OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elflink.c] - Blame information for rev 146

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 khays
/* ELF linking support for BFD.
2
   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3
   2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of BFD, the Binary File Descriptor library.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
   MA 02110-1301, USA.  */
22
 
23
#include "sysdep.h"
24
#include "bfd.h"
25
#include "bfdlink.h"
26
#include "libbfd.h"
27
#define ARCH_SIZE 0
28
#include "elf-bfd.h"
29
#include "safe-ctype.h"
30
#include "libiberty.h"
31
#include "objalloc.h"
32
 
33
/* This struct is used to pass information to routines called via
34
   elf_link_hash_traverse which must return failure.  */
35
 
36
struct elf_info_failed
37
{
38
  struct bfd_link_info *info;
39
  struct bfd_elf_version_tree *verdefs;
40
  bfd_boolean failed;
41
};
42
 
43
/* This structure is used to pass information to
44
   _bfd_elf_link_find_version_dependencies.  */
45
 
46
struct elf_find_verdep_info
47
{
48
  /* General link information.  */
49
  struct bfd_link_info *info;
50
  /* The number of dependencies.  */
51
  unsigned int vers;
52
  /* Whether we had a failure.  */
53
  bfd_boolean failed;
54
};
55
 
56
static bfd_boolean _bfd_elf_fix_symbol_flags
57
  (struct elf_link_hash_entry *, struct elf_info_failed *);
58
 
59
/* Define a symbol in a dynamic linkage section.  */
60
 
61
struct elf_link_hash_entry *
62
_bfd_elf_define_linkage_sym (bfd *abfd,
63
                             struct bfd_link_info *info,
64
                             asection *sec,
65
                             const char *name)
66
{
67
  struct elf_link_hash_entry *h;
68
  struct bfd_link_hash_entry *bh;
69
  const struct elf_backend_data *bed;
70
 
71
  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72
  if (h != NULL)
73
    {
74
      /* Zap symbol defined in an as-needed lib that wasn't linked.
75
         This is a symptom of a larger problem:  Absolute symbols
76
         defined in shared libraries can't be overridden, because we
77
         lose the link to the bfd which is via the symbol section.  */
78
      h->root.type = bfd_link_hash_new;
79
    }
80
 
81
  bh = &h->root;
82
  if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83
                                         sec, 0, NULL, FALSE,
84
                                         get_elf_backend_data (abfd)->collect,
85
                                         &bh))
86
    return NULL;
87
  h = (struct elf_link_hash_entry *) bh;
88
  h->def_regular = 1;
89
  h->non_elf = 0;
90
  h->type = STT_OBJECT;
91
  h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
 
93
  bed = get_elf_backend_data (abfd);
94
  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95
  return h;
96
}
97
 
98
bfd_boolean
99
_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100
{
101
  flagword flags;
102
  asection *s;
103
  struct elf_link_hash_entry *h;
104
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105
  struct elf_link_hash_table *htab = elf_hash_table (info);
106
 
107
  /* This function may be called more than once.  */
108
  s = bfd_get_section_by_name (abfd, ".got");
109
  if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110
    return TRUE;
111
 
112
  flags = bed->dynamic_sec_flags;
113
 
114
  s = bfd_make_section_with_flags (abfd,
115
                                   (bed->rela_plts_and_copies_p
116
                                    ? ".rela.got" : ".rel.got"),
117
                                   (bed->dynamic_sec_flags
118
                                    | SEC_READONLY));
119
  if (s == NULL
120
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121
    return FALSE;
122
  htab->srelgot = s;
123
 
124
  s = bfd_make_section_with_flags (abfd, ".got", flags);
125
  if (s == NULL
126
      || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127
    return FALSE;
128
  htab->sgot = s;
129
 
130
  if (bed->want_got_plt)
131
    {
132
      s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133
      if (s == NULL
134
          || !bfd_set_section_alignment (abfd, s,
135
                                         bed->s->log_file_align))
136
        return FALSE;
137
      htab->sgotplt = s;
138
    }
139
 
140
  /* The first bit of the global offset table is the header.  */
141
  s->size += bed->got_header_size;
142
 
143
  if (bed->want_got_sym)
144
    {
145
      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146
         (or .got.plt) section.  We don't do this in the linker script
147
         because we don't want to define the symbol if we are not creating
148
         a global offset table.  */
149
      h = _bfd_elf_define_linkage_sym (abfd, info, s,
150
                                       "_GLOBAL_OFFSET_TABLE_");
151
      elf_hash_table (info)->hgot = h;
152
      if (h == NULL)
153
        return FALSE;
154
    }
155
 
156
  return TRUE;
157
}
158
 
159
/* Create a strtab to hold the dynamic symbol names.  */
160
static bfd_boolean
161
_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162
{
163
  struct elf_link_hash_table *hash_table;
164
 
165
  hash_table = elf_hash_table (info);
166
  if (hash_table->dynobj == NULL)
167
    hash_table->dynobj = abfd;
168
 
169
  if (hash_table->dynstr == NULL)
170
    {
171
      hash_table->dynstr = _bfd_elf_strtab_init ();
172
      if (hash_table->dynstr == NULL)
173
        return FALSE;
174
    }
175
  return TRUE;
176
}
177
 
178
/* Create some sections which will be filled in with dynamic linking
179
   information.  ABFD is an input file which requires dynamic sections
180
   to be created.  The dynamic sections take up virtual memory space
181
   when the final executable is run, so we need to create them before
182
   addresses are assigned to the output sections.  We work out the
183
   actual contents and size of these sections later.  */
184
 
185
bfd_boolean
186
_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187
{
188
  flagword flags;
189
  asection *s;
190
  const struct elf_backend_data *bed;
191
 
192
  if (! is_elf_hash_table (info->hash))
193
    return FALSE;
194
 
195
  if (elf_hash_table (info)->dynamic_sections_created)
196
    return TRUE;
197
 
198
  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199
    return FALSE;
200
 
201
  abfd = elf_hash_table (info)->dynobj;
202
  bed = get_elf_backend_data (abfd);
203
 
204
  flags = bed->dynamic_sec_flags;
205
 
206
  /* A dynamically linked executable has a .interp section, but a
207
     shared library does not.  */
208
  if (info->executable)
209
    {
210
      s = bfd_make_section_with_flags (abfd, ".interp",
211
                                       flags | SEC_READONLY);
212
      if (s == NULL)
213
        return FALSE;
214
    }
215
 
216
  /* Create sections to hold version informations.  These are removed
217
     if they are not needed.  */
218
  s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219
                                   flags | SEC_READONLY);
220
  if (s == NULL
221
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222
    return FALSE;
223
 
224
  s = bfd_make_section_with_flags (abfd, ".gnu.version",
225
                                   flags | SEC_READONLY);
226
  if (s == NULL
227
      || ! bfd_set_section_alignment (abfd, s, 1))
228
    return FALSE;
229
 
230
  s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231
                                   flags | SEC_READONLY);
232
  if (s == NULL
233
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234
    return FALSE;
235
 
236
  s = bfd_make_section_with_flags (abfd, ".dynsym",
237
                                   flags | SEC_READONLY);
238
  if (s == NULL
239
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240
    return FALSE;
241
 
242
  s = bfd_make_section_with_flags (abfd, ".dynstr",
243
                                   flags | SEC_READONLY);
244
  if (s == NULL)
245
    return FALSE;
246
 
247
  s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248
  if (s == NULL
249
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250
    return FALSE;
251
 
252
  /* The special symbol _DYNAMIC is always set to the start of the
253
     .dynamic section.  We could set _DYNAMIC in a linker script, but we
254
     only want to define it if we are, in fact, creating a .dynamic
255
     section.  We don't want to define it if there is no .dynamic
256
     section, since on some ELF platforms the start up code examines it
257
     to decide how to initialize the process.  */
258
  if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259
    return FALSE;
260
 
261
  if (info->emit_hash)
262
    {
263
      s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264
      if (s == NULL
265
          || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266
        return FALSE;
267
      elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268
    }
269
 
270
  if (info->emit_gnu_hash)
271
    {
272
      s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273
                                       flags | SEC_READONLY);
274
      if (s == NULL
275
          || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276
        return FALSE;
277
      /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278
         4 32-bit words followed by variable count of 64-bit words, then
279
         variable count of 32-bit words.  */
280
      if (bed->s->arch_size == 64)
281
        elf_section_data (s)->this_hdr.sh_entsize = 0;
282
      else
283
        elf_section_data (s)->this_hdr.sh_entsize = 4;
284
    }
285
 
286
  /* Let the backend create the rest of the sections.  This lets the
287
     backend set the right flags.  The backend will normally create
288
     the .got and .plt sections.  */
289
  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290
    return FALSE;
291
 
292
  elf_hash_table (info)->dynamic_sections_created = TRUE;
293
 
294
  return TRUE;
295
}
296
 
297
/* Create dynamic sections when linking against a dynamic object.  */
298
 
299
bfd_boolean
300
_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301
{
302
  flagword flags, pltflags;
303
  struct elf_link_hash_entry *h;
304
  asection *s;
305
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306
  struct elf_link_hash_table *htab = elf_hash_table (info);
307
 
308
  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309
     .rel[a].bss sections.  */
310
  flags = bed->dynamic_sec_flags;
311
 
312
  pltflags = flags;
313
  if (bed->plt_not_loaded)
314
    /* We do not clear SEC_ALLOC here because we still want the OS to
315
       allocate space for the section; it's just that there's nothing
316
       to read in from the object file.  */
317
    pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318
  else
319
    pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320
  if (bed->plt_readonly)
321
    pltflags |= SEC_READONLY;
322
 
323
  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324
  if (s == NULL
325
      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326
    return FALSE;
327
  htab->splt = s;
328
 
329
  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330
     .plt section.  */
331
  if (bed->want_plt_sym)
332
    {
333
      h = _bfd_elf_define_linkage_sym (abfd, info, s,
334
                                       "_PROCEDURE_LINKAGE_TABLE_");
335
      elf_hash_table (info)->hplt = h;
336
      if (h == NULL)
337
        return FALSE;
338
    }
339
 
340
  s = bfd_make_section_with_flags (abfd,
341
                                   (bed->rela_plts_and_copies_p
342
                                    ? ".rela.plt" : ".rel.plt"),
343
                                   flags | SEC_READONLY);
344
  if (s == NULL
345
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346
    return FALSE;
347
  htab->srelplt = s;
348
 
349
  if (! _bfd_elf_create_got_section (abfd, info))
350
    return FALSE;
351
 
352
  if (bed->want_dynbss)
353
    {
354
      /* The .dynbss section is a place to put symbols which are defined
355
         by dynamic objects, are referenced by regular objects, and are
356
         not functions.  We must allocate space for them in the process
357
         image and use a R_*_COPY reloc to tell the dynamic linker to
358
         initialize them at run time.  The linker script puts the .dynbss
359
         section into the .bss section of the final image.  */
360
      s = bfd_make_section_with_flags (abfd, ".dynbss",
361
                                       (SEC_ALLOC
362
                                        | SEC_LINKER_CREATED));
363
      if (s == NULL)
364
        return FALSE;
365
 
366
      /* The .rel[a].bss section holds copy relocs.  This section is not
367
         normally needed.  We need to create it here, though, so that the
368
         linker will map it to an output section.  We can't just create it
369
         only if we need it, because we will not know whether we need it
370
         until we have seen all the input files, and the first time the
371
         main linker code calls BFD after examining all the input files
372
         (size_dynamic_sections) the input sections have already been
373
         mapped to the output sections.  If the section turns out not to
374
         be needed, we can discard it later.  We will never need this
375
         section when generating a shared object, since they do not use
376
         copy relocs.  */
377
      if (! info->shared)
378
        {
379
          s = bfd_make_section_with_flags (abfd,
380
                                           (bed->rela_plts_and_copies_p
381
                                            ? ".rela.bss" : ".rel.bss"),
382
                                           flags | SEC_READONLY);
383
          if (s == NULL
384
              || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385
            return FALSE;
386
        }
387
    }
388
 
389
  return TRUE;
390
}
391
 
392
/* Record a new dynamic symbol.  We record the dynamic symbols as we
393
   read the input files, since we need to have a list of all of them
394
   before we can determine the final sizes of the output sections.
395
   Note that we may actually call this function even though we are not
396
   going to output any dynamic symbols; in some cases we know that a
397
   symbol should be in the dynamic symbol table, but only if there is
398
   one.  */
399
 
400
bfd_boolean
401
bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402
                                    struct elf_link_hash_entry *h)
403
{
404
  if (h->dynindx == -1)
405
    {
406
      struct elf_strtab_hash *dynstr;
407
      char *p;
408
      const char *name;
409
      bfd_size_type indx;
410
 
411
      /* XXX: The ABI draft says the linker must turn hidden and
412
         internal symbols into STB_LOCAL symbols when producing the
413
         DSO. However, if ld.so honors st_other in the dynamic table,
414
         this would not be necessary.  */
415
      switch (ELF_ST_VISIBILITY (h->other))
416
        {
417
        case STV_INTERNAL:
418
        case STV_HIDDEN:
419
          if (h->root.type != bfd_link_hash_undefined
420
              && h->root.type != bfd_link_hash_undefweak)
421
            {
422
              h->forced_local = 1;
423
              if (!elf_hash_table (info)->is_relocatable_executable)
424
                return TRUE;
425
            }
426
 
427
        default:
428
          break;
429
        }
430
 
431
      h->dynindx = elf_hash_table (info)->dynsymcount;
432
      ++elf_hash_table (info)->dynsymcount;
433
 
434
      dynstr = elf_hash_table (info)->dynstr;
435
      if (dynstr == NULL)
436
        {
437
          /* Create a strtab to hold the dynamic symbol names.  */
438
          elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439
          if (dynstr == NULL)
440
            return FALSE;
441
        }
442
 
443
      /* We don't put any version information in the dynamic string
444
         table.  */
445
      name = h->root.root.string;
446
      p = strchr (name, ELF_VER_CHR);
447
      if (p != NULL)
448
        /* We know that the p points into writable memory.  In fact,
449
           there are only a few symbols that have read-only names, being
450
           those like _GLOBAL_OFFSET_TABLE_ that are created specially
451
           by the backends.  Most symbols will have names pointing into
452
           an ELF string table read from a file, or to objalloc memory.  */
453
        *p = 0;
454
 
455
      indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
 
457
      if (p != NULL)
458
        *p = ELF_VER_CHR;
459
 
460
      if (indx == (bfd_size_type) -1)
461
        return FALSE;
462
      h->dynstr_index = indx;
463
    }
464
 
465
  return TRUE;
466
}
467
 
468
/* Mark a symbol dynamic.  */
469
 
470
static void
471
bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472
                                  struct elf_link_hash_entry *h,
473
                                  Elf_Internal_Sym *sym)
474
{
475
  struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
 
477
  /* It may be called more than once on the same H.  */
478
  if(h->dynamic || info->relocatable)
479
    return;
480
 
481
  if ((info->dynamic_data
482
       && (h->type == STT_OBJECT
483
           || (sym != NULL
484
               && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485
      || (d != NULL
486
          && h->root.type == bfd_link_hash_new
487
          && (*d->match) (&d->head, NULL, h->root.root.string)))
488
    h->dynamic = 1;
489
}
490
 
491
/* Record an assignment to a symbol made by a linker script.  We need
492
   this in case some dynamic object refers to this symbol.  */
493
 
494
bfd_boolean
495
bfd_elf_record_link_assignment (bfd *output_bfd,
496
                                struct bfd_link_info *info,
497
                                const char *name,
498
                                bfd_boolean provide,
499
                                bfd_boolean hidden)
500
{
501
  struct elf_link_hash_entry *h, *hv;
502
  struct elf_link_hash_table *htab;
503
  const struct elf_backend_data *bed;
504
 
505
  if (!is_elf_hash_table (info->hash))
506
    return TRUE;
507
 
508
  htab = elf_hash_table (info);
509
  h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510
  if (h == NULL)
511
    return provide;
512
 
513
  switch (h->root.type)
514
    {
515
    case bfd_link_hash_defined:
516
    case bfd_link_hash_defweak:
517
    case bfd_link_hash_common:
518
      break;
519
    case bfd_link_hash_undefweak:
520
    case bfd_link_hash_undefined:
521
      /* Since we're defining the symbol, don't let it seem to have not
522
         been defined.  record_dynamic_symbol and size_dynamic_sections
523
         may depend on this.  */
524
      h->root.type = bfd_link_hash_new;
525
      if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526
        bfd_link_repair_undef_list (&htab->root);
527
      break;
528
    case bfd_link_hash_new:
529
      bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530
      h->non_elf = 0;
531
      break;
532
    case bfd_link_hash_indirect:
533
      /* We had a versioned symbol in a dynamic library.  We make the
534
         the versioned symbol point to this one.  */
535
      bed = get_elf_backend_data (output_bfd);
536
      hv = h;
537
      while (hv->root.type == bfd_link_hash_indirect
538
             || hv->root.type == bfd_link_hash_warning)
539
        hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540
      /* We don't need to update h->root.u since linker will set them
541
         later.  */
542
      h->root.type = bfd_link_hash_undefined;
543
      hv->root.type = bfd_link_hash_indirect;
544
      hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545
      (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546
      break;
547
    case bfd_link_hash_warning:
548
      abort ();
549
      break;
550
    }
551
 
552
  /* If this symbol is being provided by the linker script, and it is
553
     currently defined by a dynamic object, but not by a regular
554
     object, then mark it as undefined so that the generic linker will
555
     force the correct value.  */
556
  if (provide
557
      && h->def_dynamic
558
      && !h->def_regular)
559
    h->root.type = bfd_link_hash_undefined;
560
 
561
  /* If this symbol is not being provided by the linker script, and it is
562
     currently defined by a dynamic object, but not by a regular object,
563
     then clear out any version information because the symbol will not be
564
     associated with the dynamic object any more.  */
565
  if (!provide
566
      && h->def_dynamic
567
      && !h->def_regular)
568
    h->verinfo.verdef = NULL;
569
 
570
  h->def_regular = 1;
571
 
572
  if (provide && hidden)
573
    {
574
      bed = get_elf_backend_data (output_bfd);
575
      h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576
      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577
    }
578
 
579
  /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580
     and executables.  */
581
  if (!info->relocatable
582
      && h->dynindx != -1
583
      && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584
          || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585
    h->forced_local = 1;
586
 
587
  if ((h->def_dynamic
588
       || h->ref_dynamic
589
       || info->shared
590
       || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591
      && h->dynindx == -1)
592
    {
593
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
594
        return FALSE;
595
 
596
      /* If this is a weak defined symbol, and we know a corresponding
597
         real symbol from the same dynamic object, make sure the real
598
         symbol is also made into a dynamic symbol.  */
599
      if (h->u.weakdef != NULL
600
          && h->u.weakdef->dynindx == -1)
601
        {
602
          if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603
            return FALSE;
604
        }
605
    }
606
 
607
  return TRUE;
608
}
609
 
610
/* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
611
   success, and 2 on a failure caused by attempting to record a symbol
612
   in a discarded section, eg. a discarded link-once section symbol.  */
613
 
614
int
615
bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616
                                          bfd *input_bfd,
617
                                          long input_indx)
618
{
619
  bfd_size_type amt;
620
  struct elf_link_local_dynamic_entry *entry;
621
  struct elf_link_hash_table *eht;
622
  struct elf_strtab_hash *dynstr;
623
  unsigned long dynstr_index;
624
  char *name;
625
  Elf_External_Sym_Shndx eshndx;
626
  char esym[sizeof (Elf64_External_Sym)];
627
 
628
  if (! is_elf_hash_table (info->hash))
629
    return 0;
630
 
631
  /* See if the entry exists already.  */
632
  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633
    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634
      return 1;
635
 
636
  amt = sizeof (*entry);
637
  entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638
  if (entry == NULL)
639
    return 0;
640
 
641
  /* Go find the symbol, so that we can find it's name.  */
642
  if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643
                             1, input_indx, &entry->isym, esym, &eshndx))
644
    {
645
      bfd_release (input_bfd, entry);
646
      return 0;
647
    }
648
 
649
  if (entry->isym.st_shndx != SHN_UNDEF
650
      && entry->isym.st_shndx < SHN_LORESERVE)
651
    {
652
      asection *s;
653
 
654
      s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655
      if (s == NULL || bfd_is_abs_section (s->output_section))
656
        {
657
          /* We can still bfd_release here as nothing has done another
658
             bfd_alloc.  We can't do this later in this function.  */
659
          bfd_release (input_bfd, entry);
660
          return 2;
661
        }
662
    }
663
 
664
  name = (bfd_elf_string_from_elf_section
665
          (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666
           entry->isym.st_name));
667
 
668
  dynstr = elf_hash_table (info)->dynstr;
669
  if (dynstr == NULL)
670
    {
671
      /* Create a strtab to hold the dynamic symbol names.  */
672
      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673
      if (dynstr == NULL)
674
        return 0;
675
    }
676
 
677
  dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678
  if (dynstr_index == (unsigned long) -1)
679
    return 0;
680
  entry->isym.st_name = dynstr_index;
681
 
682
  eht = elf_hash_table (info);
683
 
684
  entry->next = eht->dynlocal;
685
  eht->dynlocal = entry;
686
  entry->input_bfd = input_bfd;
687
  entry->input_indx = input_indx;
688
  eht->dynsymcount++;
689
 
690
  /* Whatever binding the symbol had before, it's now local.  */
691
  entry->isym.st_info
692
    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
 
694
  /* The dynindx will be set at the end of size_dynamic_sections.  */
695
 
696
  return 1;
697
}
698
 
699
/* Return the dynindex of a local dynamic symbol.  */
700
 
701
long
702
_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703
                                    bfd *input_bfd,
704
                                    long input_indx)
705
{
706
  struct elf_link_local_dynamic_entry *e;
707
 
708
  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709
    if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710
      return e->dynindx;
711
  return -1;
712
}
713
 
714
/* This function is used to renumber the dynamic symbols, if some of
715
   them are removed because they are marked as local.  This is called
716
   via elf_link_hash_traverse.  */
717
 
718
static bfd_boolean
719
elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720
                                      void *data)
721
{
722
  size_t *count = (size_t *) data;
723
 
724
  if (h->root.type == bfd_link_hash_warning)
725
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
 
727
  if (h->forced_local)
728
    return TRUE;
729
 
730
  if (h->dynindx != -1)
731
    h->dynindx = ++(*count);
732
 
733
  return TRUE;
734
}
735
 
736
 
737
/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738
   STB_LOCAL binding.  */
739
 
740
static bfd_boolean
741
elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742
                                            void *data)
743
{
744
  size_t *count = (size_t *) data;
745
 
746
  if (h->root.type == bfd_link_hash_warning)
747
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
 
749
  if (!h->forced_local)
750
    return TRUE;
751
 
752
  if (h->dynindx != -1)
753
    h->dynindx = ++(*count);
754
 
755
  return TRUE;
756
}
757
 
758
/* Return true if the dynamic symbol for a given section should be
759
   omitted when creating a shared library.  */
760
bfd_boolean
761
_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762
                                   struct bfd_link_info *info,
763
                                   asection *p)
764
{
765
  struct elf_link_hash_table *htab;
766
 
767
  switch (elf_section_data (p)->this_hdr.sh_type)
768
    {
769
    case SHT_PROGBITS:
770
    case SHT_NOBITS:
771
      /* If sh_type is yet undecided, assume it could be
772
         SHT_PROGBITS/SHT_NOBITS.  */
773
    case SHT_NULL:
774
      htab = elf_hash_table (info);
775
      if (p == htab->tls_sec)
776
        return FALSE;
777
 
778
      if (htab->text_index_section != NULL)
779
        return p != htab->text_index_section && p != htab->data_index_section;
780
 
781
      if (strcmp (p->name, ".got") == 0
782
          || strcmp (p->name, ".got.plt") == 0
783
          || strcmp (p->name, ".plt") == 0)
784
        {
785
          asection *ip;
786
 
787
          if (htab->dynobj != NULL
788
              && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789
              && (ip->flags & SEC_LINKER_CREATED)
790
              && ip->output_section == p)
791
            return TRUE;
792
        }
793
      return FALSE;
794
 
795
      /* There shouldn't be section relative relocations
796
         against any other section.  */
797
    default:
798
      return TRUE;
799
    }
800
}
801
 
802
/* Assign dynsym indices.  In a shared library we generate a section
803
   symbol for each output section, which come first.  Next come symbols
804
   which have been forced to local binding.  Then all of the back-end
805
   allocated local dynamic syms, followed by the rest of the global
806
   symbols.  */
807
 
808
static unsigned long
809
_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810
                                struct bfd_link_info *info,
811
                                unsigned long *section_sym_count)
812
{
813
  unsigned long dynsymcount = 0;
814
 
815
  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816
    {
817
      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818
      asection *p;
819
      for (p = output_bfd->sections; p ; p = p->next)
820
        if ((p->flags & SEC_EXCLUDE) == 0
821
            && (p->flags & SEC_ALLOC) != 0
822
            && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823
          elf_section_data (p)->dynindx = ++dynsymcount;
824
        else
825
          elf_section_data (p)->dynindx = 0;
826
    }
827
  *section_sym_count = dynsymcount;
828
 
829
  elf_link_hash_traverse (elf_hash_table (info),
830
                          elf_link_renumber_local_hash_table_dynsyms,
831
                          &dynsymcount);
832
 
833
  if (elf_hash_table (info)->dynlocal)
834
    {
835
      struct elf_link_local_dynamic_entry *p;
836
      for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837
        p->dynindx = ++dynsymcount;
838
    }
839
 
840
  elf_link_hash_traverse (elf_hash_table (info),
841
                          elf_link_renumber_hash_table_dynsyms,
842
                          &dynsymcount);
843
 
844
  /* There is an unused NULL entry at the head of the table which
845
     we must account for in our count.  Unless there weren't any
846
     symbols, which means we'll have no table at all.  */
847
  if (dynsymcount != 0)
848
    ++dynsymcount;
849
 
850
  elf_hash_table (info)->dynsymcount = dynsymcount;
851
  return dynsymcount;
852
}
853
 
854
/* Merge st_other field.  */
855
 
856
static void
857
elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858
                    Elf_Internal_Sym *isym, bfd_boolean definition,
859
                    bfd_boolean dynamic)
860
{
861
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
 
863
  /* If st_other has a processor-specific meaning, specific
864
     code might be needed here. We never merge the visibility
865
     attribute with the one from a dynamic object.  */
866
  if (bed->elf_backend_merge_symbol_attribute)
867
    (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868
                                                dynamic);
869
 
870
  /* If this symbol has default visibility and the user has requested
871
     we not re-export it, then mark it as hidden.  */
872
  if (definition
873
      && !dynamic
874
      && (abfd->no_export
875
          || (abfd->my_archive && abfd->my_archive->no_export))
876
      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877
    isym->st_other = (STV_HIDDEN
878
                      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
 
880
  if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881
    {
882
      unsigned char hvis, symvis, other, nvis;
883
 
884
      /* Only merge the visibility. Leave the remainder of the
885
         st_other field to elf_backend_merge_symbol_attribute.  */
886
      other = h->other & ~ELF_ST_VISIBILITY (-1);
887
 
888
      /* Combine visibilities, using the most constraining one.  */
889
      hvis = ELF_ST_VISIBILITY (h->other);
890
      symvis = ELF_ST_VISIBILITY (isym->st_other);
891
      if (! hvis)
892
        nvis = symvis;
893
      else if (! symvis)
894
        nvis = hvis;
895
      else
896
        nvis = hvis < symvis ? hvis : symvis;
897
 
898
      h->other = other | nvis;
899
    }
900
}
901
 
902
/* This function is called when we want to define a new symbol.  It
903
   handles the various cases which arise when we find a definition in
904
   a dynamic object, or when there is already a definition in a
905
   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
906
   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
907
   OVERRIDE if the old symbol is overriding a new definition.  We set
908
   TYPE_CHANGE_OK if it is OK for the type to change.  We set
909
   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
910
   change, we mean that we shouldn't warn if the type or size does
911
   change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
912
   object is overridden by a regular object.  */
913
 
914
bfd_boolean
915
_bfd_elf_merge_symbol (bfd *abfd,
916
                       struct bfd_link_info *info,
917
                       const char *name,
918
                       Elf_Internal_Sym *sym,
919
                       asection **psec,
920
                       bfd_vma *pvalue,
921
                       unsigned int *pold_alignment,
922
                       struct elf_link_hash_entry **sym_hash,
923
                       bfd_boolean *skip,
924
                       bfd_boolean *override,
925
                       bfd_boolean *type_change_ok,
926
                       bfd_boolean *size_change_ok)
927
{
928
  asection *sec, *oldsec;
929
  struct elf_link_hash_entry *h;
930
  struct elf_link_hash_entry *flip;
931
  int bind;
932
  bfd *oldbfd;
933
  bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934
  bfd_boolean newweak, oldweak, newfunc, oldfunc;
935
  const struct elf_backend_data *bed;
936
 
937
  *skip = FALSE;
938
  *override = FALSE;
939
 
940
  sec = *psec;
941
  bind = ELF_ST_BIND (sym->st_info);
942
 
943
  /* Silently discard TLS symbols from --just-syms.  There's no way to
944
     combine a static TLS block with a new TLS block for this executable.  */
945
  if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946
      && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947
    {
948
      *skip = TRUE;
949
      return TRUE;
950
    }
951
 
952
  if (! bfd_is_und_section (sec))
953
    h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954
  else
955
    h = ((struct elf_link_hash_entry *)
956
         bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957
  if (h == NULL)
958
    return FALSE;
959
  *sym_hash = h;
960
 
961
  bed = get_elf_backend_data (abfd);
962
 
963
  /* This code is for coping with dynamic objects, and is only useful
964
     if we are doing an ELF link.  */
965
  if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966
    return TRUE;
967
 
968
  /* For merging, we only care about real symbols.  */
969
 
970
  while (h->root.type == bfd_link_hash_indirect
971
         || h->root.type == bfd_link_hash_warning)
972
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
 
974
  /* We have to check it for every instance since the first few may be
975
     refereences and not all compilers emit symbol type for undefined
976
     symbols.  */
977
  bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
 
979
  /* If we just created the symbol, mark it as being an ELF symbol.
980
     Other than that, there is nothing to do--there is no merge issue
981
     with a newly defined symbol--so we just return.  */
982
 
983
  if (h->root.type == bfd_link_hash_new)
984
    {
985
      h->non_elf = 0;
986
      return TRUE;
987
    }
988
 
989
  /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990
     existing symbol.  */
991
 
992
  switch (h->root.type)
993
    {
994
    default:
995
      oldbfd = NULL;
996
      oldsec = NULL;
997
      break;
998
 
999
    case bfd_link_hash_undefined:
1000
    case bfd_link_hash_undefweak:
1001
      oldbfd = h->root.u.undef.abfd;
1002
      oldsec = NULL;
1003
      break;
1004
 
1005
    case bfd_link_hash_defined:
1006
    case bfd_link_hash_defweak:
1007
      oldbfd = h->root.u.def.section->owner;
1008
      oldsec = h->root.u.def.section;
1009
      break;
1010
 
1011
    case bfd_link_hash_common:
1012
      oldbfd = h->root.u.c.p->section->owner;
1013
      oldsec = h->root.u.c.p->section;
1014
      break;
1015
    }
1016
 
1017
  /* Differentiate strong and weak symbols.  */
1018
  newweak = bind == STB_WEAK;
1019
  oldweak = (h->root.type == bfd_link_hash_defweak
1020
             || h->root.type == bfd_link_hash_undefweak);
1021
 
1022
  /* In cases involving weak versioned symbols, we may wind up trying
1023
     to merge a symbol with itself.  Catch that here, to avoid the
1024
     confusion that results if we try to override a symbol with
1025
     itself.  The additional tests catch cases like
1026
     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027
     dynamic object, which we do want to handle here.  */
1028
  if (abfd == oldbfd
1029
      && (newweak || oldweak)
1030
      && ((abfd->flags & DYNAMIC) == 0
1031
          || !h->def_regular))
1032
    return TRUE;
1033
 
1034
  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035
     respectively, is from a dynamic object.  */
1036
 
1037
  newdyn = (abfd->flags & DYNAMIC) != 0;
1038
 
1039
  olddyn = FALSE;
1040
  if (oldbfd != NULL)
1041
    olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042
  else if (oldsec != NULL)
1043
    {
1044
      /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045
         indices used by MIPS ELF.  */
1046
      olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047
    }
1048
 
1049
  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050
     respectively, appear to be a definition rather than reference.  */
1051
 
1052
  newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
 
1054
  olddef = (h->root.type != bfd_link_hash_undefined
1055
            && h->root.type != bfd_link_hash_undefweak
1056
            && h->root.type != bfd_link_hash_common);
1057
 
1058
  /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059
     respectively, appear to be a function.  */
1060
 
1061
  newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062
             && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
 
1064
  oldfunc = (h->type != STT_NOTYPE
1065
             && bed->is_function_type (h->type));
1066
 
1067
  /* When we try to create a default indirect symbol from the dynamic
1068
     definition with the default version, we skip it if its type and
1069
     the type of existing regular definition mismatch.  We only do it
1070
     if the existing regular definition won't be dynamic.  */
1071
  if (pold_alignment == NULL
1072
      && !info->shared
1073
      && !info->export_dynamic
1074
      && !h->ref_dynamic
1075
      && newdyn
1076
      && newdef
1077
      && !olddyn
1078
      && (olddef || h->root.type == bfd_link_hash_common)
1079
      && ELF_ST_TYPE (sym->st_info) != h->type
1080
      && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081
      && h->type != STT_NOTYPE
1082
      && !(newfunc && oldfunc))
1083
    {
1084
      *skip = TRUE;
1085
      return TRUE;
1086
    }
1087
 
1088
  /* Check TLS symbol.  We don't check undefined symbol introduced by
1089
     "ld -u".  */
1090
  if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091
      && ELF_ST_TYPE (sym->st_info) != h->type
1092
      && oldbfd != NULL)
1093
    {
1094
      bfd *ntbfd, *tbfd;
1095
      bfd_boolean ntdef, tdef;
1096
      asection *ntsec, *tsec;
1097
 
1098
      if (h->type == STT_TLS)
1099
        {
1100
          ntbfd = abfd;
1101
          ntsec = sec;
1102
          ntdef = newdef;
1103
          tbfd = oldbfd;
1104
          tsec = oldsec;
1105
          tdef = olddef;
1106
        }
1107
      else
1108
        {
1109
          ntbfd = oldbfd;
1110
          ntsec = oldsec;
1111
          ntdef = olddef;
1112
          tbfd = abfd;
1113
          tsec = sec;
1114
          tdef = newdef;
1115
        }
1116
 
1117
      if (tdef && ntdef)
1118
        (*_bfd_error_handler)
1119
          (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120
           tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121
      else if (!tdef && !ntdef)
1122
        (*_bfd_error_handler)
1123
          (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124
           tbfd, ntbfd, h->root.root.string);
1125
      else if (tdef)
1126
        (*_bfd_error_handler)
1127
          (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128
           tbfd, tsec, ntbfd, h->root.root.string);
1129
      else
1130
        (*_bfd_error_handler)
1131
          (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132
           tbfd, ntbfd, ntsec, h->root.root.string);
1133
 
1134
      bfd_set_error (bfd_error_bad_value);
1135
      return FALSE;
1136
    }
1137
 
1138
  /* We need to remember if a symbol has a definition in a dynamic
1139
     object or is weak in all dynamic objects. Internal and hidden
1140
     visibility will make it unavailable to dynamic objects.  */
1141
  if (newdyn && !h->dynamic_def)
1142
    {
1143
      if (!bfd_is_und_section (sec))
1144
        h->dynamic_def = 1;
1145
      else
1146
        {
1147
          /* Check if this symbol is weak in all dynamic objects. If it
1148
             is the first time we see it in a dynamic object, we mark
1149
             if it is weak. Otherwise, we clear it.  */
1150
          if (!h->ref_dynamic)
1151
            {
1152
              if (bind == STB_WEAK)
1153
                h->dynamic_weak = 1;
1154
            }
1155
          else if (bind != STB_WEAK)
1156
            h->dynamic_weak = 0;
1157
        }
1158
    }
1159
 
1160
  /* If the old symbol has non-default visibility, we ignore the new
1161
     definition from a dynamic object.  */
1162
  if (newdyn
1163
      && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164
      && !bfd_is_und_section (sec))
1165
    {
1166
      *skip = TRUE;
1167
      /* Make sure this symbol is dynamic.  */
1168
      h->ref_dynamic = 1;
1169
      /* A protected symbol has external availability. Make sure it is
1170
         recorded as dynamic.
1171
 
1172
         FIXME: Should we check type and size for protected symbol?  */
1173
      if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174
        return bfd_elf_link_record_dynamic_symbol (info, h);
1175
      else
1176
        return TRUE;
1177
    }
1178
  else if (!newdyn
1179
           && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180
           && h->def_dynamic)
1181
    {
1182
      /* If the new symbol with non-default visibility comes from a
1183
         relocatable file and the old definition comes from a dynamic
1184
         object, we remove the old definition.  */
1185
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186
        {
1187
          /* Handle the case where the old dynamic definition is
1188
             default versioned.  We need to copy the symbol info from
1189
             the symbol with default version to the normal one if it
1190
             was referenced before.  */
1191
          if (h->ref_regular)
1192
            {
1193
              struct elf_link_hash_entry *vh = *sym_hash;
1194
 
1195
              vh->root.type = h->root.type;
1196
              h->root.type = bfd_link_hash_indirect;
1197
              (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198
              /* Protected symbols will override the dynamic definition
1199
                 with default version.  */
1200
              if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201
                {
1202
                  h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203
                  vh->dynamic_def = 1;
1204
                  vh->ref_dynamic = 1;
1205
                }
1206
              else
1207
                {
1208
                  h->root.type = vh->root.type;
1209
                  vh->ref_dynamic = 0;
1210
                  /* We have to hide it here since it was made dynamic
1211
                     global with extra bits when the symbol info was
1212
                     copied from the old dynamic definition.  */
1213
                  (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214
                }
1215
              h = vh;
1216
            }
1217
          else
1218
            h = *sym_hash;
1219
        }
1220
 
1221
      if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222
          && bfd_is_und_section (sec))
1223
        {
1224
          /* If the new symbol is undefined and the old symbol was
1225
             also undefined before, we need to make sure
1226
             _bfd_generic_link_add_one_symbol doesn't mess
1227
             up the linker hash table undefs list.  Since the old
1228
             definition came from a dynamic object, it is still on the
1229
             undefs list.  */
1230
          h->root.type = bfd_link_hash_undefined;
1231
          h->root.u.undef.abfd = abfd;
1232
        }
1233
      else
1234
        {
1235
          h->root.type = bfd_link_hash_new;
1236
          h->root.u.undef.abfd = NULL;
1237
        }
1238
 
1239
      if (h->def_dynamic)
1240
        {
1241
          h->def_dynamic = 0;
1242
          h->ref_dynamic = 1;
1243
          h->dynamic_def = 1;
1244
        }
1245
      /* FIXME: Should we check type and size for protected symbol?  */
1246
      h->size = 0;
1247
      h->type = 0;
1248
      return TRUE;
1249
    }
1250
 
1251
  if (bind == STB_GNU_UNIQUE)
1252
    h->unique_global = 1;
1253
 
1254
  /* If a new weak symbol definition comes from a regular file and the
1255
     old symbol comes from a dynamic library, we treat the new one as
1256
     strong.  Similarly, an old weak symbol definition from a regular
1257
     file is treated as strong when the new symbol comes from a dynamic
1258
     library.  Further, an old weak symbol from a dynamic library is
1259
     treated as strong if the new symbol is from a dynamic library.
1260
     This reflects the way glibc's ld.so works.
1261
 
1262
     Do this before setting *type_change_ok or *size_change_ok so that
1263
     we warn properly when dynamic library symbols are overridden.  */
1264
 
1265
  if (newdef && !newdyn && olddyn)
1266
    newweak = FALSE;
1267
  if (olddef && newdyn)
1268
    oldweak = FALSE;
1269
 
1270
  /* Allow changes between different types of function symbol.  */
1271
  if (newfunc && oldfunc)
1272
    *type_change_ok = TRUE;
1273
 
1274
  /* It's OK to change the type if either the existing symbol or the
1275
     new symbol is weak.  A type change is also OK if the old symbol
1276
     is undefined and the new symbol is defined.  */
1277
 
1278
  if (oldweak
1279
      || newweak
1280
      || (newdef
1281
          && h->root.type == bfd_link_hash_undefined))
1282
    *type_change_ok = TRUE;
1283
 
1284
  /* It's OK to change the size if either the existing symbol or the
1285
     new symbol is weak, or if the old symbol is undefined.  */
1286
 
1287
  if (*type_change_ok
1288
      || h->root.type == bfd_link_hash_undefined)
1289
    *size_change_ok = TRUE;
1290
 
1291
  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292
     symbol, respectively, appears to be a common symbol in a dynamic
1293
     object.  If a symbol appears in an uninitialized section, and is
1294
     not weak, and is not a function, then it may be a common symbol
1295
     which was resolved when the dynamic object was created.  We want
1296
     to treat such symbols specially, because they raise special
1297
     considerations when setting the symbol size: if the symbol
1298
     appears as a common symbol in a regular object, and the size in
1299
     the regular object is larger, we must make sure that we use the
1300
     larger size.  This problematic case can always be avoided in C,
1301
     but it must be handled correctly when using Fortran shared
1302
     libraries.
1303
 
1304
     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305
     likewise for OLDDYNCOMMON and OLDDEF.
1306
 
1307
     Note that this test is just a heuristic, and that it is quite
1308
     possible to have an uninitialized symbol in a shared object which
1309
     is really a definition, rather than a common symbol.  This could
1310
     lead to some minor confusion when the symbol really is a common
1311
     symbol in some regular object.  However, I think it will be
1312
     harmless.  */
1313
 
1314
  if (newdyn
1315
      && newdef
1316
      && !newweak
1317
      && (sec->flags & SEC_ALLOC) != 0
1318
      && (sec->flags & SEC_LOAD) == 0
1319
      && sym->st_size > 0
1320
      && !newfunc)
1321
    newdyncommon = TRUE;
1322
  else
1323
    newdyncommon = FALSE;
1324
 
1325
  if (olddyn
1326
      && olddef
1327
      && h->root.type == bfd_link_hash_defined
1328
      && h->def_dynamic
1329
      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330
      && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331
      && h->size > 0
1332
      && !oldfunc)
1333
    olddyncommon = TRUE;
1334
  else
1335
    olddyncommon = FALSE;
1336
 
1337
  /* We now know everything about the old and new symbols.  We ask the
1338
     backend to check if we can merge them.  */
1339
  if (bed->merge_symbol
1340
      && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341
                             pold_alignment, skip, override,
1342
                             type_change_ok, size_change_ok,
1343
                             &newdyn, &newdef, &newdyncommon, &newweak,
1344
                             abfd, &sec,
1345
                             &olddyn, &olddef, &olddyncommon, &oldweak,
1346
                             oldbfd, &oldsec))
1347
    return FALSE;
1348
 
1349
  /* If both the old and the new symbols look like common symbols in a
1350
     dynamic object, set the size of the symbol to the larger of the
1351
     two.  */
1352
 
1353
  if (olddyncommon
1354
      && newdyncommon
1355
      && sym->st_size != h->size)
1356
    {
1357
      /* Since we think we have two common symbols, issue a multiple
1358
         common warning if desired.  Note that we only warn if the
1359
         size is different.  If the size is the same, we simply let
1360
         the old symbol override the new one as normally happens with
1361
         symbols defined in dynamic objects.  */
1362
 
1363
      if (! ((*info->callbacks->multiple_common)
1364
             (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1365
        return FALSE;
1366
 
1367
      if (sym->st_size > h->size)
1368
        h->size = sym->st_size;
1369
 
1370
      *size_change_ok = TRUE;
1371
    }
1372
 
1373
  /* If we are looking at a dynamic object, and we have found a
1374
     definition, we need to see if the symbol was already defined by
1375
     some other object.  If so, we want to use the existing
1376
     definition, and we do not want to report a multiple symbol
1377
     definition error; we do this by clobbering *PSEC to be
1378
     bfd_und_section_ptr.
1379
 
1380
     We treat a common symbol as a definition if the symbol in the
1381
     shared library is a function, since common symbols always
1382
     represent variables; this can cause confusion in principle, but
1383
     any such confusion would seem to indicate an erroneous program or
1384
     shared library.  We also permit a common symbol in a regular
1385
     object to override a weak symbol in a shared object.  */
1386
 
1387
  if (newdyn
1388
      && newdef
1389
      && (olddef
1390
          || (h->root.type == bfd_link_hash_common
1391
              && (newweak || newfunc))))
1392
    {
1393
      *override = TRUE;
1394
      newdef = FALSE;
1395
      newdyncommon = FALSE;
1396
 
1397
      *psec = sec = bfd_und_section_ptr;
1398
      *size_change_ok = TRUE;
1399
 
1400
      /* If we get here when the old symbol is a common symbol, then
1401
         we are explicitly letting it override a weak symbol or
1402
         function in a dynamic object, and we don't want to warn about
1403
         a type change.  If the old symbol is a defined symbol, a type
1404
         change warning may still be appropriate.  */
1405
 
1406
      if (h->root.type == bfd_link_hash_common)
1407
        *type_change_ok = TRUE;
1408
    }
1409
 
1410
  /* Handle the special case of an old common symbol merging with a
1411
     new symbol which looks like a common symbol in a shared object.
1412
     We change *PSEC and *PVALUE to make the new symbol look like a
1413
     common symbol, and let _bfd_generic_link_add_one_symbol do the
1414
     right thing.  */
1415
 
1416
  if (newdyncommon
1417
      && h->root.type == bfd_link_hash_common)
1418
    {
1419
      *override = TRUE;
1420
      newdef = FALSE;
1421
      newdyncommon = FALSE;
1422
      *pvalue = sym->st_size;
1423
      *psec = sec = bed->common_section (oldsec);
1424
      *size_change_ok = TRUE;
1425
    }
1426
 
1427
  /* Skip weak definitions of symbols that are already defined.  */
1428
  if (newdef && olddef && newweak)
1429
    {
1430
      /* Don't skip new non-IR weak syms.  */
1431
      if (!((oldbfd->flags & BFD_PLUGIN) != 0
1432
            && (abfd->flags & BFD_PLUGIN) == 0))
1433
        *skip = TRUE;
1434
 
1435
      /* Merge st_other.  If the symbol already has a dynamic index,
1436
         but visibility says it should not be visible, turn it into a
1437
         local symbol.  */
1438
      elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1439
      if (h->dynindx != -1)
1440
        switch (ELF_ST_VISIBILITY (h->other))
1441
          {
1442
          case STV_INTERNAL:
1443
          case STV_HIDDEN:
1444
            (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1445
            break;
1446
          }
1447
    }
1448
 
1449
  /* If the old symbol is from a dynamic object, and the new symbol is
1450
     a definition which is not from a dynamic object, then the new
1451
     symbol overrides the old symbol.  Symbols from regular files
1452
     always take precedence over symbols from dynamic objects, even if
1453
     they are defined after the dynamic object in the link.
1454
 
1455
     As above, we again permit a common symbol in a regular object to
1456
     override a definition in a shared object if the shared object
1457
     symbol is a function or is weak.  */
1458
 
1459
  flip = NULL;
1460
  if (!newdyn
1461
      && (newdef
1462
          || (bfd_is_com_section (sec)
1463
              && (oldweak || oldfunc)))
1464
      && olddyn
1465
      && olddef
1466
      && h->def_dynamic)
1467
    {
1468
      /* Change the hash table entry to undefined, and let
1469
         _bfd_generic_link_add_one_symbol do the right thing with the
1470
         new definition.  */
1471
 
1472
      h->root.type = bfd_link_hash_undefined;
1473
      h->root.u.undef.abfd = h->root.u.def.section->owner;
1474
      *size_change_ok = TRUE;
1475
 
1476
      olddef = FALSE;
1477
      olddyncommon = FALSE;
1478
 
1479
      /* We again permit a type change when a common symbol may be
1480
         overriding a function.  */
1481
 
1482
      if (bfd_is_com_section (sec))
1483
        {
1484
          if (oldfunc)
1485
            {
1486
              /* If a common symbol overrides a function, make sure
1487
                 that it isn't defined dynamically nor has type
1488
                 function.  */
1489
              h->def_dynamic = 0;
1490
              h->type = STT_NOTYPE;
1491
            }
1492
          *type_change_ok = TRUE;
1493
        }
1494
 
1495
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1496
        flip = *sym_hash;
1497
      else
1498
        /* This union may have been set to be non-NULL when this symbol
1499
           was seen in a dynamic object.  We must force the union to be
1500
           NULL, so that it is correct for a regular symbol.  */
1501
        h->verinfo.vertree = NULL;
1502
    }
1503
 
1504
  /* Handle the special case of a new common symbol merging with an
1505
     old symbol that looks like it might be a common symbol defined in
1506
     a shared object.  Note that we have already handled the case in
1507
     which a new common symbol should simply override the definition
1508
     in the shared library.  */
1509
 
1510
  if (! newdyn
1511
      && bfd_is_com_section (sec)
1512
      && olddyncommon)
1513
    {
1514
      /* It would be best if we could set the hash table entry to a
1515
         common symbol, but we don't know what to use for the section
1516
         or the alignment.  */
1517
      if (! ((*info->callbacks->multiple_common)
1518
             (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1519
        return FALSE;
1520
 
1521
      /* If the presumed common symbol in the dynamic object is
1522
         larger, pretend that the new symbol has its size.  */
1523
 
1524
      if (h->size > *pvalue)
1525
        *pvalue = h->size;
1526
 
1527
      /* We need to remember the alignment required by the symbol
1528
         in the dynamic object.  */
1529
      BFD_ASSERT (pold_alignment);
1530
      *pold_alignment = h->root.u.def.section->alignment_power;
1531
 
1532
      olddef = FALSE;
1533
      olddyncommon = FALSE;
1534
 
1535
      h->root.type = bfd_link_hash_undefined;
1536
      h->root.u.undef.abfd = h->root.u.def.section->owner;
1537
 
1538
      *size_change_ok = TRUE;
1539
      *type_change_ok = TRUE;
1540
 
1541
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1542
        flip = *sym_hash;
1543
      else
1544
        h->verinfo.vertree = NULL;
1545
    }
1546
 
1547
  if (flip != NULL)
1548
    {
1549
      /* Handle the case where we had a versioned symbol in a dynamic
1550
         library and now find a definition in a normal object.  In this
1551
         case, we make the versioned symbol point to the normal one.  */
1552
      flip->root.type = h->root.type;
1553
      flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554
      h->root.type = bfd_link_hash_indirect;
1555
      h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556
      (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557
      if (h->def_dynamic)
1558
        {
1559
          h->def_dynamic = 0;
1560
          flip->ref_dynamic = 1;
1561
        }
1562
    }
1563
 
1564
  return TRUE;
1565
}
1566
 
1567
/* This function is called to create an indirect symbol from the
1568
   default for the symbol with the default version if needed. The
1569
   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1570
   set DYNSYM if the new indirect symbol is dynamic.  */
1571
 
1572
static bfd_boolean
1573
_bfd_elf_add_default_symbol (bfd *abfd,
1574
                             struct bfd_link_info *info,
1575
                             struct elf_link_hash_entry *h,
1576
                             const char *name,
1577
                             Elf_Internal_Sym *sym,
1578
                             asection **psec,
1579
                             bfd_vma *value,
1580
                             bfd_boolean *dynsym,
1581
                             bfd_boolean override)
1582
{
1583
  bfd_boolean type_change_ok;
1584
  bfd_boolean size_change_ok;
1585
  bfd_boolean skip;
1586
  char *shortname;
1587
  struct elf_link_hash_entry *hi;
1588
  struct bfd_link_hash_entry *bh;
1589
  const struct elf_backend_data *bed;
1590
  bfd_boolean collect;
1591
  bfd_boolean dynamic;
1592
  char *p;
1593
  size_t len, shortlen;
1594
  asection *sec;
1595
 
1596
  /* If this symbol has a version, and it is the default version, we
1597
     create an indirect symbol from the default name to the fully
1598
     decorated name.  This will cause external references which do not
1599
     specify a version to be bound to this version of the symbol.  */
1600
  p = strchr (name, ELF_VER_CHR);
1601
  if (p == NULL || p[1] != ELF_VER_CHR)
1602
    return TRUE;
1603
 
1604
  if (override)
1605
    {
1606
      /* We are overridden by an old definition. We need to check if we
1607
         need to create the indirect symbol from the default name.  */
1608
      hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609
                                 FALSE, FALSE);
1610
      BFD_ASSERT (hi != NULL);
1611
      if (hi == h)
1612
        return TRUE;
1613
      while (hi->root.type == bfd_link_hash_indirect
1614
             || hi->root.type == bfd_link_hash_warning)
1615
        {
1616
          hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617
          if (hi == h)
1618
            return TRUE;
1619
        }
1620
    }
1621
 
1622
  bed = get_elf_backend_data (abfd);
1623
  collect = bed->collect;
1624
  dynamic = (abfd->flags & DYNAMIC) != 0;
1625
 
1626
  shortlen = p - name;
1627
  shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628
  if (shortname == NULL)
1629
    return FALSE;
1630
  memcpy (shortname, name, shortlen);
1631
  shortname[shortlen] = '\0';
1632
 
1633
  /* We are going to create a new symbol.  Merge it with any existing
1634
     symbol with this name.  For the purposes of the merge, act as
1635
     though we were defining the symbol we just defined, although we
1636
     actually going to define an indirect symbol.  */
1637
  type_change_ok = FALSE;
1638
  size_change_ok = FALSE;
1639
  sec = *psec;
1640
  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641
                              NULL, &hi, &skip, &override,
1642
                              &type_change_ok, &size_change_ok))
1643
    return FALSE;
1644
 
