850 |
|
|
|
9851 |
|
|
/* Swap out the relocs. */
|
9852 |
|
|
input_rel_hdr = esdi->rel.hdr;
|
9853 |
|
|
if (input_rel_hdr && input_rel_hdr->sh_size != 0)
|
9854 |
|
|
{
|
9855 |
|
|
if (!bed->elf_backend_emit_relocs (output_bfd, o,
|
9856 |
|
|
input_rel_hdr,
|
9857 |
|
|
internal_relocs,
|
9858 |
|
|
rel_hash_list))
|
9859 |
|
|
return FALSE;
|
9860 |
|
|
internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
|
9861 |
|
|
* bed->s->int_rels_per_ext_rel);
|
9862 |
|
|
rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
|
9863 |
|
|
}
|
9864 |
|
|
|
9865 |
|
|
input_rela_hdr = esdi->rela.hdr;
|
9866 |
|
|
if (input_rela_hdr && input_rela_hdr->sh_size != 0)
|
9867 |
|
|
{
|
9868 |
|
|
if (!bed->elf_backend_emit_relocs (output_bfd, o,
|
9869 |
|
|
input_rela_hdr,
|
9870 |
|
|
internal_relocs,
|
9871 |
|
|
rela_hash_list))
|
9872 |
|
|
return FALSE;
|
9873 |
|
|
}
|
9874 |
|
|
}
|
9875 |
|
|
}
|
9876 |
|
|
|
9877 |
|
|
/* Write out the modified section contents. */
|
9878 |
|
|
if (bed->elf_backend_write_section
|
9879 |
|
|
&& (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
|
9880 |
|
|
contents))
|
9881 |
|
|
{
|
9882 |
|
|
/* Section written out. */
|
9883 |
|
|
}
|
9884 |
|
|
else switch (o->sec_info_type)
|
9885 |
|
|
{
|
9886 |
|
|
case ELF_INFO_TYPE_STABS:
|
9887 |
|
|
if (! (_bfd_write_section_stabs
|
9888 |
|
|
(output_bfd,
|
9889 |
|
|
&elf_hash_table (finfo->info)->stab_info,
|
9890 |
|
|
o, &elf_section_data (o)->sec_info, contents)))
|
9891 |
|
|
return FALSE;
|
9892 |
|
|
break;
|
9893 |
|
|
case ELF_INFO_TYPE_MERGE:
|
9894 |
|
|
if (! _bfd_write_merged_section (output_bfd, o,
|
9895 |
|
|
elf_section_data (o)->sec_info))
|
9896 |
|
|
return FALSE;
|
9897 |
|
|
break;
|
9898 |
|
|
case ELF_INFO_TYPE_EH_FRAME:
|
9899 |
|
|
{
|
9900 |
|
|
if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
|
9901 |
|
|
o, contents))
|
9902 |
|
|
return FALSE;
|
9903 |
|
|
}
|
9904 |
|
|
break;
|
9905 |
|
|
default:
|
9906 |
|
|
{
|
9907 |
|
|
/* FIXME: octets_per_byte. */
|
9908 |
|
|
if (! (o->flags & SEC_EXCLUDE))
|
9909 |
|
|
{
|
9910 |
|
|
file_ptr offset = (file_ptr) o->output_offset;
|
9911 |
|
|
bfd_size_type todo = o->size;
|
9912 |
|
|
if ((o->flags & SEC_ELF_REVERSE_COPY))
|
9913 |
|
|
{
|
9914 |
|
|
/* Reverse-copy input section to output. */
|
9915 |
|
|
do
|
9916 |
|
|
{
|
9917 |
|
|
todo -= address_size;
|
9918 |
|
|
if (! bfd_set_section_contents (output_bfd,
|
9919 |
|
|
o->output_section,
|
9920 |
|
|
contents + todo,
|
9921 |
|
|
offset,
|
9922 |
|
|
address_size))
|
9923 |
|
|
return FALSE;
|
9924 |
|
|
if (todo == 0)
|
9925 |
|
|
break;
|
9926 |
|
|
offset += address_size;
|
9927 |
|
|
}
|
9928 |
|
|
while (1);
|
9929 |
|
|
}
|
9930 |
|
|
else if (! bfd_set_section_contents (output_bfd,
|
9931 |
|
|
o->output_section,
|
9932 |
|
|
contents,
|
9933 |
|
|
offset, todo))
|
9934 |
|
|
return FALSE;
|
9935 |
|
|
}
|
9936 |
|
|
}
|
9937 |
|
|
break;
|
9938 |
|
|
}
|
9939 |
|
|
}
|
9940 |
|
|
|
9941 |
|
|
return TRUE;
|
9942 |
|
|
}
|
9943 |
|
|
|
9944 |
|
|
/* Generate a reloc when linking an ELF file. This is a reloc
|
9945 |
|
|
requested by the linker, and does not come from any input file. This
|
9946 |
|
|
is used to build constructor and destructor tables when linking
|
9947 |
|
|
with -Ur. */
|
9948 |
|
|
|
9949 |
|
|
static bfd_boolean
|
9950 |
|
|
elf_reloc_link_order (bfd *output_bfd,
|
9951 |
|
|
struct bfd_link_info *info,
|
9952 |
|
|
asection *output_section,
|
9953 |
|
|
struct bfd_link_order *link_order)
|
9954 |
|
|
{
|
9955 |
|
|
reloc_howto_type *howto;
|
9956 |
|
|
long indx;
|
9957 |
|
|
bfd_vma offset;
|
9958 |
|
|
bfd_vma addend;
|
9959 |
|
|
struct bfd_elf_section_reloc_data *reldata;
|
9960 |
|
|
struct elf_link_hash_entry **rel_hash_ptr;
|
9961 |
|
|
Elf_Internal_Shdr *rel_hdr;
|
9962 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
|
9963 |
|
|
Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
|
9964 |
|
|
bfd_byte *erel;
|
9965 |
|
|
unsigned int i;
|
9966 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (output_section);
|
9967 |
|
|
|
9968 |
|
|
howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
|
9969 |
|
|
if (howto == NULL)
|
9970 |
|
|
{
|
9971 |
|
|
bfd_set_error (bfd_error_bad_value);
|
9972 |
|
|
return FALSE;
|
9973 |
|
|
}
|
9974 |
|
|
|
9975 |
|
|
addend = link_order->u.reloc.p->addend;
|
9976 |
|
|
|
9977 |
|
|
if (esdo->rel.hdr)
|
9978 |
|
|
reldata = &esdo->rel;
|
9979 |
|
|
else if (esdo->rela.hdr)
|
9980 |
|
|
reldata = &esdo->rela;
|
9981 |
|
|
else
|
9982 |
|
|
{
|
9983 |
|
|
reldata = NULL;
|
9984 |
|
|
BFD_ASSERT (0);
|
9985 |
|
|
}
|
9986 |
|
|
|
9987 |
|
|
/* Figure out the symbol index. */
|
9988 |
|
|
rel_hash_ptr = reldata->hashes + reldata->count;
|
9989 |
|
|
if (link_order->type == bfd_section_reloc_link_order)
|
9990 |
|
|
{
|
9991 |
|
|
indx = link_order->u.reloc.p->u.section->target_index;
|
9992 |
|
|
BFD_ASSERT (indx != 0);
|
9993 |
|
|
*rel_hash_ptr = NULL;
|
9994 |
|
|
}
|
9995 |
|
|
else
|
9996 |
|
|
{
|
9997 |
|
|
struct elf_link_hash_entry *h;
|
9998 |
|
|
|
9999 |
|
|
/* Treat a reloc against a defined symbol as though it were
|
10000 |
|
|
actually against the section. */
|
10001 |
|
|
h = ((struct elf_link_hash_entry *)
|
10002 |
|
|
bfd_wrapped_link_hash_lookup (output_bfd, info,
|
10003 |
|
|
link_order->u.reloc.p->u.name,
|
10004 |
|
|
FALSE, FALSE, TRUE));
|
10005 |
|
|
if (h != NULL
|
10006 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
10007 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
10008 |
|
|
{
|
10009 |
|
|
asection *section;
|
10010 |
|
|
|
10011 |
|
|
section = h->root.u.def.section;
|
10012 |
|
|
indx = section->output_section->target_index;
|
10013 |
|
|
*rel_hash_ptr = NULL;
|
10014 |
|
|
/* It seems that we ought to add the symbol value to the
|
10015 |
|
|
addend here, but in practice it has already been added
|
10016 |
|
|
because it was passed to constructor_callback. */
|
10017 |
|
|
addend += section->output_section->vma + section->output_offset;
|
10018 |
|
|
}
|
10019 |
|
|
else if (h != NULL)
|
10020 |
|
|
{
|
10021 |
|
|
/* Setting the index to -2 tells elf_link_output_extsym that
|
10022 |
|
|
this symbol is used by a reloc. */
|
10023 |
|
|
h->indx = -2;
|
10024 |
|
|
*rel_hash_ptr = h;
|
10025 |
|
|
indx = 0;
|
10026 |
|
|
}
|
10027 |
|
|
else
|
10028 |
|
|
{
|
10029 |
|
|
if (! ((*info->callbacks->unattached_reloc)
|
10030 |
|
|
(info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
|
10031 |
|
|
return FALSE;
|
10032 |
|
|
indx = 0;
|
10033 |
|
|
}
|
10034 |
|
|
}
|
10035 |
|
|
|
10036 |
|
|
/* If this is an inplace reloc, we must write the addend into the
|
10037 |
|
|
object file. */
|
10038 |
|
|
if (howto->partial_inplace && addend != 0)
|
10039 |
|
|
{
|
10040 |
|
|
bfd_size_type size;
|
10041 |
|
|
bfd_reloc_status_type rstat;
|
10042 |
|
|
bfd_byte *buf;
|
10043 |
|
|
bfd_boolean ok;
|
10044 |
|
|
const char *sym_name;
|
10045 |
|
|
|
10046 |
|
|
size = (bfd_size_type) bfd_get_reloc_size (howto);
|
10047 |
|
|
buf = (bfd_byte *) bfd_zmalloc (size);
|
10048 |
|
|
if (buf == NULL)
|
10049 |
|
|
return FALSE;
|
10050 |
|
|
rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
|
10051 |
|
|
switch (rstat)
|
10052 |
|
|
{
|
10053 |
|
|
case bfd_reloc_ok:
|
10054 |
|
|
break;
|
10055 |
|
|
|
10056 |
|
|
default:
|
10057 |
|
|
case bfd_reloc_outofrange:
|
10058 |
|
|
abort ();
|
10059 |
|
|
|
10060 |
|
|
case bfd_reloc_overflow:
|
10061 |
|
|
if (link_order->type == bfd_section_reloc_link_order)
|
10062 |
|
|
sym_name = bfd_section_name (output_bfd,
|
10063 |
|
|
link_order->u.reloc.p->u.section);
|
10064 |
|
|
else
|
10065 |
|
|
sym_name = link_order->u.reloc.p->u.name;
|
10066 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
10067 |
|
|
(info, NULL, sym_name, howto->name, addend, NULL,
|
10068 |
|
|
NULL, (bfd_vma) 0)))
|
10069 |
|
|
{
|
10070 |
|
|
free (buf);
|
10071 |
|
|
return FALSE;
|
10072 |
|
|
}
|
10073 |
|
|
break;
|
10074 |
|
|
}
|
10075 |
|
|
ok = bfd_set_section_contents (output_bfd, output_section, buf,
|
10076 |
|
|
link_order->offset, size);
|
10077 |
|
|
free (buf);
|
10078 |
|
|
if (! ok)
|
10079 |
|
|
return FALSE;
|
10080 |
|
|
}
|
10081 |
|
|
|
10082 |
|
|
/* The address of a reloc is relative to the section in a
|
10083 |
|
|
relocatable file, and is a virtual address in an executable
|
10084 |
|
|
file. */
|
10085 |
|
|
offset = link_order->offset;
|
10086 |
|
|
if (! info->relocatable)
|
10087 |
|
|
offset += output_section->vma;
|
10088 |
|
|
|
10089 |
|
|
for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
|
10090 |
|
|
{
|
10091 |
|
|
irel[i].r_offset = offset;
|
10092 |
|
|
irel[i].r_info = 0;
|
10093 |
|
|
irel[i].r_addend = 0;
|
10094 |
|
|
}
|
10095 |
|
|
if (bed->s->arch_size == 32)
|
10096 |
|
|
irel[0].r_info = ELF32_R_INFO (indx, howto->type);
|
10097 |
|
|
else
|
10098 |
|
|
irel[0].r_info = ELF64_R_INFO (indx, howto->type);
|
10099 |
|
|
|
10100 |
|
|
rel_hdr = reldata->hdr;
|
10101 |
|
|
erel = rel_hdr->contents;
|
10102 |
|
|
if (rel_hdr->sh_type == SHT_REL)
|
10103 |
|
|
{
|
10104 |
|
|
erel += reldata->count * bed->s->sizeof_rel;
|
10105 |
|
|
(*bed->s->swap_reloc_out) (output_bfd, irel, erel);
|
10106 |
|
|
}
|
10107 |
|
|
else
|
10108 |
|
|
{
|
10109 |
|
|
irel[0].r_addend = addend;
|
10110 |
|
|
erel += reldata->count * bed->s->sizeof_rela;
|
10111 |
|
|
(*bed->s->swap_reloca_out) (output_bfd, irel, erel);
|
10112 |
|
|
}
|
10113 |
|
|
|
10114 |
|
|
++reldata->count;
|
10115 |
|
|
|
10116 |
|
|
return TRUE;
|
10117 |
|
|
}
|
10118 |
|
|
|
10119 |
|
|
|
10120 |
|
|
/* Get the output vma of the section pointed to by the sh_link field. */
|
10121 |
|
|
|
10122 |
|
|
static bfd_vma
|
10123 |
|
|
elf_get_linked_section_vma (struct bfd_link_order *p)
|
10124 |
|
|
{
|
10125 |
|
|
Elf_Internal_Shdr **elf_shdrp;
|
10126 |
|
|
asection *s;
|
10127 |
|
|
int elfsec;
|
10128 |
|
|
|
10129 |
|
|
s = p->u.indirect.section;
|
10130 |
|
|
elf_shdrp = elf_elfsections (s->owner);
|
10131 |
|
|
elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
|
10132 |
|
|
elfsec = elf_shdrp[elfsec]->sh_link;
|
10133 |
|
|
/* PR 290:
|
10134 |
|
|
The Intel C compiler generates SHT_IA_64_UNWIND with
|
10135 |
|
|
SHF_LINK_ORDER. But it doesn't set the sh_link or
|
10136 |
|
|
sh_info fields. Hence we could get the situation
|
10137 |
|
|
where elfsec is 0. */
|
10138 |
|
|
if (elfsec == 0)
|
10139 |
|
|
{
|
10140 |
|
|
const struct elf_backend_data *bed
|
10141 |
|
|
= get_elf_backend_data (s->owner);
|
10142 |
|
|
if (bed->link_order_error_handler)
|
10143 |
|
|
bed->link_order_error_handler
|
10144 |
|
|
(_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
|
10145 |
|
|
return 0;
|
10146 |
|
|
}
|
10147 |
|
|
else
|
10148 |
|
|
{
|
10149 |
|
|
s = elf_shdrp[elfsec]->bfd_section;
|
10150 |
|
|
return s->output_section->vma + s->output_offset;
|
10151 |
|
|
}
|
10152 |
|
|
}
|
10153 |
|
|
|
10154 |
|
|
|
10155 |
|
|
/* Compare two sections based on the locations of the sections they are
|
10156 |
|
|
linked to. Used by elf_fixup_link_order. */
|
10157 |
|
|
|
10158 |
|
|
static int
|
10159 |
|
|
compare_link_order (const void * a, const void * b)
|
10160 |
|
|
{
|
10161 |
|
|
bfd_vma apos;
|
10162 |
|
|
bfd_vma bpos;
|
10163 |
|
|
|
10164 |
|
|
apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
|
10165 |
|
|
bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
|
10166 |
|
|
if (apos < bpos)
|
10167 |
|
|
return -1;
|
10168 |
|
|
return apos > bpos;
|
10169 |
|
|
}
|
10170 |
|
|
|
10171 |
|
|
|
10172 |
|
|
/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
|
10173 |
|
|
order as their linked sections. Returns false if this could not be done
|
10174 |
|
|
because an output section includes both ordered and unordered
|
10175 |
|
|
sections. Ideally we'd do this in the linker proper. */
|
10176 |
|
|
|
10177 |
|
|
static bfd_boolean
|
10178 |
|
|
elf_fixup_link_order (bfd *abfd, asection *o)
|
10179 |
|
|
{
|
10180 |
|
|
int seen_linkorder;
|
10181 |
|
|
int seen_other;
|
10182 |
|
|
int n;
|
10183 |
|
|
struct bfd_link_order *p;
|
10184 |
|
|
bfd *sub;
|
10185 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
10186 |
|
|
unsigned elfsec;
|
10187 |
|
|
struct bfd_link_order **sections;
|
10188 |
|
|
asection *s, *other_sec, *linkorder_sec;
|
10189 |
|
|
bfd_vma offset;
|
10190 |
|
|
|
10191 |
|
|
other_sec = NULL;
|
10192 |
|
|
linkorder_sec = NULL;
|
10193 |
|
|
seen_other = 0;
|
10194 |
|
|
seen_linkorder = 0;
|
10195 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10196 |
|
|
{
|
10197 |
|
|
if (p->type == bfd_indirect_link_order)
|
10198 |
|
|
{
|
10199 |
|
|
s = p->u.indirect.section;
|
10200 |
|
|
sub = s->owner;
|
10201 |
|
|
if (bfd_get_flavour (sub) == bfd_target_elf_flavour
|
10202 |
|
|
&& elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
|
10203 |
|
|
&& (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
|
10204 |
|
|
&& elfsec < elf_numsections (sub)
|
10205 |
|
|
&& elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
|
10206 |
|
|
&& elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
|
10207 |
|
|
{
|
10208 |
|
|
seen_linkorder++;
|
10209 |
|
|
linkorder_sec = s;
|
10210 |
|
|
}
|
10211 |
|
|
else
|
10212 |
|
|
{
|
10213 |
|
|
seen_other++;
|
10214 |
|
|
other_sec = s;
|
10215 |
|
|
}
|
10216 |
|
|
}
|
10217 |
|
|
else
|
10218 |
|
|
seen_other++;
|
10219 |
|
|
|
10220 |
|
|
if (seen_other && seen_linkorder)
|
10221 |
|
|
{
|
10222 |
|
|
if (other_sec && linkorder_sec)
|
10223 |
|
|
(*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
