OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elflink.c] - Blame information for rev 161

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 khays
/* ELF linking support for BFD.
2
   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3
   2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of BFD, the Binary File Descriptor library.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
   MA 02110-1301, USA.  */
22
 
23
#include "sysdep.h"
24
#include "bfd.h"
25
#include "bfdlink.h"
26
#include "libbfd.h"
27
#define ARCH_SIZE 0
28
#include "elf-bfd.h"
29
#include "safe-ctype.h"
30
#include "libiberty.h"
31
#include "objalloc.h"
32
 
33
/* This struct is used to pass information to routines called via
34
   elf_link_hash_traverse which must return failure.  */
35
 
36
struct elf_info_failed
37
{
38
  struct bfd_link_info *info;
39
  struct bfd_elf_version_tree *verdefs;
40
  bfd_boolean failed;
41
};
42
 
43
/* This structure is used to pass information to
44
   _bfd_elf_link_find_version_dependencies.  */
45
 
46
struct elf_find_verdep_info
47
{
48
  /* General link information.  */
49
  struct bfd_link_info *info;
50
  /* The number of dependencies.  */
51
  unsigned int vers;
52
  /* Whether we had a failure.  */
53
  bfd_boolean failed;
54
};
55
 
56
static bfd_boolean _bfd_elf_fix_symbol_flags
57
  (struct elf_link_hash_entry *, struct elf_info_failed *);
58
 
59
/* Define a symbol in a dynamic linkage section.  */
60
 
61
struct elf_link_hash_entry *
62
_bfd_elf_define_linkage_sym (bfd *abfd,
63
                             struct bfd_link_info *info,
64
                             asection *sec,
65
                             const char *name)
66
{
67
  struct elf_link_hash_entry *h;
68
  struct bfd_link_hash_entry *bh;
69
  const struct elf_backend_data *bed;
70
 
71
  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72
  if (h != NULL)
73
    {
74
      /* Zap symbol defined in an as-needed lib that wasn't linked.
75
         This is a symptom of a larger problem:  Absolute symbols
76
         defined in shared libraries can't be overridden, because we
77
         lose the link to the bfd which is via the symbol section.  */
78
      h->root.type = bfd_link_hash_new;
79
    }
80
 
81
  bh = &h->root;
82
  if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83
                                         sec, 0, NULL, FALSE,
84
                                         get_elf_backend_data (abfd)->collect,
85
                                         &bh))
86
    return NULL;
87
  h = (struct elf_link_hash_entry *) bh;
88
  h->def_regular = 1;
89
  h->non_elf = 0;
90
  h->type = STT_OBJECT;
91
  h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
 
93
  bed = get_elf_backend_data (abfd);
94
  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95
  return h;
96
}
97
 
98
bfd_boolean
99
_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100
{
101
  flagword flags;
102
  asection *s;
103
  struct elf_link_hash_entry *h;
104
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105
  struct elf_link_hash_table *htab = elf_hash_table (info);
106
 
107
  /* This function may be called more than once.  */
108
  s = bfd_get_section_by_name (abfd, ".got");
109
  if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110
    return TRUE;
111
 
112
  flags = bed->dynamic_sec_flags;
113
 
114
  s = bfd_make_section_with_flags (abfd,
115
                                   (bed->rela_plts_and_copies_p
116
                                    ? ".rela.got" : ".rel.got"),
117
                                   (bed->dynamic_sec_flags
118
                                    | SEC_READONLY));
119
  if (s == NULL
120
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121
    return FALSE;
122
  htab->srelgot = s;
123
 
124
  s = bfd_make_section_with_flags (abfd, ".got", flags);
125
  if (s == NULL
126
      || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127
    return FALSE;
128
  htab->sgot = s;
129
 
130
  if (bed->want_got_plt)
131
    {
132
      s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133
      if (s == NULL
134
          || !bfd_set_section_alignment (abfd, s,
135
                                         bed->s->log_file_align))
136
        return FALSE;
137
      htab->sgotplt = s;
138
    }
139
 
140
  /* The first bit of the global offset table is the header.  */
141
  s->size += bed->got_header_size;
142
 
143
  if (bed->want_got_sym)
144
    {
145
      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146
         (or .got.plt) section.  We don't do this in the linker script
147
         because we don't want to define the symbol if we are not creating
148
         a global offset table.  */
149
      h = _bfd_elf_define_linkage_sym (abfd, info, s,
150
                                       "_GLOBAL_OFFSET_TABLE_");
151
      elf_hash_table (info)->hgot = h;
152
      if (h == NULL)
153
        return FALSE;
154
    }
155
 
156
  return TRUE;
157
}
158
 
159
/* Create a strtab to hold the dynamic symbol names.  */
160
static bfd_boolean
161
_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162
{
163
  struct elf_link_hash_table *hash_table;
164
 
165
  hash_table = elf_hash_table (info);
166
  if (hash_table->dynobj == NULL)
167
    hash_table->dynobj = abfd;
168
 
169
  if (hash_table->dynstr == NULL)
170
    {
171
      hash_table->dynstr = _bfd_elf_strtab_init ();
172
      if (hash_table->dynstr == NULL)
173
        return FALSE;
174
    }
175
  return TRUE;
176
}
177
 
178
/* Create some sections which will be filled in with dynamic linking
179
   information.  ABFD is an input file which requires dynamic sections
180
   to be created.  The dynamic sections take up virtual memory space
181
   when the final executable is run, so we need to create them before
182
   addresses are assigned to the output sections.  We work out the
183
   actual contents and size of these sections later.  */
184
 
185
bfd_boolean
186
_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187
{
188
  flagword flags;
189
  asection *s;
190
  const struct elf_backend_data *bed;
191
 
192
  if (! is_elf_hash_table (info->hash))
193
    return FALSE;
194
 
195
  if (elf_hash_table (info)->dynamic_sections_created)
196
    return TRUE;
197
 
198
  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199
    return FALSE;
200
 
201
  abfd = elf_hash_table (info)->dynobj;
202
  bed = get_elf_backend_data (abfd);
203
 
204
  flags = bed->dynamic_sec_flags;
205
 
206
  /* A dynamically linked executable has a .interp section, but a
207
     shared library does not.  */
208
  if (info->executable)
209
    {
210
      s = bfd_make_section_with_flags (abfd, ".interp",
211
                                       flags | SEC_READONLY);
212
      if (s == NULL)
213
        return FALSE;
214
    }
215
 
216
  /* Create sections to hold version informations.  These are removed
217
     if they are not needed.  */
218
  s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219
                                   flags | SEC_READONLY);
220
  if (s == NULL
221
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222
    return FALSE;
223
 
224
  s = bfd_make_section_with_flags (abfd, ".gnu.version",
225
                                   flags | SEC_READONLY);
226
  if (s == NULL
227
      || ! bfd_set_section_alignment (abfd, s, 1))
228
    return FALSE;
229
 
230
  s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231
                                   flags | SEC_READONLY);
232
  if (s == NULL
233
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234
    return FALSE;
235
 
236
  s = bfd_make_section_with_flags (abfd, ".dynsym",
237
                                   flags | SEC_READONLY);
238
  if (s == NULL
239
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240
    return FALSE;
241
 
242
  s = bfd_make_section_with_flags (abfd, ".dynstr",
243
                                   flags | SEC_READONLY);
244
  if (s == NULL)
245
    return FALSE;
246
 
247
  s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248
  if (s == NULL
249
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250
    return FALSE;
251
 
252
  /* The special symbol _DYNAMIC is always set to the start of the
253
     .dynamic section.  We could set _DYNAMIC in a linker script, but we
254
     only want to define it if we are, in fact, creating a .dynamic
255
     section.  We don't want to define it if there is no .dynamic
256
     section, since on some ELF platforms the start up code examines it
257
     to decide how to initialize the process.  */
258
  if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259
    return FALSE;
260
 
261
  if (info->emit_hash)
262
    {
263
      s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264
      if (s == NULL
265
          || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266
        return FALSE;
267
      elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268
    }
269
 
270
  if (info->emit_gnu_hash)
271
    {
272
      s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273
                                       flags | SEC_READONLY);
274
      if (s == NULL
275
          || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276
        return FALSE;
277
      /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278
         4 32-bit words followed by variable count of 64-bit words, then
279
         variable count of 32-bit words.  */
280
      if (bed->s->arch_size == 64)
281
        elf_section_data (s)->this_hdr.sh_entsize = 0;
282
      else
283
        elf_section_data (s)->this_hdr.sh_entsize = 4;
284
    }
285
 
286
  /* Let the backend create the rest of the sections.  This lets the
287
     backend set the right flags.  The backend will normally create
288
     the .got and .plt sections.  */
289 148 khays
  if (bed->elf_backend_create_dynamic_sections == NULL
290
      || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 14 khays
    return FALSE;
292
 
293
  elf_hash_table (info)->dynamic_sections_created = TRUE;
294
 
295
  return TRUE;
296
}
297
 
298
/* Create dynamic sections when linking against a dynamic object.  */
299
 
300
bfd_boolean
301
_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302
{
303
  flagword flags, pltflags;
304
  struct elf_link_hash_entry *h;
305
  asection *s;
306
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307
  struct elf_link_hash_table *htab = elf_hash_table (info);
308
 
309
  /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310
     .rel[a].bss sections.  */
311
  flags = bed->dynamic_sec_flags;
312
 
313
  pltflags = flags;
314
  if (bed->plt_not_loaded)
315
    /* We do not clear SEC_ALLOC here because we still want the OS to
316
       allocate space for the section; it's just that there's nothing
317
       to read in from the object file.  */
318
    pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319
  else
320
    pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321
  if (bed->plt_readonly)
322
    pltflags |= SEC_READONLY;
323
 
324
  s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
325
  if (s == NULL
326
      || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327
    return FALSE;
328
  htab->splt = s;
329
 
330
  /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331
     .plt section.  */
332
  if (bed->want_plt_sym)
333
    {
334
      h = _bfd_elf_define_linkage_sym (abfd, info, s,
335
                                       "_PROCEDURE_LINKAGE_TABLE_");
336
      elf_hash_table (info)->hplt = h;
337
      if (h == NULL)
338
        return FALSE;
339
    }
340
 
341
  s = bfd_make_section_with_flags (abfd,
342
                                   (bed->rela_plts_and_copies_p
343
                                    ? ".rela.plt" : ".rel.plt"),
344
                                   flags | SEC_READONLY);
345
  if (s == NULL
346
      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347
    return FALSE;
348
  htab->srelplt = s;
349
 
350
  if (! _bfd_elf_create_got_section (abfd, info))
351
    return FALSE;
352
 
353
  if (bed->want_dynbss)
354
    {
355
      /* The .dynbss section is a place to put symbols which are defined
356
         by dynamic objects, are referenced by regular objects, and are
357
         not functions.  We must allocate space for them in the process
358
         image and use a R_*_COPY reloc to tell the dynamic linker to
359
         initialize them at run time.  The linker script puts the .dynbss
360
         section into the .bss section of the final image.  */
361
      s = bfd_make_section_with_flags (abfd, ".dynbss",
362
                                       (SEC_ALLOC
363
                                        | SEC_LINKER_CREATED));
364
      if (s == NULL)
365
        return FALSE;
366
 
367
      /* The .rel[a].bss section holds copy relocs.  This section is not
368
         normally needed.  We need to create it here, though, so that the
369
         linker will map it to an output section.  We can't just create it
370
         only if we need it, because we will not know whether we need it
371
         until we have seen all the input files, and the first time the
372
         main linker code calls BFD after examining all the input files
373
         (size_dynamic_sections) the input sections have already been
374
         mapped to the output sections.  If the section turns out not to
375
         be needed, we can discard it later.  We will never need this
376
         section when generating a shared object, since they do not use
377
         copy relocs.  */
378
      if (! info->shared)
379
        {
380
          s = bfd_make_section_with_flags (abfd,
381
                                           (bed->rela_plts_and_copies_p
382
                                            ? ".rela.bss" : ".rel.bss"),
383
                                           flags | SEC_READONLY);
384
          if (s == NULL
385
              || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386
            return FALSE;
387
        }
388
    }
389
 
390
  return TRUE;
391
}
392
 
393
/* Record a new dynamic symbol.  We record the dynamic symbols as we
394
   read the input files, since we need to have a list of all of them
395
   before we can determine the final sizes of the output sections.
396
   Note that we may actually call this function even though we are not
397
   going to output any dynamic symbols; in some cases we know that a
398
   symbol should be in the dynamic symbol table, but only if there is
399
   one.  */
400
 
401
bfd_boolean
402
bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403
                                    struct elf_link_hash_entry *h)
404
{
405
  if (h->dynindx == -1)
406
    {
407
      struct elf_strtab_hash *dynstr;
408
      char *p;
409
      const char *name;
410
      bfd_size_type indx;
411
 
412
      /* XXX: The ABI draft says the linker must turn hidden and
413
         internal symbols into STB_LOCAL symbols when producing the
414
         DSO. However, if ld.so honors st_other in the dynamic table,
415
         this would not be necessary.  */
416
      switch (ELF_ST_VISIBILITY (h->other))
417
        {
418
        case STV_INTERNAL:
419
        case STV_HIDDEN:
420
          if (h->root.type != bfd_link_hash_undefined
421
              && h->root.type != bfd_link_hash_undefweak)
422
            {
423
              h->forced_local = 1;
424
              if (!elf_hash_table (info)->is_relocatable_executable)
425
                return TRUE;
426
            }
427
 
428
        default:
429
          break;
430
        }
431
 
432
      h->dynindx = elf_hash_table (info)->dynsymcount;
433
      ++elf_hash_table (info)->dynsymcount;
434
 
435
      dynstr = elf_hash_table (info)->dynstr;
436
      if (dynstr == NULL)
437
        {
438
          /* Create a strtab to hold the dynamic symbol names.  */
439
          elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440
          if (dynstr == NULL)
441
            return FALSE;
442
        }
443
 
444
      /* We don't put any version information in the dynamic string
445
         table.  */
446
      name = h->root.root.string;
447
      p = strchr (name, ELF_VER_CHR);
448
      if (p != NULL)
449
        /* We know that the p points into writable memory.  In fact,
450
           there are only a few symbols that have read-only names, being
451
           those like _GLOBAL_OFFSET_TABLE_ that are created specially
452
           by the backends.  Most symbols will have names pointing into
453
           an ELF string table read from a file, or to objalloc memory.  */
454
        *p = 0;
455
 
456
      indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
 
458
      if (p != NULL)
459
        *p = ELF_VER_CHR;
460
 
461
      if (indx == (bfd_size_type) -1)
462
        return FALSE;
463
      h->dynstr_index = indx;
464
    }
465
 
466
  return TRUE;
467
}
468
 
469
/* Mark a symbol dynamic.  */
470
 
471
static void
472
bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473
                                  struct elf_link_hash_entry *h,
474
                                  Elf_Internal_Sym *sym)
475
{
476
  struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
 
478
  /* It may be called more than once on the same H.  */
479
  if(h->dynamic || info->relocatable)
480
    return;
481
 
482
  if ((info->dynamic_data
483
       && (h->type == STT_OBJECT
484
           || (sym != NULL
485
               && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486
      || (d != NULL
487
          && h->root.type == bfd_link_hash_new
488
          && (*d->match) (&d->head, NULL, h->root.root.string)))
489
    h->dynamic = 1;
490
}
491
 
492
/* Record an assignment to a symbol made by a linker script.  We need
493
   this in case some dynamic object refers to this symbol.  */
494
 
495
bfd_boolean
496
bfd_elf_record_link_assignment (bfd *output_bfd,
497
                                struct bfd_link_info *info,
498
                                const char *name,
499
                                bfd_boolean provide,
500
                                bfd_boolean hidden)
501
{
502
  struct elf_link_hash_entry *h, *hv;
503
  struct elf_link_hash_table *htab;
504
  const struct elf_backend_data *bed;
505
 
506
  if (!is_elf_hash_table (info->hash))
507
    return TRUE;
508
 
509
  htab = elf_hash_table (info);
510
  h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511
  if (h == NULL)
512
    return provide;
513
 
514
  switch (h->root.type)
515
    {
516
    case bfd_link_hash_defined:
517
    case bfd_link_hash_defweak:
518
    case bfd_link_hash_common:
519
      break;
520
    case bfd_link_hash_undefweak:
521
    case bfd_link_hash_undefined:
522
      /* Since we're defining the symbol, don't let it seem to have not
523
         been defined.  record_dynamic_symbol and size_dynamic_sections
524
         may depend on this.  */
525
      h->root.type = bfd_link_hash_new;
526
      if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527
        bfd_link_repair_undef_list (&htab->root);
528
      break;
529
    case bfd_link_hash_new:
530
      bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531
      h->non_elf = 0;
532
      break;
533
    case bfd_link_hash_indirect:
534
      /* We had a versioned symbol in a dynamic library.  We make the
535
         the versioned symbol point to this one.  */
536
      bed = get_elf_backend_data (output_bfd);
537
      hv = h;
538
      while (hv->root.type == bfd_link_hash_indirect
539
             || hv->root.type == bfd_link_hash_warning)
540
        hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541
      /* We don't need to update h->root.u since linker will set them
542
         later.  */
543
      h->root.type = bfd_link_hash_undefined;
544
      hv->root.type = bfd_link_hash_indirect;
545
      hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546
      (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547
      break;
548
    case bfd_link_hash_warning:
549
      abort ();
550
      break;
551
    }
552
 
553
  /* If this symbol is being provided by the linker script, and it is
554
     currently defined by a dynamic object, but not by a regular
555
     object, then mark it as undefined so that the generic linker will
556
     force the correct value.  */
557
  if (provide
558
      && h->def_dynamic
559
      && !h->def_regular)
560
    h->root.type = bfd_link_hash_undefined;
561
 
562
  /* If this symbol is not being provided by the linker script, and it is
563
     currently defined by a dynamic object, but not by a regular object,
564
     then clear out any version information because the symbol will not be
565
     associated with the dynamic object any more.  */
566
  if (!provide
567
      && h->def_dynamic
568
      && !h->def_regular)
569
    h->verinfo.verdef = NULL;
570
 
571
  h->def_regular = 1;
572
 
573
  if (provide && hidden)
574
    {
575
      bed = get_elf_backend_data (output_bfd);
576
      h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
577
      (*bed->elf_backend_hide_symbol) (info, h, TRUE);
578
    }
579
 
580
  /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581
     and executables.  */
582
  if (!info->relocatable
583
      && h->dynindx != -1
584
      && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
585
          || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
586
    h->forced_local = 1;
587
 
588
  if ((h->def_dynamic
589
       || h->ref_dynamic
590
       || info->shared
591
       || (info->executable && elf_hash_table (info)->is_relocatable_executable))
592
      && h->dynindx == -1)
593
    {
594
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
595
        return FALSE;
596
 
597
      /* If this is a weak defined symbol, and we know a corresponding
598
         real symbol from the same dynamic object, make sure the real
599
         symbol is also made into a dynamic symbol.  */
600
      if (h->u.weakdef != NULL
601
          && h->u.weakdef->dynindx == -1)
602
        {
603
          if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
604
            return FALSE;
605
        }
606
    }
607
 
608
  return TRUE;
609
}
610
 
611
/* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
612
   success, and 2 on a failure caused by attempting to record a symbol
613
   in a discarded section, eg. a discarded link-once section symbol.  */
614
 
615
int
616
bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
617
                                          bfd *input_bfd,
618
                                          long input_indx)
619
{
620
  bfd_size_type amt;
621
  struct elf_link_local_dynamic_entry *entry;
622
  struct elf_link_hash_table *eht;
623
  struct elf_strtab_hash *dynstr;
624
  unsigned long dynstr_index;
625
  char *name;
626
  Elf_External_Sym_Shndx eshndx;
627
  char esym[sizeof (Elf64_External_Sym)];
628
 
629
  if (! is_elf_hash_table (info->hash))
630
    return 0;
631
 
632
  /* See if the entry exists already.  */
633
  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
634
    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
635
      return 1;
636
 
637
  amt = sizeof (*entry);
638
  entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
639
  if (entry == NULL)
640
    return 0;
641
 
642
  /* Go find the symbol, so that we can find it's name.  */
643
  if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
644
                             1, input_indx, &entry->isym, esym, &eshndx))
645
    {
646
      bfd_release (input_bfd, entry);
647
      return 0;
648
    }
649
 
650
  if (entry->isym.st_shndx != SHN_UNDEF
651
      && entry->isym.st_shndx < SHN_LORESERVE)
652
    {
653
      asection *s;
654
 
655
      s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
656
      if (s == NULL || bfd_is_abs_section (s->output_section))
657
        {
658
          /* We can still bfd_release here as nothing has done another
659
             bfd_alloc.  We can't do this later in this function.  */
660
          bfd_release (input_bfd, entry);
661
          return 2;
662
        }
663
    }
664
 
665
  name = (bfd_elf_string_from_elf_section
666
          (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
667
           entry->isym.st_name));
668
 
669
  dynstr = elf_hash_table (info)->dynstr;
670
  if (dynstr == NULL)
671
    {
672
      /* Create a strtab to hold the dynamic symbol names.  */
673
      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
674
      if (dynstr == NULL)
675
        return 0;
676
    }
677
 
678
  dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
679
  if (dynstr_index == (unsigned long) -1)
680
    return 0;
681
  entry->isym.st_name = dynstr_index;
682
 
683
  eht = elf_hash_table (info);
684
 
685
  entry->next = eht->dynlocal;
686
  eht->dynlocal = entry;
687
  entry->input_bfd = input_bfd;
688
  entry->input_indx = input_indx;
689
  eht->dynsymcount++;
690
 
691
  /* Whatever binding the symbol had before, it's now local.  */
692
  entry->isym.st_info
693
    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694
 
695
  /* The dynindx will be set at the end of size_dynamic_sections.  */
696
 
697
  return 1;
698
}
699
 
700
/* Return the dynindex of a local dynamic symbol.  */
701
 
702
long
703
_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
704
                                    bfd *input_bfd,
705
                                    long input_indx)
706
{
707
  struct elf_link_local_dynamic_entry *e;
708
 
709
  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
710
    if (e->input_bfd == input_bfd && e->input_indx == input_indx)
711
      return e->dynindx;
712
  return -1;
713
}
714
 
715
/* This function is used to renumber the dynamic symbols, if some of
716
   them are removed because they are marked as local.  This is called
717
   via elf_link_hash_traverse.  */
718
 
719
static bfd_boolean
720
elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
721
                                      void *data)
722
{
723
  size_t *count = (size_t *) data;
724
 
725
  if (h->forced_local)
726
    return TRUE;
727
 
728
  if (h->dynindx != -1)
729
    h->dynindx = ++(*count);
730
 
731
  return TRUE;
732
}
733
 
734
 
735
/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736
   STB_LOCAL binding.  */
737
 
738
static bfd_boolean
739
elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740
                                            void *data)
741
{
742
  size_t *count = (size_t *) data;
743
 
744
  if (!h->forced_local)
745
    return TRUE;
746
 
747
  if (h->dynindx != -1)
748
    h->dynindx = ++(*count);
749
 
750
  return TRUE;
751
}
752
 
753
/* Return true if the dynamic symbol for a given section should be
754
   omitted when creating a shared library.  */
755
bfd_boolean
756
_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
757
                                   struct bfd_link_info *info,
758
                                   asection *p)
759
{
760
  struct elf_link_hash_table *htab;
761
 
762
  switch (elf_section_data (p)->this_hdr.sh_type)
763
    {
764
    case SHT_PROGBITS:
765
    case SHT_NOBITS:
766
      /* If sh_type is yet undecided, assume it could be
767
         SHT_PROGBITS/SHT_NOBITS.  */
768
    case SHT_NULL:
769
      htab = elf_hash_table (info);
770
      if (p == htab->tls_sec)
771
        return FALSE;
772
 
773
      if (htab->text_index_section != NULL)
774
        return p != htab->text_index_section && p != htab->data_index_section;
775
 
776
      if (strcmp (p->name, ".got") == 0
777
          || strcmp (p->name, ".got.plt") == 0
778
          || strcmp (p->name, ".plt") == 0)
779
        {
780
          asection *ip;
781
 
782
          if (htab->dynobj != NULL
783
              && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
784
              && (ip->flags & SEC_LINKER_CREATED)
785
              && ip->output_section == p)
786
            return TRUE;
787
        }
788
      return FALSE;
789
 
790
      /* There shouldn't be section relative relocations
791
         against any other section.  */
792
    default:
793
      return TRUE;
794
    }
795
}
796
 
797
/* Assign dynsym indices.  In a shared library we generate a section
798
   symbol for each output section, which come first.  Next come symbols
799
   which have been forced to local binding.  Then all of the back-end
800
   allocated local dynamic syms, followed by the rest of the global
801
   symbols.  */
802
 
803
static unsigned long
804
_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
805
                                struct bfd_link_info *info,
806
                                unsigned long *section_sym_count)
807
{
808
  unsigned long dynsymcount = 0;
809
 
810
  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811
    {
812
      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813
      asection *p;
814
      for (p = output_bfd->sections; p ; p = p->next)
815
        if ((p->flags & SEC_EXCLUDE) == 0
816
            && (p->flags & SEC_ALLOC) != 0
817
            && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
818
          elf_section_data (p)->dynindx = ++dynsymcount;
819
        else
820
          elf_section_data (p)->dynindx = 0;
821
    }
822
  *section_sym_count = dynsymcount;
823
 
824
  elf_link_hash_traverse (elf_hash_table (info),
825
                          elf_link_renumber_local_hash_table_dynsyms,
826
                          &dynsymcount);
827
 
828
  if (elf_hash_table (info)->dynlocal)
829
    {
830
      struct elf_link_local_dynamic_entry *p;
831
      for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
832
        p->dynindx = ++dynsymcount;
833
    }
834
 
835
  elf_link_hash_traverse (elf_hash_table (info),
836
                          elf_link_renumber_hash_table_dynsyms,
837
                          &dynsymcount);
838
 
839
  /* There is an unused NULL entry at the head of the table which
840
     we must account for in our count.  Unless there weren't any
841
     symbols, which means we'll have no table at all.  */
842
  if (dynsymcount != 0)
843
    ++dynsymcount;
844
 
845
  elf_hash_table (info)->dynsymcount = dynsymcount;
846
  return dynsymcount;
847
}
848
 
849
/* Merge st_other field.  */
850
 
851
static void
852
elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
853
                    Elf_Internal_Sym *isym, bfd_boolean definition,
854
                    bfd_boolean dynamic)
855
{
856
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857
 
858
  /* If st_other has a processor-specific meaning, specific
859
     code might be needed here. We never merge the visibility
860
     attribute with the one from a dynamic object.  */
861
  if (bed->elf_backend_merge_symbol_attribute)
862
    (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863
                                                dynamic);
864
 