1645
  if (skip)
1646
    goto nondefault;
1647
 
1648
  if (! override)
1649
    {
1650
      bh = &hi->root;
1651
      if (! (_bfd_generic_link_add_one_symbol
1652
             (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653
              0, name, FALSE, collect, &bh)))
1654
        return FALSE;
1655
      hi = (struct elf_link_hash_entry *) bh;
1656
    }
1657
  else
1658
    {
1659
      /* In this case the symbol named SHORTNAME is overriding the
1660
         indirect symbol we want to add.  We were planning on making
1661
         SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1662
         is the name without a version.  NAME is the fully versioned
1663
         name, and it is the default version.
1664
 
1665
         Overriding means that we already saw a definition for the
1666
         symbol SHORTNAME in a regular object, and it is overriding
1667
         the symbol defined in the dynamic object.
1668
 
1669
         When this happens, we actually want to change NAME, the
1670
         symbol we just added, to refer to SHORTNAME.  This will cause
1671
         references to NAME in the shared object to become references
1672
         to SHORTNAME in the regular object.  This is what we expect
1673
         when we override a function in a shared object: that the
1674
         references in the shared object will be mapped to the
1675
         definition in the regular object.  */
1676
 
1677
      while (hi->root.type == bfd_link_hash_indirect
1678
             || hi->root.type == bfd_link_hash_warning)
1679
        hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
 
1681
      h->root.type = bfd_link_hash_indirect;
1682
      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683
      if (h->def_dynamic)
1684
        {
1685
          h->def_dynamic = 0;
1686
          hi->ref_dynamic = 1;
1687
          if (hi->ref_regular
1688
              || hi->def_regular)
1689
            {
1690
              if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691
                return FALSE;
1692
            }
1693
        }
1694
 
1695
      /* Now set HI to H, so that the following code will set the
1696
         other fields correctly.  */
1697
      hi = h;
1698
    }
1699
 
1700
  /* Check if HI is a warning symbol.  */
1701
  if (hi->root.type == bfd_link_hash_warning)
1702
    hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
 
1704
  /* If there is a duplicate definition somewhere, then HI may not
1705
     point to an indirect symbol.  We will have reported an error to
1706
     the user in that case.  */
1707
 
1708
  if (hi->root.type == bfd_link_hash_indirect)
1709
    {
1710
      struct elf_link_hash_entry *ht;
1711
 
1712
      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713
      (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
 
1715
      /* See if the new flags lead us to realize that the symbol must
1716
         be dynamic.  */
1717
      if (! *dynsym)
1718
        {
1719
          if (! dynamic)
1720
            {
1721
              if (! info->executable
1722
                  || hi->ref_dynamic)
1723
                *dynsym = TRUE;
1724
            }
1725
          else
1726
            {
1727
              if (hi->ref_regular)
1728
                *dynsym = TRUE;
1729
            }
1730
        }
1731
    }
1732
 
1733
  /* We also need to define an indirection from the nondefault version
1734
     of the symbol.  */
1735
 
1736
nondefault:
1737
  len = strlen (name);
1738
  shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739
  if (shortname == NULL)
1740
    return FALSE;
1741
  memcpy (shortname, name, shortlen);
1742
  memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
 
1744
  /* Once again, merge with any existing symbol.  */
1745
  type_change_ok = FALSE;
1746
  size_change_ok = FALSE;
1747
  sec = *psec;
1748
  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749
                              NULL, &hi, &skip, &override,
1750
                              &type_change_ok, &size_change_ok))
1751
    return FALSE;
1752
 
1753
  if (skip)
1754
    return TRUE;
1755
 
1756
  if (override)
1757
    {
1758
      /* Here SHORTNAME is a versioned name, so we don't expect to see
1759
         the type of override we do in the case above unless it is
1760
         overridden by a versioned definition.  */
1761
      if (hi->root.type != bfd_link_hash_defined
1762
          && hi->root.type != bfd_link_hash_defweak)
1763
        (*_bfd_error_handler)
1764
          (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765
           abfd, shortname);
1766
    }
1767
  else
1768
    {
1769
      bh = &hi->root;
1770
      if (! (_bfd_generic_link_add_one_symbol
1771
             (info, abfd, shortname, BSF_INDIRECT,
1772
              bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773
        return FALSE;
1774
      hi = (struct elf_link_hash_entry *) bh;
1775
 
1776
      /* If there is a duplicate definition somewhere, then HI may not
1777
         point to an indirect symbol.  We will have reported an error
1778
         to the user in that case.  */
1779
 
1780
      if (hi->root.type == bfd_link_hash_indirect)
1781
        {
1782
          (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
 
1784
          /* See if the new flags lead us to realize that the symbol
1785
             must be dynamic.  */
1786
          if (! *dynsym)
1787
            {
1788
              if (! dynamic)
1789
                {
1790
                  if (! info->executable
1791
                      || hi->ref_dynamic)
1792
                    *dynsym = TRUE;
1793
                }
1794
              else
1795
                {
1796
                  if (hi->ref_regular)
1797
                    *dynsym = TRUE;
1798
                }
1799
            }
1800
        }
1801
    }
1802
 
1803
  return TRUE;
1804
}
1805
 
1806
/* This routine is used to export all defined symbols into the dynamic
1807
   symbol table.  It is called via elf_link_hash_traverse.  */
1808
 
1809
static bfd_boolean
1810
_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811
{
1812
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
 
1814
  /* Ignore this if we won't export it.  */
1815
  if (!eif->info->export_dynamic && !h->dynamic)
1816
    return TRUE;
1817
 
1818
  /* Ignore indirect symbols.  These are added by the versioning code.  */
1819
  if (h->root.type == bfd_link_hash_indirect)
1820
    return TRUE;
1821
 
1822
  if (h->root.type == bfd_link_hash_warning)
1823
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824
 
1825
  if (h->dynindx == -1
1826
      && (h->def_regular
1827
          || h->ref_regular))
1828
    {
1829
      bfd_boolean hide;
1830
 
1831
      if (eif->verdefs == NULL
1832
          || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833
              && !hide))
1834
        {
1835
          if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836
            {
1837
              eif->failed = TRUE;
1838
              return FALSE;
1839
            }
1840
        }
1841
    }
1842
 
1843
  return TRUE;
1844
}
1845
 
1846
/* Look through the symbols which are defined in other shared
1847
   libraries and referenced here.  Update the list of version
1848
   dependencies.  This will be put into the .gnu.version_r section.
1849
   This function is called via elf_link_hash_traverse.  */
1850
 
1851
static bfd_boolean
1852
_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853
                                         void *data)
1854
{
1855
  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856
  Elf_Internal_Verneed *t;
1857
  Elf_Internal_Vernaux *a;
1858
  bfd_size_type amt;
1859
 
1860
  if (h->root.type == bfd_link_hash_warning)
1861
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862
 
1863
  /* We only care about symbols defined in shared objects with version
1864
     information.  */
1865
  if (!h->def_dynamic
1866
      || h->def_regular
1867
      || h->dynindx == -1
1868
      || h->verinfo.verdef == NULL)
1869
    return TRUE;
1870
 
1871
  /* See if we already know about this version.  */
1872
  for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873
       t != NULL;
1874
       t = t->vn_nextref)
1875
    {
1876
      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877
        continue;
1878
 
1879
      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880
        if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881
          return TRUE;
1882
 
1883
      break;
1884
    }
1885
 
1886
  /* This is a new version.  Add it to tree we are building.  */
1887
 
1888
  if (t == NULL)
1889
    {
1890
      amt = sizeof *t;
1891
      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892
      if (t == NULL)
1893
        {
1894
          rinfo->failed = TRUE;
1895
          return FALSE;
1896
        }
1897
 
1898
      t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899
      t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900
      elf_tdata (rinfo->info->output_bfd)->verref = t;
1901
    }
1902
 
1903
  amt = sizeof *a;
1904
  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905
  if (a == NULL)
1906
    {
1907
      rinfo->failed = TRUE;
1908
      return FALSE;
1909
    }
1910
 
1911
  /* Note that we are copying a string pointer here, and testing it
1912
     above.  If bfd_elf_string_from_elf_section is ever changed to
1913
     discard the string data when low in memory, this will have to be
1914
     fixed.  */
1915
  a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916
 
1917
  a->vna_flags = h->verinfo.verdef->vd_flags;
1918
  a->vna_nextptr = t->vn_auxptr;
1919
 
1920
  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921
  ++rinfo->vers;
1922
 
1923
  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924
 
1925
  t->vn_auxptr = a;
1926
 
1927
  return TRUE;
1928
}
1929
 
1930
/* Figure out appropriate versions for all the symbols.  We may not
1931
   have the version number script until we have read all of the input
1932
   files, so until that point we don't know which symbols should be
1933
   local.  This function is called via elf_link_hash_traverse.  */
1934
 
1935
static bfd_boolean
1936
_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937
{
1938
  struct elf_info_failed *sinfo;
1939
  struct bfd_link_info *info;
1940
  const struct elf_backend_data *bed;
1941
  struct elf_info_failed eif;
1942
  char *p;
1943
  bfd_size_type amt;
1944
 
1945
  sinfo = (struct elf_info_failed *) data;
1946
  info = sinfo->info;
1947
 
1948
  if (h->root.type == bfd_link_hash_warning)
1949
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950
 
1951
  /* Fix the symbol flags.  */
1952
  eif.failed = FALSE;
1953
  eif.info = info;
1954
  if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955
    {
1956
      if (eif.failed)
1957
        sinfo->failed = TRUE;
1958
      return FALSE;
1959
    }
1960
 
1961
  /* We only need version numbers for symbols defined in regular
1962
     objects.  */
1963
  if (!h->def_regular)
1964
    return TRUE;
1965
 
1966
  bed = get_elf_backend_data (info->output_bfd);
1967
  p = strchr (h->root.root.string, ELF_VER_CHR);
1968
  if (p != NULL && h->verinfo.vertree == NULL)
1969
    {
1970
      struct bfd_elf_version_tree *t;
1971
      bfd_boolean hidden;
1972
 
1973
      hidden = TRUE;
1974
 
1975
      /* There are two consecutive ELF_VER_CHR characters if this is
1976
         not a hidden symbol.  */
1977
      ++p;
1978
      if (*p == ELF_VER_CHR)
1979
        {
1980
          hidden = FALSE;
1981
          ++p;
1982
        }
1983
 
1984
      /* If there is no version string, we can just return out.  */
1985
      if (*p == '\0')
1986
        {
1987
          if (hidden)
1988
            h->hidden = 1;
1989
          return TRUE;
1990
        }
1991
 
1992
      /* Look for the version.  If we find it, it is no longer weak.  */
1993
      for (t = sinfo->verdefs; t != NULL; t = t->next)
1994
        {
1995
          if (strcmp (t->name, p) == 0)
1996
            {
1997
              size_t len;
1998
              char *alc;
1999
              struct bfd_elf_version_expr *d;
2000
 
2001
              len = p - h->root.root.string;
2002
              alc = (char *) bfd_malloc (len);
2003
              if (alc == NULL)
2004
                {
2005
                  sinfo->failed = TRUE;
2006
                  return FALSE;
2007
                }
2008
              memcpy (alc, h->root.root.string, len - 1);
2009
              alc[len - 1] = '\0';
2010
              if (alc[len - 2] == ELF_VER_CHR)
2011
                alc[len - 2] = '\0';
2012
 
2013
              h->verinfo.vertree = t;
2014
              t->used = TRUE;
2015
              d = NULL;
2016
 
2017
              if (t->globals.list != NULL)
2018
                d = (*t->match) (&t->globals, NULL, alc);
2019
 
2020
              /* See if there is anything to force this symbol to
2021
                 local scope.  */
2022
              if (d == NULL && t->locals.list != NULL)
2023
                {
2024
                  d = (*t->match) (&t->locals, NULL, alc);
2025
                  if (d != NULL
2026
                      && h->dynindx != -1
2027
                      && ! info->export_dynamic)
2028
                    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029
                }
2030
 
2031
              free (alc);
2032
              break;
2033
            }
2034
        }
2035
 
2036
      /* If we are building an application, we need to create a
2037
         version node for this version.  */
2038
      if (t == NULL && info->executable)
2039
        {
2040
          struct bfd_elf_version_tree **pp;
2041
          int version_index;
2042
 
2043
          /* If we aren't going to export this symbol, we don't need
2044
             to worry about it.  */
2045
          if (h->dynindx == -1)
2046
            return TRUE;
2047
 
2048
          amt = sizeof *t;
2049
          t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2050
          if (t == NULL)
2051
            {
2052
              sinfo->failed = TRUE;
2053
              return FALSE;
2054
            }
2055
 
2056
          t->name = p;
2057
          t->name_indx = (unsigned int) -1;
2058
          t->used = TRUE;
2059
 
2060
          version_index = 1;
2061
          /* Don't count anonymous version tag.  */
2062
          if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063
            version_index = 0;
2064
          for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065
            ++version_index;
2066
          t->vernum = version_index;
2067
 
2068
          *pp = t;
2069
 
2070
          h->verinfo.vertree = t;
2071
        }
2072
      else if (t == NULL)
2073
        {
2074
          /* We could not find the version for a symbol when
2075
             generating a shared archive.  Return an error.  */
2076
          (*_bfd_error_handler)
2077
            (_("%B: version node not found for symbol %s"),
2078
             info->output_bfd, h->root.root.string);
2079
          bfd_set_error (bfd_error_bad_value);
2080
          sinfo->failed = TRUE;
2081
          return FALSE;
2082
        }
2083
 
2084
      if (hidden)
2085
        h->hidden = 1;
2086
    }
2087
 
2088
  /* If we don't have a version for this symbol, see if we can find
2089
     something.  */
2090
  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091
    {
2092
      bfd_boolean hide;
2093
 
2094
      h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095
                                                 h->root.root.string, &hide);
2096
      if (h->verinfo.vertree != NULL && hide)
2097
        (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098
    }
2099
 
2100
  return TRUE;
2101
}
2102
 
2103
/* Read and swap the relocs from the section indicated by SHDR.  This
2104
   may be either a REL or a RELA section.  The relocations are
2105
   translated into RELA relocations and stored in INTERNAL_RELOCS,
2106
   which should have already been allocated to contain enough space.
2107
   The EXTERNAL_RELOCS are a buffer where the external form of the
2108
   relocations should be stored.
2109
 
2110
   Returns FALSE if something goes wrong.  */
2111
 
2112
static bfd_boolean
2113
elf_link_read_relocs_from_section (bfd *abfd,
2114
                                   asection *sec,
2115
                                   Elf_Internal_Shdr *shdr,
2116
                                   void *external_relocs,
2117
                                   Elf_Internal_Rela *internal_relocs)
2118
{
2119
  const struct elf_backend_data *bed;
2120
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121
  const bfd_byte *erela;
2122
  const bfd_byte *erelaend;
2123
  Elf_Internal_Rela *irela;
2124
  Elf_Internal_Shdr *symtab_hdr;
2125
  size_t nsyms;
2126
 
2127
  /* Position ourselves at the start of the section.  */
2128
  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129
    return FALSE;
2130
 
2131
  /* Read the relocations.  */
2132
  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133
    return FALSE;
2134
 
2135
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137
 
2138
  bed = get_elf_backend_data (abfd);
2139
 
2140
  /* Convert the external relocations to the internal format.  */
2141
  if (shdr->sh_entsize == bed->s->sizeof_rel)
2142
    swap_in = bed->s->swap_reloc_in;
2143
  else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144
    swap_in = bed->s->swap_reloca_in;
2145
  else
2146
    {
2147
      bfd_set_error (bfd_error_wrong_format);
2148
      return FALSE;
2149
    }
2150
 
2151
  erela = (const bfd_byte *) external_relocs;
2152
  erelaend = erela + shdr->sh_size;
2153
  irela = internal_relocs;
2154
  while (erela < erelaend)
2155
    {
2156
      bfd_vma r_symndx;
2157
 
2158
      (*swap_in) (abfd, erela, irela);
2159
      r_symndx = ELF32_R_SYM (irela->r_info);
2160
      if (bed->s->arch_size == 64)
2161
        r_symndx >>= 24;
2162
      if (nsyms > 0)
2163
        {
2164
          if ((size_t) r_symndx >= nsyms)
2165
            {
2166
              (*_bfd_error_handler)
2167
                (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168
                   " for offset 0x%lx in section `%A'"),
2169
                 abfd, sec,
2170
                 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171
              bfd_set_error (bfd_error_bad_value);
2172
              return FALSE;
2173
            }
2174
        }
2175
      else if (r_symndx != STN_UNDEF)
2176
        {
2177
          (*_bfd_error_handler)
2178
            (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179
               " when the object file has no symbol table"),
2180
             abfd, sec,
2181
             (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182
          bfd_set_error (bfd_error_bad_value);
2183
          return FALSE;
2184
        }
2185
      irela += bed->s->int_rels_per_ext_rel;
2186
      erela += shdr->sh_entsize;
2187
    }
2188
 
2189
  return TRUE;
2190
}
2191
 
2192
/* Read and swap the relocs for a section O.  They may have been
2193
   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194
   not NULL, they are used as buffers to read into.  They are known to
2195
   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2196
   the return value is allocated using either malloc or bfd_alloc,
2197
   according to the KEEP_MEMORY argument.  If O has two relocation
2198
   sections (both REL and RELA relocations), then the REL_HDR
2199
   relocations will appear first in INTERNAL_RELOCS, followed by the
2200
   RELA_HDR relocations.  */
2201
 
2202
Elf_Internal_Rela *
2203
_bfd_elf_link_read_relocs (bfd *abfd,
2204
                           asection *o,
2205
                           void *external_relocs,
2206
                           Elf_Internal_Rela *internal_relocs,
2207
                           bfd_boolean keep_memory)
2208
{
2209
  void *alloc1 = NULL;
2210
  Elf_Internal_Rela *alloc2 = NULL;
2211
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2212
  struct bfd_elf_section_data *esdo = elf_section_data (o);
2213
  Elf_Internal_Rela *internal_rela_relocs;
2214
 
2215
  if (esdo->relocs != NULL)
2216
    return esdo->relocs;
2217
 
2218
  if (o->reloc_count == 0)
2219
    return NULL;
2220
 
2221
  if (internal_relocs == NULL)
2222
    {
2223
      bfd_size_type size;
2224
 
2225
      size = o->reloc_count;
2226
      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2227
      if (keep_memory)
2228
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2229
      else
2230
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2231
      if (internal_relocs == NULL)
2232
        goto error_return;
2233
    }
2234
 
2235
  if (external_relocs == NULL)
2236
    {
2237
      bfd_size_type size = 0;
2238
 
2239
      if (esdo->rel.hdr)
2240
        size += esdo->rel.hdr->sh_size;
2241
      if (esdo->rela.hdr)
2242
        size += esdo->rela.hdr->sh_size;
2243
 
2244
      alloc1 = bfd_malloc (size);
2245
      if (alloc1 == NULL)
2246
        goto error_return;
2247
      external_relocs = alloc1;
2248
    }
2249
 
2250
  internal_rela_relocs = internal_relocs;
2251
  if (esdo->rel.hdr)
2252
    {
2253
      if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2254
                                              external_relocs,
2255
                                              internal_relocs))
2256
        goto error_return;
2257
      external_relocs = (((bfd_byte *) external_relocs)
2258
                         + esdo->rel.hdr->sh_size);
2259
      internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2260
                               * bed->s->int_rels_per_ext_rel);
2261
    }
2262
 
2263
  if (esdo->rela.hdr
2264
      && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2265
                                              external_relocs,
2266
                                              internal_rela_relocs)))
2267
    goto error_return;
2268
 
2269
  /* Cache the results for next time, if we can.  */
2270
  if (keep_memory)
2271
    esdo->relocs = internal_relocs;
2272
 
2273
  if (alloc1 != NULL)
2274
    free (alloc1);
2275
 
2276
  /* Don't free alloc2, since if it was allocated we are passing it
2277
     back (under the name of internal_relocs).  */
2278
 
2279
  return internal_relocs;
2280
 
2281
 error_return:
2282
  if (alloc1 != NULL)
2283
    free (alloc1);
2284
  if (alloc2 != NULL)
2285
    {
2286
      if (keep_memory)
2287
        bfd_release (abfd, alloc2);
2288
      else
2289
        free (alloc2);
2290
    }
2291
  return NULL;
2292
}
2293
 
2294
/* Compute the size of, and allocate space for, REL_HDR which is the
2295
   section header for a section containing relocations for O.  */
2296
 
2297
static bfd_boolean
2298
_bfd_elf_link_size_reloc_section (bfd *abfd,
2299
                                  struct bfd_elf_section_reloc_data *reldata)
2300
{
2301
  Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2302
 
2303
  /* That allows us to calculate the size of the section.  */
2304
  rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2305
 
2306
  /* The contents field must last into write_object_contents, so we
2307
     allocate it with bfd_alloc rather than malloc.  Also since we
2308
     cannot be sure that the contents will actually be filled in,
2309
     we zero the allocated space.  */
2310
  rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2311
  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2312
    return FALSE;
2313
 
2314
  if (reldata->hashes == NULL && reldata->count)
2315
    {
2316
      struct elf_link_hash_entry **p;
2317
 
2318
      p = (struct elf_link_hash_entry **)
2319
          bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2320
      if (p == NULL)
2321
        return FALSE;
2322
 
2323
      reldata->hashes = p;
2324
    }
2325
 
2326
  return TRUE;
2327
}
2328
 
2329
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2330
   originated from the section given by INPUT_REL_HDR) to the
2331
   OUTPUT_BFD.  */
2332
 
2333
bfd_boolean
2334
_bfd_elf_link_output_relocs (bfd *output_bfd,
2335
                             asection *input_section,
2336
                             Elf_Internal_Shdr *input_rel_hdr,
2337
                             Elf_Internal_Rela *internal_relocs,
2338
                             struct elf_link_hash_entry **rel_hash
2339
                               ATTRIBUTE_UNUSED)
2340
{
2341
  Elf_Internal_Rela *irela;
2342
  Elf_Internal_Rela *irelaend;
2343
  bfd_byte *erel;
2344
  struct bfd_elf_section_reloc_data *output_reldata;
2345
  asection *output_section;
2346
  const struct elf_backend_data *bed;
2347
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2348
  struct bfd_elf_section_data *esdo;
2349
 
2350
  output_section = input_section->output_section;
2351
 
2352
  bed = get_elf_backend_data (output_bfd);
2353
  esdo = elf_section_data (output_section);
2354
  if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2355
    {
2356
      output_reldata = &esdo->rel;
2357
      swap_out = bed->s->swap_reloc_out;
2358
    }
2359
  else if (esdo->rela.hdr
2360
           && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2361
    {
2362
      output_reldata = &esdo->rela;
2363
      swap_out = bed->s->swap_reloca_out;
2364
    }
2365
  else
2366
    {
2367
      (*_bfd_error_handler)
2368
        (_("%B: relocation size mismatch in %B section %A"),
2369
         output_bfd, input_section->owner, input_section);
2370
      bfd_set_error (bfd_error_wrong_format);
2371
      return FALSE;
2372
    }
2373
 
2374
  erel = output_reldata->hdr->contents;
2375
  erel += output_reldata->count * input_rel_hdr->sh_entsize;
2376
  irela = internal_relocs;
2377
  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2378
                      * bed->s->int_rels_per_ext_rel);
2379
  while (irela < irelaend)
2380
    {
2381
      (*swap_out) (output_bfd, irela, erel);
2382
      irela += bed->s->int_rels_per_ext_rel;
2383
      erel += input_rel_hdr->sh_entsize;
2384
    }
2385
 
2386
  /* Bump the counter, so that we know where to add the next set of
2387
     relocations.  */
2388
  output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2389
 
2390
  return TRUE;
2391
}
2392
 
2393
/* Make weak undefined symbols in PIE dynamic.  */
2394
 
2395
bfd_boolean
2396
_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2397
                                 struct elf_link_hash_entry *h)
2398
{
2399
  if (info->pie
2400
      && h->dynindx == -1
2401
      && h->root.type == bfd_link_hash_undefweak)
2402
    return bfd_elf_link_record_dynamic_symbol (info, h);
2403
 
2404
  return TRUE;
2405
}
2406
 
2407
/* Fix up the flags for a symbol.  This handles various cases which
2408
   can only be fixed after all the input files are seen.  This is
2409
   currently called by both adjust_dynamic_symbol and
2410
   assign_sym_version, which is unnecessary but perhaps more robust in
2411
   the face of future changes.  */
2412
 
2413
static bfd_boolean
2414
_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2415
                           struct elf_info_failed *eif)
2416
{
2417
  const struct elf_backend_data *bed;
2418
 
2419
  /* If this symbol was mentioned in a non-ELF file, try to set
2420
     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2421
     permit a non-ELF file to correctly refer to a symbol defined in
2422
     an ELF dynamic object.  */
2423
  if (h->non_elf)
2424
    {
2425
      while (h->root.type == bfd_link_hash_indirect)
2426
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
2427
 
2428
      if (h->root.type != bfd_link_hash_defined
2429
          && h->root.type != bfd_link_hash_defweak)
2430
        {
2431
          h->ref_regular = 1;
2432
          h->ref_regular_nonweak = 1;
2433
        }
2434
      else
2435
        {
2436
          if (h->root.u.def.section->owner != NULL
2437
              && (bfd_get_flavour (h->root.u.def.section->owner)
2438
                  == bfd_target_elf_flavour))
2439
            {
2440
              h->ref_regular = 1;
2441
              h->ref_regular_nonweak = 1;
2442
            }
2443
          else
2444
            h->def_regular = 1;
2445
        }
2446
 
2447
      if (h->dynindx == -1
2448
          && (h->def_dynamic
2449
              || h->ref_dynamic))
2450
        {
2451
          if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2452
            {
2453
              eif->failed = TRUE;
2454
              return FALSE;
2455
            }
2456
        }
2457
    }
2458
  else
2459
    {
2460
      /* Unfortunately, NON_ELF is only correct if the symbol
2461
         was first seen in a non-ELF file.  Fortunately, if the symbol
2462
         was first seen in an ELF file, we're probably OK unless the
2463
         symbol was defined in a non-ELF file.  Catch that case here.
2464
         FIXME: We're still in trouble if the symbol was first seen in
2465
         a dynamic object, and then later in a non-ELF regular object.  */
2466
      if ((h->root.type == bfd_link_hash_defined
2467
           || h->root.type == bfd_link_hash_defweak)
2468
          && !h->def_regular
2469
          && (h->root.u.def.section->owner != NULL
2470
              ? (bfd_get_flavour (h->root.u.def.section->owner)
2471
                 != bfd_target_elf_flavour)
2472
              : (bfd_is_abs_section (h->root.u.def.section)
2473
                 && !h->def_dynamic)))
2474
        h->def_regular = 1;
2475
    }
2476
 
2477
  /* Backend specific symbol fixup.  */
2478
  bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2479
  if (bed->elf_backend_fixup_symbol
2480
      && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2481
    return FALSE;
2482
 
2483
  /* If this is a final link, and the symbol was defined as a common
2484
     symbol in a regular object file, and there was no definition in
2485
     any dynamic object, then the linker will have allocated space for
2486
     the symbol in a common section but the DEF_REGULAR
2487
     flag will not have been set.  */
2488
  if (h->root.type == bfd_link_hash_defined
2489
      && !h->def_regular
2490
      && h->ref_regular
2491
      && !h->def_dynamic
2492
      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2493
    h->def_regular = 1;
2494
 
2495
  /* If -Bsymbolic was used (which means to bind references to global
2496
     symbols to the definition within the shared object), and this
2497
     symbol was defined in a regular object, then it actually doesn't
2498
     need a PLT entry.  Likewise, if the symbol has non-default
2499
     visibility.  If the symbol has hidden or internal visibility, we
2500
     will force it local.  */
2501
  if (h->needs_plt
2502
      && eif->info->shared
2503
      && is_elf_hash_table (eif->info->hash)
2504
      && (SYMBOLIC_BIND (eif->info, h)
2505
          || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2506
      && h->def_regular)
2507
    {
2508
      bfd_boolean force_local;
2509
 
2510
      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2511
                     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2512
      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2513
    }
2514
 
2515
  /* If a weak undefined symbol has non-default visibility, we also
2516
     hide it from the dynamic linker.  */
2517
  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2518
      && h->root.type == bfd_link_hash_undefweak)
2519
    (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2520
 
2521
  /* If this is a weak defined symbol in a dynamic object, and we know
2522
     the real definition in the dynamic object, copy interesting flags
2523
     over to the real definition.  */
2524
  if (h->u.weakdef != NULL)
2525
    {
2526
      struct elf_link_hash_entry *weakdef;
2527
 
2528
      weakdef = h->u.weakdef;
2529
      if (h->root.type == bfd_link_hash_indirect)
2530
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
2531
 
2532
      BFD_ASSERT (h->root.type == bfd_link_hash_defined
2533
                  || h->root.type == bfd_link_hash_defweak);
2534
      BFD_ASSERT (weakdef->def_dynamic);
2535
 
2536
      /* If the real definition is defined by a regular object file,
2537
         don't do anything special.  See the longer description in
2538
         _bfd_elf_adjust_dynamic_symbol, below.  */
2539
      if (weakdef->def_regular)
2540
        h->u.weakdef = NULL;
2541
      else
2542
        {
2543
          BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2544
                      || weakdef->root.type == bfd_link_hash_defweak);
2545
          (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2546
        }
2547
    }
2548
 
2549
  return TRUE;
2550
}
2551
 
2552
/* Make the backend pick a good value for a dynamic symbol.  This is
2553
   called via elf_link_hash_traverse, and also calls itself
2554
   recursively.  */
2555
 
2556
static bfd_boolean
2557
_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2558
{
2559
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
2560
  bfd *dynobj;
2561
  const struct elf_backend_data *bed;
2562
 
2563
  if (! is_elf_hash_table (eif->info->hash))
2564
    return FALSE;
2565
 
2566
  if (h->root.type == bfd_link_hash_warning)
2567
    {
2568
      h->got = elf_hash_table (eif->info)->init_got_offset;
2569
      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2570
 
2571
      /* When warning symbols are created, they **replace** the "real"
2572
         entry in the hash table, thus we never get to see the real
2573
         symbol in a hash traversal.  So look at it now.  */
2574
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
2575
    }
2576
 
2577
  /* Ignore indirect symbols.  These are added by the versioning code.  */
2578
  if (h->root.type == bfd_link_hash_indirect)
2579
    return TRUE;
2580
 
2581
  /* Fix the symbol flags.  */
2582
  if (! _bfd_elf_fix_symbol_flags (h, eif))
2583
    return FALSE;
2584
 
2585
  /* If this symbol does not require a PLT entry, and it is not
2586
     defined by a dynamic object, or is not referenced by a regular
2587
     object, ignore it.  We do have to handle a weak defined symbol,
2588
     even if no regular object refers to it, if we decided to add it
2589
     to the dynamic symbol table.  FIXME: Do we normally need to worry
2590
     about symbols which are defined by one dynamic object and
2591
     referenced by another one?  */
2592
  if (!h->needs_plt
2593
      && h->type != STT_GNU_IFUNC
2594
      && (h->def_regular
2595
          || !h->def_dynamic
2596
          || (!h->ref_regular
2597
              && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2598
    {
2599
      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2600
      return TRUE;
2601
    }
2602
 
2603
  /* If we've already adjusted this symbol, don't do it again.  This
2604
     can happen via a recursive call.  */
2605
  if (h->dynamic_adjusted)
2606
    return TRUE;
2607
 
2608
  /* Don't look at this symbol again.  Note that we must set this
2609
     after checking the above conditions, because we may look at a
2610
     symbol once, decide not to do anything, and then get called
2611
     recursively later after REF_REGULAR is set below.  */
2612
  h->dynamic_adjusted = 1;
2613
 
2614
  /* If this is a weak definition, and we know a real definition, and
2615
     the real symbol is not itself defined by a regular object file,
2616
     then get a good value for the real definition.  We handle the
2617
     real symbol first, for the convenience of the backend routine.
2618
 
2619
     Note that there is a confusing case here.  If the real definition
2620
     is defined by a regular object file, we don't get the real symbol
2621
     from the dynamic object, but we do get the weak symbol.  If the
2622
     processor backend uses a COPY reloc, then if some routine in the
2623
     dynamic object changes the real symbol, we will not see that
2624
     change in the corresponding weak symbol.  This is the way other
2625
     ELF linkers work as well, and seems to be a result of the shared
2626
     library model.
2627
 
2628
     I will clarify this issue.  Most SVR4 shared libraries define the
2629
     variable _timezone and define timezone as a weak synonym.  The
2630
     tzset call changes _timezone.  If you write
2631
       extern int timezone;
2632
       int _timezone = 5;
2633
       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2634
     you might expect that, since timezone is a synonym for _timezone,
2635
     the same number will print both times.  However, if the processor
2636
     backend uses a COPY reloc, then actually timezone will be copied
2637
     into your process image, and, since you define _timezone
2638
     yourself, _timezone will not.  Thus timezone and _timezone will
2639
     wind up at different memory locations.  The tzset call will set
2640
     _timezone, leaving timezone unchanged.  */
2641
 
2642
  if (h->u.weakdef != NULL)
2643
    {
2644
      /* If we get to this point, we know there is an implicit
2645
         reference by a regular object file via the weak symbol H.
2646
         FIXME: Is this really true?  What if the traversal finds
2647
         H->U.WEAKDEF before it finds H?  */
2648
      h->u.weakdef->ref_regular = 1;
2649
 
2650
      if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2651
        return FALSE;
2652
    }
2653
 
2654
  /* If a symbol has no type and no size and does not require a PLT
2655
     entry, then we are probably about to do the wrong thing here: we
2656
     are probably going to create a COPY reloc for an empty object.
2657
     This case can arise when a shared object is built with assembly
2658
     code, and the assembly code fails to set the symbol type.  */
2659
  if (h->size == 0
2660
      && h->type == STT_NOTYPE
2661
      && !h->needs_plt)
2662
    (*_bfd_error_handler)
2663
      (_("warning: type and size of dynamic symbol `%s' are not defined"),
2664
       h->root.root.string);
2665
 
2666
  dynobj = elf_hash_table (eif->info)->dynobj;
2667
  bed = get_elf_backend_data (dynobj);
2668
 
2669
  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2670
    {
2671
      eif->failed = TRUE;
2672
      return FALSE;
2673
    }
2674
 
2675
  return TRUE;
2676
}
2677
 
2678
/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2679
   DYNBSS.  */
2680
 
2681
bfd_boolean
2682
_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2683
                              asection *dynbss)
2684
{
2685
  unsigned int power_of_two;
2686
  bfd_vma mask;
2687
  asection *sec = h->root.u.def.section;
2688
 
2689
  /* The section aligment of definition is the maximum alignment
2690
     requirement of symbols defined in the section.  Since we don't
2691
     know the symbol alignment requirement, we start with the
2692
     maximum alignment and check low bits of the symbol address
2693
     for the minimum alignment.  */
2694
  power_of_two = bfd_get_section_alignment (sec->owner, sec);
2695
  mask = ((bfd_vma) 1 << power_of_two) - 1;
2696
  while ((h->root.u.def.value & mask) != 0)
2697
    {
2698
       mask >>= 1;
2699
       --power_of_two;
2700
    }
2701
 
2702
  if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2703
                                                dynbss))
2704
    {
2705
      /* Adjust the section alignment if needed.  */
2706
      if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2707
                                       power_of_two))
2708
        return FALSE;
2709
    }
2710
 
2711
  /* We make sure that the symbol will be aligned properly.  */
2712
  dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2713
 
2714
  /* Define the symbol as being at this point in DYNBSS.  */
2715
  h->root.u.def.section = dynbss;
2716
  h->root.u.def.value = dynbss->size;
2717
 
2718
  /* Increment the size of DYNBSS to make room for the symbol.  */
2719
  dynbss->size += h->size;
2720
 
2721
  return TRUE;
2722
}
2723
 
2724
/* Adjust all external symbols pointing into SEC_MERGE sections
2725
   to reflect the object merging within the sections.  */
2726
 
2727
static bfd_boolean
2728
_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2729
{
2730
  asection *sec;
2731
 
2732
  if (h->root.type == bfd_link_hash_warning)
2733
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2734
 
2735
  if ((h->root.type == bfd_link_hash_defined
2736
       || h->root.type == bfd_link_hash_defweak)
2737
      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2738
      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2739
    {
2740
      bfd *output_bfd = (bfd *) data;
2741
 
2742
      h->root.u.def.value =
2743
        _bfd_merged_section_offset (output_bfd,
2744
                                    &h->root.u.def.section,
2745
                                    elf_section_data (sec)->sec_info,
2746
                                    h->root.u.def.value);
2747
    }
2748
 
2749
  return TRUE;
2750
}
2751
 
2752
/* Returns false if the symbol referred to by H should be considered
2753
   to resolve local to the current module, and true if it should be
2754
   considered to bind dynamically.  */
2755
 
2756
bfd_boolean
2757
_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2758
                           struct bfd_link_info *info,
2759
                           bfd_boolean not_local_protected)
2760
{
2761
  bfd_boolean binding_stays_local_p;
2762
  const struct elf_backend_data *bed;
2763
  struct elf_link_hash_table *hash_table;
2764
 
2765
  if (h == NULL)
2766
    return FALSE;
2767
 
2768
  while (h->root.type == bfd_link_hash_indirect
2769
         || h->root.type == bfd_link_hash_warning)
2770
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2771
 
2772
  /* If it was forced local, then clearly it's not dynamic.  */
2773
  if (h->dynindx == -1)
2774
    return FALSE;
2775
  if (h->forced_local)
2776
    return FALSE;
2777
 
2778
  /* Identify the cases where name binding rules say that a
2779
     visible symbol resolves locally.  */
2780
  binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2781
 
2782
  switch (ELF_ST_VISIBILITY (h->other))
2783
    {
2784
    case STV_INTERNAL:
2785
    case STV_HIDDEN:
2786
      return FALSE;
2787
 
2788
    case STV_PROTECTED:
2789
      hash_table = elf_hash_table (info);
2790
      if (!is_elf_hash_table (hash_table))
2791
        return FALSE;
2792
 
2793
      bed = get_elf_backend_data (hash_table->dynobj);
2794
 
2795
      /* Proper resolution for function pointer equality may require
2796
         that these symbols perhaps be resolved dynamically, even though
2797
         we should be resolving them to the current module.  */
2798
      if (!not_local_protected || !bed->is_function_type (h->type))
2799
        binding_stays_local_p = TRUE;
2800
      break;
2801
 
2802
    default:
2803
      break;
2804
    }
2805
 
2806
  /* If it isn't defined locally, then clearly it's dynamic.  */
2807
  if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2808
    return TRUE;
2809
 
2810
  /* Otherwise, the symbol is dynamic if binding rules don't tell
2811
     us that it remains local.  */
2812
  return !binding_stays_local_p;
2813
}
2814
 
2815
/* Return true if the symbol referred to by H should be considered
2816
   to resolve local to the current module, and false otherwise.  Differs
2817
   from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2818
   undefined symbols.  The two functions are virtually identical except
2819
   for the place where forced_local and dynindx == -1 are tested.  If
2820
   either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2821
   the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2822
   the symbol is local only for defined symbols.
2823
   It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2824
   !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2825
   treatment of undefined weak symbols.  For those that do not make
2826
   undefined weak symbols dynamic, both functions may return false.  */
2827
 
2828
bfd_boolean
2829
_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2830
                              struct bfd_link_info *info,
2831
                              bfd_boolean local_protected)
2832
{
2833
  const struct elf_backend_data *bed;
2834
  struct elf_link_hash_table *hash_table;
2835
 
2836
  /* If it's a local sym, of course we resolve locally.  */
2837
  if (h == NULL)
2838
    return TRUE;
2839
 
2840
  /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2841
  if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2842
      || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2843
    return TRUE;
2844
 
2845
  /* Common symbols that become definitions don't get the DEF_REGULAR
2846
     flag set, so test it first, and don't bail out.  */
2847
  if (ELF_COMMON_DEF_P (h))
2848
    /* Do nothing.  */;
2849
  /* If we don't have a definition in a regular file, then we can't
2850
     resolve locally.  The sym is either undefined or dynamic.  */
2851
  else if (!h->def_regular)
2852
    return FALSE;
2853
 
2854
  /* Forced local symbols resolve locally.  */
2855
  if (h->forced_local)
2856
    return TRUE;
2857
 
2858
  /* As do non-dynamic symbols.  */
2859
  if (h->dynindx == -1)
2860
    return TRUE;
2861
 
2862
  /* At this point, we know the symbol is defined and dynamic.  In an
2863
     executable it must resolve locally, likewise when building symbolic
2864
     shared libraries.  */
2865
  if (info->executable || SYMBOLIC_BIND (info, h))
2866
    return TRUE;
2867
 
2868
  /* Now deal with defined dynamic symbols in shared libraries.  Ones
2869
     with default visibility might not resolve locally.  */
2870
  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2871
    return FALSE;
2872
 
2873
  hash_table = elf_hash_table (info);
2874
  if (!is_elf_hash_table (hash_table))
2875
    return TRUE;
2876
 
2877
  bed = get_elf_backend_data (hash_table->dynobj);
2878
 
2879
  /* STV_PROTECTED non-function symbols are local.  */
2880
  if (!bed->is_function_type (h->type))
2881
    return TRUE;
2882
 
2883
  /* Function pointer equality tests may require that STV_PROTECTED
2884
     symbols be treated as dynamic symbols.  If the address of a
2885
     function not defined in an executable is set to that function's
2886
     plt entry in the executable, then the address of the function in
2887
     a shared library must also be the plt entry in the executable.  */
2888
  return local_protected;
2889
}
2890
 
2891
/* Caches some TLS segment info, and ensures that the TLS segment vma is
2892
   aligned.  Returns the first TLS output section.  */
2893
 
2894
struct bfd_section *
2895
_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2896
{
2897
  struct bfd_section *sec, *tls;
2898
  unsigned int align = 0;
2899
 
2900
  for (sec = obfd->sections; sec != NULL; sec = sec->next)
2901
    if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2902
      break;
2903
  tls = sec;
2904
 
2905
  for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2906
    if (sec->alignment_power > align)
2907
      align = sec->alignment_power;
2908
 
2909
  elf_hash_table (info)->tls_sec = tls;
2910
 
2911
  /* Ensure the alignment of the first section is the largest alignment,
2912
     so that the tls segment starts aligned.  */
2913
  if (tls != NULL)
2914
    tls->alignment_power = align;
2915
 
2916
  return tls;
2917
}
2918
 
2919
/* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2920
static bfd_boolean
2921
is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2922
                                  Elf_Internal_Sym *sym)
2923
{
2924
  const struct elf_backend_data *bed;
2925
 
2926
  /* Local symbols do not count, but target specific ones might.  */
2927
  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2928
      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2929
    return FALSE;
2930
 
2931
  bed = get_elf_backend_data (abfd);
2932
  /* Function symbols do not count.  */
2933
  if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2934
    return FALSE;
2935
 
2936
  /* If the section is undefined, then so is the symbol.  */
2937
  if (sym->st_shndx == SHN_UNDEF)
2938
    return FALSE;
2939
 
2940
  /* If the symbol is defined in the common section, then
2941
     it is a common definition and so does not count.  */
2942
  if (bed->common_definition (sym))
2943
    return FALSE;
2944
 
2945
  /* If the symbol is in a target specific section then we
2946
     must rely upon the backend to tell us what it is.  */
2947
  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2948
    /* FIXME - this function is not coded yet:
2949
 
2950
       return _bfd_is_global_symbol_definition (abfd, sym);
2951
 
2952
       Instead for now assume that the definition is not global,
2953
       Even if this is wrong, at least the linker will behave
2954
       in the same way that it used to do.  */
2955
    return FALSE;
2956
 
2957
  return TRUE;
2958
}
2959
 
2960
/* Search the symbol table of the archive element of the archive ABFD
2961
   whose archive map contains a mention of SYMDEF, and determine if
2962
   the symbol is defined in this element.  */
2963
static bfd_boolean
2964
elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2965
{
2966
  Elf_Internal_Shdr * hdr;
2967
  bfd_size_type symcount;
2968
  bfd_size_type extsymcount;
2969
  bfd_size_type extsymoff;
2970
  Elf_Internal_Sym *isymbuf;
2971
  Elf_Internal_Sym *isym;
2972
  Elf_Internal_Sym *isymend;
2973
  bfd_boolean result;
2974
 
2975
  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2976
  if (abfd == NULL)
2977
    return FALSE;
2978
 
2979
  if (! bfd_check_format (abfd, bfd_object))
2980
    return FALSE;
2981
 
2982
  /* If we have already included the element containing this symbol in the
2983
     link then we do not need to include it again.  Just claim that any symbol
2984
     it contains is not a definition, so that our caller will not decide to
2985
     (re)include this element.  */
2986
  if (abfd->archive_pass)
2987
    return FALSE;
2988
 
2989
  /* Select the appropriate symbol table.  */
2990
  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2991
    hdr = &elf_tdata (abfd)->symtab_hdr;
2992
  else
2993
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2994
 
2995
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2996
 
2997
  /* The sh_info field of the symtab header tells us where the
2998
     external symbols start.  We don't care about the local symbols.  */
2999
  if (elf_bad_symtab (abfd))
3000
    {
3001
      extsymcount = symcount;
3002
      extsymoff = 0;
3003
    }
3004
  else
3005
    {
3006
      extsymcount = symcount - hdr->sh_info;
3007
      extsymoff = hdr->sh_info;
3008
    }
3009
 
3010
  if (extsymcount == 0)
3011
    return FALSE;
3012
 
3013
  /* Read in the symbol table.  */
3014
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3015
                                  NULL, NULL, NULL);
3016
  if (isymbuf == NULL)
3017
    return FALSE;
3018
 
3019
  /* Scan the symbol table looking for SYMDEF.  */
3020
  result = FALSE;
3021
  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3022
    {
3023
      const char *name;
3024
 
3025
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3026
                                              isym->st_name);
3027
      if (name == NULL)
3028
        break;
3029
 
3030
      if (strcmp (name, symdef->name) == 0)
3031
        {
3032
          result = is_global_data_symbol_definition (abfd, isym);
3033
          break;
3034
        }
3035
    }
3036
 
3037
  free (isymbuf);
3038
 
3039
  return result;
3040
}
3041
 
3042
/* Add an entry to the .dynamic table.  */
3043
 
3044
bfd_boolean
3045
_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3046
                            bfd_vma tag,
3047
                            bfd_vma val)
3048
{
3049
  struct elf_link_hash_table *hash_table;
3050
  const struct elf_backend_data *bed;
3051
  asection *s;
3052
  bfd_size_type newsize;
3053
  bfd_byte *newcontents;
3054
  Elf_Internal_Dyn dyn;
3055
 
3056
  hash_table = elf_hash_table (info);
3057
  if (! is_elf_hash_table (hash_table))
3058
    return FALSE;
3059
 
3060
  bed = get_elf_backend_data (hash_table->dynobj);
3061
  s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3062
  BFD_ASSERT (s != NULL);
3063
 
3064
  newsize = s->size + bed->s->sizeof_dyn;
3065
  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3066
  if (newcontents == NULL)
3067
    return FALSE;
3068
 
3069
  dyn.d_tag = tag;
3070
  dyn.d_un.d_val = val;
3071
  bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3072
 
3073
  s->size = newsize;
3074
  s->contents = newcontents;
3075
 
3076
  return TRUE;
3077
}
3078
 
3079
/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3080
   otherwise just check whether one already exists.  Returns -1 on error,
3081
   1 if a DT_NEEDED tag already exists, and 0 on success.  */
3082
 
3083
static int
3084
elf_add_dt_needed_tag (bfd *abfd,
3085
                       struct bfd_link_info *info,
3086
                       const char *soname,
3087
                       bfd_boolean do_it)
3088
{
3089
  struct elf_link_hash_table *hash_table;
3090
  bfd_size_type oldsize;
3091
  bfd_size_type strindex;
3092
 
3093
  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3094
    return -1;
3095
 
3096
  hash_table = elf_hash_table (info);
3097
  oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3098
  strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3099
  if (strindex == (bfd_size_type) -1)
3100
    return -1;
3101
 
3102
  if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3103
    {
3104
      asection *sdyn;
3105
      const struct elf_backend_data *bed;
3106
      bfd_byte *extdyn;
3107
 
3108
      bed = get_elf_backend_data (hash_table->dynobj);
3109
      sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3110
      if (sdyn != NULL)
3111
        for (extdyn = sdyn->contents;
3112
             extdyn < sdyn->contents + sdyn->size;
3113
             extdyn += bed->s->sizeof_dyn)
3114
          {
3115
            Elf_Internal_Dyn dyn;
3116
 
3117
            bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3118
            if (dyn.d_tag == DT_NEEDED
3119
                && dyn.d_un.d_val == strindex)
3120
              {
3121
                _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3122
                return 1;
3123
              }
3124
          }
3125
    }
3126
 
3127
  if (do_it)
3128
    {
3129
      if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3130
        return -1;
3131
 
3132
      if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3133
        return -1;
3134
    }
3135
  else
3136
    /* We were just checking for existence of the tag.  */
3137
    _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3138
 
3139
  return 0;
3140
}
3141
 
3142
static bfd_boolean
3143
on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3144
{
3145
  for (; needed != NULL; needed = needed->next)
3146
    if (strcmp (soname, needed->name) == 0)
3147
      return TRUE;
3148
 
3149
  return FALSE;
3150
}
3151
 
3152
/* Sort symbol by value and section.  */
3153
static int
3154
elf_sort_symbol (const void *arg1, const void *arg2)
3155
{
3156
  const struct elf_link_hash_entry *h1;
3157
  const struct elf_link_hash_entry *h2;
3158
  bfd_signed_vma vdiff;
3159
 
3160
  h1 = *(const struct elf_link_hash_entry **) arg1;
3161
  h2 = *(const struct elf_link_hash_entry **) arg2;
3162
  vdiff = h1->root.u.def.value - h2->root.u.def.value;
3163
  if (vdiff != 0)
3164
    return vdiff > 0 ? 1 : -1;
3165
  else
3166
    {
3167
      long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3168
      if (sdiff != 0)
3169
        return sdiff > 0 ? 1 : -1;
3170
    }
3171
  return 0;
3172
}
3173
 
3174
/* This function is used to adjust offsets into .dynstr for
3175
   dynamic symbols.  This is called via elf_link_hash_traverse.  */
3176
 
3177
static bfd_boolean
3178
elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3179
{
3180
  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3181
 
3182
  if (h->root.type == bfd_link_hash_warning)
3183
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
3184
 
3185
  if (h->dynindx != -1)
3186
    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3187
  return TRUE;
3188
}
3189
 
3190
/* Assign string offsets in .dynstr, update all structures referencing
3191
   them.  */
3192
 
3193
static bfd_boolean
3194
elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3195
{
3196
  struct elf_link_hash_table *hash_table = elf_hash_table (info);
3197
  struct elf_link_local_dynamic_entry *entry;
3198
  struct elf_strtab_hash *dynstr = hash_table->dynstr;
3199
  bfd *dynobj = hash_table->dynobj;
3200
  asection *sdyn;
3201
  bfd_size_type size;
3202
  const struct elf_backend_data *bed;
3203
  bfd_byte *extdyn;
3204
 
3205
  _bfd_elf_strtab_finalize (dynstr);
3206
  size = _bfd_elf_strtab_size (dynstr);
3207
 
3208
  bed = get_elf_backend_data (dynobj);
3209
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3210
  BFD_ASSERT (sdyn != NULL);
3211
 
3212
  /* Update all .dynamic entries referencing .dynstr strings.  */
3213
  for (extdyn = sdyn->contents;
3214
       extdyn < sdyn->contents + sdyn->size;
3215
       extdyn += bed->s->sizeof_dyn)
3216
    {
3217
      Elf_Internal_Dyn dyn;
3218
 
3219
      bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3220
      switch (dyn.d_tag)
3221
        {
3222
        case DT_STRSZ:
3223
          dyn.d_un.d_val = size;
3224
          break;
3225
        case DT_NEEDED:
3226
        case DT_SONAME:
3227
        case DT_RPATH:
3228
        case DT_RUNPATH:
3229
        case DT_FILTER:
3230
        case DT_AUXILIARY:
3231
        case DT_AUDIT:
3232
        case DT_DEPAUDIT:
3233
          dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3234
          break;
3235
        default:
3236
          continue;
3237
        }
3238
      bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3239
    }
3240
 
3241
  /* Now update local dynamic symbols.  */
3242
  for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3243
    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3244
                                                  entry->isym.st_name);
3245
 
3246
  /* And the rest of dynamic symbols.  */
3247
  elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3248
 
3249
  /* Adjust version definitions.  */
3250
  if (elf_tdata (output_bfd)->cverdefs)
3251
    {
3252
      asection *s;
3253
      bfd_byte *p;
3254
      bfd_size_type i;
3255
      Elf_Internal_Verdef def;
3256
      Elf_Internal_Verdaux defaux;
3257
 
3258
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3259
      p = s->contents;
3260
      do
3261
        {
3262
          _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3263
                                   &def);
3264
          p += sizeof (Elf_External_Verdef);
3265
          if (def.vd_aux != sizeof (Elf_External_Verdef))
3266
            continue;
3267
          for (i = 0; i < def.vd_cnt; ++i)
3268
            {
3269
              _bfd_elf_swap_verdaux_in (output_bfd,
3270
                                        (Elf_External_Verdaux *) p, &defaux);
3271
              defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3272
                                                        defaux.vda_name);
3273
              _bfd_elf_swap_verdaux_out (output_bfd,
3274
                                         &defaux, (Elf_External_Verdaux *) p);
3275
              p += sizeof (Elf_External_Verdaux);
3276
            }
3277
        }
3278
      while (def.vd_next);
3279
    }
3280
 