|
10224 |
|
|
o, linkorder_sec,
|
10225 |
|
|
linkorder_sec->owner, other_sec,
|
10226 |
|
|
other_sec->owner);
|
10227 |
|
|
else
|
10228 |
|
|
(*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
|
10229 |
|
|
o);
|
10230 |
|
|
bfd_set_error (bfd_error_bad_value);
|
10231 |
|
|
return FALSE;
|
10232 |
|
|
}
|
10233 |
|
|
}
|
10234 |
|
|
|
10235 |
|
|
if (!seen_linkorder)
|
10236 |
|
|
return TRUE;
|
10237 |
|
|
|
10238 |
|
|
sections = (struct bfd_link_order **)
|
10239 |
|
|
bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
|
10240 |
|
|
if (sections == NULL)
|
10241 |
|
|
return FALSE;
|
10242 |
|
|
seen_linkorder = 0;
|
10243 |
|
|
|
10244 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10245 |
|
|
{
|
10246 |
|
|
sections[seen_linkorder++] = p;
|
10247 |
|
|
}
|
10248 |
|
|
/* Sort the input sections in the order of their linked section. */
|
10249 |
|
|
qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
|
10250 |
|
|
compare_link_order);
|
10251 |
|
|
|
10252 |
|
|
/* Change the offsets of the sections. */
|
10253 |
|
|
offset = 0;
|
10254 |
|
|
for (n = 0; n < seen_linkorder; n++)
|
10255 |
|
|
{
|
10256 |
|
|
s = sections[n]->u.indirect.section;
|
10257 |
|
|
offset &= ~(bfd_vma) 0 << s->alignment_power;
|
10258 |
|
|
s->output_offset = offset;
|
10259 |
|
|
sections[n]->offset = offset;
|
10260 |
|
|
/* FIXME: octets_per_byte. */
|
10261 |
|
|
offset += sections[n]->size;
|
10262 |
|
|
}
|
10263 |
|
|
|
10264 |
|
|
free (sections);
|
10265 |
|
|
return TRUE;
|
10266 |
|
|
}
|
10267 |
|
|
|
10268 |
|
|
|
10269 |
|
|
/* Do the final step of an ELF link. */
|
10270 |
|
|
|
10271 |
|
|
bfd_boolean
|
10272 |
|
|
bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
|
10273 |
|
|
{
|
10274 |
|
|
bfd_boolean dynamic;
|
10275 |
|
|
bfd_boolean emit_relocs;
|
10276 |
|
|
bfd *dynobj;
|
10277 |
|
|
struct elf_final_link_info finfo;
|
10278 |
|
|
asection *o;
|
10279 |
|
|
struct bfd_link_order *p;
|
10280 |
|
|
bfd *sub;
|
10281 |
|
|
bfd_size_type max_contents_size;
|
10282 |
|
|
bfd_size_type max_external_reloc_size;
|
10283 |
|
|
bfd_size_type max_internal_reloc_count;
|
10284 |
|
|
bfd_size_type max_sym_count;
|
10285 |
|
|
bfd_size_type max_sym_shndx_count;
|
10286 |
|
|
file_ptr off;
|
10287 |
|
|
Elf_Internal_Sym elfsym;
|
10288 |
|
|
unsigned int i;
|
10289 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
10290 |
|
|
Elf_Internal_Shdr *symtab_shndx_hdr;
|
10291 |
|
|
Elf_Internal_Shdr *symstrtab_hdr;
|
10292 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
10293 |
|
|
struct elf_outext_info eoinfo;
|
10294 |
|
|
bfd_boolean merged;
|
10295 |
|
|
size_t relativecount = 0;
|
10296 |
|
|
asection *reldyn = 0;
|
10297 |
|
|
bfd_size_type amt;
|
10298 |
|
|
asection *attr_section = NULL;
|
10299 |
|
|
bfd_vma attr_size = 0;
|
10300 |
|
|
const char *std_attrs_section;
|
10301 |
|
|
|
10302 |
|
|
if (! is_elf_hash_table (info->hash))
|
10303 |
|
|
return FALSE;
|
10304 |
|
|
|
10305 |
|
|
if (info->shared)
|
10306 |
|
|
abfd->flags |= DYNAMIC;
|
10307 |
|
|
|
10308 |
|
|
dynamic = elf_hash_table (info)->dynamic_sections_created;
|
10309 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
10310 |
|
|
|
10311 |
|
|
emit_relocs = (info->relocatable
|
10312 |
|
|
|| info->emitrelocations);
|
10313 |
|
|
|
10314 |
|
|
finfo.info = info;
|
10315 |
|
|
finfo.output_bfd = abfd;
|
10316 |
|
|
finfo.symstrtab = _bfd_elf_stringtab_init ();
|
10317 |
|
|
if (finfo.symstrtab == NULL)
|
10318 |
|
|
return FALSE;
|
10319 |
|
|
|
10320 |
|
|
if (! dynamic)
|
10321 |
|
|
{
|
10322 |
|
|
finfo.dynsym_sec = NULL;
|
10323 |
|
|
finfo.hash_sec = NULL;
|
10324 |
|
|
finfo.symver_sec = NULL;
|
10325 |
|
|
}
|
10326 |
|
|
else
|
10327 |
|
|
{
|
10328 |
|
|
finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
|
10329 |
|
|
finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
|
10330 |
|
|
BFD_ASSERT (finfo.dynsym_sec != NULL);
|
10331 |
|
|
finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
|
10332 |
|
|
/* Note that it is OK if symver_sec is NULL. */
|
10333 |
|
|
}
|
10334 |
|
|
|
10335 |
|
|
finfo.contents = NULL;
|
10336 |
|
|
finfo.external_relocs = NULL;
|
10337 |
|
|
finfo.internal_relocs = NULL;
|
10338 |
|
|
finfo.external_syms = NULL;
|
10339 |
|
|
finfo.locsym_shndx = NULL;
|
10340 |
|
|
finfo.internal_syms = NULL;
|
10341 |
|
|
finfo.indices = NULL;
|
10342 |
|
|
finfo.sections = NULL;
|
10343 |
|
|
finfo.symbuf = NULL;
|
10344 |
|
|
finfo.symshndxbuf = NULL;
|
10345 |
|
|
finfo.symbuf_count = 0;
|
10346 |
|
|
finfo.shndxbuf_size = 0;
|
10347 |
|
|
|
10348 |
|
|
/* The object attributes have been merged. Remove the input
|
10349 |
|
|
sections from the link, and set the contents of the output
|
10350 |
|
|
secton. */
|
10351 |
|
|
std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
|
10352 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10353 |
|
|
{
|
10354 |
|
|
if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
|
10355 |
|
|
|| strcmp (o->name, ".gnu.attributes") == 0)
|
10356 |
|
|
{
|
10357 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10358 |
|
|
{
|
10359 |
|
|
asection *input_section;
|
10360 |
|
|
|
10361 |
|
|
if (p->type != bfd_indirect_link_order)
|
10362 |
|
|
continue;
|
10363 |
|
|
input_section = p->u.indirect.section;
|
10364 |
|
|
/* Hack: reset the SEC_HAS_CONTENTS flag so that
|
10365 |
|
|
elf_link_input_bfd ignores this section. */
|
10366 |
|
|
input_section->flags &= ~SEC_HAS_CONTENTS;
|
10367 |
|
|
}
|
10368 |
|
|
|
10369 |
|
|
attr_size = bfd_elf_obj_attr_size (abfd);
|
10370 |
|
|
if (attr_size)
|
10371 |
|
|
{
|
10372 |
|
|
bfd_set_section_size (abfd, o, attr_size);
|
10373 |
|
|
attr_section = o;
|
10374 |
|
|
/* Skip this section later on. */
|
10375 |
|
|
o->map_head.link_order = NULL;
|
10376 |
|
|
}
|
10377 |
|
|
else
|
10378 |
|
|
o->flags |= SEC_EXCLUDE;
|
10379 |
|
|
}
|
10380 |
|
|
}
|
10381 |
|
|
|
10382 |
|
|
/* Count up the number of relocations we will output for each output
|
10383 |
|
|
section, so that we know the sizes of the reloc sections. We
|
10384 |
|
|
also figure out some maximum sizes. */
|
10385 |
|
|
max_contents_size = 0;
|
10386 |
|
|
max_external_reloc_size = 0;
|
10387 |
|
|
max_internal_reloc_count = 0;
|
10388 |
|
|
max_sym_count = 0;
|
10389 |
|
|
max_sym_shndx_count = 0;
|
10390 |
|
|
merged = FALSE;
|
10391 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10392 |
|
|
{
|
10393 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
10394 |
|
|
o->reloc_count = 0;
|
10395 |
|
|
|
10396 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10397 |
|
|
{
|
10398 |
|
|
unsigned int reloc_count = 0;
|
10399 |
|
|
struct bfd_elf_section_data *esdi = NULL;
|
10400 |
|
|
|
10401 |
|
|
if (p->type == bfd_section_reloc_link_order
|
10402 |
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
10403 |
|
|
reloc_count = 1;
|
10404 |
|
|
else if (p->type == bfd_indirect_link_order)
|
10405 |
|
|
{
|
10406 |
|
|
asection *sec;
|
10407 |
|
|
|
10408 |
|
|
sec = p->u.indirect.section;
|
10409 |
|
|
esdi = elf_section_data (sec);
|
10410 |
|
|
|
10411 |
|
|
/* Mark all sections which are to be included in the
|
10412 |
|
|
link. This will normally be every section. We need
|
10413 |
|
|
to do this so that we can identify any sections which
|
10414 |
|
|
the linker has decided to not include. */
|
10415 |
|
|
sec->linker_mark = TRUE;
|
10416 |
|
|
|
10417 |
|
|
if (sec->flags & SEC_MERGE)
|
10418 |
|
|
merged = TRUE;
|
10419 |
|
|
|
10420 |
|
|
if (info->relocatable || info->emitrelocations)
|
10421 |
|
|
reloc_count = sec->reloc_count;
|
10422 |
|
|
else if (bed->elf_backend_count_relocs)
|
10423 |
|
|
reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
|
10424 |
|
|
|
10425 |
|
|
if (sec->rawsize > max_contents_size)
|
10426 |
|
|
max_contents_size = sec->rawsize;
|
10427 |
|
|
if (sec->size > max_contents_size)
|
10428 |
|
|
max_contents_size = sec->size;
|
10429 |
|
|
|
10430 |
|
|
/* We are interested in just local symbols, not all
|
10431 |
|
|
symbols. */
|
10432 |
|
|
if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
|
10433 |
|
|
&& (sec->owner->flags & DYNAMIC) == 0)
|
10434 |
|
|
{
|
10435 |
|
|
size_t sym_count;
|
10436 |
|
|
|
10437 |
|
|
if (elf_bad_symtab (sec->owner))
|
10438 |
|
|
sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
|
10439 |
|
|
/ bed->s->sizeof_sym);
|
10440 |
|
|
else
|
10441 |
|
|
sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
|
10442 |
|
|
|
10443 |
|
|
if (sym_count > max_sym_count)
|
10444 |
|
|
max_sym_count = sym_count;
|
10445 |
|
|
|
10446 |
|
|
if (sym_count > max_sym_shndx_count
|
10447 |
|
|
&& elf_symtab_shndx (sec->owner) != 0)
|
10448 |
|
|
max_sym_shndx_count = sym_count;
|
10449 |
|
|
|
10450 |
|
|
if ((sec->flags & SEC_RELOC) != 0)
|
10451 |
|
|
{
|
10452 |
|
|
size_t ext_size = 0;
|
10453 |
|
|
|
10454 |
|
|
if (esdi->rel.hdr != NULL)
|
10455 |
|
|
ext_size = esdi->rel.hdr->sh_size;
|
10456 |
|
|
if (esdi->rela.hdr != NULL)
|
10457 |
|
|
ext_size += esdi->rela.hdr->sh_size;
|
10458 |
|
|
|
10459 |
|
|
if (ext_size > max_external_reloc_size)
|
10460 |
|
|
max_external_reloc_size = ext_size;
|
10461 |
|
|
if (sec->reloc_count > max_internal_reloc_count)
|
10462 |
|
|
max_internal_reloc_count = sec->reloc_count;
|
10463 |
|
|
}
|
10464 |
|
|
}
|
10465 |
|
|
}
|
10466 |
|
|
|
10467 |
|
|
if (reloc_count == 0)
|
10468 |
|
|
continue;
|
10469 |
|
|
|
10470 |
|
|
o->reloc_count += reloc_count;
|
10471 |
|
|
|
10472 |
|
|
if (p->type == bfd_indirect_link_order
|
10473 |
|
|
&& (info->relocatable || info->emitrelocations))
|
10474 |
|
|
{
|
10475 |
|
|
if (esdi->rel.hdr)
|
10476 |
|
|
esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
|
10477 |
|
|
if (esdi->rela.hdr)
|
10478 |
|
|
esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
|
10479 |
|
|
}
|
10480 |
|
|
else
|
10481 |
|
|
{
|
10482 |
|
|
if (o->use_rela_p)
|
10483 |
|
|
esdo->rela.count += reloc_count;
|
10484 |
|
|
else
|
10485 |
|
|
esdo->rel.count += reloc_count;
|
10486 |
|
|
}
|
10487 |
|
|
}
|
10488 |
|
|
|
10489 |
|
|
if (o->reloc_count > 0)
|
10490 |
|
|
o->flags |= SEC_RELOC;
|
10491 |
|
|
else
|
10492 |
|
|
{
|
10493 |
|
|
/* Explicitly clear the SEC_RELOC flag. The linker tends to
|
10494 |
|
|
set it (this is probably a bug) and if it is set
|
10495 |
|
|
assign_section_numbers will create a reloc section. */
|
10496 |
|
|
o->flags &=~ SEC_RELOC;
|
10497 |
|
|
}
|
10498 |
|
|
|
10499 |
|
|
/* If the SEC_ALLOC flag is not set, force the section VMA to
|
10500 |
|
|
zero. This is done in elf_fake_sections as well, but forcing
|
10501 |
|
|
the VMA to 0 here will ensure that relocs against these
|
10502 |
|
|
sections are handled correctly. */
|
10503 |
|
|
if ((o->flags & SEC_ALLOC) == 0
|
10504 |
|
|
&& ! o->user_set_vma)
|
10505 |
|
|
o->vma = 0;
|
10506 |
|
|
}
|
10507 |
|
|
|
10508 |
|
|
if (! info->relocatable && merged)
|
10509 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
10510 |
|
|
_bfd_elf_link_sec_merge_syms, abfd);
|
10511 |
|
|
|
10512 |
|
|
/* Figure out the file positions for everything but the symbol table
|
10513 |
|
|
and the relocs. We set symcount to force assign_section_numbers
|
10514 |
|
|
to create a symbol table. */
|
10515 |
|
|
bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
|
10516 |
|
|
BFD_ASSERT (! abfd->output_has_begun);
|
10517 |
|
|
if (! _bfd_elf_compute_section_file_positions (abfd, info))
|
10518 |
|
|
goto error_return;
|
10519 |
|
|
|
10520 |
|
|
/* Set sizes, and assign file positions for reloc sections. */
|
10521 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10522 |
|
|
{
|
10523 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
10524 |
|
|
if ((o->flags & SEC_RELOC) != 0)
|
10525 |
|
|
{
|
10526 |
|
|
if (esdo->rel.hdr
|
10527 |
|
|
&& !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
|
10528 |
|
|
goto error_return;
|
10529 |
|
|
|
10530 |
|
|
if (esdo->rela.hdr
|
10531 |
|
|
&& !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
|
10532 |
|
|
goto error_return;
|
10533 |
|
|
}
|
10534 |
|
|
|
10535 |
|
|
/* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
|
10536 |
|
|
to count upwards while actually outputting the relocations. */
|
10537 |
|
|
esdo->rel.count = 0;
|
10538 |
|
|
esdo->rela.count = 0;
|
10539 |
|
|
}
|
10540 |
|
|
|
10541 |
|
|
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
10542 |
|
|
|
10543 |
|
|
/* We have now assigned file positions for all the sections except
|
10544 |
|
|
.symtab and .strtab. We start the .symtab section at the current
|
10545 |
|
|
file position, and write directly to it. We build the .strtab
|
10546 |
|
|
section in memory. */
|
10547 |
|
|
bfd_get_symcount (abfd) = 0;
|
10548 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
10549 |
|
|
/* sh_name is set in prep_headers. */
|
10550 |
|
|
symtab_hdr->sh_type = SHT_SYMTAB;
|
10551 |
|
|
/* sh_flags, sh_addr and sh_size all start off zero. */
|
10552 |
|
|
symtab_hdr->sh_entsize = bed->s->sizeof_sym;
|
10553 |
|
|
/* sh_link is set in assign_section_numbers. */
|
10554 |
|
|
/* sh_info is set below. */
|
10555 |
|
|
/* sh_offset is set just below. */
|
10556 |
|
|
symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
|
10557 |
|
|
|
10558 |
|
|
off = elf_tdata (abfd)->next_file_pos;
|
10559 |
|
|
off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
|
10560 |
|
|
|
10561 |
|
|
/* Note that at this point elf_tdata (abfd)->next_file_pos is
|
10562 |
|
|
incorrect. We do not yet know the size of the .symtab section.