865
  /* If this symbol has default visibility and the user has requested
866
     we not re-export it, then mark it as hidden.  */
867
  if (definition
868
      && !dynamic
869
      && (abfd->no_export
870
          || (abfd->my_archive && abfd->my_archive->no_export))
871
      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
872
    isym->st_other = (STV_HIDDEN
873
                      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874
 
875
  if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876
    {
877
      unsigned char hvis, symvis, other, nvis;
878
 
879
      /* Only merge the visibility. Leave the remainder of the
880
         st_other field to elf_backend_merge_symbol_attribute.  */
881
      other = h->other & ~ELF_ST_VISIBILITY (-1);
882
 
883
      /* Combine visibilities, using the most constraining one.  */
884
      hvis = ELF_ST_VISIBILITY (h->other);
885
      symvis = ELF_ST_VISIBILITY (isym->st_other);
886
      if (! hvis)
887
        nvis = symvis;
888
      else if (! symvis)
889
        nvis = hvis;
890
      else
891
        nvis = hvis < symvis ? hvis : symvis;
892
 
893
      h->other = other | nvis;
894
    }
895
}
896
 
897
/* This function is called when we want to define a new symbol.  It
898
   handles the various cases which arise when we find a definition in
899
   a dynamic object, or when there is already a definition in a
900
   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
901
   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
902
   OVERRIDE if the old symbol is overriding a new definition.  We set
903
   TYPE_CHANGE_OK if it is OK for the type to change.  We set
904
   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
905
   change, we mean that we shouldn't warn if the type or size does
906
   change.  We set POLD_ALIGNMENT if an old common symbol in a dynamic
907
   object is overridden by a regular object.  */
908
 
909
bfd_boolean
910
_bfd_elf_merge_symbol (bfd *abfd,
911
                       struct bfd_link_info *info,
912
                       const char *name,
913
                       Elf_Internal_Sym *sym,
914
                       asection **psec,
915
                       bfd_vma *pvalue,
916
                       unsigned int *pold_alignment,
917
                       struct elf_link_hash_entry **sym_hash,
918
                       bfd_boolean *skip,
919
                       bfd_boolean *override,
920
                       bfd_boolean *type_change_ok,
921
                       bfd_boolean *size_change_ok)
922
{
923
  asection *sec, *oldsec;
924
  struct elf_link_hash_entry *h;
925
  struct elf_link_hash_entry *flip;
926
  int bind;
927
  bfd *oldbfd;
928
  bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
929
  bfd_boolean newweak, oldweak, newfunc, oldfunc;
930
  const struct elf_backend_data *bed;
931
 
932
  *skip = FALSE;
933
  *override = FALSE;
934
 
935
  sec = *psec;
936
  bind = ELF_ST_BIND (sym->st_info);
937
 
938
  /* Silently discard TLS symbols from --just-syms.  There's no way to
939
     combine a static TLS block with a new TLS block for this executable.  */
940
  if (ELF_ST_TYPE (sym->st_info) == STT_TLS
941
      && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
942
    {
943
      *skip = TRUE;
944
      return TRUE;
945
    }
946
 
947
  if (! bfd_is_und_section (sec))
948
    h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
949
  else
950
    h = ((struct elf_link_hash_entry *)
951
         bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
952
  if (h == NULL)
953
    return FALSE;
954
  *sym_hash = h;
955
 
956
  bed = get_elf_backend_data (abfd);
957
 
958
  /* This code is for coping with dynamic objects, and is only useful
959
     if we are doing an ELF link.  */
960
  if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
961
    return TRUE;
962
 
963
  /* For merging, we only care about real symbols.  */
964
 
965
  while (h->root.type == bfd_link_hash_indirect
966
         || h->root.type == bfd_link_hash_warning)
967
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
968
 
969
  /* We have to check it for every instance since the first few may be
970
     refereences and not all compilers emit symbol type for undefined
971
     symbols.  */
972
  bfd_elf_link_mark_dynamic_symbol (info, h, sym);
973
 
974
  /* If we just created the symbol, mark it as being an ELF symbol.
975
     Other than that, there is nothing to do--there is no merge issue
976
     with a newly defined symbol--so we just return.  */
977
 
978
  if (h->root.type == bfd_link_hash_new)
979
    {
980
      h->non_elf = 0;
981
      return TRUE;
982
    }
983
 
984
  /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
985
     existing symbol.  */
986
 
987
  switch (h->root.type)
988
    {
989
    default:
990
      oldbfd = NULL;
991
      oldsec = NULL;
992
      break;
993
 
994
    case bfd_link_hash_undefined:
995
    case bfd_link_hash_undefweak:
996
      oldbfd = h->root.u.undef.abfd;
997
      oldsec = NULL;
998
      break;
999
 
1000
    case bfd_link_hash_defined:
1001
    case bfd_link_hash_defweak:
1002
      oldbfd = h->root.u.def.section->owner;
1003
      oldsec = h->root.u.def.section;
1004
      break;
1005
 
1006
    case bfd_link_hash_common:
1007
      oldbfd = h->root.u.c.p->section->owner;
1008
      oldsec = h->root.u.c.p->section;
1009
      break;
1010
    }
1011
 
1012
  /* Differentiate strong and weak symbols.  */
1013
  newweak = bind == STB_WEAK;
1014
  oldweak = (h->root.type == bfd_link_hash_defweak
1015
             || h->root.type == bfd_link_hash_undefweak);
1016
 
1017
  /* In cases involving weak versioned symbols, we may wind up trying
1018
     to merge a symbol with itself.  Catch that here, to avoid the
1019
     confusion that results if we try to override a symbol with
1020
     itself.  The additional tests catch cases like
1021
     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022
     dynamic object, which we do want to handle here.  */
1023
  if (abfd == oldbfd
1024
      && (newweak || oldweak)
1025
      && ((abfd->flags & DYNAMIC) == 0
1026
          || !h->def_regular))
1027
    return TRUE;
1028
 
1029
  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1030
     respectively, is from a dynamic object.  */
1031
 
1032
  newdyn = (abfd->flags & DYNAMIC) != 0;
1033
 
1034
  olddyn = FALSE;
1035
  if (oldbfd != NULL)
1036
    olddyn = (oldbfd->flags & DYNAMIC) != 0;
1037
  else if (oldsec != NULL)
1038
    {
1039
      /* This handles the special SHN_MIPS_{TEXT,DATA} section
1040
         indices used by MIPS ELF.  */
1041
      olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1042
    }
1043
 
1044
  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1045
     respectively, appear to be a definition rather than reference.  */
1046
 
1047
  newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048
 
1049
  olddef = (h->root.type != bfd_link_hash_undefined
1050
            && h->root.type != bfd_link_hash_undefweak
1051
            && h->root.type != bfd_link_hash_common);
1052
 
1053
  /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1054
     respectively, appear to be a function.  */
1055
 
1056
  newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1057
             && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058
 
1059
  oldfunc = (h->type != STT_NOTYPE
1060
             && bed->is_function_type (h->type));
1061
 
1062
  /* When we try to create a default indirect symbol from the dynamic
1063
     definition with the default version, we skip it if its type and
1064
     the type of existing regular definition mismatch.  We only do it
1065
     if the existing regular definition won't be dynamic.  */
1066
  if (pold_alignment == NULL
1067
      && !info->shared
1068
      && !info->export_dynamic
1069
      && !h->ref_dynamic
1070
      && newdyn
1071
      && newdef
1072
      && !olddyn
1073
      && (olddef || h->root.type == bfd_link_hash_common)
1074
      && ELF_ST_TYPE (sym->st_info) != h->type
1075
      && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1076
      && h->type != STT_NOTYPE
1077
      && !(newfunc && oldfunc))
1078
    {
1079
      *skip = TRUE;
1080
      return TRUE;
1081
    }
1082
 
1083 161 khays
  /* Plugin symbol type isn't currently set.  Stop bogus errors.  */
1084
  if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1085
    *type_change_ok = TRUE;
1086
 
1087 14 khays
  /* Check TLS symbol.  We don't check undefined symbol introduced by
1088
     "ld -u".  */
1089 161 khays
  else if (oldbfd != NULL
1090
           && ELF_ST_TYPE (sym->st_info) != h->type
1091
           && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 14 khays
    {
1093
      bfd *ntbfd, *tbfd;
1094
      bfd_boolean ntdef, tdef;
1095
      asection *ntsec, *tsec;
1096
 
1097
      if (h->type == STT_TLS)
1098
        {
1099
          ntbfd = abfd;
1100
          ntsec = sec;
1101
          ntdef = newdef;
1102
          tbfd = oldbfd;
1103
          tsec = oldsec;
1104
          tdef = olddef;
1105
        }
1106
      else
1107
        {
1108
          ntbfd = oldbfd;
1109
          ntsec = oldsec;
1110
          ntdef = olddef;
1111
          tbfd = abfd;
1112
          tsec = sec;
1113
          tdef = newdef;
1114
        }
1115
 
1116
      if (tdef && ntdef)
1117
        (*_bfd_error_handler)
1118
          (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119
           tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120
      else if (!tdef && !ntdef)
1121
        (*_bfd_error_handler)
1122
          (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123
           tbfd, ntbfd, h->root.root.string);
1124
      else if (tdef)
1125
        (*_bfd_error_handler)
1126
          (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127
           tbfd, tsec, ntbfd, h->root.root.string);
1128
      else
1129
        (*_bfd_error_handler)
1130
          (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131
           tbfd, ntbfd, ntsec, h->root.root.string);
1132
 
1133
      bfd_set_error (bfd_error_bad_value);
1134
      return FALSE;
1135
    }
1136
 
1137
  /* We need to remember if a symbol has a definition in a dynamic
1138
     object or is weak in all dynamic objects. Internal and hidden
1139
     visibility will make it unavailable to dynamic objects.  */
1140
  if (newdyn && !h->dynamic_def)
1141
    {
1142
      if (!bfd_is_und_section (sec))
1143
        h->dynamic_def = 1;
1144
      else
1145
        {
1146
          /* Check if this symbol is weak in all dynamic objects. If it
1147
             is the first time we see it in a dynamic object, we mark
1148
             if it is weak. Otherwise, we clear it.  */
1149
          if (!h->ref_dynamic)
1150
            {
1151
              if (bind == STB_WEAK)
1152
                h->dynamic_weak = 1;
1153
            }
1154
          else if (bind != STB_WEAK)
1155
            h->dynamic_weak = 0;
1156
        }
1157
    }
1158
 
1159
  /* If the old symbol has non-default visibility, we ignore the new
1160
     definition from a dynamic object.  */
1161
  if (newdyn
1162
      && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1163
      && !bfd_is_und_section (sec))
1164
    {
1165
      *skip = TRUE;
1166
      /* Make sure this symbol is dynamic.  */
1167
      h->ref_dynamic = 1;
1168
      /* A protected symbol has external availability. Make sure it is
1169
         recorded as dynamic.
1170
 
1171
         FIXME: Should we check type and size for protected symbol?  */
1172
      if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1173
        return bfd_elf_link_record_dynamic_symbol (info, h);
1174
      else
1175
        return TRUE;
1176
    }
1177
  else if (!newdyn
1178
           && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1179
           && h->def_dynamic)
1180
    {
1181
      /* If the new symbol with non-default visibility comes from a
1182
         relocatable file and the old definition comes from a dynamic
1183
         object, we remove the old definition.  */
1184
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185
        {
1186
          /* Handle the case where the old dynamic definition is
1187
             default versioned.  We need to copy the symbol info from
1188
             the symbol with default version to the normal one if it
1189
             was referenced before.  */
1190
          if (h->ref_regular)
1191
            {
1192
              struct elf_link_hash_entry *vh = *sym_hash;
1193
 
1194
              vh->root.type = h->root.type;
1195
              h->root.type = bfd_link_hash_indirect;
1196
              (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197
              /* Protected symbols will override the dynamic definition
1198
                 with default version.  */
1199
              if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200
                {
1201
                  h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202
                  vh->dynamic_def = 1;
1203
                  vh->ref_dynamic = 1;
1204
                }
1205
              else
1206
                {
1207
                  h->root.type = vh->root.type;
1208
                  vh->ref_dynamic = 0;
1209
                  /* We have to hide it here since it was made dynamic
1210
                     global with extra bits when the symbol info was
1211
                     copied from the old dynamic definition.  */
1212
                  (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213
                }
1214
              h = vh;
1215
            }
1216
          else
1217
            h = *sym_hash;
1218
        }
1219
 
1220
      if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1221
          && bfd_is_und_section (sec))
1222
        {
1223
          /* If the new symbol is undefined and the old symbol was
1224
             also undefined before, we need to make sure
1225
             _bfd_generic_link_add_one_symbol doesn't mess
1226
             up the linker hash table undefs list.  Since the old
1227
             definition came from a dynamic object, it is still on the
1228
             undefs list.  */
1229
          h->root.type = bfd_link_hash_undefined;
1230
          h->root.u.undef.abfd = abfd;
1231
        }
1232
      else
1233
        {
1234
          h->root.type = bfd_link_hash_new;
1235
          h->root.u.undef.abfd = NULL;
1236
        }
1237
 
1238
      if (h->def_dynamic)
1239
        {
1240
          h->def_dynamic = 0;
1241
          h->ref_dynamic = 1;
1242
          h->dynamic_def = 1;
1243
        }
1244
      /* FIXME: Should we check type and size for protected symbol?  */
1245
      h->size = 0;
1246
      h->type = 0;
1247
      return TRUE;
1248
    }
1249
 
1250
  if (bind == STB_GNU_UNIQUE)
1251
    h->unique_global = 1;
1252
 
1253
  /* If a new weak symbol definition comes from a regular file and the
1254
     old symbol comes from a dynamic library, we treat the new one as
1255
     strong.  Similarly, an old weak symbol definition from a regular
1256
     file is treated as strong when the new symbol comes from a dynamic
1257
     library.  Further, an old weak symbol from a dynamic library is
1258
     treated as strong if the new symbol is from a dynamic library.
1259
     This reflects the way glibc's ld.so works.
1260
 
1261
     Do this before setting *type_change_ok or *size_change_ok so that
1262
     we warn properly when dynamic library symbols are overridden.  */
1263
 
1264
  if (newdef && !newdyn && olddyn)
1265
    newweak = FALSE;
1266
  if (olddef && newdyn)
1267
    oldweak = FALSE;
1268
 
1269
  /* Allow changes between different types of function symbol.  */
1270
  if (newfunc && oldfunc)
1271
    *type_change_ok = TRUE;
1272
 
1273
  /* It's OK to change the type if either the existing symbol or the
1274
     new symbol is weak.  A type change is also OK if the old symbol
1275
     is undefined and the new symbol is defined.  */
1276
 
1277
  if (oldweak
1278
      || newweak
1279
      || (newdef
1280
          && h->root.type == bfd_link_hash_undefined))
1281
    *type_change_ok = TRUE;
1282
 
1283
  /* It's OK to change the size if either the existing symbol or the
1284
     new symbol is weak, or if the old symbol is undefined.  */
1285
 
1286
  if (*type_change_ok
1287
      || h->root.type == bfd_link_hash_undefined)
1288
    *size_change_ok = TRUE;
1289
 
1290
  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291
     symbol, respectively, appears to be a common symbol in a dynamic
1292
     object.  If a symbol appears in an uninitialized section, and is
1293
     not weak, and is not a function, then it may be a common symbol
1294
     which was resolved when the dynamic object was created.  We want
1295
     to treat such symbols specially, because they raise special
1296
     considerations when setting the symbol size: if the symbol
1297
     appears as a common symbol in a regular object, and the size in
1298
     the regular object is larger, we must make sure that we use the
1299
     larger size.  This problematic case can always be avoided in C,
1300
     but it must be handled correctly when using Fortran shared
1301
     libraries.
1302
 
1303
     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304
     likewise for OLDDYNCOMMON and OLDDEF.
1305
 
1306
     Note that this test is just a heuristic, and that it is quite
1307
     possible to have an uninitialized symbol in a shared object which
1308
     is really a definition, rather than a common symbol.  This could
1309
     lead to some minor confusion when the symbol really is a common
1310
     symbol in some regular object.  However, I think it will be
1311
     harmless.  */
1312
 
1313
  if (newdyn
1314
      && newdef
1315
      && !newweak
1316
      && (sec->flags & SEC_ALLOC) != 0
1317
      && (sec->flags & SEC_LOAD) == 0
1318
      && sym->st_size > 0
1319
      && !newfunc)
1320
    newdyncommon = TRUE;
1321
  else
1322
    newdyncommon = FALSE;
1323
 
1324
  if (olddyn
1325
      && olddef
1326
      && h->root.type == bfd_link_hash_defined
1327
      && h->def_dynamic
1328
      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329
      && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330
      && h->size > 0
1331
      && !oldfunc)
1332
    olddyncommon = TRUE;
1333
  else
1334
    olddyncommon = FALSE;
1335
 
1336
  /* We now know everything about the old and new symbols.  We ask the
1337
     backend to check if we can merge them.  */
1338
  if (bed->merge_symbol
1339
      && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340
                             pold_alignment, skip, override,
1341
                             type_change_ok, size_change_ok,
1342
                             &newdyn, &newdef, &newdyncommon, &newweak,
1343
                             abfd, &sec,
1344
                             &olddyn, &olddef, &olddyncommon, &oldweak,
1345
                             oldbfd, &oldsec))
1346
    return FALSE;
1347
 
1348
  /* If both the old and the new symbols look like common symbols in a
1349
     dynamic object, set the size of the symbol to the larger of the
1350
     two.  */
1351
 
1352
  if (olddyncommon
1353
      && newdyncommon
1354
      && sym->st_size != h->size)
1355
    {
1356
      /* Since we think we have two common symbols, issue a multiple
1357
         common warning if desired.  Note that we only warn if the
1358
         size is different.  If the size is the same, we simply let
1359
         the old symbol override the new one as normally happens with
1360
         symbols defined in dynamic objects.  */
1361
 
1362
      if (! ((*info->callbacks->multiple_common)
1363
             (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1364
        return FALSE;
1365
 
1366
      if (sym->st_size > h->size)
1367
        h->size = sym->st_size;
1368
 
1369
      *size_change_ok = TRUE;
1370
    }
1371
 
1372
  /* If we are looking at a dynamic object, and we have found a
1373
     definition, we need to see if the symbol was already defined by
1374
     some other object.  If so, we want to use the existing
1375
     definition, and we do not want to report a multiple symbol
1376
     definition error; we do this by clobbering *PSEC to be
1377
     bfd_und_section_ptr.
1378
 
1379
     We treat a common symbol as a definition if the symbol in the
1380
     shared library is a function, since common symbols always
1381
     represent variables; this can cause confusion in principle, but
1382
     any such confusion would seem to indicate an erroneous program or
1383
     shared library.  We also permit a common symbol in a regular
1384
     object to override a weak symbol in a shared object.  */
1385
 
1386
  if (newdyn
1387
      && newdef
1388
      && (olddef
1389
          || (h->root.type == bfd_link_hash_common
1390
              && (newweak || newfunc))))
1391
    {
1392
      *override = TRUE;
1393
      newdef = FALSE;
1394
      newdyncommon = FALSE;
1395
 
1396
      *psec = sec = bfd_und_section_ptr;
1397
      *size_change_ok = TRUE;
1398
 
1399
      /* If we get here when the old symbol is a common symbol, then
1400
         we are explicitly letting it override a weak symbol or
1401
         function in a dynamic object, and we don't want to warn about
1402
         a type change.  If the old symbol is a defined symbol, a type
1403
         change warning may still be appropriate.  */
1404
 
1405
      if (h->root.type == bfd_link_hash_common)
1406
        *type_change_ok = TRUE;
1407
    }
1408
 
1409
  /* Handle the special case of an old common symbol merging with a
1410
     new symbol which looks like a common symbol in a shared object.
1411
     We change *PSEC and *PVALUE to make the new symbol look like a
1412
     common symbol, and let _bfd_generic_link_add_one_symbol do the
1413
     right thing.  */
1414
 
1415
  if (newdyncommon
1416
      && h->root.type == bfd_link_hash_common)
1417
    {
1418
      *override = TRUE;
1419
      newdef = FALSE;
1420
      newdyncommon = FALSE;
1421
      *pvalue = sym->st_size;
1422
      *psec = sec = bed->common_section (oldsec);
1423
      *size_change_ok = TRUE;
1424
    }
1425
 
1426
  /* Skip weak definitions of symbols that are already defined.  */
1427
  if (newdef && olddef && newweak)
1428
    {
1429
      /* Don't skip new non-IR weak syms.  */
1430 161 khays
      if (!(oldbfd != NULL
1431
            && (oldbfd->flags & BFD_PLUGIN) != 0
1432 14 khays
            && (abfd->flags & BFD_PLUGIN) == 0))
1433
        *skip = TRUE;
1434
 
1435
      /* Merge st_other.  If the symbol already has a dynamic index,
1436
         but visibility says it should not be visible, turn it into a
1437
         local symbol.  */
1438
      elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1439
      if (h->dynindx != -1)
1440
        switch (ELF_ST_VISIBILITY (h->other))
1441
          {
1442
          case STV_INTERNAL:
1443
          case STV_HIDDEN:
1444
            (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1445
            break;
1446
          }
1447
    }
1448
 
1449
  /* If the old symbol is from a dynamic object, and the new symbol is
1450
     a definition which is not from a dynamic object, then the new
1451
     symbol overrides the old symbol.  Symbols from regular files
1452
     always take precedence over symbols from dynamic objects, even if
1453
     they are defined after the dynamic object in the link.
1454
 
1455
     As above, we again permit a common symbol in a regular object to
1456
     override a definition in a shared object if the shared object
1457
     symbol is a function or is weak.  */
1458
 
1459
  flip = NULL;
1460
  if (!newdyn
1461
      && (newdef
1462
          || (bfd_is_com_section (sec)
1463
              && (oldweak || oldfunc)))
1464
      && olddyn
1465
      && olddef
1466
      && h->def_dynamic)
1467
    {
1468
      /* Change the hash table entry to undefined, and let
1469
         _bfd_generic_link_add_one_symbol do the right thing with the
1470
         new definition.  */
1471
 
1472
      h->root.type = bfd_link_hash_undefined;
1473
      h->root.u.undef.abfd = h->root.u.def.section->owner;
1474
      *size_change_ok = TRUE;
1475
 
1476
      olddef = FALSE;
1477
      olddyncommon = FALSE;
1478
 
1479
      /* We again permit a type change when a common symbol may be
1480
         overriding a function.  */
1481
 
1482
      if (bfd_is_com_section (sec))
1483
        {
1484
          if (oldfunc)
1485
            {
1486
              /* If a common symbol overrides a function, make sure
1487
                 that it isn't defined dynamically nor has type
1488
                 function.  */
1489
              h->def_dynamic = 0;
1490
              h->type = STT_NOTYPE;
1491
            }
1492
          *type_change_ok = TRUE;
1493
        }
1494
 
1495
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1496
        flip = *sym_hash;
1497
      else
1498
        /* This union may have been set to be non-NULL when this symbol
1499
           was seen in a dynamic object.  We must force the union to be
1500
           NULL, so that it is correct for a regular symbol.  */
1501
        h->verinfo.vertree = NULL;
1502
    }
1503
 
1504
  /* Handle the special case of a new common symbol merging with an
1505
     old symbol that looks like it might be a common symbol defined in
1506
     a shared object.  Note that we have already handled the case in
1507
     which a new common symbol should simply override the definition
1508
     in the shared library.  */
1509
 
1510
  if (! newdyn
1511
      && bfd_is_com_section (sec)
1512
      && olddyncommon)
1513
    {
1514
      /* It would be best if we could set the hash table entry to a
1515
         common symbol, but we don't know what to use for the section
1516
         or the alignment.  */
1517
      if (! ((*info->callbacks->multiple_common)
1518
             (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1519
        return FALSE;
1520
 
1521
      /* If the presumed common symbol in the dynamic object is
1522
         larger, pretend that the new symbol has its size.  */
1523
 
1524
      if (h->size > *pvalue)
1525
        *pvalue = h->size;
1526
 
1527
      /* We need to remember the alignment required by the symbol
1528
         in the dynamic object.  */
1529
      BFD_ASSERT (pold_alignment);
1530
      *pold_alignment = h->root.u.def.section->alignment_power;
1531
 
1532
      olddef = FALSE;
1533
      olddyncommon = FALSE;
1534
 
1535
      h->root.type = bfd_link_hash_undefined;
1536
      h->root.u.undef.abfd = h->root.u.def.section->owner;
1537
 
1538
      *size_change_ok = TRUE;
1539
      *type_change_ok = TRUE;
1540
 
1541
      if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1542
        flip = *sym_hash;
1543
      else
1544
        h->verinfo.vertree = NULL;
1545
    }
1546
 
1547
  if (flip != NULL)
1548
    {
1549
      /* Handle the case where we had a versioned symbol in a dynamic
1550
         library and now find a definition in a normal object.  In this
1551
         case, we make the versioned symbol point to the normal one.  */
1552
      flip->root.type = h->root.type;
1553
      flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554
      h->root.type = bfd_link_hash_indirect;
1555
      h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556
      (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557
      if (h->def_dynamic)
1558
        {
1559
          h->def_dynamic = 0;
1560
          flip->ref_dynamic = 1;
1561
        }
1562
    }
1563
 
1564
  return TRUE;
1565
}
1566
 
1567
/* This function is called to create an indirect symbol from the
1568
   default for the symbol with the default version if needed. The
1569
   symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE.  We
1570
   set DYNSYM if the new indirect symbol is dynamic.  */
1571
 
1572
static bfd_boolean
1573
_bfd_elf_add_default_symbol (bfd *abfd,
1574
                             struct bfd_link_info *info,
1575
                             struct elf_link_hash_entry *h,
1576
                             const char *name,
1577
                             Elf_Internal_Sym *sym,
1578
                             asection **psec,
1579
                             bfd_vma *value,
1580
                             bfd_boolean *dynsym,
1581
                             bfd_boolean override)
1582
{
1583
  bfd_boolean type_change_ok;
1584
  bfd_boolean size_change_ok;
1585
  bfd_boolean skip;
1586
  char *shortname;
1587
  struct elf_link_hash_entry *hi;
1588
  struct bfd_link_hash_entry *bh;
1589
  const struct elf_backend_data *bed;
1590
  bfd_boolean collect;
1591
  bfd_boolean dynamic;
1592
  char *p;
1593
  size_t len, shortlen;
1594
  asection *sec;
1595
 
1596
  /* If this symbol has a version, and it is the default version, we
1597
     create an indirect symbol from the default name to the fully
1598
     decorated name.  This will cause external references which do not
1599
     specify a version to be bound to this version of the symbol.  */
1600
  p = strchr (name, ELF_VER_CHR);
1601
  if (p == NULL || p[1] != ELF_VER_CHR)
1602
    return TRUE;
1603
 