3281
  /* Adjust version references.  */
3282
  if (elf_tdata (output_bfd)->verref)
3283
    {
3284
      asection *s;
3285
      bfd_byte *p;
3286
      bfd_size_type i;
3287
      Elf_Internal_Verneed need;
3288
      Elf_Internal_Vernaux needaux;
3289
 
3290
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3291
      p = s->contents;
3292
      do
3293
        {
3294
          _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3295
                                    &need);
3296
          need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3297
          _bfd_elf_swap_verneed_out (output_bfd, &need,
3298
                                     (Elf_External_Verneed *) p);
3299
          p += sizeof (Elf_External_Verneed);
3300
          for (i = 0; i < need.vn_cnt; ++i)
3301
            {
3302
              _bfd_elf_swap_vernaux_in (output_bfd,
3303
                                        (Elf_External_Vernaux *) p, &needaux);
3304
              needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3305
                                                         needaux.vna_name);
3306
              _bfd_elf_swap_vernaux_out (output_bfd,
3307
                                         &needaux,
3308
                                         (Elf_External_Vernaux *) p);
3309
              p += sizeof (Elf_External_Vernaux);
3310
            }
3311
        }
3312
      while (need.vn_next);
3313
    }
3314
 
3315
  return TRUE;
3316
}
3317
 
3318
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3319
   The default is to only match when the INPUT and OUTPUT are exactly
3320
   the same target.  */
3321
 
3322
bfd_boolean
3323
_bfd_elf_default_relocs_compatible (const bfd_target *input,
3324
                                    const bfd_target *output)
3325
{
3326
  return input == output;
3327
}
3328
 
3329
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3330
   This version is used when different targets for the same architecture
3331
   are virtually identical.  */
3332
 
3333
bfd_boolean
3334
_bfd_elf_relocs_compatible (const bfd_target *input,
3335
                            const bfd_target *output)
3336
{
3337
  const struct elf_backend_data *obed, *ibed;
3338
 
3339
  if (input == output)
3340
    return TRUE;
3341
 
3342
  ibed = xvec_get_elf_backend_data (input);
3343
  obed = xvec_get_elf_backend_data (output);
3344
 
3345
  if (ibed->arch != obed->arch)
3346
    return FALSE;
3347
 
3348
  /* If both backends are using this function, deem them compatible.  */
3349
  return ibed->relocs_compatible == obed->relocs_compatible;
3350
}
3351
 
3352
/* Add symbols from an ELF object file to the linker hash table.  */
3353
 
3354
static bfd_boolean
3355
elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3356
{
3357
  Elf_Internal_Ehdr *ehdr;
3358
  Elf_Internal_Shdr *hdr;
3359
  bfd_size_type symcount;
3360
  bfd_size_type extsymcount;
3361
  bfd_size_type extsymoff;
3362
  struct elf_link_hash_entry **sym_hash;
3363
  bfd_boolean dynamic;
3364
  Elf_External_Versym *extversym = NULL;
3365
  Elf_External_Versym *ever;
3366
  struct elf_link_hash_entry *weaks;
3367
  struct elf_link_hash_entry **nondeflt_vers = NULL;
3368
  bfd_size_type nondeflt_vers_cnt = 0;
3369
  Elf_Internal_Sym *isymbuf = NULL;
3370
  Elf_Internal_Sym *isym;
3371
  Elf_Internal_Sym *isymend;
3372
  const struct elf_backend_data *bed;
3373
  bfd_boolean add_needed;
3374
  struct elf_link_hash_table *htab;
3375
  bfd_size_type amt;
3376
  void *alloc_mark = NULL;
3377
  struct bfd_hash_entry **old_table = NULL;
3378
  unsigned int old_size = 0;
3379
  unsigned int old_count = 0;
3380
  void *old_tab = NULL;
3381
  void *old_hash;
3382
  void *old_ent;
3383
  struct bfd_link_hash_entry *old_undefs = NULL;
3384
  struct bfd_link_hash_entry *old_undefs_tail = NULL;
3385
  long old_dynsymcount = 0;
3386
  size_t tabsize = 0;
3387
  size_t hashsize = 0;
3388
 
3389
  htab = elf_hash_table (info);
3390
  bed = get_elf_backend_data (abfd);
3391
 
3392
  if ((abfd->flags & DYNAMIC) == 0)
3393
    dynamic = FALSE;
3394
  else
3395
    {
3396
      dynamic = TRUE;
3397
 
3398
      /* You can't use -r against a dynamic object.  Also, there's no
3399
         hope of using a dynamic object which does not exactly match
3400
         the format of the output file.  */
3401
      if (info->relocatable
3402
          || !is_elf_hash_table (htab)
3403
          || info->output_bfd->xvec != abfd->xvec)
3404
        {
3405
          if (info->relocatable)
3406
            bfd_set_error (bfd_error_invalid_operation);
3407
          else
3408
            bfd_set_error (bfd_error_wrong_format);
3409
          goto error_return;
3410
        }
3411
    }
3412
 
3413
  ehdr = elf_elfheader (abfd);
3414
  if (info->warn_alternate_em
3415
      && bed->elf_machine_code != ehdr->e_machine
3416
      && ((bed->elf_machine_alt1 != 0
3417
           && ehdr->e_machine == bed->elf_machine_alt1)
3418
          || (bed->elf_machine_alt2 != 0
3419
              && ehdr->e_machine == bed->elf_machine_alt2)))
3420
    info->callbacks->einfo
3421
      (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3422
       ehdr->e_machine, abfd, bed->elf_machine_code);
3423
 
3424
  /* As a GNU extension, any input sections which are named
3425
     .gnu.warning.SYMBOL are treated as warning symbols for the given
3426
     symbol.  This differs from .gnu.warning sections, which generate
3427
     warnings when they are included in an output file.  */
3428
  /* PR 12761: Also generate this warning when building shared libraries.  */
3429
  if (info->executable || info->shared)
3430
    {
3431
      asection *s;
3432
 
3433
      for (s = abfd->sections; s != NULL; s = s->next)
3434
        {
3435
          const char *name;
3436
 
3437
          name = bfd_get_section_name (abfd, s);
3438
          if (CONST_STRNEQ (name, ".gnu.warning."))
3439
            {
3440
              char *msg;
3441
              bfd_size_type sz;
3442
 
3443
              name += sizeof ".gnu.warning." - 1;
3444
 
3445
              /* If this is a shared object, then look up the symbol
3446
                 in the hash table.  If it is there, and it is already
3447
                 been defined, then we will not be using the entry
3448
                 from this shared object, so we don't need to warn.
3449
                 FIXME: If we see the definition in a regular object
3450
                 later on, we will warn, but we shouldn't.  The only
3451
                 fix is to keep track of what warnings we are supposed
3452
                 to emit, and then handle them all at the end of the
3453
                 link.  */
3454
              if (dynamic)
3455
                {
3456
                  struct elf_link_hash_entry *h;
3457
 
3458
                  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3459
 
3460
                  /* FIXME: What about bfd_link_hash_common?  */
3461
                  if (h != NULL
3462
                      && (h->root.type == bfd_link_hash_defined
3463
                          || h->root.type == bfd_link_hash_defweak))
3464
                    {
3465
                      /* We don't want to issue this warning.  Clobber
3466
                         the section size so that the warning does not
3467
                         get copied into the output file.  */
3468
                      s->size = 0;
3469
                      continue;
3470
                    }
3471
                }
3472
 
3473
              sz = s->size;
3474
              msg = (char *) bfd_alloc (abfd, sz + 1);
3475
              if (msg == NULL)
3476
                goto error_return;
3477
 
3478
              if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3479
                goto error_return;
3480
 
3481
              msg[sz] = '\0';
3482
 
3483
              if (! (_bfd_generic_link_add_one_symbol
3484
                     (info, abfd, name, BSF_WARNING, s, 0, msg,
3485
                      FALSE, bed->collect, NULL)))
3486
                goto error_return;
3487
 
3488
              if (! info->relocatable)
3489
                {
3490
                  /* Clobber the section size so that the warning does
3491
                     not get copied into the output file.  */
3492
                  s->size = 0;
3493
 
3494
                  /* Also set SEC_EXCLUDE, so that symbols defined in
3495
                     the warning section don't get copied to the output.  */
3496
                  s->flags |= SEC_EXCLUDE;
3497
                }
3498
            }
3499
        }
3500
    }
3501
 
3502
  add_needed = TRUE;
3503
  if (! dynamic)
3504
    {
3505
      /* If we are creating a shared library, create all the dynamic
3506
         sections immediately.  We need to attach them to something,
3507
         so we attach them to this BFD, provided it is the right
3508
         format.  FIXME: If there are no input BFD's of the same
3509
         format as the output, we can't make a shared library.  */
3510
      if (info->shared
3511
          && is_elf_hash_table (htab)
3512
          && info->output_bfd->xvec == abfd->xvec
3513
          && !htab->dynamic_sections_created)
3514
        {
3515
          if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3516
            goto error_return;
3517
        }
3518
    }
3519
  else if (!is_elf_hash_table (htab))
3520
    goto error_return;
3521
  else
3522
    {
3523
      asection *s;
3524
      const char *soname = NULL;
3525
      char *audit = NULL;
3526
      struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3527
      int ret;
3528
 
3529
      /* ld --just-symbols and dynamic objects don't mix very well.
3530
         ld shouldn't allow it.  */
3531
      if ((s = abfd->sections) != NULL
3532
          && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3533
        abort ();
3534
 
3535
      /* If this dynamic lib was specified on the command line with
3536
         --as-needed in effect, then we don't want to add a DT_NEEDED
3537
         tag unless the lib is actually used.  Similary for libs brought
3538
         in by another lib's DT_NEEDED.  When --no-add-needed is used
3539
         on a dynamic lib, we don't want to add a DT_NEEDED entry for
3540
         any dynamic library in DT_NEEDED tags in the dynamic lib at
3541
         all.  */
3542
      add_needed = (elf_dyn_lib_class (abfd)
3543
                    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3544
                       | DYN_NO_NEEDED)) == 0;
3545
 
3546
      s = bfd_get_section_by_name (abfd, ".dynamic");
3547
      if (s != NULL)
3548
        {
3549
          bfd_byte *dynbuf;
3550
          bfd_byte *extdyn;
3551
          unsigned int elfsec;
3552
          unsigned long shlink;
3553
 
3554
          if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3555
            {
3556
error_free_dyn:
3557
              free (dynbuf);
3558
              goto error_return;
3559
            }
3560
 
3561
          elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3562
          if (elfsec == SHN_BAD)
3563
            goto error_free_dyn;
3564
          shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3565
 
3566
          for (extdyn = dynbuf;
3567
               extdyn < dynbuf + s->size;
3568
               extdyn += bed->s->sizeof_dyn)
3569
            {
3570
              Elf_Internal_Dyn dyn;
3571
 
3572
              bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3573
              if (dyn.d_tag == DT_SONAME)
3574
                {
3575
                  unsigned int tagv = dyn.d_un.d_val;
3576
                  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3577
                  if (soname == NULL)
3578
                    goto error_free_dyn;
3579
                }
3580
              if (dyn.d_tag == DT_NEEDED)
3581
                {
3582
                  struct bfd_link_needed_list *n, **pn;
3583
                  char *fnm, *anm;
3584
                  unsigned int tagv = dyn.d_un.d_val;
3585
 
3586
                  amt = sizeof (struct bfd_link_needed_list);
3587
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3588
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3589
                  if (n == NULL || fnm == NULL)
3590
                    goto error_free_dyn;
3591
                  amt = strlen (fnm) + 1;
3592
                  anm = (char *) bfd_alloc (abfd, amt);
3593
                  if (anm == NULL)
3594
                    goto error_free_dyn;
3595
                  memcpy (anm, fnm, amt);
3596
                  n->name = anm;
3597
                  n->by = abfd;
3598
                  n->next = NULL;
3599
                  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3600
                    ;
3601
                  *pn = n;
3602
                }
3603
              if (dyn.d_tag == DT_RUNPATH)
3604
                {
3605
                  struct bfd_link_needed_list *n, **pn;
3606
                  char *fnm, *anm;
3607
                  unsigned int tagv = dyn.d_un.d_val;
3608
 
3609
                  amt = sizeof (struct bfd_link_needed_list);
3610
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3611
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3612
                  if (n == NULL || fnm == NULL)
3613
                    goto error_free_dyn;
3614
                  amt = strlen (fnm) + 1;
3615
                  anm = (char *) bfd_alloc (abfd, amt);
3616
                  if (anm == NULL)
3617
                    goto error_free_dyn;
3618
                  memcpy (anm, fnm, amt);
3619
                  n->name = anm;
3620
                  n->by = abfd;
3621
                  n->next = NULL;
3622
                  for (pn = & runpath;
3623
                       *pn != NULL;
3624
                       pn = &(*pn)->next)
3625
                    ;
3626
                  *pn = n;
3627
                }
3628
              /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3629
              if (!runpath && dyn.d_tag == DT_RPATH)
3630
                {
3631
                  struct bfd_link_needed_list *n, **pn;
3632
                  char *fnm, *anm;
3633
                  unsigned int tagv = dyn.d_un.d_val;
3634
 
3635
                  amt = sizeof (struct bfd_link_needed_list);
3636
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3637
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3638
                  if (n == NULL || fnm == NULL)
3639
                    goto error_free_dyn;
3640
                  amt = strlen (fnm) + 1;
3641
                  anm = (char *) bfd_alloc (abfd, amt);
3642
                  if (anm == NULL)
3643
                    goto error_free_dyn;
3644
                  memcpy (anm, fnm, amt);
3645
                  n->name = anm;
3646
                  n->by = abfd;
3647
                  n->next = NULL;
3648
                  for (pn = & rpath;
3649
                       *pn != NULL;
3650
                       pn = &(*pn)->next)
3651
                    ;
3652
                  *pn = n;
3653
                }
3654
              if (dyn.d_tag == DT_AUDIT)
3655
                {
3656
                  unsigned int tagv = dyn.d_un.d_val;
3657
                  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3658
                }
3659
            }
3660
 
3661
          free (dynbuf);
3662
        }
3663
 
3664
      /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3665
         frees all more recently bfd_alloc'd blocks as well.  */
3666
      if (runpath)
3667
        rpath = runpath;
3668
 
3669
      if (rpath)
3670
        {
3671
          struct bfd_link_needed_list **pn;
3672
          for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3673
            ;
3674
          *pn = rpath;
3675
        }
3676
 
3677
      /* We do not want to include any of the sections in a dynamic
3678
         object in the output file.  We hack by simply clobbering the
3679
         list of sections in the BFD.  This could be handled more
3680
         cleanly by, say, a new section flag; the existing
3681
         SEC_NEVER_LOAD flag is not the one we want, because that one
3682
         still implies that the section takes up space in the output
3683
         file.  */
3684
      bfd_section_list_clear (abfd);
3685
 
3686
      /* Find the name to use in a DT_NEEDED entry that refers to this
3687
         object.  If the object has a DT_SONAME entry, we use it.
3688
         Otherwise, if the generic linker stuck something in
3689
         elf_dt_name, we use that.  Otherwise, we just use the file
3690
         name.  */
3691
      if (soname == NULL || *soname == '\0')
3692
        {
3693
          soname = elf_dt_name (abfd);
3694
          if (soname == NULL || *soname == '\0')
3695
            soname = bfd_get_filename (abfd);
3696
        }
3697
 
3698
      /* Save the SONAME because sometimes the linker emulation code
3699
         will need to know it.  */
3700
      elf_dt_name (abfd) = soname;
3701
 
3702
      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3703
      if (ret < 0)
3704
        goto error_return;
3705
 
3706
      /* If we have already included this dynamic object in the
3707
         link, just ignore it.  There is no reason to include a
3708
         particular dynamic object more than once.  */
3709
      if (ret > 0)
3710
        return TRUE;
3711
 
3712
      /* Save the DT_AUDIT entry for the linker emulation code. */
3713
      elf_dt_audit (abfd) = audit;
3714
    }
3715
 
3716
  /* If this is a dynamic object, we always link against the .dynsym
3717
     symbol table, not the .symtab symbol table.  The dynamic linker
3718
     will only see the .dynsym symbol table, so there is no reason to
3719
     look at .symtab for a dynamic object.  */
3720
 
3721
  if (! dynamic || elf_dynsymtab (abfd) == 0)
3722
    hdr = &elf_tdata (abfd)->symtab_hdr;
3723
  else
3724
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3725
 
3726
  symcount = hdr->sh_size / bed->s->sizeof_sym;
3727
 
3728
  /* The sh_info field of the symtab header tells us where the
3729
     external symbols start.  We don't care about the local symbols at
3730
     this point.  */
3731
  if (elf_bad_symtab (abfd))
3732
    {
3733
      extsymcount = symcount;
3734
      extsymoff = 0;
3735
    }
3736
  else
3737
    {
3738
      extsymcount = symcount - hdr->sh_info;
3739
      extsymoff = hdr->sh_info;
3740
    }
3741
 
3742
  sym_hash = NULL;
3743
  if (extsymcount != 0)
3744
    {
3745
      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3746
                                      NULL, NULL, NULL);
3747
      if (isymbuf == NULL)
3748
        goto error_return;
3749
 
3750
      /* We store a pointer to the hash table entry for each external
3751
         symbol.  */
3752
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3753
      sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3754
      if (sym_hash == NULL)
3755
        goto error_free_sym;
3756
      elf_sym_hashes (abfd) = sym_hash;
3757
    }
3758
 
3759
  if (dynamic)
3760
    {
3761
      /* Read in any version definitions.  */
3762
      if (!_bfd_elf_slurp_version_tables (abfd,
3763
                                          info->default_imported_symver))
3764
        goto error_free_sym;
3765
 
3766
      /* Read in the symbol versions, but don't bother to convert them
3767
         to internal format.  */
3768
      if (elf_dynversym (abfd) != 0)
3769
        {
3770
          Elf_Internal_Shdr *versymhdr;
3771
 
3772
          versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3773
          extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3774
          if (extversym == NULL)
3775
            goto error_free_sym;
3776
          amt = versymhdr->sh_size;
3777
          if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3778
              || bfd_bread (extversym, amt, abfd) != amt)
3779
            goto error_free_vers;
3780
        }
3781
    }
3782
 
3783
  /* If we are loading an as-needed shared lib, save the symbol table
3784
     state before we start adding symbols.  If the lib turns out
3785
     to be unneeded, restore the state.  */
3786
  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3787
    {
3788
      unsigned int i;
3789
      size_t entsize;
3790
 
3791
      for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3792
        {
3793
          struct bfd_hash_entry *p;
3794
          struct elf_link_hash_entry *h;
3795
 
3796
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3797
            {
3798
              h = (struct elf_link_hash_entry *) p;
3799
              entsize += htab->root.table.entsize;
3800
              if (h->root.type == bfd_link_hash_warning)
3801
                entsize += htab->root.table.entsize;
3802
            }
3803
        }
3804
 
3805
      tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3806
      hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3807
      old_tab = bfd_malloc (tabsize + entsize + hashsize);
3808
      if (old_tab == NULL)
3809
        goto error_free_vers;
3810
 
3811
      /* Remember the current objalloc pointer, so that all mem for
3812
         symbols added can later be reclaimed.  */
3813
      alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3814
      if (alloc_mark == NULL)
3815
        goto error_free_vers;
3816
 
3817
      /* Make a special call to the linker "notice" function to
3818
         tell it that we are about to handle an as-needed lib.  */
3819
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3820
                                       notice_as_needed, 0, NULL))
3821
        goto error_free_vers;
3822
 
3823
      /* Clone the symbol table and sym hashes.  Remember some
3824
         pointers into the symbol table, and dynamic symbol count.  */
3825
      old_hash = (char *) old_tab + tabsize;
3826
      old_ent = (char *) old_hash + hashsize;
3827
      memcpy (old_tab, htab->root.table.table, tabsize);
3828
      memcpy (old_hash, sym_hash, hashsize);
3829
      old_undefs = htab->root.undefs;
3830
      old_undefs_tail = htab->root.undefs_tail;
3831
      old_table = htab->root.table.table;
3832
      old_size = htab->root.table.size;
3833
      old_count = htab->root.table.count;
3834
      old_dynsymcount = htab->dynsymcount;
3835
 
3836
      for (i = 0; i < htab->root.table.size; i++)
3837
        {
3838
          struct bfd_hash_entry *p;
3839
          struct elf_link_hash_entry *h;
3840
 
3841
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3842
            {
3843
              memcpy (old_ent, p, htab->root.table.entsize);
3844
              old_ent = (char *) old_ent + htab->root.table.entsize;
3845
              h = (struct elf_link_hash_entry *) p;
3846
              if (h->root.type == bfd_link_hash_warning)
3847
                {
3848
                  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3849
                  old_ent = (char *) old_ent + htab->root.table.entsize;
3850
                }
3851
            }
3852
        }
3853
    }
3854
 
3855
  weaks = NULL;
3856
  ever = extversym != NULL ? extversym + extsymoff : NULL;
3857
  for (isym = isymbuf, isymend = isymbuf + extsymcount;
3858
       isym < isymend;
3859
       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3860
    {
3861
      int bind;
3862
      bfd_vma value;
3863
      asection *sec, *new_sec;
3864
      flagword flags;
3865
      const char *name;
3866
      struct elf_link_hash_entry *h;
3867
      bfd_boolean definition;
3868
      bfd_boolean size_change_ok;
3869
      bfd_boolean type_change_ok;
3870
      bfd_boolean new_weakdef;
3871
      bfd_boolean override;
3872
      bfd_boolean common;
3873
      unsigned int old_alignment;
3874
      bfd *old_bfd;
3875
      bfd * undef_bfd = NULL;
3876
 
3877
      override = FALSE;
3878
 
3879
      flags = BSF_NO_FLAGS;
3880
      sec = NULL;
3881
      value = isym->st_value;
3882
      *sym_hash = NULL;
3883
      common = bed->common_definition (isym);
3884
 
3885
      bind = ELF_ST_BIND (isym->st_info);
3886
      switch (bind)
3887
        {
3888
        case STB_LOCAL:
3889
          /* This should be impossible, since ELF requires that all
3890
             global symbols follow all local symbols, and that sh_info
3891
             point to the first global symbol.  Unfortunately, Irix 5
3892
             screws this up.  */
3893
          continue;
3894
 
3895
        case STB_GLOBAL:
3896
          if (isym->st_shndx != SHN_UNDEF && !common)
3897
            flags = BSF_GLOBAL;
3898
          break;
3899
 
3900
        case STB_WEAK:
3901
          flags = BSF_WEAK;
3902
          break;
3903
 
3904
        case STB_GNU_UNIQUE:
3905
          flags = BSF_GNU_UNIQUE;
3906
          break;
3907
 
3908
        default:
3909
          /* Leave it up to the processor backend.  */
3910
          break;
3911
        }
3912
 
3913
      if (isym->st_shndx == SHN_UNDEF)
3914
        sec = bfd_und_section_ptr;
3915
      else if (isym->st_shndx == SHN_ABS)
3916
        sec = bfd_abs_section_ptr;
3917
      else if (isym->st_shndx == SHN_COMMON)
3918
        {
3919
          sec = bfd_com_section_ptr;
3920
          /* What ELF calls the size we call the value.  What ELF
3921
             calls the value we call the alignment.  */
3922
          value = isym->st_size;
3923
        }
3924
      else
3925
        {
3926
          sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3927
          if (sec == NULL)
3928
            sec = bfd_abs_section_ptr;
3929
          else if (sec->kept_section)
3930
            {
3931
              /* Symbols from discarded section are undefined.  We keep
3932
                 its visibility.  */
3933
              sec = bfd_und_section_ptr;
3934
              isym->st_shndx = SHN_UNDEF;
3935
            }
3936
          else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3937
            value -= sec->vma;
3938
        }
3939
 
3940
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3941
                                              isym->st_name);
3942
      if (name == NULL)
3943
        goto error_free_vers;
3944
 
3945
      if (isym->st_shndx == SHN_COMMON
3946
          && (abfd->flags & BFD_PLUGIN) != 0)
3947
        {
3948
          asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3949
 
3950
          if (xc == NULL)
3951
            {
3952
              flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3953
                                 | SEC_EXCLUDE);
3954
              xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3955
              if (xc == NULL)
3956
                goto error_free_vers;
3957
            }
3958
          sec = xc;
3959
        }
3960
      else if (isym->st_shndx == SHN_COMMON
3961
               && ELF_ST_TYPE (isym->st_info) == STT_TLS
3962
               && !info->relocatable)
3963
        {
3964
          asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3965
 
3966
          if (tcomm == NULL)
3967
            {
3968
              flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3969
                                 | SEC_LINKER_CREATED);
3970
              tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3971
              if (tcomm == NULL)
3972
                goto error_free_vers;
3973
            }
3974
          sec = tcomm;
3975
        }
3976
      else if (bed->elf_add_symbol_hook)
3977
        {
3978
          if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3979
                                             &sec, &value))
3980
            goto error_free_vers;
3981
 
3982
          /* The hook function sets the name to NULL if this symbol
3983
             should be skipped for some reason.  */
3984
          if (name == NULL)
3985
            continue;
3986
        }
3987
 
3988
      /* Sanity check that all possibilities were handled.  */
3989
      if (sec == NULL)
3990
        {
3991
          bfd_set_error (bfd_error_bad_value);
3992
          goto error_free_vers;
3993
        }
3994
 
3995
      if (bfd_is_und_section (sec)
3996
          || bfd_is_com_section (sec))
3997
        definition = FALSE;
3998
      else
3999
        definition = TRUE;
4000
 
4001
      size_change_ok = FALSE;
4002
      type_change_ok = bed->type_change_ok;
4003
      old_alignment = 0;
4004
      old_bfd = NULL;
4005
      new_sec = sec;
4006
 
4007
      if (is_elf_hash_table (htab))
4008
        {
4009
          Elf_Internal_Versym iver;
4010
          unsigned int vernum = 0;
4011
          bfd_boolean skip;
4012
 
4013
          /* If this is a definition of a symbol which was previously
4014
             referenced in a non-weak manner then make a note of the bfd
4015
             that contained the reference.  This is used if we need to
4016
             refer to the source of the reference later on.  */
4017
          if (! bfd_is_und_section (sec))
4018
            {
4019
              h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4020
 
4021
              if (h != NULL
4022
                  && h->root.type == bfd_link_hash_undefined
4023
                  && h->root.u.undef.abfd)
4024
                undef_bfd = h->root.u.undef.abfd;
4025
            }
4026
 
4027
          if (ever == NULL)
4028
            {
4029
              if (info->default_imported_symver)
4030
                /* Use the default symbol version created earlier.  */
4031
                iver.vs_vers = elf_tdata (abfd)->cverdefs;
4032
              else
4033
                iver.vs_vers = 0;
4034
            }
4035
          else
4036
            _bfd_elf_swap_versym_in (abfd, ever, &iver);
4037
 
4038
          vernum = iver.vs_vers & VERSYM_VERSION;
4039
 
4040
          /* If this is a hidden symbol, or if it is not version
4041
             1, we append the version name to the symbol name.
4042
             However, we do not modify a non-hidden absolute symbol
4043
             if it is not a function, because it might be the version
4044
             symbol itself.  FIXME: What if it isn't?  */
4045
          if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4046
              || (vernum > 1
4047
                  && (!bfd_is_abs_section (sec)
4048
                      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049
            {
4050
              const char *verstr;
4051
              size_t namelen, verlen, newlen;
4052
              char *newname, *p;
4053
 
4054
              if (isym->st_shndx != SHN_UNDEF)
4055
                {
4056
                  if (vernum > elf_tdata (abfd)->cverdefs)
4057
                    verstr = NULL;
4058
                  else if (vernum > 1)
4059
                    verstr =
4060
                      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4061
                  else
4062
                    verstr = "";
4063
 
4064
                  if (verstr == NULL)
4065
                    {
4066
                      (*_bfd_error_handler)
4067
                        (_("%B: %s: invalid version %u (max %d)"),
4068
                         abfd, name, vernum,
4069
                         elf_tdata (abfd)->cverdefs);
4070
                      bfd_set_error (bfd_error_bad_value);
4071
                      goto error_free_vers;
4072
                    }
4073
                }
4074
              else
4075
                {
4076
                  /* We cannot simply test for the number of
4077
                     entries in the VERNEED section since the
4078
                     numbers for the needed versions do not start
4079
                     at 0.  */
4080
                  Elf_Internal_Verneed *t;
4081
 
4082
                  verstr = NULL;
4083
                  for (t = elf_tdata (abfd)->verref;
4084
                       t != NULL;
4085
                       t = t->vn_nextref)
4086
                    {
4087
                      Elf_Internal_Vernaux *a;
4088
 
4089
                      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4090
                        {
4091
                          if (a->vna_other == vernum)
4092
                            {
4093
                              verstr = a->vna_nodename;
4094
                              break;
4095
                            }
4096
                        }
4097
                      if (a != NULL)
4098
                        break;
4099
                    }
4100
                  if (verstr == NULL)
4101
                    {
4102
                      (*_bfd_error_handler)
4103
                        (_("%B: %s: invalid needed version %d"),
4104
                         abfd, name, vernum);
4105
                      bfd_set_error (bfd_error_bad_value);
4106
                      goto error_free_vers;
4107
                    }
4108
                }
4109
 
4110
              namelen = strlen (name);
4111
              verlen = strlen (verstr);
4112
              newlen = namelen + verlen + 2;
4113
              if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4114
                  && isym->st_shndx != SHN_UNDEF)
4115
                ++newlen;
4116
 
4117
              newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4118
              if (newname == NULL)
4119
                goto error_free_vers;
4120
              memcpy (newname, name, namelen);
4121
              p = newname + namelen;
4122
              *p++ = ELF_VER_CHR;
4123
              /* If this is a defined non-hidden version symbol,
4124
                 we add another @ to the name.  This indicates the
4125
                 default version of the symbol.  */
4126
              if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4127
                  && isym->st_shndx != SHN_UNDEF)
4128
                *p++ = ELF_VER_CHR;
4129
              memcpy (p, verstr, verlen + 1);
4130
 
4131
              name = newname;
4132
            }
4133
 
4134
          /* If necessary, make a second attempt to locate the bfd
4135
             containing an unresolved, non-weak reference to the
4136
             current symbol.  */
4137
          if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4138
            {
4139
              h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4140
 
4141
              if (h != NULL
4142
                  && h->root.type == bfd_link_hash_undefined
4143
                  && h->root.u.undef.abfd)
4144
                undef_bfd = h->root.u.undef.abfd;
4145
            }
4146
 
4147
          if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4148
                                      &value, &old_alignment,
4149
                                      sym_hash, &skip, &override,
4150
                                      &type_change_ok, &size_change_ok))
4151
            goto error_free_vers;
4152
 
4153
          if (skip)
4154
            continue;
4155
 
4156
          if (override)
4157
            definition = FALSE;
4158
 
4159
          h = *sym_hash;
4160
          while (h->root.type == bfd_link_hash_indirect
4161
                 || h->root.type == bfd_link_hash_warning)
4162
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
4163
 
4164
          /* Remember the old alignment if this is a common symbol, so
4165
             that we don't reduce the alignment later on.  We can't
4166
             check later, because _bfd_generic_link_add_one_symbol
4167
             will set a default for the alignment which we want to
4168
             override. We also remember the old bfd where the existing
4169
             definition comes from.  */
4170
          switch (h->root.type)
4171
            {
4172
            default:
4173
              break;
4174
 
4175
            case bfd_link_hash_defined:
4176
            case bfd_link_hash_defweak:
4177
              old_bfd = h->root.u.def.section->owner;
4178
              break;
4179
 
4180
            case bfd_link_hash_common:
4181
              old_bfd = h->root.u.c.p->section->owner;
4182
              old_alignment = h->root.u.c.p->alignment_power;
4183
              break;
4184
            }
4185
 
4186
          if (elf_tdata (abfd)->verdef != NULL
4187
              && ! override
4188
              && vernum > 1
4189
              && definition)
4190
            h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4191
        }
4192
 
4193
      if (! (_bfd_generic_link_add_one_symbol
4194
             (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4195
              (struct bfd_link_hash_entry **) sym_hash)))
4196
        goto error_free_vers;
4197
 
4198
      h = *sym_hash;
4199
      while (h->root.type == bfd_link_hash_indirect
4200
             || h->root.type == bfd_link_hash_warning)
4201
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
4202
 
4203
      *sym_hash = h;
4204
      if (is_elf_hash_table (htab))
4205
        h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4206
 
4207
      new_weakdef = FALSE;
4208
      if (dynamic
4209
          && definition
4210
          && (flags & BSF_WEAK) != 0
4211
          && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4212
          && is_elf_hash_table (htab)
4213
          && h->u.weakdef == NULL)
4214
        {
4215
          /* Keep a list of all weak defined non function symbols from
4216
             a dynamic object, using the weakdef field.  Later in this
4217
             function we will set the weakdef field to the correct
4218
             value.  We only put non-function symbols from dynamic
4219
             objects on this list, because that happens to be the only
4220
             time we need to know the normal symbol corresponding to a
4221
             weak symbol, and the information is time consuming to
4222
             figure out.  If the weakdef field is not already NULL,
4223
             then this symbol was already defined by some previous
4224
             dynamic object, and we will be using that previous
4225
             definition anyhow.  */
4226
 
4227
          h->u.weakdef = weaks;
4228
          weaks = h;
4229
          new_weakdef = TRUE;
4230
        }
4231
 
4232
      /* Set the alignment of a common symbol.  */
4233
      if ((common || bfd_is_com_section (sec))
4234
          && h->root.type == bfd_link_hash_common)
4235
        {
4236
          unsigned int align;
4237
 
4238
          if (common)
4239
            align = bfd_log2 (isym->st_value);
4240
          else
4241
            {
4242
              /* The new symbol is a common symbol in a shared object.
4243
                 We need to get the alignment from the section.  */
4244
              align = new_sec->alignment_power;
4245
            }
4246
          if (align > old_alignment)
4247
            h->root.u.c.p->alignment_power = align;
4248
          else
4249
            h->root.u.c.p->alignment_power = old_alignment;
4250
        }
4251
 
4252
      if (is_elf_hash_table (htab))
4253
        {
4254
          bfd_boolean dynsym;
4255
 
4256
          /* Check the alignment when a common symbol is involved. This
4257
             can change when a common symbol is overridden by a normal
4258
             definition or a common symbol is ignored due to the old
4259
             normal definition. We need to make sure the maximum
4260
             alignment is maintained.  */
4261
          if ((old_alignment || common)
4262
              && h->root.type != bfd_link_hash_common)
4263
            {
4264
              unsigned int common_align;
4265
              unsigned int normal_align;
4266
              unsigned int symbol_align;
4267
              bfd *normal_bfd;
4268
              bfd *common_bfd;
4269
 
4270
              symbol_align = ffs (h->root.u.def.value) - 1;
4271
              if (h->root.u.def.section->owner != NULL
4272
                  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4273
                {
4274
                  normal_align = h->root.u.def.section->alignment_power;
4275
                  if (normal_align > symbol_align)
4276
                    normal_align = symbol_align;
4277
                }
4278
              else
4279
                normal_align = symbol_align;
4280
 
4281
              if (old_alignment)
4282
                {
4283
                  common_align = old_alignment;
4284
                  common_bfd = old_bfd;
4285
                  normal_bfd = abfd;
4286
                }
4287
              else
4288
                {
4289
                  common_align = bfd_log2 (isym->st_value);
4290
                  common_bfd = abfd;
4291
                  normal_bfd = old_bfd;
4292
                }
4293
 
4294
              if (normal_align < common_align)
4295
                {
4296
                  /* PR binutils/2735 */
4297
                  if (normal_bfd == NULL)
4298
                    (*_bfd_error_handler)
4299
                      (_("Warning: alignment %u of common symbol `%s' in %B"
4300
                         " is greater than the alignment (%u) of its section %A"),
4301
                       common_bfd, h->root.u.def.section,
4302
                       1 << common_align, name, 1 << normal_align);
4303
                  else
4304
                    (*_bfd_error_handler)
4305
                      (_("Warning: alignment %u of symbol `%s' in %B"
4306
                         " is smaller than %u in %B"),
4307
                       normal_bfd, common_bfd,
4308
                       1 << normal_align, name, 1 << common_align);
4309
                }
4310
            }
4311
 
4312
          /* Remember the symbol size if it isn't undefined.  */
4313
          if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4314
              && (definition || h->size == 0))
4315
            {
4316
              if (h->size != 0
4317
                  && h->size != isym->st_size
4318
                  && ! size_change_ok)
4319
                (*_bfd_error_handler)
4320
                  (_("Warning: size of symbol `%s' changed"
4321
                     " from %lu in %B to %lu in %B"),
4322
                   old_bfd, abfd,
4323
                   name, (unsigned long) h->size,
4324
                   (unsigned long) isym->st_size);
4325
 
4326
              h->size = isym->st_size;
4327
            }
4328
 
4329
          /* If this is a common symbol, then we always want H->SIZE
4330
             to be the size of the common symbol.  The code just above
4331
             won't fix the size if a common symbol becomes larger.  We
4332
             don't warn about a size change here, because that is
4333
             covered by --warn-common.  Allow changed between different
4334
             function types.  */
4335
          if (h->root.type == bfd_link_hash_common)
4336
            h->size = h->root.u.c.size;
4337
 
4338
          if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4339
              && (definition || h->type == STT_NOTYPE))
4340
            {
4341
              unsigned int type = ELF_ST_TYPE (isym->st_info);
4342
 
4343
              /* Turn an IFUNC symbol from a DSO into a normal FUNC
4344
                 symbol.  */
4345
              if (type == STT_GNU_IFUNC
4346
                  && (abfd->flags & DYNAMIC) != 0)
4347
                type = STT_FUNC;
4348
 
4349
              if (h->type != type)
4350
                {
4351
                  if (h->type != STT_NOTYPE && ! type_change_ok)
4352
                    (*_bfd_error_handler)
4353
                      (_("Warning: type of symbol `%s' changed"
4354
                         " from %d to %d in %B"),
4355
                       abfd, name, h->type, type);
4356
 
4357
                  h->type = type;
4358
                }
4359
            }
4360
 
4361
          /* Merge st_other field.  */
4362
          elf_merge_st_other (abfd, h, isym, definition, dynamic);
4363
 
4364
          /* Set a flag in the hash table entry indicating the type of
4365
             reference or definition we just found.  Keep a count of
4366
             the number of dynamic symbols we find.  A dynamic symbol
4367
             is one which is referenced or defined by both a regular
4368
             object and a shared object.  */
4369
          dynsym = FALSE;
4370
          if (! dynamic)
4371
            {
4372
              if (! definition)
4373
                {
4374
                  h->ref_regular = 1;
4375
                  if (bind != STB_WEAK)
4376
                    h->ref_regular_nonweak = 1;
4377
                }
4378
              else
4379
                {
4380
                  h->def_regular = 1;
4381
                  if (h->def_dynamic)
4382
                    {
4383
                      h->def_dynamic = 0;
4384
                      h->ref_dynamic = 1;
4385
                      h->dynamic_def = 1;
4386
                    }
4387
                }
4388
              if (! info->executable
4389
                  || h->def_dynamic
4390
                  || h->ref_dynamic)
4391
                dynsym = TRUE;
4392
            }
4393
          else
4394
            {
4395
              if (! definition)
4396
                h->ref_dynamic = 1;
4397
              else
4398
                h->def_dynamic = 1;
4399
              if (h->def_regular
4400
                  || h->ref_regular
4401
                  || (h->u.weakdef != NULL
4402
                      && ! new_weakdef
4403
                      && h->u.weakdef->dynindx != -1))
4404
                dynsym = TRUE;
4405
            }
4406
 
4407
          if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4408
            {
4409
              /* We don't want to make debug symbol dynamic.  */
4410
              dynsym = FALSE;
4411
            }
4412
 
4413
          if (definition)
4414
            h->target_internal = isym->st_target_internal;
4415
 
4416
          /* Check to see if we need to add an indirect symbol for
4417
             the default name.  */
4418
          if (definition || h->root.type == bfd_link_hash_common)
4419
            if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4420
                                              &sec, &value, &dynsym,
4421
                                              override))
4422
              goto error_free_vers;
4423
 
4424
          if (definition && !dynamic)
4425
            {
4426
              char *p = strchr (name, ELF_VER_CHR);
4427
              if (p != NULL && p[1] != ELF_VER_CHR)
4428
                {
4429
                  /* Queue non-default versions so that .symver x, x@FOO
4430
                     aliases can be checked.  */
4431
                  if (!nondeflt_vers)
4432
                    {
4433
                      amt = ((isymend - isym + 1)
4434
                             * sizeof (struct elf_link_hash_entry *));
4435
                      nondeflt_vers =
4436
                          (struct elf_link_hash_entry **) bfd_malloc (amt);
4437
                      if (!nondeflt_vers)
4438
                        goto error_free_vers;
4439
                    }
4440
                  nondeflt_vers[nondeflt_vers_cnt++] = h;
4441
                }
4442
            }
4443
 
4444
          if (dynsym && h->dynindx == -1)
4445
            {
4446
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
4447
                goto error_free_vers;
4448
              if (h->u.weakdef != NULL
4449
                  && ! new_weakdef
4450
                  && h->u.weakdef->dynindx == -1)
4451
                {
4452
                  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4453
                    goto error_free_vers;
4454
                }
4455
            }
4456
          else if (dynsym && h->dynindx != -1)
4457
            /* If the symbol already has a dynamic index, but
4458
               visibility says it should not be visible, turn it into
4459
               a local symbol.  */
4460
            switch (ELF_ST_VISIBILITY (h->other))
4461
              {
4462
              case STV_INTERNAL:
4463
              case STV_HIDDEN:
4464
                (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4465
                dynsym = FALSE;
4466
                break;
4467
              }
4468
 
4469
          if (!add_needed
4470
              && definition
4471
              && ((dynsym
4472
                   && h->ref_regular)
4473
                  || (h->ref_dynamic
4474
                      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4475
                      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4476
            {
4477
              int ret;
4478
              const char *soname = elf_dt_name (abfd);
4479
 
4480
              /* A symbol from a library loaded via DT_NEEDED of some
4481
                 other library is referenced by a regular object.
4482
                 Add a DT_NEEDED entry for it.  Issue an error if
4483
                 --no-add-needed is used and the reference was not
4484
                 a weak one.  */
4485
              if (undef_bfd != NULL
4486
                  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4487
                {
4488
                  (*_bfd_error_handler)
4489
                    (_("%B: undefined reference to symbol '%s'"),
4490
                     undef_bfd, name);
4491
                  (*_bfd_error_handler)
4492
                    (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4493
                     abfd, name);
4494
                  bfd_set_error (bfd_error_invalid_operation);
4495
                  goto error_free_vers;
4496
                }
4497
 
4498
              elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4499
                  (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4500
 
4501
              add_needed = TRUE;
4502
              ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4503
              if (ret < 0)
4504
                goto error_free_vers;
4505
 
4506
              BFD_ASSERT (ret == 0);
4507
            }
4508
        }
4509
    }
4510
 
4511
  if (extversym != NULL)
4512
    {
4513
      free (extversym);
4514
      extversym = NULL;
4515
    }
4516
 
4517
  if (isymbuf != NULL)
4518
    {
4519
      free (isymbuf);
4520
      isymbuf = NULL;
4521
    }
4522
 
4523
  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4524
    {
4525
      unsigned int i;
4526
 
4527
      /* Restore the symbol table.  */
4528
      if (bed->as_needed_cleanup)
4529
        (*bed->as_needed_cleanup) (abfd, info);
4530
      old_hash = (char *) old_tab + tabsize;
4531
      old_ent = (char *) old_hash + hashsize;
4532
      sym_hash = elf_sym_hashes (abfd);
4533
      htab->root.table.table = old_table;
4534
      htab->root.table.size = old_size;
4535
      htab->root.table.count = old_count;
4536
      memcpy (htab->root.table.table, old_tab, tabsize);
4537
      memcpy (sym_hash, old_hash, hashsize);
4538
      htab->root.undefs = old_undefs;
4539
      htab->root.undefs_tail = old_undefs_tail;
4540
      for (i = 0; i < htab->root.table.size; i++)
4541
        {
4542
          struct bfd_hash_entry *p;
4543
          struct elf_link_hash_entry *h;
4544
 
4545
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4546
            {
4547
              h = (struct elf_link_hash_entry *) p;
4548
              if (h->root.type == bfd_link_hash_warning)
4549
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
4550
              if (h->dynindx >= old_dynsymcount)
4551
                _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4552
 
4553
              memcpy (p, old_ent, htab->root.table.entsize);
4554
              old_ent = (char *) old_ent + htab->root.table.entsize;
4555
              h = (struct elf_link_hash_entry *) p;
4556
              if (h->root.type == bfd_link_hash_warning)
4557
                {
4558
                  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4559
                  old_ent = (char *) old_ent + htab->root.table.entsize;
4560
                }
4561
            }
4562
        }
4563
 
4564
      /* Make a special call to the linker "notice" function to
4565
         tell it that symbols added for crefs may need to be removed.  */
4566
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4567
                                       notice_not_needed, 0, NULL))
4568
        goto error_free_vers;
4569
 
4570
      free (old_tab);
4571
      objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4572
                           alloc_mark);
4573
      if (nondeflt_vers != NULL)
4574
        free (nondeflt_vers);
4575
      return TRUE;
4576
    }
4577
 
4578
  if (old_tab != NULL)
4579
    {
4580
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4581
                                       notice_needed, 0, NULL))
4582
        goto error_free_vers;
4583
      free (old_tab);
4584
      old_tab = NULL;
4585
    }
4586
 
4587
  /* Now that all the symbols from this input file are created, handle
4588
     .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4589
  if (nondeflt_vers != NULL)
4590
    {
4591
      bfd_size_type cnt, symidx;
4592
 
4593
      for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4594
        {
4595
          struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4596
          char *shortname, *p;
4597
 
4598
          p = strchr (h->root.root.string, ELF_VER_CHR);
4599
          if (p == NULL
4600
              || (h->root.type != bfd_link_hash_defined
4601
                  && h->root.type != bfd_link_hash_defweak))
4602
            continue;
4603
 
4604
          amt = p - h->root.root.string;
4605
          shortname = (char *) bfd_malloc (amt + 1);
4606
          if (!shortname)
4607
            goto error_free_vers;
4608
          memcpy (shortname, h->root.root.string, amt);
4609
          shortname[amt] = '\0';
4610
 
4611
          hi = (struct elf_link_hash_entry *)
4612
               bfd_link_hash_lookup (&htab->root, shortname,
4613
                                     FALSE, FALSE, FALSE);
4614
          if (hi != NULL
4615
              && hi->root.type == h->root.type
4616
              && hi->root.u.def.value == h->root.u.def.value
4617
              && hi->root.u.def.section == h->root.u.def.section)
4618
            {
4619
              (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4620
              hi->root.type = bfd_link_hash_indirect;
4621
              hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4622
              (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4623
              sym_hash = elf_sym_hashes (abfd);
4624
              if (sym_hash)
4625
                for (symidx = 0; symidx < extsymcount; ++symidx)
4626
                  if (sym_hash[symidx] == hi)
4627
                    {
4628
                      sym_hash[symidx] = h;
4629
                      break;
4630
                    }
4631
            }
4632
          free (shortname);
4633
        }
4634
      free (nondeflt_vers);
4635
      nondeflt_vers = NULL;
4636
    }
4637
 
4638
  /* Now set the weakdefs field correctly for all the weak defined
4639
     symbols we found.  The only way to do this is to search all the
4640
     symbols.  Since we only need the information for non functions in
4641
     dynamic objects, that's the only time we actually put anything on
4642
     the list WEAKS.  We need this information so that if a regular
4643
     object refers to a symbol defined weakly in a dynamic object, the
4644
     real symbol in the dynamic object is also put in the dynamic
4645
     symbols; we also must arrange for both symbols to point to the
4646
     same memory location.  We could handle the general case of symbol
4647
     aliasing, but a general symbol alias can only be generated in
4648
     assembler code, handling it correctly would be very time
4649
     consuming, and other ELF linkers don't handle general aliasing
4650
     either.  */
4651
  if (weaks != NULL)
4652
    {
4653
      struct elf_link_hash_entry **hpp;
4654
      struct elf_link_hash_entry **hppend;
4655
      struct elf_link_hash_entry **sorted_sym_hash;
4656
      struct elf_link_hash_entry *h;
4657
      size_t sym_count;
4658
 
4659
      /* Since we have to search the whole symbol list for each weak
4660
         defined symbol, search time for N weak defined symbols will be
4661
         O(N^2). Binary search will cut it down to O(NlogN).  */
4662
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4663
      sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4664
      if (sorted_sym_hash == NULL)
4665
        goto error_return;
4666
      sym_hash = sorted_sym_hash;
4667
      hpp = elf_sym_hashes (abfd);
4668
      hppend = hpp + extsymcount;
4669
      sym_count = 0;
4670
      for (; hpp < hppend; hpp++)
4671
        {
4672
          h = *hpp;
4673
          if (h != NULL
4674
              && h->root.type == bfd_link_hash_defined
4675
              && !bed->is_function_type (h->type))
4676
            {
4677
              *sym_hash = h;
4678
              sym_hash++;
4679
              sym_count++;
4680
            }
4681
        }
4682
 
4683
      qsort (sorted_sym_hash, sym_count,
4684
             sizeof (struct elf_link_hash_entry *),
4685
             elf_sort_symbol);
4686
 
4687
      while (weaks != NULL)
4688
        {
4689
          struct elf_link_hash_entry *hlook;
4690
          asection *slook;
4691
          bfd_vma vlook;
4692
          long ilook;
4693
          size_t i, j, idx;
4694
 
4695
          hlook = weaks;
4696
          weaks = hlook->u.weakdef;
4697
          hlook->u.weakdef = NULL;
4698
 
4699
          BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4700
                      || hlook->root.type == bfd_link_hash_defweak
4701
                      || hlook->root.type == bfd_link_hash_common
4702
                      || hlook->root.type == bfd_link_hash_indirect);
4703
          slook = hlook->root.u.def.section;
4704
          vlook = hlook->root.u.def.value;
4705
 
4706
          ilook = -1;
4707
          i = 0;
4708
          j = sym_count;
4709
          while (i < j)
4710
            {
4711
              bfd_signed_vma vdiff;
4712
              idx = (i + j) / 2;
4713
              h = sorted_sym_hash [idx];
4714
              vdiff = vlook - h->root.u.def.value;
4715
              if (vdiff < 0)
4716
                j = idx;
4717
              else if (vdiff > 0)
4718
                i = idx + 1;
4719
              else
4720
                {
4721
                  long sdiff = slook->id - h->root.u.def.section->id;
4722
                  if (sdiff < 0)
4723
                    j = idx;
4724
                  else if (sdiff > 0)
4725
                    i = idx + 1;
4726
                  else
4727
                    {
4728
                      ilook = idx;
4729
                      break;
4730
                    }
4731
                }
4732
            }
4733
 
4734
          /* We didn't find a value/section match.  */
4735
          if (ilook == -1)
4736
            continue;
4737
 
4738
          for (i = ilook; i < sym_count; i++)
4739
            {
4740
              h = sorted_sym_hash [i];
4741
 
4742
              /* Stop if value or section doesn't match.  */
4743
              if (h->root.u.def.value != vlook
4744
                  || h->root.u.def.section != slook)
4745
                break;
4746
              else if (h != hlook)
4747
                {
4748
                  hlook->u.weakdef = h;
4749
 
4750
                  /* If the weak definition is in the list of dynamic
4751
                     symbols, make sure the real definition is put
4752
                     there as well.  */
4753
                  if (hlook->dynindx != -1 && h->dynindx == -1)
4754
                    {
4755
                      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4756
                        {
4757
                        err_free_sym_hash:
4758
                          free (sorted_sym_hash);
4759
                          goto error_return;
4760
                        }
4761
                    }
4762
 
4763
                  /* If the real definition is in the list of dynamic
4764
                     symbols, make sure the weak definition is put
4765
                     there as well.  If we don't do this, then the
4766
                     dynamic loader might not merge the entries for the
4767
                     real definition and the weak definition.  */
4768
                  if (h->dynindx != -1 && hlook->dynindx == -1)
4769
                    {
4770
                      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4771
                        goto err_free_sym_hash;
4772
                    }
4773
                  break;
4774
                }
4775
            }
4776
        }
4777
 
4778
      free (sorted_sym_hash);
4779
    }
4780
 
4781
  if (bed->check_directives
4782
      && !(*bed->check_directives) (abfd, info))
4783
    return FALSE;
4784
 
4785
  /* If this object is the same format as the output object, and it is
4786
     not a shared library, then let the backend look through the
4787
     relocs.
4788
 
4789
     This is required to build global offset table entries and to
4790
     arrange for dynamic relocs.  It is not required for the
4791
     particular common case of linking non PIC code, even when linking
4792
     against shared libraries, but unfortunately there is no way of
4793
     knowing whether an object file has been compiled PIC or not.
4794
     Looking through the relocs is not particularly time consuming.
4795
     The problem is that we must either (1) keep the relocs in memory,
4796
     which causes the linker to require additional runtime memory or
4797
     (2) read the relocs twice from the input file, which wastes time.
4798
     This would be a good case for using mmap.
4799
 
4800
     I have no idea how to handle linking PIC code into a file of a
4801
     different format.  It probably can't be done.  */
4802
  if (! dynamic
4803
      && is_elf_hash_table (htab)
4804
      && bed->check_relocs != NULL
4805
      && elf_object_id (abfd) == elf_hash_table_id (htab)
4806
      && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4807
    {
4808
      asection *o;
4809
 