|
10563 |
|
|
We correct next_file_pos below, after we do know the size. */
|
10564 |
|
|
|
10565 |
|
|
/* Allocate a buffer to hold swapped out symbols. This is to avoid
|
10566 |
|
|
continuously seeking to the right position in the file. */
|
10567 |
|
|
if (! info->keep_memory || max_sym_count < 20)
|
10568 |
|
|
finfo.symbuf_size = 20;
|
10569 |
|
|
else
|
10570 |
|
|
finfo.symbuf_size = max_sym_count;
|
10571 |
|
|
amt = finfo.symbuf_size;
|
10572 |
|
|
amt *= bed->s->sizeof_sym;
|
10573 |
|
|
finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
|
10574 |
|
|
if (finfo.symbuf == NULL)
|
10575 |
|
|
goto error_return;
|
10576 |
|
|
if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
|
10577 |
|
|
{
|
10578 |
|
|
/* Wild guess at number of output symbols. realloc'd as needed. */
|
10579 |
|
|
amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
|
10580 |
|
|
finfo.shndxbuf_size = amt;
|
10581 |
|
|
amt *= sizeof (Elf_External_Sym_Shndx);
|
10582 |
|
|
finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
|
10583 |
|
|
if (finfo.symshndxbuf == NULL)
|
10584 |
|
|
goto error_return;
|
10585 |
|
|
}
|
10586 |
|
|
|
10587 |
|
|
/* Start writing out the symbol table. The first symbol is always a
|
10588 |
|
|
dummy symbol. */
|
10589 |
|
|
if (info->strip != strip_all
|
10590 |
|
|
|| emit_relocs)
|
10591 |
|
|
{
|
10592 |
|
|
elfsym.st_value = 0;
|
10593 |
|
|
elfsym.st_size = 0;
|
10594 |
|
|
elfsym.st_info = 0;
|
10595 |
|
|
elfsym.st_other = 0;
|
10596 |
|
|
elfsym.st_shndx = SHN_UNDEF;
|
10597 |
|
|
elfsym.st_target_internal = 0;
|
10598 |
|
|
if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
|
10599 |
|
|
NULL) != 1)
|
10600 |
|
|
goto error_return;
|
10601 |
|
|
}
|
10602 |
|
|
|
10603 |
|
|
/* Output a symbol for each section. We output these even if we are
|
10604 |
|
|
discarding local symbols, since they are used for relocs. These
|
10605 |
|
|
symbols have no names. We store the index of each one in the
|
10606 |
|
|
index field of the section, so that we can find it again when
|
10607 |
|
|
outputting relocs. */
|
10608 |
|
|
if (info->strip != strip_all
|
10609 |
|
|
|| emit_relocs)
|
10610 |
|
|
{
|
10611 |
|
|
elfsym.st_size = 0;
|
10612 |
|
|
elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
10613 |
|
|
elfsym.st_other = 0;
|
10614 |
|
|
elfsym.st_value = 0;
|
10615 |
|
|
elfsym.st_target_internal = 0;
|
10616 |
|
|
for (i = 1; i < elf_numsections (abfd); i++)
|
10617 |
|
|
{
|
10618 |
|
|
o = bfd_section_from_elf_index (abfd, i);
|
10619 |
|
|
if (o != NULL)
|
10620 |
|
|
{
|
10621 |
|
|
o->target_index = bfd_get_symcount (abfd);
|
10622 |
|
|
elfsym.st_shndx = i;
|
10623 |
|
|
if (!info->relocatable)
|
10624 |
|
|
elfsym.st_value = o->vma;
|
10625 |
|
|
if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
|
10626 |
|
|
goto error_return;
|
10627 |
|
|
}
|
10628 |
|
|
}
|
10629 |
|
|
}
|
10630 |
|
|
|
10631 |
|
|
/* Allocate some memory to hold information read in from the input
|
10632 |
|
|
files. */
|
10633 |
|
|
if (max_contents_size != 0)
|
10634 |
|
|
{
|
10635 |
|
|
finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
|
10636 |
|
|
if (finfo.contents == NULL)
|
10637 |
|
|
goto error_return;
|
10638 |
|
|
}
|
10639 |
|
|
|
10640 |
|
|
if (max_external_reloc_size != 0)
|
10641 |
|
|
{
|
10642 |
|
|
finfo.external_relocs = bfd_malloc (max_external_reloc_size);
|
10643 |
|
|
if (finfo.external_relocs == NULL)
|
10644 |
|
|
goto error_return;
|
10645 |
|
|
}
|
10646 |
|
|
|
10647 |
|
|
if (max_internal_reloc_count != 0)
|
10648 |
|
|
{
|
10649 |
|
|
amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
|
10650 |
|
|
amt *= sizeof (Elf_Internal_Rela);
|
10651 |
|
|
finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
|
10652 |
|
|
if (finfo.internal_relocs == NULL)
|
10653 |
|
|
goto error_return;
|
10654 |
|
|
}
|
10655 |
|
|
|
10656 |
|
|
if (max_sym_count != 0)
|
10657 |
|
|
{
|
10658 |
|
|
amt = max_sym_count * bed->s->sizeof_sym;
|
10659 |
|
|
finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
|
10660 |
|
|
if (finfo.external_syms == NULL)
|
10661 |
|
|
goto error_return;
|
10662 |
|
|
|
10663 |
|
|
amt = max_sym_count * sizeof (Elf_Internal_Sym);
|
10664 |
|
|
finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
|
10665 |
|
|
if (finfo.internal_syms == NULL)
|
10666 |
|
|
goto error_return;
|
10667 |
|
|
|
10668 |
|
|
amt = max_sym_count * sizeof (long);
|
10669 |
|
|
finfo.indices = (long int *) bfd_malloc (amt);
|
10670 |
|
|
if (finfo.indices == NULL)
|
10671 |
|
|
goto error_return;
|
10672 |
|
|
|
10673 |
|
|
amt = max_sym_count * sizeof (asection *);
|
10674 |
|
|
finfo.sections = (asection **) bfd_malloc (amt);
|
10675 |
|
|
if (finfo.sections == NULL)
|
10676 |
|
|
goto error_return;
|
10677 |
|
|
}
|
10678 |
|
|
|
10679 |
|
|
if (max_sym_shndx_count != 0)
|
10680 |
|
|
{
|
10681 |
|
|
amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
|
10682 |
|
|
finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
|
10683 |
|
|
if (finfo.locsym_shndx == NULL)
|
10684 |
|
|
goto error_return;
|
10685 |
|
|
}
|
10686 |
|
|
|
10687 |
|
|
if (elf_hash_table (info)->tls_sec)
|
10688 |
|
|
{
|
10689 |
|
|
bfd_vma base, end = 0;
|
10690 |
|
|
asection *sec;
|
10691 |
|
|
|
10692 |
|
|
for (sec = elf_hash_table (info)->tls_sec;
|
10693 |
|
|
sec && (sec->flags & SEC_THREAD_LOCAL);
|
10694 |
|
|
sec = sec->next)
|
10695 |
|
|
{
|
10696 |
|
|
bfd_size_type size = sec->size;
|
10697 |
|
|
|
10698 |
|
|
if (size == 0
|
10699 |
|
|
&& (sec->flags & SEC_HAS_CONTENTS) == 0)
|
10700 |
|
|
{
|
10701 |
|
|
struct bfd_link_order *ord = sec->map_tail.link_order;
|
10702 |
|
|
|
10703 |
|
|
if (ord != NULL)
|
10704 |
|
|
size = ord->offset + ord->size;
|
10705 |
|
|
}
|
10706 |
|
|
end = sec->vma + size;
|
10707 |
|
|
}
|
10708 |
|
|
base = elf_hash_table (info)->tls_sec->vma;
|
10709 |
|
|
/* Only align end of TLS section if static TLS doesn't have special
|
10710 |
|
|
alignment requirements. */
|
10711 |
|
|
if (bed->static_tls_alignment == 1)
|
10712 |
|
|
end = align_power (end,
|
10713 |
|
|
elf_hash_table (info)->tls_sec->alignment_power);
|
10714 |
|
|
elf_hash_table (info)->tls_size = end - base;
|
10715 |
|
|
}
|
10716 |
|
|
|
10717 |
|
|
/* Reorder SHF_LINK_ORDER sections. */
|
10718 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10719 |
|
|
{
|
10720 |
|
|
if (!elf_fixup_link_order (abfd, o))
|
10721 |
|
|
return FALSE;
|
10722 |
|
|
}
|
10723 |
|
|
|
10724 |
|
|
/* Since ELF permits relocations to be against local symbols, we
|
10725 |
|
|
must have the local symbols available when we do the relocations.
|
10726 |
|
|
Since we would rather only read the local symbols once, and we
|
10727 |
|
|
would rather not keep them in memory, we handle all the
|
10728 |
|
|
relocations for a single input file at the same time.
|
10729 |
|
|
|
10730 |
|
|
Unfortunately, there is no way to know the total number of local
|
10731 |
|
|
symbols until we have seen all of them, and the local symbol
|
10732 |
|
|
indices precede the global symbol indices. This means that when
|
10733 |
|
|
we are generating relocatable output, and we see a reloc against
|
10734 |
|
|
a global symbol, we can not know the symbol index until we have
|
10735 |
|
|
finished examining all the local symbols to see which ones we are
|
10736 |
|
|
going to output. To deal with this, we keep the relocations in
|
10737 |
|
|
memory, and don't output them until the end of the link. This is
|
10738 |
|
|
an unfortunate waste of memory, but I don't see a good way around
|
10739 |
|
|
it. Fortunately, it only happens when performing a relocatable
|
10740 |
|
|
link, which is not the common case. FIXME: If keep_memory is set
|
10741 |
|
|
we could write the relocs out and then read them again; I don't
|
10742 |
|
|
know how bad the memory loss will be. */
|
10743 |
|
|
|
10744 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
10745 |
|
|
sub->output_has_begun = FALSE;
|
10746 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
10747 |
|
|
{
|
10748 |
|
|
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
10749 |
|
|
{
|
10750 |
|
|
if (p->type == bfd_indirect_link_order
|
10751 |
|
|
&& (bfd_get_flavour ((sub = p->u.indirect.section->owner))
|
10752 |
|
|
== bfd_target_elf_flavour)
|
10753 |
|
|
&& elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
|
10754 |
|
|
{
|
10755 |
|
|
if (! sub->output_has_begun)
|
10756 |
|
|
{
|
10757 |
|
|
if (! elf_link_input_bfd (&finfo, sub))
|
10758 |
|
|
goto error_return;
|
10759 |
|
|
sub->output_has_begun = TRUE;
|
10760 |
|
|
}
|
10761 |
|
|
}
|
10762 |
|
|
else if (p->type == bfd_section_reloc_link_order
|
10763 |
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
10764 |
|
|
{
|
10765 |
|
|
if (! elf_reloc_link_order (abfd, info, o, p))
|
10766 |
|
|
goto error_return;
|
10767 |
|
|
}
|
10768 |
|
|
else
|
10769 |
|
|
{
|
10770 |
|
|
if (! _bfd_default_link_order (abfd, info, o, p))
|
10771 |
|
|
{
|
10772 |
|
|
if (p->type == bfd_indirect_link_order
|
10773 |
|
|
&& (bfd_get_flavour (sub)
|
10774 |
|
|
== bfd_target_elf_flavour)
|
10775 |
|
|
&& (elf_elfheader (sub)->e_ident[EI_CLASS]
|
10776 |
|
|
!= bed->s->elfclass))
|
10777 |
|
|
{
|
10778 |
|
|
const char *iclass, *oclass;
|
10779 |
|
|
|
10780 |
|
|
if (bed->s->elfclass == ELFCLASS64)
|
10781 |
|
|
{
|
10782 |
|
|
iclass = "ELFCLASS32";
|
10783 |
|
|
oclass = "ELFCLASS64";
|
10784 |
|
|
}
|
10785 |
|
|
else
|
10786 |
|
|
{
|
10787 |
|
|
iclass = "ELFCLASS64";
|
10788 |
|
|
oclass = "ELFCLASS32";
|
10789 |
|
|
}
|
10790 |
|
|
|
10791 |
|
|
bfd_set_error (bfd_error_wrong_format);
|
10792 |
|
|
(*_bfd_error_handler)
|
10793 |
|
|
(_("%B: file class %s incompatible with %s"),
|
10794 |
|
|
sub, iclass, oclass);
|
10795 |
|
|
}
|
10796 |
|
|
|
10797 |
|
|
goto error_return;
|
10798 |
|
|
}
|
10799 |
|
|
}
|
10800 |
|
|
}
|
10801 |
|
|
}
|
10802 |
|
|
|
10803 |
|
|
/* Free symbol buffer if needed. */
|
10804 |
|
|
if (!info->reduce_memory_overheads)
|
10805 |
|
|
{
|
10806 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
10807 |
|
|
if (bfd_get_flavour (sub) == bfd_target_elf_flavour
|
10808 |
|
|
&& elf_tdata (sub)->symbuf)
|
10809 |
|
|
{
|
10810 |
|
|
free (elf_tdata (sub)->symbuf);
|
10811 |
|
|
elf_tdata (sub)->symbuf = NULL;
|
10812 |
|
|
}
|
10813 |
|
|
}
|
10814 |
|
|
|
10815 |
|
|
/* Output any global symbols that got converted to local in a
|
10816 |
|
|
version script or due to symbol visibility. We do this in a
|
10817 |
|
|
separate step since ELF requires all local symbols to appear
|
10818 |
|
|
prior to any global symbols. FIXME: We should only do this if
|
10819 |
|
|
some global symbols were, in fact, converted to become local.
|
10820 |
|
|
FIXME: Will this work correctly with the Irix 5 linker? */
|
10821 |
|
|
eoinfo.failed = FALSE;
|
10822 |
|
|
eoinfo.finfo = &finfo;
|
10823 |
|
|
eoinfo.localsyms = TRUE;
|
10824 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
10825 |
|
|
&eoinfo);
|
10826 |
|
|
if (eoinfo.failed)
|
10827 |
|
|
return FALSE;
|
10828 |
|
|
|
10829 |
|
|
/* If backend needs to output some local symbols not present in the hash
|
10830 |
|
|
table, do it now. */
|
10831 |
|
|
if (bed->elf_backend_output_arch_local_syms)
|
10832 |
|
|
{
|
10833 |
|
|
typedef int (*out_sym_func)
|
10834 |
|
|
(void *, const char *, Elf_Internal_Sym *, asection *,
|
10835 |
|
|
struct elf_link_hash_entry *);
|
10836 |
|
|
|
10837 |
|
|
if (! ((*bed->elf_backend_output_arch_local_syms)
|
10838 |
|
|
(abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
|
10839 |
|
|
return FALSE;
|
10840 |
|
|
}
|
10841 |
|
|
|
10842 |
|
|
/* That wrote out all the local symbols. Finish up the symbol table
|
10843 |
|
|
with the global symbols. Even if we want to strip everything we
|
10844 |
|
|
can, we still need to deal with those global symbols that got
|
10845 |
|
|
converted to local in a version script. */
|
10846 |
|
|
|
10847 |
|
|
/* The sh_info field records the index of the first non local symbol. */
|
10848 |
|
|
symtab_hdr->sh_info = bfd_get_symcount (abfd);
|
10849 |
|
|
|
10850 |
|
|
if (dynamic
|
10851 |
|
|
&& finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
|
10852 |
|
|
{
|
10853 |
|
|
Elf_Internal_Sym sym;
|
10854 |
|
|
bfd_byte *dynsym = finfo.dynsym_sec->contents;
|
10855 |
|
|
long last_local = 0;
|
10856 |
|
|
|
10857 |
|
|
/* Write out the section symbols for the output sections. */
|
10858 |
|
|
if (info->shared || elf_hash_table (info)->is_relocatable_executable)
|
10859 |
|
|
{
|
10860 |
|
|
asection *s;
|
10861 |
|
|
|
10862 |
|
|
sym.st_size = 0;
|
10863 |
|
|
sym.st_name = 0;
|
10864 |
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
10865 |
|
|
sym.st_other = 0;
|
10866 |
|
|
sym.st_target_internal = 0;
|
10867 |
|
|
|
10868 |
|
|
for (s = abfd->sections; s != NULL; s = s->next)
|
10869 |
|
|
{
|
10870 |
|
|
int indx;
|
10871 |
|
|
bfd_byte *dest;
|
10872 |
|
|
long dynindx;
|
10873 |
|
|
|
10874 |
|
|
dynindx = elf_section_data (s)->dynindx;
|
10875 |
|
|
if (dynindx <= 0)
|
10876 |
|
|
continue;
|
10877 |
|
|
indx = elf_section_data (s)->this_idx;
|
10878 |
|
|
BFD_ASSERT (indx > 0);
|
10879 |
|
|
sym.st_shndx = indx;
|
10880 |
|
|
if (! check_dynsym (abfd, &sym))
|
10881 |
|
|
return FALSE;
|
10882 |
|
|
sym.st_value = s->vma;
|
10883 |
|
|
dest = dynsym + dynindx * bed->s->sizeof_sym;
|
10884 |
|
|
if (last_local < dynindx)
|
10885 |
|
|
last_local = dynindx;
|
10886 |
|
|
bed->s->swap_symbol_out (abfd, &sym, dest, 0);
|
10887 |
|
|
}
|
10888 |
|
|
}
|
10889 |
|
|
|
10890 |
|
|
/* Write out the local dynsyms. */
|
10891 |
|
|
if (elf_hash_table (info)->dynlocal)
|
10892 |
|
|
{
|
10893 |
|
|
struct elf_link_local_dynamic_entry *e;
|
10894 |
|
|
for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
|
10895 |
|
|
{
|
10896 |
|
|
asection *s;
|
10897 |
|
|
bfd_byte *dest;
|
10898 |
|
|
|
10899 |
|
|
/* Copy the internal symbol and turn off visibility.