1604
  if (override)
1605
    {
1606
      /* We are overridden by an old definition. We need to check if we
1607
         need to create the indirect symbol from the default name.  */
1608
      hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609
                                 FALSE, FALSE);
1610
      BFD_ASSERT (hi != NULL);
1611
      if (hi == h)
1612
        return TRUE;
1613
      while (hi->root.type == bfd_link_hash_indirect
1614
             || hi->root.type == bfd_link_hash_warning)
1615
        {
1616
          hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617
          if (hi == h)
1618
            return TRUE;
1619
        }
1620
    }
1621
 
1622
  bed = get_elf_backend_data (abfd);
1623
  collect = bed->collect;
1624
  dynamic = (abfd->flags & DYNAMIC) != 0;
1625
 
1626
  shortlen = p - name;
1627
  shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628
  if (shortname == NULL)
1629
    return FALSE;
1630
  memcpy (shortname, name, shortlen);
1631
  shortname[shortlen] = '\0';
1632
 
1633
  /* We are going to create a new symbol.  Merge it with any existing
1634
     symbol with this name.  For the purposes of the merge, act as
1635
     though we were defining the symbol we just defined, although we
1636
     actually going to define an indirect symbol.  */
1637
  type_change_ok = FALSE;
1638
  size_change_ok = FALSE;
1639
  sec = *psec;
1640
  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641
                              NULL, &hi, &skip, &override,
1642
                              &type_change_ok, &size_change_ok))
1643
    return FALSE;
1644
 
1645
  if (skip)
1646
    goto nondefault;
1647
 
1648
  if (! override)
1649
    {
1650
      bh = &hi->root;
1651
      if (! (_bfd_generic_link_add_one_symbol
1652
             (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653
              0, name, FALSE, collect, &bh)))
1654
        return FALSE;
1655
      hi = (struct elf_link_hash_entry *) bh;
1656
    }
1657
  else
1658
    {
1659
      /* In this case the symbol named SHORTNAME is overriding the
1660
         indirect symbol we want to add.  We were planning on making
1661
         SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1662
         is the name without a version.  NAME is the fully versioned
1663
         name, and it is the default version.
1664
 
1665
         Overriding means that we already saw a definition for the
1666
         symbol SHORTNAME in a regular object, and it is overriding
1667
         the symbol defined in the dynamic object.
1668
 
1669
         When this happens, we actually want to change NAME, the
1670
         symbol we just added, to refer to SHORTNAME.  This will cause
1671
         references to NAME in the shared object to become references
1672
         to SHORTNAME in the regular object.  This is what we expect
1673
         when we override a function in a shared object: that the
1674
         references in the shared object will be mapped to the
1675
         definition in the regular object.  */
1676
 
1677
      while (hi->root.type == bfd_link_hash_indirect
1678
             || hi->root.type == bfd_link_hash_warning)
1679
        hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
 
1681
      h->root.type = bfd_link_hash_indirect;
1682
      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683
      if (h->def_dynamic)
1684
        {
1685
          h->def_dynamic = 0;
1686
          hi->ref_dynamic = 1;
1687
          if (hi->ref_regular
1688
              || hi->def_regular)
1689
            {
1690
              if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691
                return FALSE;
1692
            }
1693
        }
1694
 
1695
      /* Now set HI to H, so that the following code will set the
1696
         other fields correctly.  */
1697
      hi = h;
1698
    }
1699
 
1700
  /* Check if HI is a warning symbol.  */
1701
  if (hi->root.type == bfd_link_hash_warning)
1702
    hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
 
1704
  /* If there is a duplicate definition somewhere, then HI may not
1705
     point to an indirect symbol.  We will have reported an error to
1706
     the user in that case.  */
1707
 
1708
  if (hi->root.type == bfd_link_hash_indirect)
1709
    {
1710
      struct elf_link_hash_entry *ht;
1711
 
1712
      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713
      (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
 
1715
      /* See if the new flags lead us to realize that the symbol must
1716
         be dynamic.  */
1717
      if (! *dynsym)
1718
        {
1719
          if (! dynamic)
1720
            {
1721
              if (! info->executable
1722
                  || hi->ref_dynamic)
1723
                *dynsym = TRUE;
1724
            }
1725
          else
1726
            {
1727
              if (hi->ref_regular)
1728
                *dynsym = TRUE;
1729
            }
1730
        }
1731
    }
1732
 
1733
  /* We also need to define an indirection from the nondefault version
1734
     of the symbol.  */
1735
 
1736
nondefault:
1737
  len = strlen (name);
1738
  shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739
  if (shortname == NULL)
1740
    return FALSE;
1741
  memcpy (shortname, name, shortlen);
1742
  memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
 
1744
  /* Once again, merge with any existing symbol.  */
1745
  type_change_ok = FALSE;
1746
  size_change_ok = FALSE;
1747
  sec = *psec;
1748
  if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749
                              NULL, &hi, &skip, &override,
1750
                              &type_change_ok, &size_change_ok))
1751
    return FALSE;
1752
 
1753
  if (skip)
1754
    return TRUE;
1755
 
1756
  if (override)
1757
    {
1758
      /* Here SHORTNAME is a versioned name, so we don't expect to see
1759
         the type of override we do in the case above unless it is
1760
         overridden by a versioned definition.  */
1761
      if (hi->root.type != bfd_link_hash_defined
1762
          && hi->root.type != bfd_link_hash_defweak)
1763
        (*_bfd_error_handler)
1764
          (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765
           abfd, shortname);
1766
    }
1767
  else
1768
    {
1769
      bh = &hi->root;
1770
      if (! (_bfd_generic_link_add_one_symbol
1771
             (info, abfd, shortname, BSF_INDIRECT,
1772
              bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773
        return FALSE;
1774
      hi = (struct elf_link_hash_entry *) bh;
1775
 
1776
      /* If there is a duplicate definition somewhere, then HI may not
1777
         point to an indirect symbol.  We will have reported an error
1778
         to the user in that case.  */
1779
 
1780
      if (hi->root.type == bfd_link_hash_indirect)
1781
        {
1782
          (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
 
1784
          /* See if the new flags lead us to realize that the symbol
1785
             must be dynamic.  */
1786
          if (! *dynsym)
1787
            {
1788
              if (! dynamic)
1789
                {
1790
                  if (! info->executable
1791
                      || hi->ref_dynamic)
1792
                    *dynsym = TRUE;
1793
                }
1794
              else
1795
                {
1796
                  if (hi->ref_regular)
1797
                    *dynsym = TRUE;
1798
                }
1799
            }
1800
        }
1801
    }
1802
 
1803
  return TRUE;
1804
}
1805
 
1806
/* This routine is used to export all defined symbols into the dynamic
1807
   symbol table.  It is called via elf_link_hash_traverse.  */
1808
 
1809
static bfd_boolean
1810
_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811
{
1812
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
 
1814
  /* Ignore indirect symbols.  These are added by the versioning code.  */
1815
  if (h->root.type == bfd_link_hash_indirect)
1816
    return TRUE;
1817
 
1818 148 khays
  /* Ignore this if we won't export it.  */
1819
  if (!eif->info->export_dynamic && !h->dynamic)
1820
    return TRUE;
1821 14 khays
 
1822
  if (h->dynindx == -1
1823
      && (h->def_regular
1824
          || h->ref_regular))
1825
    {
1826
      bfd_boolean hide;
1827
 
1828
      if (eif->verdefs == NULL
1829
          || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830
              && !hide))
1831
        {
1832
          if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833
            {
1834
              eif->failed = TRUE;
1835
              return FALSE;
1836
            }
1837
        }
1838
    }
1839
 
1840
  return TRUE;
1841
}
1842
 
1843
/* Look through the symbols which are defined in other shared
1844
   libraries and referenced here.  Update the list of version
1845
   dependencies.  This will be put into the .gnu.version_r section.
1846
   This function is called via elf_link_hash_traverse.  */
1847
 
1848
static bfd_boolean
1849
_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850
                                         void *data)
1851
{
1852
  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853
  Elf_Internal_Verneed *t;
1854
  Elf_Internal_Vernaux *a;
1855
  bfd_size_type amt;
1856
 
1857
  /* We only care about symbols defined in shared objects with version
1858
     information.  */
1859
  if (!h->def_dynamic
1860
      || h->def_regular
1861
      || h->dynindx == -1
1862
      || h->verinfo.verdef == NULL)
1863
    return TRUE;
1864
 
1865
  /* See if we already know about this version.  */
1866
  for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1867
       t != NULL;
1868
       t = t->vn_nextref)
1869
    {
1870
      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1871
        continue;
1872
 
1873
      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1874
        if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1875
          return TRUE;
1876
 
1877
      break;
1878
    }
1879
 
1880
  /* This is a new version.  Add it to tree we are building.  */
1881
 
1882
  if (t == NULL)
1883
    {
1884
      amt = sizeof *t;
1885
      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1886
      if (t == NULL)
1887
        {
1888
          rinfo->failed = TRUE;
1889
          return FALSE;
1890
        }
1891
 
1892
      t->vn_bfd = h->verinfo.verdef->vd_bfd;
1893
      t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1894
      elf_tdata (rinfo->info->output_bfd)->verref = t;
1895
    }
1896
 
1897
  amt = sizeof *a;
1898
  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1899
  if (a == NULL)
1900
    {
1901
      rinfo->failed = TRUE;
1902
      return FALSE;
1903
    }
1904
 
1905
  /* Note that we are copying a string pointer here, and testing it
1906
     above.  If bfd_elf_string_from_elf_section is ever changed to
1907
     discard the string data when low in memory, this will have to be
1908
     fixed.  */
1909
  a->vna_nodename = h->verinfo.verdef->vd_nodename;
1910
 
1911
  a->vna_flags = h->verinfo.verdef->vd_flags;
1912
  a->vna_nextptr = t->vn_auxptr;
1913
 
1914
  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1915
  ++rinfo->vers;
1916
 
1917
  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1918
 
1919
  t->vn_auxptr = a;
1920
 
1921
  return TRUE;
1922
}
1923
 
1924
/* Figure out appropriate versions for all the symbols.  We may not
1925
   have the version number script until we have read all of the input
1926
   files, so until that point we don't know which symbols should be
1927
   local.  This function is called via elf_link_hash_traverse.  */
1928
 
1929
static bfd_boolean
1930
_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1931
{
1932
  struct elf_info_failed *sinfo;
1933
  struct bfd_link_info *info;
1934
  const struct elf_backend_data *bed;
1935
  struct elf_info_failed eif;
1936
  char *p;
1937
  bfd_size_type amt;
1938
 
1939
  sinfo = (struct elf_info_failed *) data;
1940
  info = sinfo->info;
1941
 
1942
  /* Fix the symbol flags.  */
1943
  eif.failed = FALSE;
1944
  eif.info = info;
1945
  if (! _bfd_elf_fix_symbol_flags (h, &eif))
1946
    {
1947
      if (eif.failed)
1948
        sinfo->failed = TRUE;
1949
      return FALSE;
1950
    }
1951
 
1952
  /* We only need version numbers for symbols defined in regular
1953
     objects.  */
1954
  if (!h->def_regular)
1955
    return TRUE;
1956
 
1957
  bed = get_elf_backend_data (info->output_bfd);
1958
  p = strchr (h->root.root.string, ELF_VER_CHR);
1959
  if (p != NULL && h->verinfo.vertree == NULL)
1960
    {
1961
      struct bfd_elf_version_tree *t;
1962
      bfd_boolean hidden;
1963
 
1964
      hidden = TRUE;
1965
 
1966
      /* There are two consecutive ELF_VER_CHR characters if this is
1967
         not a hidden symbol.  */
1968
      ++p;
1969
      if (*p == ELF_VER_CHR)
1970
        {
1971
          hidden = FALSE;
1972
          ++p;
1973
        }
1974
 
1975
      /* If there is no version string, we can just return out.  */
1976
      if (*p == '\0')
1977
        {
1978
          if (hidden)
1979
            h->hidden = 1;
1980
          return TRUE;
1981
        }
1982
 
1983
      /* Look for the version.  If we find it, it is no longer weak.  */
1984
      for (t = sinfo->verdefs; t != NULL; t = t->next)
1985
        {
1986
          if (strcmp (t->name, p) == 0)
1987
            {
1988
              size_t len;
1989
              char *alc;
1990
              struct bfd_elf_version_expr *d;
1991
 
1992
              len = p - h->root.root.string;
1993
              alc = (char *) bfd_malloc (len);
1994
              if (alc == NULL)
1995
                {
1996
                  sinfo->failed = TRUE;
1997
                  return FALSE;
1998
                }
1999
              memcpy (alc, h->root.root.string, len - 1);
2000
              alc[len - 1] = '\0';
2001
              if (alc[len - 2] == ELF_VER_CHR)
2002
                alc[len - 2] = '\0';
2003
 
2004
              h->verinfo.vertree = t;
2005
              t->used = TRUE;
2006
              d = NULL;
2007
 
2008
              if (t->globals.list != NULL)
2009
                d = (*t->match) (&t->globals, NULL, alc);
2010
 
2011
              /* See if there is anything to force this symbol to
2012
                 local scope.  */
2013
              if (d == NULL && t->locals.list != NULL)
2014
                {
2015
                  d = (*t->match) (&t->locals, NULL, alc);
2016
                  if (d != NULL
2017
                      && h->dynindx != -1
2018
                      && ! info->export_dynamic)
2019
                    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2020
                }
2021
 
2022
              free (alc);
2023
              break;
2024
            }
2025
        }
2026
 
2027
      /* If we are building an application, we need to create a
2028
         version node for this version.  */
2029
      if (t == NULL && info->executable)
2030
        {
2031
          struct bfd_elf_version_tree **pp;
2032
          int version_index;
2033
 
2034
          /* If we aren't going to export this symbol, we don't need
2035
             to worry about it.  */
2036
          if (h->dynindx == -1)
2037
            return TRUE;
2038
 
2039
          amt = sizeof *t;
2040
          t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2041
          if (t == NULL)
2042
            {
2043
              sinfo->failed = TRUE;
2044
              return FALSE;
2045
            }
2046
 
2047
          t->name = p;
2048
          t->name_indx = (unsigned int) -1;
2049
          t->used = TRUE;
2050
 
2051
          version_index = 1;
2052
          /* Don't count anonymous version tag.  */
2053
          if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2054
            version_index = 0;
2055
          for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2056
            ++version_index;
2057
          t->vernum = version_index;
2058
 
2059
          *pp = t;
2060
 
2061
          h->verinfo.vertree = t;
2062
        }
2063
      else if (t == NULL)
2064
        {
2065
          /* We could not find the version for a symbol when
2066
             generating a shared archive.  Return an error.  */
2067
          (*_bfd_error_handler)
2068
            (_("%B: version node not found for symbol %s"),
2069
             info->output_bfd, h->root.root.string);
2070
          bfd_set_error (bfd_error_bad_value);
2071
          sinfo->failed = TRUE;
2072
          return FALSE;
2073
        }
2074
 
2075
      if (hidden)
2076
        h->hidden = 1;
2077
    }
2078
 
2079
  /* If we don't have a version for this symbol, see if we can find
2080
     something.  */
2081
  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2082
    {
2083
      bfd_boolean hide;
2084
 
2085
      h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2086
                                                 h->root.root.string, &hide);
2087
      if (h->verinfo.vertree != NULL && hide)
2088
        (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2089
    }
2090
 
2091
  return TRUE;
2092
}
2093
 
2094
/* Read and swap the relocs from the section indicated by SHDR.  This
2095
   may be either a REL or a RELA section.  The relocations are
2096
   translated into RELA relocations and stored in INTERNAL_RELOCS,
2097
   which should have already been allocated to contain enough space.
2098
   The EXTERNAL_RELOCS are a buffer where the external form of the
2099
   relocations should be stored.
2100
 
2101
   Returns FALSE if something goes wrong.  */
2102
 
2103
static bfd_boolean
2104
elf_link_read_relocs_from_section (bfd *abfd,
2105
                                   asection *sec,
2106
                                   Elf_Internal_Shdr *shdr,
2107
                                   void *external_relocs,
2108
                                   Elf_Internal_Rela *internal_relocs)
2109
{
2110
  const struct elf_backend_data *bed;
2111
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2112
  const bfd_byte *erela;
2113
  const bfd_byte *erelaend;
2114
  Elf_Internal_Rela *irela;
2115
  Elf_Internal_Shdr *symtab_hdr;
2116
  size_t nsyms;
2117
 
2118
  /* Position ourselves at the start of the section.  */
2119
  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2120
    return FALSE;
2121
 
2122
  /* Read the relocations.  */
2123
  if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2124
    return FALSE;
2125
 
2126
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2127
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2128
 
2129
  bed = get_elf_backend_data (abfd);
2130
 
2131
  /* Convert the external relocations to the internal format.  */
2132
  if (shdr->sh_entsize == bed->s->sizeof_rel)
2133
    swap_in = bed->s->swap_reloc_in;
2134
  else if (shdr->sh_entsize == bed->s->sizeof_rela)
2135
    swap_in = bed->s->swap_reloca_in;
2136
  else
2137
    {
2138
      bfd_set_error (bfd_error_wrong_format);
2139
      return FALSE;
2140
    }
2141
 
2142
  erela = (const bfd_byte *) external_relocs;
2143
  erelaend = erela + shdr->sh_size;
2144
  irela = internal_relocs;
2145
  while (erela < erelaend)
2146
    {
2147
      bfd_vma r_symndx;
2148
 
2149
      (*swap_in) (abfd, erela, irela);
2150
      r_symndx = ELF32_R_SYM (irela->r_info);
2151
      if (bed->s->arch_size == 64)
2152
        r_symndx >>= 24;
2153
      if (nsyms > 0)
2154
        {
2155
          if ((size_t) r_symndx >= nsyms)
2156
            {
2157
              (*_bfd_error_handler)
2158
                (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2159
                   " for offset 0x%lx in section `%A'"),
2160
                 abfd, sec,
2161
                 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162
              bfd_set_error (bfd_error_bad_value);
2163
              return FALSE;
2164
            }
2165
        }
2166
      else if (r_symndx != STN_UNDEF)
2167
        {
2168
          (*_bfd_error_handler)
2169
            (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2170
               " when the object file has no symbol table"),
2171
             abfd, sec,
2172
             (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173
          bfd_set_error (bfd_error_bad_value);
2174
          return FALSE;
2175
        }
2176
      irela += bed->s->int_rels_per_ext_rel;
2177
      erela += shdr->sh_entsize;
2178
    }
2179
 
2180
  return TRUE;
2181
}
2182
 
2183
/* Read and swap the relocs for a section O.  They may have been
2184
   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2185
   not NULL, they are used as buffers to read into.  They are known to
2186
   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2187
   the return value is allocated using either malloc or bfd_alloc,
2188
   according to the KEEP_MEMORY argument.  If O has two relocation
2189
   sections (both REL and RELA relocations), then the REL_HDR
2190
   relocations will appear first in INTERNAL_RELOCS, followed by the
2191
   RELA_HDR relocations.  */
2192
 
2193
Elf_Internal_Rela *
2194
_bfd_elf_link_read_relocs (bfd *abfd,
2195
                           asection *o,
2196
                           void *external_relocs,
2197
                           Elf_Internal_Rela *internal_relocs,
2198
                           bfd_boolean keep_memory)
2199
{
2200
  void *alloc1 = NULL;
2201
  Elf_Internal_Rela *alloc2 = NULL;
2202
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203
  struct bfd_elf_section_data *esdo = elf_section_data (o);
2204
  Elf_Internal_Rela *internal_rela_relocs;
2205
 
2206
  if (esdo->relocs != NULL)
2207
    return esdo->relocs;
2208
 
2209
  if (o->reloc_count == 0)
2210
    return NULL;
2211
 
2212
  if (internal_relocs == NULL)
2213
    {
2214
      bfd_size_type size;
2215
 
2216
      size = o->reloc_count;
2217
      size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2218
      if (keep_memory)
2219
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2220
      else
2221
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2222
      if (internal_relocs == NULL)
2223
        goto error_return;
2224
    }
2225
 
2226
  if (external_relocs == NULL)
2227
    {
2228
      bfd_size_type size = 0;
2229
 
2230
      if (esdo->rel.hdr)
2231
        size += esdo->rel.hdr->sh_size;
2232
      if (esdo->rela.hdr)
2233
        size += esdo->rela.hdr->sh_size;
2234
 
2235
      alloc1 = bfd_malloc (size);
2236
      if (alloc1 == NULL)
2237
        goto error_return;
2238
      external_relocs = alloc1;
2239
    }
2240
 
2241
  internal_rela_relocs = internal_relocs;
2242
  if (esdo->rel.hdr)
2243
    {
2244
      if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2245
                                              external_relocs,
2246
                                              internal_relocs))
2247
        goto error_return;
2248
      external_relocs = (((bfd_byte *) external_relocs)
2249
                         + esdo->rel.hdr->sh_size);
2250
      internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2251
                               * bed->s->int_rels_per_ext_rel);
2252
    }
2253
 
2254
  if (esdo->rela.hdr
2255
      && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2256
                                              external_relocs,
2257
                                              internal_rela_relocs)))
2258
    goto error_return;
2259
 
2260
  /* Cache the results for next time, if we can.  */
2261
  if (keep_memory)
2262
    esdo->relocs = internal_relocs;
2263
 
2264
  if (alloc1 != NULL)
2265
    free (alloc1);
2266
 
2267
  /* Don't free alloc2, since if it was allocated we are passing it
2268
     back (under the name of internal_relocs).  */
2269
 
2270
  return internal_relocs;
2271
 
2272
 error_return:
2273
  if (alloc1 != NULL)
2274
    free (alloc1);
2275
  if (alloc2 != NULL)
2276
    {
2277
      if (keep_memory)
2278
        bfd_release (abfd, alloc2);
2279
      else
2280
        free (alloc2);
2281
    }
2282
  return NULL;
2283
}
2284
 
2285
/* Compute the size of, and allocate space for, REL_HDR which is the
2286
   section header for a section containing relocations for O.  */
2287
 
2288
static bfd_boolean
2289
_bfd_elf_link_size_reloc_section (bfd *abfd,
2290
                                  struct bfd_elf_section_reloc_data *reldata)
2291
{
2292
  Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2293
 
2294
  /* That allows us to calculate the size of the section.  */
2295
  rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2296
 
2297
  /* The contents field must last into write_object_contents, so we
2298
     allocate it with bfd_alloc rather than malloc.  Also since we
2299
     cannot be sure that the contents will actually be filled in,
2300
     we zero the allocated space.  */
2301
  rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2302
  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2303
    return FALSE;
2304
 
2305
  if (reldata->hashes == NULL && reldata->count)
2306
    {
2307
      struct elf_link_hash_entry **p;
2308
 
2309
      p = (struct elf_link_hash_entry **)
2310
          bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2311
      if (p == NULL)
2312
        return FALSE;
2313
 
2314
      reldata->hashes = p;
2315
    }
2316
 
2317
  return TRUE;
2318
}
2319
 
2320
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2321
   originated from the section given by INPUT_REL_HDR) to the
2322
   OUTPUT_BFD.  */
2323
 
2324
bfd_boolean
2325
_bfd_elf_link_output_relocs (bfd *output_bfd,
2326
                             asection *input_section,
2327
                             Elf_Internal_Shdr *input_rel_hdr,
2328
                             Elf_Internal_Rela *internal_relocs,
2329
                             struct elf_link_hash_entry **rel_hash
2330
                               ATTRIBUTE_UNUSED)
2331
{
2332
  Elf_Internal_Rela *irela;
2333
  Elf_Internal_Rela *irelaend;
2334
  bfd_byte *erel;
2335
  struct bfd_elf_section_reloc_data *output_reldata;
2336
  asection *output_section;
2337
  const struct elf_backend_data *bed;
2338
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2339
  struct bfd_elf_section_data *esdo;
2340
 
2341
  output_section = input_section->output_section;
2342
 
2343
  bed = get_elf_backend_data (output_bfd);
2344
  esdo = elf_section_data (output_section);
2345
  if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2346
    {
2347
      output_reldata = &esdo->rel;
2348
      swap_out = bed->s->swap_reloc_out;
2349
    }
2350
  else if (esdo->rela.hdr
2351
           && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2352
    {
2353
      output_reldata = &esdo->rela;
2354
      swap_out = bed->s->swap_reloca_out;
2355
    }
2356
  else
2357
    {
2358
      (*_bfd_error_handler)
2359
        (_("%B: relocation size mismatch in %B section %A"),
2360
         output_bfd, input_section->owner, input_section);
2361
      bfd_set_error (bfd_error_wrong_format);
2362
      return FALSE;
2363
    }
2364
 
2365
  erel = output_reldata->hdr->contents;
2366
  erel += output_reldata->count * input_rel_hdr->sh_entsize;
2367
  irela = internal_relocs;
2368
  irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2369
                      * bed->s->int_rels_per_ext_rel);
2370
  while (irela < irelaend)
2371
    {
2372
      (*swap_out) (output_bfd, irela, erel);
2373
      irela += bed->s->int_rels_per_ext_rel;
2374
      erel += input_rel_hdr->sh_entsize;
2375
    }
2376
 
2377
  /* Bump the counter, so that we know where to add the next set of
2378
     relocations.  */
2379
  output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2380
 
2381
  return TRUE;
2382
}
2383
 
2384
/* Make weak undefined symbols in PIE dynamic.  */
2385
 
2386
bfd_boolean
2387
_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2388
                                 struct elf_link_hash_entry *h)
2389
{
2390
  if (info->pie
2391
      && h->dynindx == -1
2392
      && h->root.type == bfd_link_hash_undefweak)
2393
    return bfd_elf_link_record_dynamic_symbol (info, h);
2394
 
2395
  return TRUE;
2396
}
2397
 
2398
/* Fix up the flags for a symbol.  This handles various cases which
2399
   can only be fixed after all the input files are seen.  This is
2400
   currently called by both adjust_dynamic_symbol and
2401
   assign_sym_version, which is unnecessary but perhaps more robust in
2402
   the face of future changes.  */
2403
 
2404
static bfd_boolean
2405
_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2406
                           struct elf_info_failed *eif)
2407
{
2408
  const struct elf_backend_data *bed;
2409
 
2410
  /* If this symbol was mentioned in a non-ELF file, try to set
2411
     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2412
     permit a non-ELF file to correctly refer to a symbol defined in
2413
     an ELF dynamic object.  */
2414
  if (h->non_elf)
2415
    {
2416
      while (h->root.type == bfd_link_hash_indirect)
2417
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
2418
 
2419
      if (h->root.type != bfd_link_hash_defined
2420
          && h->root.type != bfd_link_hash_defweak)
2421
        {
2422
          h->ref_regular = 1;
2423
          h->ref_regular_nonweak = 1;
2424
        }
2425
      else
2426
        {
2427
          if (h->root.u.def.section->owner != NULL
2428
              && (bfd_get_flavour (h->root.u.def.section->owner)
2429
                  == bfd_target_elf_flavour))
2430
            {
2431
              h->ref_regular = 1;
2432
              h->ref_regular_nonweak = 1;
2433
            }
2434
          else
2435
            h->def_regular = 1;
2436
        }
2437
 