4810
      for (o = abfd->sections; o != NULL; o = o->next)
4811
        {
4812
          Elf_Internal_Rela *internal_relocs;
4813
          bfd_boolean ok;
4814
 
4815
          if ((o->flags & SEC_RELOC) == 0
4816
              || o->reloc_count == 0
4817
              || ((info->strip == strip_all || info->strip == strip_debugger)
4818
                  && (o->flags & SEC_DEBUGGING) != 0)
4819
              || bfd_is_abs_section (o->output_section))
4820
            continue;
4821
 
4822
          internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4823
                                                       info->keep_memory);
4824
          if (internal_relocs == NULL)
4825
            goto error_return;
4826
 
4827
          ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4828
 
4829
          if (elf_section_data (o)->relocs != internal_relocs)
4830
            free (internal_relocs);
4831
 
4832
          if (! ok)
4833
            goto error_return;
4834
        }
4835
    }
4836
 
4837
  /* If this is a non-traditional link, try to optimize the handling
4838
     of the .stab/.stabstr sections.  */
4839
  if (! dynamic
4840
      && ! info->traditional_format
4841
      && is_elf_hash_table (htab)
4842
      && (info->strip != strip_all && info->strip != strip_debugger))
4843
    {
4844
      asection *stabstr;
4845
 
4846
      stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4847
      if (stabstr != NULL)
4848
        {
4849
          bfd_size_type string_offset = 0;
4850
          asection *stab;
4851
 
4852
          for (stab = abfd->sections; stab; stab = stab->next)
4853
            if (CONST_STRNEQ (stab->name, ".stab")
4854
                && (!stab->name[5] ||
4855
                    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4856
                && (stab->flags & SEC_MERGE) == 0
4857
                && !bfd_is_abs_section (stab->output_section))
4858
              {
4859
                struct bfd_elf_section_data *secdata;
4860
 
4861
                secdata = elf_section_data (stab);
4862
                if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4863
                                               stabstr, &secdata->sec_info,
4864
                                               &string_offset))
4865
                  goto error_return;
4866
                if (secdata->sec_info)
4867
                  stab->sec_info_type = ELF_INFO_TYPE_STABS;
4868
            }
4869
        }
4870
    }
4871
 
4872
  if (is_elf_hash_table (htab) && add_needed)
4873
    {
4874
      /* Add this bfd to the loaded list.  */
4875
      struct elf_link_loaded_list *n;
4876
 
4877
      n = (struct elf_link_loaded_list *)
4878
          bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4879
      if (n == NULL)
4880
        goto error_return;
4881
      n->abfd = abfd;
4882
      n->next = htab->loaded;
4883
      htab->loaded = n;
4884
    }
4885
 
4886
  return TRUE;
4887
 
4888
 error_free_vers:
4889
  if (old_tab != NULL)
4890
    free (old_tab);
4891
  if (nondeflt_vers != NULL)
4892
    free (nondeflt_vers);
4893
  if (extversym != NULL)
4894
    free (extversym);
4895
 error_free_sym:
4896
  if (isymbuf != NULL)
4897
    free (isymbuf);
4898
 error_return:
4899
  return FALSE;
4900
}
4901
 
4902
/* Return the linker hash table entry of a symbol that might be
4903
   satisfied by an archive symbol.  Return -1 on error.  */
4904
 
4905
struct elf_link_hash_entry *
4906
_bfd_elf_archive_symbol_lookup (bfd *abfd,
4907
                                struct bfd_link_info *info,
4908
                                const char *name)
4909
{
4910
  struct elf_link_hash_entry *h;
4911
  char *p, *copy;
4912
  size_t len, first;
4913
 
4914
  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4915
  if (h != NULL)
4916
    return h;
4917
 
4918
  /* If this is a default version (the name contains @@), look up the
4919
     symbol again with only one `@' as well as without the version.
4920
     The effect is that references to the symbol with and without the
4921
     version will be matched by the default symbol in the archive.  */
4922
 
4923
  p = strchr (name, ELF_VER_CHR);
4924
  if (p == NULL || p[1] != ELF_VER_CHR)
4925
    return h;
4926
 
4927
  /* First check with only one `@'.  */
4928
  len = strlen (name);
4929
  copy = (char *) bfd_alloc (abfd, len);
4930
  if (copy == NULL)
4931
    return (struct elf_link_hash_entry *) 0 - 1;
4932
 
4933
  first = p - name + 1;
4934
  memcpy (copy, name, first);
4935
  memcpy (copy + first, name + first + 1, len - first);
4936
 
4937
  h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4938
  if (h == NULL)
4939
    {
4940
      /* We also need to check references to the symbol without the
4941
         version.  */
4942
      copy[first - 1] = '\0';
4943
      h = elf_link_hash_lookup (elf_hash_table (info), copy,
4944
                                FALSE, FALSE, FALSE);
4945
    }
4946
 
4947
  bfd_release (abfd, copy);
4948
  return h;
4949
}
4950
 
4951
/* Add symbols from an ELF archive file to the linker hash table.  We
4952
   don't use _bfd_generic_link_add_archive_symbols because of a
4953
   problem which arises on UnixWare.  The UnixWare libc.so is an
4954
   archive which includes an entry libc.so.1 which defines a bunch of
4955
   symbols.  The libc.so archive also includes a number of other
4956
   object files, which also define symbols, some of which are the same
4957
   as those defined in libc.so.1.  Correct linking requires that we
4958
   consider each object file in turn, and include it if it defines any
4959
   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4960
   this; it looks through the list of undefined symbols, and includes
4961
   any object file which defines them.  When this algorithm is used on
4962
   UnixWare, it winds up pulling in libc.so.1 early and defining a
4963
   bunch of symbols.  This means that some of the other objects in the
4964
   archive are not included in the link, which is incorrect since they
4965
   precede libc.so.1 in the archive.
4966
 
4967
   Fortunately, ELF archive handling is simpler than that done by
4968
   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4969
   oddities.  In ELF, if we find a symbol in the archive map, and the
4970
   symbol is currently undefined, we know that we must pull in that
4971
   object file.
4972
 
4973
   Unfortunately, we do have to make multiple passes over the symbol
4974
   table until nothing further is resolved.  */
4975
 
4976
static bfd_boolean
4977
elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4978
{
4979
  symindex c;
4980
  bfd_boolean *defined = NULL;
4981
  bfd_boolean *included = NULL;
4982
  carsym *symdefs;
4983
  bfd_boolean loop;
4984
  bfd_size_type amt;
4985
  const struct elf_backend_data *bed;
4986
  struct elf_link_hash_entry * (*archive_symbol_lookup)
4987
    (bfd *, struct bfd_link_info *, const char *);
4988
 
4989
  if (! bfd_has_map (abfd))
4990
    {
4991
      /* An empty archive is a special case.  */
4992
      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4993
        return TRUE;
4994
      bfd_set_error (bfd_error_no_armap);
4995
      return FALSE;
4996
    }
4997
 
4998
  /* Keep track of all symbols we know to be already defined, and all
4999
     files we know to be already included.  This is to speed up the
5000
     second and subsequent passes.  */
5001
  c = bfd_ardata (abfd)->symdef_count;
5002
  if (c == 0)
5003
    return TRUE;
5004
  amt = c;
5005
  amt *= sizeof (bfd_boolean);
5006
  defined = (bfd_boolean *) bfd_zmalloc (amt);
5007
  included = (bfd_boolean *) bfd_zmalloc (amt);
5008
  if (defined == NULL || included == NULL)
5009
    goto error_return;
5010
 
5011
  symdefs = bfd_ardata (abfd)->symdefs;
5012
  bed = get_elf_backend_data (abfd);
5013
  archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5014
 
5015
  do
5016
    {
5017
      file_ptr last;
5018
      symindex i;
5019
      carsym *symdef;
5020
      carsym *symdefend;
5021
 
5022
      loop = FALSE;
5023
      last = -1;
5024
 
5025
      symdef = symdefs;
5026
      symdefend = symdef + c;
5027
      for (i = 0; symdef < symdefend; symdef++, i++)
5028
        {
5029
          struct elf_link_hash_entry *h;
5030
          bfd *element;
5031
          struct bfd_link_hash_entry *undefs_tail;
5032
          symindex mark;
5033
 
5034
          if (defined[i] || included[i])
5035
            continue;
5036
          if (symdef->file_offset == last)
5037
            {
5038
              included[i] = TRUE;
5039
              continue;
5040
            }
5041
 
5042
          h = archive_symbol_lookup (abfd, info, symdef->name);
5043
          if (h == (struct elf_link_hash_entry *) 0 - 1)
5044
            goto error_return;
5045
 
5046
          if (h == NULL)
5047
            continue;
5048
 
5049
          if (h->root.type == bfd_link_hash_common)
5050
            {
5051
              /* We currently have a common symbol.  The archive map contains
5052
                 a reference to this symbol, so we may want to include it.  We
5053
                 only want to include it however, if this archive element
5054
                 contains a definition of the symbol, not just another common
5055
                 declaration of it.
5056
 
5057
                 Unfortunately some archivers (including GNU ar) will put
5058
                 declarations of common symbols into their archive maps, as
5059
                 well as real definitions, so we cannot just go by the archive
5060
                 map alone.  Instead we must read in the element's symbol
5061
                 table and check that to see what kind of symbol definition
5062
                 this is.  */
5063
              if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5064
                continue;
5065
            }
5066
          else if (h->root.type != bfd_link_hash_undefined)
5067
            {
5068
              if (h->root.type != bfd_link_hash_undefweak)
5069
                defined[i] = TRUE;
5070
              continue;
5071
            }
5072
 
5073
          /* We need to include this archive member.  */
5074
          element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5075
          if (element == NULL)
5076
            goto error_return;
5077
 
5078
          if (! bfd_check_format (element, bfd_object))
5079
            goto error_return;
5080
 
5081
          /* Doublecheck that we have not included this object
5082
             already--it should be impossible, but there may be
5083
             something wrong with the archive.  */
5084
          if (element->archive_pass != 0)
5085
            {
5086
              bfd_set_error (bfd_error_bad_value);
5087
              goto error_return;
5088
            }
5089
          element->archive_pass = 1;
5090
 
5091
          undefs_tail = info->hash->undefs_tail;
5092
 
5093
          if (!(*info->callbacks
5094
                ->add_archive_element) (info, element, symdef->name, &element))
5095
            goto error_return;
5096
          if (!bfd_link_add_symbols (element, info))
5097
            goto error_return;
5098
 
5099
          /* If there are any new undefined symbols, we need to make
5100
             another pass through the archive in order to see whether
5101
             they can be defined.  FIXME: This isn't perfect, because
5102
             common symbols wind up on undefs_tail and because an
5103
             undefined symbol which is defined later on in this pass
5104
             does not require another pass.  This isn't a bug, but it
5105
             does make the code less efficient than it could be.  */
5106
          if (undefs_tail != info->hash->undefs_tail)
5107
            loop = TRUE;
5108
 
5109
          /* Look backward to mark all symbols from this object file
5110
             which we have already seen in this pass.  */
5111
          mark = i;
5112
          do
5113
            {
5114
              included[mark] = TRUE;
5115
              if (mark == 0)
5116
                break;
5117
              --mark;
5118
            }
5119
          while (symdefs[mark].file_offset == symdef->file_offset);
5120
 
5121
          /* We mark subsequent symbols from this object file as we go
5122
             on through the loop.  */
5123
          last = symdef->file_offset;
5124
        }
5125
    }
5126
  while (loop);
5127
 
5128
  free (defined);
5129
  free (included);
5130
 
5131
  return TRUE;
5132
 
5133
 error_return:
5134
  if (defined != NULL)
5135
    free (defined);
5136
  if (included != NULL)
5137
    free (included);
5138
  return FALSE;
5139
}
5140
 
5141
/* Given an ELF BFD, add symbols to the global hash table as
5142
   appropriate.  */
5143
 
5144
bfd_boolean
5145
bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5146
{
5147
  switch (bfd_get_format (abfd))
5148
    {
5149
    case bfd_object:
5150
      return elf_link_add_object_symbols (abfd, info);
5151
    case bfd_archive:
5152
      return elf_link_add_archive_symbols (abfd, info);
5153
    default:
5154
      bfd_set_error (bfd_error_wrong_format);
5155
      return FALSE;
5156
    }
5157
}
5158
 
5159
struct hash_codes_info
5160
{
5161
  unsigned long *hashcodes;
5162
  bfd_boolean error;
5163
};
5164
 
5165
/* This function will be called though elf_link_hash_traverse to store
5166
   all hash value of the exported symbols in an array.  */
5167
 
5168
static bfd_boolean
5169
elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5170
{
5171
  struct hash_codes_info *inf = (struct hash_codes_info *) data;
5172
  const char *name;
5173
  char *p;
5174
  unsigned long ha;
5175
  char *alc = NULL;
5176
 
5177
  if (h->root.type == bfd_link_hash_warning)
5178
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5179
 
5180
  /* Ignore indirect symbols.  These are added by the versioning code.  */
5181
  if (h->dynindx == -1)
5182
    return TRUE;
5183
 
5184
  name = h->root.root.string;
5185
  p = strchr (name, ELF_VER_CHR);
5186
  if (p != NULL)
5187
    {
5188
      alc = (char *) bfd_malloc (p - name + 1);
5189
      if (alc == NULL)
5190
        {
5191
          inf->error = TRUE;
5192
          return FALSE;
5193
        }
5194
      memcpy (alc, name, p - name);
5195
      alc[p - name] = '\0';
5196
      name = alc;
5197
    }
5198
 
5199
  /* Compute the hash value.  */
5200
  ha = bfd_elf_hash (name);
5201
 
5202
  /* Store the found hash value in the array given as the argument.  */
5203
  *(inf->hashcodes)++ = ha;
5204
 
5205
  /* And store it in the struct so that we can put it in the hash table
5206
     later.  */
5207
  h->u.elf_hash_value = ha;
5208
 
5209
  if (alc != NULL)
5210
    free (alc);
5211
 
5212
  return TRUE;
5213
}
5214
 
5215
struct collect_gnu_hash_codes
5216
{
5217
  bfd *output_bfd;
5218
  const struct elf_backend_data *bed;
5219
  unsigned long int nsyms;
5220
  unsigned long int maskbits;
5221
  unsigned long int *hashcodes;
5222
  unsigned long int *hashval;
5223
  unsigned long int *indx;
5224
  unsigned long int *counts;
5225
  bfd_vma *bitmask;
5226
  bfd_byte *contents;
5227
  long int min_dynindx;
5228
  unsigned long int bucketcount;
5229
  unsigned long int symindx;
5230
  long int local_indx;
5231
  long int shift1, shift2;
5232
  unsigned long int mask;
5233
  bfd_boolean error;
5234
};
5235
 
5236
/* This function will be called though elf_link_hash_traverse to store
5237
   all hash value of the exported symbols in an array.  */
5238
 
5239
static bfd_boolean
5240
elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5241
{
5242
  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5243
  const char *name;
5244
  char *p;
5245
  unsigned long ha;
5246
  char *alc = NULL;
5247
 
5248
  if (h->root.type == bfd_link_hash_warning)
5249
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5250
 
5251
  /* Ignore indirect symbols.  These are added by the versioning code.  */
5252
  if (h->dynindx == -1)
5253
    return TRUE;
5254
 
5255
  /* Ignore also local symbols and undefined symbols.  */
5256
  if (! (*s->bed->elf_hash_symbol) (h))
5257
    return TRUE;
5258
 
5259
  name = h->root.root.string;
5260
  p = strchr (name, ELF_VER_CHR);
5261
  if (p != NULL)
5262
    {
5263
      alc = (char *) bfd_malloc (p - name + 1);
5264
      if (alc == NULL)
5265
        {
5266
          s->error = TRUE;
5267
          return FALSE;
5268
        }
5269
      memcpy (alc, name, p - name);
5270
      alc[p - name] = '\0';
5271
      name = alc;
5272
    }
5273
 
5274
  /* Compute the hash value.  */
5275
  ha = bfd_elf_gnu_hash (name);
5276
 
5277
  /* Store the found hash value in the array for compute_bucket_count,
5278
     and also for .dynsym reordering purposes.  */
5279
  s->hashcodes[s->nsyms] = ha;
5280
  s->hashval[h->dynindx] = ha;
5281
  ++s->nsyms;
5282
  if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5283
    s->min_dynindx = h->dynindx;
5284
 
5285
  if (alc != NULL)
5286
    free (alc);
5287
 
5288
  return TRUE;
5289
}
5290
 
5291
/* This function will be called though elf_link_hash_traverse to do
5292
   final dynaminc symbol renumbering.  */
5293
 
5294
static bfd_boolean
5295
elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5296
{
5297
  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5298
  unsigned long int bucket;
5299
  unsigned long int val;
5300
 
5301
  if (h->root.type == bfd_link_hash_warning)
5302
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
5303
 
5304
  /* Ignore indirect symbols.  */
5305
  if (h->dynindx == -1)
5306
    return TRUE;
5307
 
5308
  /* Ignore also local symbols and undefined symbols.  */
5309
  if (! (*s->bed->elf_hash_symbol) (h))
5310
    {
5311
      if (h->dynindx >= s->min_dynindx)
5312
        h->dynindx = s->local_indx++;
5313
      return TRUE;
5314
    }
5315
 
5316
  bucket = s->hashval[h->dynindx] % s->bucketcount;
5317
  val = (s->hashval[h->dynindx] >> s->shift1)
5318
        & ((s->maskbits >> s->shift1) - 1);
5319
  s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5320
  s->bitmask[val]
5321
    |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5322
  val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5323
  if (s->counts[bucket] == 1)
5324
    /* Last element terminates the chain.  */
5325
    val |= 1;
5326
  bfd_put_32 (s->output_bfd, val,
5327
              s->contents + (s->indx[bucket] - s->symindx) * 4);
5328
  --s->counts[bucket];
5329
  h->dynindx = s->indx[bucket]++;
5330
  return TRUE;
5331
}
5332
 
5333
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5334
 
5335
bfd_boolean
5336
_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5337
{
5338
  return !(h->forced_local
5339
           || h->root.type == bfd_link_hash_undefined
5340
           || h->root.type == bfd_link_hash_undefweak
5341
           || ((h->root.type == bfd_link_hash_defined
5342
                || h->root.type == bfd_link_hash_defweak)
5343
               && h->root.u.def.section->output_section == NULL));
5344
}
5345
 
5346
/* Array used to determine the number of hash table buckets to use
5347
   based on the number of symbols there are.  If there are fewer than
5348
   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5349
   fewer than 37 we use 17 buckets, and so forth.  We never use more
5350
   than 32771 buckets.  */
5351
 
5352
static const size_t elf_buckets[] =
5353
{
5354
  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5355
  16411, 32771, 0
5356
};
5357
 
5358
/* Compute bucket count for hashing table.  We do not use a static set
5359
   of possible tables sizes anymore.  Instead we determine for all
5360
   possible reasonable sizes of the table the outcome (i.e., the
5361
   number of collisions etc) and choose the best solution.  The
5362
   weighting functions are not too simple to allow the table to grow
5363
   without bounds.  Instead one of the weighting factors is the size.
5364
   Therefore the result is always a good payoff between few collisions
5365
   (= short chain lengths) and table size.  */
5366
static size_t
5367
compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5368
                      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5369
                      unsigned long int nsyms,
5370
                      int gnu_hash)
5371
{
5372
  size_t best_size = 0;
5373
  unsigned long int i;
5374
 
5375
  /* We have a problem here.  The following code to optimize the table
5376
     size requires an integer type with more the 32 bits.  If
5377
     BFD_HOST_U_64_BIT is set we know about such a type.  */
5378
#ifdef BFD_HOST_U_64_BIT
5379
  if (info->optimize)
5380
    {
5381
      size_t minsize;
5382
      size_t maxsize;
5383
      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5384
      bfd *dynobj = elf_hash_table (info)->dynobj;
5385
      size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5386
      const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5387
      unsigned long int *counts;
5388
      bfd_size_type amt;
5389
      unsigned int no_improvement_count = 0;
5390
 
5391
      /* Possible optimization parameters: if we have NSYMS symbols we say
5392
         that the hashing table must at least have NSYMS/4 and at most
5393
         2*NSYMS buckets.  */
5394
      minsize = nsyms / 4;
5395
      if (minsize == 0)
5396
        minsize = 1;
5397
      best_size = maxsize = nsyms * 2;
5398
      if (gnu_hash)
5399
        {
5400
          if (minsize < 2)
5401
            minsize = 2;
5402
          if ((best_size & 31) == 0)
5403
            ++best_size;
5404
        }
5405
 
5406
      /* Create array where we count the collisions in.  We must use bfd_malloc
5407
         since the size could be large.  */
5408
      amt = maxsize;
5409
      amt *= sizeof (unsigned long int);
5410
      counts = (unsigned long int *) bfd_malloc (amt);
5411
      if (counts == NULL)
5412
        return 0;
5413
 
5414
      /* Compute the "optimal" size for the hash table.  The criteria is a
5415
         minimal chain length.  The minor criteria is (of course) the size
5416
         of the table.  */
5417
      for (i = minsize; i < maxsize; ++i)
5418
        {
5419
          /* Walk through the array of hashcodes and count the collisions.  */
5420
          BFD_HOST_U_64_BIT max;
5421
          unsigned long int j;
5422
          unsigned long int fact;
5423
 
5424
          if (gnu_hash && (i & 31) == 0)
5425
            continue;
5426
 
5427
          memset (counts, '\0', i * sizeof (unsigned long int));
5428
 
5429
          /* Determine how often each hash bucket is used.  */
5430
          for (j = 0; j < nsyms; ++j)
5431
            ++counts[hashcodes[j] % i];
5432
 
5433
          /* For the weight function we need some information about the
5434
             pagesize on the target.  This is information need not be 100%
5435
             accurate.  Since this information is not available (so far) we
5436
             define it here to a reasonable default value.  If it is crucial
5437
             to have a better value some day simply define this value.  */
5438
# ifndef BFD_TARGET_PAGESIZE
5439
#  define BFD_TARGET_PAGESIZE   (4096)
5440
# endif
5441
 
5442
          /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5443
             and the chains.  */
5444
          max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5445
 
5446
# if 1
5447
          /* Variant 1: optimize for short chains.  We add the squares
5448
             of all the chain lengths (which favors many small chain
5449
             over a few long chains).  */
5450
          for (j = 0; j < i; ++j)
5451
            max += counts[j] * counts[j];
5452
 
5453
          /* This adds penalties for the overall size of the table.  */
5454
          fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5455
          max *= fact * fact;
5456
# else
5457
          /* Variant 2: Optimize a lot more for small table.  Here we
5458
             also add squares of the size but we also add penalties for
5459
             empty slots (the +1 term).  */
5460
          for (j = 0; j < i; ++j)
5461
            max += (1 + counts[j]) * (1 + counts[j]);
5462
 
5463
          /* The overall size of the table is considered, but not as
5464
             strong as in variant 1, where it is squared.  */
5465
          fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5466
          max *= fact;
5467
# endif
5468
 
5469
          /* Compare with current best results.  */
5470
          if (max < best_chlen)
5471
            {
5472
              best_chlen = max;
5473
              best_size = i;
5474
              no_improvement_count = 0;
5475
            }
5476
          /* PR 11843: Avoid futile long searches for the best bucket size
5477
             when there are a large number of symbols.  */
5478
          else if (++no_improvement_count == 100)
5479
            break;
5480
        }
5481
 
5482
      free (counts);
5483
    }
5484
  else
5485
#endif /* defined (BFD_HOST_U_64_BIT) */
5486
    {
5487
      /* This is the fallback solution if no 64bit type is available or if we
5488
         are not supposed to spend much time on optimizations.  We select the
5489
         bucket count using a fixed set of numbers.  */
5490
      for (i = 0; elf_buckets[i] != 0; i++)
5491
        {
5492
          best_size = elf_buckets[i];
5493
          if (nsyms < elf_buckets[i + 1])
5494
            break;
5495
        }
5496
      if (gnu_hash && best_size < 2)
5497
        best_size = 2;
5498
    }
5499
 
5500
  return best_size;
5501
}
5502
 
5503
/* Size any SHT_GROUP section for ld -r.  */
5504
 
5505
bfd_boolean
5506
_bfd_elf_size_group_sections (struct bfd_link_info *info)
5507
{
5508
  bfd *ibfd;
5509
 
5510
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5511
    if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5512
        && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5513
      return FALSE;
5514
  return TRUE;
5515
}
5516
 
5517
/* Set up the sizes and contents of the ELF dynamic sections.  This is
5518
   called by the ELF linker emulation before_allocation routine.  We
5519
   must set the sizes of the sections before the linker sets the
5520
   addresses of the various sections.  */
5521
 
5522
bfd_boolean
5523
bfd_elf_size_dynamic_sections (bfd *output_bfd,
5524
                               const char *soname,
5525
                               const char *rpath,
5526
                               const char *filter_shlib,
5527
                               const char *audit,
5528
                               const char *depaudit,
5529
                               const char * const *auxiliary_filters,
5530
                               struct bfd_link_info *info,
5531
                               asection **sinterpptr,
5532
                               struct bfd_elf_version_tree *verdefs)
5533
{
5534
  bfd_size_type soname_indx;
5535
  bfd *dynobj;
5536
  const struct elf_backend_data *bed;
5537
  struct elf_info_failed asvinfo;
5538
 
5539
  *sinterpptr = NULL;
5540
 
5541
  soname_indx = (bfd_size_type) -1;
5542
 
5543
  if (!is_elf_hash_table (info->hash))
5544
    return TRUE;
5545
 
5546
  bed = get_elf_backend_data (output_bfd);
5547
  if (info->execstack)
5548
    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5549
  else if (info->noexecstack)
5550
    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5551
  else
5552
    {
5553
      bfd *inputobj;
5554
      asection *notesec = NULL;
5555
      int exec = 0;
5556
 
5557
      for (inputobj = info->input_bfds;
5558
           inputobj;
5559
           inputobj = inputobj->link_next)
5560
        {
5561
          asection *s;
5562
 
5563
          if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5564
            continue;
5565
          s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5566
          if (s)
5567
            {
5568
              if (s->flags & SEC_CODE)
5569
                exec = PF_X;
5570
              notesec = s;
5571
            }
5572
          else if (bed->default_execstack)
5573
            exec = PF_X;
5574
        }
5575
      if (notesec)
5576
        {
5577
          elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5578
          if (exec && info->relocatable
5579
              && notesec->output_section != bfd_abs_section_ptr)
5580
            notesec->output_section->flags |= SEC_CODE;
5581
        }
5582
    }
5583
 
5584
  /* Any syms created from now on start with -1 in
5585
     got.refcount/offset and plt.refcount/offset.  */
5586
  elf_hash_table (info)->init_got_refcount
5587
    = elf_hash_table (info)->init_got_offset;
5588
  elf_hash_table (info)->init_plt_refcount
5589
    = elf_hash_table (info)->init_plt_offset;
5590
 
5591
  if (info->relocatable
5592
      && !_bfd_elf_size_group_sections (info))
5593
    return FALSE;
5594
 
5595
  /* The backend may have to create some sections regardless of whether
5596
     we're dynamic or not.  */
5597
  if (bed->elf_backend_always_size_sections
5598
      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5599
    return FALSE;
5600
 
5601
  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5602
    return FALSE;
5603
 
5604
  dynobj = elf_hash_table (info)->dynobj;
5605
 
5606
  /* If there were no dynamic objects in the link, there is nothing to
5607
     do here.  */
5608
  if (dynobj == NULL)
5609
    return TRUE;
5610
 
5611
  if (elf_hash_table (info)->dynamic_sections_created)
5612
    {
5613
      struct elf_info_failed eif;
5614
      struct elf_link_hash_entry *h;
5615
      asection *dynstr;
5616
      struct bfd_elf_version_tree *t;
5617
      struct bfd_elf_version_expr *d;
5618
      asection *s;
5619
      bfd_boolean all_defined;
5620
 
5621
      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5622
      BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5623
 
5624
      if (soname != NULL)
5625
        {
5626
          soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5627
                                             soname, TRUE);
5628
          if (soname_indx == (bfd_size_type) -1
5629
              || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5630
            return FALSE;
5631
        }
5632
 
5633
      if (info->symbolic)
5634
        {
5635
          if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5636
            return FALSE;
5637
          info->flags |= DF_SYMBOLIC;
5638
        }
5639
 
5640
      if (rpath != NULL)
5641
        {
5642
          bfd_size_type indx;
5643
 
5644
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5645
                                      TRUE);
5646
          if (indx == (bfd_size_type) -1
5647
              || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5648
            return FALSE;
5649
 
5650
          if  (info->new_dtags)
5651
            {
5652
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5653
              if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5654
                return FALSE;
5655
            }
5656
        }
5657
 
5658
      if (filter_shlib != NULL)
5659
        {
5660
          bfd_size_type indx;
5661
 
5662
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663
                                      filter_shlib, TRUE);
5664
          if (indx == (bfd_size_type) -1
5665
              || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5666
            return FALSE;
5667
        }
5668
 
5669
      if (auxiliary_filters != NULL)
5670
        {
5671
          const char * const *p;
5672
 
5673
          for (p = auxiliary_filters; *p != NULL; p++)
5674
            {
5675
              bfd_size_type indx;
5676
 
5677
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678
                                          *p, TRUE);
5679
              if (indx == (bfd_size_type) -1
5680
                  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5681
                return FALSE;
5682
            }
5683
        }
5684
 
5685
      if (audit != NULL)
5686
        {
5687
          bfd_size_type indx;
5688
 
5689
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5690
                                      TRUE);
5691
          if (indx == (bfd_size_type) -1
5692
              || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5693
            return FALSE;
5694
        }
5695
 
5696
      if (depaudit != NULL)
5697
        {
5698
          bfd_size_type indx;
5699
 
5700
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5701
                                      TRUE);
5702
          if (indx == (bfd_size_type) -1
5703
              || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5704
            return FALSE;
5705
        }
5706
 
5707
      eif.info = info;
5708
      eif.verdefs = verdefs;
5709
      eif.failed = FALSE;
5710
 
5711
      /* If we are supposed to export all symbols into the dynamic symbol
5712
         table (this is not the normal case), then do so.  */
5713
      if (info->export_dynamic
5714
          || (info->executable && info->dynamic))
5715
        {
5716
          elf_link_hash_traverse (elf_hash_table (info),
5717
                                  _bfd_elf_export_symbol,
5718
                                  &eif);
5719
          if (eif.failed)
5720
            return FALSE;
5721
        }
5722
 
5723
      /* Make all global versions with definition.  */
5724
      for (t = verdefs; t != NULL; t = t->next)
5725
        for (d = t->globals.list; d != NULL; d = d->next)
5726
          if (!d->symver && d->literal)
5727
            {
5728
              const char *verstr, *name;
5729
              size_t namelen, verlen, newlen;
5730
              char *newname, *p, leading_char;
5731
              struct elf_link_hash_entry *newh;
5732
 
5733
              leading_char = bfd_get_symbol_leading_char (output_bfd);
5734
              name = d->pattern;
5735
              namelen = strlen (name) + (leading_char != '\0');
5736
              verstr = t->name;
5737
              verlen = strlen (verstr);
5738
              newlen = namelen + verlen + 3;
5739
 
5740
              newname = (char *) bfd_malloc (newlen);
5741
              if (newname == NULL)
5742
                return FALSE;
5743
              newname[0] = leading_char;
5744
              memcpy (newname + (leading_char != '\0'), name, namelen);
5745
 
5746
              /* Check the hidden versioned definition.  */
5747
              p = newname + namelen;
5748
              *p++ = ELF_VER_CHR;
5749
              memcpy (p, verstr, verlen + 1);
5750
              newh = elf_link_hash_lookup (elf_hash_table (info),
5751
                                           newname, FALSE, FALSE,
5752
                                           FALSE);
5753
              if (newh == NULL
5754
                  || (newh->root.type != bfd_link_hash_defined
5755
                      && newh->root.type != bfd_link_hash_defweak))
5756
                {
5757
                  /* Check the default versioned definition.  */
5758
                  *p++ = ELF_VER_CHR;
5759
                  memcpy (p, verstr, verlen + 1);
5760
                  newh = elf_link_hash_lookup (elf_hash_table (info),
5761
                                               newname, FALSE, FALSE,
5762
                                               FALSE);
5763
                }
5764
              free (newname);
5765
 
5766
              /* Mark this version if there is a definition and it is
5767
                 not defined in a shared object.  */
5768
              if (newh != NULL
5769
                  && !newh->def_dynamic
5770
                  && (newh->root.type == bfd_link_hash_defined
5771
                      || newh->root.type == bfd_link_hash_defweak))
5772
                d->symver = 1;
5773
            }
5774
 
5775
      /* Attach all the symbols to their version information.  */
5776
      asvinfo.info = info;
5777
      asvinfo.verdefs = verdefs;
5778
      asvinfo.failed = FALSE;
5779
 
5780
      elf_link_hash_traverse (elf_hash_table (info),
5781
                              _bfd_elf_link_assign_sym_version,
5782
                              &asvinfo);
5783
      if (asvinfo.failed)
5784
        return FALSE;
5785
 
5786
      if (!info->allow_undefined_version)
5787
        {
5788
          /* Check if all global versions have a definition.  */
5789
          all_defined = TRUE;
5790
          for (t = verdefs; t != NULL; t = t->next)
5791
            for (d = t->globals.list; d != NULL; d = d->next)
5792
              if (d->literal && !d->symver && !d->script)
5793
                {
5794
                  (*_bfd_error_handler)
5795
                    (_("%s: undefined version: %s"),
5796
                     d->pattern, t->name);
5797
                  all_defined = FALSE;
5798
                }
5799
 
5800
          if (!all_defined)
5801
            {
5802
              bfd_set_error (bfd_error_bad_value);
5803
              return FALSE;
5804
            }
5805
        }
5806
 
5807
      /* Find all symbols which were defined in a dynamic object and make
5808
         the backend pick a reasonable value for them.  */
5809
      elf_link_hash_traverse (elf_hash_table (info),
5810
                              _bfd_elf_adjust_dynamic_symbol,
5811
                              &eif);
5812
      if (eif.failed)
5813
        return FALSE;
5814
 
5815
      /* Add some entries to the .dynamic section.  We fill in some of the
5816
         values later, in bfd_elf_final_link, but we must add the entries
5817
         now so that we know the final size of the .dynamic section.  */
5818
 
5819
      /* If there are initialization and/or finalization functions to
5820
         call then add the corresponding DT_INIT/DT_FINI entries.  */
5821
      h = (info->init_function
5822
           ? elf_link_hash_lookup (elf_hash_table (info),
5823
                                   info->init_function, FALSE,
5824
                                   FALSE, FALSE)
5825
           : NULL);
5826
      if (h != NULL
5827
          && (h->ref_regular
5828
              || h->def_regular))
5829
        {
5830
          if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5831
            return FALSE;
5832
        }
5833
      h = (info->fini_function
5834
           ? elf_link_hash_lookup (elf_hash_table (info),
5835
                                   info->fini_function, FALSE,
5836
                                   FALSE, FALSE)
5837
           : NULL);
5838
      if (h != NULL
5839
          && (h->ref_regular
5840
              || h->def_regular))
5841
        {
5842
          if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5843
            return FALSE;
5844
        }
5845
 
5846
      s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5847
      if (s != NULL && s->linker_has_input)
5848
        {
5849
          /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5850
          if (! info->executable)
5851
            {
5852
              bfd *sub;
5853
              asection *o;
5854
 
5855
              for (sub = info->input_bfds; sub != NULL;
5856
                   sub = sub->link_next)
5857
                if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5858
                  for (o = sub->sections; o != NULL; o = o->next)
5859
                    if (elf_section_data (o)->this_hdr.sh_type
5860
                        == SHT_PREINIT_ARRAY)
5861
                      {
5862
                        (*_bfd_error_handler)
5863
                          (_("%B: .preinit_array section is not allowed in DSO"),
5864
                           sub);
5865
                        break;
5866
                      }
5867
 
5868
              bfd_set_error (bfd_error_nonrepresentable_section);
5869
              return FALSE;
5870
            }
5871
 
5872
          if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5873
              || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5874
            return FALSE;
5875
        }
5876
      s = bfd_get_section_by_name (output_bfd, ".init_array");
5877
      if (s != NULL && s->linker_has_input)
5878
        {
5879
          if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5880
              || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5881
            return FALSE;
5882
        }
5883
      s = bfd_get_section_by_name (output_bfd, ".fini_array");
5884
      if (s != NULL && s->linker_has_input)
5885
        {
5886
          if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5887
              || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5888
            return FALSE;
5889
        }
5890
 
5891
      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5892
      /* If .dynstr is excluded from the link, we don't want any of
5893
         these tags.  Strictly, we should be checking each section
5894
         individually;  This quick check covers for the case where
5895
         someone does a /DISCARD/ : { *(*) }.  */
5896
      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5897
        {
5898
          bfd_size_type strsize;
5899
 
5900
          strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5901
          if ((info->emit_hash
5902
               && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5903
              || (info->emit_gnu_hash
5904
                  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5905
              || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5906
              || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5907
              || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5908
              || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5909
                                              bed->s->sizeof_sym))
5910
            return FALSE;
5911
        }
5912
    }
5913
 
5914
  /* The backend must work out the sizes of all the other dynamic
5915
     sections.  */
5916
  if (bed->elf_backend_size_dynamic_sections
5917
      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5918
    return FALSE;
5919
 
5920
  if (elf_hash_table (info)->dynamic_sections_created)
5921
    {
5922
      unsigned long section_sym_count;
5923
      asection *s;
5924
 
5925
      /* Set up the version definition section.  */
5926
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5927
      BFD_ASSERT (s != NULL);
5928
 
5929
      /* We may have created additional version definitions if we are
5930
         just linking a regular application.  */
5931
      verdefs = asvinfo.verdefs;
5932
 
5933
      /* Skip anonymous version tag.  */
5934
      if (verdefs != NULL && verdefs->vernum == 0)
5935
        verdefs = verdefs->next;
5936
 
5937
      if (verdefs == NULL && !info->create_default_symver)
5938
        s->flags |= SEC_EXCLUDE;
5939
      else
5940
        {
5941
          unsigned int cdefs;
5942
          bfd_size_type size;
5943
          struct bfd_elf_version_tree *t;
5944
          bfd_byte *p;
5945
          Elf_Internal_Verdef def;
5946
          Elf_Internal_Verdaux defaux;
5947
          struct bfd_link_hash_entry *bh;
5948
          struct elf_link_hash_entry *h;
5949
          const char *name;
5950
 
5951
          cdefs = 0;
5952
          size = 0;
5953
 
5954
          /* Make space for the base version.  */
5955
          size += sizeof (Elf_External_Verdef);
5956
          size += sizeof (Elf_External_Verdaux);
5957
          ++cdefs;
5958
 
5959
          /* Make space for the default version.  */
5960
          if (info->create_default_symver)
5961
            {
5962
              size += sizeof (Elf_External_Verdef);
5963
              ++cdefs;
5964
            }
5965
 
5966
          for (t = verdefs; t != NULL; t = t->next)
5967
            {
5968
              struct bfd_elf_version_deps *n;
5969
 
5970
              /* Don't emit base version twice.  */
5971
              if (t->vernum == 0)
5972
                continue;
5973
 
5974
              size += sizeof (Elf_External_Verdef);
5975
              size += sizeof (Elf_External_Verdaux);
5976
              ++cdefs;
5977
 
5978
              for (n = t->deps; n != NULL; n = n->next)
5979
                size += sizeof (Elf_External_Verdaux);
5980
            }
5981
 
5982
          s->size = size;
5983
          s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5984
          if (s->contents == NULL && s->size != 0)
5985
            return FALSE;
5986
 
5987
          /* Fill in the version definition section.  */
5988
 
5989
          p = s->contents;
5990
 
5991
          def.vd_version = VER_DEF_CURRENT;
5992
          def.vd_flags = VER_FLG_BASE;
5993
          def.vd_ndx = 1;
5994
          def.vd_cnt = 1;
5995
          if (info->create_default_symver)
5996
            {
5997
              def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5998
              def.vd_next = sizeof (Elf_External_Verdef);
5999
            }
6000
          else
6001
            {
6002
              def.vd_aux = sizeof (Elf_External_Verdef);
6003
              def.vd_next = (sizeof (Elf_External_Verdef)
6004
                             + sizeof (Elf_External_Verdaux));
6005
            }
6006
 
6007
          if (soname_indx != (bfd_size_type) -1)
6008
            {
6009
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6010
                                      soname_indx);
6011
              def.vd_hash = bfd_elf_hash (soname);
6012
              defaux.vda_name = soname_indx;
6013
              name = soname;
6014
            }
6015
          else
6016
            {
6017
              bfd_size_type indx;
6018
 
6019
              name = lbasename (output_bfd->filename);
6020
              def.vd_hash = bfd_elf_hash (name);
6021
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6022
                                          name, FALSE);
6023
              if (indx == (bfd_size_type) -1)
6024
                return FALSE;
6025
              defaux.vda_name = indx;
6026
            }
6027
          defaux.vda_next = 0;
6028
 
6029
          _bfd_elf_swap_verdef_out (output_bfd, &def,
6030
                                    (Elf_External_Verdef *) p);
6031
          p += sizeof (Elf_External_Verdef);
6032
          if (info->create_default_symver)
6033
            {
6034
              /* Add a symbol representing this version.  */
6035
              bh = NULL;
6036
              if (! (_bfd_generic_link_add_one_symbol
6037
                     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6038
                      0, NULL, FALSE,
6039
                      get_elf_backend_data (dynobj)->collect, &bh)))
6040
                return FALSE;
6041
              h = (struct elf_link_hash_entry *) bh;
6042
              h->non_elf = 0;
6043
              h->def_regular = 1;
6044
              h->type = STT_OBJECT;
6045
              h->verinfo.vertree = NULL;
6046
 
6047
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
6048
                return FALSE;
6049
 
6050
              /* Create a duplicate of the base version with the same
6051
                 aux block, but different flags.  */
6052
              def.vd_flags = 0;
6053
              def.vd_ndx = 2;
6054
              def.vd_aux = sizeof (Elf_External_Verdef);
6055
              if (verdefs)
6056
                def.vd_next = (sizeof (Elf_External_Verdef)
6057
                               + sizeof (Elf_External_Verdaux));
6058
              else
6059
                def.vd_next = 0;
6060
              _bfd_elf_swap_verdef_out (output_bfd, &def,
6061
                                        (Elf_External_Verdef *) p);
6062
              p += sizeof (Elf_External_Verdef);
6063
            }
6064
          _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6065
                                     (Elf_External_Verdaux *) p);
6066
          p += sizeof (Elf_External_Verdaux);
6067
 
6068
          for (t = verdefs; t != NULL; t = t->next)
6069
            {
6070
              unsigned int cdeps;
6071
              struct bfd_elf_version_deps *n;
6072
 
6073
              /* Don't emit the base version twice.  */
6074
              if (t->vernum == 0)
6075
                continue;
6076
 
6077
              cdeps = 0;
6078
              for (n = t->deps; n != NULL; n = n->next)
6079
                ++cdeps;
6080
 
6081
              /* Add a symbol representing this version.  */
6082
              bh = NULL;
6083
              if (! (_bfd_generic_link_add_one_symbol
6084
                     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6085
                      0, NULL, FALSE,
6086
                      get_elf_backend_data (dynobj)->collect, &bh)))
6087
                return FALSE;
6088
              h = (struct elf_link_hash_entry *) bh;
6089
              h->non_elf = 0;
6090
              h->def_regular = 1;
6091
              h->type = STT_OBJECT;
6092
              h->verinfo.vertree = t;
6093
 
6094
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
6095
                return FALSE;
6096
 
6097
              def.vd_version = VER_DEF_CURRENT;
6098
              def.vd_flags = 0;
6099
              if (t->globals.list == NULL
6100
                  && t->locals.list == NULL
6101
                  && ! t->used)
6102
                def.vd_flags |= VER_FLG_WEAK;
6103
              def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6104
              def.vd_cnt = cdeps + 1;
6105
              def.vd_hash = bfd_elf_hash (t->name);
6106
              def.vd_aux = sizeof (Elf_External_Verdef);
6107
              def.vd_next = 0;
6108
 
6109
              /* If a basever node is next, it *must* be the last node in
6110
                 the chain, otherwise Verdef construction breaks.  */
6111
              if (t->next != NULL && t->next->vernum == 0)
6112
                BFD_ASSERT (t->next->next == NULL);
6113
 
6114
              if (t->next != NULL && t->next->vernum != 0)
6115
                def.vd_next = (sizeof (Elf_External_Verdef)
6116
                               + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6117
 
6118
              _bfd_elf_swap_verdef_out (output_bfd, &def,
6119
                                        (Elf_External_Verdef *) p);
6120
              p += sizeof (Elf_External_Verdef);
6121
 
6122
              defaux.vda_name = h->dynstr_index;
6123
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6124
                                      h->dynstr_index);
6125
              defaux.vda_next = 0;
6126
              if (t->deps != NULL)
6127
                defaux.vda_next = sizeof (Elf_External_Verdaux);
6128
              t->name_indx = defaux.vda_name;
6129
 
6130
              _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6131
                                         (Elf_External_Verdaux *) p);
6132
              p += sizeof (Elf_External_Verdaux);
6133
 
6134
              for (n = t->deps; n != NULL; n = n->next)
6135
                {
6136
                  if (n->version_needed == NULL)
6137
                    {
6138
                      /* This can happen if there was an error in the
6139
                         version script.  */
6140
                      defaux.vda_name = 0;
6141
                    }
6142
                  else
6143
                    {
6144
                      defaux.vda_name = n->version_needed->name_indx;
6145
                      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6146
                                              defaux.vda_name);
6147
                    }
6148
                  if (n->next == NULL)
6149
                    defaux.vda_next = 0;
6150
                  else
6151
                    defaux.vda_next = sizeof (Elf_External_Verdaux);
6152
 
6153
                  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6154
                                             (Elf_External_Verdaux *) p);
6155
                  p += sizeof (Elf_External_Verdaux);
6156
                }
6157
            }
6158
 
6159
          if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6160
              || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6161
            return FALSE;
6162
 
6163
          elf_tdata (output_bfd)->cverdefs = cdefs;
6164
        }
6165
 
6166
      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6167
        {
6168
          if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6169
            return FALSE;
6170
        }
6171
      else if (info->flags & DF_BIND_NOW)
6172
        {
6173
          if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6174
            return FALSE;
6175
        }
6176
 
6177
      if (info->flags_1)
6178
        {
6179
          if (info->executable)
6180
            info->flags_1 &= ~ (DF_1_INITFIRST
6181
                                | DF_1_NODELETE
6182
                                | DF_1_NOOPEN);
6183
          if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6184
            return FALSE;
6185
        }
6186
 
6187
      /* Work out the size of the version reference section.  */
6188
 
6189
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6190
      BFD_ASSERT (s != NULL);
6191
      {
6192
        struct elf_find_verdep_info sinfo;
6193
 
6194
        sinfo.info = info;
6195
        sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6196
        if (sinfo.vers == 0)
6197
          sinfo.vers = 1;
6198
        sinfo.failed = FALSE;
6199
 
6200
        elf_link_hash_traverse (elf_hash_table (info),
6201
                                _bfd_elf_link_find_version_dependencies,
6202
                                &sinfo);
6203
        if (sinfo.failed)
6204
          return FALSE;
6205
 
6206
        if (elf_tdata (output_bfd)->verref == NULL)
6207
          s->flags |= SEC_EXCLUDE;
6208
        else
6209
          {
6210
            Elf_Internal_Verneed *t;
6211
            unsigned int size;
6212
            unsigned int crefs;
6213
            bfd_byte *p;
6214
 
6215
            /* Build the version dependency section.  */
6216
            size = 0;
6217
            crefs = 0;
6218
            for (t = elf_tdata (output_bfd)->verref;
6219
                 t != NULL;
6220
                 t = t->vn_nextref)
6221
              {
6222
                Elf_Internal_Vernaux *a;
6223
 
6224
                size += sizeof (Elf_External_Verneed);
6225
                ++crefs;
6226
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6227
                  size += sizeof (Elf_External_Vernaux);
6228
              }
6229
 
6230
            s->size = size;
6231
            s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6232
            if (s->contents == NULL)
6233
              return FALSE;
6234
 
6235
            p = s->contents;
6236
            for (t = elf_tdata (output_bfd)->verref;
6237
                 t != NULL;
6238
                 t = t->vn_nextref)
6239
              {
6240
                unsigned int caux;
6241
                Elf_Internal_Vernaux *a;
6242
                bfd_size_type indx;
6243
 
6244
                caux = 0;
6245
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6246
                  ++caux;
6247
 
6248
                t->vn_version = VER_NEED_CURRENT;
6249
                t->vn_cnt = caux;
6250
                indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6251
                                            elf_dt_name (t->vn_bfd) != NULL
6252
                                            ? elf_dt_name (t->vn_bfd)
6253
                                            : lbasename (t->vn_bfd->filename),
6254
                                            FALSE);
6255
                if (indx == (bfd_size_type) -1)
6256
                  return FALSE;
6257
                t->vn_file = indx;
6258
                t->vn_aux = sizeof (Elf_External_Verneed);
6259
                if (t->vn_nextref == NULL)
6260
                  t->vn_next = 0;
6261
                else
6262
                  t->vn_next = (sizeof (Elf_External_Verneed)
6263
                                + caux * sizeof (Elf_External_Vernaux));
6264
 
6265
                _bfd_elf_swap_verneed_out (output_bfd, t,
6266
                                           (Elf_External_Verneed *) p);
6267
                p += sizeof (Elf_External_Verneed);
6268
 
6269
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6270
                  {
6271
                    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6272
                    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6273
                                                a->vna_nodename, FALSE);
6274
                    if (indx == (bfd_size_type) -1)
6275
                      return FALSE;
6276
                    a->vna_name = indx;
6277
                    if (a->vna_nextptr == NULL)
6278
                      a->vna_next = 0;
6279
                    else
6280
                      a->vna_next = sizeof (Elf_External_Vernaux);
6281
 
6282
                    _bfd_elf_swap_vernaux_out (output_bfd, a,
6283
                                               (Elf_External_Vernaux *) p);
6284
                    p += sizeof (Elf_External_Vernaux);
6285
                  }
6286
              }
6287
 
6288
            if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6289
                || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6290
              return FALSE;
6291
 
6292
            elf_tdata (output_bfd)->cverrefs = crefs;
6293
          }
6294
      }
6295
 
6296
      if ((elf_tdata (output_bfd)->cverrefs == 0
6297
           && elf_tdata (output_bfd)->cverdefs == 0)
6298
          || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6299
                                             &section_sym_count) == 0)
6300
        {
6301
          s = bfd_get_section_by_name (dynobj, ".gnu.version");
6302
          s->flags |= SEC_EXCLUDE;
6303
        }
6304
    }
6305
  return TRUE;
6306
}
6307
 
6308
/* Find the first non-excluded output section.  We'll use its
6309
   section symbol for some emitted relocs.  */
6310
void
6311
_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6312
{
6313
  asection *s;
6314
 
6315
  for (s = output_bfd->sections; s != NULL; s = s->next)
6316
    if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6317
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6318
      {
6319
        elf_hash_table (info)->text_index_section = s;
6320
        break;
6321
      }
6322
}
6323
 
6324
/* Find two non-excluded output sections, one for code, one for data.
6325
   We'll use their section symbols for some emitted relocs.  */
6326
void
6327
_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6328
{
6329
  asection *s;
6330
 
6331
  /* Data first, since setting text_index_section changes
6332
     _bfd_elf_link_omit_section_dynsym.  */
6333
  for (s = output_bfd->sections; s != NULL; s = s->next)
6334
    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6335
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6336
      {
6337
        elf_hash_table (info)->data_index_section = s;
6338
        break;
6339
      }
6340
 
6341
  for (s = output_bfd->sections; s != NULL; s = s->next)
6342
    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6343
         == (SEC_ALLOC | SEC_READONLY))
6344
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6345
      {
6346
        elf_hash_table (info)->text_index_section = s;
6347
        break;
6348
      }
6349
 
6350
  if (elf_hash_table (info)->text_index_section == NULL)
6351
    elf_hash_table (info)->text_index_section
6352
      = elf_hash_table (info)->data_index_section;
6353
}
6354
 
6355
bfd_boolean
6356
bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6357
{
6358
  const struct elf_backend_data *bed;
6359
 
6360
  if (!is_elf_hash_table (info->hash))
6361
    return TRUE;
6362
 
6363
  bed = get_elf_backend_data (output_bfd);
6364
  (*bed->elf_backend_init_index_section) (output_bfd, info);
6365
 
6366
  if (elf_hash_table (info)->dynamic_sections_created)
6367
    {
6368
      bfd *dynobj;
6369
      asection *s;
6370
      bfd_size_type dynsymcount;
6371
      unsigned long section_sym_count;
6372
      unsigned int dtagcount;
6373
 
6374
      dynobj = elf_hash_table (info)->dynobj;
6375
 
6376
      /* Assign dynsym indicies.  In a shared library we generate a
6377
         section symbol for each output section, which come first.
6378
         Next come all of the back-end allocated local dynamic syms,
6379
         followed by the rest of the global symbols.  */
6380
 
6381
      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6382
                                                    &section_sym_count);
6383
 
6384
      /* Work out the size of the symbol version section.  */
6385
      s = bfd_get_section_by_name (dynobj, ".gnu.version");
6386
      BFD_ASSERT (s != NULL);
6387
      if (dynsymcount != 0
6388
          && (s->flags & SEC_EXCLUDE) == 0)
6389
        {
6390
          s->size = dynsymcount * sizeof (Elf_External_Versym);
6391
          s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6392
          if (s->contents == NULL)
6393
            return FALSE;
6394
 