|
10900 |
|
|
Note that we saved a word of storage and overwrote
|
10901 |
|
|
the original st_name with the dynstr_index. */
|
10902 |
|
|
sym = e->isym;
|
10903 |
|
|
sym.st_other &= ~ELF_ST_VISIBILITY (-1);
|
10904 |
|
|
|
10905 |
|
|
s = bfd_section_from_elf_index (e->input_bfd,
|
10906 |
|
|
e->isym.st_shndx);
|
10907 |
|
|
if (s != NULL)
|
10908 |
|
|
{
|
10909 |
|
|
sym.st_shndx =
|
10910 |
|
|
elf_section_data (s->output_section)->this_idx;
|
10911 |
|
|
if (! check_dynsym (abfd, &sym))
|
10912 |
|
|
return FALSE;
|
10913 |
|
|
sym.st_value = (s->output_section->vma
|
10914 |
|
|
+ s->output_offset
|
10915 |
|
|
+ e->isym.st_value);
|
10916 |
|
|
}
|
10917 |
|
|
|
10918 |
|
|
if (last_local < e->dynindx)
|
10919 |
|
|
last_local = e->dynindx;
|
10920 |
|
|
|
10921 |
|
|
dest = dynsym + e->dynindx * bed->s->sizeof_sym;
|
10922 |
|
|
bed->s->swap_symbol_out (abfd, &sym, dest, 0);
|
10923 |
|
|
}
|
10924 |
|
|
}
|
10925 |
|
|
|
10926 |
|
|
elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
|
10927 |
|
|
last_local + 1;
|
10928 |
|
|
}
|
10929 |
|
|
|
10930 |
|
|
/* We get the global symbols from the hash table. */
|
10931 |
|
|
eoinfo.failed = FALSE;
|
10932 |
|
|
eoinfo.localsyms = FALSE;
|
10933 |
|
|
eoinfo.finfo = &finfo;
|
10934 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
|
10935 |
|
|
&eoinfo);
|
10936 |
|
|
if (eoinfo.failed)
|
10937 |
|
|
return FALSE;
|
10938 |
|
|
|
10939 |
|
|
/* If backend needs to output some symbols not present in the hash
|
10940 |
|
|
table, do it now. */
|
10941 |
|
|
if (bed->elf_backend_output_arch_syms)
|
10942 |
|
|
{
|
10943 |
|
|
typedef int (*out_sym_func)
|
10944 |
|
|
(void *, const char *, Elf_Internal_Sym *, asection *,
|
10945 |
|
|
struct elf_link_hash_entry *);
|
10946 |
|
|
|
10947 |
|
|
if (! ((*bed->elf_backend_output_arch_syms)
|
10948 |
|
|
(abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
|
10949 |
|
|
return FALSE;
|
10950 |
|
|
}
|
10951 |
|
|
|
10952 |
|
|
/* Flush all symbols to the file. */
|
10953 |
|
|
if (! elf_link_flush_output_syms (&finfo, bed))
|
10954 |
|
|
return FALSE;
|
10955 |
|
|
|
10956 |
|
|
/* Now we know the size of the symtab section. */
|
10957 |
|
|
off += symtab_hdr->sh_size;
|
10958 |
|
|
|
10959 |
|
|
symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
10960 |
|
|
if (symtab_shndx_hdr->sh_name != 0)
|
10961 |
|
|
{
|
10962 |
|
|
symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
|
10963 |
|
|
symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
|
10964 |
|
|
symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
|
10965 |
|
|
amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
|
10966 |
|
|
symtab_shndx_hdr->sh_size = amt;
|
10967 |
|
|
|
10968 |
|
|
off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
|
10969 |
|
|
off, TRUE);
|
10970 |
|
|
|
10971 |
|
|
if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
|
10972 |
|
|
|| (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
|
10973 |
|
|
return FALSE;
|
10974 |
|
|
}
|
10975 |
|
|
|
10976 |
|
|
|
10977 |
|
|
/* Finish up and write out the symbol string table (.strtab)
|
10978 |
|
|
section. */
|
10979 |
|
|
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
10980 |
|
|
/* sh_name was set in prep_headers. */
|
10981 |
|
|
symstrtab_hdr->sh_type = SHT_STRTAB;
|
10982 |
|
|
symstrtab_hdr->sh_flags = 0;
|
10983 |
|
|
symstrtab_hdr->sh_addr = 0;
|
10984 |
|
|
symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
|
10985 |
|
|
symstrtab_hdr->sh_entsize = 0;
|
10986 |
|
|
symstrtab_hdr->sh_link = 0;
|
10987 |
|
|
symstrtab_hdr->sh_info = 0;
|
10988 |
|
|
/* sh_offset is set just below. */
|
10989 |
|
|
symstrtab_hdr->sh_addralign = 1;
|
10990 |
|
|
|
10991 |
|
|
off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
|
10992 |
|
|
elf_tdata (abfd)->next_file_pos = off;
|
10993 |
|
|
|
10994 |
|
|
if (bfd_get_symcount (abfd) > 0)
|
10995 |
|
|
{
|
10996 |
|
|
if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
|
10997 |
|
|
|| ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
|
10998 |
|
|
return FALSE;
|
10999 |
|
|
}
|
11000 |
|
|
|
11001 |
|
|
/* Adjust the relocs to have the correct symbol indices. */
|
11002 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
11003 |
|
|
{
|
11004 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
11005 |
|
|
if ((o->flags & SEC_RELOC) == 0)
|
11006 |
|
|
continue;
|
11007 |
|
|
|
11008 |
|
|
if (esdo->rel.hdr != NULL)
|
11009 |
|
|
elf_link_adjust_relocs (abfd, &esdo->rel);
|
11010 |
|
|
if (esdo->rela.hdr != NULL)
|
11011 |
|
|
elf_link_adjust_relocs (abfd, &esdo->rela);
|
11012 |
|
|
|
11013 |
|
|
/* Set the reloc_count field to 0 to prevent write_relocs from
|
11014 |
|
|
trying to swap the relocs out itself. */
|
11015 |
|
|
o->reloc_count = 0;
|
11016 |
|
|
}
|
11017 |
|
|
|
11018 |
|
|
if (dynamic && info->combreloc && dynobj != NULL)
|
11019 |
|
|
relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
|
11020 |
|
|
|
11021 |
|
|
/* If we are linking against a dynamic object, or generating a
|
11022 |
|
|
shared library, finish up the dynamic linking information. */
|
11023 |
|
|
if (dynamic)
|
11024 |
|
|
{
|
11025 |
|
|
bfd_byte *dyncon, *dynconend;
|
11026 |
|
|
|
11027 |
|
|
/* Fix up .dynamic entries. */
|
11028 |
|
|
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
11029 |
|
|
BFD_ASSERT (o != NULL);
|
11030 |
|
|
|
11031 |
|
|
dyncon = o->contents;
|
11032 |
|
|
dynconend = o->contents + o->size;
|
11033 |
|
|
for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
|
11034 |
|
|
{
|
11035 |
|
|
Elf_Internal_Dyn dyn;
|
11036 |
|
|
const char *name;
|
11037 |
|
|
unsigned int type;
|
11038 |
|
|
|
11039 |
|
|
bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
|
11040 |
|
|
|
11041 |
|
|
switch (dyn.d_tag)
|
11042 |
|
|
{
|
11043 |
|
|
default:
|
11044 |
|
|
continue;
|
11045 |
|
|
case DT_NULL:
|
11046 |
|
|
if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
|
11047 |
|
|
{
|
11048 |
|
|
switch (elf_section_data (reldyn)->this_hdr.sh_type)
|
11049 |
|
|
{
|
11050 |
|
|
case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
|
11051 |
|
|
case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
|
11052 |
|
|
default: continue;
|
11053 |
|
|
}
|
11054 |
|
|
dyn.d_un.d_val = relativecount;
|
11055 |
|
|
relativecount = 0;
|
11056 |
|
|
break;
|
11057 |
|
|
}
|
11058 |
|
|
continue;
|
11059 |
|
|
|
11060 |
|
|
case DT_INIT:
|
11061 |
|
|
name = info->init_function;
|
11062 |
|
|
goto get_sym;
|
11063 |
|
|
case DT_FINI:
|
11064 |
|
|
name = info->fini_function;
|
11065 |
|
|
get_sym:
|
11066 |
|
|
{
|
11067 |
|
|
struct elf_link_hash_entry *h;
|
11068 |
|
|
|
11069 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), name,
|
11070 |
|
|
FALSE, FALSE, TRUE);
|
11071 |
|
|
if (h != NULL
|
11072 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
11073 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
11074 |
|
|
{
|
11075 |
|
|
dyn.d_un.d_ptr = h->root.u.def.value;
|
11076 |
|
|
o = h->root.u.def.section;
|
11077 |
|
|
if (o->output_section != NULL)
|
11078 |
|
|
dyn.d_un.d_ptr += (o->output_section->vma
|
11079 |
|
|
+ o->output_offset);
|
11080 |
|
|
else
|
11081 |
|
|
{
|
11082 |
|
|
/* The symbol is imported from another shared
|
11083 |
|
|
library and does not apply to this one. */
|
11084 |
|
|
dyn.d_un.d_ptr = 0;
|
11085 |
|
|
}
|
11086 |
|
|
break;
|
11087 |
|
|
}
|
11088 |
|
|
}
|
11089 |
|
|
continue;
|
11090 |
|
|
|
11091 |
|
|
case DT_PREINIT_ARRAYSZ:
|
11092 |
|
|
name = ".preinit_array";
|
11093 |
|
|
goto get_size;
|
11094 |
|
|
case DT_INIT_ARRAYSZ:
|
11095 |
|
|
name = ".init_array";
|
11096 |
|
|
goto get_size;
|
11097 |
|
|
case DT_FINI_ARRAYSZ:
|
11098 |
|
|
name = ".fini_array";
|
11099 |
|
|
get_size:
|
11100 |
|
|
o = bfd_get_section_by_name (abfd, name);
|
11101 |
|
|
if (o == NULL)
|
11102 |
|
|
{
|
11103 |
|
|
(*_bfd_error_handler)
|
11104 |
|
|
(_("%B: could not find output section %s"), abfd, name);
|
11105 |
|
|
goto error_return;
|
11106 |
|
|
}
|
11107 |
|
|
if (o->size == 0)
|
11108 |
|
|
(*_bfd_error_handler)
|
11109 |
|
|
(_("warning: %s section has zero size"), name);
|
11110 |
|
|
dyn.d_un.d_val = o->size;
|
11111 |
|
|
break;
|
11112 |
|
|
|
11113 |
|
|
case DT_PREINIT_ARRAY:
|
11114 |
|
|
name = ".preinit_array";
|
11115 |
|
|
goto get_vma;
|
11116 |
|
|
case DT_INIT_ARRAY:
|
11117 |
|
|
name = ".init_array";
|
11118 |
|
|
goto get_vma;
|
11119 |
|
|
case DT_FINI_ARRAY:
|
11120 |
|
|
name = ".fini_array";
|
11121 |
|
|
goto get_vma;
|
11122 |
|
|
|
11123 |
|
|
case DT_HASH:
|
11124 |
|
|
name = ".hash";
|
11125 |
|
|
goto get_vma;
|
11126 |
|
|
case DT_GNU_HASH:
|
11127 |
|
|
name = ".gnu.hash";
|
11128 |
|
|
goto get_vma;
|
11129 |
|
|
case DT_STRTAB:
|
11130 |
|
|
name = ".dynstr";
|
11131 |
|
|
goto get_vma;
|
11132 |
|
|
case DT_SYMTAB:
|
11133 |
|
|
name = ".dynsym";
|
11134 |
|
|
goto get_vma;
|
11135 |
|
|
case DT_VERDEF:
|
11136 |
|
|
name = ".gnu.version_d";
|
11137 |
|
|
goto get_vma;
|
11138 |
|
|
case DT_VERNEED:
|
11139 |
|
|
name = ".gnu.version_r";
|
11140 |
|
|
goto get_vma;
|
11141 |
|
|
case DT_VERSYM:
|
11142 |
|
|
name = ".gnu.version";
|
11143 |
|
|
get_vma:
|
11144 |
|
|
o = bfd_get_section_by_name (abfd, name);
|
11145 |
|
|
if (o == NULL)
|
11146 |
|
|
{
|
11147 |
|
|
(*_bfd_error_handler)
|
11148 |
|
|
(_("%B: could not find output section %s"), abfd, name);
|
11149 |
|
|
goto error_return;
|
11150 |
|
|
}
|
11151 |
|
|
dyn.d_un.d_ptr = o->vma;
|
11152 |
|
|
break;
|
11153 |
|
|
|
11154 |
|
|
case DT_REL:
|
11155 |
|
|
case DT_RELA:
|
11156 |
|
|
case DT_RELSZ:
|
11157 |
|
|
case DT_RELASZ:
|
11158 |
|
|
if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
11159 |
|
|
type = SHT_REL;
|
11160 |
|
|
else
|
11161 |
|
|
type = SHT_RELA;
|
11162 |
|
|
dyn.d_un.d_val = 0;
|
11163 |
|
|
dyn.d_un.d_ptr = 0;
|
11164 |
|
|
for (i = 1; i < elf_numsections (abfd); i++)
|
11165 |
|
|
{
|
11166 |
|
|
Elf_Internal_Shdr *hdr;
|
11167 |
|
|
|
11168 |
|
|
hdr = elf_elfsections (abfd)[i];
|
11169 |
|
|
if (hdr->sh_type == type
|
11170 |
|
|
&& (hdr->sh_flags & SHF_ALLOC) != 0)
|
11171 |
|
|
{
|
11172 |
|
|
if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
|
11173 |
|
|
dyn.d_un.d_val += hdr->sh_size;
|
11174 |
|
|
else
|
11175 |
|
|
{
|
11176 |
|
|
if (dyn.d_un.d_ptr == 0
|
11177 |
|
|
|| hdr->sh_addr < dyn.d_un.d_ptr)
|
11178 |
|
|
dyn.d_un.d_ptr = hdr->sh_addr;
|
11179 |
|
|
}
|
11180 |
|
|
}
|
11181 |
|
|
}
|
11182 |
|
|
break;
|
11183 |
|
|
}
|
11184 |
|
|
bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
|
11185 |
|
|
}
|
11186 |
|
|
}
|
11187 |
|
|
|
11188 |
|
|
/* If we have created any dynamic sections, then output them. */
|
11189 |
|
|
if (dynobj != NULL)
|
11190 |
|
|
{
|
11191 |
|
|
if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
|
11192 |
|
|
goto error_return;
|
11193 |
|
|
|
11194 |
|
|
/* Check for DT_TEXTREL (late, in case the backend removes it). */
|
11195 |
|
|
if (info->warn_shared_textrel && info->shared)
|
11196 |
|
|
{
|
11197 |
|
|
bfd_byte *dyncon, *dynconend;
|
11198 |
|
|
|
11199 |
|
|
/* Fix up .dynamic entries. */
|
11200 |
|
|
o = bfd_get_section_by_name (dynobj, ".dynamic");
|
11201 |
|
|
BFD_ASSERT (o != NULL);
|
11202 |
|
|
|
11203 |
|
|
dyncon = o->contents;
|
11204 |
|
|
dynconend = o->contents + o->size;
|
11205 |
|
|
for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
|
11206 |
|
|
{
|
11207 |
|
|
Elf_Internal_Dyn dyn;
|
11208 |
|
|
|
11209 |
|
|
bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
|
11210 |
|
|
|
11211 |
|
|
if (dyn.d_tag == DT_TEXTREL)
|
11212 |
|
|
{
|
11213 |
|
|
info->callbacks->einfo
|
11214 |
|
|
(_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
|
11215 |
|
|
break;
|
11216 |
|
|
}
|
11217 |
|
|
}
|
11218 |
|
|
}
|
11219 |
|
|
|
11220 |
|
|
for (o = dynobj->sections; o != NULL; o = o->next)
|
11221 |
|
|
{
|
11222 |
|
|
if ((o->flags & SEC_HAS_CONTENTS) == 0
|
11223 |
|
|
|| o->size == 0
|
11224 |
|
|
|| o->output_section == bfd_abs_section_ptr)
|
11225 |
|
|
continue;
|
11226 |
|
|
if ((o->flags & SEC_LINKER_CREATED) == 0)
|
11227 |
|
|
{
|
11228 |
|
|
/* At this point, we are only interested in sections
|
11229 |
|
|
created by _bfd_elf_link_create_dynamic_sections. */
|
11230 |
|
|
continue;
|
11231 |
|
|
}
|
11232 |
|
|
if (elf_hash_table (info)->stab_info.stabstr == o)
|
11233 |
|
|
continue;
|
11234 |
|
|
if (elf_hash_table (info)->eh_info.hdr_sec == o)
|
11235 |
|
|
continue;
|
11236 |
|
|
if ((elf_section_data (o->output_section)->this_hdr.sh_type
|
11237 |
|
|
!= SHT_STRTAB)
|
11238 |
|
|
|| strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
|
11239 |
|
|
{
|
11240 |
|
|
/* FIXME: octets_per_byte. */
|
11241 |
|
|
if (! bfd_set_section_contents (abfd, o->output_section,
|
11242 |
|
|
o->contents,
|
11243 |
|
|
(file_ptr) o->output_offset,
|
11244 |
|
|
o->size))
|
11245 |
|
|
goto error_return;
|
11246 |
|
|
}
|
11247 |
|
|
else
|
11248 |
|
|
{
|
11249 |
|
|
/* The contents of the .dynstr section are actually in a
|
11250 |
|
|
stringtab. */
|
11251 |
|
|
off = elf_section_data (o->output_section)->this_hdr.sh_offset;
|
11252 |
|
|
if (bfd_seek (abfd, off, SEEK_SET) != 0
|
11253 |
|
|
|| ! _bfd_elf_strtab_emit (abfd,
|
11254 |
|
|
elf_hash_table (info)->dynstr))
|
11255 |
|
|
goto error_return;
|
11256 |
|
|
}
|
11257 |
|
|
}
|
11258 |
|
|
}
|
11259 |
|
|
|
11260 |
|
|
if (info->relocatable)
|
11261 |
|
|
{
|
11262 |
|
|
bfd_boolean failed = FALSE;
|
11263 |
|
|
|
11264 |
|
|
bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
|
11265 |
|
|
if (failed)
|
11266 |
|
|
goto error_return;
|
11267 |
|
|
}
|
11268 |
|
|
|
11269 |
|
|
/* If we have optimized stabs strings, output them. */
|
11270 |
|
|
if (elf_hash_table (info)->stab_info.stabstr != NULL)
|
11271 |
|
|
{
|
11272 |
|
|
if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
|
11273 |
|
|
goto error_return;
|
11274 |
|
|
}
|
11275 |
|
|
|
11276 |
|
|
if (info->eh_frame_hdr)
|
11277 |
|
|
{
|
11278 |
|
|
if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
|
11279 |
|
|
goto error_return;
|
11280 |
|
|
}
|
11281 |
|
|
|
11282 |
|
|
if (finfo.symstrtab != NULL)
|
11283 |
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
11284 |
|
|
if (finfo.contents != NULL)
|
11285 |
|
|
free (finfo.contents);
|
11286 |
|
|
if (finfo.external_relocs != NULL)
|
11287 |
|
|
free (finfo.external_relocs);
|
11288 |
|
|
if (finfo.internal_relocs != NULL)
|
11289 |
|
|
free (finfo.internal_relocs);
|
11290 |
|
|
if (finfo.external_syms != NULL)
|
11291 |
|
|
free (finfo.external_syms);
|
11292 |
|
|
if (finfo.locsym_shndx != NULL)
|
11293 |
|
|
free (finfo.locsym_shndx);
|
11294 |
|
|
if (finfo.internal_syms != NULL)
|
11295 |
|
|
free (finfo.internal_syms);
|
11296 |
|
|
if (finfo.indices != NULL)
|
11297 |
|
|
free (finfo.indices);
|
11298 |
|
|
if (finfo.sections != NULL)
|
11299 |
|
|
free (finfo.sections);
|
11300 |
|
|
if (finfo.symbuf != NULL)
|
11301 |
|
|
free (finfo.symbuf);