2438
      if (h->dynindx == -1
2439
          && (h->def_dynamic
2440
              || h->ref_dynamic))
2441
        {
2442
          if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2443
            {
2444
              eif->failed = TRUE;
2445
              return FALSE;
2446
            }
2447
        }
2448
    }
2449
  else
2450
    {
2451
      /* Unfortunately, NON_ELF is only correct if the symbol
2452
         was first seen in a non-ELF file.  Fortunately, if the symbol
2453
         was first seen in an ELF file, we're probably OK unless the
2454
         symbol was defined in a non-ELF file.  Catch that case here.
2455
         FIXME: We're still in trouble if the symbol was first seen in
2456
         a dynamic object, and then later in a non-ELF regular object.  */
2457
      if ((h->root.type == bfd_link_hash_defined
2458
           || h->root.type == bfd_link_hash_defweak)
2459
          && !h->def_regular
2460
          && (h->root.u.def.section->owner != NULL
2461
              ? (bfd_get_flavour (h->root.u.def.section->owner)
2462
                 != bfd_target_elf_flavour)
2463
              : (bfd_is_abs_section (h->root.u.def.section)
2464
                 && !h->def_dynamic)))
2465
        h->def_regular = 1;
2466
    }
2467
 
2468
  /* Backend specific symbol fixup.  */
2469
  bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2470
  if (bed->elf_backend_fixup_symbol
2471
      && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2472
    return FALSE;
2473
 
2474
  /* If this is a final link, and the symbol was defined as a common
2475
     symbol in a regular object file, and there was no definition in
2476
     any dynamic object, then the linker will have allocated space for
2477
     the symbol in a common section but the DEF_REGULAR
2478
     flag will not have been set.  */
2479
  if (h->root.type == bfd_link_hash_defined
2480
      && !h->def_regular
2481
      && h->ref_regular
2482
      && !h->def_dynamic
2483
      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2484
    h->def_regular = 1;
2485
 
2486
  /* If -Bsymbolic was used (which means to bind references to global
2487
     symbols to the definition within the shared object), and this
2488
     symbol was defined in a regular object, then it actually doesn't
2489
     need a PLT entry.  Likewise, if the symbol has non-default
2490
     visibility.  If the symbol has hidden or internal visibility, we
2491
     will force it local.  */
2492
  if (h->needs_plt
2493
      && eif->info->shared
2494
      && is_elf_hash_table (eif->info->hash)
2495
      && (SYMBOLIC_BIND (eif->info, h)
2496
          || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2497
      && h->def_regular)
2498
    {
2499
      bfd_boolean force_local;
2500
 
2501
      force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2502
                     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2503
      (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2504
    }
2505
 
2506
  /* If a weak undefined symbol has non-default visibility, we also
2507
     hide it from the dynamic linker.  */
2508
  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2509
      && h->root.type == bfd_link_hash_undefweak)
2510
    (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2511
 
2512
  /* If this is a weak defined symbol in a dynamic object, and we know
2513
     the real definition in the dynamic object, copy interesting flags
2514
     over to the real definition.  */
2515
  if (h->u.weakdef != NULL)
2516
    {
2517
      struct elf_link_hash_entry *weakdef;
2518
 
2519
      weakdef = h->u.weakdef;
2520 161 khays
      while (h->root.type == bfd_link_hash_indirect)
2521 14 khays
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
2522
 
2523
      BFD_ASSERT (h->root.type == bfd_link_hash_defined
2524
                  || h->root.type == bfd_link_hash_defweak);
2525
      BFD_ASSERT (weakdef->def_dynamic);
2526
 
2527
      /* If the real definition is defined by a regular object file,
2528
         don't do anything special.  See the longer description in
2529
         _bfd_elf_adjust_dynamic_symbol, below.  */
2530
      if (weakdef->def_regular)
2531
        h->u.weakdef = NULL;
2532
      else
2533
        {
2534
          BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2535
                      || weakdef->root.type == bfd_link_hash_defweak);
2536
          (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2537
        }
2538
    }
2539
 
2540
  return TRUE;
2541
}
2542
 
2543
/* Make the backend pick a good value for a dynamic symbol.  This is
2544
   called via elf_link_hash_traverse, and also calls itself
2545
   recursively.  */
2546
 
2547
static bfd_boolean
2548
_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2549
{
2550
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
2551
  bfd *dynobj;
2552
  const struct elf_backend_data *bed;
2553
 
2554
  if (! is_elf_hash_table (eif->info->hash))
2555
    return FALSE;
2556
 
2557
  /* Ignore indirect symbols.  These are added by the versioning code.  */
2558
  if (h->root.type == bfd_link_hash_indirect)
2559
    return TRUE;
2560
 
2561
  /* Fix the symbol flags.  */
2562
  if (! _bfd_elf_fix_symbol_flags (h, eif))
2563
    return FALSE;
2564
 
2565
  /* If this symbol does not require a PLT entry, and it is not
2566
     defined by a dynamic object, or is not referenced by a regular
2567
     object, ignore it.  We do have to handle a weak defined symbol,
2568
     even if no regular object refers to it, if we decided to add it
2569
     to the dynamic symbol table.  FIXME: Do we normally need to worry
2570
     about symbols which are defined by one dynamic object and
2571
     referenced by another one?  */
2572
  if (!h->needs_plt
2573
      && h->type != STT_GNU_IFUNC
2574
      && (h->def_regular
2575
          || !h->def_dynamic
2576
          || (!h->ref_regular
2577
              && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2578
    {
2579
      h->plt = elf_hash_table (eif->info)->init_plt_offset;
2580
      return TRUE;
2581
    }
2582
 
2583
  /* If we've already adjusted this symbol, don't do it again.  This
2584
     can happen via a recursive call.  */
2585
  if (h->dynamic_adjusted)
2586
    return TRUE;
2587
 
2588
  /* Don't look at this symbol again.  Note that we must set this
2589
     after checking the above conditions, because we may look at a
2590
     symbol once, decide not to do anything, and then get called
2591
     recursively later after REF_REGULAR is set below.  */
2592
  h->dynamic_adjusted = 1;
2593
 
2594
  /* If this is a weak definition, and we know a real definition, and
2595
     the real symbol is not itself defined by a regular object file,
2596
     then get a good value for the real definition.  We handle the
2597
     real symbol first, for the convenience of the backend routine.
2598
 
2599
     Note that there is a confusing case here.  If the real definition
2600
     is defined by a regular object file, we don't get the real symbol
2601
     from the dynamic object, but we do get the weak symbol.  If the
2602
     processor backend uses a COPY reloc, then if some routine in the
2603
     dynamic object changes the real symbol, we will not see that
2604
     change in the corresponding weak symbol.  This is the way other
2605
     ELF linkers work as well, and seems to be a result of the shared
2606
     library model.
2607
 
2608
     I will clarify this issue.  Most SVR4 shared libraries define the
2609
     variable _timezone and define timezone as a weak synonym.  The
2610
     tzset call changes _timezone.  If you write
2611
       extern int timezone;
2612
       int _timezone = 5;
2613
       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2614
     you might expect that, since timezone is a synonym for _timezone,
2615
     the same number will print both times.  However, if the processor
2616
     backend uses a COPY reloc, then actually timezone will be copied
2617
     into your process image, and, since you define _timezone
2618
     yourself, _timezone will not.  Thus timezone and _timezone will
2619
     wind up at different memory locations.  The tzset call will set
2620
     _timezone, leaving timezone unchanged.  */
2621
 
2622
  if (h->u.weakdef != NULL)
2623
    {
2624 161 khays
      /* If we get to this point, there is an implicit reference to
2625
         H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2626 14 khays
      h->u.weakdef->ref_regular = 1;
2627
 
2628 161 khays
      /* Ensure that the backend adjust_dynamic_symbol function sees
2629
         H->U.WEAKDEF before H by recursively calling ourselves.  */
2630 14 khays
      if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2631
        return FALSE;
2632
    }
2633
 
2634
  /* If a symbol has no type and no size and does not require a PLT
2635
     entry, then we are probably about to do the wrong thing here: we
2636
     are probably going to create a COPY reloc for an empty object.
2637
     This case can arise when a shared object is built with assembly
2638
     code, and the assembly code fails to set the symbol type.  */
2639
  if (h->size == 0
2640
      && h->type == STT_NOTYPE
2641
      && !h->needs_plt)
2642
    (*_bfd_error_handler)
2643
      (_("warning: type and size of dynamic symbol `%s' are not defined"),
2644
       h->root.root.string);
2645
 
2646
  dynobj = elf_hash_table (eif->info)->dynobj;
2647
  bed = get_elf_backend_data (dynobj);
2648
 
2649
  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2650
    {
2651
      eif->failed = TRUE;
2652
      return FALSE;
2653
    }
2654
 
2655
  return TRUE;
2656
}
2657
 
2658
/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659
   DYNBSS.  */
2660
 
2661
bfd_boolean
2662
_bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2663
                              asection *dynbss)
2664
{
2665
  unsigned int power_of_two;
2666
  bfd_vma mask;
2667
  asection *sec = h->root.u.def.section;
2668
 
2669
  /* The section aligment of definition is the maximum alignment
2670
     requirement of symbols defined in the section.  Since we don't
2671
     know the symbol alignment requirement, we start with the
2672
     maximum alignment and check low bits of the symbol address
2673
     for the minimum alignment.  */
2674
  power_of_two = bfd_get_section_alignment (sec->owner, sec);
2675
  mask = ((bfd_vma) 1 << power_of_two) - 1;
2676
  while ((h->root.u.def.value & mask) != 0)
2677
    {
2678
       mask >>= 1;
2679
       --power_of_two;
2680
    }
2681
 
2682
  if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2683
                                                dynbss))
2684
    {
2685
      /* Adjust the section alignment if needed.  */
2686
      if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2687
                                       power_of_two))
2688
        return FALSE;
2689
    }
2690
 
2691
  /* We make sure that the symbol will be aligned properly.  */
2692
  dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2693
 
2694
  /* Define the symbol as being at this point in DYNBSS.  */
2695
  h->root.u.def.section = dynbss;
2696
  h->root.u.def.value = dynbss->size;
2697
 
2698
  /* Increment the size of DYNBSS to make room for the symbol.  */
2699
  dynbss->size += h->size;
2700
 
2701
  return TRUE;
2702
}
2703
 
2704
/* Adjust all external symbols pointing into SEC_MERGE sections
2705
   to reflect the object merging within the sections.  */
2706
 
2707
static bfd_boolean
2708
_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2709
{
2710
  asection *sec;
2711
 
2712
  if ((h->root.type == bfd_link_hash_defined
2713
       || h->root.type == bfd_link_hash_defweak)
2714
      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2715
      && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2716
    {
2717
      bfd *output_bfd = (bfd *) data;
2718
 
2719
      h->root.u.def.value =
2720
        _bfd_merged_section_offset (output_bfd,
2721
                                    &h->root.u.def.section,
2722
                                    elf_section_data (sec)->sec_info,
2723
                                    h->root.u.def.value);
2724
    }
2725
 
2726
  return TRUE;
2727
}
2728
 
2729
/* Returns false if the symbol referred to by H should be considered
2730
   to resolve local to the current module, and true if it should be
2731
   considered to bind dynamically.  */
2732
 
2733
bfd_boolean
2734
_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2735
                           struct bfd_link_info *info,
2736
                           bfd_boolean not_local_protected)
2737
{
2738
  bfd_boolean binding_stays_local_p;
2739
  const struct elf_backend_data *bed;
2740
  struct elf_link_hash_table *hash_table;
2741
 
2742
  if (h == NULL)
2743
    return FALSE;
2744
 
2745
  while (h->root.type == bfd_link_hash_indirect
2746
         || h->root.type == bfd_link_hash_warning)
2747
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
 
2749
  /* If it was forced local, then clearly it's not dynamic.  */
2750
  if (h->dynindx == -1)
2751
    return FALSE;
2752
  if (h->forced_local)
2753
    return FALSE;
2754
 
2755
  /* Identify the cases where name binding rules say that a
2756
     visible symbol resolves locally.  */
2757
  binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2758
 
2759
  switch (ELF_ST_VISIBILITY (h->other))
2760
    {
2761
    case STV_INTERNAL:
2762
    case STV_HIDDEN:
2763
      return FALSE;
2764
 
2765
    case STV_PROTECTED:
2766
      hash_table = elf_hash_table (info);
2767
      if (!is_elf_hash_table (hash_table))
2768
        return FALSE;
2769
 
2770
      bed = get_elf_backend_data (hash_table->dynobj);
2771
 
2772
      /* Proper resolution for function pointer equality may require
2773
         that these symbols perhaps be resolved dynamically, even though
2774
         we should be resolving them to the current module.  */
2775
      if (!not_local_protected || !bed->is_function_type (h->type))
2776
        binding_stays_local_p = TRUE;
2777
      break;
2778
 
2779
    default:
2780
      break;
2781
    }
2782
 
2783
  /* If it isn't defined locally, then clearly it's dynamic.  */
2784
  if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2785
    return TRUE;
2786
 
2787
  /* Otherwise, the symbol is dynamic if binding rules don't tell
2788
     us that it remains local.  */
2789
  return !binding_stays_local_p;
2790
}
2791
 
2792
/* Return true if the symbol referred to by H should be considered
2793
   to resolve local to the current module, and false otherwise.  Differs
2794
   from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2795
   undefined symbols.  The two functions are virtually identical except
2796
   for the place where forced_local and dynindx == -1 are tested.  If
2797
   either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2798
   the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2799
   the symbol is local only for defined symbols.
2800
   It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2801
   !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2802
   treatment of undefined weak symbols.  For those that do not make
2803
   undefined weak symbols dynamic, both functions may return false.  */
2804
 
2805
bfd_boolean
2806
_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2807
                              struct bfd_link_info *info,
2808
                              bfd_boolean local_protected)
2809
{
2810
  const struct elf_backend_data *bed;
2811
  struct elf_link_hash_table *hash_table;
2812
 
2813
  /* If it's a local sym, of course we resolve locally.  */
2814
  if (h == NULL)
2815
    return TRUE;
2816
 
2817
  /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2818
  if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2819
      || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2820
    return TRUE;
2821
 
2822
  /* Common symbols that become definitions don't get the DEF_REGULAR
2823
     flag set, so test it first, and don't bail out.  */
2824
  if (ELF_COMMON_DEF_P (h))
2825
    /* Do nothing.  */;
2826
  /* If we don't have a definition in a regular file, then we can't
2827
     resolve locally.  The sym is either undefined or dynamic.  */
2828
  else if (!h->def_regular)
2829
    return FALSE;
2830
 
2831
  /* Forced local symbols resolve locally.  */
2832
  if (h->forced_local)
2833
    return TRUE;
2834
 
2835
  /* As do non-dynamic symbols.  */
2836
  if (h->dynindx == -1)
2837
    return TRUE;
2838
 
2839
  /* At this point, we know the symbol is defined and dynamic.  In an
2840
     executable it must resolve locally, likewise when building symbolic
2841
     shared libraries.  */
2842
  if (info->executable || SYMBOLIC_BIND (info, h))
2843
    return TRUE;
2844
 
2845
  /* Now deal with defined dynamic symbols in shared libraries.  Ones
2846
     with default visibility might not resolve locally.  */
2847
  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2848
    return FALSE;
2849
 
2850
  hash_table = elf_hash_table (info);
2851
  if (!is_elf_hash_table (hash_table))
2852
    return TRUE;
2853
 
2854
  bed = get_elf_backend_data (hash_table->dynobj);
2855
 
2856
  /* STV_PROTECTED non-function symbols are local.  */
2857
  if (!bed->is_function_type (h->type))
2858
    return TRUE;
2859
 
2860
  /* Function pointer equality tests may require that STV_PROTECTED
2861
     symbols be treated as dynamic symbols.  If the address of a
2862
     function not defined in an executable is set to that function's
2863
     plt entry in the executable, then the address of the function in
2864
     a shared library must also be the plt entry in the executable.  */
2865
  return local_protected;
2866
}
2867
 
2868
/* Caches some TLS segment info, and ensures that the TLS segment vma is
2869
   aligned.  Returns the first TLS output section.  */
2870
 
2871
struct bfd_section *
2872
_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2873
{
2874
  struct bfd_section *sec, *tls;
2875
  unsigned int align = 0;
2876
 
2877
  for (sec = obfd->sections; sec != NULL; sec = sec->next)
2878
    if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2879
      break;
2880
  tls = sec;
2881
 
2882
  for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2883
    if (sec->alignment_power > align)
2884
      align = sec->alignment_power;
2885
 
2886
  elf_hash_table (info)->tls_sec = tls;
2887
 
2888
  /* Ensure the alignment of the first section is the largest alignment,
2889
     so that the tls segment starts aligned.  */
2890
  if (tls != NULL)
2891
    tls->alignment_power = align;
2892
 
2893
  return tls;
2894
}
2895
 
2896
/* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2897
static bfd_boolean
2898
is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2899
                                  Elf_Internal_Sym *sym)
2900
{
2901
  const struct elf_backend_data *bed;
2902
 
2903
  /* Local symbols do not count, but target specific ones might.  */
2904
  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2905
      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2906
    return FALSE;
2907
 
2908
  bed = get_elf_backend_data (abfd);
2909
  /* Function symbols do not count.  */
2910
  if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2911
    return FALSE;
2912
 
2913
  /* If the section is undefined, then so is the symbol.  */
2914
  if (sym->st_shndx == SHN_UNDEF)
2915
    return FALSE;
2916
 
2917
  /* If the symbol is defined in the common section, then
2918
     it is a common definition and so does not count.  */
2919
  if (bed->common_definition (sym))
2920
    return FALSE;
2921
 
2922
  /* If the symbol is in a target specific section then we
2923
     must rely upon the backend to tell us what it is.  */
2924
  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2925
    /* FIXME - this function is not coded yet:
2926
 
2927
       return _bfd_is_global_symbol_definition (abfd, sym);
2928
 
2929
       Instead for now assume that the definition is not global,
2930
       Even if this is wrong, at least the linker will behave
2931
       in the same way that it used to do.  */
2932
    return FALSE;
2933
 
2934
  return TRUE;
2935
}
2936
 
2937
/* Search the symbol table of the archive element of the archive ABFD
2938
   whose archive map contains a mention of SYMDEF, and determine if
2939
   the symbol is defined in this element.  */
2940
static bfd_boolean
2941
elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2942
{
2943
  Elf_Internal_Shdr * hdr;
2944
  bfd_size_type symcount;
2945
  bfd_size_type extsymcount;
2946
  bfd_size_type extsymoff;
2947
  Elf_Internal_Sym *isymbuf;
2948
  Elf_Internal_Sym *isym;
2949
  Elf_Internal_Sym *isymend;
2950
  bfd_boolean result;
2951
 
2952
  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2953
  if (abfd == NULL)
2954
    return FALSE;
2955
 
2956
  if (! bfd_check_format (abfd, bfd_object))
2957
    return FALSE;
2958
 
2959
  /* If we have already included the element containing this symbol in the
2960
     link then we do not need to include it again.  Just claim that any symbol
2961
     it contains is not a definition, so that our caller will not decide to
2962
     (re)include this element.  */
2963
  if (abfd->archive_pass)
2964
    return FALSE;
2965
 
2966
  /* Select the appropriate symbol table.  */
2967
  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2968
    hdr = &elf_tdata (abfd)->symtab_hdr;
2969
  else
2970
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2971
 
2972
  symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2973
 
2974
  /* The sh_info field of the symtab header tells us where the
2975
     external symbols start.  We don't care about the local symbols.  */
2976
  if (elf_bad_symtab (abfd))
2977
    {
2978
      extsymcount = symcount;
2979
      extsymoff = 0;
2980
    }
2981
  else
2982
    {
2983
      extsymcount = symcount - hdr->sh_info;
2984
      extsymoff = hdr->sh_info;
2985
    }
2986
 
2987
  if (extsymcount == 0)
2988
    return FALSE;
2989
 
2990
  /* Read in the symbol table.  */
2991
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2992
                                  NULL, NULL, NULL);
2993
  if (isymbuf == NULL)
2994
    return FALSE;
2995
 
2996
  /* Scan the symbol table looking for SYMDEF.  */
2997
  result = FALSE;
2998
  for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2999
    {
3000
      const char *name;
3001
 
3002
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3003
                                              isym->st_name);
3004
      if (name == NULL)
3005
        break;
3006
 
3007
      if (strcmp (name, symdef->name) == 0)
3008
        {
3009
          result = is_global_data_symbol_definition (abfd, isym);
3010
          break;
3011
        }
3012
    }
3013
 
3014
  free (isymbuf);
3015
 
3016
  return result;
3017
}
3018
 
3019
/* Add an entry to the .dynamic table.  */
3020
 
3021
bfd_boolean
3022
_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3023
                            bfd_vma tag,
3024
                            bfd_vma val)
3025
{
3026
  struct elf_link_hash_table *hash_table;
3027
  const struct elf_backend_data *bed;
3028
  asection *s;
3029
  bfd_size_type newsize;
3030
  bfd_byte *newcontents;
3031
  Elf_Internal_Dyn dyn;
3032
 
3033
  hash_table = elf_hash_table (info);
3034
  if (! is_elf_hash_table (hash_table))
3035
    return FALSE;
3036
 
3037
  bed = get_elf_backend_data (hash_table->dynobj);
3038
  s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3039
  BFD_ASSERT (s != NULL);
3040
 
3041
  newsize = s->size + bed->s->sizeof_dyn;
3042
  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3043
  if (newcontents == NULL)
3044
    return FALSE;
3045
 
3046
  dyn.d_tag = tag;
3047
  dyn.d_un.d_val = val;
3048
  bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3049
 
3050
  s->size = newsize;
3051
  s->contents = newcontents;
3052
 
3053
  return TRUE;
3054
}
3055
 
3056
/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3057
   otherwise just check whether one already exists.  Returns -1 on error,
3058
   1 if a DT_NEEDED tag already exists, and 0 on success.  */
3059
 
3060
static int
3061
elf_add_dt_needed_tag (bfd *abfd,
3062
                       struct bfd_link_info *info,
3063
                       const char *soname,
3064
                       bfd_boolean do_it)
3065
{
3066
  struct elf_link_hash_table *hash_table;
3067
  bfd_size_type oldsize;
3068
  bfd_size_type strindex;
3069
 
3070
  if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3071
    return -1;
3072
 
3073
  hash_table = elf_hash_table (info);
3074
  oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3075
  strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3076
  if (strindex == (bfd_size_type) -1)
3077
    return -1;
3078
 
3079
  if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3080
    {
3081
      asection *sdyn;
3082
      const struct elf_backend_data *bed;
3083
      bfd_byte *extdyn;
3084
 
3085
      bed = get_elf_backend_data (hash_table->dynobj);
3086
      sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3087
      if (sdyn != NULL)
3088
        for (extdyn = sdyn->contents;
3089
             extdyn < sdyn->contents + sdyn->size;
3090
             extdyn += bed->s->sizeof_dyn)
3091
          {
3092
            Elf_Internal_Dyn dyn;
3093
 
3094
            bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3095
            if (dyn.d_tag == DT_NEEDED
3096
                && dyn.d_un.d_val == strindex)
3097
              {
3098
                _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3099
                return 1;
3100
              }
3101
          }
3102
    }
3103
 
3104
  if (do_it)
3105
    {
3106
      if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3107
        return -1;
3108
 
3109
      if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3110
        return -1;
3111
    }
3112
  else
3113
    /* We were just checking for existence of the tag.  */
3114
    _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3115
 
3116
  return 0;
3117
}
3118
 
3119
static bfd_boolean
3120
on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3121
{
3122
  for (; needed != NULL; needed = needed->next)
3123
    if (strcmp (soname, needed->name) == 0)
3124
      return TRUE;
3125
 
3126
  return FALSE;
3127
}
3128
 
3129
/* Sort symbol by value and section.  */
3130
static int
3131
elf_sort_symbol (const void *arg1, const void *arg2)
3132
{
3133
  const struct elf_link_hash_entry *h1;
3134
  const struct elf_link_hash_entry *h2;
3135
  bfd_signed_vma vdiff;
3136
 
3137
  h1 = *(const struct elf_link_hash_entry **) arg1;
3138
  h2 = *(const struct elf_link_hash_entry **) arg2;
3139
  vdiff = h1->root.u.def.value - h2->root.u.def.value;
3140
  if (vdiff != 0)
3141
    return vdiff > 0 ? 1 : -1;
3142
  else
3143
    {
3144
      long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3145
      if (sdiff != 0)
3146
        return sdiff > 0 ? 1 : -1;
3147
    }
3148
  return 0;
3149
}
3150
 
3151
/* This function is used to adjust offsets into .dynstr for
3152
   dynamic symbols.  This is called via elf_link_hash_traverse.  */
3153
 
3154
static bfd_boolean
3155
elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3156
{
3157
  struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3158
 
3159
  if (h->dynindx != -1)
3160
    h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3161
  return TRUE;
3162
}
3163
 
3164
/* Assign string offsets in .dynstr, update all structures referencing
3165
   them.  */
3166
 
3167
static bfd_boolean
3168
elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3169
{
3170
  struct elf_link_hash_table *hash_table = elf_hash_table (info);
3171
  struct elf_link_local_dynamic_entry *entry;
3172
  struct elf_strtab_hash *dynstr = hash_table->dynstr;
3173
  bfd *dynobj = hash_table->dynobj;
3174
  asection *sdyn;
3175
  bfd_size_type size;
3176
  const struct elf_backend_data *bed;
3177
  bfd_byte *extdyn;
3178
 
3179
  _bfd_elf_strtab_finalize (dynstr);
3180
  size = _bfd_elf_strtab_size (dynstr);
3181
 
3182
  bed = get_elf_backend_data (dynobj);
3183
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3184
  BFD_ASSERT (sdyn != NULL);
3185
 
3186
  /* Update all .dynamic entries referencing .dynstr strings.  */
3187
  for (extdyn = sdyn->contents;
3188
       extdyn < sdyn->contents + sdyn->size;
3189
       extdyn += bed->s->sizeof_dyn)
3190
    {
3191
      Elf_Internal_Dyn dyn;
3192
 
3193
      bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3194
      switch (dyn.d_tag)
3195
        {
3196
        case DT_STRSZ:
3197
          dyn.d_un.d_val = size;
3198
          break;
3199
        case DT_NEEDED:
3200
        case DT_SONAME:
3201
        case DT_RPATH:
3202
        case DT_RUNPATH:
3203
        case DT_FILTER:
3204
        case DT_AUXILIARY:
3205
        case DT_AUDIT:
3206
        case DT_DEPAUDIT:
3207
          dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3208
          break;
3209
        default:
3210
          continue;
3211
        }
3212
      bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3213
    }
3214
 
3215
  /* Now update local dynamic symbols.  */
3216
  for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3217
    entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3218
                                                  entry->isym.st_name);
3219
 
3220
  /* And the rest of dynamic symbols.  */
3221
  elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3222
 