6395
          if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6396
            return FALSE;
6397
        }
6398
 
6399
      /* Set the size of the .dynsym and .hash sections.  We counted
6400
         the number of dynamic symbols in elf_link_add_object_symbols.
6401
         We will build the contents of .dynsym and .hash when we build
6402
         the final symbol table, because until then we do not know the
6403
         correct value to give the symbols.  We built the .dynstr
6404
         section as we went along in elf_link_add_object_symbols.  */
6405
      s = bfd_get_section_by_name (dynobj, ".dynsym");
6406
      BFD_ASSERT (s != NULL);
6407
      s->size = dynsymcount * bed->s->sizeof_sym;
6408
 
6409
      if (dynsymcount != 0)
6410
        {
6411
          s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6412
          if (s->contents == NULL)
6413
            return FALSE;
6414
 
6415
          /* The first entry in .dynsym is a dummy symbol.
6416
             Clear all the section syms, in case we don't output them all.  */
6417
          ++section_sym_count;
6418
          memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6419
        }
6420
 
6421
      elf_hash_table (info)->bucketcount = 0;
6422
 
6423
      /* Compute the size of the hashing table.  As a side effect this
6424
         computes the hash values for all the names we export.  */
6425
      if (info->emit_hash)
6426
        {
6427
          unsigned long int *hashcodes;
6428
          struct hash_codes_info hashinf;
6429
          bfd_size_type amt;
6430
          unsigned long int nsyms;
6431
          size_t bucketcount;
6432
          size_t hash_entry_size;
6433
 
6434
          /* Compute the hash values for all exported symbols.  At the same
6435
             time store the values in an array so that we could use them for
6436
             optimizations.  */
6437
          amt = dynsymcount * sizeof (unsigned long int);
6438
          hashcodes = (unsigned long int *) bfd_malloc (amt);
6439
          if (hashcodes == NULL)
6440
            return FALSE;
6441
          hashinf.hashcodes = hashcodes;
6442
          hashinf.error = FALSE;
6443
 
6444
          /* Put all hash values in HASHCODES.  */
6445
          elf_link_hash_traverse (elf_hash_table (info),
6446
                                  elf_collect_hash_codes, &hashinf);
6447
          if (hashinf.error)
6448
            {
6449
              free (hashcodes);
6450
              return FALSE;
6451
            }
6452
 
6453
          nsyms = hashinf.hashcodes - hashcodes;
6454
          bucketcount
6455
            = compute_bucket_count (info, hashcodes, nsyms, 0);
6456
          free (hashcodes);
6457
 
6458
          if (bucketcount == 0)
6459
            return FALSE;
6460
 
6461
          elf_hash_table (info)->bucketcount = bucketcount;
6462
 
6463
          s = bfd_get_section_by_name (dynobj, ".hash");
6464
          BFD_ASSERT (s != NULL);
6465
          hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6466
          s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6467
          s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6468
          if (s->contents == NULL)
6469
            return FALSE;
6470
 
6471
          bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6472
          bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6473
                   s->contents + hash_entry_size);
6474
        }
6475
 
6476
      if (info->emit_gnu_hash)
6477
        {
6478
          size_t i, cnt;
6479
          unsigned char *contents;
6480
          struct collect_gnu_hash_codes cinfo;
6481
          bfd_size_type amt;
6482
          size_t bucketcount;
6483
 
6484
          memset (&cinfo, 0, sizeof (cinfo));
6485
 
6486
          /* Compute the hash values for all exported symbols.  At the same
6487
             time store the values in an array so that we could use them for
6488
             optimizations.  */
6489
          amt = dynsymcount * 2 * sizeof (unsigned long int);
6490
          cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6491
          if (cinfo.hashcodes == NULL)
6492
            return FALSE;
6493
 
6494
          cinfo.hashval = cinfo.hashcodes + dynsymcount;
6495
          cinfo.min_dynindx = -1;
6496
          cinfo.output_bfd = output_bfd;
6497
          cinfo.bed = bed;
6498
 
6499
          /* Put all hash values in HASHCODES.  */
6500
          elf_link_hash_traverse (elf_hash_table (info),
6501
                                  elf_collect_gnu_hash_codes, &cinfo);
6502
          if (cinfo.error)
6503
            {
6504
              free (cinfo.hashcodes);
6505
              return FALSE;
6506
            }
6507
 
6508
          bucketcount
6509
            = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6510
 
6511
          if (bucketcount == 0)
6512
            {
6513
              free (cinfo.hashcodes);
6514
              return FALSE;
6515
            }
6516
 
6517
          s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6518
          BFD_ASSERT (s != NULL);
6519
 
6520
          if (cinfo.nsyms == 0)
6521
            {
6522
              /* Empty .gnu.hash section is special.  */
6523
              BFD_ASSERT (cinfo.min_dynindx == -1);
6524
              free (cinfo.hashcodes);
6525
              s->size = 5 * 4 + bed->s->arch_size / 8;
6526
              contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6527
              if (contents == NULL)
6528
                return FALSE;
6529
              s->contents = contents;
6530
              /* 1 empty bucket.  */
6531
              bfd_put_32 (output_bfd, 1, contents);
6532
              /* SYMIDX above the special symbol 0.  */
6533
              bfd_put_32 (output_bfd, 1, contents + 4);
6534
              /* Just one word for bitmask.  */
6535
              bfd_put_32 (output_bfd, 1, contents + 8);
6536
              /* Only hash fn bloom filter.  */
6537
              bfd_put_32 (output_bfd, 0, contents + 12);
6538
              /* No hashes are valid - empty bitmask.  */
6539
              bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6540
              /* No hashes in the only bucket.  */
6541
              bfd_put_32 (output_bfd, 0,
6542
                          contents + 16 + bed->s->arch_size / 8);
6543
            }
6544
          else
6545
            {
6546
              unsigned long int maskwords, maskbitslog2, x;
6547
              BFD_ASSERT (cinfo.min_dynindx != -1);
6548
 
6549
              x = cinfo.nsyms;
6550
              maskbitslog2 = 1;
6551
              while ((x >>= 1) != 0)
6552
                ++maskbitslog2;
6553
              if (maskbitslog2 < 3)
6554
                maskbitslog2 = 5;
6555
              else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6556
                maskbitslog2 = maskbitslog2 + 3;
6557
              else
6558
                maskbitslog2 = maskbitslog2 + 2;
6559
              if (bed->s->arch_size == 64)
6560
                {
6561
                  if (maskbitslog2 == 5)
6562
                    maskbitslog2 = 6;
6563
                  cinfo.shift1 = 6;
6564
                }
6565
              else
6566
                cinfo.shift1 = 5;
6567
              cinfo.mask = (1 << cinfo.shift1) - 1;
6568
              cinfo.shift2 = maskbitslog2;
6569
              cinfo.maskbits = 1 << maskbitslog2;
6570
              maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6571
              amt = bucketcount * sizeof (unsigned long int) * 2;
6572
              amt += maskwords * sizeof (bfd_vma);
6573
              cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6574
              if (cinfo.bitmask == NULL)
6575
                {
6576
                  free (cinfo.hashcodes);
6577
                  return FALSE;
6578
                }
6579
 
6580
              cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6581
              cinfo.indx = cinfo.counts + bucketcount;
6582
              cinfo.symindx = dynsymcount - cinfo.nsyms;
6583
              memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6584
 
6585
              /* Determine how often each hash bucket is used.  */
6586
              memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6587
              for (i = 0; i < cinfo.nsyms; ++i)
6588
                ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6589
 
6590
              for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6591
                if (cinfo.counts[i] != 0)
6592
                  {
6593
                    cinfo.indx[i] = cnt;
6594
                    cnt += cinfo.counts[i];
6595
                  }
6596
              BFD_ASSERT (cnt == dynsymcount);
6597
              cinfo.bucketcount = bucketcount;
6598
              cinfo.local_indx = cinfo.min_dynindx;
6599
 
6600
              s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6601
              s->size += cinfo.maskbits / 8;
6602
              contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6603
              if (contents == NULL)
6604
                {
6605
                  free (cinfo.bitmask);
6606
                  free (cinfo.hashcodes);
6607
                  return FALSE;
6608
                }
6609
 
6610
              s->contents = contents;
6611
              bfd_put_32 (output_bfd, bucketcount, contents);
6612
              bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6613
              bfd_put_32 (output_bfd, maskwords, contents + 8);
6614
              bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6615
              contents += 16 + cinfo.maskbits / 8;
6616
 
6617
              for (i = 0; i < bucketcount; ++i)
6618
                {
6619
                  if (cinfo.counts[i] == 0)
6620
                    bfd_put_32 (output_bfd, 0, contents);
6621
                  else
6622
                    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6623
                  contents += 4;
6624
                }
6625
 
6626
              cinfo.contents = contents;
6627
 
6628
              /* Renumber dynamic symbols, populate .gnu.hash section.  */
6629
              elf_link_hash_traverse (elf_hash_table (info),
6630
                                      elf_renumber_gnu_hash_syms, &cinfo);
6631
 
6632
              contents = s->contents + 16;
6633
              for (i = 0; i < maskwords; ++i)
6634
                {
6635
                  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6636
                           contents);
6637
                  contents += bed->s->arch_size / 8;
6638
                }
6639
 
6640
              free (cinfo.bitmask);
6641
              free (cinfo.hashcodes);
6642
            }
6643
        }
6644
 
6645
      s = bfd_get_section_by_name (dynobj, ".dynstr");
6646
      BFD_ASSERT (s != NULL);
6647
 
6648
      elf_finalize_dynstr (output_bfd, info);
6649
 
6650
      s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6651
 
6652
      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6653
        if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6654
          return FALSE;
6655
    }
6656
 
6657
  return TRUE;
6658
}
6659
 
6660
/* Indicate that we are only retrieving symbol values from this
6661
   section.  */
6662
 
6663
void
6664
_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6665
{
6666
  if (is_elf_hash_table (info->hash))
6667
    sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6668
  _bfd_generic_link_just_syms (sec, info);
6669
}
6670
 
6671
/* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6672
 
6673
static void
6674
merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6675
                            asection *sec)
6676
{
6677
  BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6678
  sec->sec_info_type = ELF_INFO_TYPE_NONE;
6679
}
6680
 
6681
/* Finish SHF_MERGE section merging.  */
6682
 
6683
bfd_boolean
6684
_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6685
{
6686
  bfd *ibfd;
6687
  asection *sec;
6688
 
6689
  if (!is_elf_hash_table (info->hash))
6690
    return FALSE;
6691
 
6692
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6693
    if ((ibfd->flags & DYNAMIC) == 0)
6694
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6695
        if ((sec->flags & SEC_MERGE) != 0
6696
            && !bfd_is_abs_section (sec->output_section))
6697
          {
6698
            struct bfd_elf_section_data *secdata;
6699
 
6700
            secdata = elf_section_data (sec);
6701
            if (! _bfd_add_merge_section (abfd,
6702
                                          &elf_hash_table (info)->merge_info,
6703
                                          sec, &secdata->sec_info))
6704
              return FALSE;
6705
            else if (secdata->sec_info)
6706
              sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6707
          }
6708
 
6709
  if (elf_hash_table (info)->merge_info != NULL)
6710
    _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6711
                         merge_sections_remove_hook);
6712
  return TRUE;
6713
}
6714
 
6715
/* Create an entry in an ELF linker hash table.  */
6716
 
6717
struct bfd_hash_entry *
6718
_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6719
                            struct bfd_hash_table *table,
6720
                            const char *string)
6721
{
6722
  /* Allocate the structure if it has not already been allocated by a
6723
     subclass.  */
6724
  if (entry == NULL)
6725
    {
6726
      entry = (struct bfd_hash_entry *)
6727
          bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6728
      if (entry == NULL)
6729
        return entry;
6730
    }
6731
 
6732
  /* Call the allocation method of the superclass.  */
6733
  entry = _bfd_link_hash_newfunc (entry, table, string);
6734
  if (entry != NULL)
6735
    {
6736
      struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6737
      struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6738
 
6739
      /* Set local fields.  */
6740
      ret->indx = -1;
6741
      ret->dynindx = -1;
6742
      ret->got = htab->init_got_refcount;
6743
      ret->plt = htab->init_plt_refcount;
6744
      memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6745
                              - offsetof (struct elf_link_hash_entry, size)));
6746
      /* Assume that we have been called by a non-ELF symbol reader.
6747
         This flag is then reset by the code which reads an ELF input
6748
         file.  This ensures that a symbol created by a non-ELF symbol
6749
         reader will have the flag set correctly.  */
6750
      ret->non_elf = 1;
6751
    }
6752
 
6753
  return entry;
6754
}
6755
 
6756
/* Copy data from an indirect symbol to its direct symbol, hiding the
6757
   old indirect symbol.  Also used for copying flags to a weakdef.  */
6758
 
6759
void
6760
_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6761
                                  struct elf_link_hash_entry *dir,
6762
                                  struct elf_link_hash_entry *ind)
6763
{
6764
  struct elf_link_hash_table *htab;
6765
 
6766
  /* Copy down any references that we may have already seen to the
6767
     symbol which just became indirect.  */
6768
 
6769
  dir->ref_dynamic |= ind->ref_dynamic;
6770
  dir->ref_regular |= ind->ref_regular;
6771
  dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6772
  dir->non_got_ref |= ind->non_got_ref;
6773
  dir->needs_plt |= ind->needs_plt;
6774
  dir->pointer_equality_needed |= ind->pointer_equality_needed;
6775
 
6776
  if (ind->root.type != bfd_link_hash_indirect)
6777
    return;
6778
 
6779
  /* Copy over the global and procedure linkage table refcount entries.
6780
     These may have been already set up by a check_relocs routine.  */
6781
  htab = elf_hash_table (info);
6782
  if (ind->got.refcount > htab->init_got_refcount.refcount)
6783
    {
6784
      if (dir->got.refcount < 0)
6785
        dir->got.refcount = 0;
6786
      dir->got.refcount += ind->got.refcount;
6787
      ind->got.refcount = htab->init_got_refcount.refcount;
6788
    }
6789
 
6790
  if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6791
    {
6792
      if (dir->plt.refcount < 0)
6793
        dir->plt.refcount = 0;
6794
      dir->plt.refcount += ind->plt.refcount;
6795
      ind->plt.refcount = htab->init_plt_refcount.refcount;
6796
    }
6797
 
6798
  if (ind->dynindx != -1)
6799
    {
6800
      if (dir->dynindx != -1)
6801
        _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6802
      dir->dynindx = ind->dynindx;
6803
      dir->dynstr_index = ind->dynstr_index;
6804
      ind->dynindx = -1;
6805
      ind->dynstr_index = 0;
6806
    }
6807
}
6808
 
6809
void
6810
_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6811
                                struct elf_link_hash_entry *h,
6812
                                bfd_boolean force_local)
6813
{
6814
  /* STT_GNU_IFUNC symbol must go through PLT.  */
6815
  if (h->type != STT_GNU_IFUNC)
6816
    {
6817
      h->plt = elf_hash_table (info)->init_plt_offset;
6818
      h->needs_plt = 0;
6819
    }
6820
  if (force_local)
6821
    {
6822
      h->forced_local = 1;
6823
      if (h->dynindx != -1)
6824
        {
6825
          h->dynindx = -1;
6826
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6827
                                  h->dynstr_index);
6828
        }
6829
    }
6830
}
6831
 
6832
/* Initialize an ELF linker hash table.  */
6833
 
6834
bfd_boolean
6835
_bfd_elf_link_hash_table_init
6836
  (struct elf_link_hash_table *table,
6837
   bfd *abfd,
6838
   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6839
                                      struct bfd_hash_table *,
6840
                                      const char *),
6841
   unsigned int entsize,
6842
   enum elf_target_id target_id)
6843
{
6844
  bfd_boolean ret;
6845
  int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6846
 
6847
  memset (table, 0, sizeof * table);
6848
  table->init_got_refcount.refcount = can_refcount - 1;
6849
  table->init_plt_refcount.refcount = can_refcount - 1;
6850
  table->init_got_offset.offset = -(bfd_vma) 1;
6851
  table->init_plt_offset.offset = -(bfd_vma) 1;
6852
  /* The first dynamic symbol is a dummy.  */
6853
  table->dynsymcount = 1;
6854
 
6855
  ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6856
 
6857
  table->root.type = bfd_link_elf_hash_table;
6858
  table->hash_table_id = target_id;
6859
 
6860
  return ret;
6861
}
6862
 
6863
/* Create an ELF linker hash table.  */
6864
 
6865
struct bfd_link_hash_table *
6866
_bfd_elf_link_hash_table_create (bfd *abfd)
6867
{
6868
  struct elf_link_hash_table *ret;
6869
  bfd_size_type amt = sizeof (struct elf_link_hash_table);
6870
 
6871
  ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6872
  if (ret == NULL)
6873
    return NULL;
6874
 
6875
  if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6876
                                       sizeof (struct elf_link_hash_entry),
6877
                                       GENERIC_ELF_DATA))
6878
    {
6879
      free (ret);
6880
      return NULL;
6881
    }
6882
 
6883
  return &ret->root;
6884
}
6885
 
6886
/* This is a hook for the ELF emulation code in the generic linker to
6887
   tell the backend linker what file name to use for the DT_NEEDED
6888
   entry for a dynamic object.  */
6889
 
6890
void
6891
bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6892
{
6893
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6894
      && bfd_get_format (abfd) == bfd_object)
6895
    elf_dt_name (abfd) = name;
6896
}
6897
 
6898
int
6899
bfd_elf_get_dyn_lib_class (bfd *abfd)
6900
{
6901
  int lib_class;
6902
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6903
      && bfd_get_format (abfd) == bfd_object)
6904
    lib_class = elf_dyn_lib_class (abfd);
6905
  else
6906
    lib_class = 0;
6907
  return lib_class;
6908
}
6909
 
6910
void
6911
bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6912
{
6913
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6914
      && bfd_get_format (abfd) == bfd_object)
6915
    elf_dyn_lib_class (abfd) = lib_class;
6916
}
6917
 
6918
/* Get the list of DT_NEEDED entries for a link.  This is a hook for
6919
   the linker ELF emulation code.  */
6920
 
6921
struct bfd_link_needed_list *
6922
bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6923
                         struct bfd_link_info *info)
6924
{
6925
  if (! is_elf_hash_table (info->hash))
6926
    return NULL;
6927
  return elf_hash_table (info)->needed;
6928
}
6929
 
6930
/* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6931
   hook for the linker ELF emulation code.  */
6932
 
6933
struct bfd_link_needed_list *
6934
bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6935
                          struct bfd_link_info *info)
6936
{
6937
  if (! is_elf_hash_table (info->hash))
6938
    return NULL;
6939
  return elf_hash_table (info)->runpath;
6940
}
6941
 
6942
/* Get the name actually used for a dynamic object for a link.  This
6943
   is the SONAME entry if there is one.  Otherwise, it is the string
6944
   passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6945
 
6946
const char *
6947
bfd_elf_get_dt_soname (bfd *abfd)
6948
{
6949
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6950
      && bfd_get_format (abfd) == bfd_object)
6951
    return elf_dt_name (abfd);
6952
  return NULL;
6953
}
6954
 
6955
/* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6956
   the ELF linker emulation code.  */
6957
 
6958
bfd_boolean
6959
bfd_elf_get_bfd_needed_list (bfd *abfd,
6960
                             struct bfd_link_needed_list **pneeded)
6961
{
6962
  asection *s;
6963
  bfd_byte *dynbuf = NULL;
6964
  unsigned int elfsec;
6965
  unsigned long shlink;
6966
  bfd_byte *extdyn, *extdynend;
6967
  size_t extdynsize;
6968
  void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6969
 
6970
  *pneeded = NULL;
6971
 
6972
  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6973
      || bfd_get_format (abfd) != bfd_object)
6974
    return TRUE;
6975
 
6976
  s = bfd_get_section_by_name (abfd, ".dynamic");
6977
  if (s == NULL || s->size == 0)
6978
    return TRUE;
6979
 
6980
  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6981
    goto error_return;
6982
 
6983
  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6984
  if (elfsec == SHN_BAD)
6985
    goto error_return;
6986
 
6987
  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6988
 
6989
  extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6990
  swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6991
 
6992
  extdyn = dynbuf;
6993
  extdynend = extdyn + s->size;
6994
  for (; extdyn < extdynend; extdyn += extdynsize)
6995
    {
6996
      Elf_Internal_Dyn dyn;
6997
 
6998
      (*swap_dyn_in) (abfd, extdyn, &dyn);
6999
 
7000
      if (dyn.d_tag == DT_NULL)
7001
        break;
7002
 
7003
      if (dyn.d_tag == DT_NEEDED)
7004
        {
7005
          const char *string;
7006
          struct bfd_link_needed_list *l;
7007
          unsigned int tagv = dyn.d_un.d_val;
7008
          bfd_size_type amt;
7009
 
7010
          string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7011
          if (string == NULL)
7012
            goto error_return;
7013
 
7014
          amt = sizeof *l;
7015
          l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7016
          if (l == NULL)
7017
            goto error_return;
7018
 
7019
          l->by = abfd;
7020
          l->name = string;
7021
          l->next = *pneeded;
7022
          *pneeded = l;
7023
        }
7024
    }
7025
 
7026
  free (dynbuf);
7027
 
7028
  return TRUE;
7029
 
7030
 error_return:
7031
  if (dynbuf != NULL)
7032
    free (dynbuf);
7033
  return FALSE;
7034
}
7035
 
7036
struct elf_symbuf_symbol
7037
{
7038
  unsigned long st_name;        /* Symbol name, index in string tbl */
7039
  unsigned char st_info;        /* Type and binding attributes */
7040
  unsigned char st_other;       /* Visibilty, and target specific */
7041
};
7042
 
7043
struct elf_symbuf_head
7044
{
7045
  struct elf_symbuf_symbol *ssym;
7046
  bfd_size_type count;
7047
  unsigned int st_shndx;
7048
};
7049
 
7050
struct elf_symbol
7051
{
7052
  union
7053
    {
7054
      Elf_Internal_Sym *isym;
7055
      struct elf_symbuf_symbol *ssym;
7056
    } u;
7057
  const char *name;
7058
};
7059
 
7060
/* Sort references to symbols by ascending section number.  */
7061
 
7062
static int
7063
elf_sort_elf_symbol (const void *arg1, const void *arg2)
7064
{
7065
  const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7066
  const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7067
 
7068
  return s1->st_shndx - s2->st_shndx;
7069
}
7070
 
7071
static int
7072
elf_sym_name_compare (const void *arg1, const void *arg2)
7073
{
7074
  const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7075
  const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7076
  return strcmp (s1->name, s2->name);
7077
}
7078
 
7079
static struct elf_symbuf_head *
7080
elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7081
{
7082
  Elf_Internal_Sym **ind, **indbufend, **indbuf;
7083
  struct elf_symbuf_symbol *ssym;
7084
  struct elf_symbuf_head *ssymbuf, *ssymhead;
7085
  bfd_size_type i, shndx_count, total_size;
7086
 
7087
  indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7088
  if (indbuf == NULL)
7089
    return NULL;
7090
 
7091
  for (ind = indbuf, i = 0; i < symcount; i++)
7092
    if (isymbuf[i].st_shndx != SHN_UNDEF)
7093
      *ind++ = &isymbuf[i];
7094
  indbufend = ind;
7095
 
7096
  qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7097
         elf_sort_elf_symbol);
7098
 
7099
  shndx_count = 0;
7100
  if (indbufend > indbuf)
7101
    for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7102
      if (ind[0]->st_shndx != ind[1]->st_shndx)
7103
        shndx_count++;
7104
 
7105
  total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7106
                + (indbufend - indbuf) * sizeof (*ssym));
7107
  ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7108
  if (ssymbuf == NULL)
7109
    {
7110
      free (indbuf);
7111
      return NULL;
7112
    }
7113
 
7114
  ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7115
  ssymbuf->ssym = NULL;
7116
  ssymbuf->count = shndx_count;
7117
  ssymbuf->st_shndx = 0;
7118
  for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7119
    {
7120
      if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7121
        {
7122
          ssymhead++;
7123
          ssymhead->ssym = ssym;
7124
          ssymhead->count = 0;
7125
          ssymhead->st_shndx = (*ind)->st_shndx;
7126
        }
7127
      ssym->st_name = (*ind)->st_name;
7128
      ssym->st_info = (*ind)->st_info;
7129
      ssym->st_other = (*ind)->st_other;
7130
      ssymhead->count++;
7131
    }
7132
  BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7133
              && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7134
                  == total_size));
7135
 
7136
  free (indbuf);
7137
  return ssymbuf;
7138
}
7139
 
7140
/* Check if 2 sections define the same set of local and global
7141
   symbols.  */
7142
 
7143
static bfd_boolean
7144
bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7145
                                   struct bfd_link_info *info)
7146
{
7147
  bfd *bfd1, *bfd2;
7148
  const struct elf_backend_data *bed1, *bed2;
7149
  Elf_Internal_Shdr *hdr1, *hdr2;
7150
  bfd_size_type symcount1, symcount2;
7151
  Elf_Internal_Sym *isymbuf1, *isymbuf2;
7152
  struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7153
  Elf_Internal_Sym *isym, *isymend;
7154
  struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7155
  bfd_size_type count1, count2, i;
7156
  unsigned int shndx1, shndx2;
7157
  bfd_boolean result;
7158
 
7159
  bfd1 = sec1->owner;
7160
  bfd2 = sec2->owner;
7161
 
7162
  /* Both sections have to be in ELF.  */
7163
  if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7164
      || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7165
    return FALSE;
7166
 
7167
  if (elf_section_type (sec1) != elf_section_type (sec2))
7168
    return FALSE;
7169
 
7170
  shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7171
  shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7172
  if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7173
    return FALSE;
7174
 
7175
  bed1 = get_elf_backend_data (bfd1);
7176
  bed2 = get_elf_backend_data (bfd2);
7177
  hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7178
  symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7179
  hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7180
  symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7181
 
7182
  if (symcount1 == 0 || symcount2 == 0)
7183
    return FALSE;
7184
 
7185
  result = FALSE;
7186
  isymbuf1 = NULL;
7187
  isymbuf2 = NULL;
7188
  ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7189
  ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7190
 
7191
  if (ssymbuf1 == NULL)
7192
    {
7193
      isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7194
                                       NULL, NULL, NULL);
7195
      if (isymbuf1 == NULL)
7196
        goto done;
7197
 
7198
      if (!info->reduce_memory_overheads)
7199
        elf_tdata (bfd1)->symbuf = ssymbuf1
7200
          = elf_create_symbuf (symcount1, isymbuf1);
7201
    }
7202
 
7203
  if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7204
    {
7205
      isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7206
                                       NULL, NULL, NULL);
7207
      if (isymbuf2 == NULL)
7208
        goto done;
7209
 
7210
      if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7211
        elf_tdata (bfd2)->symbuf = ssymbuf2
7212
          = elf_create_symbuf (symcount2, isymbuf2);
7213
    }
7214
 
7215
  if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7216
    {
7217
      /* Optimized faster version.  */
7218
      bfd_size_type lo, hi, mid;
7219
      struct elf_symbol *symp;
7220
      struct elf_symbuf_symbol *ssym, *ssymend;
7221
 
7222
      lo = 0;
7223
      hi = ssymbuf1->count;
7224
      ssymbuf1++;
7225
      count1 = 0;
7226
      while (lo < hi)
7227
        {
7228
          mid = (lo + hi) / 2;
7229
          if (shndx1 < ssymbuf1[mid].st_shndx)
7230
            hi = mid;
7231
          else if (shndx1 > ssymbuf1[mid].st_shndx)
7232
            lo = mid + 1;
7233
          else
7234
            {
7235
              count1 = ssymbuf1[mid].count;
7236
              ssymbuf1 += mid;
7237
              break;
7238
            }
7239
        }
7240
 
7241
      lo = 0;
7242
      hi = ssymbuf2->count;
7243
      ssymbuf2++;
7244
      count2 = 0;
7245
      while (lo < hi)
7246
        {
7247
          mid = (lo + hi) / 2;
7248
          if (shndx2 < ssymbuf2[mid].st_shndx)
7249
            hi = mid;
7250
          else if (shndx2 > ssymbuf2[mid].st_shndx)
7251
            lo = mid + 1;
7252
          else
7253
            {
7254
              count2 = ssymbuf2[mid].count;
7255
              ssymbuf2 += mid;
7256
              break;
7257
            }
7258
        }
7259
 
7260
      if (count1 == 0 || count2 == 0 || count1 != count2)
7261
        goto done;
7262
 
7263
      symtable1 = (struct elf_symbol *)
7264
          bfd_malloc (count1 * sizeof (struct elf_symbol));
7265
      symtable2 = (struct elf_symbol *)
7266
          bfd_malloc (count2 * sizeof (struct elf_symbol));
7267
      if (symtable1 == NULL || symtable2 == NULL)
7268
        goto done;
7269
 
7270
      symp = symtable1;
7271
      for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7272
           ssym < ssymend; ssym++, symp++)
7273
        {
7274
          symp->u.ssym = ssym;
7275
          symp->name = bfd_elf_string_from_elf_section (bfd1,
7276
                                                        hdr1->sh_link,
7277
                                                        ssym->st_name);
7278
        }
7279
 
7280
      symp = symtable2;
7281
      for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7282
           ssym < ssymend; ssym++, symp++)
7283
        {
7284
          symp->u.ssym = ssym;
7285
          symp->name = bfd_elf_string_from_elf_section (bfd2,
7286
                                                        hdr2->sh_link,
7287
                                                        ssym->st_name);
7288
        }
7289
 
7290
      /* Sort symbol by name.  */
7291
      qsort (symtable1, count1, sizeof (struct elf_symbol),
7292
             elf_sym_name_compare);
7293
      qsort (symtable2, count1, sizeof (struct elf_symbol),
7294
             elf_sym_name_compare);
7295
 
7296
      for (i = 0; i < count1; i++)
7297
        /* Two symbols must have the same binding, type and name.  */
7298
        if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7299
            || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7300
            || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7301
          goto done;
7302
 
7303
      result = TRUE;
7304
      goto done;
7305
    }
7306
 
7307
  symtable1 = (struct elf_symbol *)
7308
      bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7309
  symtable2 = (struct elf_symbol *)
7310
      bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7311
  if (symtable1 == NULL || symtable2 == NULL)
7312
    goto done;
7313
 
7314
  /* Count definitions in the section.  */
7315
  count1 = 0;
7316
  for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7317
    if (isym->st_shndx == shndx1)
7318
      symtable1[count1++].u.isym = isym;
7319
 
7320
  count2 = 0;
7321
  for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7322
    if (isym->st_shndx == shndx2)
7323
      symtable2[count2++].u.isym = isym;
7324
 
7325
  if (count1 == 0 || count2 == 0 || count1 != count2)
7326
    goto done;
7327
 
7328
  for (i = 0; i < count1; i++)
7329
    symtable1[i].name
7330
      = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7331
                                         symtable1[i].u.isym->st_name);
7332
 
7333
  for (i = 0; i < count2; i++)
7334
    symtable2[i].name
7335
      = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7336
                                         symtable2[i].u.isym->st_name);
7337
 
7338
  /* Sort symbol by name.  */
7339
  qsort (symtable1, count1, sizeof (struct elf_symbol),
7340
         elf_sym_name_compare);
7341
  qsort (symtable2, count1, sizeof (struct elf_symbol),
7342
         elf_sym_name_compare);
7343
 
7344
  for (i = 0; i < count1; i++)
7345
    /* Two symbols must have the same binding, type and name.  */
7346
    if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7347
        || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7348
        || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7349
      goto done;
7350
 
7351
  result = TRUE;
7352
 
7353
done:
7354
  if (symtable1)
7355
    free (symtable1);
7356
  if (symtable2)
7357
    free (symtable2);
7358
  if (isymbuf1)
7359
    free (isymbuf1);
7360
  if (isymbuf2)
7361
    free (isymbuf2);
7362
 
7363
  return result;
7364
}
7365
 
7366
/* Return TRUE if 2 section types are compatible.  */
7367
 
7368
bfd_boolean
7369
_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7370
                                 bfd *bbfd, const asection *bsec)
7371
{
7372
  if (asec == NULL
7373
      || bsec == NULL
7374
      || abfd->xvec->flavour != bfd_target_elf_flavour
7375
      || bbfd->xvec->flavour != bfd_target_elf_flavour)
7376
    return TRUE;
7377
 
7378
  return elf_section_type (asec) == elf_section_type (bsec);
7379
}
7380
 
7381
/* Final phase of ELF linker.  */
7382
 
7383
/* A structure we use to avoid passing large numbers of arguments.  */
7384
 
7385
struct elf_final_link_info
7386
{
7387
  /* General link information.  */
7388
  struct bfd_link_info *info;
7389
  /* Output BFD.  */
7390
  bfd *output_bfd;
7391
  /* Symbol string table.  */
7392
  struct bfd_strtab_hash *symstrtab;
7393
  /* .dynsym section.  */
7394
  asection *dynsym_sec;
7395
  /* .hash section.  */
7396
  asection *hash_sec;
7397
  /* symbol version section (.gnu.version).  */
7398
  asection *symver_sec;
7399
  /* Buffer large enough to hold contents of any section.  */
7400
  bfd_byte *contents;
7401
  /* Buffer large enough to hold external relocs of any section.  */
7402
  void *external_relocs;
7403
  /* Buffer large enough to hold internal relocs of any section.  */
7404
  Elf_Internal_Rela *internal_relocs;
7405
  /* Buffer large enough to hold external local symbols of any input
7406
     BFD.  */
7407
  bfd_byte *external_syms;
7408
  /* And a buffer for symbol section indices.  */
7409
  Elf_External_Sym_Shndx *locsym_shndx;
7410
  /* Buffer large enough to hold internal local symbols of any input
7411
     BFD.  */
7412
  Elf_Internal_Sym *internal_syms;
7413
  /* Array large enough to hold a symbol index for each local symbol
7414
     of any input BFD.  */
7415
  long *indices;
7416
  /* Array large enough to hold a section pointer for each local
7417
     symbol of any input BFD.  */
7418
  asection **sections;
7419
  /* Buffer to hold swapped out symbols.  */
7420
  bfd_byte *symbuf;
7421
  /* And one for symbol section indices.  */
7422
  Elf_External_Sym_Shndx *symshndxbuf;
7423
  /* Number of swapped out symbols in buffer.  */
7424
  size_t symbuf_count;
7425
  /* Number of symbols which fit in symbuf.  */
7426
  size_t symbuf_size;
7427
  /* And same for symshndxbuf.  */
7428
  size_t shndxbuf_size;
7429
};
7430
 
7431
/* This struct is used to pass information to elf_link_output_extsym.  */
7432
 
7433
struct elf_outext_info
7434
{
7435
  bfd_boolean failed;
7436
  bfd_boolean localsyms;
7437
  struct elf_final_link_info *finfo;
7438
};
7439
 
7440
 
7441
/* Support for evaluating a complex relocation.
7442
 
7443
   Complex relocations are generalized, self-describing relocations.  The
7444
   implementation of them consists of two parts: complex symbols, and the
7445
   relocations themselves.
7446
 
7447
   The relocations are use a reserved elf-wide relocation type code (R_RELC
7448
   external / BFD_RELOC_RELC internal) and an encoding of relocation field
7449
   information (start bit, end bit, word width, etc) into the addend.  This
7450
   information is extracted from CGEN-generated operand tables within gas.
7451
 
7452
   Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7453
   internal) representing prefix-notation expressions, including but not
7454
   limited to those sorts of expressions normally encoded as addends in the
7455
   addend field.  The symbol mangling format is:
7456
 
7457
   <node> := <literal>
7458
          |  <unary-operator> ':' <node>
7459
          |  <binary-operator> ':' <node> ':' <node>
7460
          ;
7461
 
7462
   <literal> := 's' <digits=N> ':' <N character symbol name>
7463
             |  'S' <digits=N> ':' <N character section name>
7464
             |  '#' <hexdigits>
7465
             ;
7466
 
7467
   <binary-operator> := as in C
7468
   <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7469
 
7470
static void
7471
set_symbol_value (bfd *bfd_with_globals,
7472
                  Elf_Internal_Sym *isymbuf,
7473
                  size_t locsymcount,
7474
                  size_t symidx,
7475
                  bfd_vma val)
7476
{
7477
  struct elf_link_hash_entry **sym_hashes;
7478
  struct elf_link_hash_entry *h;
7479
  size_t extsymoff = locsymcount;
7480
 
7481
  if (symidx < locsymcount)
7482
    {
7483
      Elf_Internal_Sym *sym;
7484
 
7485
      sym = isymbuf + symidx;
7486
      if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7487
        {
7488
          /* It is a local symbol: move it to the
7489
             "absolute" section and give it a value.  */
7490
          sym->st_shndx = SHN_ABS;
7491
          sym->st_value = val;
7492
          return;
7493
        }
7494
      BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7495
      extsymoff = 0;
7496
    }
7497
 
7498
  /* It is a global symbol: set its link type
7499
     to "defined" and give it a value.  */
7500
 
7501
  sym_hashes = elf_sym_hashes (bfd_with_globals);
7502
  h = sym_hashes [symidx - extsymoff];
7503
  while (h->root.type == bfd_link_hash_indirect
7504
         || h->root.type == bfd_link_hash_warning)
7505
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7506
  h->root.type = bfd_link_hash_defined;
7507
  h->root.u.def.value = val;
7508
  h->root.u.def.section = bfd_abs_section_ptr;
7509
}
7510
 
7511
static bfd_boolean
7512
resolve_symbol (const char *name,
7513
                bfd *input_bfd,
7514
                struct elf_final_link_info *finfo,
7515
                bfd_vma *result,
7516
                Elf_Internal_Sym *isymbuf,
7517
                size_t locsymcount)
7518
{
7519
  Elf_Internal_Sym *sym;
7520
  struct bfd_link_hash_entry *global_entry;
7521
  const char *candidate = NULL;
7522
  Elf_Internal_Shdr *symtab_hdr;
7523
  size_t i;
7524
 
7525
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7526
 
7527
  for (i = 0; i < locsymcount; ++ i)
7528
    {
7529
      sym = isymbuf + i;
7530
 
7531
      if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7532
        continue;
7533
 
7534
      candidate = bfd_elf_string_from_elf_section (input_bfd,
7535
                                                   symtab_hdr->sh_link,
7536
                                                   sym->st_name);
7537
#ifdef DEBUG
7538
      printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7539
              name, candidate, (unsigned long) sym->st_value);
7540
#endif
7541
      if (candidate && strcmp (candidate, name) == 0)
7542
        {
7543
          asection *sec = finfo->sections [i];
7544
 
7545
          *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7546
          *result += sec->output_offset + sec->output_section->vma;
7547
#ifdef DEBUG
7548
          printf ("Found symbol with value %8.8lx\n",
7549
                  (unsigned long) *result);
7550
#endif
7551
          return TRUE;
7552
        }
7553
    }
7554
 
7555
  /* Hmm, haven't found it yet. perhaps it is a global.  */
7556
  global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7557
                                       FALSE, FALSE, TRUE);
7558
  if (!global_entry)
7559
    return FALSE;
7560
 
7561
  if (global_entry->type == bfd_link_hash_defined
7562
      || global_entry->type == bfd_link_hash_defweak)
7563
    {
7564
      *result = (global_entry->u.def.value
7565
                 + global_entry->u.def.section->output_section->vma
7566
                 + global_entry->u.def.section->output_offset);
7567
#ifdef DEBUG
7568
      printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7569
              global_entry->root.string, (unsigned long) *result);
7570
#endif
7571
      return TRUE;
7572
    }
7573
 
7574
  return FALSE;
7575
}
7576
 
7577
static bfd_boolean
7578
resolve_section (const char *name,
7579
                 asection *sections,
7580
                 bfd_vma *result)
7581
{
7582
  asection *curr;
7583
  unsigned int len;
7584
 
7585
  for (curr = sections; curr; curr = curr->next)
7586
    if (strcmp (curr->name, name) == 0)
7587
      {
7588
        *result = curr->vma;
7589
        return TRUE;
7590
      }
7591
 
7592
  /* Hmm. still haven't found it. try pseudo-section names.  */
7593
  for (curr = sections; curr; curr = curr->next)
7594
    {
7595
      len = strlen (curr->name);
7596
      if (len > strlen (name))
7597
        continue;
7598
 
7599
      if (strncmp (curr->name, name, len) == 0)
7600
        {
7601
          if (strncmp (".end", name + len, 4) == 0)
7602
            {
7603
              *result = curr->vma + curr->size;
7604
              return TRUE;
7605
            }
7606
 
7607
          /* Insert more pseudo-section names here, if you like.  */
7608
        }
7609
    }
7610
 
7611
  return FALSE;
7612
}
7613
 
7614
static void
7615
undefined_reference (const char *reftype, const char *name)
7616
{
7617
  _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7618
                      reftype, name);
7619
}
7620
 
7621
static bfd_boolean
7622
eval_symbol (bfd_vma *result,
7623
             const char **symp,
7624
             bfd *input_bfd,
7625
             struct elf_final_link_info *finfo,
7626
             bfd_vma dot,
7627
             Elf_Internal_Sym *isymbuf,
7628
             size_t locsymcount,
7629
             int signed_p)
7630
{
7631
  size_t len;
7632
  size_t symlen;
7633
  bfd_vma a;
7634
  bfd_vma b;
7635
  char symbuf[4096];
7636
  const char *sym = *symp;
7637
  const char *symend;
7638
  bfd_boolean symbol_is_section = FALSE;
7639
 
7640
  len = strlen (sym);
7641
  symend = sym + len;
7642
 
7643
  if (len < 1 || len > sizeof (symbuf))
7644
    {
7645
      bfd_set_error (bfd_error_invalid_operation);
7646
      return FALSE;
7647
    }
7648
 
7649
  switch (* sym)
7650
    {
7651
    case '.':
7652
      *result = dot;
7653
      *symp = sym + 1;
7654
      return TRUE;
7655
 
7656
    case '#':
7657
      ++sym;
7658
      *result = strtoul (sym, (char **) symp, 16);
7659
      return TRUE;
7660
 
7661
    case 'S':
7662
      symbol_is_section = TRUE;
7663
    case 's':
7664
      ++sym;
7665
      symlen = strtol (sym, (char **) symp, 10);
7666
      sym = *symp + 1; /* Skip the trailing ':'.  */
7667
 
7668
      if (symend < sym || symlen + 1 > sizeof (symbuf))
7669
        {
7670
          bfd_set_error (bfd_error_invalid_operation);
7671
          return FALSE;
7672
        }
7673
 
7674
      memcpy (symbuf, sym, symlen);
7675
      symbuf[symlen] = '\0';
7676
      *symp = sym + symlen;
7677
 
7678
      /* Is it always possible, with complex symbols, that gas "mis-guessed"
7679
         the symbol as a section, or vice-versa. so we're pretty liberal in our
7680
         interpretation here; section means "try section first", not "must be a
7681
         section", and likewise with symbol.  */
7682
 
7683
      if (symbol_is_section)
7684
        {
7685
          if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7686
              && !resolve_symbol (symbuf, input_bfd, finfo, result,
7687
                                  isymbuf, locsymcount))
7688
            {
7689
              undefined_reference ("section", symbuf);
7690
              return FALSE;
7691
            }
7692
        }
7693
      else
7694
        {
7695
          if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7696
                               isymbuf, locsymcount)
7697
              && !resolve_section (symbuf, finfo->output_bfd->sections,
7698
                                   result))
7699
            {
7700
              undefined_reference ("symbol", symbuf);
7701
              return FALSE;
7702
            }
7703
        }
7704
 
7705
      return TRUE;
7706
 
7707
      /* All that remains are operators.  */
7708
 
7709
#define UNARY_OP(op)                                            \
7710
  if (strncmp (sym, #op, strlen (#op)) == 0)                    \
7711
    {                                                           \
7712
      sym += strlen (#op);                                      \
7713
      if (*sym == ':')                                          \
7714
        ++sym;                                                  \
7715
      *symp = sym;                                              \
7716
      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,        \
7717
                        isymbuf, locsymcount, signed_p))        \
7718
        return FALSE;                                           \
7719
      if (signed_p)                                             \
7720
        *result = op ((bfd_signed_vma) a);                      \
7721
      else                                                      \
7722
        *result = op a;                                         \
7723
      return TRUE;                                              \
7724
    }
7725
 
7726
#define BINARY_OP(op)                                           \
7727
  if (strncmp (sym, #op, strlen (#op)) == 0)                    \
7728
    {                                                           \
7729
      sym += strlen (#op);                                      \
7730
      if (*sym == ':')                                          \
7731
        ++sym;                                                  \
7732
      *symp = sym;                                              \
7733
      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,        \
7734
                        isymbuf, locsymcount, signed_p))        \
7735
        return FALSE;                                           \
7736
      ++*symp;                                                  \
7737
      if (!eval_symbol (&b, symp, input_bfd, finfo, dot,        \
7738
                        isymbuf, locsymcount, signed_p))        \
7739
        return FALSE;                                           \
7740
      if (signed_p)                                             \
7741
        *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7742
      else                                                      \
7743
        *result = a op b;                                       \
7744
      return TRUE;                                              \
7745
    }
7746
 
7747
    default:
7748
      UNARY_OP  (0-);
7749
      BINARY_OP (<<);
7750
      BINARY_OP (>>);
7751
      BINARY_OP (==);
7752
      BINARY_OP (!=);
7753
      BINARY_OP (<=);
7754
      BINARY_OP (>=);
7755
      BINARY_OP (&&);
7756
      BINARY_OP (||);
7757
      UNARY_OP  (~);
7758
      UNARY_OP  (!);
7759
      BINARY_OP (*);
7760
      BINARY_OP (/);
7761
      BINARY_OP (%);
7762
      BINARY_OP (^);
7763
      BINARY_OP (|);
7764
      BINARY_OP (&);
7765
      BINARY_OP (+);
7766
      BINARY_OP (-);
7767
      BINARY_OP (<);
7768
      BINARY_OP (>);
7769
#undef UNARY_OP
7770
#undef BINARY_OP
7771
      _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7772
      bfd_set_error (bfd_error_invalid_operation);
7773
      return FALSE;
7774
    }
7775
}
7776
 
7777
static void
7778
put_value (bfd_vma size,
7779
           unsigned long chunksz,
7780
           bfd *input_bfd,
7781
           bfd_vma x,
7782
           bfd_byte *location)
7783
{
7784
  location += (size - chunksz);
7785
 
7786
  for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7787
    {
7788
      switch (chunksz)
7789
        {
7790
        default:
7791
        case 0:
7792
          abort ();
7793
        case 1:
7794
          bfd_put_8 (input_bfd, x, location);
7795
          break;
7796
        case 2:
7797
          bfd_put_16 (input_bfd, x, location);
7798
          break;
7799
        case 4:
7800
          bfd_put_32 (input_bfd, x, location);
7801
          break;
7802
        case 8:
7803
#ifdef BFD64
7804
          bfd_put_64 (input_bfd, x, location);
7805
#else
7806
          abort ();
7807
#endif
7808
          break;
7809
        }
7810
    }
7811
}
7812
 
7813
static bfd_vma
7814
get_value (bfd_vma size,
7815
           unsigned long chunksz,
7816
           bfd *input_bfd,
7817
           bfd_byte *location)
7818
{
7819
  bfd_vma x = 0;
7820
 
7821
  for (; size; size -= chunksz, location += chunksz)
7822
    {
7823
      switch (chunksz)
7824
        {
7825
        default:
7826
        case 0:
7827
          abort ();
7828
        case 1:
7829
          x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7830
          break;
7831
        case 2:
7832
          x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7833
          break;
7834
        case 4:
7835
          x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7836
          break;
7837
        case 8:
7838
#ifdef BFD64
7839
          x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7840
#else
7841
          abort ();
7842
#endif
7843
          break;
7844
        }
7845
    }
7846
  return x;
7847
}
7848
 
7849
static void
7850
decode_complex_addend (unsigned long *start,   /* in bits */
7851
                       unsigned long *oplen,   /* in bits */
7852
                       unsigned long *len,     /* in bits */
7853
                       unsigned long *wordsz,  /* in bytes */
7854
                       unsigned long *chunksz, /* in bytes */
7855
                       unsigned long *lsb0_p,
7856
                       unsigned long *signed_p,
7857
                       unsigned long *trunc_p,
7858
                       unsigned long encoded)
7859
{
7860
  * start     =  encoded        & 0x3F;
7861
  * len       = (encoded >>  6) & 0x3F;
7862
  * oplen     = (encoded >> 12) & 0x3F;
7863
  * wordsz    = (encoded >> 18) & 0xF;
7864
  * chunksz   = (encoded >> 22) & 0xF;
7865
  * lsb0_p    = (encoded >> 27) & 1;
7866
  * signed_p  = (encoded >> 28) & 1;
7867
  * trunc_p   = (encoded >> 29) & 1;
7868
}
7869
 
7870
bfd_reloc_status_type
7871
bfd_elf_perform_complex_relocation (bfd *input_bfd,
7872
                                    asection *input_section ATTRIBUTE_UNUSED,
7873
                                    bfd_byte *contents,
7874
                                    Elf_Internal_Rela *rel,
7875
                                    bfd_vma relocation)
7876
{
7877
  bfd_vma shift, x, mask;
7878
  unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7879
  bfd_reloc_status_type r;
7880
 
7881
  /*  Perform this reloc, since it is complex.
7882
      (this is not to say that it necessarily refers to a complex
7883
      symbol; merely that it is a self-describing CGEN based reloc.
7884
      i.e. the addend has the complete reloc information (bit start, end,
7885
      word size, etc) encoded within it.).  */
7886
 
7887
  decode_complex_addend (&start, &oplen, &len, &wordsz,
7888
                         &chunksz, &lsb0_p, &signed_p,
7889
                         &trunc_p, rel->r_addend);
7890
 
7891
  mask = (((1L << (len - 1)) - 1) << 1) | 1;
7892
 
7893
  if (lsb0_p)
7894
    shift = (start + 1) - len;
7895
  else
7896
    shift = (8 * wordsz) - (start + len);
7897
 
7898
  /* FIXME: octets_per_byte.  */
7899
  x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7900
 
7901
#ifdef DEBUG
7902
  printf ("Doing complex reloc: "
7903
          "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7904
          "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7905
          "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7906
          lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7907
          oplen, (unsigned long) x, (unsigned long) mask,
7908
          (unsigned long) relocation);
7909
#endif
7910
 
7911
  r = bfd_reloc_ok;
7912
  if (! trunc_p)
7913
    /* Now do an overflow check.  */
7914
    r = bfd_check_overflow ((signed_p
7915
                             ? complain_overflow_signed
7916
                             : complain_overflow_unsigned),
7917
                            len, 0, (8 * wordsz),
7918
                            relocation);
7919
 
7920
  /* Do the deed.  */
7921
  x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7922
 
7923
#ifdef DEBUG
7924
  printf ("           relocation: %8.8lx\n"
7925
          "         shifted mask: %8.8lx\n"
7926
          " shifted/masked reloc: %8.8lx\n"
7927
          "               result: %8.8lx\n",
7928
          (unsigned long) relocation, (unsigned long) (mask << shift),
7929
          (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7930
#endif
7931
  /* FIXME: octets_per_byte.  */
7932
  put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7933
  return r;
7934
}
7935
 
7936
/* When performing a relocatable link, the input relocations are
7937
   preserved.  But, if they reference global symbols, the indices
7938
   referenced must be updated.  Update all the relocations found in
7939
   RELDATA.  */
7940
 
7941
static void
7942
elf_link_adjust_relocs (bfd *abfd,
7943
                        struct bfd_elf_section_reloc_data *reldata)
7944
{
7945
  unsigned int i;
7946
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7947
  bfd_byte *erela;
7948
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7949
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7950
  bfd_vma r_type_mask;
7951
  int r_sym_shift;
7952
  unsigned int count = reldata->count;
7953
  struct elf_link_hash_entry **rel_hash = reldata->hashes;
7954
 
7955
  if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7956
    {
7957
      swap_in = bed->s->swap_reloc_in;
7958
      swap_out = bed->s->swap_reloc_out;
7959
    }
7960
  else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7961
    {
7962
      swap_in = bed->s->swap_reloca_in;
7963
      swap_out = bed->s->swap_reloca_out;
7964
    }
7965
  else
7966
    abort ();
7967
 
7968
  if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7969
    abort ();
7970
 
7971
  if (bed->s->arch_size == 32)
7972
    {
7973
      r_type_mask = 0xff;
7974
      r_sym_shift = 8;
7975
    }
7976
  else
7977
    {
7978
      r_type_mask = 0xffffffff;
7979
      r_sym_shift = 32;
7980
    }
7981
 
7982
  erela = reldata->hdr->contents;
7983
  for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7984
    {
7985
      Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7986
      unsigned int j;
7987
 
7988
      if (*rel_hash == NULL)
7989
        continue;
7990
 
7991
      BFD_ASSERT ((*rel_hash)->indx >= 0);
7992
 
7993
      (*swap_in) (abfd, erela, irela);
7994
      for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7995
        irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7996
                           | (irela[j].r_info & r_type_mask));
7997
      (*swap_out) (abfd, irela, erela);
7998
    }
7999
}
8000
 
8001
struct elf_link_sort_rela
8002
{
8003
  union {
8004
    bfd_vma offset;
8005
    bfd_vma sym_mask;
8006
  } u;
8007
  enum elf_reloc_type_class type;
8008
  /* We use this as an array of size int_rels_per_ext_rel.  */
8009
  Elf_Internal_Rela rela[1];
8010
};
8011
 
8012
static int
8013
elf_link_sort_cmp1 (const void *A, const void *B)
8014
{
8015
  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8016
  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8017
  int relativea, relativeb;
8018
 