|
11302 |
|
|
if (finfo.symshndxbuf != NULL)
|
11303 |
|
|
free (finfo.symshndxbuf);
|
11304 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
11305 |
|
|
{
|
11306 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
11307 |
|
|
if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
|
11308 |
|
|
free (esdo->rel.hashes);
|
11309 |
|
|
if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
|
11310 |
|
|
free (esdo->rela.hashes);
|
11311 |
|
|
}
|
11312 |
|
|
|
11313 |
|
|
elf_tdata (abfd)->linker = TRUE;
|
11314 |
|
|
|
11315 |
|
|
if (attr_section)
|
11316 |
|
|
{
|
11317 |
|
|
bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
|
11318 |
|
|
if (contents == NULL)
|
11319 |
|
|
return FALSE; /* Bail out and fail. */
|
11320 |
|
|
bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
|
11321 |
|
|
bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
|
11322 |
|
|
free (contents);
|
11323 |
|
|
}
|
11324 |
|
|
|
11325 |
|
|
return TRUE;
|
11326 |
|
|
|
11327 |
|
|
error_return:
|
11328 |
|
|
if (finfo.symstrtab != NULL)
|
11329 |
|
|
_bfd_stringtab_free (finfo.symstrtab);
|
11330 |
|
|
if (finfo.contents != NULL)
|
11331 |
|
|
free (finfo.contents);
|
11332 |
|
|
if (finfo.external_relocs != NULL)
|
11333 |
|
|
free (finfo.external_relocs);
|
11334 |
|
|
if (finfo.internal_relocs != NULL)
|
11335 |
|
|
free (finfo.internal_relocs);
|
11336 |
|
|
if (finfo.external_syms != NULL)
|
11337 |
|
|
free (finfo.external_syms);
|
11338 |
|
|
if (finfo.locsym_shndx != NULL)
|
11339 |
|
|
free (finfo.locsym_shndx);
|
11340 |
|
|
if (finfo.internal_syms != NULL)
|
11341 |
|
|
free (finfo.internal_syms);
|
11342 |
|
|
if (finfo.indices != NULL)
|
11343 |
|
|
free (finfo.indices);
|
11344 |
|
|
if (finfo.sections != NULL)
|
11345 |
|
|
free (finfo.sections);
|
11346 |
|
|
if (finfo.symbuf != NULL)
|
11347 |
|
|
free (finfo.symbuf);
|
11348 |
|
|
if (finfo.symshndxbuf != NULL)
|
11349 |
|
|
free (finfo.symshndxbuf);
|
11350 |
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
11351 |
|
|
{
|
11352 |
|
|
struct bfd_elf_section_data *esdo = elf_section_data (o);
|
11353 |
|
|
if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
|
11354 |
|
|
free (esdo->rel.hashes);
|
11355 |
|
|
if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
|
11356 |
|
|
free (esdo->rela.hashes);
|
11357 |
|
|
}
|
11358 |
|
|
|
11359 |
|
|
return FALSE;
|
11360 |
|
|
}
|
11361 |
|
|
|
11362 |
|
|
/* Initialize COOKIE for input bfd ABFD. */
|
11363 |
|
|
|
11364 |
|
|
static bfd_boolean
|
11365 |
|
|
init_reloc_cookie (struct elf_reloc_cookie *cookie,
|
11366 |
|
|
struct bfd_link_info *info, bfd *abfd)
|
11367 |
|
|
{
|
11368 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
11369 |
|
|
const struct elf_backend_data *bed;
|
11370 |
|
|
|
11371 |
|
|
bed = get_elf_backend_data (abfd);
|
11372 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
11373 |
|
|
|
11374 |
|
|
cookie->abfd = abfd;
|
11375 |
|
|
cookie->sym_hashes = elf_sym_hashes (abfd);
|
11376 |
|
|
cookie->bad_symtab = elf_bad_symtab (abfd);
|
11377 |
|
|
if (cookie->bad_symtab)
|
11378 |
|
|
{
|
11379 |
|
|
cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
|
11380 |
|
|
cookie->extsymoff = 0;
|
11381 |
|
|
}
|
11382 |
|
|
else
|
11383 |
|
|
{
|
11384 |
|
|
cookie->locsymcount = symtab_hdr->sh_info;
|
11385 |
|
|
cookie->extsymoff = symtab_hdr->sh_info;
|
11386 |
|
|
}
|
11387 |
|
|
|
11388 |
|
|
if (bed->s->arch_size == 32)
|
11389 |
|
|
cookie->r_sym_shift = 8;
|
11390 |
|
|
else
|
11391 |
|
|
cookie->r_sym_shift = 32;
|
11392 |
|
|
|
11393 |
|
|
cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
11394 |
|
|
if (cookie->locsyms == NULL && cookie->locsymcount != 0)
|
11395 |
|
|
{
|
11396 |
|
|
cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
11397 |
|
|
cookie->locsymcount, 0,
|
11398 |
|
|
NULL, NULL, NULL);
|
11399 |
|
|
if (cookie->locsyms == NULL)
|
11400 |
|
|
{
|
11401 |
|
|
info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
|
11402 |
|
|
return FALSE;
|
11403 |
|
|
}
|
11404 |
|
|
if (info->keep_memory)
|
11405 |
|
|
symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
|
11406 |
|
|
}
|
11407 |
|
|
return TRUE;
|
11408 |
|
|
}
|
11409 |
|
|
|
11410 |
|
|
/* Free the memory allocated by init_reloc_cookie, if appropriate. */
|
11411 |
|
|
|
11412 |
|
|
static void
|
11413 |
|
|
fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
|
11414 |
|
|
{
|
11415 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
11416 |
|
|
|
11417 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
11418 |
|
|
if (cookie->locsyms != NULL
|
11419 |
|
|
&& symtab_hdr->contents != (unsigned char *) cookie->locsyms)
|
11420 |
|
|
free (cookie->locsyms);
|
11421 |
|
|
}
|
11422 |
|
|
|
11423 |
|
|
/* Initialize the relocation information in COOKIE for input section SEC
|
11424 |
|
|
of input bfd ABFD. */
|
11425 |
|
|
|
11426 |
|
|
static bfd_boolean
|
11427 |
|
|
init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
|
11428 |
|
|
struct bfd_link_info *info, bfd *abfd,
|
11429 |
|
|
asection *sec)
|
11430 |
|
|
{
|
11431 |
|
|
const struct elf_backend_data *bed;
|
11432 |
|
|
|
11433 |
|
|
if (sec->reloc_count == 0)
|
11434 |
|
|
{
|
11435 |
|
|
cookie->rels = NULL;
|
11436 |
|
|
cookie->relend = NULL;
|
11437 |
|
|
}
|
11438 |
|
|
else
|
11439 |
|
|
{
|
11440 |
|
|
bed = get_elf_backend_data (abfd);
|
11441 |
|
|
|
11442 |
|
|
cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
|
11443 |
|
|
info->keep_memory);
|
11444 |
|
|
if (cookie->rels == NULL)
|
11445 |
|
|
return FALSE;
|
11446 |
|
|
cookie->rel = cookie->rels;
|
11447 |
|
|
cookie->relend = (cookie->rels
|
11448 |
|
|
+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
|
11449 |
|
|
}
|
11450 |
|
|
cookie->rel = cookie->rels;
|
11451 |
|
|
return TRUE;
|
11452 |
|
|
}
|
11453 |
|
|
|
11454 |
|
|
/* Free the memory allocated by init_reloc_cookie_rels,
|
11455 |
|
|
if appropriate. */
|
11456 |
|
|
|
11457 |
|
|
static void
|
11458 |
|
|
fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
|
11459 |
|
|
asection *sec)
|
11460 |
|
|
{
|
11461 |
|
|
if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
|
11462 |
|
|
free (cookie->rels);
|
11463 |
|
|
}
|
11464 |
|
|
|
11465 |
|
|
/* Initialize the whole of COOKIE for input section SEC. */
|
11466 |
|
|
|
11467 |
|
|
static bfd_boolean
|
11468 |
|
|
init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
|
11469 |
|
|
struct bfd_link_info *info,
|
11470 |
|
|
asection *sec)
|
11471 |
|
|
{
|
11472 |
|
|
if (!init_reloc_cookie (cookie, info, sec->owner))
|
11473 |
|
|
goto error1;
|
11474 |
|
|
if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
|
11475 |
|
|
goto error2;
|
11476 |
|
|
return TRUE;
|
11477 |
|
|
|
11478 |
|
|
error2:
|
11479 |
|
|
fini_reloc_cookie (cookie, sec->owner);
|
11480 |
|
|
error1:
|
11481 |
|
|
return FALSE;
|
11482 |
|
|
}
|
11483 |
|
|
|
11484 |
|
|
/* Free the memory allocated by init_reloc_cookie_for_section,
|
11485 |
|
|
if appropriate. */
|
11486 |
|
|
|
11487 |
|
|
static void
|
11488 |
|
|
fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
|
11489 |
|
|
asection *sec)
|
11490 |
|
|
{
|
11491 |
|
|
fini_reloc_cookie_rels (cookie, sec);
|
11492 |
|
|
fini_reloc_cookie (cookie, sec->owner);
|
11493 |
|
|
}
|
11494 |
|
|
|
11495 |
|
|
/* Garbage collect unused sections. */
|
11496 |
|
|
|
11497 |
|
|
/* Default gc_mark_hook. */
|
11498 |
|
|
|
11499 |
|
|
asection *
|
11500 |
|
|
_bfd_elf_gc_mark_hook (asection *sec,
|
11501 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
11502 |
|
|
Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
|
11503 |
|
|
struct elf_link_hash_entry *h,
|
11504 |
|
|
Elf_Internal_Sym *sym)
|
11505 |
|
|
{
|
11506 |
|
|
const char *sec_name;
|
11507 |
|
|
|
11508 |
|
|
if (h != NULL)
|
11509 |
|
|
{
|
11510 |
|
|
switch (h->root.type)
|
11511 |
|
|
{
|
11512 |
|
|
case bfd_link_hash_defined:
|
11513 |
|
|
case bfd_link_hash_defweak:
|
11514 |
|
|
return h->root.u.def.section;
|
11515 |
|
|
|
11516 |
|
|
case bfd_link_hash_common:
|
11517 |
|
|
return h->root.u.c.p->section;
|
11518 |
|
|
|
11519 |
|
|
case bfd_link_hash_undefined:
|
11520 |
|
|
case bfd_link_hash_undefweak:
|
11521 |
|
|
/* To work around a glibc bug, keep all XXX input sections
|
11522 |
|
|
when there is an as yet undefined reference to __start_XXX
|
11523 |
|
|
or __stop_XXX symbols. The linker will later define such
|
11524 |
|
|
symbols for orphan input sections that have a name
|
11525 |
|
|
representable as a C identifier. */
|
11526 |
|
|
if (strncmp (h->root.root.string, "__start_", 8) == 0)
|
11527 |
|
|
sec_name = h->root.root.string + 8;
|
11528 |
|
|
else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
|
11529 |
|
|
sec_name = h->root.root.string + 7;
|
11530 |
|
|
else
|
11531 |
|
|
sec_name = NULL;
|
11532 |
|
|
|
11533 |
|
|
if (sec_name && *sec_name != '\0')
|
11534 |
|
|
{
|
11535 |
|
|
bfd *i;
|
11536 |
|
|
|
11537 |
|
|
for (i = info->input_bfds; i; i = i->link_next)
|
11538 |
|
|
{
|
11539 |
|
|
sec = bfd_get_section_by_name (i, sec_name);
|
11540 |
|
|
if (sec)
|
11541 |
|
|
sec->flags |= SEC_KEEP;
|
11542 |
|
|
}
|
11543 |
|
|
}
|
11544 |
|
|
break;
|
11545 |
|
|
|
11546 |
|
|
default:
|
11547 |
|
|
break;
|
11548 |
|
|
}
|
11549 |
|
|
}
|
11550 |
|
|
else
|
11551 |
|
|
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
|
11552 |
|
|
|
11553 |
|
|
return NULL;
|
11554 |
|
|
}
|
11555 |
|
|
|
11556 |
|
|
/* COOKIE->rel describes a relocation against section SEC, which is
|
11557 |
|
|
a section we've decided to keep. Return the section that contains
|
11558 |
|
|
the relocation symbol, or NULL if no section contains it. */
|
11559 |
|
|
|
11560 |
|
|
asection *
|
11561 |
|
|
_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
|
11562 |
|
|
elf_gc_mark_hook_fn gc_mark_hook,
|
11563 |
|
|
struct elf_reloc_cookie *cookie)
|
11564 |
|
|
{
|
11565 |
|
|
unsigned long r_symndx;
|
11566 |
|
|
struct elf_link_hash_entry *h;
|
11567 |
|
|
|
11568 |
|
|
r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
|
11569 |
|
|
if (r_symndx == STN_UNDEF)
|
11570 |
|
|
return NULL;
|
11571 |
|
|
|
11572 |
|
|
if (r_symndx >= cookie->locsymcount
|
11573 |
|
|
|| ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
|
11574 |
|
|
{
|
11575 |
|
|
h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
|
11576 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
11577 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
11578 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
11579 |
|
|
return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
|
11580 |
|
|
}
|
11581 |
|
|
|
11582 |
|
|
return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
|
11583 |
|
|
&cookie->locsyms[r_symndx]);
|
11584 |
|
|
}
|
11585 |
|
|
|
11586 |
|
|
/* COOKIE->rel describes a relocation against section SEC, which is
|
11587 |
|
|
a section we've decided to keep. Mark the section that contains
|
11588 |
|
|
the relocation symbol. */
|
11589 |
|
|
|
11590 |
|
|
bfd_boolean
|
11591 |
|
|
_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
|
11592 |
|
|
asection *sec,
|
11593 |
|
|
elf_gc_mark_hook_fn gc_mark_hook,
|
11594 |
|
|
struct elf_reloc_cookie *cookie)
|
11595 |
|
|
{
|
11596 |
|
|
asection *rsec;
|
11597 |
|
|
|
11598 |
|
|
rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
|
11599 |
|
|
if (rsec && !rsec->gc_mark)
|
11600 |
|
|
{
|
11601 |
|
|
if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
|
11602 |
|
|
rsec->gc_mark = 1;
|
11603 |
|
|
else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
|
11604 |
|
|
return FALSE;
|
11605 |
|
|
}
|
11606 |
|
|
return TRUE;
|
11607 |
|
|
}
|
11608 |
|
|
|
11609 |
|
|
/* The mark phase of garbage collection. For a given section, mark
|
11610 |
|
|
it and any sections in this section's group, and all the sections
|
11611 |
|
|
which define symbols to which it refers. */
|
11612 |
|
|
|
11613 |
|
|
bfd_boolean
|
11614 |
|
|
_bfd_elf_gc_mark (struct bfd_link_info *info,
|
11615 |
|
|
asection *sec,
|
11616 |
|
|
elf_gc_mark_hook_fn gc_mark_hook)
|
11617 |
|
|
{
|
11618 |
|
|
bfd_boolean ret;
|
11619 |
|
|
asection *group_sec, *eh_frame;
|
11620 |
|
|
|
11621 |
|
|
sec->gc_mark = 1;
|
11622 |
|
|
|
11623 |
|
|
/* Mark all the sections in the group. */
|
11624 |
|
|
group_sec = elf_section_data (sec)->next_in_group;
|
11625 |
|
|
if (group_sec && !group_sec->gc_mark)
|
11626 |
|
|
if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
|
11627 |
|
|
return FALSE;
|
11628 |
|
|
|
11629 |
|
|
/* Look through the section relocs. */
|
11630 |
|
|
ret = TRUE;
|
11631 |
|
|
eh_frame = elf_eh_frame_section (sec->owner);
|
11632 |
|
|
if ((sec->flags & SEC_RELOC) != 0
|
11633 |
|
|
&& sec->reloc_count > 0
|
11634 |
|
|
&& sec != eh_frame)
|
11635 |
|
|
{
|
11636 |
|
|
struct elf_reloc_cookie cookie;
|
11637 |
|
|
|
11638 |
|
|
if (!init_reloc_cookie_for_section (&cookie, info, sec))
|
11639 |
|
|
ret = FALSE;
|
11640 |
|
|
else
|
11641 |
|
|
{
|
11642 |
|
|
for (; cookie.rel < cookie.relend; cookie.rel++)
|
11643 |
|
|
if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
|
11644 |
|
|
{
|
11645 |
|
|
ret = FALSE;
|
11646 |
|
|
break;
|
11647 |
|
|
}
|
11648 |
|
|
fini_reloc_cookie_for_section (&cookie, sec);
|
11649 |
|
|
}
|
11650 |
|
|
}
|
11651 |
|
|
|
11652 |
|
|
if (ret && eh_frame && elf_fde_list (sec))
|
11653 |
|
|
{
|
11654 |
|
|
struct elf_reloc_cookie cookie;
|
11655 |
|
|
|
11656 |
|
|
if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
|
11657 |
|
|
ret = FALSE;
|
11658 |
|
|
else
|
11659 |
|
|
{
|
11660 |
|
|
if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
|
11661 |
|
|
gc_mark_hook, &cookie))
|
11662 |
|
|
ret = FALSE;
|
11663 |
|
|
fini_reloc_cookie_for_section (&cookie, eh_frame);
|
11664 |
|
|
}
|
11665 |
|
|
}
|
11666 |
|
|
|
11667 |
|
|
return ret;
|
11668 |
|
|
}
|
11669 |
|
|
|
11670 |
|
|
/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
|
11671 |
|
|
|
11672 |
|
|
struct elf_gc_sweep_symbol_info
|
11673 |
|
|
{
|
11674 |
|
|
struct bfd_link_info *info;
|
11675 |
|
|
void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
|
11676 |
|
|
bfd_boolean);
|
11677 |
|
|
};
|
11678 |
|
|
|
11679 |
|
|
static bfd_boolean
|
11680 |
|
|
elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
|
11681 |
|
|
{
|
11682 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
11683 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
11684 |
|
|
|
11685 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
11686 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
11687 |
|
|
&& !h->root.u.def.section->gc_mark
|
11688 |
|
|
&& !(h->root.u.def.section->owner->flags & DYNAMIC))
|
11689 |
|
|
{
|
11690 |
|
|
struct elf_gc_sweep_symbol_info *inf =
|
11691 |
|
|
(struct elf_gc_sweep_symbol_info *) data;
|
11692 |
|
|
(*inf->hide_symbol) (inf->info, h, TRUE);
|
11693 |
|
|
}
|
11694 |
|
|
|
11695 |
|
|
return TRUE;
|
11696 |
|
|
}
|
11697 |
|
|
|
11698 |
|
|