3223
  /* Adjust version definitions.  */
3224
  if (elf_tdata (output_bfd)->cverdefs)
3225
    {
3226
      asection *s;
3227
      bfd_byte *p;
3228
      bfd_size_type i;
3229
      Elf_Internal_Verdef def;
3230
      Elf_Internal_Verdaux defaux;
3231
 
3232
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3233
      p = s->contents;
3234
      do
3235
        {
3236
          _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3237
                                   &def);
3238
          p += sizeof (Elf_External_Verdef);
3239
          if (def.vd_aux != sizeof (Elf_External_Verdef))
3240
            continue;
3241
          for (i = 0; i < def.vd_cnt; ++i)
3242
            {
3243
              _bfd_elf_swap_verdaux_in (output_bfd,
3244
                                        (Elf_External_Verdaux *) p, &defaux);
3245
              defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3246
                                                        defaux.vda_name);
3247
              _bfd_elf_swap_verdaux_out (output_bfd,
3248
                                         &defaux, (Elf_External_Verdaux *) p);
3249
              p += sizeof (Elf_External_Verdaux);
3250
            }
3251
        }
3252
      while (def.vd_next);
3253
    }
3254
 
3255
  /* Adjust version references.  */
3256
  if (elf_tdata (output_bfd)->verref)
3257
    {
3258
      asection *s;
3259
      bfd_byte *p;
3260
      bfd_size_type i;
3261
      Elf_Internal_Verneed need;
3262
      Elf_Internal_Vernaux needaux;
3263
 
3264
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3265
      p = s->contents;
3266
      do
3267
        {
3268
          _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3269
                                    &need);
3270
          need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3271
          _bfd_elf_swap_verneed_out (output_bfd, &need,
3272
                                     (Elf_External_Verneed *) p);
3273
          p += sizeof (Elf_External_Verneed);
3274
          for (i = 0; i < need.vn_cnt; ++i)
3275
            {
3276
              _bfd_elf_swap_vernaux_in (output_bfd,
3277
                                        (Elf_External_Vernaux *) p, &needaux);
3278
              needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3279
                                                         needaux.vna_name);
3280
              _bfd_elf_swap_vernaux_out (output_bfd,
3281
                                         &needaux,
3282
                                         (Elf_External_Vernaux *) p);
3283
              p += sizeof (Elf_External_Vernaux);
3284
            }
3285
        }
3286
      while (need.vn_next);
3287
    }
3288
 
3289
  return TRUE;
3290
}
3291
 
3292
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3293
   The default is to only match when the INPUT and OUTPUT are exactly
3294
   the same target.  */
3295
 
3296
bfd_boolean
3297
_bfd_elf_default_relocs_compatible (const bfd_target *input,
3298
                                    const bfd_target *output)
3299
{
3300
  return input == output;
3301
}
3302
 
3303
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304
   This version is used when different targets for the same architecture
3305
   are virtually identical.  */
3306
 
3307
bfd_boolean
3308
_bfd_elf_relocs_compatible (const bfd_target *input,
3309
                            const bfd_target *output)
3310
{
3311
  const struct elf_backend_data *obed, *ibed;
3312
 
3313
  if (input == output)
3314
    return TRUE;
3315
 
3316
  ibed = xvec_get_elf_backend_data (input);
3317
  obed = xvec_get_elf_backend_data (output);
3318
 
3319
  if (ibed->arch != obed->arch)
3320
    return FALSE;
3321
 
3322
  /* If both backends are using this function, deem them compatible.  */
3323
  return ibed->relocs_compatible == obed->relocs_compatible;
3324
}
3325
 
3326
/* Add symbols from an ELF object file to the linker hash table.  */
3327
 
3328
static bfd_boolean
3329
elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3330
{
3331
  Elf_Internal_Ehdr *ehdr;
3332
  Elf_Internal_Shdr *hdr;
3333
  bfd_size_type symcount;
3334
  bfd_size_type extsymcount;
3335
  bfd_size_type extsymoff;
3336
  struct elf_link_hash_entry **sym_hash;
3337
  bfd_boolean dynamic;
3338
  Elf_External_Versym *extversym = NULL;
3339
  Elf_External_Versym *ever;
3340
  struct elf_link_hash_entry *weaks;
3341
  struct elf_link_hash_entry **nondeflt_vers = NULL;
3342
  bfd_size_type nondeflt_vers_cnt = 0;
3343
  Elf_Internal_Sym *isymbuf = NULL;
3344
  Elf_Internal_Sym *isym;
3345
  Elf_Internal_Sym *isymend;
3346
  const struct elf_backend_data *bed;
3347
  bfd_boolean add_needed;
3348
  struct elf_link_hash_table *htab;
3349
  bfd_size_type amt;
3350
  void *alloc_mark = NULL;
3351
  struct bfd_hash_entry **old_table = NULL;
3352
  unsigned int old_size = 0;
3353
  unsigned int old_count = 0;
3354
  void *old_tab = NULL;
3355
  void *old_hash;
3356
  void *old_ent;
3357
  struct bfd_link_hash_entry *old_undefs = NULL;
3358
  struct bfd_link_hash_entry *old_undefs_tail = NULL;
3359
  long old_dynsymcount = 0;
3360
  size_t tabsize = 0;
3361
  size_t hashsize = 0;
3362
 
3363
  htab = elf_hash_table (info);
3364
  bed = get_elf_backend_data (abfd);
3365
 
3366
  if ((abfd->flags & DYNAMIC) == 0)
3367
    dynamic = FALSE;
3368
  else
3369
    {
3370
      dynamic = TRUE;
3371
 
3372
      /* You can't use -r against a dynamic object.  Also, there's no
3373
         hope of using a dynamic object which does not exactly match
3374
         the format of the output file.  */
3375
      if (info->relocatable
3376
          || !is_elf_hash_table (htab)
3377
          || info->output_bfd->xvec != abfd->xvec)
3378
        {
3379
          if (info->relocatable)
3380
            bfd_set_error (bfd_error_invalid_operation);
3381
          else
3382
            bfd_set_error (bfd_error_wrong_format);
3383
          goto error_return;
3384
        }
3385
    }
3386
 
3387
  ehdr = elf_elfheader (abfd);
3388
  if (info->warn_alternate_em
3389
      && bed->elf_machine_code != ehdr->e_machine
3390
      && ((bed->elf_machine_alt1 != 0
3391
           && ehdr->e_machine == bed->elf_machine_alt1)
3392
          || (bed->elf_machine_alt2 != 0
3393
              && ehdr->e_machine == bed->elf_machine_alt2)))
3394
    info->callbacks->einfo
3395
      (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3396
       ehdr->e_machine, abfd, bed->elf_machine_code);
3397
 
3398
  /* As a GNU extension, any input sections which are named
3399
     .gnu.warning.SYMBOL are treated as warning symbols for the given
3400
     symbol.  This differs from .gnu.warning sections, which generate
3401
     warnings when they are included in an output file.  */
3402
  /* PR 12761: Also generate this warning when building shared libraries.  */
3403
  if (info->executable || info->shared)
3404
    {
3405
      asection *s;
3406
 
3407
      for (s = abfd->sections; s != NULL; s = s->next)
3408
        {
3409
          const char *name;
3410
 
3411
          name = bfd_get_section_name (abfd, s);
3412
          if (CONST_STRNEQ (name, ".gnu.warning."))
3413
            {
3414
              char *msg;
3415
              bfd_size_type sz;
3416
 
3417
              name += sizeof ".gnu.warning." - 1;
3418
 
3419
              /* If this is a shared object, then look up the symbol
3420
                 in the hash table.  If it is there, and it is already
3421
                 been defined, then we will not be using the entry
3422
                 from this shared object, so we don't need to warn.
3423
                 FIXME: If we see the definition in a regular object
3424
                 later on, we will warn, but we shouldn't.  The only
3425
                 fix is to keep track of what warnings we are supposed
3426
                 to emit, and then handle them all at the end of the
3427
                 link.  */
3428
              if (dynamic)
3429
                {
3430
                  struct elf_link_hash_entry *h;
3431
 
3432
                  h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3433
 
3434
                  /* FIXME: What about bfd_link_hash_common?  */
3435
                  if (h != NULL
3436
                      && (h->root.type == bfd_link_hash_defined
3437
                          || h->root.type == bfd_link_hash_defweak))
3438
                    {
3439
                      /* We don't want to issue this warning.  Clobber
3440
                         the section size so that the warning does not
3441
                         get copied into the output file.  */
3442
                      s->size = 0;
3443
                      continue;
3444
                    }
3445
                }
3446
 
3447
              sz = s->size;
3448
              msg = (char *) bfd_alloc (abfd, sz + 1);
3449
              if (msg == NULL)
3450
                goto error_return;
3451
 
3452
              if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3453
                goto error_return;
3454
 
3455
              msg[sz] = '\0';
3456
 
3457
              if (! (_bfd_generic_link_add_one_symbol
3458
                     (info, abfd, name, BSF_WARNING, s, 0, msg,
3459
                      FALSE, bed->collect, NULL)))
3460
                goto error_return;
3461
 
3462
              if (! info->relocatable)
3463
                {
3464
                  /* Clobber the section size so that the warning does
3465
                     not get copied into the output file.  */
3466
                  s->size = 0;
3467
 
3468
                  /* Also set SEC_EXCLUDE, so that symbols defined in
3469
                     the warning section don't get copied to the output.  */
3470
                  s->flags |= SEC_EXCLUDE;
3471
                }
3472
            }
3473
        }
3474
    }
3475
 
3476
  add_needed = TRUE;
3477
  if (! dynamic)
3478
    {
3479
      /* If we are creating a shared library, create all the dynamic
3480
         sections immediately.  We need to attach them to something,
3481
         so we attach them to this BFD, provided it is the right
3482
         format.  FIXME: If there are no input BFD's of the same
3483
         format as the output, we can't make a shared library.  */
3484
      if (info->shared
3485
          && is_elf_hash_table (htab)
3486
          && info->output_bfd->xvec == abfd->xvec
3487
          && !htab->dynamic_sections_created)
3488
        {
3489
          if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3490
            goto error_return;
3491
        }
3492
    }
3493
  else if (!is_elf_hash_table (htab))
3494
    goto error_return;
3495
  else
3496
    {
3497
      asection *s;
3498
      const char *soname = NULL;
3499
      char *audit = NULL;
3500
      struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3501
      int ret;
3502
 
3503
      /* ld --just-symbols and dynamic objects don't mix very well.
3504
         ld shouldn't allow it.  */
3505
      if ((s = abfd->sections) != NULL
3506
          && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3507
        abort ();
3508
 
3509
      /* If this dynamic lib was specified on the command line with
3510
         --as-needed in effect, then we don't want to add a DT_NEEDED
3511
         tag unless the lib is actually used.  Similary for libs brought
3512
         in by another lib's DT_NEEDED.  When --no-add-needed is used
3513
         on a dynamic lib, we don't want to add a DT_NEEDED entry for
3514
         any dynamic library in DT_NEEDED tags in the dynamic lib at
3515
         all.  */
3516
      add_needed = (elf_dyn_lib_class (abfd)
3517
                    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3518
                       | DYN_NO_NEEDED)) == 0;
3519
 
3520
      s = bfd_get_section_by_name (abfd, ".dynamic");
3521
      if (s != NULL)
3522
        {
3523
          bfd_byte *dynbuf;
3524
          bfd_byte *extdyn;
3525
          unsigned int elfsec;
3526
          unsigned long shlink;
3527
 
3528
          if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3529
            {
3530
error_free_dyn:
3531
              free (dynbuf);
3532
              goto error_return;
3533
            }
3534
 
3535
          elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3536
          if (elfsec == SHN_BAD)
3537
            goto error_free_dyn;
3538
          shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3539
 
3540
          for (extdyn = dynbuf;
3541
               extdyn < dynbuf + s->size;
3542
               extdyn += bed->s->sizeof_dyn)
3543
            {
3544
              Elf_Internal_Dyn dyn;
3545
 
3546
              bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3547
              if (dyn.d_tag == DT_SONAME)
3548
                {
3549
                  unsigned int tagv = dyn.d_un.d_val;
3550
                  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551
                  if (soname == NULL)
3552
                    goto error_free_dyn;
3553
                }
3554
              if (dyn.d_tag == DT_NEEDED)
3555
                {
3556
                  struct bfd_link_needed_list *n, **pn;
3557
                  char *fnm, *anm;
3558
                  unsigned int tagv = dyn.d_un.d_val;
3559
 
3560
                  amt = sizeof (struct bfd_link_needed_list);
3561
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3562
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563
                  if (n == NULL || fnm == NULL)
3564
                    goto error_free_dyn;
3565
                  amt = strlen (fnm) + 1;
3566
                  anm = (char *) bfd_alloc (abfd, amt);
3567
                  if (anm == NULL)
3568
                    goto error_free_dyn;
3569
                  memcpy (anm, fnm, amt);
3570
                  n->name = anm;
3571
                  n->by = abfd;
3572
                  n->next = NULL;
3573
                  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3574
                    ;
3575
                  *pn = n;
3576
                }
3577
              if (dyn.d_tag == DT_RUNPATH)
3578
                {
3579
                  struct bfd_link_needed_list *n, **pn;
3580
                  char *fnm, *anm;
3581
                  unsigned int tagv = dyn.d_un.d_val;
3582
 
3583
                  amt = sizeof (struct bfd_link_needed_list);
3584
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3585
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586
                  if (n == NULL || fnm == NULL)
3587
                    goto error_free_dyn;
3588
                  amt = strlen (fnm) + 1;
3589
                  anm = (char *) bfd_alloc (abfd, amt);
3590
                  if (anm == NULL)
3591
                    goto error_free_dyn;
3592
                  memcpy (anm, fnm, amt);
3593
                  n->name = anm;
3594
                  n->by = abfd;
3595
                  n->next = NULL;
3596
                  for (pn = & runpath;
3597
                       *pn != NULL;
3598
                       pn = &(*pn)->next)
3599
                    ;
3600
                  *pn = n;
3601
                }
3602
              /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3603
              if (!runpath && dyn.d_tag == DT_RPATH)
3604
                {
3605
                  struct bfd_link_needed_list *n, **pn;
3606
                  char *fnm, *anm;
3607
                  unsigned int tagv = dyn.d_un.d_val;
3608
 
3609
                  amt = sizeof (struct bfd_link_needed_list);
3610
                  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3611
                  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3612
                  if (n == NULL || fnm == NULL)
3613
                    goto error_free_dyn;
3614
                  amt = strlen (fnm) + 1;
3615
                  anm = (char *) bfd_alloc (abfd, amt);
3616
                  if (anm == NULL)
3617
                    goto error_free_dyn;
3618
                  memcpy (anm, fnm, amt);
3619
                  n->name = anm;
3620
                  n->by = abfd;
3621
                  n->next = NULL;
3622
                  for (pn = & rpath;
3623
                       *pn != NULL;
3624
                       pn = &(*pn)->next)
3625
                    ;
3626
                  *pn = n;
3627
                }
3628
              if (dyn.d_tag == DT_AUDIT)
3629
                {
3630
                  unsigned int tagv = dyn.d_un.d_val;
3631
                  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3632
                }
3633
            }
3634
 
3635
          free (dynbuf);
3636
        }
3637
 
3638
      /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3639
         frees all more recently bfd_alloc'd blocks as well.  */
3640
      if (runpath)
3641
        rpath = runpath;
3642
 
3643
      if (rpath)
3644
        {
3645
          struct bfd_link_needed_list **pn;
3646
          for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3647
            ;
3648
          *pn = rpath;
3649
        }
3650
 
3651
      /* We do not want to include any of the sections in a dynamic
3652
         object in the output file.  We hack by simply clobbering the
3653
         list of sections in the BFD.  This could be handled more
3654
         cleanly by, say, a new section flag; the existing
3655
         SEC_NEVER_LOAD flag is not the one we want, because that one
3656
         still implies that the section takes up space in the output
3657
         file.  */
3658
      bfd_section_list_clear (abfd);
3659
 
3660
      /* Find the name to use in a DT_NEEDED entry that refers to this
3661
         object.  If the object has a DT_SONAME entry, we use it.
3662
         Otherwise, if the generic linker stuck something in
3663
         elf_dt_name, we use that.  Otherwise, we just use the file
3664
         name.  */
3665
      if (soname == NULL || *soname == '\0')
3666
        {
3667
          soname = elf_dt_name (abfd);
3668
          if (soname == NULL || *soname == '\0')
3669
            soname = bfd_get_filename (abfd);
3670
        }
3671
 
3672
      /* Save the SONAME because sometimes the linker emulation code
3673
         will need to know it.  */
3674
      elf_dt_name (abfd) = soname;
3675
 
3676
      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3677
      if (ret < 0)
3678
        goto error_return;
3679
 
3680
      /* If we have already included this dynamic object in the
3681
         link, just ignore it.  There is no reason to include a
3682
         particular dynamic object more than once.  */
3683
      if (ret > 0)
3684
        return TRUE;
3685
 
3686
      /* Save the DT_AUDIT entry for the linker emulation code. */
3687
      elf_dt_audit (abfd) = audit;
3688
    }
3689
 
3690
  /* If this is a dynamic object, we always link against the .dynsym
3691
     symbol table, not the .symtab symbol table.  The dynamic linker
3692
     will only see the .dynsym symbol table, so there is no reason to
3693
     look at .symtab for a dynamic object.  */
3694
 
3695
  if (! dynamic || elf_dynsymtab (abfd) == 0)
3696
    hdr = &elf_tdata (abfd)->symtab_hdr;
3697
  else
3698
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3699
 
3700
  symcount = hdr->sh_size / bed->s->sizeof_sym;
3701
 
3702
  /* The sh_info field of the symtab header tells us where the
3703
     external symbols start.  We don't care about the local symbols at
3704
     this point.  */
3705
  if (elf_bad_symtab (abfd))
3706
    {
3707
      extsymcount = symcount;
3708
      extsymoff = 0;
3709
    }
3710
  else
3711
    {
3712
      extsymcount = symcount - hdr->sh_info;
3713
      extsymoff = hdr->sh_info;
3714
    }
3715
 
3716
  sym_hash = NULL;
3717
  if (extsymcount != 0)
3718
    {
3719
      isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3720
                                      NULL, NULL, NULL);
3721
      if (isymbuf == NULL)
3722
        goto error_return;
3723
 
3724
      /* We store a pointer to the hash table entry for each external
3725
         symbol.  */
3726
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3727
      sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3728
      if (sym_hash == NULL)
3729
        goto error_free_sym;
3730
      elf_sym_hashes (abfd) = sym_hash;
3731
    }
3732
 
3733
  if (dynamic)
3734
    {
3735
      /* Read in any version definitions.  */
3736
      if (!_bfd_elf_slurp_version_tables (abfd,
3737
                                          info->default_imported_symver))
3738
        goto error_free_sym;
3739
 
3740
      /* Read in the symbol versions, but don't bother to convert them
3741
         to internal format.  */
3742
      if (elf_dynversym (abfd) != 0)
3743
        {
3744
          Elf_Internal_Shdr *versymhdr;
3745
 
3746
          versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3747
          extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3748
          if (extversym == NULL)
3749
            goto error_free_sym;
3750
          amt = versymhdr->sh_size;
3751
          if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3752
              || bfd_bread (extversym, amt, abfd) != amt)
3753
            goto error_free_vers;
3754
        }
3755
    }
3756
 
3757
  /* If we are loading an as-needed shared lib, save the symbol table
3758
     state before we start adding symbols.  If the lib turns out
3759
     to be unneeded, restore the state.  */
3760
  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3761
    {
3762
      unsigned int i;
3763
      size_t entsize;
3764
 
3765
      for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3766
        {
3767
          struct bfd_hash_entry *p;
3768
          struct elf_link_hash_entry *h;
3769
 
3770
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3771
            {
3772
              h = (struct elf_link_hash_entry *) p;
3773
              entsize += htab->root.table.entsize;
3774
              if (h->root.type == bfd_link_hash_warning)
3775
                entsize += htab->root.table.entsize;
3776
            }
3777
        }
3778
 
3779
      tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3780
      hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3781
      old_tab = bfd_malloc (tabsize + entsize + hashsize);
3782
      if (old_tab == NULL)
3783
        goto error_free_vers;
3784
 
3785
      /* Remember the current objalloc pointer, so that all mem for
3786
         symbols added can later be reclaimed.  */
3787
      alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3788
      if (alloc_mark == NULL)
3789
        goto error_free_vers;
3790
 
3791
      /* Make a special call to the linker "notice" function to
3792
         tell it that we are about to handle an as-needed lib.  */
3793
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3794
                                       notice_as_needed, 0, NULL))
3795
        goto error_free_vers;
3796
 
3797
      /* Clone the symbol table and sym hashes.  Remember some
3798
         pointers into the symbol table, and dynamic symbol count.  */
3799
      old_hash = (char *) old_tab + tabsize;
3800
      old_ent = (char *) old_hash + hashsize;
3801
      memcpy (old_tab, htab->root.table.table, tabsize);
3802
      memcpy (old_hash, sym_hash, hashsize);
3803
      old_undefs = htab->root.undefs;
3804
      old_undefs_tail = htab->root.undefs_tail;
3805
      old_table = htab->root.table.table;
3806
      old_size = htab->root.table.size;
3807
      old_count = htab->root.table.count;
3808
      old_dynsymcount = htab->dynsymcount;
3809
 
3810
      for (i = 0; i < htab->root.table.size; i++)
3811
        {
3812
          struct bfd_hash_entry *p;
3813
          struct elf_link_hash_entry *h;
3814
 
3815
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3816
            {
3817
              memcpy (old_ent, p, htab->root.table.entsize);
3818
              old_ent = (char *) old_ent + htab->root.table.entsize;
3819
              h = (struct elf_link_hash_entry *) p;
3820
              if (h->root.type == bfd_link_hash_warning)
3821
                {
3822
                  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3823
                  old_ent = (char *) old_ent + htab->root.table.entsize;
3824
                }
3825
            }
3826
        }
3827
    }
3828
 
3829
  weaks = NULL;
3830
  ever = extversym != NULL ? extversym + extsymoff : NULL;
3831
  for (isym = isymbuf, isymend = isymbuf + extsymcount;
3832
       isym < isymend;
3833
       isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3834
    {
3835
      int bind;
3836
      bfd_vma value;
3837
      asection *sec, *new_sec;
3838
      flagword flags;
3839
      const char *name;
3840
      struct elf_link_hash_entry *h;
3841
      bfd_boolean definition;
3842
      bfd_boolean size_change_ok;
3843
      bfd_boolean type_change_ok;
3844
      bfd_boolean new_weakdef;
3845
      bfd_boolean override;
3846
      bfd_boolean common;
3847
      unsigned int old_alignment;
3848
      bfd *old_bfd;
3849
      bfd * undef_bfd = NULL;
3850
 
3851
      override = FALSE;
3852
 
3853
      flags = BSF_NO_FLAGS;
3854
      sec = NULL;
3855
      value = isym->st_value;
3856
      *sym_hash = NULL;
3857
      common = bed->common_definition (isym);
3858
 
3859
      bind = ELF_ST_BIND (isym->st_info);
3860
      switch (bind)
3861
        {
3862
        case STB_LOCAL:
3863
          /* This should be impossible, since ELF requires that all
3864
             global symbols follow all local symbols, and that sh_info
3865
             point to the first global symbol.  Unfortunately, Irix 5
3866
             screws this up.  */
3867
          continue;
3868
 
3869
        case STB_GLOBAL:
3870
          if (isym->st_shndx != SHN_UNDEF && !common)
3871
            flags = BSF_GLOBAL;
3872
          break;
3873
 
3874
        case STB_WEAK:
3875
          flags = BSF_WEAK;
3876
          break;
3877
 
3878
        case STB_GNU_UNIQUE:
3879
          flags = BSF_GNU_UNIQUE;
3880
          break;
3881
 
3882
        default:
3883
          /* Leave it up to the processor backend.  */
3884
          break;
3885
        }
3886
 
3887
      if (isym->st_shndx == SHN_UNDEF)
3888
        sec = bfd_und_section_ptr;
3889
      else if (isym->st_shndx == SHN_ABS)
3890
        sec = bfd_abs_section_ptr;
3891
      else if (isym->st_shndx == SHN_COMMON)
3892
        {
3893
          sec = bfd_com_section_ptr;
3894
          /* What ELF calls the size we call the value.  What ELF
3895
             calls the value we call the alignment.  */
3896
          value = isym->st_size;
3897
        }
3898
      else
3899
        {
3900
          sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3901
          if (sec == NULL)
3902
            sec = bfd_abs_section_ptr;
3903 161 khays
          else if (elf_discarded_section (sec))
3904 14 khays
            {
3905
              /* Symbols from discarded section are undefined.  We keep
3906
                 its visibility.  */
3907
              sec = bfd_und_section_ptr;
3908
              isym->st_shndx = SHN_UNDEF;
3909
            }
3910
          else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3911
            value -= sec->vma;
3912
        }
3913
 
3914
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3915
                                              isym->st_name);
3916
      if (name == NULL)
3917
        goto error_free_vers;
3918
 
3919
      if (isym->st_shndx == SHN_COMMON
3920
          && (abfd->flags & BFD_PLUGIN) != 0)
3921
        {
3922
          asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3923
 
3924
          if (xc == NULL)
3925
            {
3926
              flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3927
                                 | SEC_EXCLUDE);
3928
              xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3929
              if (xc == NULL)
3930
                goto error_free_vers;
3931
            }
3932
          sec = xc;
3933
        }
3934
      else if (isym->st_shndx == SHN_COMMON
3935
               && ELF_ST_TYPE (isym->st_info) == STT_TLS
3936
               && !info->relocatable)
3937
        {
3938
          asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3939
 
3940
          if (tcomm == NULL)
3941
            {
3942
              flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3943
                                 | SEC_LINKER_CREATED);
3944
              tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3945
              if (tcomm == NULL)
3946
                goto error_free_vers;
3947
            }
3948
          sec = tcomm;
3949
        }
3950
      else if (bed->elf_add_symbol_hook)
3951
        {
3952
          if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3953
                                             &sec, &value))
3954
            goto error_free_vers;
3955
 
3956
          /* The hook function sets the name to NULL if this symbol
3957
             should be skipped for some reason.  */
3958
          if (name == NULL)
3959
            continue;
3960
        }
3961
 
3962
      /* Sanity check that all possibilities were handled.  */
3963
      if (sec == NULL)
3964
        {
3965
          bfd_set_error (bfd_error_bad_value);
3966
          goto error_free_vers;
3967
        }
3968
 
3969
      if (bfd_is_und_section (sec)
3970
          || bfd_is_com_section (sec))
3971
        definition = FALSE;
3972
      else
3973
        definition = TRUE;
3974
 
3975
      size_change_ok = FALSE;
3976
      type_change_ok = bed->type_change_ok;
3977
      old_alignment = 0;
3978
      old_bfd = NULL;
3979
      new_sec = sec;
3980
 