8019
  relativea = a->type == reloc_class_relative;
8020
  relativeb = b->type == reloc_class_relative;
8021
 
8022
  if (relativea < relativeb)
8023
    return 1;
8024
  if (relativea > relativeb)
8025
    return -1;
8026
  if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8027
    return -1;
8028
  if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8029
    return 1;
8030
  if (a->rela->r_offset < b->rela->r_offset)
8031
    return -1;
8032
  if (a->rela->r_offset > b->rela->r_offset)
8033
    return 1;
8034
  return 0;
8035
}
8036
 
8037
static int
8038
elf_link_sort_cmp2 (const void *A, const void *B)
8039
{
8040
  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8041
  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8042
  int copya, copyb;
8043
 
8044
  if (a->u.offset < b->u.offset)
8045
    return -1;
8046
  if (a->u.offset > b->u.offset)
8047
    return 1;
8048
  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8049
  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8050
  if (copya < copyb)
8051
    return -1;
8052
  if (copya > copyb)
8053
    return 1;
8054
  if (a->rela->r_offset < b->rela->r_offset)
8055
    return -1;
8056
  if (a->rela->r_offset > b->rela->r_offset)
8057
    return 1;
8058
  return 0;
8059
}
8060
 
8061
static size_t
8062
elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8063
{
8064
  asection *dynamic_relocs;
8065
  asection *rela_dyn;
8066
  asection *rel_dyn;
8067
  bfd_size_type count, size;
8068
  size_t i, ret, sort_elt, ext_size;
8069
  bfd_byte *sort, *s_non_relative, *p;
8070
  struct elf_link_sort_rela *sq;
8071
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8072
  int i2e = bed->s->int_rels_per_ext_rel;
8073
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8074
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8075
  struct bfd_link_order *lo;
8076
  bfd_vma r_sym_mask;
8077
  bfd_boolean use_rela;
8078
 
8079
  /* Find a dynamic reloc section.  */
8080
  rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8081
  rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8082
  if (rela_dyn != NULL && rela_dyn->size > 0
8083
      && rel_dyn != NULL && rel_dyn->size > 0)
8084
    {
8085
      bfd_boolean use_rela_initialised = FALSE;
8086
 
8087
      /* This is just here to stop gcc from complaining.
8088
         It's initialization checking code is not perfect.  */
8089
      use_rela = TRUE;
8090
 
8091
      /* Both sections are present.  Examine the sizes
8092
         of the indirect sections to help us choose.  */
8093
      for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8094
        if (lo->type == bfd_indirect_link_order)
8095
          {
8096
            asection *o = lo->u.indirect.section;
8097
 
8098
            if ((o->size % bed->s->sizeof_rela) == 0)
8099
              {
8100
                if ((o->size % bed->s->sizeof_rel) == 0)
8101
                  /* Section size is divisible by both rel and rela sizes.
8102
                     It is of no help to us.  */
8103
                  ;
8104
                else
8105
                  {
8106
                    /* Section size is only divisible by rela.  */
8107
                    if (use_rela_initialised && (use_rela == FALSE))
8108
                      {
8109
                        _bfd_error_handler
8110
                          (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8111
                        bfd_set_error (bfd_error_invalid_operation);
8112
                        return 0;
8113
                      }
8114
                    else
8115
                      {
8116
                        use_rela = TRUE;
8117
                        use_rela_initialised = TRUE;
8118
                      }
8119
                  }
8120
              }
8121
            else if ((o->size % bed->s->sizeof_rel) == 0)
8122
              {
8123
                /* Section size is only divisible by rel.  */
8124
                if (use_rela_initialised && (use_rela == TRUE))
8125
                  {
8126
                    _bfd_error_handler
8127
                      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8128
                    bfd_set_error (bfd_error_invalid_operation);
8129
                    return 0;
8130
                  }
8131
                else
8132
                  {
8133
                    use_rela = FALSE;
8134
                    use_rela_initialised = TRUE;
8135
                  }
8136
              }
8137
            else
8138
              {
8139
                /* The section size is not divisible by either - something is wrong.  */
8140
                _bfd_error_handler
8141
                  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8142
                bfd_set_error (bfd_error_invalid_operation);
8143
                return 0;
8144
              }
8145
          }
8146
 
8147
      for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8148
        if (lo->type == bfd_indirect_link_order)
8149
          {
8150
            asection *o = lo->u.indirect.section;
8151
 
8152
            if ((o->size % bed->s->sizeof_rela) == 0)
8153
              {
8154
                if ((o->size % bed->s->sizeof_rel) == 0)
8155
                  /* Section size is divisible by both rel and rela sizes.
8156
                     It is of no help to us.  */
8157
                  ;
8158
                else
8159
                  {
8160
                    /* Section size is only divisible by rela.  */
8161
                    if (use_rela_initialised && (use_rela == FALSE))
8162
                      {
8163
                        _bfd_error_handler
8164
                          (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8165
                        bfd_set_error (bfd_error_invalid_operation);
8166
                        return 0;
8167
                      }
8168
                    else
8169
                      {
8170
                        use_rela = TRUE;
8171
                        use_rela_initialised = TRUE;
8172
                      }
8173
                  }
8174
              }
8175
            else if ((o->size % bed->s->sizeof_rel) == 0)
8176
              {
8177
                /* Section size is only divisible by rel.  */
8178
                if (use_rela_initialised && (use_rela == TRUE))
8179
                  {
8180
                    _bfd_error_handler
8181
                      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8182
                    bfd_set_error (bfd_error_invalid_operation);
8183
                    return 0;
8184
                  }
8185
                else
8186
                  {
8187
                    use_rela = FALSE;
8188
                    use_rela_initialised = TRUE;
8189
                  }
8190
              }
8191
            else
8192
              {
8193
                /* The section size is not divisible by either - something is wrong.  */
8194
                _bfd_error_handler
8195
                  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8196
                bfd_set_error (bfd_error_invalid_operation);
8197
                return 0;
8198
              }
8199
          }
8200
 
8201
      if (! use_rela_initialised)
8202
        /* Make a guess.  */
8203
        use_rela = TRUE;
8204
    }
8205
  else if (rela_dyn != NULL && rela_dyn->size > 0)
8206
    use_rela = TRUE;
8207
  else if (rel_dyn != NULL && rel_dyn->size > 0)
8208
    use_rela = FALSE;
8209
  else
8210
    return 0;
8211
 
8212
  if (use_rela)
8213
    {
8214
      dynamic_relocs = rela_dyn;
8215
      ext_size = bed->s->sizeof_rela;
8216
      swap_in = bed->s->swap_reloca_in;
8217
      swap_out = bed->s->swap_reloca_out;
8218
    }
8219
  else
8220
    {
8221
      dynamic_relocs = rel_dyn;
8222
      ext_size = bed->s->sizeof_rel;
8223
      swap_in = bed->s->swap_reloc_in;
8224
      swap_out = bed->s->swap_reloc_out;
8225
    }
8226
 
8227
  size = 0;
8228
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8229
    if (lo->type == bfd_indirect_link_order)
8230
      size += lo->u.indirect.section->size;
8231
 
8232
  if (size != dynamic_relocs->size)
8233
    return 0;
8234
 
8235
  sort_elt = (sizeof (struct elf_link_sort_rela)
8236
              + (i2e - 1) * sizeof (Elf_Internal_Rela));
8237
 
8238
  count = dynamic_relocs->size / ext_size;
8239
  if (count == 0)
8240
    return 0;
8241
  sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8242
 
8243
  if (sort == NULL)
8244
    {
8245
      (*info->callbacks->warning)
8246
        (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8247
      return 0;
8248
    }
8249
 
8250
  if (bed->s->arch_size == 32)
8251
    r_sym_mask = ~(bfd_vma) 0xff;
8252
  else
8253
    r_sym_mask = ~(bfd_vma) 0xffffffff;
8254
 
8255
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8256
    if (lo->type == bfd_indirect_link_order)
8257
      {
8258
        bfd_byte *erel, *erelend;
8259
        asection *o = lo->u.indirect.section;
8260
 
8261
        if (o->contents == NULL && o->size != 0)
8262
          {
8263
            /* This is a reloc section that is being handled as a normal
8264
               section.  See bfd_section_from_shdr.  We can't combine
8265
               relocs in this case.  */
8266
            free (sort);
8267
            return 0;
8268
          }
8269
        erel = o->contents;
8270
        erelend = o->contents + o->size;
8271
        /* FIXME: octets_per_byte.  */
8272
        p = sort + o->output_offset / ext_size * sort_elt;
8273
 
8274
        while (erel < erelend)
8275
          {
8276
            struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8277
 
8278
            (*swap_in) (abfd, erel, s->rela);
8279
            s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8280
            s->u.sym_mask = r_sym_mask;
8281
            p += sort_elt;
8282
            erel += ext_size;
8283
          }
8284
      }
8285
 
8286
  qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8287
 
8288
  for (i = 0, p = sort; i < count; i++, p += sort_elt)
8289
    {
8290
      struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8291
      if (s->type != reloc_class_relative)
8292
        break;
8293
    }
8294
  ret = i;
8295
  s_non_relative = p;
8296
 
8297
  sq = (struct elf_link_sort_rela *) s_non_relative;
8298
  for (; i < count; i++, p += sort_elt)
8299
    {
8300
      struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8301
      if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8302
        sq = sp;
8303
      sp->u.offset = sq->rela->r_offset;
8304
    }
8305
 
8306
  qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8307
 
8308
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8309
    if (lo->type == bfd_indirect_link_order)
8310
      {
8311
        bfd_byte *erel, *erelend;
8312
        asection *o = lo->u.indirect.section;
8313
 
8314
        erel = o->contents;
8315
        erelend = o->contents + o->size;
8316
        /* FIXME: octets_per_byte.  */
8317
        p = sort + o->output_offset / ext_size * sort_elt;
8318
        while (erel < erelend)
8319
          {
8320
            struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8321
            (*swap_out) (abfd, s->rela, erel);
8322
            p += sort_elt;
8323
            erel += ext_size;
8324
          }
8325
      }
8326
 
8327
  free (sort);
8328
  *psec = dynamic_relocs;
8329
  return ret;
8330
}
8331
 
8332
/* Flush the output symbols to the file.  */
8333
 
8334
static bfd_boolean
8335
elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8336
                            const struct elf_backend_data *bed)
8337
{
8338
  if (finfo->symbuf_count > 0)
8339
    {
8340
      Elf_Internal_Shdr *hdr;
8341
      file_ptr pos;
8342
      bfd_size_type amt;
8343
 
8344
      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8345
      pos = hdr->sh_offset + hdr->sh_size;
8346
      amt = finfo->symbuf_count * bed->s->sizeof_sym;
8347
      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8348
          || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8349
        return FALSE;
8350
 
8351
      hdr->sh_size += amt;
8352
      finfo->symbuf_count = 0;
8353
    }
8354
 
8355
  return TRUE;
8356
}
8357
 
8358
/* Add a symbol to the output symbol table.  */
8359
 
8360
static int
8361
elf_link_output_sym (struct elf_final_link_info *finfo,
8362
                     const char *name,
8363
                     Elf_Internal_Sym *elfsym,
8364
                     asection *input_sec,
8365
                     struct elf_link_hash_entry *h)
8366
{
8367
  bfd_byte *dest;
8368
  Elf_External_Sym_Shndx *destshndx;
8369
  int (*output_symbol_hook)
8370
    (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8371
     struct elf_link_hash_entry *);
8372
  const struct elf_backend_data *bed;
8373
 
8374
  bed = get_elf_backend_data (finfo->output_bfd);
8375
  output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8376
  if (output_symbol_hook != NULL)
8377
    {
8378
      int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8379
      if (ret != 1)
8380
        return ret;
8381
    }
8382
 
8383
  if (name == NULL || *name == '\0')
8384
    elfsym->st_name = 0;
8385
  else if (input_sec->flags & SEC_EXCLUDE)
8386
    elfsym->st_name = 0;
8387
  else
8388
    {
8389
      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8390
                                                            name, TRUE, FALSE);
8391
      if (elfsym->st_name == (unsigned long) -1)
8392
        return 0;
8393
    }
8394
 
8395
  if (finfo->symbuf_count >= finfo->symbuf_size)
8396
    {
8397
      if (! elf_link_flush_output_syms (finfo, bed))
8398
        return 0;
8399
    }
8400
 
8401
  dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8402
  destshndx = finfo->symshndxbuf;
8403
  if (destshndx != NULL)
8404
    {
8405
      if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8406
        {
8407
          bfd_size_type amt;
8408
 
8409
          amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8410
          destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8411
                                                              amt * 2);
8412
          if (destshndx == NULL)
8413
            return 0;
8414
          finfo->symshndxbuf = destshndx;
8415
          memset ((char *) destshndx + amt, 0, amt);
8416
          finfo->shndxbuf_size *= 2;
8417
        }
8418
      destshndx += bfd_get_symcount (finfo->output_bfd);
8419
    }
8420
 
8421
  bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8422
  finfo->symbuf_count += 1;
8423
  bfd_get_symcount (finfo->output_bfd) += 1;
8424
 
8425
  return 1;
8426
}
8427
 
8428
/* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8429
 
8430
static bfd_boolean
8431
check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8432
{
8433
  if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8434
      && sym->st_shndx < SHN_LORESERVE)
8435
    {
8436
      /* The gABI doesn't support dynamic symbols in output sections
8437
         beyond 64k.  */
8438
      (*_bfd_error_handler)
8439
        (_("%B: Too many sections: %d (>= %d)"),
8440
         abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8441
      bfd_set_error (bfd_error_nonrepresentable_section);
8442
      return FALSE;
8443
    }
8444
  return TRUE;
8445
}
8446
 
8447
/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8448
   allowing an unsatisfied unversioned symbol in the DSO to match a
8449
   versioned symbol that would normally require an explicit version.
8450
   We also handle the case that a DSO references a hidden symbol
8451
   which may be satisfied by a versioned symbol in another DSO.  */
8452
 
8453
static bfd_boolean
8454
elf_link_check_versioned_symbol (struct bfd_link_info *info,
8455
                                 const struct elf_backend_data *bed,
8456
                                 struct elf_link_hash_entry *h)
8457
{
8458
  bfd *abfd;
8459
  struct elf_link_loaded_list *loaded;
8460
 
8461
  if (!is_elf_hash_table (info->hash))
8462
    return FALSE;
8463
 
8464
  switch (h->root.type)
8465
    {
8466
    default:
8467
      abfd = NULL;
8468
      break;
8469
 
8470
    case bfd_link_hash_undefined:
8471
    case bfd_link_hash_undefweak:
8472
      abfd = h->root.u.undef.abfd;
8473
      if ((abfd->flags & DYNAMIC) == 0
8474
          || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8475
        return FALSE;
8476
      break;
8477
 
8478
    case bfd_link_hash_defined:
8479
    case bfd_link_hash_defweak:
8480
      abfd = h->root.u.def.section->owner;
8481
      break;
8482
 
8483
    case bfd_link_hash_common:
8484
      abfd = h->root.u.c.p->section->owner;
8485
      break;
8486
    }
8487
  BFD_ASSERT (abfd != NULL);
8488
 
8489
  for (loaded = elf_hash_table (info)->loaded;
8490
       loaded != NULL;
8491
       loaded = loaded->next)
8492
    {
8493
      bfd *input;
8494
      Elf_Internal_Shdr *hdr;
8495
      bfd_size_type symcount;
8496
      bfd_size_type extsymcount;
8497
      bfd_size_type extsymoff;
8498
      Elf_Internal_Shdr *versymhdr;
8499
      Elf_Internal_Sym *isym;
8500
      Elf_Internal_Sym *isymend;
8501
      Elf_Internal_Sym *isymbuf;
8502
      Elf_External_Versym *ever;
8503
      Elf_External_Versym *extversym;
8504
 
8505
      input = loaded->abfd;
8506
 
8507
      /* We check each DSO for a possible hidden versioned definition.  */
8508
      if (input == abfd
8509
          || (input->flags & DYNAMIC) == 0
8510
          || elf_dynversym (input) == 0)
8511
        continue;
8512
 
8513
      hdr = &elf_tdata (input)->dynsymtab_hdr;
8514
 
8515
      symcount = hdr->sh_size / bed->s->sizeof_sym;
8516
      if (elf_bad_symtab (input))
8517
        {
8518
          extsymcount = symcount;
8519
          extsymoff = 0;
8520
        }
8521
      else
8522
        {
8523
          extsymcount = symcount - hdr->sh_info;
8524
          extsymoff = hdr->sh_info;
8525
        }
8526
 
8527
      if (extsymcount == 0)
8528
        continue;
8529
 
8530
      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8531
                                      NULL, NULL, NULL);
8532
      if (isymbuf == NULL)
8533
        return FALSE;
8534
 
8535
      /* Read in any version definitions.  */
8536
      versymhdr = &elf_tdata (input)->dynversym_hdr;
8537
      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8538
      if (extversym == NULL)
8539
        goto error_ret;
8540
 
8541
      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8542
          || (bfd_bread (extversym, versymhdr->sh_size, input)
8543
              != versymhdr->sh_size))
8544
        {
8545
          free (extversym);
8546
        error_ret:
8547
          free (isymbuf);
8548
          return FALSE;
8549
        }
8550
 
8551
      ever = extversym + extsymoff;
8552
      isymend = isymbuf + extsymcount;
8553
      for (isym = isymbuf; isym < isymend; isym++, ever++)
8554
        {
8555
          const char *name;
8556
          Elf_Internal_Versym iver;
8557
          unsigned short version_index;
8558
 
8559
          if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8560
              || isym->st_shndx == SHN_UNDEF)
8561
            continue;
8562
 
8563
          name = bfd_elf_string_from_elf_section (input,
8564
                                                  hdr->sh_link,
8565
                                                  isym->st_name);
8566
          if (strcmp (name, h->root.root.string) != 0)
8567
            continue;
8568
 
8569
          _bfd_elf_swap_versym_in (input, ever, &iver);
8570
 
8571
          if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8572
              && !(h->def_regular
8573
                   && h->forced_local))
8574
            {
8575
              /* If we have a non-hidden versioned sym, then it should
8576
                 have provided a definition for the undefined sym unless
8577
                 it is defined in a non-shared object and forced local.
8578
               */
8579
              abort ();
8580
            }
8581
 
8582
          version_index = iver.vs_vers & VERSYM_VERSION;
8583
          if (version_index == 1 || version_index == 2)
8584
            {
8585
              /* This is the base or first version.  We can use it.  */
8586
              free (extversym);
8587
              free (isymbuf);
8588
              return TRUE;
8589
            }
8590
        }
8591
 
8592
      free (extversym);
8593
      free (isymbuf);
8594
    }
8595
 
8596
  return FALSE;
8597
}
8598
 
8599
/* Add an external symbol to the symbol table.  This is called from
8600
   the hash table traversal routine.  When generating a shared object,
8601
   we go through the symbol table twice.  The first time we output
8602
   anything that might have been forced to local scope in a version
8603
   script.  The second time we output the symbols that are still
8604
   global symbols.  */
8605
 
8606
static bfd_boolean
8607
elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8608
{
8609
  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8610
  struct elf_final_link_info *finfo = eoinfo->finfo;
8611
  bfd_boolean strip;
8612
  Elf_Internal_Sym sym;
8613
  asection *input_sec;
8614
  const struct elf_backend_data *bed;
8615
  long indx;
8616
  int ret;
8617
 
8618
  if (h->root.type == bfd_link_hash_warning)
8619
    {
8620
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
8621
      if (h->root.type == bfd_link_hash_new)
8622
        return TRUE;
8623
    }
8624
 
8625
  /* Decide whether to output this symbol in this pass.  */
8626
  if (eoinfo->localsyms)
8627
    {
8628
      if (!h->forced_local)
8629
        return TRUE;
8630
    }
8631
  else
8632
    {
8633
      if (h->forced_local)
8634
        return TRUE;
8635
    }
8636
 
8637
  bed = get_elf_backend_data (finfo->output_bfd);
8638
 
8639
  if (h->root.type == bfd_link_hash_undefined)
8640
    {
8641
      /* If we have an undefined symbol reference here then it must have
8642
         come from a shared library that is being linked in.  (Undefined
8643
         references in regular files have already been handled unless
8644
         they are in unreferenced sections which are removed by garbage
8645
         collection).  */
8646
      bfd_boolean ignore_undef = FALSE;
8647
 
8648
      /* Some symbols may be special in that the fact that they're
8649
         undefined can be safely ignored - let backend determine that.  */
8650
      if (bed->elf_backend_ignore_undef_symbol)
8651
        ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8652
 
8653
      /* If we are reporting errors for this situation then do so now.  */
8654
      if (!ignore_undef
8655
          && h->ref_dynamic
8656
          && (!h->ref_regular || finfo->info->gc_sections)
8657
          && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8658
          && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8659
        {
8660
          if (! (finfo->info->callbacks->undefined_symbol
8661
                 (finfo->info, h->root.root.string,
8662
                  h->ref_regular ? NULL : h->root.u.undef.abfd,
8663
                  NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8664
            {
8665
              bfd_set_error (bfd_error_bad_value);
8666
              eoinfo->failed = TRUE;
8667
              return FALSE;
8668
            }
8669
        }
8670
    }
8671
 
8672
  /* We should also warn if a forced local symbol is referenced from
8673
     shared libraries.  */
8674
  if (! finfo->info->relocatable
8675
      && (! finfo->info->shared)
8676
      && h->forced_local
8677
      && h->ref_dynamic
8678
      && !h->dynamic_def
8679
      && !h->dynamic_weak
8680
      && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8681
    {
8682
      bfd *def_bfd;
8683
      const char *msg;
8684
 
8685
      if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8686
        msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8687
      else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8688
        msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8689
      else
8690
        msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8691
      def_bfd = finfo->output_bfd;
8692
      if (h->root.u.def.section != bfd_abs_section_ptr)
8693
        def_bfd = h->root.u.def.section->owner;
8694
      (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8695
                             h->root.root.string);
8696
      bfd_set_error (bfd_error_bad_value);
8697
      eoinfo->failed = TRUE;
8698
      return FALSE;
8699
    }
8700
 
8701
  /* We don't want to output symbols that have never been mentioned by
8702
     a regular file, or that we have been told to strip.  However, if
8703
     h->indx is set to -2, the symbol is used by a reloc and we must
8704
     output it.  */
8705
  if (h->indx == -2)
8706
    strip = FALSE;
8707
  else if ((h->def_dynamic
8708
            || h->ref_dynamic
8709
            || h->root.type == bfd_link_hash_new)
8710
           && !h->def_regular
8711
           && !h->ref_regular)
8712
    strip = TRUE;
8713
  else if (finfo->info->strip == strip_all)
8714
    strip = TRUE;
8715
  else if (finfo->info->strip == strip_some
8716
           && bfd_hash_lookup (finfo->info->keep_hash,
8717
                               h->root.root.string, FALSE, FALSE) == NULL)
8718
    strip = TRUE;
8719
  else if (finfo->info->strip_discarded
8720
           && (h->root.type == bfd_link_hash_defined
8721
               || h->root.type == bfd_link_hash_defweak)
8722
           && elf_discarded_section (h->root.u.def.section))
8723
    strip = TRUE;
8724
  else if ((h->root.type == bfd_link_hash_undefined
8725
            || h->root.type == bfd_link_hash_undefweak)
8726
           && h->root.u.undef.abfd != NULL
8727
           && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8728
    strip = TRUE;
8729
  else
8730
    strip = FALSE;
8731
 
8732
  /* If we're stripping it, and it's not a dynamic symbol, there's
8733
     nothing else to do unless it is a forced local symbol or a
8734
     STT_GNU_IFUNC symbol.  */
8735
  if (strip
8736
      && h->dynindx == -1
8737
      && h->type != STT_GNU_IFUNC
8738
      && !h->forced_local)
8739
    return TRUE;
8740
 
8741
  sym.st_value = 0;
8742
  sym.st_size = h->size;
8743
  sym.st_other = h->other;
8744
  if (h->forced_local)
8745
    {
8746
      sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8747
      /* Turn off visibility on local symbol.  */
8748
      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8749
    }
8750
  else if (h->unique_global)
8751
    sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8752
  else if (h->root.type == bfd_link_hash_undefweak
8753
           || h->root.type == bfd_link_hash_defweak)
8754
    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8755
  else
8756
    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8757
  sym.st_target_internal = h->target_internal;
8758
 
8759
  switch (h->root.type)
8760
    {
8761
    default:
8762
    case bfd_link_hash_new:
8763
    case bfd_link_hash_warning:
8764
      abort ();
8765
      return FALSE;
8766
 
8767
    case bfd_link_hash_undefined:
8768
    case bfd_link_hash_undefweak:
8769
      input_sec = bfd_und_section_ptr;
8770
      sym.st_shndx = SHN_UNDEF;
8771
      break;
8772
 
8773
    case bfd_link_hash_defined:
8774
    case bfd_link_hash_defweak:
8775
      {
8776
        input_sec = h->root.u.def.section;
8777
        if (input_sec->output_section != NULL)
8778
          {
8779
            sym.st_shndx =
8780
              _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8781
                                                 input_sec->output_section);
8782
            if (sym.st_shndx == SHN_BAD)
8783
              {
8784
                (*_bfd_error_handler)
8785
                  (_("%B: could not find output section %A for input section %A"),
8786
                   finfo->output_bfd, input_sec->output_section, input_sec);
8787
                bfd_set_error (bfd_error_nonrepresentable_section);
8788
                eoinfo->failed = TRUE;
8789
                return FALSE;
8790
              }
8791
 
8792
            /* ELF symbols in relocatable files are section relative,
8793
               but in nonrelocatable files they are virtual
8794
               addresses.  */
8795
            sym.st_value = h->root.u.def.value + input_sec->output_offset;
8796
            if (! finfo->info->relocatable)
8797
              {
8798
                sym.st_value += input_sec->output_section->vma;
8799
                if (h->type == STT_TLS)
8800
                  {
8801
                    asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8802
                    if (tls_sec != NULL)
8803
                      sym.st_value -= tls_sec->vma;
8804
                    else
8805
                      {
8806
                        /* The TLS section may have been garbage collected.  */
8807
                        BFD_ASSERT (finfo->info->gc_sections
8808
                                    && !input_sec->gc_mark);
8809
                      }
8810
                  }
8811
              }
8812
          }
8813
        else
8814
          {
8815
            BFD_ASSERT (input_sec->owner == NULL
8816
                        || (input_sec->owner->flags & DYNAMIC) != 0);
8817
            sym.st_shndx = SHN_UNDEF;
8818
            input_sec = bfd_und_section_ptr;
8819
          }
8820
      }
8821
      break;
8822
 
8823
    case bfd_link_hash_common:
8824
      input_sec = h->root.u.c.p->section;
8825
      sym.st_shndx = bed->common_section_index (input_sec);
8826
      sym.st_value = 1 << h->root.u.c.p->alignment_power;
8827
      break;
8828
 
8829
    case bfd_link_hash_indirect:
8830
      /* These symbols are created by symbol versioning.  They point
8831
         to the decorated version of the name.  For example, if the
8832
         symbol foo@@GNU_1.2 is the default, which should be used when
8833
         foo is used with no version, then we add an indirect symbol
8834
         foo which points to foo@@GNU_1.2.  We ignore these symbols,
8835
         since the indirected symbol is already in the hash table.  */
8836
      return TRUE;
8837
    }
8838
 
8839
  /* Give the processor backend a chance to tweak the symbol value,
8840
     and also to finish up anything that needs to be done for this
8841
     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8842
     forced local syms when non-shared is due to a historical quirk.
8843
     STT_GNU_IFUNC symbol must go through PLT.  */
8844
  if ((h->type == STT_GNU_IFUNC
8845
       && h->def_regular
8846
       && !finfo->info->relocatable)
8847
      || ((h->dynindx != -1
8848
           || h->forced_local)
8849
          && ((finfo->info->shared
8850
               && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8851
                   || h->root.type != bfd_link_hash_undefweak))
8852
              || !h->forced_local)
8853
          && elf_hash_table (finfo->info)->dynamic_sections_created))
8854
    {
8855
      if (! ((*bed->elf_backend_finish_dynamic_symbol)
8856
             (finfo->output_bfd, finfo->info, h, &sym)))
8857
        {
8858
          eoinfo->failed = TRUE;
8859
          return FALSE;
8860
        }
8861
    }
8862
 
8863
  /* If we are marking the symbol as undefined, and there are no
8864
     non-weak references to this symbol from a regular object, then
8865
     mark the symbol as weak undefined; if there are non-weak
8866
     references, mark the symbol as strong.  We can't do this earlier,
8867
     because it might not be marked as undefined until the
8868
     finish_dynamic_symbol routine gets through with it.  */
8869
  if (sym.st_shndx == SHN_UNDEF
8870
      && h->ref_regular
8871
      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8872
          || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8873
    {
8874
      int bindtype;
8875
      unsigned int type = ELF_ST_TYPE (sym.st_info);
8876
 
8877
      /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8878
      if (type == STT_GNU_IFUNC)
8879
        type = STT_FUNC;
8880
 
8881
      if (h->ref_regular_nonweak)
8882
        bindtype = STB_GLOBAL;
8883
      else
8884
        bindtype = STB_WEAK;
8885
      sym.st_info = ELF_ST_INFO (bindtype, type);
8886
    }
8887
 
8888
  /* If this is a symbol defined in a dynamic library, don't use the
8889
     symbol size from the dynamic library.  Relinking an executable
8890
     against a new library may introduce gratuitous changes in the
8891
     executable's symbols if we keep the size.  */
8892
  if (sym.st_shndx == SHN_UNDEF
8893
      && !h->def_regular
8894
      && h->def_dynamic)
8895
    sym.st_size = 0;
8896
 
8897
  /* If a non-weak symbol with non-default visibility is not defined
8898
     locally, it is a fatal error.  */
8899
  if (! finfo->info->relocatable
8900
      && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8901
      && ELF_ST_BIND (sym.st_info) != STB_WEAK
8902
      && h->root.type == bfd_link_hash_undefined
8903
      && !h->def_regular)
8904
    {
8905
      const char *msg;
8906
 
8907
      if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8908
        msg = _("%B: protected symbol `%s' isn't defined");
8909
      else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8910
        msg = _("%B: internal symbol `%s' isn't defined");
8911
      else
8912
        msg = _("%B: hidden symbol `%s' isn't defined");
8913
      (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8914
      bfd_set_error (bfd_error_bad_value);
8915
      eoinfo->failed = TRUE;
8916
      return FALSE;
8917
    }
8918
 
8919
  /* If this symbol should be put in the .dynsym section, then put it
8920
     there now.  We already know the symbol index.  We also fill in
8921
     the entry in the .hash section.  */
8922
  if (h->dynindx != -1
8923
      && elf_hash_table (finfo->info)->dynamic_sections_created)
8924
    {
8925
      bfd_byte *esym;
8926
 
8927
      sym.st_name = h->dynstr_index;
8928
      esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8929
      if (! check_dynsym (finfo->output_bfd, &sym))
8930
        {
8931
          eoinfo->failed = TRUE;
8932
          return FALSE;
8933
        }
8934
      bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8935
 
8936
      if (finfo->hash_sec != NULL)
8937
        {
8938
          size_t hash_entry_size;
8939
          bfd_byte *bucketpos;
8940
          bfd_vma chain;
8941
          size_t bucketcount;
8942
          size_t bucket;
8943
 
8944
          bucketcount = elf_hash_table (finfo->info)->bucketcount;
8945
          bucket = h->u.elf_hash_value % bucketcount;
8946
 
8947
          hash_entry_size
8948
            = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8949
          bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8950
                       + (bucket + 2) * hash_entry_size);
8951
          chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8952
          bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8953
          bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8954
                   ((bfd_byte *) finfo->hash_sec->contents
8955
                    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8956
        }
8957
 
8958
      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8959
        {
8960
          Elf_Internal_Versym iversym;
8961
          Elf_External_Versym *eversym;
8962
 
8963
          if (!h->def_regular)
8964
            {
8965
              if (h->verinfo.verdef == NULL)
8966
                iversym.vs_vers = 0;
8967
              else
8968
                iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8969
            }
8970
          else
8971
            {
8972
              if (h->verinfo.vertree == NULL)
8973
                iversym.vs_vers = 1;
8974
              else
8975
                iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8976
              if (finfo->info->create_default_symver)
8977
                iversym.vs_vers++;
8978
            }
8979
 
8980
          if (h->hidden)
8981
            iversym.vs_vers |= VERSYM_HIDDEN;
8982
 
8983
          eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8984
          eversym += h->dynindx;
8985
          _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8986
        }
8987
    }
8988
 
8989
  /* If we're stripping it, then it was just a dynamic symbol, and
8990
     there's nothing else to do.  */
8991
  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8992
    return TRUE;
8993
 
8994
  indx = bfd_get_symcount (finfo->output_bfd);
8995
  ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8996
  if (ret == 0)
8997
    {
8998
      eoinfo->failed = TRUE;
8999
      return FALSE;
9000
    }
9001
  else if (ret == 1)
9002
    h->indx = indx;
9003
  else if (h->indx == -2)
9004
    abort();
9005
 
9006
  return TRUE;
9007
}
9008
 
9009
/* Return TRUE if special handling is done for relocs in SEC against
9010
   symbols defined in discarded sections.  */
9011
 
9012
static bfd_boolean
9013
elf_section_ignore_discarded_relocs (asection *sec)
9014
{
9015
  const struct elf_backend_data *bed;
9016
 
9017
  switch (sec->sec_info_type)
9018
    {
9019
    case ELF_INFO_TYPE_STABS:
9020
    case ELF_INFO_TYPE_EH_FRAME:
9021
      return TRUE;
9022
    default:
9023
      break;
9024
    }
9025
 
9026
  bed = get_elf_backend_data (sec->owner);
9027
  if (bed->elf_backend_ignore_discarded_relocs != NULL
9028
      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9029
    return TRUE;
9030
 
9031
  return FALSE;
9032
}
9033
 
9034
/* Return a mask saying how ld should treat relocations in SEC against
9035
   symbols defined in discarded sections.  If this function returns
9036
   COMPLAIN set, ld will issue a warning message.  If this function
9037
   returns PRETEND set, and the discarded section was link-once and the
9038
   same size as the kept link-once section, ld will pretend that the
9039
   symbol was actually defined in the kept section.  Otherwise ld will
9040
   zero the reloc (at least that is the intent, but some cooperation by
9041
   the target dependent code is needed, particularly for REL targets).  */
9042
 
9043
unsigned int
9044
_bfd_elf_default_action_discarded (asection *sec)
9045
{
9046
  if (sec->flags & SEC_DEBUGGING)
9047
    return PRETEND;
9048
 
9049
  if (strcmp (".eh_frame", sec->name) == 0)
9050
    return 0;
9051
 
9052
  if (strcmp (".gcc_except_table", sec->name) == 0)
9053
    return 0;
9054
 
9055
  return COMPLAIN | PRETEND;
9056
}
9057
 
9058
/* Find a match between a section and a member of a section group.  */
9059
 
9060
static asection *
9061
match_group_member (asection *sec, asection *group,
9062
                    struct bfd_link_info *info)
9063
{
9064
  asection *first = elf_next_in_group (group);
9065
  asection *s = first;
9066
 
9067
  while (s != NULL)
9068
    {
9069
      if (bfd_elf_match_symbols_in_sections (s, sec, info))
9070
        return s;
9071
 
9072
      s = elf_next_in_group (s);
9073
      if (s == first)
9074
        break;
9075
    }
9076
 
9077
  return NULL;
9078
}
9079
 
9080
/* Check if the kept section of a discarded section SEC can be used
9081
   to replace it.  Return the replacement if it is OK.  Otherwise return
9082
   NULL.  */
9083
 
9084
asection *
9085
_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9086
{
9087
  asection *kept;
9088
 
9089
  kept = sec->kept_section;
9090
  if (kept != NULL)
9091
    {
9092
      if ((kept->flags & SEC_GROUP) != 0)
9093
        kept = match_group_member (sec, kept, info);
9094
      if (kept != NULL
9095
          && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9096
              != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9097
        kept = NULL;
9098
      sec->kept_section = kept;
9099
    }
9100
  return kept;
9101
}
9102
 
9103
/* Link an input file into the linker output file.  This function
9104
   handles all the sections and relocations of the input file at once.
9105
   This is so that we only have to read the local symbols once, and
9106
   don't have to keep them in memory.  */
9107
 
9108
static bfd_boolean
9109
elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9110
{
9111
  int (*relocate_section)
9112
    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9113
     Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9114
  bfd *output_bfd;
9115
  Elf_Internal_Shdr *symtab_hdr;
9116
  size_t locsymcount;
9117
  size_t extsymoff;
9118
  Elf_Internal_Sym *isymbuf;
9119
  Elf_Internal_Sym *isym;
9120
  Elf_Internal_Sym *isymend;
9121
  long *pindex;
9122
  asection **ppsection;
9123
  asection *o;
9124
  const struct elf_backend_data *bed;
9125
  struct elf_link_hash_entry **sym_hashes;
9126
  bfd_size_type address_size;
9127
  bfd_vma r_type_mask;
9128
  int r_sym_shift;
9129
 
9130
  output_bfd = finfo->output_bfd;
9131
  bed = get_elf_backend_data (output_bfd);
9132
  relocate_section = bed->elf_backend_relocate_section;
9133
 
9134
  /* If this is a dynamic object, we don't want to do anything here:
9135
     we don't want the local symbols, and we don't want the section
9136
     contents.  */
9137
  if ((input_bfd->flags & DYNAMIC) != 0)
9138
    return TRUE;
9139
 
9140
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9141
  if (elf_bad_symtab (input_bfd))
9142
    {
9143
      locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9144
      extsymoff = 0;
9145
    }
9146
  else
9147
    {
9148
      locsymcount = symtab_hdr->sh_info;
9149
      extsymoff = symtab_hdr->sh_info;
9150
    }
9151
 
9152
  /* Read the local symbols.  */
9153
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9154
  if (isymbuf == NULL && locsymcount != 0)
9155
    {
9156
      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9157
                                      finfo->internal_syms,
9158
                                      finfo->external_syms,
9159
                                      finfo->locsym_shndx);
9160
      if (isymbuf == NULL)
9161
        return FALSE;
9162
    }
9163
 
9164
  /* Find local symbol sections and adjust values of symbols in
9165
     SEC_MERGE sections.  Write out those local symbols we know are
9166
     going into the output file.  */
9167
  isymend = isymbuf + locsymcount;
9168
  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9169
       isym < isymend;
9170
       isym++, pindex++, ppsection++)
9171
    {
9172
      asection *isec;
9173
      const char *name;
9174
      Elf_Internal_Sym osym;
9175
      long indx;
9176
      int ret;
9177
 
9178
      *pindex = -1;
9179
 
9180
      if (elf_bad_symtab (input_bfd))
9181
        {
9182
          if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9183
            {
9184
              *ppsection = NULL;
9185
              continue;
9186
            }
9187
        }
9188
 
9189
      if (isym->st_shndx == SHN_UNDEF)
9190
        isec = bfd_und_section_ptr;
9191
      else if (isym->st_shndx == SHN_ABS)
9192
        isec = bfd_abs_section_ptr;
9193
      else if (isym->st_shndx == SHN_COMMON)
9194
        isec = bfd_com_section_ptr;
9195
      else
9196
        {
9197
          isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9198
          if (isec == NULL)
9199
            {
9200
              /* Don't attempt to output symbols with st_shnx in the
9201
                 reserved range other than SHN_ABS and SHN_COMMON.  */
9202
              *ppsection = NULL;
9203
              continue;
9204
            }
9205
          else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9206
                   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9207
            isym->st_value =
9208
              _bfd_merged_section_offset (output_bfd, &isec,
9209
                                          elf_section_data (isec)->sec_info,
9210
                                          isym->st_value);
9211
        }
9212
 
9213
      *ppsection = isec;
9214
 
9215
      /* Don't output the first, undefined, symbol.  */
9216
      if (ppsection == finfo->sections)
9217
        continue;
9218
 
9219
      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9220
        {
9221
          /* We never output section symbols.  Instead, we use the
9222
             section symbol of the corresponding section in the output
9223
             file.  */
9224
          continue;
9225
        }
9226
 
9227
      /* If we are stripping all symbols, we don't want to output this
9228
         one.  */
9229
      if (finfo->info->strip == strip_all)
9230
        continue;
9231
 
9232
      /* If we are discarding all local symbols, we don't want to
9233
         output this one.  If we are generating a relocatable output
9234
         file, then some of the local symbols may be required by
9235
         relocs; we output them below as we discover that they are
9236
         needed.  */
9237
      if (finfo->info->discard == discard_all)
9238
        continue;
9239
 
9240
      /* If this symbol is defined in a section which we are
9241
         discarding, we don't need to keep it.  */
9242
      if (isym->st_shndx != SHN_UNDEF
9243
          && isym->st_shndx < SHN_LORESERVE
9244
          && bfd_section_removed_from_list (output_bfd,
9245
                                            isec->output_section))
9246
        continue;
9247
 
9248
      /* Get the name of the symbol.  */
9249
      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9250
                                              isym->st_name);
9251
      if (name == NULL)
9252
        return FALSE;
9253
 
9254
      /* See if we are discarding symbols with this name.  */
9255
      if ((finfo->info->strip == strip_some
9256
           && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9257
               == NULL))
9258
          || (((finfo->info->discard == discard_sec_merge
9259
                && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9260
               || finfo->info->discard == discard_l)
9261
              && bfd_is_local_label_name (input_bfd, name)))
9262
        continue;
9263
 
9264
      osym = *isym;
9265
 
9266
      /* Adjust the section index for the output file.  */
9267
      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9268
                                                         isec->output_section);
9269
      if (osym.st_shndx == SHN_BAD)
9270
        return FALSE;
9271
 
9272
      /* ELF symbols in relocatable files are section relative, but
9273
         in executable files they are virtual addresses.  Note that
9274
         this code assumes that all ELF sections have an associated
9275
         BFD section with a reasonable value for output_offset; below
9276
         we assume that they also have a reasonable value for
9277
         output_section.  Any special sections must be set up to meet
9278
         these requirements.  */
9279
      osym.st_value += isec->output_offset;
9280
      if (! finfo->info->relocatable)
9281
        {
9282
          osym.st_value += isec->output_section->vma;
9283
          if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9284
            {
9285
              /* STT_TLS symbols are relative to PT_TLS segment base.  */
9286
              BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9287
              osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9288
            }
9289
        }
9290
 
9291
      indx = bfd_get_symcount (output_bfd);
9292
      ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9293
      if (ret == 0)
9294
        return FALSE;
9295
      else if (ret == 1)
9296
        *pindex = indx;
9297
    }
9298
 
9299
  if (bed->s->arch_size == 32)
9300
    {
9301
      r_type_mask = 0xff;
9302
      r_sym_shift = 8;
9303
      address_size = 4;
9304
    }
9305
  else
9306
    {
9307
      r_type_mask = 0xffffffff;
9308
      r_sym_shift = 32;
9309
      address_size = 8;
9310
    }
9311
 
9312
  /* Relocate the contents of each section.  */
9313
  sym_hashes = elf_sym_hashes (input_bfd);
9314
  for (o = input_bfd->sections; o != NULL; o = o->next)
9315
    {
9316
      bfd_byte *contents;
9317
 
9318
      if (! o->linker_mark)
9319
        {
9320
          /* This section was omitted from the link.  */
9321
          continue;
9322
        }
9323
 
9324
      if (finfo->info->relocatable
9325
          && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9326
        {
9327
          /* Deal with the group signature symbol.  */
9328
          struct bfd_elf_section_data *sec_data = elf_section_data (o);
9329
          unsigned long symndx = sec_data->this_hdr.sh_info;
9330
          asection *osec = o->output_section;
9331
 
9332
          if (symndx >= locsymcount
9333
              || (elf_bad_symtab (input_bfd)
9334
                  && finfo->sections[symndx] == NULL))
9335
            {
9336
              struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9337
              while (h->root.type == bfd_link_hash_indirect
9338
                     || h->root.type == bfd_link_hash_warning)
9339
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
9340
              /* Arrange for symbol to be output.  */
9341
              h->indx = -2;
9342
              elf_section_data (osec)->this_hdr.sh_info = -2;
9343
            }
9344
          else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9345
            {
9346
              /* We'll use the output section target_index.  */
9347
              asection *sec = finfo->sections[symndx]->output_section;
9348
              elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9349
            }
9350
          else
9351
            {
9352
              if (finfo->indices[symndx] == -1)
9353
                {
9354
                  /* Otherwise output the local symbol now.  */
9355
                  Elf_Internal_Sym sym = isymbuf[symndx];
9356
                  asection *sec = finfo->sections[symndx]->output_section;
9357
                  const char *name;
9358
                  long indx;
9359
                  int ret;
9360
 
9361
                  name = bfd_elf_string_from_elf_section (input_bfd,
9362
                                                          symtab_hdr->sh_link,
9363
                                                          sym.st_name);
9364
                  if (name == NULL)
9365
                    return FALSE;
9366
 
9367
                  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9368
                                                                    sec);
9369
                  if (sym.st_shndx == SHN_BAD)
9370
                    return FALSE;
9371
 
9372
                  sym.st_value += o->output_offset;
9373
 
9374
                  indx = bfd_get_symcount (output_bfd);
9375
                  ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9376
                  if (ret == 0)
9377
                    return FALSE;
9378
                  else if (ret == 1)
9379
                    finfo->indices[symndx] = indx;
9380
                  else
9381
                    abort ();
9382
                }
9383
              elf_section_data (osec)->this_hdr.sh_info
9384
                = finfo->indices[symndx];
9385
            }
9386
        }
9387
 
9388
      if ((o->flags & SEC_HAS_CONTENTS) == 0
9389
          || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9390
        continue;
9391
 
9392
      if ((o->flags & SEC_LINKER_CREATED) != 0)
9393
        {
9394
          /* Section was created by _bfd_elf_link_create_dynamic_sections
9395
             or somesuch.  */
9396
          continue;
9397
        }
9398
 
9399
      /* Get the contents of the section.  They have been cached by a
9400
         relaxation routine.  Note that o is a section in an input
9401
         file, so the contents field will not have been set by any of
9402
         the routines which work on output files.  */
9403
      if (elf_section_data (o)->this_hdr.contents != NULL)
9404
        contents = elf_section_data (o)->this_hdr.contents;
9405
      else
9406
        {
9407
          contents = finfo->contents;
9408
          if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9409
            return FALSE;
9410
        }
9411
 
9412
      if ((o->flags & SEC_RELOC) != 0)
9413
        {
9414
          Elf_Internal_Rela *internal_relocs;
9415
          Elf_Internal_Rela *rel, *relend;
9416
          int action_discarded;
9417
          int ret;
9418
 
9419
          /* Get the swapped relocs.  */
9420
          internal_relocs
9421
            = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9422
                                         finfo->internal_relocs, FALSE);
9423
          if (internal_relocs == NULL
9424
              && o->reloc_count > 0)
9425
            return FALSE;
9426
 
9427
          /* We need to reverse-copy input .ctors/.dtors sections if
9428
             they are placed in .init_array/.finit_array for output.  */
9429
          if (o->size > address_size
9430
              && ((strncmp (o->name, ".ctors", 6) == 0
9431
                   && strcmp (o->output_section->name,
9432
                              ".init_array") == 0)
9433
                  || (strncmp (o->name, ".dtors", 6) == 0
9434
                      && strcmp (o->output_section->name,
9435
                                 ".fini_array") == 0))
9436
              && (o->name[6] == 0 || o->name[6] == '.'))
9437
            {
9438
              if (o->size != o->reloc_count * address_size)
9439
                {
9440
                  (*_bfd_error_handler)
9441
                    (_("error: %B: size of section %A is not "
9442
                       "multiple of address size"),
9443
                     input_bfd, o);
9444
                  bfd_set_error (bfd_error_on_input);
9445
                  return FALSE;
9446
                }
9447
              o->flags |= SEC_ELF_REVERSE_COPY;
9448
            }
9449
 
9450
          action_discarded = -1;
9451
          if (!elf_section_ignore_discarded_relocs (o))
9452
            action_discarded = (*bed->action_discarded) (o);
9453
 
9454
          /* Run through the relocs evaluating complex reloc symbols and
9455
             looking for relocs against symbols from discarded sections
9456
             or section symbols from removed link-once sections.
9457
             Complain about relocs against discarded sections.  Zero
9458
             relocs against removed link-once sections.  */
9459
 
9460
          rel = internal_relocs;
9461
          relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9462
          for ( ; rel < relend; rel++)
9463
            {
9464
              unsigned long r_symndx = rel->r_info >> r_sym_shift;
9465
              unsigned int s_type;
9466
              asection **ps, *sec;
9467
              struct elf_link_hash_entry *h = NULL;
9468
              const char *sym_name;
9469
 
9470
              if (r_symndx == STN_UNDEF)
9471
                continue;
9472
 
9473
              if (r_symndx >= locsymcount
9474
                  || (elf_bad_symtab (input_bfd)
9475
                      && finfo->sections[r_symndx] == NULL))
9476
                {
9477
                  h = sym_hashes[r_symndx - extsymoff];
9478
 
9479
                  /* Badly formatted input files can contain relocs that
9480
                     reference non-existant symbols.  Check here so that
9481
                     we do not seg fault.  */
9482
                  if (h == NULL)
9483
                    {
9484
                      char buffer [32];
9485
 
9486
                      sprintf_vma (buffer, rel->r_info);
9487
                      (*_bfd_error_handler)
9488
                        (_("error: %B contains a reloc (0x%s) for section %A "
9489
                           "that references a non-existent global symbol"),
9490
                         input_bfd, o, buffer);
9491
                      bfd_set_error (bfd_error_bad_value);
9492
                      return FALSE;
9493
                    }
9494
 
9495
                  while (h->root.type == bfd_link_hash_indirect
9496
                         || h->root.type == bfd_link_hash_warning)
9497
                    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9498
 
9499
                  s_type = h->type;
9500
 
9501
                  ps = NULL;
9502
                  if (h->root.type == bfd_link_hash_defined
9503
                      || h->root.type == bfd_link_hash_defweak)
9504
                    ps = &h->root.u.def.section;
9505
 
9506
                  sym_name = h->root.root.string;
9507
                }
9508
              else
9509
                {
9510
                  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9511
 
9512
                  s_type = ELF_ST_TYPE (sym->st_info);
9513
                  ps = &finfo->sections[r_symndx];
9514
                  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9515
                                               sym, *ps);
9516
                }
9517
 
9518
              if ((s_type == STT_RELC || s_type == STT_SRELC)
9519
                  && !finfo->info->relocatable)
9520
                {
9521
                  bfd_vma val;
9522
                  bfd_vma dot = (rel->r_offset
9523
                                 + o->output_offset + o->output_section->vma);
9524
#ifdef DEBUG
9525
                  printf ("Encountered a complex symbol!");
9526
                  printf (" (input_bfd %s, section %s, reloc %ld\n",
9527
                          input_bfd->filename, o->name,
9528
                          (long) (rel - internal_relocs));
9529
                  printf (" symbol: idx  %8.8lx, name %s\n",
9530
                          r_symndx, sym_name);
9531
                  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9532
                          (unsigned long) rel->r_info,
9533
                          (unsigned long) rel->r_offset);
9534
#endif
9535
                  if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9536
                                    isymbuf, locsymcount, s_type == STT_SRELC))
9537
                    return FALSE;
9538
 
9539
                  /* Symbol evaluated OK.  Update to absolute value.  */
9540
                  set_symbol_value (input_bfd, isymbuf, locsymcount,
9541
                                    r_symndx, val);
9542
                  continue;
9543
                }
9544
 
9545
              if (action_discarded != -1 && ps != NULL)
9546
                {
9547
                  /* Complain if the definition comes from a
9548
                     discarded section.  */
9549
                  if ((sec = *ps) != NULL && elf_discarded_section (sec))
9550
                    {
9551
                      BFD_ASSERT (r_symndx != STN_UNDEF);
9552
                      if (action_discarded & COMPLAIN)
9553
                        (*finfo->info->callbacks->einfo)
9554
                          (_("%X`%s' referenced in section `%A' of %B: "
9555
                             "defined in discarded section `%A' of %B\n"),
9556
                           sym_name, o, input_bfd, sec, sec->owner);
9557
 
9558
                      /* Try to do the best we can to support buggy old
9559
                         versions of gcc.  Pretend that the symbol is
9560
                         really defined in the kept linkonce section.
9561
                         FIXME: This is quite broken.  Modifying the
9562
                         symbol here means we will be changing all later
9563
                         uses of the symbol, not just in this section.  */
9564
                      if (action_discarded & PRETEND)
9565
                        {
9566
                          asection *kept;
9567
 
9568
                          kept = _bfd_elf_check_kept_section (sec,
9569
                                                              finfo->info);
9570
                          if (kept != NULL)
9571
                            {
9572
                              *ps = kept;
9573
                              continue;
9574
                            }
9575
                        }
9576
                    }
9577
                }
9578
            }
9579
 
9580
          /* Relocate the section by invoking a back end routine.
9581
 
9582
             The back end routine is responsible for adjusting the
9583
             section contents as necessary, and (if using Rela relocs
9584
             and generating a relocatable output file) adjusting the
9585
             reloc addend as necessary.
9586
 
9587
             The back end routine does not have to worry about setting
9588
             the reloc address or the reloc symbol index.
9589
 
9590
             The back end routine is given a pointer to the swapped in
9591
             internal symbols, and can access the hash table entries
9592
             for the external symbols via elf_sym_hashes (input_bfd).
9593
 
9594
             When generating relocatable output, the back end routine
9595
             must handle STB_LOCAL/STT_SECTION symbols specially.  The
9596
             output symbol is going to be a section symbol
9597
             corresponding to the output section, which will require
9598
             the addend to be adjusted.  */
9599
 