/* The sweep phase of garbage collection. Remove all garbage sections. */
|
11699 |
|
|
|
11700 |
|
|
typedef bfd_boolean (*gc_sweep_hook_fn)
|
11701 |
|
|
(bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
|
11702 |
|
|
|
11703 |
|
|
static bfd_boolean
|
11704 |
|
|
elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
|
11705 |
|
|
{
|
11706 |
|
|
bfd *sub;
|
11707 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
11708 |
|
|
gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
|
11709 |
|
|
unsigned long section_sym_count;
|
11710 |
|
|
struct elf_gc_sweep_symbol_info sweep_info;
|
11711 |
|
|
|
11712 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
11713 |
|
|
{
|
11714 |
|
|
asection *o;
|
11715 |
|
|
|
11716 |
|
|
if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
|
11717 |
|
|
continue;
|
11718 |
|
|
|
11719 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
11720 |
|
|
{
|
11721 |
|
|
/* When any section in a section group is kept, we keep all
|
11722 |
|
|
sections in the section group. If the first member of
|
11723 |
|
|
the section group is excluded, we will also exclude the
|
11724 |
|
|
group section. */
|
11725 |
|
|
if (o->flags & SEC_GROUP)
|
11726 |
|
|
{
|
11727 |
|
|
asection *first = elf_next_in_group (o);
|
11728 |
|
|
o->gc_mark = first->gc_mark;
|
11729 |
|
|
}
|
11730 |
|
|
else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
|
11731 |
|
|
|| (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
|
11732 |
|
|
|| elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
|
11733 |
|
|
{
|
11734 |
|
|
/* Keep debug, special and SHT_NOTE sections. */
|
11735 |
|
|
o->gc_mark = 1;
|
11736 |
|
|
}
|
11737 |
|
|
|
11738 |
|
|
if (o->gc_mark)
|
11739 |
|
|
continue;
|
11740 |
|
|
|
11741 |
|
|
/* Skip sweeping sections already excluded. */
|
11742 |
|
|
if (o->flags & SEC_EXCLUDE)
|
11743 |
|
|
continue;
|
11744 |
|
|
|
11745 |
|
|
/* Since this is early in the link process, it is simple
|
11746 |
|
|
to remove a section from the output. */
|
11747 |
|
|
o->flags |= SEC_EXCLUDE;
|
11748 |
|
|
|
11749 |
|
|
if (info->print_gc_sections && o->size != 0)
|
11750 |
|
|
_bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
|
11751 |
|
|
|
11752 |
|
|
/* But we also have to update some of the relocation
|
11753 |
|
|
info we collected before. */
|
11754 |
|
|
if (gc_sweep_hook
|
11755 |
|
|
&& (o->flags & SEC_RELOC) != 0
|
11756 |
|
|
&& o->reloc_count > 0
|
11757 |
|
|
&& !bfd_is_abs_section (o->output_section))
|
11758 |
|
|
{
|
11759 |
|
|
Elf_Internal_Rela *internal_relocs;
|
11760 |
|
|
bfd_boolean r;
|
11761 |
|
|
|
11762 |
|
|
internal_relocs
|
11763 |
|
|
= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
|
11764 |
|
|
info->keep_memory);
|
11765 |
|
|
if (internal_relocs == NULL)
|
11766 |
|
|
return FALSE;
|
11767 |
|
|
|
11768 |
|
|
r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
|
11769 |
|
|
|
11770 |
|
|
if (elf_section_data (o)->relocs != internal_relocs)
|
11771 |
|
|
free (internal_relocs);
|
11772 |
|
|
|
11773 |
|
|
if (!r)
|
11774 |
|
|
return FALSE;
|
11775 |
|
|
}
|
11776 |
|
|
}
|
11777 |
|
|
}
|
11778 |
|
|
|
11779 |
|
|
/* Remove the symbols that were in the swept sections from the dynamic
|
11780 |
|
|
symbol table. GCFIXME: Anyone know how to get them out of the
|
11781 |
|
|
static symbol table as well? */
|
11782 |
|
|
sweep_info.info = info;
|
11783 |
|
|
sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
|
11784 |
|
|
elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
|
11785 |
|
|
&sweep_info);
|
11786 |
|
|
|
11787 |
|
|
_bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
|
11788 |
|
|
return TRUE;
|
11789 |
|
|
}
|
11790 |
|
|
|
11791 |
|
|
/* Propagate collected vtable information. This is called through
|
11792 |
|
|
elf_link_hash_traverse. */
|
11793 |
|
|
|
11794 |
|
|
static bfd_boolean
|
11795 |
|
|
elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
|
11796 |
|
|
{
|
11797 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
11798 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
11799 |
|
|
|
11800 |
|
|
/* Those that are not vtables. */
|
11801 |
|
|
if (h->vtable == NULL || h->vtable->parent == NULL)
|
11802 |
|
|
return TRUE;
|
11803 |
|
|
|
11804 |
|
|
/* Those vtables that do not have parents, we cannot merge. */
|
11805 |
|
|
if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
|
11806 |
|
|
return TRUE;
|
11807 |
|
|
|
11808 |
|
|
/* If we've already been done, exit. */
|
11809 |
|
|
if (h->vtable->used && h->vtable->used[-1])
|
11810 |
|
|
return TRUE;
|
11811 |
|
|
|
11812 |
|
|
/* Make sure the parent's table is up to date. */
|
11813 |
|
|
elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
|
11814 |
|
|
|
11815 |
|
|
if (h->vtable->used == NULL)
|
11816 |
|
|
{
|
11817 |
|
|
/* None of this table's entries were referenced. Re-use the
|
11818 |
|
|
parent's table. */
|
11819 |
|
|
h->vtable->used = h->vtable->parent->vtable->used;
|
11820 |
|
|
h->vtable->size = h->vtable->parent->vtable->size;
|
11821 |
|
|
}
|
11822 |
|
|
else
|
11823 |
|
|
{
|
11824 |
|
|
size_t n;
|
11825 |
|
|
bfd_boolean *cu, *pu;
|
11826 |
|
|
|
11827 |
|
|
/* Or the parent's entries into ours. */
|
11828 |
|
|
cu = h->vtable->used;
|
11829 |
|
|
cu[-1] = TRUE;
|
11830 |
|
|
pu = h->vtable->parent->vtable->used;
|
11831 |
|
|
if (pu != NULL)
|
11832 |
|
|
{
|
11833 |
|
|
const struct elf_backend_data *bed;
|
11834 |
|
|
unsigned int log_file_align;
|
11835 |
|
|
|
11836 |
|
|
bed = get_elf_backend_data (h->root.u.def.section->owner);
|
11837 |
|
|
log_file_align = bed->s->log_file_align;
|
11838 |
|
|
n = h->vtable->parent->vtable->size >> log_file_align;
|
11839 |
|
|
while (n--)
|
11840 |
|
|
{
|
11841 |
|
|
if (*pu)
|
11842 |
|
|
*cu = TRUE;
|
11843 |
|
|
pu++;
|
11844 |
|
|
cu++;
|
11845 |
|
|
}
|
11846 |
|
|
}
|
11847 |
|
|
}
|
11848 |
|
|
|
11849 |
|
|
return TRUE;
|
11850 |
|
|
}
|
11851 |
|
|
|
11852 |
|
|
static bfd_boolean
|
11853 |
|
|
elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
|
11854 |
|
|
{
|
11855 |
|
|
asection *sec;
|
11856 |
|
|
bfd_vma hstart, hend;
|
11857 |
|
|
Elf_Internal_Rela *relstart, *relend, *rel;
|
11858 |
|
|
const struct elf_backend_data *bed;
|
11859 |
|
|
unsigned int log_file_align;
|
11860 |
|
|
|
11861 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
11862 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
11863 |
|
|
|
11864 |
|
|
/* Take care of both those symbols that do not describe vtables as
|
11865 |
|
|
well as those that are not loaded. */
|
11866 |
|
|
if (h->vtable == NULL || h->vtable->parent == NULL)
|
11867 |
|
|
return TRUE;
|
11868 |
|
|
|
11869 |
|
|
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|
11870 |
|
|
|| h->root.type == bfd_link_hash_defweak);
|
11871 |
|
|
|
11872 |
|
|
sec = h->root.u.def.section;
|
11873 |
|
|
hstart = h->root.u.def.value;
|
11874 |
|
|
hend = hstart + h->size;
|
11875 |
|
|
|
11876 |
|
|
relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
|
11877 |
|
|
if (!relstart)
|
11878 |
|
|
return *(bfd_boolean *) okp = FALSE;
|
11879 |
|
|
bed = get_elf_backend_data (sec->owner);
|
11880 |
|
|
log_file_align = bed->s->log_file_align;
|
11881 |
|
|
|
11882 |
|
|
relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
|
11883 |
|
|
|
11884 |
|
|
for (rel = relstart; rel < relend; ++rel)
|
11885 |
|
|
if (rel->r_offset >= hstart && rel->r_offset < hend)
|
11886 |
|
|
{
|
11887 |
|
|
/* If the entry is in use, do nothing. */
|
11888 |
|
|
if (h->vtable->used
|
11889 |
|
|
&& (rel->r_offset - hstart) < h->vtable->size)
|
11890 |
|
|
{
|
11891 |
|
|
bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
|
11892 |
|
|
if (h->vtable->used[entry])
|
11893 |
|
|
continue;
|
11894 |
|
|
}
|
11895 |
|
|
/* Otherwise, kill it. */
|
11896 |
|
|
rel->r_offset = rel->r_info = rel->r_addend = 0;
|
11897 |
|
|
}
|
11898 |
|
|
|
11899 |
|
|
return TRUE;
|
11900 |
|
|
}
|
11901 |
|
|
|
11902 |
|
|
/* Mark sections containing dynamically referenced symbols. When
|
11903 |
|
|
building shared libraries, we must assume that any visible symbol is
|
11904 |
|
|
referenced. */
|
11905 |
|
|
|
11906 |
|
|
bfd_boolean
|
11907 |
|
|
bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
|
11908 |
|
|
{
|
11909 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
11910 |
|
|
|
11911 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
11912 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
11913 |
|
|
|
11914 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
11915 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
11916 |
|
|
&& (h->ref_dynamic
|
11917 |
|
|
|| (!info->executable
|
11918 |
|
|
&& h->def_regular
|
11919 |
|
|
&& ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
|
11920 |
|
|
&& ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
|
11921 |
|
|
h->root.u.def.section->flags |= SEC_KEEP;
|
11922 |
|
|
|
11923 |
|
|
return TRUE;
|
11924 |
|
|
}
|
11925 |
|
|
|
11926 |
|
|
/* Keep all sections containing symbols undefined on the command-line,
|
11927 |
|
|
and the section containing the entry symbol. */
|
11928 |
|
|
|
11929 |
|
|
void
|
11930 |
|
|
_bfd_elf_gc_keep (struct bfd_link_info *info)
|
11931 |
|
|
{
|
11932 |
|
|
struct bfd_sym_chain *sym;
|
11933 |
|
|
|
11934 |
|
|
for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
|
11935 |
|
|
{
|
11936 |
|
|
struct elf_link_hash_entry *h;
|
11937 |
|
|
|
11938 |
|
|
h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
|
11939 |
|
|
FALSE, FALSE, FALSE);
|
11940 |
|
|
|
11941 |
|
|
if (h != NULL
|
11942 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
11943 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
11944 |
|
|
&& !bfd_is_abs_section (h->root.u.def.section))
|
11945 |
|
|
h->root.u.def.section->flags |= SEC_KEEP;
|
11946 |
|
|
}
|
11947 |
|
|
}
|
11948 |
|
|
|
11949 |
|
|
/* Do mark and sweep of unused sections. */
|
11950 |
|
|
|
11951 |
|
|
bfd_boolean
|
11952 |
|
|
bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
|
11953 |
|
|
{
|
11954 |
|
|
bfd_boolean ok = TRUE;
|
11955 |
|
|
bfd *sub;
|
11956 |
|
|
elf_gc_mark_hook_fn gc_mark_hook;
|
11957 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
11958 |
|
|
|
11959 |
|
|
if (!bed->can_gc_sections
|
11960 |
|
|
|| !is_elf_hash_table (info->hash))
|
11961 |
|
|
{
|
11962 |
|
|
(*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
|
11963 |
|
|
return TRUE;
|
11964 |
|
|
}
|
11965 |
|
|
|
11966 |
|
|
bed->gc_keep (info);
|
11967 |
|
|
|
11968 |
|
|
/* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
|
11969 |
|
|
at the .eh_frame section if we can mark the FDEs individually. */
|
11970 |
|
|
_bfd_elf_begin_eh_frame_parsing (info);
|
11971 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
11972 |
|
|
{
|
11973 |
|
|
asection *sec;
|
11974 |
|
|
struct elf_reloc_cookie cookie;
|
11975 |
|
|
|
11976 |
|
|
sec = bfd_get_section_by_name (sub, ".eh_frame");
|
11977 |
|
|
if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
|
11978 |
|
|
{
|
11979 |
|
|
_bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
|
11980 |
|
|
if (elf_section_data (sec)->sec_info)
|
11981 |
|
|
elf_eh_frame_section (sub) = sec;
|
11982 |
|
|
fini_reloc_cookie_for_section (&cookie, sec);
|
11983 |
|
|
}
|
11984 |
|
|
}
|
11985 |
|
|
_bfd_elf_end_eh_frame_parsing (info);
|
11986 |
|
|
|
11987 |
|
|
/* Apply transitive closure to the vtable entry usage info. */
|
11988 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
11989 |
|
|
elf_gc_propagate_vtable_entries_used,
|
11990 |
|
|
&ok);
|
11991 |
|
|
if (!ok)
|
11992 |
|
|
return FALSE;
|
11993 |
|
|
|
11994 |
|
|
/* Kill the vtable relocations that were not used. */
|
11995 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
11996 |
|
|
elf_gc_smash_unused_vtentry_relocs,
|
11997 |
|
|
&ok);
|
11998 |
|
|
if (!ok)
|
11999 |
|
|
return FALSE;
|
12000 |
|
|
|
12001 |
|
|
/* Mark dynamically referenced symbols. */
|
12002 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
12003 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
12004 |
|
|
bed->gc_mark_dynamic_ref,
|
12005 |
|
|
info);
|
12006 |
|
|
|
12007 |
|
|
/* Grovel through relocs to find out who stays ... */
|
12008 |
|
|
gc_mark_hook = bed->gc_mark_hook;
|
12009 |
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
12010 |
|
|
{
|
12011 |
|
|
asection *o;
|
12012 |
|
|
|
12013 |
|
|
if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
|
12014 |
|
|
continue;
|
12015 |
|
|
|
12016 |
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
12017 |
|
|
if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
|
12018 |
|
|
if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
|
12019 |
|
|
return FALSE;
|
12020 |
|
|
}
|
12021 |
|
|
|
12022 |
|
|
/* Allow the backend to mark additional target specific sections. */
|
12023 |
|
|
if (bed->gc_mark_extra_sections)
|
12024 |
|
|
bed->gc_mark_extra_sections (info, gc_mark_hook);
|
12025 |
|
|
|
12026 |
|
|
/* ... and mark SEC_EXCLUDE for those that go. */
|
12027 |
|
|
return elf_gc_sweep (abfd, info);
|
12028 |
|
|
}
|
12029 |
|
|
|
12030 |
|
|
/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
|
12031 |
|
|
|
12032 |
|
|
bfd_boolean
|
12033 |
|
|
bfd_elf_gc_record_vtinherit (bfd *abfd,
|
12034 |
|
|
asection *sec,
|
12035 |
|
|
struct elf_link_hash_entry *h,
|
12036 |
|
|
bfd_vma offset)
|
12037 |
|
|
{
|
12038 |
|
|
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
|
12039 |
|
|
struct elf_link_hash_entry **search, *child;
|
12040 |
|
|
bfd_size_type extsymcount;
|
12041 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12042 |
|
|
|
12043 |
|
|
/* The sh_info field of the symtab header tells us where the
|
12044 |
|
|
external symbols start. We don't care about the local symbols at
|
12045 |
|
|
this point. */
|
12046 |
|
|
extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
|
12047 |
|
|
if (!elf_bad_symtab (abfd))
|
12048 |
|
|
extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
|
12049 |
|
|
|
12050 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
12051 |
|
|
sym_hashes_end = sym_hashes + extsymcount;
|
12052 |
|
|
|
12053 |
|
|
/* Hunt down the child symbol, which is in this section at the same
|
12054 |
|
|
offset as the relocation. */
|
12055 |
|
|
for (search = sym_hashes; search != sym_hashes_end; ++search)
|
12056 |
|
|
{
|
12057 |
|
|
if ((child = *search) != NULL
|
12058 |
|
|
&& (child->root.type == bfd_link_hash_defined
|
12059 |
|
|
|| child->root.type == bfd_link_hash_defweak)
|
12060 |
|
|
&& child->root.u.def.section == sec
|
12061 |
|
|
&& child->root.u.def.value == offset)
|
12062 |
|
|
goto win;
|
12063 |
|
|
}
|
12064 |
|
|
|
12065 |
|
|
(*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
|
12066 |
|
|
abfd, sec, (unsigned long) offset);
|
12067 |
|
|
bfd_set_error (bfd_error_invalid_operation);
|
12068 |
|
|
return FALSE;
|
12069 |
|
|
|
12070 |
|
|
win:
|
12071 |
|
|
if (!child->vtable)
|
12072 |
|
|
{
|
12073 |
|
|