3981
      if (is_elf_hash_table (htab))
3982
        {
3983
          Elf_Internal_Versym iver;
3984
          unsigned int vernum = 0;
3985
          bfd_boolean skip;
3986
 
3987
          /* If this is a definition of a symbol which was previously
3988
             referenced in a non-weak manner then make a note of the bfd
3989
             that contained the reference.  This is used if we need to
3990
             refer to the source of the reference later on.  */
3991
          if (! bfd_is_und_section (sec))
3992
            {
3993
              h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3994
 
3995
              if (h != NULL
3996
                  && h->root.type == bfd_link_hash_undefined
3997
                  && h->root.u.undef.abfd)
3998
                undef_bfd = h->root.u.undef.abfd;
3999
            }
4000
 
4001
          if (ever == NULL)
4002
            {
4003
              if (info->default_imported_symver)
4004
                /* Use the default symbol version created earlier.  */
4005
                iver.vs_vers = elf_tdata (abfd)->cverdefs;
4006
              else
4007
                iver.vs_vers = 0;
4008
            }
4009
          else
4010
            _bfd_elf_swap_versym_in (abfd, ever, &iver);
4011
 
4012
          vernum = iver.vs_vers & VERSYM_VERSION;
4013
 
4014
          /* If this is a hidden symbol, or if it is not version
4015
             1, we append the version name to the symbol name.
4016
             However, we do not modify a non-hidden absolute symbol
4017
             if it is not a function, because it might be the version
4018
             symbol itself.  FIXME: What if it isn't?  */
4019
          if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4020
              || (vernum > 1
4021
                  && (!bfd_is_abs_section (sec)
4022
                      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4023
            {
4024
              const char *verstr;
4025
              size_t namelen, verlen, newlen;
4026
              char *newname, *p;
4027
 
4028
              if (isym->st_shndx != SHN_UNDEF)
4029
                {
4030
                  if (vernum > elf_tdata (abfd)->cverdefs)
4031
                    verstr = NULL;
4032
                  else if (vernum > 1)
4033
                    verstr =
4034
                      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4035
                  else
4036
                    verstr = "";
4037
 
4038
                  if (verstr == NULL)
4039
                    {
4040
                      (*_bfd_error_handler)
4041
                        (_("%B: %s: invalid version %u (max %d)"),
4042
                         abfd, name, vernum,
4043
                         elf_tdata (abfd)->cverdefs);
4044
                      bfd_set_error (bfd_error_bad_value);
4045
                      goto error_free_vers;
4046
                    }
4047
                }
4048
              else
4049
                {
4050
                  /* We cannot simply test for the number of
4051
                     entries in the VERNEED section since the
4052
                     numbers for the needed versions do not start
4053
                     at 0.  */
4054
                  Elf_Internal_Verneed *t;
4055
 
4056
                  verstr = NULL;
4057
                  for (t = elf_tdata (abfd)->verref;
4058
                       t != NULL;
4059
                       t = t->vn_nextref)
4060
                    {
4061
                      Elf_Internal_Vernaux *a;
4062
 
4063
                      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4064
                        {
4065
                          if (a->vna_other == vernum)
4066
                            {
4067
                              verstr = a->vna_nodename;
4068
                              break;
4069
                            }
4070
                        }
4071
                      if (a != NULL)
4072
                        break;
4073
                    }
4074
                  if (verstr == NULL)
4075
                    {
4076
                      (*_bfd_error_handler)
4077
                        (_("%B: %s: invalid needed version %d"),
4078
                         abfd, name, vernum);
4079
                      bfd_set_error (bfd_error_bad_value);
4080
                      goto error_free_vers;
4081
                    }
4082
                }
4083
 
4084
              namelen = strlen (name);
4085
              verlen = strlen (verstr);
4086
              newlen = namelen + verlen + 2;
4087
              if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4088
                  && isym->st_shndx != SHN_UNDEF)
4089
                ++newlen;
4090
 
4091
              newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4092
              if (newname == NULL)
4093
                goto error_free_vers;
4094
              memcpy (newname, name, namelen);
4095
              p = newname + namelen;
4096
              *p++ = ELF_VER_CHR;
4097
              /* If this is a defined non-hidden version symbol,
4098
                 we add another @ to the name.  This indicates the
4099
                 default version of the symbol.  */
4100
              if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4101
                  && isym->st_shndx != SHN_UNDEF)
4102
                *p++ = ELF_VER_CHR;
4103
              memcpy (p, verstr, verlen + 1);
4104
 
4105
              name = newname;
4106
            }
4107
 
4108
          /* If necessary, make a second attempt to locate the bfd
4109
             containing an unresolved, non-weak reference to the
4110
             current symbol.  */
4111
          if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4112
            {
4113
              h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4114
 
4115
              if (h != NULL
4116
                  && h->root.type == bfd_link_hash_undefined
4117
                  && h->root.u.undef.abfd)
4118
                undef_bfd = h->root.u.undef.abfd;
4119
            }
4120
 
4121
          if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4122
                                      &value, &old_alignment,
4123
                                      sym_hash, &skip, &override,
4124
                                      &type_change_ok, &size_change_ok))
4125
            goto error_free_vers;
4126
 
4127
          if (skip)
4128
            continue;
4129
 
4130
          if (override)
4131
            definition = FALSE;
4132
 
4133
          h = *sym_hash;
4134
          while (h->root.type == bfd_link_hash_indirect
4135
                 || h->root.type == bfd_link_hash_warning)
4136
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
4137
 
4138
          /* Remember the old alignment if this is a common symbol, so
4139
             that we don't reduce the alignment later on.  We can't
4140
             check later, because _bfd_generic_link_add_one_symbol
4141
             will set a default for the alignment which we want to
4142
             override. We also remember the old bfd where the existing
4143
             definition comes from.  */
4144
          switch (h->root.type)
4145
            {
4146
            default:
4147
              break;
4148
 
4149
            case bfd_link_hash_defined:
4150
            case bfd_link_hash_defweak:
4151
              old_bfd = h->root.u.def.section->owner;
4152
              break;
4153
 
4154
            case bfd_link_hash_common:
4155
              old_bfd = h->root.u.c.p->section->owner;
4156
              old_alignment = h->root.u.c.p->alignment_power;
4157
              break;
4158
            }
4159
 
4160
          if (elf_tdata (abfd)->verdef != NULL
4161
              && ! override
4162
              && vernum > 1
4163
              && definition)
4164
            h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4165
        }
4166
 
4167
      if (! (_bfd_generic_link_add_one_symbol
4168
             (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4169
              (struct bfd_link_hash_entry **) sym_hash)))
4170
        goto error_free_vers;
4171
 
4172
      h = *sym_hash;
4173
      while (h->root.type == bfd_link_hash_indirect
4174
             || h->root.type == bfd_link_hash_warning)
4175
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
4176
 
4177
      *sym_hash = h;
4178
      if (is_elf_hash_table (htab))
4179
        h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4180
 
4181
      new_weakdef = FALSE;
4182
      if (dynamic
4183
          && definition
4184
          && (flags & BSF_WEAK) != 0
4185
          && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4186
          && is_elf_hash_table (htab)
4187
          && h->u.weakdef == NULL)
4188
        {
4189
          /* Keep a list of all weak defined non function symbols from
4190
             a dynamic object, using the weakdef field.  Later in this
4191
             function we will set the weakdef field to the correct
4192
             value.  We only put non-function symbols from dynamic
4193
             objects on this list, because that happens to be the only
4194
             time we need to know the normal symbol corresponding to a
4195
             weak symbol, and the information is time consuming to
4196
             figure out.  If the weakdef field is not already NULL,
4197
             then this symbol was already defined by some previous
4198
             dynamic object, and we will be using that previous
4199
             definition anyhow.  */
4200
 
4201
          h->u.weakdef = weaks;
4202
          weaks = h;
4203
          new_weakdef = TRUE;
4204
        }
4205
 
4206
      /* Set the alignment of a common symbol.  */
4207
      if ((common || bfd_is_com_section (sec))
4208
          && h->root.type == bfd_link_hash_common)
4209
        {
4210
          unsigned int align;
4211
 
4212
          if (common)
4213
            align = bfd_log2 (isym->st_value);
4214
          else
4215
            {
4216
              /* The new symbol is a common symbol in a shared object.
4217
                 We need to get the alignment from the section.  */
4218
              align = new_sec->alignment_power;
4219
            }
4220
          if (align > old_alignment)
4221
            h->root.u.c.p->alignment_power = align;
4222
          else
4223
            h->root.u.c.p->alignment_power = old_alignment;
4224
        }
4225
 
4226
      if (is_elf_hash_table (htab))
4227
        {
4228
          bfd_boolean dynsym;
4229
 
4230
          /* Check the alignment when a common symbol is involved. This
4231
             can change when a common symbol is overridden by a normal
4232
             definition or a common symbol is ignored due to the old
4233
             normal definition. We need to make sure the maximum
4234
             alignment is maintained.  */
4235
          if ((old_alignment || common)
4236
              && h->root.type != bfd_link_hash_common)
4237
            {
4238
              unsigned int common_align;
4239
              unsigned int normal_align;
4240
              unsigned int symbol_align;
4241
              bfd *normal_bfd;
4242
              bfd *common_bfd;
4243
 
4244
              symbol_align = ffs (h->root.u.def.value) - 1;
4245
              if (h->root.u.def.section->owner != NULL
4246
                  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4247
                {
4248
                  normal_align = h->root.u.def.section->alignment_power;
4249
                  if (normal_align > symbol_align)
4250
                    normal_align = symbol_align;
4251
                }
4252
              else
4253
                normal_align = symbol_align;
4254
 
4255
              if (old_alignment)
4256
                {
4257
                  common_align = old_alignment;
4258
                  common_bfd = old_bfd;
4259
                  normal_bfd = abfd;
4260
                }
4261
              else
4262
                {
4263
                  common_align = bfd_log2 (isym->st_value);
4264
                  common_bfd = abfd;
4265
                  normal_bfd = old_bfd;
4266
                }
4267
 
4268
              if (normal_align < common_align)
4269
                {
4270
                  /* PR binutils/2735 */
4271
                  if (normal_bfd == NULL)
4272
                    (*_bfd_error_handler)
4273
                      (_("Warning: alignment %u of common symbol `%s' in %B"
4274
                         " is greater than the alignment (%u) of its section %A"),
4275
                       common_bfd, h->root.u.def.section,
4276
                       1 << common_align, name, 1 << normal_align);
4277
                  else
4278
                    (*_bfd_error_handler)
4279
                      (_("Warning: alignment %u of symbol `%s' in %B"
4280
                         " is smaller than %u in %B"),
4281
                       normal_bfd, common_bfd,
4282
                       1 << normal_align, name, 1 << common_align);
4283
                }
4284
            }
4285
 
4286
          /* Remember the symbol size if it isn't undefined.  */
4287
          if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4288
              && (definition || h->size == 0))
4289
            {
4290
              if (h->size != 0
4291
                  && h->size != isym->st_size
4292
                  && ! size_change_ok)
4293
                (*_bfd_error_handler)
4294
                  (_("Warning: size of symbol `%s' changed"
4295
                     " from %lu in %B to %lu in %B"),
4296
                   old_bfd, abfd,
4297
                   name, (unsigned long) h->size,
4298
                   (unsigned long) isym->st_size);
4299
 
4300
              h->size = isym->st_size;
4301
            }
4302
 
4303
          /* If this is a common symbol, then we always want H->SIZE
4304
             to be the size of the common symbol.  The code just above
4305
             won't fix the size if a common symbol becomes larger.  We
4306
             don't warn about a size change here, because that is
4307
             covered by --warn-common.  Allow changed between different
4308
             function types.  */
4309
          if (h->root.type == bfd_link_hash_common)
4310
            h->size = h->root.u.c.size;
4311
 
4312
          if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4313
              && (definition || h->type == STT_NOTYPE))
4314
            {
4315
              unsigned int type = ELF_ST_TYPE (isym->st_info);
4316
 
4317
              /* Turn an IFUNC symbol from a DSO into a normal FUNC
4318
                 symbol.  */
4319
              if (type == STT_GNU_IFUNC
4320
                  && (abfd->flags & DYNAMIC) != 0)
4321
                type = STT_FUNC;
4322
 
4323
              if (h->type != type)
4324
                {
4325
                  if (h->type != STT_NOTYPE && ! type_change_ok)
4326
                    (*_bfd_error_handler)
4327
                      (_("Warning: type of symbol `%s' changed"
4328
                         " from %d to %d in %B"),
4329
                       abfd, name, h->type, type);
4330
 
4331
                  h->type = type;
4332
                }
4333
            }
4334
 
4335
          /* Merge st_other field.  */
4336
          elf_merge_st_other (abfd, h, isym, definition, dynamic);
4337
 
4338
          /* Set a flag in the hash table entry indicating the type of
4339
             reference or definition we just found.  Keep a count of
4340
             the number of dynamic symbols we find.  A dynamic symbol
4341
             is one which is referenced or defined by both a regular
4342
             object and a shared object.  */
4343
          dynsym = FALSE;
4344
          if (! dynamic)
4345
            {
4346
              if (! definition)
4347
                {
4348
                  h->ref_regular = 1;
4349
                  if (bind != STB_WEAK)
4350
                    h->ref_regular_nonweak = 1;
4351
                }
4352
              else
4353
                {
4354
                  h->def_regular = 1;
4355
                  if (h->def_dynamic)
4356
                    {
4357
                      h->def_dynamic = 0;
4358
                      h->ref_dynamic = 1;
4359
                      h->dynamic_def = 1;
4360
                    }
4361
                }
4362
              if (! info->executable
4363
                  || h->def_dynamic
4364
                  || h->ref_dynamic)
4365
                dynsym = TRUE;
4366
            }
4367
          else
4368
            {
4369
              if (! definition)
4370
                h->ref_dynamic = 1;
4371
              else
4372
                h->def_dynamic = 1;
4373
              if (h->def_regular
4374
                  || h->ref_regular
4375
                  || (h->u.weakdef != NULL
4376
                      && ! new_weakdef
4377
                      && h->u.weakdef->dynindx != -1))
4378
                dynsym = TRUE;
4379
            }
4380
 
4381
          if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4382
            {
4383
              /* We don't want to make debug symbol dynamic.  */
4384
              dynsym = FALSE;
4385
            }
4386
 
4387
          if (definition)
4388
            h->target_internal = isym->st_target_internal;
4389
 
4390
          /* Check to see if we need to add an indirect symbol for
4391
             the default name.  */
4392
          if (definition || h->root.type == bfd_link_hash_common)
4393
            if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4394
                                              &sec, &value, &dynsym,
4395
                                              override))
4396
              goto error_free_vers;
4397
 
4398
          if (definition && !dynamic)
4399
            {
4400
              char *p = strchr (name, ELF_VER_CHR);
4401
              if (p != NULL && p[1] != ELF_VER_CHR)
4402
                {
4403
                  /* Queue non-default versions so that .symver x, x@FOO
4404
                     aliases can be checked.  */
4405
                  if (!nondeflt_vers)
4406
                    {
4407
                      amt = ((isymend - isym + 1)
4408
                             * sizeof (struct elf_link_hash_entry *));
4409
                      nondeflt_vers =
4410
                          (struct elf_link_hash_entry **) bfd_malloc (amt);
4411
                      if (!nondeflt_vers)
4412
                        goto error_free_vers;
4413
                    }
4414
                  nondeflt_vers[nondeflt_vers_cnt++] = h;
4415
                }
4416
            }
4417
 
4418
          if (dynsym && h->dynindx == -1)
4419
            {
4420
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
4421
                goto error_free_vers;
4422
              if (h->u.weakdef != NULL
4423
                  && ! new_weakdef
4424
                  && h->u.weakdef->dynindx == -1)
4425
                {
4426
                  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4427
                    goto error_free_vers;
4428
                }
4429
            }
4430
          else if (dynsym && h->dynindx != -1)
4431
            /* If the symbol already has a dynamic index, but
4432
               visibility says it should not be visible, turn it into
4433
               a local symbol.  */
4434
            switch (ELF_ST_VISIBILITY (h->other))
4435
              {
4436
              case STV_INTERNAL:
4437
              case STV_HIDDEN:
4438
                (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4439
                dynsym = FALSE;
4440
                break;
4441
              }
4442
 
4443
          if (!add_needed
4444
              && definition
4445
              && ((dynsym
4446
                   && h->ref_regular)
4447
                  || (h->ref_dynamic
4448
                      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4449
                      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4450
            {
4451
              int ret;
4452
              const char *soname = elf_dt_name (abfd);
4453
 
4454
              /* A symbol from a library loaded via DT_NEEDED of some
4455
                 other library is referenced by a regular object.
4456
                 Add a DT_NEEDED entry for it.  Issue an error if
4457
                 --no-add-needed is used and the reference was not
4458
                 a weak one.  */
4459
              if (undef_bfd != NULL
4460
                  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4461
                {
4462
                  (*_bfd_error_handler)
4463
                    (_("%B: undefined reference to symbol '%s'"),
4464
                     undef_bfd, name);
4465
                  (*_bfd_error_handler)
4466
                    (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4467
                     abfd, name);
4468
                  bfd_set_error (bfd_error_invalid_operation);
4469
                  goto error_free_vers;
4470
                }
4471
 
4472
              elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4473
                  (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4474
 
4475
              add_needed = TRUE;
4476
              ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4477
              if (ret < 0)
4478
                goto error_free_vers;
4479
 
4480
              BFD_ASSERT (ret == 0);
4481
            }
4482
        }
4483
    }
4484
 
4485
  if (extversym != NULL)
4486
    {
4487
      free (extversym);
4488
      extversym = NULL;
4489
    }
4490
 
4491
  if (isymbuf != NULL)
4492
    {
4493
      free (isymbuf);
4494
      isymbuf = NULL;
4495
    }
4496
 
4497
  if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4498
    {
4499
      unsigned int i;
4500
 
4501
      /* Restore the symbol table.  */
4502
      if (bed->as_needed_cleanup)
4503
        (*bed->as_needed_cleanup) (abfd, info);
4504
      old_hash = (char *) old_tab + tabsize;
4505
      old_ent = (char *) old_hash + hashsize;
4506
      sym_hash = elf_sym_hashes (abfd);
4507
      htab->root.table.table = old_table;
4508
      htab->root.table.size = old_size;
4509
      htab->root.table.count = old_count;
4510
      memcpy (htab->root.table.table, old_tab, tabsize);
4511
      memcpy (sym_hash, old_hash, hashsize);
4512
      htab->root.undefs = old_undefs;
4513
      htab->root.undefs_tail = old_undefs_tail;
4514
      for (i = 0; i < htab->root.table.size; i++)
4515
        {
4516
          struct bfd_hash_entry *p;
4517
          struct elf_link_hash_entry *h;
4518
 
4519
          for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4520
            {
4521
              h = (struct elf_link_hash_entry *) p;
4522
              if (h->root.type == bfd_link_hash_warning)
4523
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524
              if (h->dynindx >= old_dynsymcount)
4525
                _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4526
 
4527
              memcpy (p, old_ent, htab->root.table.entsize);
4528
              old_ent = (char *) old_ent + htab->root.table.entsize;
4529
              h = (struct elf_link_hash_entry *) p;
4530
              if (h->root.type == bfd_link_hash_warning)
4531
                {
4532
                  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4533
                  old_ent = (char *) old_ent + htab->root.table.entsize;
4534
                }
4535
            }
4536
        }
4537
 
4538
      /* Make a special call to the linker "notice" function to
4539
         tell it that symbols added for crefs may need to be removed.  */
4540
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4541
                                       notice_not_needed, 0, NULL))
4542
        goto error_free_vers;
4543
 
4544
      free (old_tab);
4545
      objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4546
                           alloc_mark);
4547
      if (nondeflt_vers != NULL)
4548
        free (nondeflt_vers);
4549
      return TRUE;
4550
    }
4551
 
4552
  if (old_tab != NULL)
4553
    {
4554
      if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4555
                                       notice_needed, 0, NULL))
4556
        goto error_free_vers;
4557
      free (old_tab);
4558
      old_tab = NULL;
4559
    }
4560
 
4561
  /* Now that all the symbols from this input file are created, handle
4562
     .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4563
  if (nondeflt_vers != NULL)
4564
    {
4565
      bfd_size_type cnt, symidx;
4566
 
4567
      for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4568
        {
4569
          struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4570
          char *shortname, *p;
4571
 
4572
          p = strchr (h->root.root.string, ELF_VER_CHR);
4573
          if (p == NULL
4574
              || (h->root.type != bfd_link_hash_defined
4575
                  && h->root.type != bfd_link_hash_defweak))
4576
            continue;
4577
 
4578
          amt = p - h->root.root.string;
4579
          shortname = (char *) bfd_malloc (amt + 1);
4580
          if (!shortname)
4581
            goto error_free_vers;
4582
          memcpy (shortname, h->root.root.string, amt);
4583
          shortname[amt] = '\0';
4584
 
4585
          hi = (struct elf_link_hash_entry *)
4586
               bfd_link_hash_lookup (&htab->root, shortname,
4587
                                     FALSE, FALSE, FALSE);
4588
          if (hi != NULL
4589
              && hi->root.type == h->root.type
4590
              && hi->root.u.def.value == h->root.u.def.value
4591
              && hi->root.u.def.section == h->root.u.def.section)
4592
            {
4593
              (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4594
              hi->root.type = bfd_link_hash_indirect;
4595
              hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4596
              (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4597
              sym_hash = elf_sym_hashes (abfd);
4598
              if (sym_hash)
4599
                for (symidx = 0; symidx < extsymcount; ++symidx)
4600
                  if (sym_hash[symidx] == hi)
4601
                    {
4602
                      sym_hash[symidx] = h;
4603
                      break;
4604
                    }
4605
            }
4606
          free (shortname);
4607
        }
4608
      free (nondeflt_vers);
4609
      nondeflt_vers = NULL;
4610
    }
4611
 
4612
  /* Now set the weakdefs field correctly for all the weak defined
4613
     symbols we found.  The only way to do this is to search all the
4614
     symbols.  Since we only need the information for non functions in
4615
     dynamic objects, that's the only time we actually put anything on
4616
     the list WEAKS.  We need this information so that if a regular
4617
     object refers to a symbol defined weakly in a dynamic object, the
4618
     real symbol in the dynamic object is also put in the dynamic
4619
     symbols; we also must arrange for both symbols to point to the
4620
     same memory location.  We could handle the general case of symbol
4621
     aliasing, but a general symbol alias can only be generated in
4622
     assembler code, handling it correctly would be very time
4623
     consuming, and other ELF linkers don't handle general aliasing
4624
     either.  */
4625
  if (weaks != NULL)
4626
    {
4627
      struct elf_link_hash_entry **hpp;
4628
      struct elf_link_hash_entry **hppend;
4629
      struct elf_link_hash_entry **sorted_sym_hash;
4630
      struct elf_link_hash_entry *h;
4631
      size_t sym_count;
4632
 
4633
      /* Since we have to search the whole symbol list for each weak
4634
         defined symbol, search time for N weak defined symbols will be
4635
         O(N^2). Binary search will cut it down to O(NlogN).  */
4636
      amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4637
      sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4638
      if (sorted_sym_hash == NULL)
4639
        goto error_return;
4640
      sym_hash = sorted_sym_hash;
4641
      hpp = elf_sym_hashes (abfd);
4642
      hppend = hpp + extsymcount;
4643
      sym_count = 0;
4644
      for (; hpp < hppend; hpp++)
4645
        {
4646
          h = *hpp;
4647
          if (h != NULL
4648
              && h->root.type == bfd_link_hash_defined
4649
              && !bed->is_function_type (h->type))
4650
            {
4651
              *sym_hash = h;
4652
              sym_hash++;
4653
              sym_count++;
4654
            }
4655
        }
4656
 
4657
      qsort (sorted_sym_hash, sym_count,
4658
             sizeof (struct elf_link_hash_entry *),
4659
             elf_sort_symbol);
4660
 
4661
      while (weaks != NULL)
4662
        {
4663
          struct elf_link_hash_entry *hlook;
4664
          asection *slook;
4665
          bfd_vma vlook;
4666
          long ilook;
4667
          size_t i, j, idx;
4668
 
4669
          hlook = weaks;
4670
          weaks = hlook->u.weakdef;
4671
          hlook->u.weakdef = NULL;
4672
 
4673
          BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4674
                      || hlook->root.type == bfd_link_hash_defweak
4675
                      || hlook->root.type == bfd_link_hash_common
4676
                      || hlook->root.type == bfd_link_hash_indirect);
4677
          slook = hlook->root.u.def.section;
4678
          vlook = hlook->root.u.def.value;
4679
 
4680
          ilook = -1;
4681
          i = 0;
4682
          j = sym_count;
4683
          while (i < j)
4684
            {
4685
              bfd_signed_vma vdiff;
4686
              idx = (i + j) / 2;
4687
              h = sorted_sym_hash [idx];
4688
              vdiff = vlook - h->root.u.def.value;
4689
              if (vdiff < 0)
4690
                j = idx;
4691
              else if (vdiff > 0)
4692
                i = idx + 1;
4693
              else
4694
                {
4695
                  long sdiff = slook->id - h->root.u.def.section->id;
4696
                  if (sdiff < 0)
4697
                    j = idx;
4698
                  else if (sdiff > 0)
4699
                    i = idx + 1;
4700
                  else
4701
                    {
4702
                      ilook = idx;
4703
                      break;
4704
                    }
4705
                }
4706
            }
4707
 
4708
          /* We didn't find a value/section match.  */
4709
          if (ilook == -1)
4710
            continue;
4711
 
4712
          for (i = ilook; i < sym_count; i++)
4713
            {
4714
              h = sorted_sym_hash [i];
4715
 
4716
              /* Stop if value or section doesn't match.  */
4717
              if (h->root.u.def.value != vlook
4718
                  || h->root.u.def.section != slook)
4719
                break;
4720
              else if (h != hlook)
4721
                {
4722
                  hlook->u.weakdef = h;
4723
 
4724
                  /* If the weak definition is in the list of dynamic
4725
                     symbols, make sure the real definition is put
4726
                     there as well.  */
4727
                  if (hlook->dynindx != -1 && h->dynindx == -1)
4728
                    {
4729
                      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4730
                        {
4731
                        err_free_sym_hash:
4732
                          free (sorted_sym_hash);
4733
                          goto error_return;
4734
                        }
4735
                    }
4736
 
4737
                  /* If the real definition is in the list of dynamic
4738
                     symbols, make sure the weak definition is put
4739
                     there as well.  If we don't do this, then the
4740
                     dynamic loader might not merge the entries for the
4741
                     real definition and the weak definition.  */
4742
                  if (h->dynindx != -1 && hlook->dynindx == -1)
4743
                    {
4744
                      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4745
                        goto err_free_sym_hash;
4746
                    }
4747
                  break;
4748
                }
4749
            }
4750
        }
4751
 