9600
          ret = (*relocate_section) (output_bfd, finfo->info,
9601
                                     input_bfd, o, contents,
9602
                                     internal_relocs,
9603
                                     isymbuf,
9604
                                     finfo->sections);
9605
          if (!ret)
9606
            return FALSE;
9607
 
9608
          if (ret == 2
9609
              || finfo->info->relocatable
9610
              || finfo->info->emitrelocations)
9611
            {
9612
              Elf_Internal_Rela *irela;
9613
              Elf_Internal_Rela *irelaend, *irelamid;
9614
              bfd_vma last_offset;
9615
              struct elf_link_hash_entry **rel_hash;
9616
              struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9617
              Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9618
              unsigned int next_erel;
9619
              bfd_boolean rela_normal;
9620
              struct bfd_elf_section_data *esdi, *esdo;
9621
 
9622
              esdi = elf_section_data (o);
9623
              esdo = elf_section_data (o->output_section);
9624
              rela_normal = FALSE;
9625
 
9626
              /* Adjust the reloc addresses and symbol indices.  */
9627
 
9628
              irela = internal_relocs;
9629
              irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9630
              rel_hash = esdo->rel.hashes + esdo->rel.count;
9631
              /* We start processing the REL relocs, if any.  When we reach
9632
                 IRELAMID in the loop, we switch to the RELA relocs.  */
9633
              irelamid = irela;
9634
              if (esdi->rel.hdr != NULL)
9635
                irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9636
                             * bed->s->int_rels_per_ext_rel);
9637
              rel_hash_list = rel_hash;
9638
              rela_hash_list = NULL;
9639
              last_offset = o->output_offset;
9640
              if (!finfo->info->relocatable)
9641
                last_offset += o->output_section->vma;
9642
              for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9643
                {
9644
                  unsigned long r_symndx;
9645
                  asection *sec;
9646
                  Elf_Internal_Sym sym;
9647
 
9648
                  if (next_erel == bed->s->int_rels_per_ext_rel)
9649
                    {
9650
                      rel_hash++;
9651
                      next_erel = 0;
9652
                    }
9653
 
9654
                  if (irela == irelamid)
9655
                    {
9656
                      rel_hash = esdo->rela.hashes + esdo->rela.count;
9657
                      rela_hash_list = rel_hash;
9658
                      rela_normal = bed->rela_normal;
9659
                    }
9660
 
9661
                  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9662
                                                             finfo->info, o,
9663
                                                             irela->r_offset);
9664
                  if (irela->r_offset >= (bfd_vma) -2)
9665
                    {
9666
                      /* This is a reloc for a deleted entry or somesuch.
9667
                         Turn it into an R_*_NONE reloc, at the same
9668
                         offset as the last reloc.  elf_eh_frame.c and
9669
                         bfd_elf_discard_info rely on reloc offsets
9670
                         being ordered.  */
9671
                      irela->r_offset = last_offset;
9672
                      irela->r_info = 0;
9673
                      irela->r_addend = 0;
9674
                      continue;
9675
                    }
9676
 
9677
                  irela->r_offset += o->output_offset;
9678
 
9679
                  /* Relocs in an executable have to be virtual addresses.  */
9680
                  if (!finfo->info->relocatable)
9681
                    irela->r_offset += o->output_section->vma;
9682
 
9683
                  last_offset = irela->r_offset;
9684
 
9685
                  r_symndx = irela->r_info >> r_sym_shift;
9686
                  if (r_symndx == STN_UNDEF)
9687
                    continue;
9688
 
9689
                  if (r_symndx >= locsymcount
9690
                      || (elf_bad_symtab (input_bfd)
9691
                          && finfo->sections[r_symndx] == NULL))
9692
                    {
9693
                      struct elf_link_hash_entry *rh;
9694
                      unsigned long indx;
9695
 
9696
                      /* This is a reloc against a global symbol.  We
9697
                         have not yet output all the local symbols, so
9698
                         we do not know the symbol index of any global
9699
                         symbol.  We set the rel_hash entry for this
9700
                         reloc to point to the global hash table entry
9701
                         for this symbol.  The symbol index is then
9702
                         set at the end of bfd_elf_final_link.  */
9703
                      indx = r_symndx - extsymoff;
9704
                      rh = elf_sym_hashes (input_bfd)[indx];
9705
                      while (rh->root.type == bfd_link_hash_indirect
9706
                             || rh->root.type == bfd_link_hash_warning)
9707
                        rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9708
 
9709
                      /* Setting the index to -2 tells
9710
                         elf_link_output_extsym that this symbol is
9711
                         used by a reloc.  */
9712
                      BFD_ASSERT (rh->indx < 0);
9713
                      rh->indx = -2;
9714
 
9715
                      *rel_hash = rh;
9716
 
9717
                      continue;
9718
                    }
9719
 
9720
                  /* This is a reloc against a local symbol.  */
9721
 
9722
                  *rel_hash = NULL;
9723
                  sym = isymbuf[r_symndx];
9724
                  sec = finfo->sections[r_symndx];
9725
                  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9726
                    {
9727
                      /* I suppose the backend ought to fill in the
9728
                         section of any STT_SECTION symbol against a
9729
                         processor specific section.  */
9730
                      r_symndx = STN_UNDEF;
9731
                      if (bfd_is_abs_section (sec))
9732
                        ;
9733
                      else if (sec == NULL || sec->owner == NULL)
9734
                        {
9735
                          bfd_set_error (bfd_error_bad_value);
9736
                          return FALSE;
9737
                        }
9738
                      else
9739
                        {
9740
                          asection *osec = sec->output_section;
9741
 
9742
                          /* If we have discarded a section, the output
9743
                             section will be the absolute section.  In
9744
                             case of discarded SEC_MERGE sections, use
9745
                             the kept section.  relocate_section should
9746
                             have already handled discarded linkonce
9747
                             sections.  */
9748
                          if (bfd_is_abs_section (osec)
9749
                              && sec->kept_section != NULL
9750
                              && sec->kept_section->output_section != NULL)
9751
                            {
9752
                              osec = sec->kept_section->output_section;
9753
                              irela->r_addend -= osec->vma;
9754
                            }
9755
 
9756
                          if (!bfd_is_abs_section (osec))
9757
                            {
9758
                              r_symndx = osec->target_index;
9759
                              if (r_symndx == STN_UNDEF)
9760
                                {
9761
                                  struct elf_link_hash_table *htab;
9762
                                  asection *oi;
9763
 
9764
                                  htab = elf_hash_table (finfo->info);
9765
                                  oi = htab->text_index_section;
9766
                                  if ((osec->flags & SEC_READONLY) == 0
9767
                                      && htab->data_index_section != NULL)
9768
                                    oi = htab->data_index_section;
9769
 
9770
                                  if (oi != NULL)
9771
                                    {
9772
                                      irela->r_addend += osec->vma - oi->vma;
9773
                                      r_symndx = oi->target_index;
9774
                                    }
9775
                                }
9776
 
9777
                              BFD_ASSERT (r_symndx != STN_UNDEF);
9778
                            }
9779
                        }
9780
 
9781
                      /* Adjust the addend according to where the
9782
                         section winds up in the output section.  */
9783
                      if (rela_normal)
9784
                        irela->r_addend += sec->output_offset;
9785
                    }
9786
                  else
9787
                    {
9788
                      if (finfo->indices[r_symndx] == -1)
9789
                        {
9790
                          unsigned long shlink;
9791
                          const char *name;
9792
                          asection *osec;
9793
                          long indx;
9794
 
9795
                          if (finfo->info->strip == strip_all)
9796
                            {
9797
                              /* You can't do ld -r -s.  */
9798
                              bfd_set_error (bfd_error_invalid_operation);
9799
                              return FALSE;
9800
                            }
9801
 
9802
                          /* This symbol was skipped earlier, but
9803
                             since it is needed by a reloc, we
9804
                             must output it now.  */
9805
                          shlink = symtab_hdr->sh_link;
9806
                          name = (bfd_elf_string_from_elf_section
9807
                                  (input_bfd, shlink, sym.st_name));
9808
                          if (name == NULL)
9809
                            return FALSE;
9810
 
9811
                          osec = sec->output_section;
9812
                          sym.st_shndx =
9813
                            _bfd_elf_section_from_bfd_section (output_bfd,
9814
                                                               osec);
9815
                          if (sym.st_shndx == SHN_BAD)
9816
                            return FALSE;
9817
 
9818
                          sym.st_value += sec->output_offset;
9819
                          if (! finfo->info->relocatable)
9820
                            {
9821
                              sym.st_value += osec->vma;
9822
                              if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9823
                                {
9824
                                  /* STT_TLS symbols are relative to PT_TLS
9825
                                     segment base.  */
9826
                                  BFD_ASSERT (elf_hash_table (finfo->info)
9827
                                              ->tls_sec != NULL);
9828
                                  sym.st_value -= (elf_hash_table (finfo->info)
9829
                                                   ->tls_sec->vma);
9830
                                }
9831
                            }
9832
 
9833
                          indx = bfd_get_symcount (output_bfd);
9834
                          ret = elf_link_output_sym (finfo, name, &sym, sec,
9835
                                                     NULL);
9836
                          if (ret == 0)
9837
                            return FALSE;
9838
                          else if (ret == 1)
9839
                            finfo->indices[r_symndx] = indx;
9840
                          else
9841
                            abort ();
9842
                        }
9843
 
9844
                      r_symndx = finfo->indices[r_symndx];
9845
                    }
9846
 
9847
                  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9848
                                   | (irela->r_info & r_type_mask));
9849
                }
9850
 
9851
              /* Swap out the relocs.  */
9852
              input_rel_hdr = esdi->rel.hdr;
9853
              if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9854
                {
9855
                  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9856
                                                     input_rel_hdr,
9857
                                                     internal_relocs,
9858
                                                     rel_hash_list))
9859
                    return FALSE;
9860
                  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9861
                                      * bed->s->int_rels_per_ext_rel);
9862
                  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9863
                }
9864
 
9865
              input_rela_hdr = esdi->rela.hdr;
9866
              if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9867
                {
9868
                  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9869
                                                     input_rela_hdr,
9870
                                                     internal_relocs,
9871
                                                     rela_hash_list))
9872
                    return FALSE;
9873
                }
9874
            }
9875
        }
9876
 
9877
      /* Write out the modified section contents.  */
9878
      if (bed->elf_backend_write_section
9879
          && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9880
                                                contents))
9881
        {
9882
          /* Section written out.  */
9883
        }
9884
      else switch (o->sec_info_type)
9885
        {
9886
        case ELF_INFO_TYPE_STABS:
9887
          if (! (_bfd_write_section_stabs
9888
                 (output_bfd,
9889
                  &elf_hash_table (finfo->info)->stab_info,
9890
                  o, &elf_section_data (o)->sec_info, contents)))
9891
            return FALSE;
9892
          break;
9893
        case ELF_INFO_TYPE_MERGE:
9894
          if (! _bfd_write_merged_section (output_bfd, o,
9895
                                           elf_section_data (o)->sec_info))
9896
            return FALSE;
9897
          break;
9898
        case ELF_INFO_TYPE_EH_FRAME:
9899
          {
9900
            if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9901
                                                   o, contents))
9902
              return FALSE;
9903
          }
9904
          break;
9905
        default:
9906
          {
9907
            /* FIXME: octets_per_byte.  */
9908
            if (! (o->flags & SEC_EXCLUDE))
9909
              {
9910
                file_ptr offset = (file_ptr) o->output_offset;
9911
                bfd_size_type todo = o->size;
9912
                if ((o->flags & SEC_ELF_REVERSE_COPY))
9913
                  {
9914
                    /* Reverse-copy input section to output.  */
9915
                    do
9916
                      {
9917
                        todo -= address_size;
9918
                        if (! bfd_set_section_contents (output_bfd,
9919
                                                        o->output_section,
9920
                                                        contents + todo,
9921
                                                        offset,
9922
                                                        address_size))
9923
                          return FALSE;
9924
                        if (todo == 0)
9925
                          break;
9926
                        offset += address_size;
9927
                      }
9928
                    while (1);
9929
                  }
9930
                else if (! bfd_set_section_contents (output_bfd,
9931
                                                     o->output_section,
9932
                                                     contents,
9933
                                                     offset, todo))
9934
                  return FALSE;
9935
              }
9936
          }
9937
          break;
9938
        }
9939
    }
9940
 
9941
  return TRUE;
9942
}
9943
 
9944
/* Generate a reloc when linking an ELF file.  This is a reloc
9945
   requested by the linker, and does not come from any input file.  This
9946
   is used to build constructor and destructor tables when linking
9947
   with -Ur.  */
9948
 
9949
static bfd_boolean
9950
elf_reloc_link_order (bfd *output_bfd,
9951
                      struct bfd_link_info *info,
9952
                      asection *output_section,
9953
                      struct bfd_link_order *link_order)
9954
{
9955
  reloc_howto_type *howto;
9956
  long indx;
9957
  bfd_vma offset;
9958
  bfd_vma addend;
9959
  struct bfd_elf_section_reloc_data *reldata;
9960
  struct elf_link_hash_entry **rel_hash_ptr;
9961
  Elf_Internal_Shdr *rel_hdr;
9962
  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9963
  Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9964
  bfd_byte *erel;
9965
  unsigned int i;
9966
  struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9967
 
9968
  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9969
  if (howto == NULL)
9970
    {
9971
      bfd_set_error (bfd_error_bad_value);
9972
      return FALSE;
9973
    }
9974
 
9975
  addend = link_order->u.reloc.p->addend;
9976
 
9977
  if (esdo->rel.hdr)
9978
    reldata = &esdo->rel;
9979
  else if (esdo->rela.hdr)
9980
    reldata = &esdo->rela;
9981
  else
9982
    {
9983
      reldata = NULL;
9984
      BFD_ASSERT (0);
9985
    }
9986
 
9987
  /* Figure out the symbol index.  */
9988
  rel_hash_ptr = reldata->hashes + reldata->count;
9989
  if (link_order->type == bfd_section_reloc_link_order)
9990
    {
9991
      indx = link_order->u.reloc.p->u.section->target_index;
9992
      BFD_ASSERT (indx != 0);
9993
      *rel_hash_ptr = NULL;
9994
    }
9995
  else
9996
    {
9997
      struct elf_link_hash_entry *h;
9998
 
9999
      /* Treat a reloc against a defined symbol as though it were
10000
         actually against the section.  */
10001
      h = ((struct elf_link_hash_entry *)
10002
           bfd_wrapped_link_hash_lookup (output_bfd, info,
10003
                                         link_order->u.reloc.p->u.name,
10004
                                         FALSE, FALSE, TRUE));
10005
      if (h != NULL
10006
          && (h->root.type == bfd_link_hash_defined
10007
              || h->root.type == bfd_link_hash_defweak))
10008
        {
10009
          asection *section;
10010
 
10011
          section = h->root.u.def.section;
10012
          indx = section->output_section->target_index;
10013
          *rel_hash_ptr = NULL;
10014
          /* It seems that we ought to add the symbol value to the
10015
             addend here, but in practice it has already been added
10016
             because it was passed to constructor_callback.  */
10017
          addend += section->output_section->vma + section->output_offset;
10018
        }
10019
      else if (h != NULL)
10020
        {
10021
          /* Setting the index to -2 tells elf_link_output_extsym that
10022
             this symbol is used by a reloc.  */
10023
          h->indx = -2;
10024
          *rel_hash_ptr = h;
10025
          indx = 0;
10026
        }
10027
      else
10028
        {
10029
          if (! ((*info->callbacks->unattached_reloc)
10030
                 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10031
            return FALSE;
10032
          indx = 0;
10033
        }
10034
    }
10035
 
10036
  /* If this is an inplace reloc, we must write the addend into the
10037
     object file.  */
10038
  if (howto->partial_inplace && addend != 0)
10039
    {
10040
      bfd_size_type size;
10041
      bfd_reloc_status_type rstat;
10042
      bfd_byte *buf;
10043
      bfd_boolean ok;
10044
      const char *sym_name;
10045
 
10046
      size = (bfd_size_type) bfd_get_reloc_size (howto);
10047
      buf = (bfd_byte *) bfd_zmalloc (size);
10048
      if (buf == NULL)
10049
        return FALSE;
10050
      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10051
      switch (rstat)
10052
        {
10053
        case bfd_reloc_ok:
10054
          break;
10055
 
10056
        default:
10057
        case bfd_reloc_outofrange:
10058
          abort ();
10059
 
10060
        case bfd_reloc_overflow:
10061
          if (link_order->type == bfd_section_reloc_link_order)
10062
            sym_name = bfd_section_name (output_bfd,
10063
                                         link_order->u.reloc.p->u.section);
10064
          else
10065
            sym_name = link_order->u.reloc.p->u.name;
10066
          if (! ((*info->callbacks->reloc_overflow)
10067
                 (info, NULL, sym_name, howto->name, addend, NULL,
10068
                  NULL, (bfd_vma) 0)))
10069
            {
10070
              free (buf);
10071
              return FALSE;
10072
            }
10073
          break;
10074
        }
10075
      ok = bfd_set_section_contents (output_bfd, output_section, buf,
10076
                                     link_order->offset, size);
10077
      free (buf);
10078
      if (! ok)
10079
        return FALSE;
10080
    }
10081
 
10082
  /* The address of a reloc is relative to the section in a
10083
     relocatable file, and is a virtual address in an executable
10084
     file.  */
10085
  offset = link_order->offset;
10086
  if (! info->relocatable)
10087
    offset += output_section->vma;
10088
 
10089
  for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10090
    {
10091
      irel[i].r_offset = offset;
10092
      irel[i].r_info = 0;
10093
      irel[i].r_addend = 0;
10094
    }
10095
  if (bed->s->arch_size == 32)
10096
    irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10097
  else
10098
    irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10099
 
10100
  rel_hdr = reldata->hdr;
10101
  erel = rel_hdr->contents;
10102
  if (rel_hdr->sh_type == SHT_REL)
10103
    {
10104
      erel += reldata->count * bed->s->sizeof_rel;
10105
      (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10106
    }
10107
  else
10108
    {
10109
      irel[0].r_addend = addend;
10110
      erel += reldata->count * bed->s->sizeof_rela;
10111
      (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10112
    }
10113
 
10114
  ++reldata->count;
10115
 
10116
  return TRUE;
10117
}
10118
 
10119
 
10120
/* Get the output vma of the section pointed to by the sh_link field.  */
10121
 
10122
static bfd_vma
10123
elf_get_linked_section_vma (struct bfd_link_order *p)
10124
{
10125
  Elf_Internal_Shdr **elf_shdrp;
10126
  asection *s;
10127
  int elfsec;
10128
 
10129
  s = p->u.indirect.section;
10130
  elf_shdrp = elf_elfsections (s->owner);
10131
  elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10132
  elfsec = elf_shdrp[elfsec]->sh_link;
10133
  /* PR 290:
10134
     The Intel C compiler generates SHT_IA_64_UNWIND with
10135
     SHF_LINK_ORDER.  But it doesn't set the sh_link or
10136
     sh_info fields.  Hence we could get the situation
10137
     where elfsec is 0.  */
10138
  if (elfsec == 0)
10139
    {
10140
      const struct elf_backend_data *bed
10141
        = get_elf_backend_data (s->owner);
10142
      if (bed->link_order_error_handler)
10143
        bed->link_order_error_handler
10144
          (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10145
      return 0;
10146
    }
10147
  else
10148
    {
10149
      s = elf_shdrp[elfsec]->bfd_section;
10150
      return s->output_section->vma + s->output_offset;
10151
    }
10152
}
10153
 
10154
 
10155
/* Compare two sections based on the locations of the sections they are
10156
   linked to.  Used by elf_fixup_link_order.  */
10157
 
10158
static int
10159
compare_link_order (const void * a, const void * b)
10160
{
10161
  bfd_vma apos;
10162
  bfd_vma bpos;
10163
 
10164
  apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10165
  bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10166
  if (apos < bpos)
10167
    return -1;
10168
  return apos > bpos;
10169
}
10170
 
10171
 
10172
/* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10173
   order as their linked sections.  Returns false if this could not be done
10174
   because an output section includes both ordered and unordered
10175
   sections.  Ideally we'd do this in the linker proper.  */
10176
 
10177
static bfd_boolean
10178
elf_fixup_link_order (bfd *abfd, asection *o)
10179
{
10180
  int seen_linkorder;
10181
  int seen_other;
10182
  int n;
10183
  struct bfd_link_order *p;
10184
  bfd *sub;
10185
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10186
  unsigned elfsec;
10187
  struct bfd_link_order **sections;
10188
  asection *s, *other_sec, *linkorder_sec;
10189
  bfd_vma offset;
10190
 
10191
  other_sec = NULL;
10192
  linkorder_sec = NULL;
10193
  seen_other = 0;
10194
  seen_linkorder = 0;
10195
  for (p = o->map_head.link_order; p != NULL; p = p->next)
10196
    {
10197
      if (p->type == bfd_indirect_link_order)
10198
        {
10199
          s = p->u.indirect.section;
10200
          sub = s->owner;
10201
          if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10202
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10203
              && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10204
              && elfsec < elf_numsections (sub)
10205
              && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10206
              && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10207
            {
10208
              seen_linkorder++;
10209
              linkorder_sec = s;
10210
            }
10211
          else
10212
            {
10213
              seen_other++;
10214
              other_sec = s;
10215
            }
10216
        }
10217
      else
10218
        seen_other++;
10219
 
10220
      if (seen_other && seen_linkorder)
10221
        {
10222
          if (other_sec && linkorder_sec)
10223
            (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10224
                                   o, linkorder_sec,
10225
                                   linkorder_sec->owner, other_sec,
10226
                                   other_sec->owner);
10227
          else
10228
            (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10229
                                   o);
10230
          bfd_set_error (bfd_error_bad_value);
10231
          return FALSE;
10232
        }
10233
    }
10234
 
10235
  if (!seen_linkorder)
10236
    return TRUE;
10237
 
10238
  sections = (struct bfd_link_order **)
10239
    bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10240
  if (sections == NULL)
10241
    return FALSE;
10242
  seen_linkorder = 0;
10243
 
10244
  for (p = o->map_head.link_order; p != NULL; p = p->next)
10245
    {
10246
      sections[seen_linkorder++] = p;
10247
    }
10248
  /* Sort the input sections in the order of their linked section.  */
10249
  qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10250
         compare_link_order);
10251
 
10252
  /* Change the offsets of the sections.  */
10253
  offset = 0;
10254
  for (n = 0; n < seen_linkorder; n++)
10255
    {
10256
      s = sections[n]->u.indirect.section;
10257
      offset &= ~(bfd_vma) 0 << s->alignment_power;
10258
      s->output_offset = offset;
10259
      sections[n]->offset = offset;
10260
      /* FIXME: octets_per_byte.  */
10261
      offset += sections[n]->size;
10262
    }
10263
 
10264
  free (sections);
10265
  return TRUE;
10266
}
10267
 
10268
 
10269
/* Do the final step of an ELF link.  */
10270
 
10271
bfd_boolean
10272
bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10273
{
10274
  bfd_boolean dynamic;
10275
  bfd_boolean emit_relocs;
10276
  bfd *dynobj;
10277
  struct elf_final_link_info finfo;
10278
  asection *o;
10279
  struct bfd_link_order *p;
10280
  bfd *sub;
10281
  bfd_size_type max_contents_size;
10282
  bfd_size_type max_external_reloc_size;
10283
  bfd_size_type max_internal_reloc_count;
10284
  bfd_size_type max_sym_count;
10285
  bfd_size_type max_sym_shndx_count;
10286
  file_ptr off;
10287
  Elf_Internal_Sym elfsym;
10288
  unsigned int i;
10289
  Elf_Internal_Shdr *symtab_hdr;
10290
  Elf_Internal_Shdr *symtab_shndx_hdr;
10291
  Elf_Internal_Shdr *symstrtab_hdr;
10292
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10293
  struct elf_outext_info eoinfo;
10294
  bfd_boolean merged;
10295
  size_t relativecount = 0;
10296
  asection *reldyn = 0;
10297
  bfd_size_type amt;
10298
  asection *attr_section = NULL;
10299
  bfd_vma attr_size = 0;
10300
  const char *std_attrs_section;
10301
 
10302
  if (! is_elf_hash_table (info->hash))
10303
    return FALSE;
10304
 
10305
  if (info->shared)
10306
    abfd->flags |= DYNAMIC;
10307
 
10308
  dynamic = elf_hash_table (info)->dynamic_sections_created;
10309
  dynobj = elf_hash_table (info)->dynobj;
10310
 
10311
  emit_relocs = (info->relocatable
10312
                 || info->emitrelocations);
10313
 
10314
  finfo.info = info;
10315
  finfo.output_bfd = abfd;
10316
  finfo.symstrtab = _bfd_elf_stringtab_init ();
10317
  if (finfo.symstrtab == NULL)
10318
    return FALSE;
10319
 
10320
  if (! dynamic)
10321
    {
10322
      finfo.dynsym_sec = NULL;
10323
      finfo.hash_sec = NULL;
10324
      finfo.symver_sec = NULL;
10325
    }
10326
  else
10327
    {
10328
      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10329
      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10330
      BFD_ASSERT (finfo.dynsym_sec != NULL);
10331
      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10332
      /* Note that it is OK if symver_sec is NULL.  */
10333
    }
10334
 
10335
  finfo.contents = NULL;
10336
  finfo.external_relocs = NULL;
10337
  finfo.internal_relocs = NULL;
10338
  finfo.external_syms = NULL;
10339
  finfo.locsym_shndx = NULL;
10340
  finfo.internal_syms = NULL;
10341
  finfo.indices = NULL;
10342
  finfo.sections = NULL;
10343
  finfo.symbuf = NULL;
10344
  finfo.symshndxbuf = NULL;
10345
  finfo.symbuf_count = 0;
10346
  finfo.shndxbuf_size = 0;
10347
 
10348
  /* The object attributes have been merged.  Remove the input
10349
     sections from the link, and set the contents of the output
10350
     secton.  */
10351
  std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10352
  for (o = abfd->sections; o != NULL; o = o->next)
10353
    {
10354
      if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10355
          || strcmp (o->name, ".gnu.attributes") == 0)
10356
        {
10357
          for (p = o->map_head.link_order; p != NULL; p = p->next)
10358
            {
10359
              asection *input_section;
10360
 
10361
              if (p->type != bfd_indirect_link_order)
10362
                continue;
10363
              input_section = p->u.indirect.section;
10364
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
10365
                 elf_link_input_bfd ignores this section.  */
10366
              input_section->flags &= ~SEC_HAS_CONTENTS;
10367
            }
10368
 
10369
          attr_size = bfd_elf_obj_attr_size (abfd);
10370
          if (attr_size)
10371
            {
10372
              bfd_set_section_size (abfd, o, attr_size);
10373
              attr_section = o;
10374
              /* Skip this section later on.  */
10375
              o->map_head.link_order = NULL;
10376
            }
10377
          else
10378
            o->flags |= SEC_EXCLUDE;
10379
        }
10380
    }
10381
 
10382
  /* Count up the number of relocations we will output for each output
10383
     section, so that we know the sizes of the reloc sections.  We
10384
     also figure out some maximum sizes.  */
10385
  max_contents_size = 0;
10386
  max_external_reloc_size = 0;
10387
  max_internal_reloc_count = 0;
10388
  max_sym_count = 0;
10389
  max_sym_shndx_count = 0;
10390
  merged = FALSE;
10391
  for (o = abfd->sections; o != NULL; o = o->next)
10392
    {
10393
      struct bfd_elf_section_data *esdo = elf_section_data (o);
10394
      o->reloc_count = 0;
10395
 
10396
      for (p = o->map_head.link_order; p != NULL; p = p->next)
10397
        {
10398
          unsigned int reloc_count = 0;
10399
          struct bfd_elf_section_data *esdi = NULL;
10400
 
10401
          if (p->type == bfd_section_reloc_link_order
10402
              || p->type == bfd_symbol_reloc_link_order)
10403
            reloc_count = 1;
10404
          else if (p->type == bfd_indirect_link_order)
10405
            {
10406
              asection *sec;
10407
 
10408
              sec = p->u.indirect.section;
10409
              esdi = elf_section_data (sec);
10410
 
10411
              /* Mark all sections which are to be included in the
10412
                 link.  This will normally be every section.  We need
10413
                 to do this so that we can identify any sections which
10414
                 the linker has decided to not include.  */
10415
              sec->linker_mark = TRUE;
10416
 
10417
              if (sec->flags & SEC_MERGE)
10418
                merged = TRUE;
10419
 
10420
              if (info->relocatable || info->emitrelocations)
10421
                reloc_count = sec->reloc_count;
10422
              else if (bed->elf_backend_count_relocs)
10423
                reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10424
 
10425
              if (sec->rawsize > max_contents_size)
10426
                max_contents_size = sec->rawsize;
10427
              if (sec->size > max_contents_size)
10428
                max_contents_size = sec->size;
10429
 
10430
              /* We are interested in just local symbols, not all
10431
                 symbols.  */
10432
              if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10433
                  && (sec->owner->flags & DYNAMIC) == 0)
10434
                {
10435
                  size_t sym_count;
10436
 
10437
                  if (elf_bad_symtab (sec->owner))
10438
                    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10439
                                 / bed->s->sizeof_sym);
10440
                  else
10441
                    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10442
 
10443
                  if (sym_count > max_sym_count)
10444
                    max_sym_count = sym_count;
10445
 
10446
                  if (sym_count > max_sym_shndx_count
10447
                      && elf_symtab_shndx (sec->owner) != 0)
10448
                    max_sym_shndx_count = sym_count;
10449
 
10450
                  if ((sec->flags & SEC_RELOC) != 0)
10451
                    {
10452
                      size_t ext_size = 0;
10453
 
10454
                      if (esdi->rel.hdr != NULL)
10455
                        ext_size = esdi->rel.hdr->sh_size;
10456
                      if (esdi->rela.hdr != NULL)
10457
                        ext_size += esdi->rela.hdr->sh_size;
10458
 
10459
                      if (ext_size > max_external_reloc_size)
10460
                        max_external_reloc_size = ext_size;
10461
                      if (sec->reloc_count > max_internal_reloc_count)
10462
                        max_internal_reloc_count = sec->reloc_count;
10463
                    }
10464
                }
10465
            }
10466
 
10467
          if (reloc_count == 0)
10468
            continue;
10469
 
10470
          o->reloc_count += reloc_count;
10471
 
10472
          if (p->type == bfd_indirect_link_order
10473
              && (info->relocatable || info->emitrelocations))
10474
            {
10475
              if (esdi->rel.hdr)
10476
                esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10477
              if (esdi->rela.hdr)
10478
                esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10479
            }
10480
          else
10481
            {
10482
              if (o->use_rela_p)
10483
                esdo->rela.count += reloc_count;
10484
              else
10485
                esdo->rel.count += reloc_count;
10486
            }
10487
        }
10488
 
10489
      if (o->reloc_count > 0)
10490
        o->flags |= SEC_RELOC;
10491
      else
10492
        {
10493
          /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10494
             set it (this is probably a bug) and if it is set
10495
             assign_section_numbers will create a reloc section.  */
10496
          o->flags &=~ SEC_RELOC;
10497
        }
10498
 
10499
      /* If the SEC_ALLOC flag is not set, force the section VMA to
10500
         zero.  This is done in elf_fake_sections as well, but forcing
10501
         the VMA to 0 here will ensure that relocs against these
10502
         sections are handled correctly.  */
10503
      if ((o->flags & SEC_ALLOC) == 0
10504
          && ! o->user_set_vma)
10505
        o->vma = 0;
10506
    }
10507
 
10508
  if (! info->relocatable && merged)
10509
    elf_link_hash_traverse (elf_hash_table (info),
10510
                            _bfd_elf_link_sec_merge_syms, abfd);
10511
 
10512
  /* Figure out the file positions for everything but the symbol table
10513
     and the relocs.  We set symcount to force assign_section_numbers
10514
     to create a symbol table.  */
10515
  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10516
  BFD_ASSERT (! abfd->output_has_begun);
10517
  if (! _bfd_elf_compute_section_file_positions (abfd, info))
10518
    goto error_return;
10519
 
10520
  /* Set sizes, and assign file positions for reloc sections.  */
10521
  for (o = abfd->sections; o != NULL; o = o->next)
10522
    {
10523
      struct bfd_elf_section_data *esdo = elf_section_data (o);
10524
      if ((o->flags & SEC_RELOC) != 0)
10525
        {
10526
          if (esdo->rel.hdr
10527
              && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10528
            goto error_return;
10529
 
10530
          if (esdo->rela.hdr
10531
              && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10532
            goto error_return;
10533
        }
10534
 
10535
      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10536
         to count upwards while actually outputting the relocations.  */
10537
      esdo->rel.count = 0;
10538
      esdo->rela.count = 0;
10539
    }
10540
 
10541
  _bfd_elf_assign_file_positions_for_relocs (abfd);
10542
 
10543
  /* We have now assigned file positions for all the sections except
10544
     .symtab and .strtab.  We start the .symtab section at the current
10545
     file position, and write directly to it.  We build the .strtab
10546
     section in memory.  */
10547
  bfd_get_symcount (abfd) = 0;
10548
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10549
  /* sh_name is set in prep_headers.  */
10550
  symtab_hdr->sh_type = SHT_SYMTAB;
10551
  /* sh_flags, sh_addr and sh_size all start off zero.  */
10552
  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10553
  /* sh_link is set in assign_section_numbers.  */
10554
  /* sh_info is set below.  */
10555
  /* sh_offset is set just below.  */
10556
  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10557
 
10558
  off = elf_tdata (abfd)->next_file_pos;
10559
  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10560
 
10561
  /* Note that at this point elf_tdata (abfd)->next_file_pos is
10562
     incorrect.  We do not yet know the size of the .symtab section.
10563
     We correct next_file_pos below, after we do know the size.  */
10564
 
10565
  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10566
     continuously seeking to the right position in the file.  */
10567
  if (! info->keep_memory || max_sym_count < 20)
10568
    finfo.symbuf_size = 20;
10569
  else
10570
    finfo.symbuf_size = max_sym_count;
10571
  amt = finfo.symbuf_size;
10572
  amt *= bed->s->sizeof_sym;
10573
  finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10574
  if (finfo.symbuf == NULL)
10575
    goto error_return;
10576
  if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10577
    {
10578
      /* Wild guess at number of output symbols.  realloc'd as needed.  */
10579
      amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10580
      finfo.shndxbuf_size = amt;
10581
      amt *= sizeof (Elf_External_Sym_Shndx);
10582
      finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10583
      if (finfo.symshndxbuf == NULL)
10584
        goto error_return;
10585
    }
10586
 
10587
  /* Start writing out the symbol table.  The first symbol is always a
10588
     dummy symbol.  */
10589
  if (info->strip != strip_all
10590
      || emit_relocs)
10591
    {
10592
      elfsym.st_value = 0;
10593
      elfsym.st_size = 0;
10594
      elfsym.st_info = 0;
10595
      elfsym.st_other = 0;
10596
      elfsym.st_shndx = SHN_UNDEF;
10597
      elfsym.st_target_internal = 0;
10598
      if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10599
                               NULL) != 1)
10600
        goto error_return;
10601
    }
10602
 
10603
  /* Output a symbol for each section.  We output these even if we are
10604
     discarding local symbols, since they are used for relocs.  These
10605
     symbols have no names.  We store the index of each one in the
10606
     index field of the section, so that we can find it again when
10607
     outputting relocs.  */
10608
  if (info->strip != strip_all
10609
      || emit_relocs)
10610
    {
10611
      elfsym.st_size = 0;
10612
      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10613
      elfsym.st_other = 0;
10614
      elfsym.st_value = 0;
10615
      elfsym.st_target_internal = 0;
10616
      for (i = 1; i < elf_numsections (abfd); i++)
10617
        {
10618
          o = bfd_section_from_elf_index (abfd, i);
10619
          if (o != NULL)
10620
            {
10621
              o->target_index = bfd_get_symcount (abfd);
10622
              elfsym.st_shndx = i;
10623
              if (!info->relocatable)
10624
                elfsym.st_value = o->vma;
10625
              if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10626
                goto error_return;
10627
            }
10628
        }
10629
    }
10630
 
10631
  /* Allocate some memory to hold information read in from the input
10632
     files.  */
10633
  if (max_contents_size != 0)
10634
    {
10635
      finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10636
      if (finfo.contents == NULL)
10637
        goto error_return;
10638
    }
10639
 
10640
  if (max_external_reloc_size != 0)
10641
    {
10642
      finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10643
      if (finfo.external_relocs == NULL)
10644
        goto error_return;
10645
    }
10646
 
10647
  if (max_internal_reloc_count != 0)
10648
    {
10649
      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10650
      amt *= sizeof (Elf_Internal_Rela);
10651
      finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10652
      if (finfo.internal_relocs == NULL)
10653
        goto error_return;
10654
    }
10655
 
10656
  if (max_sym_count != 0)
10657
    {
10658
      amt = max_sym_count * bed->s->sizeof_sym;
10659
      finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10660
      if (finfo.external_syms == NULL)
10661
        goto error_return;
10662
 
10663
      amt = max_sym_count * sizeof (Elf_Internal_Sym);
10664
      finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10665
      if (finfo.internal_syms == NULL)
10666
        goto error_return;
10667
 
10668
      amt = max_sym_count * sizeof (long);
10669
      finfo.indices = (long int *) bfd_malloc (amt);
10670
      if (finfo.indices == NULL)
10671
        goto error_return;
10672
 
10673
      amt = max_sym_count * sizeof (asection *);
10674
      finfo.sections = (asection **) bfd_malloc (amt);
10675
      if (finfo.sections == NULL)
10676
        goto error_return;
10677
    }
10678
 
10679
  if (max_sym_shndx_count != 0)
10680
    {
10681
      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10682
      finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10683
      if (finfo.locsym_shndx == NULL)
10684
        goto error_return;
10685
    }
10686
 
10687
  if (elf_hash_table (info)->tls_sec)
10688
    {
10689
      bfd_vma base, end = 0;
10690
      asection *sec;
10691
 
10692
      for (sec = elf_hash_table (info)->tls_sec;
10693
           sec && (sec->flags & SEC_THREAD_LOCAL);
10694
           sec = sec->next)
10695
        {
10696
          bfd_size_type size = sec->size;
10697
 
10698
          if (size == 0
10699
              && (sec->flags & SEC_HAS_CONTENTS) == 0)
10700
            {
10701
              struct bfd_link_order *ord = sec->map_tail.link_order;
10702
 
10703
              if (ord != NULL)
10704
                size = ord->offset + ord->size;
10705
            }
10706
          end = sec->vma + size;
10707
        }
10708
      base = elf_hash_table (info)->tls_sec->vma;
10709
      /* Only align end of TLS section if static TLS doesn't have special
10710
         alignment requirements.  */
10711
      if (bed->static_tls_alignment == 1)
10712
        end = align_power (end,
10713
                           elf_hash_table (info)->tls_sec->alignment_power);
10714
      elf_hash_table (info)->tls_size = end - base;
10715
    }
10716
 
10717
  /* Reorder SHF_LINK_ORDER sections.  */
10718
  for (o = abfd->sections; o != NULL; o = o->next)
10719
    {
10720
      if (!elf_fixup_link_order (abfd, o))
10721
        return FALSE;
10722
    }
10723
 
10724
  /* Since ELF permits relocations to be against local symbols, we
10725
     must have the local symbols available when we do the relocations.
10726
     Since we would rather only read the local symbols once, and we
10727
     would rather not keep them in memory, we handle all the
10728
     relocations for a single input file at the same time.
10729
 
10730
     Unfortunately, there is no way to know the total number of local
10731
     symbols until we have seen all of them, and the local symbol
10732
     indices precede the global symbol indices.  This means that when
10733
     we are generating relocatable output, and we see a reloc against
10734
     a global symbol, we can not know the symbol index until we have
10735
     finished examining all the local symbols to see which ones we are
10736
     going to output.  To deal with this, we keep the relocations in
10737
     memory, and don't output them until the end of the link.  This is
10738
     an unfortunate waste of memory, but I don't see a good way around
10739
     it.  Fortunately, it only happens when performing a relocatable
10740
     link, which is not the common case.  FIXME: If keep_memory is set
10741
     we could write the relocs out and then read them again; I don't
10742
     know how bad the memory loss will be.  */
10743
 
10744
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10745
    sub->output_has_begun = FALSE;
10746
  for (o = abfd->sections; o != NULL; o = o->next)
10747
    {
10748
      for (p = o->map_head.link_order; p != NULL; p = p->next)
10749
        {
10750
          if (p->type == bfd_indirect_link_order
10751
              && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10752
                  == bfd_target_elf_flavour)
10753
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10754
            {
10755
              if (! sub->output_has_begun)
10756
                {
10757
                  if (! elf_link_input_bfd (&finfo, sub))
10758
                    goto error_return;
10759
                  sub->output_has_begun = TRUE;
10760
                }
10761
            }
10762
          else if (p->type == bfd_section_reloc_link_order
10763
                   || p->type == bfd_symbol_reloc_link_order)
10764
            {
10765
              if (! elf_reloc_link_order (abfd, info, o, p))
10766
                goto error_return;
10767
            }
10768
          else
10769
            {
10770
              if (! _bfd_default_link_order (abfd, info, o, p))
10771
                {
10772
                  if (p->type == bfd_indirect_link_order
10773
                      && (bfd_get_flavour (sub)
10774
                          == bfd_target_elf_flavour)
10775
                      && (elf_elfheader (sub)->e_ident[EI_CLASS]
10776
                          != bed->s->elfclass))
10777
                    {
10778
                      const char *iclass, *oclass;
10779
 
10780
                      if (bed->s->elfclass == ELFCLASS64)
10781
                        {
10782
                          iclass = "ELFCLASS32";
10783
                          oclass = "ELFCLASS64";
10784
                        }
10785
                      else
10786
                        {
10787
                          iclass = "ELFCLASS64";
10788
                          oclass = "ELFCLASS32";
10789
                        }
10790
 
10791
                      bfd_set_error (bfd_error_wrong_format);
10792
                      (*_bfd_error_handler)
10793
                        (_("%B: file class %s incompatible with %s"),
10794
                         sub, iclass, oclass);
10795
                    }
10796
 
10797
                  goto error_return;
10798
                }
10799
            }
10800
        }
10801
    }
10802
 
10803
  /* Free symbol buffer if needed.  */
10804
  if (!info->reduce_memory_overheads)
10805
    {
10806
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10807
        if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10808
            && elf_tdata (sub)->symbuf)
10809
          {
10810
            free (elf_tdata (sub)->symbuf);
10811
            elf_tdata (sub)->symbuf = NULL;
10812
          }
10813
    }
10814
 
10815
  /* Output any global symbols that got converted to local in a
10816
     version script or due to symbol visibility.  We do this in a
10817
     separate step since ELF requires all local symbols to appear
10818
     prior to any global symbols.  FIXME: We should only do this if
10819
     some global symbols were, in fact, converted to become local.
10820
     FIXME: Will this work correctly with the Irix 5 linker?  */
10821
  eoinfo.failed = FALSE;
10822
  eoinfo.finfo = &finfo;
10823
  eoinfo.localsyms = TRUE;
10824
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10825
                          &eoinfo);
10826
  if (eoinfo.failed)
10827
    return FALSE;
10828
 
10829
  /* If backend needs to output some local symbols not present in the hash
10830
     table, do it now.  */
10831
  if (bed->elf_backend_output_arch_local_syms)
10832
    {
10833
      typedef int (*out_sym_func)
10834
        (void *, const char *, Elf_Internal_Sym *, asection *,
10835
         struct elf_link_hash_entry *);
10836
 
10837
      if (! ((*bed->elf_backend_output_arch_local_syms)
10838
             (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10839
        return FALSE;
10840
    }
10841
 
10842
  /* That wrote out all the local symbols.  Finish up the symbol table
10843
     with the global symbols. Even if we want to strip everything we
10844
     can, we still need to deal with those global symbols that got
10845
     converted to local in a version script.  */
10846
 
10847
  /* The sh_info field records the index of the first non local symbol.  */
10848
  symtab_hdr->sh_info = bfd_get_symcount (abfd);
10849
 
10850
  if (dynamic
10851
      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10852
    {
10853
      Elf_Internal_Sym sym;
10854
      bfd_byte *dynsym = finfo.dynsym_sec->contents;
10855
      long last_local = 0;
10856
 
10857
      /* Write out the section symbols for the output sections.  */
10858
      if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10859
        {
10860
          asection *s;
10861
 
10862
          sym.st_size = 0;
10863
          sym.st_name = 0;
10864
          sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10865
          sym.st_other = 0;
10866
          sym.st_target_internal = 0;
10867
 
10868
          for (s = abfd->sections; s != NULL; s = s->next)
10869
            {
10870
              int indx;
10871
              bfd_byte *dest;
10872
              long dynindx;
10873
 
10874
              dynindx = elf_section_data (s)->dynindx;
10875
              if (dynindx <= 0)
10876
                continue;
10877
              indx = elf_section_data (s)->this_idx;
10878
              BFD_ASSERT (indx > 0);
10879
              sym.st_shndx = indx;
10880
              if (! check_dynsym (abfd, &sym))
10881
                return FALSE;
10882
              sym.st_value = s->vma;
10883
              dest = dynsym + dynindx * bed->s->sizeof_sym;
10884
              if (last_local < dynindx)
10885
                last_local = dynindx;
10886
              bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10887
            }
10888
        }
10889
 
10890
      /* Write out the local dynsyms.  */
10891
      if (elf_hash_table (info)->dynlocal)
10892
        {
10893
          struct elf_link_local_dynamic_entry *e;
10894
          for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10895
            {
10896
              asection *s;
10897
              bfd_byte *dest;
10898
 
10899
              /* Copy the internal symbol and turn off visibility.
10900
                 Note that we saved a word of storage and overwrote
10901
                 the original st_name with the dynstr_index.  */
10902
              sym = e->isym;
10903
              sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10904
 
10905
              s = bfd_section_from_elf_index (e->input_bfd,
10906
                                              e->isym.st_shndx);
10907
              if (s != NULL)
10908
                {
10909
                  sym.st_shndx =
10910
                    elf_section_data (s->output_section)->this_idx;
10911
                  if (! check_dynsym (abfd, &sym))
10912
                    return FALSE;
10913
                  sym.st_value = (s->output_section->vma
10914
                                  + s->output_offset
10915
                                  + e->isym.st_value);
10916
                }
10917
 
10918
              if (last_local < e->dynindx)
10919
                last_local = e->dynindx;
10920
 
10921
              dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10922
              bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10923
            }
10924
        }
10925
 
10926
      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10927
        last_local + 1;
10928
    }
10929
 
10930
  /* We get the global symbols from the hash table.  */
10931
  eoinfo.failed = FALSE;
10932
  eoinfo.localsyms = FALSE;
10933
  eoinfo.finfo = &finfo;
10934
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10935
                          &eoinfo);
10936
  if (eoinfo.failed)
10937
    return FALSE;
10938
 
10939
  /* If backend needs to output some symbols not present in the hash
10940
     table, do it now.  */
10941
  if (bed->elf_backend_output_arch_syms)
10942
    {
10943
      typedef int (*out_sym_func)
10944
        (void *, const char *, Elf_Internal_Sym *, asection *,
10945
         struct elf_link_hash_entry *);
10946
 
10947
      if (! ((*bed->elf_backend_output_arch_syms)
10948
             (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10949
        return FALSE;
10950
    }
10951
 
10952
  /* Flush all symbols to the file.  */
10953
  if (! elf_link_flush_output_syms (&finfo, bed))
10954
    return FALSE;
10955
 
10956
  /* Now we know the size of the symtab section.  */
10957
  off += symtab_hdr->sh_size;
10958
 
10959
  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10960
  if (symtab_shndx_hdr->sh_name != 0)
10961
    {
10962
      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10963
      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10964
      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10965
      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10966
      symtab_shndx_hdr->sh_size = amt;
10967
 
10968
      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10969
                                                       off, TRUE);
10970
 
10971
      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10972
          || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10973
        return FALSE;
10974
    }
10975
 
10976
 
10977
  /* Finish up and write out the symbol string table (.strtab)
10978
     section.  */
10979
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10980
  /* sh_name was set in prep_headers.  */
10981
  symstrtab_hdr->sh_type = SHT_STRTAB;
10982
  symstrtab_hdr->sh_flags = 0;
10983
  symstrtab_hdr->sh_addr = 0;
10984
  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10985
  symstrtab_hdr->sh_entsize = 0;
10986
  symstrtab_hdr->sh_link = 0;
10987
  symstrtab_hdr->sh_info = 0;
10988
  /* sh_offset is set just below.  */
10989
  symstrtab_hdr->sh_addralign = 1;
10990
 
10991
  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10992
  elf_tdata (abfd)->next_file_pos = off;
10993
 
10994
  if (bfd_get_symcount (abfd) > 0)
10995
    {
10996
      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10997
          || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10998
        return FALSE;
10999
    }
11000
 
11001
  /* Adjust the relocs to have the correct symbol indices.  */
11002
  for (o = abfd->sections; o != NULL; o = o->next)
11003
    {
11004
      struct bfd_elf_section_data *esdo = elf_section_data (o);
11005
      if ((o->flags & SEC_RELOC) == 0)
11006
        continue;
11007
 
11008
      if (esdo->rel.hdr != NULL)
11009
        elf_link_adjust_relocs (abfd, &esdo->rel);
11010
      if (esdo->rela.hdr != NULL)
11011
        elf_link_adjust_relocs (abfd, &esdo->rela);
11012
 
11013
      /* Set the reloc_count field to 0 to prevent write_relocs from
11014
         trying to swap the relocs out itself.  */
11015
      o->reloc_count = 0;
11016
    }
11017
 
11018
  if (dynamic && info->combreloc && dynobj != NULL)
11019
    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11020
 
11021
  /* If we are linking against a dynamic object, or generating a
11022
     shared library, finish up the dynamic linking information.  */
11023
  if (dynamic)
11024
    {
11025
      bfd_byte *dyncon, *dynconend;
11026
 
11027
      /* Fix up .dynamic entries.  */
11028
      o = bfd_get_section_by_name (dynobj, ".dynamic");
11029
      BFD_ASSERT (o != NULL);
11030
 
11031
      dyncon = o->contents;
11032
      dynconend = o->contents + o->size;
11033
      for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11034
        {
11035
          Elf_Internal_Dyn dyn;
11036
          const char *name;
11037
          unsigned int type;
11038
 
11039
          bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11040
 
11041
          switch (dyn.d_tag)
11042
            {
11043
            default:
11044
              continue;
11045
            case DT_NULL:
11046
              if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11047
                {
11048
                  switch (elf_section_data (reldyn)->this_hdr.sh_type)
11049
                    {
11050
                    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11051
                    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11052
                    default: continue;
11053
                    }
11054
                  dyn.d_un.d_val = relativecount;
11055
                  relativecount = 0;
11056
                  break;
11057
                }
11058
              continue;
11059
 
11060
            case DT_INIT:
11061
              name = info->init_function;
11062
              goto get_sym;
11063
            case DT_FINI:
11064
              name = info->fini_function;
11065
            get_sym:
11066
              {
11067
                struct elf_link_hash_entry *h;
11068
 
11069
                h = elf_link_hash_lookup (elf_hash_table (info), name,
11070
                                          FALSE, FALSE, TRUE);
11071
                if (h != NULL
11072
                    && (h->root.type == bfd_link_hash_defined
11073
                        || h->root.type == bfd_link_hash_defweak))
11074
                  {
11075
                    dyn.d_un.d_ptr = h->root.u.def.value;
11076
                    o = h->root.u.def.section;
11077
                    if (o->output_section != NULL)
11078
                      dyn.d_un.d_ptr += (o->output_section->vma
11079
                                         + o->output_offset);
11080
                    else
11081
                      {
11082
                        /* The symbol is imported from another shared
11083
                           library and does not apply to this one.  */
11084
                        dyn.d_un.d_ptr = 0;
11085
                      }
11086
                    break;
11087
                  }
11088
              }
11089
              continue;
11090
 
11091
            case DT_PREINIT_ARRAYSZ:
11092
              name = ".preinit_array";
11093
              goto get_size;
11094
            case DT_INIT_ARRAYSZ:
11095
              name = ".init_array";
11096
              goto get_size;
11097
            case DT_FINI_ARRAYSZ:
11098
              name = ".fini_array";
11099
            get_size:
11100
              o = bfd_get_section_by_name (abfd, name);
11101
              if (o == NULL)
11102
                {
11103
                  (*_bfd_error_handler)
11104
                    (_("%B: could not find output section %s"), abfd, name);
11105
                  goto error_return;
11106
                }
11107
              if (o->size == 0)
11108
                (*_bfd_error_handler)
11109
                  (_("warning: %s section has zero size"), name);
11110
              dyn.d_un.d_val = o->size;
11111
              break;
11112
 
11113
            case DT_PREINIT_ARRAY:
11114
              name = ".preinit_array";
11115
              goto get_vma;
11116
            case DT_INIT_ARRAY:
11117
              name = ".init_array";
11118
              goto get_vma;
11119
            case DT_FINI_ARRAY:
11120
              name = ".fini_array";
11121
              goto get_vma;
11122
 