child->vtable = (struct elf_link_virtual_table_entry *)
|
12074 |
|
|
bfd_zalloc (abfd, sizeof (*child->vtable));
|
12075 |
|
|
if (!child->vtable)
|
12076 |
|
|
return FALSE;
|
12077 |
|
|
}
|
12078 |
|
|
if (!h)
|
12079 |
|
|
{
|
12080 |
|
|
/* This *should* only be the absolute section. It could potentially
|
12081 |
|
|
be that someone has defined a non-global vtable though, which
|
12082 |
|
|
would be bad. It isn't worth paging in the local symbols to be
|
12083 |
|
|
sure though; that case should simply be handled by the assembler. */
|
12084 |
|
|
|
12085 |
|
|
child->vtable->parent = (struct elf_link_hash_entry *) -1;
|
12086 |
|
|
}
|
12087 |
|
|
else
|
12088 |
|
|
child->vtable->parent = h;
|
12089 |
|
|
|
12090 |
|
|
return TRUE;
|
12091 |
|
|
}
|
12092 |
|
|
|
12093 |
|
|
/* Called from check_relocs to record the existence of a VTENTRY reloc. */
|
12094 |
|
|
|
12095 |
|
|
bfd_boolean
|
12096 |
|
|
bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
|
12097 |
|
|
asection *sec ATTRIBUTE_UNUSED,
|
12098 |
|
|
struct elf_link_hash_entry *h,
|
12099 |
|
|
bfd_vma addend)
|
12100 |
|
|
{
|
12101 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12102 |
|
|
unsigned int log_file_align = bed->s->log_file_align;
|
12103 |
|
|
|
12104 |
|
|
if (!h->vtable)
|
12105 |
|
|
{
|
12106 |
|
|
h->vtable = (struct elf_link_virtual_table_entry *)
|
12107 |
|
|
bfd_zalloc (abfd, sizeof (*h->vtable));
|
12108 |
|
|
if (!h->vtable)
|
12109 |
|
|
return FALSE;
|
12110 |
|
|
}
|
12111 |
|
|
|
12112 |
|
|
if (addend >= h->vtable->size)
|
12113 |
|
|
{
|
12114 |
|
|
size_t size, bytes, file_align;
|
12115 |
|
|
bfd_boolean *ptr = h->vtable->used;
|
12116 |
|
|
|
12117 |
|
|
/* While the symbol is undefined, we have to be prepared to handle
|
12118 |
|
|
a zero size. */
|
12119 |
|
|
file_align = 1 << log_file_align;
|
12120 |
|
|
if (h->root.type == bfd_link_hash_undefined)
|
12121 |
|
|
size = addend + file_align;
|
12122 |
|
|
else
|
12123 |
|
|
{
|
12124 |
|
|
size = h->size;
|
12125 |
|
|
if (addend >= size)
|
12126 |
|
|
{
|
12127 |
|
|
/* Oops! We've got a reference past the defined end of
|
12128 |
|
|
the table. This is probably a bug -- shall we warn? */
|
12129 |
|
|
size = addend + file_align;
|
12130 |
|
|
}
|
12131 |
|
|
}
|
12132 |
|
|
size = (size + file_align - 1) & -file_align;
|
12133 |
|
|
|
12134 |
|
|
/* Allocate one extra entry for use as a "done" flag for the
|
12135 |
|
|
consolidation pass. */
|
12136 |
|
|
bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
|
12137 |
|
|
|
12138 |
|
|
if (ptr)
|
12139 |
|
|
{
|
12140 |
|
|
ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
|
12141 |
|
|
|
12142 |
|
|
if (ptr != NULL)
|
12143 |
|
|
{
|
12144 |
|
|
size_t oldbytes;
|
12145 |
|
|
|
12146 |
|
|
oldbytes = (((h->vtable->size >> log_file_align) + 1)
|
12147 |
|
|
* sizeof (bfd_boolean));
|
12148 |
|
|
memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
|
12149 |
|
|
}
|
12150 |
|
|
}
|
12151 |
|
|
else
|
12152 |
|
|
ptr = (bfd_boolean *) bfd_zmalloc (bytes);
|
12153 |
|
|
|
12154 |
|
|
if (ptr == NULL)
|
12155 |
|
|
return FALSE;
|
12156 |
|
|
|
12157 |
|
|
/* And arrange for that done flag to be at index -1. */
|
12158 |
|
|
h->vtable->used = ptr + 1;
|
12159 |
|
|
h->vtable->size = size;
|
12160 |
|
|
}
|
12161 |
|
|
|
12162 |
|
|
h->vtable->used[addend >> log_file_align] = TRUE;
|
12163 |
|
|
|
12164 |
|
|
return TRUE;
|
12165 |
|
|
}
|
12166 |
|
|
|
12167 |
|
|
struct alloc_got_off_arg {
|
12168 |
|
|
bfd_vma gotoff;
|
12169 |
|
|
struct bfd_link_info *info;
|
12170 |
|
|
};
|
12171 |
|
|
|
12172 |
|
|
/* We need a special top-level link routine to convert got reference counts
|
12173 |
|
|
to real got offsets. */
|
12174 |
|
|
|
12175 |
|
|
static bfd_boolean
|
12176 |
|
|
elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
|
12177 |
|
|
{
|
12178 |
|
|
struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
|
12179 |
|
|
bfd *obfd = gofarg->info->output_bfd;
|
12180 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (obfd);
|
12181 |
|
|
|
12182 |
|
|
if (h->root.type == bfd_link_hash_warning)
|
12183 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
12184 |
|
|
|
12185 |
|
|
if (h->got.refcount > 0)
|
12186 |
|
|
{
|
12187 |
|
|
h->got.offset = gofarg->gotoff;
|
12188 |
|
|
gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
|
12189 |
|
|
}
|
12190 |
|
|
else
|
12191 |
|
|
h->got.offset = (bfd_vma) -1;
|
12192 |
|
|
|
12193 |
|
|
return TRUE;
|
12194 |
|
|
}
|
12195 |
|
|
|
12196 |
|
|
/* And an accompanying bit to work out final got entry offsets once
|
12197 |
|
|
we're done. Should be called from final_link. */
|
12198 |
|
|
|
12199 |
|
|
bfd_boolean
|
12200 |
|
|
bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
|
12201 |
|
|
struct bfd_link_info *info)
|
12202 |
|
|
{
|
12203 |
|
|
bfd *i;
|
12204 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12205 |
|
|
bfd_vma gotoff;
|
12206 |
|
|
struct alloc_got_off_arg gofarg;
|
12207 |
|
|
|
12208 |
|
|
BFD_ASSERT (abfd == info->output_bfd);
|
12209 |
|
|
|
12210 |
|
|
if (! is_elf_hash_table (info->hash))
|
12211 |
|
|
return FALSE;
|
12212 |
|
|
|
12213 |
|
|
/* The GOT offset is relative to the .got section, but the GOT header is
|
12214 |
|
|
put into the .got.plt section, if the backend uses it. */
|
12215 |
|
|
if (bed->want_got_plt)
|
12216 |
|
|
gotoff = 0;
|
12217 |
|
|
else
|
12218 |
|
|
gotoff = bed->got_header_size;
|
12219 |
|
|
|
12220 |
|
|
/* Do the local .got entries first. */
|
12221 |
|
|
for (i = info->input_bfds; i; i = i->link_next)
|
12222 |
|
|
{
|
12223 |
|
|
bfd_signed_vma *local_got;
|
12224 |
|
|
bfd_size_type j, locsymcount;
|
12225 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
12226 |
|
|
|
12227 |
|
|
if (bfd_get_flavour (i) != bfd_target_elf_flavour)
|
12228 |
|
|
continue;
|
12229 |
|
|
|
12230 |
|
|
local_got = elf_local_got_refcounts (i);
|
12231 |
|
|
if (!local_got)
|
12232 |
|
|
continue;
|
12233 |
|
|
|
12234 |
|
|
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
12235 |
|
|
if (elf_bad_symtab (i))
|
12236 |
|
|
locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
|
12237 |
|
|
else
|
12238 |
|
|
locsymcount = symtab_hdr->sh_info;
|
12239 |
|
|
|
12240 |
|
|
for (j = 0; j < locsymcount; ++j)
|
12241 |
|
|
{
|
12242 |
|
|
if (local_got[j] > 0)
|
12243 |
|
|
{
|
12244 |
|
|
local_got[j] = gotoff;
|
12245 |
|
|
gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
|
12246 |
|
|
}
|
12247 |
|
|
else
|
12248 |
|
|
local_got[j] = (bfd_vma) -1;
|
12249 |
|
|
}
|
12250 |
|
|
}
|
12251 |
|
|
|
12252 |
|
|
/* Then the global .got entries. .plt refcounts are handled by
|
12253 |
|
|
adjust_dynamic_symbol */
|
12254 |
|
|
gofarg.gotoff = gotoff;
|
12255 |
|
|
gofarg.info = info;
|
12256 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
12257 |
|
|
elf_gc_allocate_got_offsets,
|
12258 |
|
|
&gofarg);
|
12259 |
|
|
return TRUE;
|
12260 |
|
|
}
|
12261 |
|
|
|
12262 |
|
|
/* Many folk need no more in the way of final link than this, once
|
12263 |
|
|
got entry reference counting is enabled. */
|
12264 |
|
|
|
12265 |
|
|
bfd_boolean
|
12266 |
|
|
bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
|
12267 |
|
|
{
|
12268 |
|
|
if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
|
12269 |
|
|
return FALSE;
|
12270 |
|
|
|
12271 |
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
12272 |
|
|
return bfd_elf_final_link (abfd, info);
|
12273 |
|
|
}
|
12274 |
|
|
|
12275 |
|
|
bfd_boolean
|
12276 |
|
|
bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
|
12277 |
|
|
{
|
12278 |
|
|
struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
|
12279 |
|
|
|
12280 |
|
|
if (rcookie->bad_symtab)
|
12281 |
|
|
rcookie->rel = rcookie->rels;
|
12282 |
|
|
|
12283 |
|
|
for (; rcookie->rel < rcookie->relend; rcookie->rel++)
|
12284 |
|
|
{
|
12285 |
|
|
unsigned long r_symndx;
|
12286 |
|
|
|
12287 |
|
|
if (! rcookie->bad_symtab)
|
12288 |
|
|
if (rcookie->rel->r_offset > offset)
|
12289 |
|
|
return FALSE;
|
12290 |
|
|
if (rcookie->rel->r_offset != offset)
|
12291 |
|
|
continue;
|
12292 |
|
|
|
12293 |
|
|
r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
|
12294 |
|
|
if (r_symndx == STN_UNDEF)
|
12295 |
|
|
return TRUE;
|
12296 |
|
|
|
12297 |
|
|
if (r_symndx >= rcookie->locsymcount
|
12298 |
|
|
|| ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
|
12299 |
|
|
{
|
12300 |
|
|
struct elf_link_hash_entry *h;
|
12301 |
|
|
|
12302 |
|
|
h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
|
12303 |
|
|
|
12304 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
12305 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
12306 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
12307 |
|
|
|
12308 |
|
|
if ((h->root.type == bfd_link_hash_defined
|
12309 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
12310 |
|
|
&& elf_discarded_section (h->root.u.def.section))
|
12311 |
|
|
return TRUE;
|
12312 |
|
|
else
|
12313 |
|
|
return FALSE;
|
12314 |
|
|
}
|
12315 |
|
|
else
|
12316 |
|
|
{
|
12317 |
|
|
/* It's not a relocation against a global symbol,
|
12318 |
|
|
but it could be a relocation against a local
|
12319 |
|
|
symbol for a discarded section. */
|
12320 |
|
|
asection *isec;
|
12321 |
|
|
Elf_Internal_Sym *isym;
|
12322 |
|
|
|
12323 |
|
|
/* Need to: get the symbol; get the section. */
|
12324 |
|
|
isym = &rcookie->locsyms[r_symndx];
|
12325 |
|
|
isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
|
12326 |
|
|
if (isec != NULL && elf_discarded_section (isec))
|
12327 |
|
|
return TRUE;
|
12328 |
|
|
}
|
12329 |
|
|
return FALSE;
|
12330 |
|
|
}
|
12331 |
|
|
return FALSE;
|
12332 |
|
|
}
|
12333 |
|
|
|
12334 |
|
|
/* Discard unneeded references to discarded sections.
|
12335 |
|
|
Returns TRUE if any section's size was changed. */
|
12336 |
|
|
/* This function assumes that the relocations are in sorted order,
|
12337 |
|
|
which is true for all known assemblers. */
|
12338 |
|
|
|
12339 |
|
|
bfd_boolean
|
12340 |
|
|
bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
|
12341 |
|
|
{
|
12342 |
|
|
struct elf_reloc_cookie cookie;
|
12343 |
|
|
asection *stab, *eh;
|
12344 |
|
|
const struct elf_backend_data *bed;
|
12345 |
|
|
bfd *abfd;
|
12346 |
|
|
bfd_boolean ret = FALSE;
|
12347 |
|
|
|
12348 |
|
|
if (info->traditional_format
|
12349 |
|
|
|| !is_elf_hash_table (info->hash))
|
12350 |
|
|
return FALSE;
|
12351 |
|
|
|
12352 |
|
|
_bfd_elf_begin_eh_frame_parsing (info);
|
12353 |
|
|
for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
|
12354 |
|
|
{
|
12355 |
|
|
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
|
12356 |
|
|
continue;
|
12357 |
|
|
|
12358 |
|
|
bed = get_elf_backend_data (abfd);
|
12359 |
|
|
|
12360 |
|
|
if ((abfd->flags & DYNAMIC) != 0)
|
12361 |
|
|
continue;
|
12362 |
|
|
|
12363 |
|
|
eh = NULL;
|
12364 |
|
|
if (!info->relocatable)
|
12365 |
|
|
{
|
12366 |
|
|
eh = bfd_get_section_by_name (abfd, ".eh_frame");
|
12367 |
|
|
if (eh != NULL
|
12368 |
|
|
&& (eh->size == 0
|
12369 |
|
|
|| bfd_is_abs_section (eh->output_section)))
|
12370 |
|
|
eh = NULL;
|
12371 |
|
|
}
|
12372 |
|
|
|
12373 |
|
|
stab = bfd_get_section_by_name (abfd, ".stab");
|
12374 |
|
|
if (stab != NULL
|
12375 |
|
|
&& (stab->size == 0
|
12376 |
|
|
|| bfd_is_abs_section (stab->output_section)
|
12377 |
|
|
|| stab->sec_info_type != ELF_INFO_TYPE_STABS))
|
12378 |
|
|
stab = NULL;
|
12379 |
|
|
|
12380 |
|
|
if (stab == NULL
|
12381 |
|
|
&& eh == NULL
|
12382 |
|
|
&& bed->elf_backend_discard_info == NULL)
|
12383 |
|
|
continue;
|
12384 |
|
|
|
12385 |
|
|
if (!init_reloc_cookie (&cookie, info, abfd))
|
12386 |
|
|
return FALSE;
|
12387 |
|
|
|
12388 |
|
|
if (stab != NULL
|
12389 |
|
|
&& stab->reloc_count > 0
|
12390 |
|
|
&& init_reloc_cookie_rels (&cookie, info, abfd, stab))
|
12391 |
|
|
{
|
12392 |
|
|
if (_bfd_discard_section_stabs (abfd, stab,
|
12393 |
|
|
elf_section_data (stab)->sec_info,
|
12394 |
|
|
bfd_elf_reloc_symbol_deleted_p,
|
12395 |
|
|
&cookie))
|
12396 |
|
|
ret = TRUE;
|
12397 |
|
|
fini_reloc_cookie_rels (&cookie, stab);
|
12398 |
|
|
}
|
12399 |
|
|
|
12400 |
|
|
if (eh != NULL
|
12401 |
|
|
&& init_reloc_cookie_rels (&cookie, info, abfd, eh))
|
12402 |
|
|
{
|
12403 |
|
|
_bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
|
12404 |
|
|
if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
|
12405 |
|
|
bfd_elf_reloc_symbol_deleted_p,
|
12406 |
|
|
&cookie))
|
12407 |
|
|
ret = TRUE;
|
12408 |
|
|
fini_reloc_cookie_rels (&cookie, eh);
|
12409 |
|
|
}
|
12410 |
|
|
|
12411 |
|
|
if (bed->elf_backend_discard_info != NULL
|
12412 |
|
|
&& (*bed->elf_backend_discard_info) (abfd, &cookie, info))
|
12413 |
|
|
ret = TRUE;
|
12414 |
|
|
|
12415 |
|
|
fini_reloc_cookie (&cookie, abfd);
|
12416 |
|
|
}
|
12417 |
|
|
_bfd_elf_end_eh_frame_parsing (info);
|
12418 |
|
|
|
12419 |
|
|
if (info->eh_frame_hdr
|
12420 |
|
|
&& !info->relocatable
|
12421 |
|
|
&& _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
|
12422 |
|
|
ret = TRUE;
|
12423 |
|
|
|
12424 |
|
|
return ret;
|
12425 |
|
|
}
|
12426 |
|
|
|
12427 |
|
|
/* For a SHT_GROUP section, return the group signature. For other
|
12428 |
|
|
sections, return the normal section name. */
|
12429 |
|
|
|
12430 |
|
|
static const char *
|
12431 |
|
|
section_signature (asection *sec)
|
12432 |
|
|
{
|
12433 |
|
|
if ((sec->flags & SEC_GROUP) != 0
|
12434 |
|
|
&& elf_next_in_group (sec) != NULL
|
12435 |
|
|
&& elf_group_name (elf_next_in_group (sec)) != NULL)
|
12436 |
|
|
return elf_group_name (elf_next_in_group (sec));
|
12437 |
|
|
return sec->name;
|
12438 |
|
|
}
|
12439 |
|
|
|
12440 |
|
|
void
|
12441 |
|
|
_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
|
12442 |
|
|
struct bfd_link_info *info)
|
12443 |
|
|
{
|
12444 |
|
|
flagword flags;
|
12445 |
|
|
const char *name, *p;
|
12446 |
|
|
struct bfd_section_already_linked *l;
|
12447 |
|
|
struct bfd_section_already_linked_hash_entry *already_linked_list;
|
12448 |
|
|
|
12449 |
|
|
if (sec->output_section == bfd_abs_section_ptr)
|
12450 |
|
|
return;
|
12451 |
|
|
|
12452 |
|
|
flags = sec->flags;
|
12453 |
|
|
|
12454 |
|
|
/* Return if it isn't a linkonce section. A comdat group section
|
12455 |
|
|
also has SEC_LINK_ONCE set. */
|
12456 |
|
|
if ((flags & SEC_LINK_ONCE) == 0)
|
12457 |
|
|
return;
|
12458 |
|
|
|
12459 |
|
|
/* Don't put group member sections on our list of already linked
|
12460 |
|
|
sections. They are handled as a group via their group section. */
|
12461 |
|
|
if (elf_sec_group (sec) != NULL)
|
12462 |
|
|
return;
|
12463 |
|
|
|
12464 |
|
|
/* FIXME: When doing a relocatable link, we may have trouble
|
12465 |
|
|
copying relocations in other sections that refer to local symbols
|
12466 |
|
|
in the section being discarded. Those relocations will have to
|
12467 |
|
|
be converted somehow; as of this writing I'm not sure that any of
|
12468 |
|
|
the backends handle that correctly.