4752
      free (sorted_sym_hash);
4753
    }
4754
 
4755
  if (bed->check_directives
4756
      && !(*bed->check_directives) (abfd, info))
4757
    return FALSE;
4758
 
4759
  /* If this object is the same format as the output object, and it is
4760
     not a shared library, then let the backend look through the
4761
     relocs.
4762
 
4763
     This is required to build global offset table entries and to
4764
     arrange for dynamic relocs.  It is not required for the
4765
     particular common case of linking non PIC code, even when linking
4766
     against shared libraries, but unfortunately there is no way of
4767
     knowing whether an object file has been compiled PIC or not.
4768
     Looking through the relocs is not particularly time consuming.
4769
     The problem is that we must either (1) keep the relocs in memory,
4770
     which causes the linker to require additional runtime memory or
4771
     (2) read the relocs twice from the input file, which wastes time.
4772
     This would be a good case for using mmap.
4773
 
4774
     I have no idea how to handle linking PIC code into a file of a
4775
     different format.  It probably can't be done.  */
4776
  if (! dynamic
4777
      && is_elf_hash_table (htab)
4778
      && bed->check_relocs != NULL
4779
      && elf_object_id (abfd) == elf_hash_table_id (htab)
4780
      && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4781
    {
4782
      asection *o;
4783
 
4784
      for (o = abfd->sections; o != NULL; o = o->next)
4785
        {
4786
          Elf_Internal_Rela *internal_relocs;
4787
          bfd_boolean ok;
4788
 
4789
          if ((o->flags & SEC_RELOC) == 0
4790
              || o->reloc_count == 0
4791
              || ((info->strip == strip_all || info->strip == strip_debugger)
4792
                  && (o->flags & SEC_DEBUGGING) != 0)
4793
              || bfd_is_abs_section (o->output_section))
4794
            continue;
4795
 
4796
          internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4797
                                                       info->keep_memory);
4798
          if (internal_relocs == NULL)
4799
            goto error_return;
4800
 
4801
          ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4802
 
4803
          if (elf_section_data (o)->relocs != internal_relocs)
4804
            free (internal_relocs);
4805
 
4806
          if (! ok)
4807
            goto error_return;
4808
        }
4809
    }
4810
 
4811
  /* If this is a non-traditional link, try to optimize the handling
4812
     of the .stab/.stabstr sections.  */
4813
  if (! dynamic
4814
      && ! info->traditional_format
4815
      && is_elf_hash_table (htab)
4816
      && (info->strip != strip_all && info->strip != strip_debugger))
4817
    {
4818
      asection *stabstr;
4819
 
4820
      stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4821
      if (stabstr != NULL)
4822
        {
4823
          bfd_size_type string_offset = 0;
4824
          asection *stab;
4825
 
4826
          for (stab = abfd->sections; stab; stab = stab->next)
4827
            if (CONST_STRNEQ (stab->name, ".stab")
4828
                && (!stab->name[5] ||
4829
                    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4830
                && (stab->flags & SEC_MERGE) == 0
4831
                && !bfd_is_abs_section (stab->output_section))
4832
              {
4833
                struct bfd_elf_section_data *secdata;
4834
 
4835
                secdata = elf_section_data (stab);
4836
                if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4837
                                               stabstr, &secdata->sec_info,
4838
                                               &string_offset))
4839
                  goto error_return;
4840
                if (secdata->sec_info)
4841
                  stab->sec_info_type = ELF_INFO_TYPE_STABS;
4842
            }
4843
        }
4844
    }
4845
 
4846
  if (is_elf_hash_table (htab) && add_needed)
4847
    {
4848
      /* Add this bfd to the loaded list.  */
4849
      struct elf_link_loaded_list *n;
4850
 
4851
      n = (struct elf_link_loaded_list *)
4852
          bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4853
      if (n == NULL)
4854
        goto error_return;
4855
      n->abfd = abfd;
4856
      n->next = htab->loaded;
4857
      htab->loaded = n;
4858
    }
4859
 
4860
  return TRUE;
4861
 
4862
 error_free_vers:
4863
  if (old_tab != NULL)
4864
    free (old_tab);
4865
  if (nondeflt_vers != NULL)
4866
    free (nondeflt_vers);
4867
  if (extversym != NULL)
4868
    free (extversym);
4869
 error_free_sym:
4870
  if (isymbuf != NULL)
4871
    free (isymbuf);
4872
 error_return:
4873
  return FALSE;
4874
}
4875
 
4876
/* Return the linker hash table entry of a symbol that might be
4877
   satisfied by an archive symbol.  Return -1 on error.  */
4878
 
4879
struct elf_link_hash_entry *
4880
_bfd_elf_archive_symbol_lookup (bfd *abfd,
4881
                                struct bfd_link_info *info,
4882
                                const char *name)
4883
{
4884
  struct elf_link_hash_entry *h;
4885
  char *p, *copy;
4886
  size_t len, first;
4887
 
4888 148 khays
  h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4889 14 khays
  if (h != NULL)
4890
    return h;
4891
 
4892
  /* If this is a default version (the name contains @@), look up the
4893
     symbol again with only one `@' as well as without the version.
4894
     The effect is that references to the symbol with and without the
4895
     version will be matched by the default symbol in the archive.  */
4896
 
4897
  p = strchr (name, ELF_VER_CHR);
4898
  if (p == NULL || p[1] != ELF_VER_CHR)
4899
    return h;
4900
 
4901
  /* First check with only one `@'.  */
4902
  len = strlen (name);
4903
  copy = (char *) bfd_alloc (abfd, len);
4904
  if (copy == NULL)
4905
    return (struct elf_link_hash_entry *) 0 - 1;
4906
 
4907
  first = p - name + 1;
4908
  memcpy (copy, name, first);
4909
  memcpy (copy + first, name + first + 1, len - first);
4910
 
4911 148 khays
  h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4912 14 khays
  if (h == NULL)
4913
    {
4914
      /* We also need to check references to the symbol without the
4915
         version.  */
4916
      copy[first - 1] = '\0';
4917
      h = elf_link_hash_lookup (elf_hash_table (info), copy,
4918 148 khays
                                FALSE, FALSE, TRUE);
4919 14 khays
    }
4920
 
4921
  bfd_release (abfd, copy);
4922
  return h;
4923
}
4924
 
4925
/* Add symbols from an ELF archive file to the linker hash table.  We
4926
   don't use _bfd_generic_link_add_archive_symbols because of a
4927
   problem which arises on UnixWare.  The UnixWare libc.so is an
4928
   archive which includes an entry libc.so.1 which defines a bunch of
4929
   symbols.  The libc.so archive also includes a number of other
4930
   object files, which also define symbols, some of which are the same
4931
   as those defined in libc.so.1.  Correct linking requires that we
4932
   consider each object file in turn, and include it if it defines any
4933
   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4934
   this; it looks through the list of undefined symbols, and includes
4935
   any object file which defines them.  When this algorithm is used on
4936
   UnixWare, it winds up pulling in libc.so.1 early and defining a
4937
   bunch of symbols.  This means that some of the other objects in the
4938
   archive are not included in the link, which is incorrect since they
4939
   precede libc.so.1 in the archive.
4940
 
4941
   Fortunately, ELF archive handling is simpler than that done by
4942
   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943
   oddities.  In ELF, if we find a symbol in the archive map, and the
4944
   symbol is currently undefined, we know that we must pull in that
4945
   object file.
4946
 
4947
   Unfortunately, we do have to make multiple passes over the symbol
4948
   table until nothing further is resolved.  */
4949
 
4950
static bfd_boolean
4951
elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952
{
4953
  symindex c;
4954
  bfd_boolean *defined = NULL;
4955
  bfd_boolean *included = NULL;
4956
  carsym *symdefs;
4957
  bfd_boolean loop;
4958
  bfd_size_type amt;
4959
  const struct elf_backend_data *bed;
4960
  struct elf_link_hash_entry * (*archive_symbol_lookup)
4961
    (bfd *, struct bfd_link_info *, const char *);
4962
 
4963
  if (! bfd_has_map (abfd))
4964
    {
4965
      /* An empty archive is a special case.  */
4966
      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4967
        return TRUE;
4968
      bfd_set_error (bfd_error_no_armap);
4969
      return FALSE;
4970
    }
4971
 
4972
  /* Keep track of all symbols we know to be already defined, and all
4973
     files we know to be already included.  This is to speed up the
4974
     second and subsequent passes.  */
4975
  c = bfd_ardata (abfd)->symdef_count;
4976
  if (c == 0)
4977
    return TRUE;
4978
  amt = c;
4979
  amt *= sizeof (bfd_boolean);
4980
  defined = (bfd_boolean *) bfd_zmalloc (amt);
4981
  included = (bfd_boolean *) bfd_zmalloc (amt);
4982
  if (defined == NULL || included == NULL)
4983
    goto error_return;
4984
 
4985
  symdefs = bfd_ardata (abfd)->symdefs;
4986
  bed = get_elf_backend_data (abfd);
4987
  archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4988
 
4989
  do
4990
    {
4991
      file_ptr last;
4992
      symindex i;
4993
      carsym *symdef;
4994
      carsym *symdefend;
4995
 
4996
      loop = FALSE;
4997
      last = -1;
4998
 
4999
      symdef = symdefs;
5000
      symdefend = symdef + c;
5001
      for (i = 0; symdef < symdefend; symdef++, i++)
5002
        {
5003
          struct elf_link_hash_entry *h;
5004
          bfd *element;
5005
          struct bfd_link_hash_entry *undefs_tail;
5006
          symindex mark;
5007
 
5008
          if (defined[i] || included[i])
5009
            continue;
5010
          if (symdef->file_offset == last)
5011
            {
5012
              included[i] = TRUE;
5013
              continue;
5014
            }
5015
 
5016
          h = archive_symbol_lookup (abfd, info, symdef->name);
5017
          if (h == (struct elf_link_hash_entry *) 0 - 1)
5018
            goto error_return;
5019
 
5020
          if (h == NULL)
5021
            continue;
5022
 
5023
          if (h->root.type == bfd_link_hash_common)
5024
            {
5025
              /* We currently have a common symbol.  The archive map contains
5026
                 a reference to this symbol, so we may want to include it.  We
5027
                 only want to include it however, if this archive element
5028
                 contains a definition of the symbol, not just another common
5029
                 declaration of it.
5030
 
5031
                 Unfortunately some archivers (including GNU ar) will put
5032
                 declarations of common symbols into their archive maps, as
5033
                 well as real definitions, so we cannot just go by the archive
5034
                 map alone.  Instead we must read in the element's symbol
5035
                 table and check that to see what kind of symbol definition
5036
                 this is.  */
5037
              if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5038
                continue;
5039
            }
5040
          else if (h->root.type != bfd_link_hash_undefined)
5041
            {
5042
              if (h->root.type != bfd_link_hash_undefweak)
5043
                defined[i] = TRUE;
5044
              continue;
5045
            }
5046
 
5047
          /* We need to include this archive member.  */
5048
          element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5049
          if (element == NULL)
5050
            goto error_return;
5051
 
5052
          if (! bfd_check_format (element, bfd_object))
5053
            goto error_return;
5054
 
5055
          /* Doublecheck that we have not included this object
5056
             already--it should be impossible, but there may be
5057
             something wrong with the archive.  */
5058
          if (element->archive_pass != 0)
5059
            {
5060
              bfd_set_error (bfd_error_bad_value);
5061
              goto error_return;
5062
            }
5063
          element->archive_pass = 1;
5064
 
5065
          undefs_tail = info->hash->undefs_tail;
5066
 
5067
          if (!(*info->callbacks
5068
                ->add_archive_element) (info, element, symdef->name, &element))
5069
            goto error_return;
5070
          if (!bfd_link_add_symbols (element, info))
5071
            goto error_return;
5072
 
5073
          /* If there are any new undefined symbols, we need to make
5074
             another pass through the archive in order to see whether
5075
             they can be defined.  FIXME: This isn't perfect, because
5076
             common symbols wind up on undefs_tail and because an
5077
             undefined symbol which is defined later on in this pass
5078
             does not require another pass.  This isn't a bug, but it
5079
             does make the code less efficient than it could be.  */
5080
          if (undefs_tail != info->hash->undefs_tail)
5081
            loop = TRUE;
5082
 
5083
          /* Look backward to mark all symbols from this object file
5084
             which we have already seen in this pass.  */
5085
          mark = i;
5086
          do
5087
            {
5088
              included[mark] = TRUE;
5089
              if (mark == 0)
5090
                break;
5091
              --mark;
5092
            }
5093
          while (symdefs[mark].file_offset == symdef->file_offset);
5094
 
5095
          /* We mark subsequent symbols from this object file as we go
5096
             on through the loop.  */
5097
          last = symdef->file_offset;
5098
        }
5099
    }
5100
  while (loop);
5101
 
5102
  free (defined);
5103
  free (included);
5104
 
5105
  return TRUE;
5106
 
5107
 error_return:
5108
  if (defined != NULL)
5109
    free (defined);
5110
  if (included != NULL)
5111
    free (included);
5112
  return FALSE;
5113
}
5114
 
5115
/* Given an ELF BFD, add symbols to the global hash table as
5116
   appropriate.  */
5117
 
5118
bfd_boolean
5119
bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5120
{
5121
  switch (bfd_get_format (abfd))
5122
    {
5123
    case bfd_object:
5124
      return elf_link_add_object_symbols (abfd, info);
5125
    case bfd_archive:
5126
      return elf_link_add_archive_symbols (abfd, info);
5127
    default:
5128
      bfd_set_error (bfd_error_wrong_format);
5129
      return FALSE;
5130
    }
5131
}
5132
 
5133
struct hash_codes_info
5134
{
5135
  unsigned long *hashcodes;
5136
  bfd_boolean error;
5137
};
5138
 
5139
/* This function will be called though elf_link_hash_traverse to store
5140
   all hash value of the exported symbols in an array.  */
5141
 
5142
static bfd_boolean
5143
elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5144
{
5145
  struct hash_codes_info *inf = (struct hash_codes_info *) data;
5146
  const char *name;
5147
  char *p;
5148
  unsigned long ha;
5149
  char *alc = NULL;
5150
 
5151
  /* Ignore indirect symbols.  These are added by the versioning code.  */
5152
  if (h->dynindx == -1)
5153
    return TRUE;
5154
 
5155
  name = h->root.root.string;
5156
  p = strchr (name, ELF_VER_CHR);
5157
  if (p != NULL)
5158
    {
5159
      alc = (char *) bfd_malloc (p - name + 1);
5160
      if (alc == NULL)
5161
        {
5162
          inf->error = TRUE;
5163
          return FALSE;
5164
        }
5165
      memcpy (alc, name, p - name);
5166
      alc[p - name] = '\0';
5167
      name = alc;
5168
    }
5169
 
5170
  /* Compute the hash value.  */
5171
  ha = bfd_elf_hash (name);
5172
 
5173
  /* Store the found hash value in the array given as the argument.  */
5174
  *(inf->hashcodes)++ = ha;
5175
 
5176
  /* And store it in the struct so that we can put it in the hash table
5177
     later.  */
5178
  h->u.elf_hash_value = ha;
5179
 
5180
  if (alc != NULL)
5181
    free (alc);
5182
 
5183
  return TRUE;
5184
}
5185
 
5186
struct collect_gnu_hash_codes
5187
{
5188
  bfd *output_bfd;
5189
  const struct elf_backend_data *bed;
5190
  unsigned long int nsyms;
5191
  unsigned long int maskbits;
5192
  unsigned long int *hashcodes;
5193
  unsigned long int *hashval;
5194
  unsigned long int *indx;
5195
  unsigned long int *counts;
5196
  bfd_vma *bitmask;
5197
  bfd_byte *contents;
5198
  long int min_dynindx;
5199
  unsigned long int bucketcount;
5200
  unsigned long int symindx;
5201
  long int local_indx;
5202
  long int shift1, shift2;
5203
  unsigned long int mask;
5204
  bfd_boolean error;
5205
};
5206
 
5207
/* This function will be called though elf_link_hash_traverse to store
5208
   all hash value of the exported symbols in an array.  */
5209
 
5210
static bfd_boolean
5211
elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5212
{
5213
  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5214
  const char *name;
5215
  char *p;
5216
  unsigned long ha;
5217
  char *alc = NULL;
5218
 
5219
  /* Ignore indirect symbols.  These are added by the versioning code.  */
5220
  if (h->dynindx == -1)
5221
    return TRUE;
5222
 
5223
  /* Ignore also local symbols and undefined symbols.  */
5224
  if (! (*s->bed->elf_hash_symbol) (h))
5225
    return TRUE;
5226
 
5227
  name = h->root.root.string;
5228
  p = strchr (name, ELF_VER_CHR);
5229
  if (p != NULL)
5230
    {
5231
      alc = (char *) bfd_malloc (p - name + 1);
5232
      if (alc == NULL)
5233
        {
5234
          s->error = TRUE;
5235
          return FALSE;
5236
        }
5237
      memcpy (alc, name, p - name);
5238
      alc[p - name] = '\0';
5239
      name = alc;
5240
    }
5241
 
5242
  /* Compute the hash value.  */
5243
  ha = bfd_elf_gnu_hash (name);
5244
 
5245
  /* Store the found hash value in the array for compute_bucket_count,
5246
     and also for .dynsym reordering purposes.  */
5247
  s->hashcodes[s->nsyms] = ha;
5248
  s->hashval[h->dynindx] = ha;
5249
  ++s->nsyms;
5250
  if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5251
    s->min_dynindx = h->dynindx;
5252
 
5253
  if (alc != NULL)
5254
    free (alc);
5255
 
5256
  return TRUE;
5257
}
5258
 
5259
/* This function will be called though elf_link_hash_traverse to do
5260
   final dynaminc symbol renumbering.  */
5261
 
5262
static bfd_boolean
5263
elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5264
{
5265
  struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5266
  unsigned long int bucket;
5267
  unsigned long int val;
5268
 
5269
  /* Ignore indirect symbols.  */
5270
  if (h->dynindx == -1)
5271
    return TRUE;
5272
 
5273
  /* Ignore also local symbols and undefined symbols.  */
5274
  if (! (*s->bed->elf_hash_symbol) (h))
5275
    {
5276
      if (h->dynindx >= s->min_dynindx)
5277
        h->dynindx = s->local_indx++;
5278
      return TRUE;
5279
    }
5280
 
5281
  bucket = s->hashval[h->dynindx] % s->bucketcount;
5282
  val = (s->hashval[h->dynindx] >> s->shift1)
5283
        & ((s->maskbits >> s->shift1) - 1);
5284
  s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5285
  s->bitmask[val]
5286
    |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5287
  val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5288
  if (s->counts[bucket] == 1)
5289
    /* Last element terminates the chain.  */
5290
    val |= 1;
5291
  bfd_put_32 (s->output_bfd, val,
5292
              s->contents + (s->indx[bucket] - s->symindx) * 4);
5293
  --s->counts[bucket];
5294
  h->dynindx = s->indx[bucket]++;
5295
  return TRUE;
5296
}
5297
 
5298
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5299
 
5300
bfd_boolean
5301
_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5302
{
5303
  return !(h->forced_local
5304
           || h->root.type == bfd_link_hash_undefined
5305
           || h->root.type == bfd_link_hash_undefweak
5306
           || ((h->root.type == bfd_link_hash_defined
5307
                || h->root.type == bfd_link_hash_defweak)
5308
               && h->root.u.def.section->output_section == NULL));
5309
}
5310
 
5311
/* Array used to determine the number of hash table buckets to use
5312
   based on the number of symbols there are.  If there are fewer than
5313
   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5314
   fewer than 37 we use 17 buckets, and so forth.  We never use more
5315
   than 32771 buckets.  */
5316
 
5317
static const size_t elf_buckets[] =
5318
{
5319
  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5320
  16411, 32771, 0
5321
};
5322
 
5323
/* Compute bucket count for hashing table.  We do not use a static set
5324
   of possible tables sizes anymore.  Instead we determine for all
5325
   possible reasonable sizes of the table the outcome (i.e., the
5326
   number of collisions etc) and choose the best solution.  The
5327
   weighting functions are not too simple to allow the table to grow
5328
   without bounds.  Instead one of the weighting factors is the size.
5329
   Therefore the result is always a good payoff between few collisions
5330
   (= short chain lengths) and table size.  */
5331
static size_t
5332
compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5333
                      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5334
                      unsigned long int nsyms,
5335
                      int gnu_hash)
5336
{
5337
  size_t best_size = 0;
5338
  unsigned long int i;
5339
 
5340
  /* We have a problem here.  The following code to optimize the table
5341
     size requires an integer type with more the 32 bits.  If
5342
     BFD_HOST_U_64_BIT is set we know about such a type.  */
5343
#ifdef BFD_HOST_U_64_BIT
5344
  if (info->optimize)
5345
    {
5346
      size_t minsize;
5347
      size_t maxsize;
5348
      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5349
      bfd *dynobj = elf_hash_table (info)->dynobj;
5350
      size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5351
      const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5352
      unsigned long int *counts;
5353
      bfd_size_type amt;
5354
      unsigned int no_improvement_count = 0;
5355
 
5356
      /* Possible optimization parameters: if we have NSYMS symbols we say
5357
         that the hashing table must at least have NSYMS/4 and at most
5358
         2*NSYMS buckets.  */
5359
      minsize = nsyms / 4;
5360
      if (minsize == 0)
5361
        minsize = 1;
5362
      best_size = maxsize = nsyms * 2;
5363
      if (gnu_hash)
5364
        {
5365
          if (minsize < 2)
5366
            minsize = 2;
5367
          if ((best_size & 31) == 0)
5368
            ++best_size;
5369
        }
5370
 
5371
      /* Create array where we count the collisions in.  We must use bfd_malloc
5372
         since the size could be large.  */
5373
      amt = maxsize;
5374
      amt *= sizeof (unsigned long int);
5375
      counts = (unsigned long int *) bfd_malloc (amt);
5376
      if (counts == NULL)
5377
        return 0;
5378
 
5379
      /* Compute the "optimal" size for the hash table.  The criteria is a
5380
         minimal chain length.  The minor criteria is (of course) the size
5381
         of the table.  */
5382
      for (i = minsize; i < maxsize; ++i)
5383
        {
5384
          /* Walk through the array of hashcodes and count the collisions.  */
5385
          BFD_HOST_U_64_BIT max;
5386
          unsigned long int j;
5387
          unsigned long int fact;
5388
 
5389
          if (gnu_hash && (i & 31) == 0)
5390
            continue;
5391
 
5392
          memset (counts, '\0', i * sizeof (unsigned long int));
5393
 
5394
          /* Determine how often each hash bucket is used.  */
5395
          for (j = 0; j < nsyms; ++j)
5396
            ++counts[hashcodes[j] % i];
5397
 
5398
          /* For the weight function we need some information about the
5399
             pagesize on the target.  This is information need not be 100%
5400
             accurate.  Since this information is not available (so far) we
5401
             define it here to a reasonable default value.  If it is crucial
5402
             to have a better value some day simply define this value.  */
5403
# ifndef BFD_TARGET_PAGESIZE
5404
#  define BFD_TARGET_PAGESIZE   (4096)
5405
# endif
5406
 
5407
          /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5408
             and the chains.  */
5409
          max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5410
 
5411
# if 1
5412
          /* Variant 1: optimize for short chains.  We add the squares
5413
             of all the chain lengths (which favors many small chain
5414
             over a few long chains).  */
5415
          for (j = 0; j < i; ++j)
5416
            max += counts[j] * counts[j];
5417
 
5418
          /* This adds penalties for the overall size of the table.  */
5419
          fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5420
          max *= fact * fact;
5421
# else
5422
          /* Variant 2: Optimize a lot more for small table.  Here we
5423
             also add squares of the size but we also add penalties for
5424
             empty slots (the +1 term).  */
5425
          for (j = 0; j < i; ++j)
5426
            max += (1 + counts[j]) * (1 + counts[j]);
5427
 
5428
          /* The overall size of the table is considered, but not as
5429
             strong as in variant 1, where it is squared.  */
5430
          fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5431
          max *= fact;
5432
# endif
5433
 
5434
          /* Compare with current best results.  */
5435
          if (max < best_chlen)
5436
            {
5437
              best_chlen = max;
5438
              best_size = i;
5439
              no_improvement_count = 0;
5440
            }
5441
          /* PR 11843: Avoid futile long searches for the best bucket size
5442
             when there are a large number of symbols.  */
5443
          else if (++no_improvement_count == 100)
5444
            break;
5445
        }
5446
 
5447
      free (counts);
5448
    }
5449
  else
5450
#endif /* defined (BFD_HOST_U_64_BIT) */
5451
    {
5452
      /* This is the fallback solution if no 64bit type is available or if we
5453
         are not supposed to spend much time on optimizations.  We select the
5454
         bucket count using a fixed set of numbers.  */
5455
      for (i = 0; elf_buckets[i] != 0; i++)
5456
        {
5457
          best_size = elf_buckets[i];
5458
          if (nsyms < elf_buckets[i + 1])
5459
            break;
5460
        }
5461
      if (gnu_hash && best_size < 2)
5462
        best_size = 2;
5463
    }
5464
 
5465
  return best_size;
5466
}
5467
 
5468
/* Size any SHT_GROUP section for ld -r.  */
5469
 
5470
bfd_boolean
5471
_bfd_elf_size_group_sections (struct bfd_link_info *info)
5472
{
5473
  bfd *ibfd;
5474
 
5475
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5476
    if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5477
        && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5478
      return FALSE;
5479
  return TRUE;
5480
}
5481
 
5482
/* Set up the sizes and contents of the ELF dynamic sections.  This is
5483
   called by the ELF linker emulation before_allocation routine.  We
5484
   must set the sizes of the sections before the linker sets the
5485
   addresses of the various sections.  */
5486
 
5487
bfd_boolean
5488
bfd_elf_size_dynamic_sections (bfd *output_bfd,
5489
                               const char *soname,
5490
                               const char *rpath,
5491
                               const char *filter_shlib,
5492
                               const char *audit,
5493
                               const char *depaudit,
5494
                               const char * const *auxiliary_filters,
5495
                               struct bfd_link_info *info,
5496
                               asection **sinterpptr,
5497
                               struct bfd_elf_version_tree *verdefs)
5498
{
5499
  bfd_size_type soname_indx;
5500
  bfd *dynobj;
5501
  const struct elf_backend_data *bed;
5502
  struct elf_info_failed asvinfo;
5503
 
5504
  *sinterpptr = NULL;
5505
 
5506
  soname_indx = (bfd_size_type) -1;
5507
 
5508
  if (!is_elf_hash_table (info->hash))
5509
    return TRUE;
5510
 
5511
  bed = get_elf_backend_data (output_bfd);
5512
  if (info->execstack)
5513
    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5514
  else if (info->noexecstack)
5515
    elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5516
  else
5517
    {
5518
      bfd *inputobj;
5519
      asection *notesec = NULL;
5520
      int exec = 0;
5521
 