11123
            case DT_HASH:
11124
              name = ".hash";
11125
              goto get_vma;
11126
            case DT_GNU_HASH:
11127
              name = ".gnu.hash";
11128
              goto get_vma;
11129
            case DT_STRTAB:
11130
              name = ".dynstr";
11131
              goto get_vma;
11132
            case DT_SYMTAB:
11133
              name = ".dynsym";
11134
              goto get_vma;
11135
            case DT_VERDEF:
11136
              name = ".gnu.version_d";
11137
              goto get_vma;
11138
            case DT_VERNEED:
11139
              name = ".gnu.version_r";
11140
              goto get_vma;
11141
            case DT_VERSYM:
11142
              name = ".gnu.version";
11143
            get_vma:
11144
              o = bfd_get_section_by_name (abfd, name);
11145
              if (o == NULL)
11146
                {
11147
                  (*_bfd_error_handler)
11148
                    (_("%B: could not find output section %s"), abfd, name);
11149
                  goto error_return;
11150
                }
11151
              dyn.d_un.d_ptr = o->vma;
11152
              break;
11153
 
11154
            case DT_REL:
11155
            case DT_RELA:
11156
            case DT_RELSZ:
11157
            case DT_RELASZ:
11158
              if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11159
                type = SHT_REL;
11160
              else
11161
                type = SHT_RELA;
11162
              dyn.d_un.d_val = 0;
11163
              dyn.d_un.d_ptr = 0;
11164
              for (i = 1; i < elf_numsections (abfd); i++)
11165
                {
11166
                  Elf_Internal_Shdr *hdr;
11167
 
11168
                  hdr = elf_elfsections (abfd)[i];
11169
                  if (hdr->sh_type == type
11170
                      && (hdr->sh_flags & SHF_ALLOC) != 0)
11171
                    {
11172
                      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11173
                        dyn.d_un.d_val += hdr->sh_size;
11174
                      else
11175
                        {
11176
                          if (dyn.d_un.d_ptr == 0
11177
                              || hdr->sh_addr < dyn.d_un.d_ptr)
11178
                            dyn.d_un.d_ptr = hdr->sh_addr;
11179
                        }
11180
                    }
11181
                }
11182
              break;
11183
            }
11184
          bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11185
        }
11186
    }
11187
 
11188
  /* If we have created any dynamic sections, then output them.  */
11189
  if (dynobj != NULL)
11190
    {
11191
      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11192
        goto error_return;
11193
 
11194
      /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11195
      if (info->warn_shared_textrel && info->shared)
11196
        {
11197
          bfd_byte *dyncon, *dynconend;
11198
 
11199
          /* Fix up .dynamic entries.  */
11200
          o = bfd_get_section_by_name (dynobj, ".dynamic");
11201
          BFD_ASSERT (o != NULL);
11202
 
11203
          dyncon = o->contents;
11204
          dynconend = o->contents + o->size;
11205
          for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11206
            {
11207
              Elf_Internal_Dyn dyn;
11208
 
11209
              bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11210
 
11211
              if (dyn.d_tag == DT_TEXTREL)
11212
                {
11213
                 info->callbacks->einfo
11214
                    (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11215
                  break;
11216
                }
11217
            }
11218
        }
11219
 
11220
      for (o = dynobj->sections; o != NULL; o = o->next)
11221
        {
11222
          if ((o->flags & SEC_HAS_CONTENTS) == 0
11223
              || o->size == 0
11224
              || o->output_section == bfd_abs_section_ptr)
11225
            continue;
11226
          if ((o->flags & SEC_LINKER_CREATED) == 0)
11227
            {
11228
              /* At this point, we are only interested in sections
11229
                 created by _bfd_elf_link_create_dynamic_sections.  */
11230
              continue;
11231
            }
11232
          if (elf_hash_table (info)->stab_info.stabstr == o)
11233
            continue;
11234
          if (elf_hash_table (info)->eh_info.hdr_sec == o)
11235
            continue;
11236
          if ((elf_section_data (o->output_section)->this_hdr.sh_type
11237
               != SHT_STRTAB)
11238
              || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11239
            {
11240
              /* FIXME: octets_per_byte.  */
11241
              if (! bfd_set_section_contents (abfd, o->output_section,
11242
                                              o->contents,
11243
                                              (file_ptr) o->output_offset,
11244
                                              o->size))
11245
                goto error_return;
11246
            }
11247
          else
11248
            {
11249
              /* The contents of the .dynstr section are actually in a
11250
                 stringtab.  */
11251
              off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11252
              if (bfd_seek (abfd, off, SEEK_SET) != 0
11253
                  || ! _bfd_elf_strtab_emit (abfd,
11254
                                             elf_hash_table (info)->dynstr))
11255
                goto error_return;
11256
            }
11257
        }
11258
    }
11259
 
11260
  if (info->relocatable)
11261
    {
11262
      bfd_boolean failed = FALSE;
11263
 
11264
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11265
      if (failed)
11266
        goto error_return;
11267
    }
11268
 
11269
  /* If we have optimized stabs strings, output them.  */
11270
  if (elf_hash_table (info)->stab_info.stabstr != NULL)
11271
    {
11272
      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11273
        goto error_return;
11274
    }
11275
 
11276
  if (info->eh_frame_hdr)
11277
    {
11278
      if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11279
        goto error_return;
11280
    }
11281
 
11282
  if (finfo.symstrtab != NULL)
11283
    _bfd_stringtab_free (finfo.symstrtab);
11284
  if (finfo.contents != NULL)
11285
    free (finfo.contents);
11286
  if (finfo.external_relocs != NULL)
11287
    free (finfo.external_relocs);
11288
  if (finfo.internal_relocs != NULL)
11289
    free (finfo.internal_relocs);
11290
  if (finfo.external_syms != NULL)
11291
    free (finfo.external_syms);
11292
  if (finfo.locsym_shndx != NULL)
11293
    free (finfo.locsym_shndx);
11294
  if (finfo.internal_syms != NULL)
11295
    free (finfo.internal_syms);
11296
  if (finfo.indices != NULL)
11297
    free (finfo.indices);
11298
  if (finfo.sections != NULL)
11299
    free (finfo.sections);
11300
  if (finfo.symbuf != NULL)
11301
    free (finfo.symbuf);
11302
  if (finfo.symshndxbuf != NULL)
11303
    free (finfo.symshndxbuf);
11304
  for (o = abfd->sections; o != NULL; o = o->next)
11305
    {
11306
      struct bfd_elf_section_data *esdo = elf_section_data (o);
11307
      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11308
        free (esdo->rel.hashes);
11309
      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11310
        free (esdo->rela.hashes);
11311
    }
11312
 
11313
  elf_tdata (abfd)->linker = TRUE;
11314
 
11315
  if (attr_section)
11316
    {
11317
      bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11318
      if (contents == NULL)
11319
        return FALSE;   /* Bail out and fail.  */
11320
      bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11321
      bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11322
      free (contents);
11323
    }
11324
 
11325
  return TRUE;
11326
 
11327
 error_return:
11328
  if (finfo.symstrtab != NULL)
11329
    _bfd_stringtab_free (finfo.symstrtab);
11330
  if (finfo.contents != NULL)
11331
    free (finfo.contents);
11332
  if (finfo.external_relocs != NULL)
11333
    free (finfo.external_relocs);
11334
  if (finfo.internal_relocs != NULL)
11335
    free (finfo.internal_relocs);
11336
  if (finfo.external_syms != NULL)
11337
    free (finfo.external_syms);
11338
  if (finfo.locsym_shndx != NULL)
11339
    free (finfo.locsym_shndx);
11340
  if (finfo.internal_syms != NULL)
11341
    free (finfo.internal_syms);
11342
  if (finfo.indices != NULL)
11343
    free (finfo.indices);
11344
  if (finfo.sections != NULL)
11345
    free (finfo.sections);
11346
  if (finfo.symbuf != NULL)
11347
    free (finfo.symbuf);
11348
  if (finfo.symshndxbuf != NULL)
11349
    free (finfo.symshndxbuf);
11350
  for (o = abfd->sections; o != NULL; o = o->next)
11351
    {
11352
      struct bfd_elf_section_data *esdo = elf_section_data (o);
11353
      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11354
        free (esdo->rel.hashes);
11355
      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11356
        free (esdo->rela.hashes);
11357
    }
11358
 
11359
  return FALSE;
11360
}
11361
 
11362
/* Initialize COOKIE for input bfd ABFD.  */
11363
 
11364
static bfd_boolean
11365
init_reloc_cookie (struct elf_reloc_cookie *cookie,
11366
                   struct bfd_link_info *info, bfd *abfd)
11367
{
11368
  Elf_Internal_Shdr *symtab_hdr;
11369
  const struct elf_backend_data *bed;
11370
 
11371
  bed = get_elf_backend_data (abfd);
11372
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11373
 
11374
  cookie->abfd = abfd;
11375
  cookie->sym_hashes = elf_sym_hashes (abfd);
11376
  cookie->bad_symtab = elf_bad_symtab (abfd);
11377
  if (cookie->bad_symtab)
11378
    {
11379
      cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11380
      cookie->extsymoff = 0;
11381
    }
11382
  else
11383
    {
11384
      cookie->locsymcount = symtab_hdr->sh_info;
11385
      cookie->extsymoff = symtab_hdr->sh_info;
11386
    }
11387
 
11388
  if (bed->s->arch_size == 32)
11389
    cookie->r_sym_shift = 8;
11390
  else
11391
    cookie->r_sym_shift = 32;
11392
 
11393
  cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11394
  if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11395
    {
11396
      cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11397
                                              cookie->locsymcount, 0,
11398
                                              NULL, NULL, NULL);
11399
      if (cookie->locsyms == NULL)
11400
        {
11401
          info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11402
          return FALSE;
11403
        }
11404
      if (info->keep_memory)
11405
        symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11406
    }
11407
  return TRUE;
11408
}
11409
 
11410
/* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11411
 
11412
static void
11413
fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11414
{
11415
  Elf_Internal_Shdr *symtab_hdr;
11416
 
11417
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11418
  if (cookie->locsyms != NULL
11419
      && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11420
    free (cookie->locsyms);
11421
}
11422
 
11423
/* Initialize the relocation information in COOKIE for input section SEC
11424
   of input bfd ABFD.  */
11425
 
11426
static bfd_boolean
11427
init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11428
                        struct bfd_link_info *info, bfd *abfd,
11429
                        asection *sec)
11430
{
11431
  const struct elf_backend_data *bed;
11432
 
11433
  if (sec->reloc_count == 0)
11434
    {
11435
      cookie->rels = NULL;
11436
      cookie->relend = NULL;
11437
    }
11438
  else
11439
    {
11440
      bed = get_elf_backend_data (abfd);
11441
 
11442
      cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11443
                                                info->keep_memory);
11444
      if (cookie->rels == NULL)
11445
        return FALSE;
11446
      cookie->rel = cookie->rels;
11447
      cookie->relend = (cookie->rels
11448
                        + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11449
    }
11450
  cookie->rel = cookie->rels;
11451
  return TRUE;
11452
}
11453
 
11454
/* Free the memory allocated by init_reloc_cookie_rels,
11455
   if appropriate.  */
11456
 
11457
static void
11458
fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11459
                        asection *sec)
11460
{
11461
  if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11462
    free (cookie->rels);
11463
}
11464
 
11465
/* Initialize the whole of COOKIE for input section SEC.  */
11466
 
11467
static bfd_boolean
11468
init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11469
                               struct bfd_link_info *info,
11470
                               asection *sec)
11471
{
11472
  if (!init_reloc_cookie (cookie, info, sec->owner))
11473
    goto error1;
11474
  if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11475
    goto error2;
11476
  return TRUE;
11477
 
11478
 error2:
11479
  fini_reloc_cookie (cookie, sec->owner);
11480
 error1:
11481
  return FALSE;
11482
}
11483
 
11484
/* Free the memory allocated by init_reloc_cookie_for_section,
11485
   if appropriate.  */
11486
 
11487
static void
11488
fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11489
                               asection *sec)
11490
{
11491
  fini_reloc_cookie_rels (cookie, sec);
11492
  fini_reloc_cookie (cookie, sec->owner);
11493
}
11494
 
11495
/* Garbage collect unused sections.  */
11496
 
11497
/* Default gc_mark_hook.  */
11498
 
11499
asection *
11500
_bfd_elf_gc_mark_hook (asection *sec,
11501
                       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11502
                       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11503
                       struct elf_link_hash_entry *h,
11504
                       Elf_Internal_Sym *sym)
11505
{
11506
  const char *sec_name;
11507
 
11508
  if (h != NULL)
11509
    {
11510
      switch (h->root.type)
11511
        {
11512
        case bfd_link_hash_defined:
11513
        case bfd_link_hash_defweak:
11514
          return h->root.u.def.section;
11515
 
11516
        case bfd_link_hash_common:
11517
          return h->root.u.c.p->section;
11518
 
11519
        case bfd_link_hash_undefined:
11520
        case bfd_link_hash_undefweak:
11521
          /* To work around a glibc bug, keep all XXX input sections
11522
             when there is an as yet undefined reference to __start_XXX
11523
             or __stop_XXX symbols.  The linker will later define such
11524
             symbols for orphan input sections that have a name
11525
             representable as a C identifier.  */
11526
          if (strncmp (h->root.root.string, "__start_", 8) == 0)
11527
            sec_name = h->root.root.string + 8;
11528
          else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11529
            sec_name = h->root.root.string + 7;
11530
          else
11531
            sec_name = NULL;
11532
 
11533
          if (sec_name && *sec_name != '\0')
11534
            {
11535
              bfd *i;
11536
 
11537
              for (i = info->input_bfds; i; i = i->link_next)
11538
                {
11539
                  sec = bfd_get_section_by_name (i, sec_name);
11540
                  if (sec)
11541
                    sec->flags |= SEC_KEEP;
11542
                }
11543
            }
11544
          break;
11545
 
11546
        default:
11547
          break;
11548
        }
11549
    }
11550
  else
11551
    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11552
 
11553
  return NULL;
11554
}
11555
 
11556
/* COOKIE->rel describes a relocation against section SEC, which is
11557
   a section we've decided to keep.  Return the section that contains
11558
   the relocation symbol, or NULL if no section contains it.  */
11559
 
11560
asection *
11561
_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11562
                       elf_gc_mark_hook_fn gc_mark_hook,
11563
                       struct elf_reloc_cookie *cookie)
11564
{
11565
  unsigned long r_symndx;
11566
  struct elf_link_hash_entry *h;
11567
 
11568
  r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11569
  if (r_symndx == STN_UNDEF)
11570
    return NULL;
11571
 
11572
  if (r_symndx >= cookie->locsymcount
11573
      || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11574
    {
11575
      h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11576
      while (h->root.type == bfd_link_hash_indirect
11577
             || h->root.type == bfd_link_hash_warning)
11578
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
11579
      return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11580
    }
11581
 
11582
  return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11583
                          &cookie->locsyms[r_symndx]);
11584
}
11585
 
11586
/* COOKIE->rel describes a relocation against section SEC, which is
11587
   a section we've decided to keep.  Mark the section that contains
11588
   the relocation symbol.  */
11589
 
11590
bfd_boolean
11591
_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11592
                        asection *sec,
11593
                        elf_gc_mark_hook_fn gc_mark_hook,
11594
                        struct elf_reloc_cookie *cookie)
11595
{
11596
  asection *rsec;
11597
 
11598
  rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11599
  if (rsec && !rsec->gc_mark)
11600
    {
11601
      if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11602
        rsec->gc_mark = 1;
11603
      else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11604
        return FALSE;
11605
    }
11606
  return TRUE;
11607
}
11608
 
11609
/* The mark phase of garbage collection.  For a given section, mark
11610
   it and any sections in this section's group, and all the sections
11611
   which define symbols to which it refers.  */
11612
 
11613
bfd_boolean
11614
_bfd_elf_gc_mark (struct bfd_link_info *info,
11615
                  asection *sec,
11616
                  elf_gc_mark_hook_fn gc_mark_hook)
11617
{
11618
  bfd_boolean ret;
11619
  asection *group_sec, *eh_frame;
11620
 
11621
  sec->gc_mark = 1;
11622
 
11623
  /* Mark all the sections in the group.  */
11624
  group_sec = elf_section_data (sec)->next_in_group;
11625
  if (group_sec && !group_sec->gc_mark)
11626
    if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11627
      return FALSE;
11628
 
11629
  /* Look through the section relocs.  */
11630
  ret = TRUE;
11631
  eh_frame = elf_eh_frame_section (sec->owner);
11632
  if ((sec->flags & SEC_RELOC) != 0
11633
      && sec->reloc_count > 0
11634
      && sec != eh_frame)
11635
    {
11636
      struct elf_reloc_cookie cookie;
11637
 
11638
      if (!init_reloc_cookie_for_section (&cookie, info, sec))
11639
        ret = FALSE;
11640
      else
11641
        {
11642
          for (; cookie.rel < cookie.relend; cookie.rel++)
11643
            if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11644
              {
11645
                ret = FALSE;
11646
                break;
11647
              }
11648
          fini_reloc_cookie_for_section (&cookie, sec);
11649
        }
11650
    }
11651
 
11652
  if (ret && eh_frame && elf_fde_list (sec))
11653
    {
11654
      struct elf_reloc_cookie cookie;
11655
 
11656
      if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11657
        ret = FALSE;
11658
      else
11659
        {
11660
          if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11661
                                      gc_mark_hook, &cookie))
11662
            ret = FALSE;
11663
          fini_reloc_cookie_for_section (&cookie, eh_frame);
11664
        }
11665
    }
11666
 
11667
  return ret;
11668
}
11669
 
11670
/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11671
 
11672
struct elf_gc_sweep_symbol_info
11673
{
11674
  struct bfd_link_info *info;
11675
  void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11676
                       bfd_boolean);
11677
};
11678
 
11679
static bfd_boolean
11680
elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11681
{
11682
  if (h->root.type == bfd_link_hash_warning)
11683
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11684
 
11685
  if ((h->root.type == bfd_link_hash_defined
11686
       || h->root.type == bfd_link_hash_defweak)
11687
      && !h->root.u.def.section->gc_mark
11688
      && !(h->root.u.def.section->owner->flags & DYNAMIC))
11689
    {
11690
      struct elf_gc_sweep_symbol_info *inf =
11691
          (struct elf_gc_sweep_symbol_info *) data;
11692
      (*inf->hide_symbol) (inf->info, h, TRUE);
11693
    }
11694
 
11695
  return TRUE;
11696
}
11697
 
11698
/* The sweep phase of garbage collection.  Remove all garbage sections.  */
11699
 
11700
typedef bfd_boolean (*gc_sweep_hook_fn)
11701
  (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11702
 
11703
static bfd_boolean
11704
elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11705
{
11706
  bfd *sub;
11707
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11708
  gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11709
  unsigned long section_sym_count;
11710
  struct elf_gc_sweep_symbol_info sweep_info;
11711
 
11712
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11713
    {
11714
      asection *o;
11715
 
11716
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11717
        continue;
11718
 
11719
      for (o = sub->sections; o != NULL; o = o->next)
11720
        {
11721
          /* When any section in a section group is kept, we keep all
11722
             sections in the section group.  If the first member of
11723
             the section group is excluded, we will also exclude the
11724
             group section.  */
11725
          if (o->flags & SEC_GROUP)
11726
            {
11727
              asection *first = elf_next_in_group (o);
11728
              o->gc_mark = first->gc_mark;
11729
            }
11730
          else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11731
                   || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11732
                   || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11733
            {
11734
              /* Keep debug, special and SHT_NOTE sections.  */
11735
              o->gc_mark = 1;
11736
            }
11737
 
11738
          if (o->gc_mark)
11739
            continue;
11740
 
11741
          /* Skip sweeping sections already excluded.  */
11742
          if (o->flags & SEC_EXCLUDE)
11743
            continue;
11744
 
11745
          /* Since this is early in the link process, it is simple
11746
             to remove a section from the output.  */
11747
          o->flags |= SEC_EXCLUDE;
11748
 
11749
          if (info->print_gc_sections && o->size != 0)
11750
            _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11751
 
11752
          /* But we also have to update some of the relocation
11753
             info we collected before.  */
11754
          if (gc_sweep_hook
11755
              && (o->flags & SEC_RELOC) != 0
11756
              && o->reloc_count > 0
11757
              && !bfd_is_abs_section (o->output_section))
11758
            {
11759
              Elf_Internal_Rela *internal_relocs;
11760
              bfd_boolean r;
11761
 
11762
              internal_relocs
11763
                = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11764
                                             info->keep_memory);
11765
              if (internal_relocs == NULL)
11766
                return FALSE;
11767
 
11768
              r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11769
 
11770
              if (elf_section_data (o)->relocs != internal_relocs)
11771
                free (internal_relocs);
11772
 
11773
              if (!r)
11774
                return FALSE;
11775
            }
11776
        }
11777
    }
11778
 
11779
  /* Remove the symbols that were in the swept sections from the dynamic
11780
     symbol table.  GCFIXME: Anyone know how to get them out of the
11781
     static symbol table as well?  */
11782
  sweep_info.info = info;
11783
  sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11784
  elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11785
                          &sweep_info);
11786
 
11787
  _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11788
  return TRUE;
11789
}
11790
 
11791
/* Propagate collected vtable information.  This is called through
11792
   elf_link_hash_traverse.  */
11793
 
11794
static bfd_boolean
11795
elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11796
{
11797
  if (h->root.type == bfd_link_hash_warning)
11798
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11799
 
11800
  /* Those that are not vtables.  */
11801
  if (h->vtable == NULL || h->vtable->parent == NULL)
11802
    return TRUE;
11803
 
11804
  /* Those vtables that do not have parents, we cannot merge.  */
11805
  if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11806
    return TRUE;
11807
 
11808
  /* If we've already been done, exit.  */
11809
  if (h->vtable->used && h->vtable->used[-1])
11810
    return TRUE;
11811
 
11812
  /* Make sure the parent's table is up to date.  */
11813
  elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11814
 
11815
  if (h->vtable->used == NULL)
11816
    {
11817
      /* None of this table's entries were referenced.  Re-use the
11818
         parent's table.  */
11819
      h->vtable->used = h->vtable->parent->vtable->used;
11820
      h->vtable->size = h->vtable->parent->vtable->size;
11821
    }
11822
  else
11823
    {
11824
      size_t n;
11825
      bfd_boolean *cu, *pu;
11826
 
11827
      /* Or the parent's entries into ours.  */
11828
      cu = h->vtable->used;
11829
      cu[-1] = TRUE;
11830
      pu = h->vtable->parent->vtable->used;
11831
      if (pu != NULL)
11832
        {
11833
          const struct elf_backend_data *bed;
11834
          unsigned int log_file_align;
11835
 
11836
          bed = get_elf_backend_data (h->root.u.def.section->owner);
11837
          log_file_align = bed->s->log_file_align;
11838
          n = h->vtable->parent->vtable->size >> log_file_align;
11839
          while (n--)
11840
            {
11841
              if (*pu)
11842
                *cu = TRUE;
11843
              pu++;
11844
              cu++;
11845
            }
11846
        }
11847
    }
11848
 
11849
  return TRUE;
11850
}
11851
 
11852
static bfd_boolean
11853
elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11854
{
11855
  asection *sec;
11856
  bfd_vma hstart, hend;
11857
  Elf_Internal_Rela *relstart, *relend, *rel;
11858
  const struct elf_backend_data *bed;
11859
  unsigned int log_file_align;
11860
 
11861
  if (h->root.type == bfd_link_hash_warning)
11862
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11863
 
11864
  /* Take care of both those symbols that do not describe vtables as
11865
     well as those that are not loaded.  */
11866
  if (h->vtable == NULL || h->vtable->parent == NULL)
11867
    return TRUE;
11868
 
11869
  BFD_ASSERT (h->root.type == bfd_link_hash_defined
11870
              || h->root.type == bfd_link_hash_defweak);
11871
 
11872
  sec = h->root.u.def.section;
11873
  hstart = h->root.u.def.value;
11874
  hend = hstart + h->size;
11875
 
11876
  relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11877
  if (!relstart)
11878
    return *(bfd_boolean *) okp = FALSE;
11879
  bed = get_elf_backend_data (sec->owner);
11880
  log_file_align = bed->s->log_file_align;
11881
 
11882
  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11883
 
11884
  for (rel = relstart; rel < relend; ++rel)
11885
    if (rel->r_offset >= hstart && rel->r_offset < hend)
11886
      {
11887
        /* If the entry is in use, do nothing.  */
11888
        if (h->vtable->used
11889
            && (rel->r_offset - hstart) < h->vtable->size)
11890
          {
11891
            bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11892
            if (h->vtable->used[entry])
11893
              continue;
11894
          }
11895
        /* Otherwise, kill it.  */
11896
        rel->r_offset = rel->r_info = rel->r_addend = 0;
11897
      }
11898
 
11899
  return TRUE;
11900
}
11901
 
11902
/* Mark sections containing dynamically referenced symbols.  When
11903
   building shared libraries, we must assume that any visible symbol is
11904
   referenced.  */
11905
 
11906
bfd_boolean
11907
bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11908
{
11909
  struct bfd_link_info *info = (struct bfd_link_info *) inf;
11910
 
11911
  if (h->root.type == bfd_link_hash_warning)
11912
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
11913
 
11914
  if ((h->root.type == bfd_link_hash_defined
11915
       || h->root.type == bfd_link_hash_defweak)
11916
      && (h->ref_dynamic
11917
          || (!info->executable
11918
              && h->def_regular
11919
              && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11920
              && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11921
    h->root.u.def.section->flags |= SEC_KEEP;
11922
 
11923
  return TRUE;
11924
}
11925
 
11926
/* Keep all sections containing symbols undefined on the command-line,
11927
   and the section containing the entry symbol.  */
11928
 
11929
void
11930
_bfd_elf_gc_keep (struct bfd_link_info *info)
11931
{
11932
  struct bfd_sym_chain *sym;
11933
 
11934
  for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11935
    {
11936
      struct elf_link_hash_entry *h;
11937
 
11938
      h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11939
                                FALSE, FALSE, FALSE);
11940
 
11941
      if (h != NULL
11942
          && (h->root.type == bfd_link_hash_defined
11943
              || h->root.type == bfd_link_hash_defweak)
11944
          && !bfd_is_abs_section (h->root.u.def.section))
11945
        h->root.u.def.section->flags |= SEC_KEEP;
11946
    }
11947
}
11948
 
11949
/* Do mark and sweep of unused sections.  */
11950
 
11951
bfd_boolean
11952
bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11953
{
11954
  bfd_boolean ok = TRUE;
11955
  bfd *sub;
11956
  elf_gc_mark_hook_fn gc_mark_hook;
11957
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11958
 
11959
  if (!bed->can_gc_sections
11960
      || !is_elf_hash_table (info->hash))
11961
    {
11962
      (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11963
      return TRUE;
11964
    }
11965
 
11966
  bed->gc_keep (info);
11967
 
11968
  /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
11969
     at the .eh_frame section if we can mark the FDEs individually.  */
11970
  _bfd_elf_begin_eh_frame_parsing (info);
11971
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11972
    {
11973
      asection *sec;
11974
      struct elf_reloc_cookie cookie;
11975
 
11976
      sec = bfd_get_section_by_name (sub, ".eh_frame");
11977
      if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11978
        {
11979
          _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11980
          if (elf_section_data (sec)->sec_info)
11981
            elf_eh_frame_section (sub) = sec;
11982
          fini_reloc_cookie_for_section (&cookie, sec);
11983
        }
11984
    }
11985
  _bfd_elf_end_eh_frame_parsing (info);
11986
 
11987
  /* Apply transitive closure to the vtable entry usage info.  */
11988
  elf_link_hash_traverse (elf_hash_table (info),
11989
                          elf_gc_propagate_vtable_entries_used,
11990
                          &ok);
11991
  if (!ok)
11992
    return FALSE;
11993
 
11994
  /* Kill the vtable relocations that were not used.  */
11995
  elf_link_hash_traverse (elf_hash_table (info),
11996
                          elf_gc_smash_unused_vtentry_relocs,
11997
                          &ok);
11998
  if (!ok)
11999
    return FALSE;
12000
 
12001
  /* Mark dynamically referenced symbols.  */
12002
  if (elf_hash_table (info)->dynamic_sections_created)
12003
    elf_link_hash_traverse (elf_hash_table (info),
12004
                            bed->gc_mark_dynamic_ref,
12005
                            info);
12006
 
12007
  /* Grovel through relocs to find out who stays ...  */
12008
  gc_mark_hook = bed->gc_mark_hook;
12009
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12010
    {
12011
      asection *o;
12012
 
12013
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12014
        continue;
12015
 
12016
      for (o = sub->sections; o != NULL; o = o->next)
12017
        if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
12018
          if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12019
            return FALSE;
12020
    }
12021
 
12022
  /* Allow the backend to mark additional target specific sections.  */
12023
  if (bed->gc_mark_extra_sections)
12024
    bed->gc_mark_extra_sections (info, gc_mark_hook);
12025
 
12026
  /* ... and mark SEC_EXCLUDE for those that go.  */
12027
  return elf_gc_sweep (abfd, info);
12028
}
12029
 
12030
/* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
12031
 
12032
bfd_boolean
12033
bfd_elf_gc_record_vtinherit (bfd *abfd,
12034
                             asection *sec,
12035
                             struct elf_link_hash_entry *h,
12036
                             bfd_vma offset)
12037
{
12038
  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12039
  struct elf_link_hash_entry **search, *child;
12040
  bfd_size_type extsymcount;
12041
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12042
 
12043
  /* The sh_info field of the symtab header tells us where the
12044
     external symbols start.  We don't care about the local symbols at
12045
     this point.  */
12046
  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12047
  if (!elf_bad_symtab (abfd))
12048
    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12049
 
12050
  sym_hashes = elf_sym_hashes (abfd);
12051
  sym_hashes_end = sym_hashes + extsymcount;
12052
 
12053
  /* Hunt down the child symbol, which is in this section at the same
12054
     offset as the relocation.  */
12055
  for (search = sym_hashes; search != sym_hashes_end; ++search)
12056
    {
12057
      if ((child = *search) != NULL
12058
          && (child->root.type == bfd_link_hash_defined
12059
              || child->root.type == bfd_link_hash_defweak)
12060
          && child->root.u.def.section == sec
12061
          && child->root.u.def.value == offset)
12062
        goto win;
12063
    }
12064
 
12065
  (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12066
                         abfd, sec, (unsigned long) offset);
12067
  bfd_set_error (bfd_error_invalid_operation);
12068
  return FALSE;
12069
 
12070
 win:
12071
  if (!child->vtable)
12072
    {
12073
      child->vtable = (struct elf_link_virtual_table_entry *)
12074
          bfd_zalloc (abfd, sizeof (*child->vtable));
12075
      if (!child->vtable)
12076
        return FALSE;
12077
    }
12078
  if (!h)
12079
    {
12080
      /* This *should* only be the absolute section.  It could potentially
12081
         be that someone has defined a non-global vtable though, which
12082
         would be bad.  It isn't worth paging in the local symbols to be
12083
         sure though; that case should simply be handled by the assembler.  */
12084
 
12085
      child->vtable->parent = (struct elf_link_hash_entry *) -1;
12086
    }
12087
  else
12088
    child->vtable->parent = h;
12089
 
12090
  return TRUE;
12091
}
12092
 
12093
/* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12094
 
12095
bfd_boolean
12096
bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12097
                           asection *sec ATTRIBUTE_UNUSED,
12098
                           struct elf_link_hash_entry *h,
12099
                           bfd_vma addend)
12100
{
12101
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12102
  unsigned int log_file_align = bed->s->log_file_align;
12103
 
12104
  if (!h->vtable)
12105
    {
12106
      h->vtable = (struct elf_link_virtual_table_entry *)
12107
          bfd_zalloc (abfd, sizeof (*h->vtable));
12108
      if (!h->vtable)
12109
        return FALSE;
12110
    }
12111
 
12112
  if (addend >= h->vtable->size)
12113
    {
12114
      size_t size, bytes, file_align;
12115
      bfd_boolean *ptr = h->vtable->used;
12116
 
12117
      /* While the symbol is undefined, we have to be prepared to handle
12118
         a zero size.  */
12119
      file_align = 1 << log_file_align;
12120
      if (h->root.type == bfd_link_hash_undefined)
12121
        size = addend + file_align;
12122
      else
12123
        {
12124
          size = h->size;
12125
          if (addend >= size)
12126
            {
12127
              /* Oops!  We've got a reference past the defined end of
12128
                 the table.  This is probably a bug -- shall we warn?  */
12129
              size = addend + file_align;
12130
            }
12131
        }
12132
      size = (size + file_align - 1) & -file_align;
12133
 
12134
      /* Allocate one extra entry for use as a "done" flag for the
12135
         consolidation pass.  */
12136
      bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12137
 
12138
      if (ptr)
12139
        {
12140
          ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12141
 
12142
          if (ptr != NULL)
12143
            {
12144
              size_t oldbytes;
12145
 
12146
              oldbytes = (((h->vtable->size >> log_file_align) + 1)
12147
                          * sizeof (bfd_boolean));
12148
              memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12149
            }
12150
        }
12151
      else
12152
        ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12153
 
12154
      if (ptr == NULL)
12155
        return FALSE;
12156
 
12157
      /* And arrange for that done flag to be at index -1.  */
12158
      h->vtable->used = ptr + 1;
12159
      h->vtable->size = size;
12160
    }
12161
 
12162
  h->vtable->used[addend >> log_file_align] = TRUE;
12163
 
12164
  return TRUE;
12165
}
12166
 
12167
struct alloc_got_off_arg {
12168
  bfd_vma gotoff;
12169
  struct bfd_link_info *info;
12170
};
12171
 
12172
/* We need a special top-level link routine to convert got reference counts
12173
   to real got offsets.  */
12174
 
12175
static bfd_boolean
12176
elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12177
{
12178
  struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12179
  bfd *obfd = gofarg->info->output_bfd;
12180
  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12181
 
12182
  if (h->root.type == bfd_link_hash_warning)
12183
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12184
 
12185
  if (h->got.refcount > 0)
12186
    {
12187
      h->got.offset = gofarg->gotoff;
12188
      gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12189
    }
12190
  else
12191
    h->got.offset = (bfd_vma) -1;
12192
 
12193
  return TRUE;
12194
}
12195
 
12196
/* And an accompanying bit to work out final got entry offsets once
12197
   we're done.  Should be called from final_link.  */
12198
 
12199
bfd_boolean
12200
bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12201
                                        struct bfd_link_info *info)
12202
{
12203
  bfd *i;
12204
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12205
  bfd_vma gotoff;
12206
  struct alloc_got_off_arg gofarg;
12207
 
12208
  BFD_ASSERT (abfd == info->output_bfd);
12209
 
12210
  if (! is_elf_hash_table (info->hash))
12211
    return FALSE;
12212
 
12213
  /* The GOT offset is relative to the .got section, but the GOT header is
12214
     put into the .got.plt section, if the backend uses it.  */
12215
  if (bed->want_got_plt)
12216
    gotoff = 0;
12217
  else
12218
    gotoff = bed->got_header_size;
12219
 
12220
  /* Do the local .got entries first.  */
12221
  for (i = info->input_bfds; i; i = i->link_next)
12222
    {
12223
      bfd_signed_vma *local_got;
12224
      bfd_size_type j, locsymcount;
12225
      Elf_Internal_Shdr *symtab_hdr;
12226
 
12227
      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12228
        continue;
12229
 
12230
      local_got = elf_local_got_refcounts (i);
12231
      if (!local_got)
12232
        continue;
12233
 
12234
      symtab_hdr = &elf_tdata (i)->symtab_hdr;
12235
      if (elf_bad_symtab (i))
12236
        locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12237
      else
12238
        locsymcount = symtab_hdr->sh_info;
12239
 
12240
      for (j = 0; j < locsymcount; ++j)
12241
        {
12242
          if (local_got[j] > 0)
12243
            {
12244
              local_got[j] = gotoff;
12245
              gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12246
            }
12247
          else
12248
            local_got[j] = (bfd_vma) -1;
12249
        }
12250
    }
12251
 
12252
  /* Then the global .got entries.  .plt refcounts are handled by
12253
     adjust_dynamic_symbol  */
12254
  gofarg.gotoff = gotoff;
12255
  gofarg.info = info;
12256
  elf_link_hash_traverse (elf_hash_table (info),
12257
                          elf_gc_allocate_got_offsets,
12258
                          &gofarg);
12259
  return TRUE;
12260
}
12261
 
12262
/* Many folk need no more in the way of final link than this, once
12263
   got entry reference counting is enabled.  */
12264
 
12265
bfd_boolean
12266
bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12267
{
12268
  if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12269
    return FALSE;
12270
 
12271
  /* Invoke the regular ELF backend linker to do all the work.  */
12272
  return bfd_elf_final_link (abfd, info);
12273
}
12274
 
12275
bfd_boolean
12276
bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12277
{
12278
  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12279
 
12280
  if (rcookie->bad_symtab)
12281
    rcookie->rel = rcookie->rels;
12282
 
12283
  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12284
    {
12285
      unsigned long r_symndx;
12286
 
12287
      if (! rcookie->bad_symtab)
12288
        if (rcookie->rel->r_offset > offset)
12289
          return FALSE;
12290
      if (rcookie->rel->r_offset != offset)
12291
        continue;
12292
 
12293
      r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12294
      if (r_symndx == STN_UNDEF)
12295
        return TRUE;
12296
 
12297
      if (r_symndx >= rcookie->locsymcount
12298
          || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12299
        {
12300
          struct elf_link_hash_entry *h;
12301
 
12302
          h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12303
 
12304
          while (h->root.type == bfd_link_hash_indirect
12305
                 || h->root.type == bfd_link_hash_warning)
12306
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
12307
 
12308
          if ((h->root.type == bfd_link_hash_defined
12309
               || h->root.type == bfd_link_hash_defweak)
12310
              && elf_discarded_section (h->root.u.def.section))
12311
            return TRUE;
12312
          else
12313
            return FALSE;
12314
        }
12315
      else
12316
        {
12317
          /* It's not a relocation against a global symbol,
12318
             but it could be a relocation against a local
12319
             symbol for a discarded section.  */
12320
          asection *isec;
12321
          Elf_Internal_Sym *isym;
12322
 
12323
          /* Need to: get the symbol; get the section.  */
12324
          isym = &rcookie->locsyms[r_symndx];
12325
          isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12326
          if (isec != NULL && elf_discarded_section (isec))
12327
            return TRUE;
12328
        }
12329
      return FALSE;
12330
    }
12331
  return FALSE;
12332
}
12333
 
12334
/* Discard unneeded references to discarded sections.
12335
   Returns TRUE if any section's size was changed.  */
12336
/* This function assumes that the relocations are in sorted order,
12337
   which is true for all known assemblers.  */
12338
 
12339
bfd_boolean
12340
bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12341
{
12342
  struct elf_reloc_cookie cookie;
12343
  asection *stab, *eh;
12344
  const struct elf_backend_data *bed;
12345
  bfd *abfd;
12346
  bfd_boolean ret = FALSE;
12347
 
12348
  if (info->traditional_format
12349
      || !is_elf_hash_table (info->hash))
12350
    return FALSE;
12351
 
12352
  _bfd_elf_begin_eh_frame_parsing (info);
12353
  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12354
    {
12355
      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12356
        continue;
12357
 
12358
      bed = get_elf_backend_data (abfd);
12359
 
12360
      if ((abfd->flags & DYNAMIC) != 0)
12361
        continue;
12362
 
12363
      eh = NULL;
12364
      if (!info->relocatable)
12365
        {
12366
          eh = bfd_get_section_by_name (abfd, ".eh_frame");
12367
          if (eh != NULL
12368
              && (eh->size == 0
12369
                  || bfd_is_abs_section (eh->output_section)))
12370
            eh = NULL;
12371
        }
12372
 
12373
      stab = bfd_get_section_by_name (abfd, ".stab");
12374
      if (stab != NULL
12375
          && (stab->size == 0
12376
              || bfd_is_abs_section (stab->output_section)
12377
              || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12378
        stab = NULL;
12379
 
12380
      if (stab == NULL
12381
          && eh == NULL
12382
          && bed->elf_backend_discard_info == NULL)
12383
        continue;
12384
 
12385
      if (!init_reloc_cookie (&cookie, info, abfd))
12386
        return FALSE;
12387
 
12388
      if (stab != NULL
12389
          && stab->reloc_count > 0
12390
          && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12391
        {
12392
          if (_bfd_discard_section_stabs (abfd, stab,
12393
                                          elf_section_data (stab)->sec_info,
12394
                                          bfd_elf_reloc_symbol_deleted_p,
12395
                                          &cookie))
12396
            ret = TRUE;
12397
          fini_reloc_cookie_rels (&cookie, stab);
12398
        }
12399
 
12400
      if (eh != NULL
12401
          && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12402
        {
12403
          _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12404
          if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12405
                                                 bfd_elf_reloc_symbol_deleted_p,
12406
                                                 &cookie))
12407
            ret = TRUE;
12408
          fini_reloc_cookie_rels (&cookie, eh);
12409
        }
12410
 
12411
      if (bed->elf_backend_discard_info != NULL
12412
          && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12413
        ret = TRUE;
12414
 
12415
      fini_reloc_cookie (&cookie, abfd);
12416
    }
12417
  _bfd_elf_end_eh_frame_parsing (info);
12418
 
12419
  if (info->eh_frame_hdr
12420
      && !info->relocatable
12421
      && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12422
    ret = TRUE;
12423
 
12424
  return ret;
12425
}
12426
 
12427
/* For a SHT_GROUP section, return the group signature.  For other
12428
   sections, return the normal section name.  */
12429
 
12430
static const char *
12431
section_signature (asection *sec)
12432
{
12433
  if ((sec->flags & SEC_GROUP) != 0
12434
      && elf_next_in_group (sec) != NULL
12435
      && elf_group_name (elf_next_in_group (sec)) != NULL)
12436
    return elf_group_name (elf_next_in_group (sec));
12437
  return sec->name;
12438
}
12439
 
12440
void
12441
_bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12442
                                 struct bfd_link_info *info)
12443
{
12444
  flagword flags;
12445
  const char *name, *p;
12446
  struct bfd_section_already_linked *l;
12447
  struct bfd_section_already_linked_hash_entry *already_linked_list;
12448
 
12449
  if (sec->output_section == bfd_abs_section_ptr)
12450
    return;
12451
 
12452
  flags = sec->flags;
12453
 
12454
  /* Return if it isn't a linkonce section.  A comdat group section
12455
     also has SEC_LINK_ONCE set.  */
12456
  if ((flags & SEC_LINK_ONCE) == 0)
12457
    return;
12458
 
12459
  /* Don't put group member sections on our list of already linked
12460
     sections.  They are handled as a group via their group section.  */
12461
  if (elf_sec_group (sec) != NULL)
12462
    return;
12463
 
12464
  /* FIXME: When doing a relocatable link, we may have trouble
12465
     copying relocations in other sections that refer to local symbols
12466
     in the section being discarded.  Those relocations will have to
12467
     be converted somehow; as of this writing I'm not sure that any of
12468
     the backends handle that correctly.
12469
 
12470
     It is tempting to instead not discard link once sections when
12471
     doing a relocatable link (technically, they should be discarded
12472
     whenever we are building constructors).  However, that fails,
12473
     because the linker winds up combining all the link once sections
12474
     into a single large link once section, which defeats the purpose
12475
     of having link once sections in the first place.
12476
 
12477
     Also, not merging link once sections in a relocatable link
12478
     causes trouble for MIPS ELF, which relies on link once semantics
12479
     to handle the .reginfo section correctly.  */
12480
 
12481
  name = section_signature (sec);
12482
 
12483
  if (CONST_STRNEQ (name, ".gnu.linkonce.")
12484
      && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12485
    p++;
12486
  else
12487
    p = name;
12488
 
12489
  already_linked_list = bfd_section_already_linked_table_lookup (p);
12490
 
12491
  for (l = already_linked_list->entry; l != NULL; l = l->next)
12492
    {
12493
      /* We may have 2 different types of sections on the list: group
12494
         sections and linkonce sections.  Match like sections.  */
12495
      if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12496
          && strcmp (name, section_signature (l->sec)) == 0
12497
          && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12498
        {
12499
          /* The section has already been linked.  See if we should
12500
             issue a warning.  */
12501
          switch (flags & SEC_LINK_DUPLICATES)
12502
            {
12503
            default:
12504
              abort ();
12505
 
12506
            case SEC_LINK_DUPLICATES_DISCARD:
12507
              break;
12508
 
12509
            case SEC_LINK_DUPLICATES_ONE_ONLY:
12510
              (*_bfd_error_handler)
12511
                (_("%B: ignoring duplicate section `%A'"),
12512
                 abfd, sec);
12513
              break;
12514
 
12515
            case SEC_LINK_DUPLICATES_SAME_SIZE:
12516
              if (sec->size != l->sec->size)
12517
                (*_bfd_error_handler)
12518
                  (_("%B: duplicate section `%A' has different size"),
12519
                   abfd, sec);
12520
              break;
12521
 
12522
            case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12523
              if (sec->size != l->sec->size)
12524
                (*_bfd_error_handler)
12525
                  (_("%B: duplicate section `%A' has different size"),
12526
                   abfd, sec);
12527
              else if (sec->size != 0)
12528
                {
12529
                  bfd_byte *sec_contents, *l_sec_contents;
12530
 
12531
                  if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12532
                    (*_bfd_error_handler)
12533
                      (_("%B: warning: could not read contents of section `%A'"),
12534
                       abfd, sec);
12535
                  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12536
                                                        &l_sec_contents))
12537
                    (*_bfd_error_handler)
12538
                      (_("%B: warning: could not read contents of section `%A'"),
12539
                       l->sec->owner, l->sec);
12540
                  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12541
                    (*_bfd_error_handler)
12542
                      (_("%B: warning: duplicate section `%A' has different contents"),
12543
                       abfd, sec);
12544
 
12545
                  if (sec_contents)
12546
                    free (sec_contents);
12547
                  if (l_sec_contents)
12548
                    free (l_sec_contents);
12549
                }
12550
              break;
12551
            }
12552
 
12553
          /* Set the output_section field so that lang_add_section
12554
             does not create a lang_input_section structure for this
12555
             section.  Since there might be a symbol in the section
12556
             being discarded, we must retain a pointer to the section
12557
             which we are really going to use.  */
12558
          sec->output_section = bfd_abs_section_ptr;
12559
          sec->kept_section = l->sec;
12560
 
12561
          if (flags & SEC_GROUP)
12562
            {
12563
              asection *first = elf_next_in_group (sec);
12564
              asection *s = first;
12565
 
12566
              while (s != NULL)
12567
                {
12568
                  s->output_section = bfd_abs_section_ptr;
12569
                  /* Record which group discards it.  */
12570
                  s->kept_section = l->sec;
12571
                  s = elf_next_in_group (s);
12572
                  /* These lists are circular.  */
12573
                  if (s == first)
12574
                    break;
12575
                }
12576
            }
12577
 
12578
          return;
12579
        }
12580
    }
12581
 
12582
  /* A single member comdat group section may be discarded by a
12583
     linkonce section and vice versa.  */
12584
 
12585
  if ((flags & SEC_GROUP) != 0)
12586
    {
12587
      asection *first = elf_next_in_group (sec);
12588
 
12589
      if (first != NULL && elf_next_in_group (first) == first)
12590
        /* Check this single member group against linkonce sections.  */
12591
        for (l = already_linked_list->entry; l != NULL; l = l->next)
12592
          if ((l->sec->flags & SEC_GROUP) == 0
12593
              && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12594
              && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12595
            {
12596
              first->output_section = bfd_abs_section_ptr;
12597
              first->kept_section = l->sec;
12598
              sec->output_section = bfd_abs_section_ptr;
12599
              break;
12600
            }
12601
    }
12602
  else
12603
    /* Check this linkonce section against single member groups.  */
12604
    for (l = already_linked_list->entry; l != NULL; l = l->next)
12605
      if (l->sec->flags & SEC_GROUP)
12606
        {
12607
          asection *first = elf_next_in_group (l->sec);
12608
 
12609
          if (first != NULL
12610
              && elf_next_in_group (first) == first
12611
              && bfd_elf_match_symbols_in_sections (first, sec, info))
12612
            {
12613
              sec->output_section = bfd_abs_section_ptr;
12614
              sec->kept_section = first;
12615
              break;
12616
            }
12617
        }
12618
 
12619
  /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12620
     referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12621
     specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12622
     prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12623
     matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12624
     but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12625
     `.gnu.linkonce.t.F' section from a different bfd not requiring any
12626
     `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12627
     The reverse order cannot happen as there is never a bfd with only the
12628
     `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12629
     matter as here were are looking only for cross-bfd sections.  */
12630
 
12631
  if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12632
    for (l = already_linked_list->entry; l != NULL; l = l->next)
12633
      if ((l->sec->flags & SEC_GROUP) == 0
12634
          && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12635
        {
12636
          if (abfd != l->sec->owner)
12637
            sec->output_section = bfd_abs_section_ptr;
12638
          break;
12639
        }
12640
 
12641
  /* This is the first section with this name.  Record it.  */
12642
  if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12643
    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12644
}
12645
 
12646
bfd_boolean
12647
_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12648
{
12649
  return sym->st_shndx == SHN_COMMON;
12650
}
12651
 
12652
unsigned int
12653
_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12654
{
12655
  return SHN_COMMON;
12656
}
12657
 
12658
asection *
12659
_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12660
{
12661
  return bfd_com_section_ptr;
12662
}
12663
 
12664
bfd_vma
12665
_bfd_elf_default_got_elt_size (bfd *abfd,
12666
                               struct bfd_link_info *info ATTRIBUTE_UNUSED,
12667
                               struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12668
                               bfd *ibfd ATTRIBUTE_UNUSED,
12669
                               unsigned long symndx ATTRIBUTE_UNUSED)
12670
{
12671
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12672
  return bed->s->arch_size / 8;
12673
}
12674
 
12675
/* Routines to support the creation of dynamic relocs.  */
12676
 
12677
/* Returns the name of the dynamic reloc section associated with SEC.  */
12678
 
12679
static const char *
12680
get_dynamic_reloc_section_name (bfd *       abfd,
12681
                                asection *  sec,
12682
                                bfd_boolean is_rela)
12683
{
12684
  char *name;
12685
  const char *old_name = bfd_get_section_name (NULL, sec);
12686
  const char *prefix = is_rela ? ".rela" : ".rel";
12687
 
12688
  if (old_name == NULL)
12689
    return NULL;
12690
 
12691
  name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12692
  sprintf (name, "%s%s", prefix, old_name);
12693
 
12694
  return name;
12695
}
12696
 
12697
/* Returns the dynamic reloc section associated with SEC.
12698
   If necessary compute the name of the dynamic reloc section based
12699
   on SEC's name (looked up in ABFD's string table) and the setting
12700
   of IS_RELA.  */
12701
 
12702
asection *
12703
_bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12704
                                    asection *  sec,
12705
                                    bfd_boolean is_rela)
12706
{
12707
  asection * reloc_sec = elf_section_data (sec)->sreloc;
12708
 
12709
  if (reloc_sec == NULL)
12710
    {
12711
      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12712
 
12713
      if (name != NULL)
12714
        {
12715
          reloc_sec = bfd_get_section_by_name (abfd, name);
12716
 
12717
          if (reloc_sec != NULL)
12718
            elf_section_data (sec)->sreloc = reloc_sec;
12719
        }
12720
    }
12721
 
12722
  return reloc_sec;
12723
}
12724
 
12725
/* Returns the dynamic reloc section associated with SEC.  If the
12726
   section does not exist it is created and attached to the DYNOBJ
12727
   bfd and stored in the SRELOC field of SEC's elf_section_data
12728
   structure.
12729
 
12730
   ALIGNMENT is the alignment for the newly created section and
12731
   IS_RELA defines whether the name should be .rela.<SEC's name>
12732
   or .rel.<SEC's name>.  The section name is looked up in the
12733
   string table associated with ABFD.  */
12734
 
12735
asection *
12736
_bfd_elf_make_dynamic_reloc_section (asection *         sec,
12737
                                     bfd *              dynobj,
12738
                                     unsigned int       alignment,
12739
                                     bfd *              abfd,
12740
                                     bfd_boolean        is_rela)
12741
{
12742
  asection * reloc_sec = elf_section_data (sec)->sreloc;
12743
 
12744
  if (reloc_sec == NULL)
12745
    {
12746
      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12747
 
12748
      if (name == NULL)
12749
        return NULL;
12750
 
12751
      reloc_sec = bfd_get_section_by_name (dynobj, name);
12752
 
12753
      if (reloc_sec == NULL)
12754
        {
12755
          flagword flags;
12756
 
12757
          flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12758
          if ((sec->flags & SEC_ALLOC) != 0)
12759
            flags |= SEC_ALLOC | SEC_LOAD;
12760
 
12761
          reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12762
          if (reloc_sec != NULL)
12763
            {
12764
              if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12765
                reloc_sec = NULL;
12766
            }
12767
        }
12768
 
12769
      elf_section_data (sec)->sreloc = reloc_sec;
12770
    }
12771
 
12772
  return reloc_sec;
12773
}
12774
 
12775
/* Copy the ELF symbol type associated with a linker hash entry.  */
12776
void
12777
_bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12778
    struct bfd_link_hash_entry * hdest,
12779
    struct bfd_link_hash_entry * hsrc)
12780
{
12781
  struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12782
  struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12783
 
12784
  ehdest->type = ehsrc->type;
12785
  ehdest->target_internal = ehsrc->target_internal;
12786
}
12787
 
12788
/* Append a RELA relocation REL to section S in BFD.  */
12789
 
12790
void
12791
elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12792
{
12793
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12794
  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12795
  BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12796
  bed->s->swap_reloca_out (abfd, rel, loc);
12797
}
12798
 
12799
/* Append a REL relocation REL to section S in BFD.  */
12800
 
12801
void
12802
elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12803
{
12804
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12805
  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12806
  BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12807
  bed->s->swap_reloca_out (abfd, rel, loc);
12808
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.