|
12469 |
|
|
|
12470 |
|
|
It is tempting to instead not discard link once sections when
|
12471 |
|
|
doing a relocatable link (technically, they should be discarded
|
12472 |
|
|
whenever we are building constructors). However, that fails,
|
12473 |
|
|
because the linker winds up combining all the link once sections
|
12474 |
|
|
into a single large link once section, which defeats the purpose
|
12475 |
|
|
of having link once sections in the first place.
|
12476 |
|
|
|
12477 |
|
|
Also, not merging link once sections in a relocatable link
|
12478 |
|
|
causes trouble for MIPS ELF, which relies on link once semantics
|
12479 |
|
|
to handle the .reginfo section correctly. */
|
12480 |
|
|
|
12481 |
|
|
name = section_signature (sec);
|
12482 |
|
|
|
12483 |
|
|
if (CONST_STRNEQ (name, ".gnu.linkonce.")
|
12484 |
|
|
&& (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
|
12485 |
|
|
p++;
|
12486 |
|
|
else
|
12487 |
|
|
p = name;
|
12488 |
|
|
|
12489 |
|
|
already_linked_list = bfd_section_already_linked_table_lookup (p);
|
12490 |
|
|
|
12491 |
|
|
for (l = already_linked_list->entry; l != NULL; l = l->next)
|
12492 |
|
|
{
|
12493 |
|
|
/* We may have 2 different types of sections on the list: group
|
12494 |
|
|
sections and linkonce sections. Match like sections. */
|
12495 |
|
|
if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
|
12496 |
|
|
&& strcmp (name, section_signature (l->sec)) == 0
|
12497 |
|
|
&& bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
|
12498 |
|
|
{
|
12499 |
|
|
/* The section has already been linked. See if we should
|
12500 |
|
|
issue a warning. */
|
12501 |
|
|
switch (flags & SEC_LINK_DUPLICATES)
|
12502 |
|
|
{
|
12503 |
|
|
default:
|
12504 |
|
|
abort ();
|
12505 |
|
|
|
12506 |
|
|
case SEC_LINK_DUPLICATES_DISCARD:
|
12507 |
|
|
break;
|
12508 |
|
|
|
12509 |
|
|
case SEC_LINK_DUPLICATES_ONE_ONLY:
|
12510 |
|
|
(*_bfd_error_handler)
|
12511 |
|
|
(_("%B: ignoring duplicate section `%A'"),
|
12512 |
|
|
abfd, sec);
|
12513 |
|
|
break;
|
12514 |
|
|
|
12515 |
|
|
case SEC_LINK_DUPLICATES_SAME_SIZE:
|
12516 |
|
|
if (sec->size != l->sec->size)
|
12517 |
|
|
(*_bfd_error_handler)
|
12518 |
|
|
(_("%B: duplicate section `%A' has different size"),
|
12519 |
|
|
abfd, sec);
|
12520 |
|
|
break;
|
12521 |
|
|
|
12522 |
|
|
case SEC_LINK_DUPLICATES_SAME_CONTENTS:
|
12523 |
|
|
if (sec->size != l->sec->size)
|
12524 |
|
|
(*_bfd_error_handler)
|
12525 |
|
|
(_("%B: duplicate section `%A' has different size"),
|
12526 |
|
|
abfd, sec);
|
12527 |
|
|
else if (sec->size != 0)
|
12528 |
|
|
{
|
12529 |
|
|
bfd_byte *sec_contents, *l_sec_contents;
|
12530 |
|
|
|
12531 |
|
|
if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
|
12532 |
|
|
(*_bfd_error_handler)
|
12533 |
|
|
(_("%B: warning: could not read contents of section `%A'"),
|
12534 |
|
|
abfd, sec);
|
12535 |
|
|
else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
|
12536 |
|
|
&l_sec_contents))
|
12537 |
|
|
(*_bfd_error_handler)
|
12538 |
|
|
(_("%B: warning: could not read contents of section `%A'"),
|
12539 |
|
|
l->sec->owner, l->sec);
|
12540 |
|
|
else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
|
12541 |
|
|
(*_bfd_error_handler)
|
12542 |
|
|
(_("%B: warning: duplicate section `%A' has different contents"),
|
12543 |
|
|
abfd, sec);
|
12544 |
|
|
|
12545 |
|
|
if (sec_contents)
|
12546 |
|
|
free (sec_contents);
|
12547 |
|
|
if (l_sec_contents)
|
12548 |
|
|
free (l_sec_contents);
|
12549 |
|
|
}
|
12550 |
|
|
break;
|
12551 |
|
|
}
|
12552 |
|
|
|
12553 |
|
|
/* Set the output_section field so that lang_add_section
|
12554 |
|
|
does not create a lang_input_section structure for this
|
12555 |
|
|
section. Since there might be a symbol in the section
|
12556 |
|
|
being discarded, we must retain a pointer to the section
|
12557 |
|
|
which we are really going to use. */
|
12558 |
|
|
sec->output_section = bfd_abs_section_ptr;
|
12559 |
|
|
sec->kept_section = l->sec;
|
12560 |
|
|
|
12561 |
|
|
if (flags & SEC_GROUP)
|
12562 |
|
|
{
|
12563 |
|
|
asection *first = elf_next_in_group (sec);
|
12564 |
|
|
asection *s = first;
|
12565 |
|
|
|
12566 |
|
|
while (s != NULL)
|
12567 |
|
|
{
|
12568 |
|
|
s->output_section = bfd_abs_section_ptr;
|
12569 |
|
|
/* Record which group discards it. */
|
12570 |
|
|
s->kept_section = l->sec;
|
12571 |
|
|
s = elf_next_in_group (s);
|
12572 |
|
|
/* These lists are circular. */
|
12573 |
|
|
if (s == first)
|
12574 |
|
|
break;
|
12575 |
|
|
}
|
12576 |
|
|
}
|
12577 |
|
|
|
12578 |
|
|
return;
|
12579 |
|
|
}
|
12580 |
|
|
}
|
12581 |
|
|
|
12582 |
|
|
/* A single member comdat group section may be discarded by a
|
12583 |
|
|
linkonce section and vice versa. */
|
12584 |
|
|
|
12585 |
|
|
if ((flags & SEC_GROUP) != 0)
|
12586 |
|
|
{
|
12587 |
|
|
asection *first = elf_next_in_group (sec);
|
12588 |
|
|
|
12589 |
|
|
if (first != NULL && elf_next_in_group (first) == first)
|
12590 |
|
|
/* Check this single member group against linkonce sections. */
|
12591 |
|
|
for (l = already_linked_list->entry; l != NULL; l = l->next)
|
12592 |
|
|
if ((l->sec->flags & SEC_GROUP) == 0
|
12593 |
|
|
&& bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
|
12594 |
|
|
&& bfd_elf_match_symbols_in_sections (l->sec, first, info))
|
12595 |
|
|
{
|
12596 |
|
|
first->output_section = bfd_abs_section_ptr;
|
12597 |
|
|
first->kept_section = l->sec;
|
12598 |
|
|
sec->output_section = bfd_abs_section_ptr;
|
12599 |
|
|
break;
|
12600 |
|
|
}
|
12601 |
|
|
}
|
12602 |
|
|
else
|
12603 |
|
|
/* Check this linkonce section against single member groups. */
|
12604 |
|
|
for (l = already_linked_list->entry; l != NULL; l = l->next)
|
12605 |
|
|
if (l->sec->flags & SEC_GROUP)
|
12606 |
|
|
{
|
12607 |
|
|
asection *first = elf_next_in_group (l->sec);
|
12608 |
|
|
|
12609 |
|
|
if (first != NULL
|
12610 |
|
|
&& elf_next_in_group (first) == first
|
12611 |
|
|
&& bfd_elf_match_symbols_in_sections (first, sec, info))
|
12612 |
|
|
{
|
12613 |
|
|
sec->output_section = bfd_abs_section_ptr;
|
12614 |
|
|
sec->kept_section = first;
|
12615 |
|
|
break;
|
12616 |
|
|
}
|
12617 |
|
|
}
|
12618 |
|
|
|
12619 |
|
|
/* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
|
12620 |
|
|
referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
|
12621 |
|
|
specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
|
12622 |
|
|
prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
|
12623 |
|
|
matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
|
12624 |
|
|
but its `.gnu.linkonce.t.F' is discarded means we chose one-only
|
12625 |
|
|
`.gnu.linkonce.t.F' section from a different bfd not requiring any
|
12626 |
|
|
`.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
|
12627 |
|
|
The reverse order cannot happen as there is never a bfd with only the
|
12628 |
|
|
`.gnu.linkonce.r.F' section. The order of sections in a bfd does not
|
12629 |
|
|
matter as here were are looking only for cross-bfd sections. */
|
12630 |
|
|
|
12631 |
|
|
if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
|
12632 |
|
|
for (l = already_linked_list->entry; l != NULL; l = l->next)
|
12633 |
|
|
if ((l->sec->flags & SEC_GROUP) == 0
|
12634 |
|
|
&& CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
|
12635 |
|
|
{
|
12636 |
|
|
if (abfd != l->sec->owner)
|
12637 |
|
|
sec->output_section = bfd_abs_section_ptr;
|
12638 |
|
|
break;
|
12639 |
|
|
}
|
12640 |
|
|
|
12641 |
|
|
/* This is the first section with this name. Record it. */
|
12642 |
|
|
if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
|
12643 |
|
|
info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
|
12644 |
|
|
}
|
12645 |
|
|
|
12646 |
|
|
bfd_boolean
|
12647 |
|
|
_bfd_elf_common_definition (Elf_Internal_Sym *sym)
|
12648 |
|
|
{
|
12649 |
|
|
return sym->st_shndx == SHN_COMMON;
|
12650 |
|
|
}
|
12651 |
|
|
|
12652 |
|
|
unsigned int
|
12653 |
|
|
_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
|
12654 |
|
|
{
|
12655 |
|
|
return SHN_COMMON;
|
12656 |
|
|
}
|
12657 |
|
|
|
12658 |
|
|
asection *
|
12659 |
|
|
_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
|
12660 |
|
|
{
|
12661 |
|
|
return bfd_com_section_ptr;
|
12662 |
|
|
}
|
12663 |
|
|
|
12664 |
|
|
bfd_vma
|
12665 |
|
|
_bfd_elf_default_got_elt_size (bfd *abfd,
|
12666 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
12667 |
|
|
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
|
12668 |
|
|
bfd *ibfd ATTRIBUTE_UNUSED,
|
12669 |
|
|
unsigned long symndx ATTRIBUTE_UNUSED)
|
12670 |
|
|
{
|
12671 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12672 |
|
|
return bed->s->arch_size / 8;
|
12673 |
|
|
}
|
12674 |
|
|
|
12675 |
|
|
/* Routines to support the creation of dynamic relocs. */
|
12676 |
|
|
|
12677 |
|
|
/* Returns the name of the dynamic reloc section associated with SEC. */
|
12678 |
|
|
|
12679 |
|
|
static const char *
|
12680 |
|
|
get_dynamic_reloc_section_name (bfd * abfd,
|
12681 |
|
|
asection * sec,
|
12682 |
|
|
bfd_boolean is_rela)
|
12683 |
|
|
{
|
12684 |
|
|
char *name;
|
12685 |
|
|
const char *old_name = bfd_get_section_name (NULL, sec);
|
12686 |
|
|
const char *prefix = is_rela ? ".rela" : ".rel";
|
12687 |
|
|
|
12688 |
|
|
if (old_name == NULL)
|
12689 |
|
|
return NULL;
|
12690 |
|
|
|
12691 |
|
|
name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
|
12692 |
|
|
sprintf (name, "%s%s", prefix, old_name);
|
12693 |
|
|
|
12694 |
|
|
return name;
|
12695 |
|
|
}
|
12696 |
|
|
|
12697 |
|
|
/* Returns the dynamic reloc section associated with SEC.
|
12698 |
|
|
If necessary compute the name of the dynamic reloc section based
|
12699 |
|
|
on SEC's name (looked up in ABFD's string table) and the setting
|
12700 |
|
|
of IS_RELA. */
|
12701 |
|
|
|
12702 |
|
|
asection *
|
12703 |
|
|
_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
|
12704 |
|
|
asection * sec,
|
12705 |
|
|
bfd_boolean is_rela)
|
12706 |
|
|
{
|
12707 |
|
|
asection * reloc_sec = elf_section_data (sec)->sreloc;
|
12708 |
|
|
|
12709 |
|
|
if (reloc_sec == NULL)
|
12710 |
|
|
{
|
12711 |
|
|
const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
|
12712 |
|
|
|
12713 |
|
|
if (name != NULL)
|
12714 |
|
|
{
|
12715 |
|
|
reloc_sec = bfd_get_section_by_name (abfd, name);
|
12716 |
|
|
|
12717 |
|
|
if (reloc_sec != NULL)
|
12718 |
|
|
elf_section_data (sec)->sreloc = reloc_sec;
|
12719 |
|
|
}
|
12720 |
|
|
}
|
12721 |
|
|
|
12722 |
|
|
return reloc_sec;
|
12723 |
|
|
}
|
12724 |
|
|
|
12725 |
|
|
/* Returns the dynamic reloc section associated with SEC. If the
|
12726 |
|
|
section does not exist it is created and attached to the DYNOBJ
|
12727 |
|
|
bfd and stored in the SRELOC field of SEC's elf_section_data
|
12728 |
|
|
structure.
|
12729 |
|
|
|
12730 |
|
|
ALIGNMENT is the alignment for the newly created section and
|
12731 |
|
|
IS_RELA defines whether the name should be .rela.<SEC's name>
|
12732 |
|
|
or .rel.<SEC's name>. The section name is looked up in the
|
12733 |
|
|
string table associated with ABFD. */
|
12734 |
|
|
|
12735 |
|
|
asection *
|
12736 |
|
|
_bfd_elf_make_dynamic_reloc_section (asection * sec,
|
12737 |
|
|
bfd * dynobj,
|
12738 |
|
|
unsigned int alignment,
|
12739 |
|
|
bfd * abfd,
|
12740 |
|
|
bfd_boolean is_rela)
|
12741 |
|
|
{
|
12742 |
|
|
asection * reloc_sec = elf_section_data (sec)->sreloc;
|
12743 |
|
|
|
12744 |
|
|
if (reloc_sec == NULL)
|
12745 |
|
|
{
|
12746 |
|
|
const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
|
12747 |
|
|
|
12748 |
|
|
if (name == NULL)
|
12749 |
|
|
return NULL;
|
12750 |
|
|
|
12751 |
|
|
reloc_sec = bfd_get_section_by_name (dynobj, name);
|
12752 |
|
|
|
12753 |
|
|
if (reloc_sec == NULL)
|
12754 |
|
|
{
|
12755 |
|
|
flagword flags;
|
12756 |
|
|
|
12757 |
|
|
flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
12758 |
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
12759 |
|
|
flags |= SEC_ALLOC | SEC_LOAD;
|
12760 |
|
|
|
12761 |
|
|
reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
|
12762 |
|
|
if (reloc_sec != NULL)
|
12763 |
|
|
{
|
12764 |
|
|
if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
|
12765 |
|
|
reloc_sec = NULL;
|
12766 |
|
|
}
|
12767 |
|
|
}
|
12768 |
|
|
|
12769 |
|
|
elf_section_data (sec)->sreloc = reloc_sec;
|
12770 |
|
|
}
|
12771 |
|
|
|
12772 |
|
|
return reloc_sec;
|
12773 |
|
|
}
|
12774 |
|
|
|
12775 |
|
|
/* Copy the ELF symbol type associated with a linker hash entry. */
|
12776 |
|
|
void
|
12777 |
|
|
_bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
|
12778 |
|
|
struct bfd_link_hash_entry * hdest,
|
12779 |
|
|
struct bfd_link_hash_entry * hsrc)
|
12780 |
|
|
{
|
12781 |
|
|
struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
|
12782 |
|
|
struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
|
12783 |
|
|
|
12784 |
|
|
ehdest->type = ehsrc->type;
|
12785 |
|
|
ehdest->target_internal = ehsrc->target_internal;
|
12786 |
|
|
}
|
12787 |
|
|
|
12788 |
|
|
/* Append a RELA relocation REL to section S in BFD. */
|
12789 |
|
|
|
12790 |
|
|
void
|
12791 |
|
|
elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
|
12792 |
|
|
{
|
12793 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12794 |
|
|
bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
|
12795 |
|
|
BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
|
12796 |
|
|
bed->s->swap_reloca_out (abfd, rel, loc);
|
12797 |
|
|
}
|
12798 |
|
|
|
12799 |
|
|
/* Append a REL relocation REL to section S in BFD. */
|
12800 |
|
|
|
12801 |
|
|
void
|
12802 |
|
|
elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
|
12803 |
|
|
{
|
12804 |
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
12805 |
|
|
bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
|
12806 |
|
|
BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
|
12807 |
|
|
bed->s->swap_reloca_out (abfd, rel, loc);
|
12808 |
|
|
}
|