5522
      for (inputobj = info->input_bfds;
5523
           inputobj;
5524
           inputobj = inputobj->link_next)
5525
        {
5526
          asection *s;
5527
 
5528 161 khays
          if (inputobj->flags
5529
              & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5530 14 khays
            continue;
5531
          s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5532
          if (s)
5533
            {
5534
              if (s->flags & SEC_CODE)
5535
                exec = PF_X;
5536
              notesec = s;
5537
            }
5538
          else if (bed->default_execstack)
5539
            exec = PF_X;
5540
        }
5541
      if (notesec)
5542
        {
5543
          elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5544
          if (exec && info->relocatable
5545
              && notesec->output_section != bfd_abs_section_ptr)
5546
            notesec->output_section->flags |= SEC_CODE;
5547
        }
5548
    }
5549
 
5550
  /* Any syms created from now on start with -1 in
5551
     got.refcount/offset and plt.refcount/offset.  */
5552
  elf_hash_table (info)->init_got_refcount
5553
    = elf_hash_table (info)->init_got_offset;
5554
  elf_hash_table (info)->init_plt_refcount
5555
    = elf_hash_table (info)->init_plt_offset;
5556
 
5557
  if (info->relocatable
5558
      && !_bfd_elf_size_group_sections (info))
5559
    return FALSE;
5560
 
5561
  /* The backend may have to create some sections regardless of whether
5562
     we're dynamic or not.  */
5563
  if (bed->elf_backend_always_size_sections
5564
      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5565
    return FALSE;
5566
 
5567
  if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5568
    return FALSE;
5569
 
5570
  dynobj = elf_hash_table (info)->dynobj;
5571
 
5572
  /* If there were no dynamic objects in the link, there is nothing to
5573
     do here.  */
5574
  if (dynobj == NULL)
5575
    return TRUE;
5576
 
5577
  if (elf_hash_table (info)->dynamic_sections_created)
5578
    {
5579
      struct elf_info_failed eif;
5580
      struct elf_link_hash_entry *h;
5581
      asection *dynstr;
5582
      struct bfd_elf_version_tree *t;
5583
      struct bfd_elf_version_expr *d;
5584
      asection *s;
5585
      bfd_boolean all_defined;
5586
 
5587
      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5588
      BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5589
 
5590
      if (soname != NULL)
5591
        {
5592
          soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5593
                                             soname, TRUE);
5594
          if (soname_indx == (bfd_size_type) -1
5595
              || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5596
            return FALSE;
5597
        }
5598
 
5599
      if (info->symbolic)
5600
        {
5601
          if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5602
            return FALSE;
5603
          info->flags |= DF_SYMBOLIC;
5604
        }
5605
 
5606
      if (rpath != NULL)
5607
        {
5608
          bfd_size_type indx;
5609
 
5610
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5611
                                      TRUE);
5612
          if (indx == (bfd_size_type) -1
5613
              || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5614
            return FALSE;
5615
 
5616
          if  (info->new_dtags)
5617
            {
5618
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5619
              if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5620
                return FALSE;
5621
            }
5622
        }
5623
 
5624
      if (filter_shlib != NULL)
5625
        {
5626
          bfd_size_type indx;
5627
 
5628
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5629
                                      filter_shlib, TRUE);
5630
          if (indx == (bfd_size_type) -1
5631
              || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5632
            return FALSE;
5633
        }
5634
 
5635
      if (auxiliary_filters != NULL)
5636
        {
5637
          const char * const *p;
5638
 
5639
          for (p = auxiliary_filters; *p != NULL; p++)
5640
            {
5641
              bfd_size_type indx;
5642
 
5643
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5644
                                          *p, TRUE);
5645
              if (indx == (bfd_size_type) -1
5646
                  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5647
                return FALSE;
5648
            }
5649
        }
5650
 
5651
      if (audit != NULL)
5652
        {
5653
          bfd_size_type indx;
5654
 
5655
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5656
                                      TRUE);
5657
          if (indx == (bfd_size_type) -1
5658
              || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5659
            return FALSE;
5660
        }
5661
 
5662
      if (depaudit != NULL)
5663
        {
5664
          bfd_size_type indx;
5665
 
5666
          indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5667
                                      TRUE);
5668
          if (indx == (bfd_size_type) -1
5669
              || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5670
            return FALSE;
5671
        }
5672
 
5673
      eif.info = info;
5674
      eif.verdefs = verdefs;
5675
      eif.failed = FALSE;
5676
 
5677
      /* If we are supposed to export all symbols into the dynamic symbol
5678
         table (this is not the normal case), then do so.  */
5679
      if (info->export_dynamic
5680
          || (info->executable && info->dynamic))
5681
        {
5682
          elf_link_hash_traverse (elf_hash_table (info),
5683
                                  _bfd_elf_export_symbol,
5684
                                  &eif);
5685
          if (eif.failed)
5686
            return FALSE;
5687
        }
5688
 
5689
      /* Make all global versions with definition.  */
5690
      for (t = verdefs; t != NULL; t = t->next)
5691
        for (d = t->globals.list; d != NULL; d = d->next)
5692
          if (!d->symver && d->literal)
5693
            {
5694
              const char *verstr, *name;
5695
              size_t namelen, verlen, newlen;
5696
              char *newname, *p, leading_char;
5697
              struct elf_link_hash_entry *newh;
5698
 
5699
              leading_char = bfd_get_symbol_leading_char (output_bfd);
5700
              name = d->pattern;
5701
              namelen = strlen (name) + (leading_char != '\0');
5702
              verstr = t->name;
5703
              verlen = strlen (verstr);
5704
              newlen = namelen + verlen + 3;
5705
 
5706
              newname = (char *) bfd_malloc (newlen);
5707
              if (newname == NULL)
5708
                return FALSE;
5709
              newname[0] = leading_char;
5710
              memcpy (newname + (leading_char != '\0'), name, namelen);
5711
 
5712
              /* Check the hidden versioned definition.  */
5713
              p = newname + namelen;
5714
              *p++ = ELF_VER_CHR;
5715
              memcpy (p, verstr, verlen + 1);
5716
              newh = elf_link_hash_lookup (elf_hash_table (info),
5717
                                           newname, FALSE, FALSE,
5718
                                           FALSE);
5719
              if (newh == NULL
5720
                  || (newh->root.type != bfd_link_hash_defined
5721
                      && newh->root.type != bfd_link_hash_defweak))
5722
                {
5723
                  /* Check the default versioned definition.  */
5724
                  *p++ = ELF_VER_CHR;
5725
                  memcpy (p, verstr, verlen + 1);
5726
                  newh = elf_link_hash_lookup (elf_hash_table (info),
5727
                                               newname, FALSE, FALSE,
5728
                                               FALSE);
5729
                }
5730
              free (newname);
5731
 
5732
              /* Mark this version if there is a definition and it is
5733
                 not defined in a shared object.  */
5734
              if (newh != NULL
5735
                  && !newh->def_dynamic
5736
                  && (newh->root.type == bfd_link_hash_defined
5737
                      || newh->root.type == bfd_link_hash_defweak))
5738
                d->symver = 1;
5739
            }
5740
 
5741
      /* Attach all the symbols to their version information.  */
5742
      asvinfo.info = info;
5743
      asvinfo.verdefs = verdefs;
5744
      asvinfo.failed = FALSE;
5745
 
5746
      elf_link_hash_traverse (elf_hash_table (info),
5747
                              _bfd_elf_link_assign_sym_version,
5748
                              &asvinfo);
5749
      if (asvinfo.failed)
5750
        return FALSE;
5751
 
5752
      if (!info->allow_undefined_version)
5753
        {
5754
          /* Check if all global versions have a definition.  */
5755
          all_defined = TRUE;
5756
          for (t = verdefs; t != NULL; t = t->next)
5757
            for (d = t->globals.list; d != NULL; d = d->next)
5758
              if (d->literal && !d->symver && !d->script)
5759
                {
5760
                  (*_bfd_error_handler)
5761
                    (_("%s: undefined version: %s"),
5762
                     d->pattern, t->name);
5763
                  all_defined = FALSE;
5764
                }
5765
 
5766
          if (!all_defined)
5767
            {
5768
              bfd_set_error (bfd_error_bad_value);
5769
              return FALSE;
5770
            }
5771
        }
5772
 
5773
      /* Find all symbols which were defined in a dynamic object and make
5774
         the backend pick a reasonable value for them.  */
5775
      elf_link_hash_traverse (elf_hash_table (info),
5776
                              _bfd_elf_adjust_dynamic_symbol,
5777
                              &eif);
5778
      if (eif.failed)
5779
        return FALSE;
5780
 
5781
      /* Add some entries to the .dynamic section.  We fill in some of the
5782
         values later, in bfd_elf_final_link, but we must add the entries
5783
         now so that we know the final size of the .dynamic section.  */
5784
 
5785
      /* If there are initialization and/or finalization functions to
5786
         call then add the corresponding DT_INIT/DT_FINI entries.  */
5787
      h = (info->init_function
5788
           ? elf_link_hash_lookup (elf_hash_table (info),
5789
                                   info->init_function, FALSE,
5790
                                   FALSE, FALSE)
5791
           : NULL);
5792
      if (h != NULL
5793
          && (h->ref_regular
5794
              || h->def_regular))
5795
        {
5796
          if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5797
            return FALSE;
5798
        }
5799
      h = (info->fini_function
5800
           ? elf_link_hash_lookup (elf_hash_table (info),
5801
                                   info->fini_function, FALSE,
5802
                                   FALSE, FALSE)
5803
           : NULL);
5804
      if (h != NULL
5805
          && (h->ref_regular
5806
              || h->def_regular))
5807
        {
5808
          if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5809
            return FALSE;
5810
        }
5811
 
5812
      s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5813
      if (s != NULL && s->linker_has_input)
5814
        {
5815
          /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5816
          if (! info->executable)
5817
            {
5818
              bfd *sub;
5819
              asection *o;
5820
 
5821
              for (sub = info->input_bfds; sub != NULL;
5822
                   sub = sub->link_next)
5823
                if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5824
                  for (o = sub->sections; o != NULL; o = o->next)
5825
                    if (elf_section_data (o)->this_hdr.sh_type
5826
                        == SHT_PREINIT_ARRAY)
5827
                      {
5828
                        (*_bfd_error_handler)
5829
                          (_("%B: .preinit_array section is not allowed in DSO"),
5830
                           sub);
5831
                        break;
5832
                      }
5833
 
5834
              bfd_set_error (bfd_error_nonrepresentable_section);
5835
              return FALSE;
5836
            }
5837
 
5838
          if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5839
              || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5840
            return FALSE;
5841
        }
5842
      s = bfd_get_section_by_name (output_bfd, ".init_array");
5843
      if (s != NULL && s->linker_has_input)
5844
        {
5845
          if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5846
              || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5847
            return FALSE;
5848
        }
5849
      s = bfd_get_section_by_name (output_bfd, ".fini_array");
5850
      if (s != NULL && s->linker_has_input)
5851
        {
5852
          if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5853
              || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5854
            return FALSE;
5855
        }
5856
 
5857
      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5858
      /* If .dynstr is excluded from the link, we don't want any of
5859
         these tags.  Strictly, we should be checking each section
5860
         individually;  This quick check covers for the case where
5861
         someone does a /DISCARD/ : { *(*) }.  */
5862
      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5863
        {
5864
          bfd_size_type strsize;
5865
 
5866
          strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5867
          if ((info->emit_hash
5868
               && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5869
              || (info->emit_gnu_hash
5870
                  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5871
              || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5872
              || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5873
              || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5874
              || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5875
                                              bed->s->sizeof_sym))
5876
            return FALSE;
5877
        }
5878
    }
5879
 
5880
  /* The backend must work out the sizes of all the other dynamic
5881
     sections.  */
5882
  if (bed->elf_backend_size_dynamic_sections
5883
      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5884
    return FALSE;
5885
 
5886
  if (elf_hash_table (info)->dynamic_sections_created)
5887
    {
5888
      unsigned long section_sym_count;
5889
      asection *s;
5890
 
5891
      /* Set up the version definition section.  */
5892
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5893
      BFD_ASSERT (s != NULL);
5894
 
5895
      /* We may have created additional version definitions if we are
5896
         just linking a regular application.  */
5897
      verdefs = asvinfo.verdefs;
5898
 
5899
      /* Skip anonymous version tag.  */
5900
      if (verdefs != NULL && verdefs->vernum == 0)
5901
        verdefs = verdefs->next;
5902
 
5903
      if (verdefs == NULL && !info->create_default_symver)
5904
        s->flags |= SEC_EXCLUDE;
5905
      else
5906
        {
5907
          unsigned int cdefs;
5908
          bfd_size_type size;
5909
          struct bfd_elf_version_tree *t;
5910
          bfd_byte *p;
5911
          Elf_Internal_Verdef def;
5912
          Elf_Internal_Verdaux defaux;
5913
          struct bfd_link_hash_entry *bh;
5914
          struct elf_link_hash_entry *h;
5915
          const char *name;
5916
 
5917
          cdefs = 0;
5918
          size = 0;
5919
 
5920
          /* Make space for the base version.  */
5921
          size += sizeof (Elf_External_Verdef);
5922
          size += sizeof (Elf_External_Verdaux);
5923
          ++cdefs;
5924
 
5925
          /* Make space for the default version.  */
5926
          if (info->create_default_symver)
5927
            {
5928
              size += sizeof (Elf_External_Verdef);
5929
              ++cdefs;
5930
            }
5931
 
5932
          for (t = verdefs; t != NULL; t = t->next)
5933
            {
5934
              struct bfd_elf_version_deps *n;
5935
 
5936
              /* Don't emit base version twice.  */
5937
              if (t->vernum == 0)
5938
                continue;
5939
 
5940
              size += sizeof (Elf_External_Verdef);
5941
              size += sizeof (Elf_External_Verdaux);
5942
              ++cdefs;
5943
 
5944
              for (n = t->deps; n != NULL; n = n->next)
5945
                size += sizeof (Elf_External_Verdaux);
5946
            }
5947
 
5948
          s->size = size;
5949
          s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5950
          if (s->contents == NULL && s->size != 0)
5951
            return FALSE;
5952
 
5953
          /* Fill in the version definition section.  */
5954
 
5955
          p = s->contents;
5956
 
5957
          def.vd_version = VER_DEF_CURRENT;
5958
          def.vd_flags = VER_FLG_BASE;
5959
          def.vd_ndx = 1;
5960
          def.vd_cnt = 1;
5961
          if (info->create_default_symver)
5962
            {
5963
              def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5964
              def.vd_next = sizeof (Elf_External_Verdef);
5965
            }
5966
          else
5967
            {
5968
              def.vd_aux = sizeof (Elf_External_Verdef);
5969
              def.vd_next = (sizeof (Elf_External_Verdef)
5970
                             + sizeof (Elf_External_Verdaux));
5971
            }
5972
 
5973
          if (soname_indx != (bfd_size_type) -1)
5974
            {
5975
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5976
                                      soname_indx);
5977
              def.vd_hash = bfd_elf_hash (soname);
5978
              defaux.vda_name = soname_indx;
5979
              name = soname;
5980
            }
5981
          else
5982
            {
5983
              bfd_size_type indx;
5984
 
5985
              name = lbasename (output_bfd->filename);
5986
              def.vd_hash = bfd_elf_hash (name);
5987
              indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5988
                                          name, FALSE);
5989
              if (indx == (bfd_size_type) -1)
5990
                return FALSE;
5991
              defaux.vda_name = indx;
5992
            }
5993
          defaux.vda_next = 0;
5994
 
5995
          _bfd_elf_swap_verdef_out (output_bfd, &def,
5996
                                    (Elf_External_Verdef *) p);
5997
          p += sizeof (Elf_External_Verdef);
5998
          if (info->create_default_symver)
5999
            {
6000
              /* Add a symbol representing this version.  */
6001
              bh = NULL;
6002
              if (! (_bfd_generic_link_add_one_symbol
6003
                     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6004
                      0, NULL, FALSE,
6005
                      get_elf_backend_data (dynobj)->collect, &bh)))
6006
                return FALSE;
6007
              h = (struct elf_link_hash_entry *) bh;
6008
              h->non_elf = 0;
6009
              h->def_regular = 1;
6010
              h->type = STT_OBJECT;
6011
              h->verinfo.vertree = NULL;
6012
 
6013
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
6014
                return FALSE;
6015
 
6016
              /* Create a duplicate of the base version with the same
6017
                 aux block, but different flags.  */
6018
              def.vd_flags = 0;
6019
              def.vd_ndx = 2;
6020
              def.vd_aux = sizeof (Elf_External_Verdef);
6021
              if (verdefs)
6022
                def.vd_next = (sizeof (Elf_External_Verdef)
6023
                               + sizeof (Elf_External_Verdaux));
6024
              else
6025
                def.vd_next = 0;
6026
              _bfd_elf_swap_verdef_out (output_bfd, &def,
6027
                                        (Elf_External_Verdef *) p);
6028
              p += sizeof (Elf_External_Verdef);
6029
            }
6030
          _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6031
                                     (Elf_External_Verdaux *) p);
6032
          p += sizeof (Elf_External_Verdaux);
6033
 
6034
          for (t = verdefs; t != NULL; t = t->next)
6035
            {
6036
              unsigned int cdeps;
6037
              struct bfd_elf_version_deps *n;
6038
 
6039
              /* Don't emit the base version twice.  */
6040
              if (t->vernum == 0)
6041
                continue;
6042
 
6043
              cdeps = 0;
6044
              for (n = t->deps; n != NULL; n = n->next)
6045
                ++cdeps;
6046
 
6047
              /* Add a symbol representing this version.  */
6048
              bh = NULL;
6049
              if (! (_bfd_generic_link_add_one_symbol
6050
                     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6051
                      0, NULL, FALSE,
6052
                      get_elf_backend_data (dynobj)->collect, &bh)))
6053
                return FALSE;
6054
              h = (struct elf_link_hash_entry *) bh;
6055
              h->non_elf = 0;
6056
              h->def_regular = 1;
6057
              h->type = STT_OBJECT;
6058
              h->verinfo.vertree = t;
6059
 
6060
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
6061
                return FALSE;
6062
 
6063
              def.vd_version = VER_DEF_CURRENT;
6064
              def.vd_flags = 0;
6065
              if (t->globals.list == NULL
6066
                  && t->locals.list == NULL
6067
                  && ! t->used)
6068
                def.vd_flags |= VER_FLG_WEAK;
6069
              def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6070
              def.vd_cnt = cdeps + 1;
6071
              def.vd_hash = bfd_elf_hash (t->name);
6072
              def.vd_aux = sizeof (Elf_External_Verdef);
6073
              def.vd_next = 0;
6074
 
6075
              /* If a basever node is next, it *must* be the last node in
6076
                 the chain, otherwise Verdef construction breaks.  */
6077
              if (t->next != NULL && t->next->vernum == 0)
6078
                BFD_ASSERT (t->next->next == NULL);
6079
 
6080
              if (t->next != NULL && t->next->vernum != 0)
6081
                def.vd_next = (sizeof (Elf_External_Verdef)
6082
                               + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6083
 
6084
              _bfd_elf_swap_verdef_out (output_bfd, &def,
6085
                                        (Elf_External_Verdef *) p);
6086
              p += sizeof (Elf_External_Verdef);
6087
 
6088
              defaux.vda_name = h->dynstr_index;
6089
              _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6090
                                      h->dynstr_index);
6091
              defaux.vda_next = 0;
6092
              if (t->deps != NULL)
6093
                defaux.vda_next = sizeof (Elf_External_Verdaux);
6094
              t->name_indx = defaux.vda_name;
6095
 
6096
              _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6097
                                         (Elf_External_Verdaux *) p);
6098
              p += sizeof (Elf_External_Verdaux);
6099
 
6100
              for (n = t->deps; n != NULL; n = n->next)
6101
                {
6102
                  if (n->version_needed == NULL)
6103
                    {
6104
                      /* This can happen if there was an error in the
6105
                         version script.  */
6106
                      defaux.vda_name = 0;
6107
                    }
6108
                  else
6109
                    {
6110
                      defaux.vda_name = n->version_needed->name_indx;
6111
                      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6112
                                              defaux.vda_name);
6113
                    }
6114
                  if (n->next == NULL)
6115
                    defaux.vda_next = 0;
6116
                  else
6117
                    defaux.vda_next = sizeof (Elf_External_Verdaux);
6118
 
6119
                  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6120
                                             (Elf_External_Verdaux *) p);
6121
                  p += sizeof (Elf_External_Verdaux);
6122
                }
6123
            }
6124
 
6125
          if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6126
              || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6127
            return FALSE;
6128
 
6129
          elf_tdata (output_bfd)->cverdefs = cdefs;
6130
        }
6131
 
6132
      if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6133
        {
6134
          if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6135
            return FALSE;
6136
        }
6137
      else if (info->flags & DF_BIND_NOW)
6138
        {
6139
          if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6140
            return FALSE;
6141
        }
6142
 
6143
      if (info->flags_1)
6144
        {
6145
          if (info->executable)
6146
            info->flags_1 &= ~ (DF_1_INITFIRST
6147
                                | DF_1_NODELETE
6148
                                | DF_1_NOOPEN);
6149
          if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6150
            return FALSE;
6151
        }
6152
 
6153
      /* Work out the size of the version reference section.  */
6154
 
6155
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6156
      BFD_ASSERT (s != NULL);
6157
      {
6158
        struct elf_find_verdep_info sinfo;
6159
 
6160
        sinfo.info = info;
6161
        sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6162
        if (sinfo.vers == 0)
6163
          sinfo.vers = 1;
6164
        sinfo.failed = FALSE;
6165
 
6166
        elf_link_hash_traverse (elf_hash_table (info),
6167
                                _bfd_elf_link_find_version_dependencies,
6168
                                &sinfo);
6169
        if (sinfo.failed)
6170
          return FALSE;
6171
 
6172
        if (elf_tdata (output_bfd)->verref == NULL)
6173
          s->flags |= SEC_EXCLUDE;
6174
        else
6175
          {
6176
            Elf_Internal_Verneed *t;
6177
            unsigned int size;
6178
            unsigned int crefs;
6179
            bfd_byte *p;
6180
 
6181
            /* Build the version dependency section.  */
6182
            size = 0;
6183
            crefs = 0;
6184
            for (t = elf_tdata (output_bfd)->verref;
6185
                 t != NULL;
6186
                 t = t->vn_nextref)
6187
              {
6188
                Elf_Internal_Vernaux *a;
6189
 
6190
                size += sizeof (Elf_External_Verneed);
6191
                ++crefs;
6192
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6193
                  size += sizeof (Elf_External_Vernaux);
6194
              }
6195
 
6196
            s->size = size;
6197
            s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6198
            if (s->contents == NULL)
6199
              return FALSE;
6200
 
6201
            p = s->contents;
6202
            for (t = elf_tdata (output_bfd)->verref;
6203
                 t != NULL;
6204
                 t = t->vn_nextref)
6205
              {
6206
                unsigned int caux;
6207
                Elf_Internal_Vernaux *a;
6208
                bfd_size_type indx;
6209
 
6210
                caux = 0;
6211
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6212
                  ++caux;
6213
 
6214
                t->vn_version = VER_NEED_CURRENT;
6215
                t->vn_cnt = caux;
6216
                indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6217
                                            elf_dt_name (t->vn_bfd) != NULL
6218
                                            ? elf_dt_name (t->vn_bfd)
6219
                                            : lbasename (t->vn_bfd->filename),
6220
                                            FALSE);
6221
                if (indx == (bfd_size_type) -1)
6222
                  return FALSE;
6223
                t->vn_file = indx;
6224
                t->vn_aux = sizeof (Elf_External_Verneed);
6225
                if (t->vn_nextref == NULL)
6226
                  t->vn_next = 0;
6227
                else
6228
                  t->vn_next = (sizeof (Elf_External_Verneed)
6229
                                + caux * sizeof (Elf_External_Vernaux));
6230
 
6231
                _bfd_elf_swap_verneed_out (output_bfd, t,
6232
                                           (Elf_External_Verneed *) p);
6233
                p += sizeof (Elf_External_Verneed);
6234
 
6235
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6236
                  {
6237
                    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6238
                    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6239
                                                a->vna_nodename, FALSE);
6240
                    if (indx == (bfd_size_type) -1)
6241
                      return FALSE;
6242
                    a->vna_name = indx;
6243
                    if (a->vna_nextptr == NULL)
6244
                      a->vna_next = 0;
6245
                    else
6246
                      a->vna_next = sizeof (Elf_External_Vernaux);
6247
 
6248
                    _bfd_elf_swap_vernaux_out (output_bfd, a,
6249
                                               (Elf_External_Vernaux *) p);
6250
                    p += sizeof (Elf_External_Vernaux);
6251
                  }
6252
              }
6253
 
6254
            if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6255
                || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6256
              return FALSE;
6257
 
6258
            elf_tdata (output_bfd)->cverrefs = crefs;
6259
          }
6260
      }
6261
 
6262
      if ((elf_tdata (output_bfd)->cverrefs == 0
6263
           && elf_tdata (output_bfd)->cverdefs == 0)
6264
          || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6265
                                             &section_sym_count) == 0)
6266
        {
6267
          s = bfd_get_section_by_name (dynobj, ".gnu.version");
6268
          s->flags |= SEC_EXCLUDE;
6269
        }
6270
    }
6271
  return TRUE;
6272
}
6273
 
6274
/* Find the first non-excluded output section.  We'll use its
6275
   section symbol for some emitted relocs.  */
6276
void
6277
_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6278
{
6279
  asection *s;
6280
 
6281
  for (s = output_bfd->sections; s != NULL; s = s->next)
6282
    if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6283
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6284
      {
6285
        elf_hash_table (info)->text_index_section = s;
6286
        break;
6287
      }
6288
}
6289
 
6290
/* Find two non-excluded output sections, one for code, one for data.
6291
   We'll use their section symbols for some emitted relocs.  */
6292
void
6293
_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6294
{
6295
  asection *s;
6296
 
6297
  /* Data first, since setting text_index_section changes
6298
     _bfd_elf_link_omit_section_dynsym.  */
6299
  for (s = output_bfd->sections; s != NULL; s = s->next)
6300
    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6301
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6302
      {
6303
        elf_hash_table (info)->data_index_section = s;
6304
        break;
6305
      }
6306
 
6307
  for (s = output_bfd->sections; s != NULL; s = s->next)
6308
    if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6309
         == (SEC_ALLOC | SEC_READONLY))
6310
        && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6311
      {
6312
        elf_hash_table (info)->text_index_section = s;
6313
        break;
6314
      }
6315
 
6316
  if (elf_hash_table (info)->text_index_section == NULL)
6317
    elf_hash_table (info)->text_index_section
6318
      = elf_hash_table (info)->data_index_section;
6319
}
6320
 
6321
bfd_boolean
6322
bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6323
{
6324
  const struct elf_backend_data *bed;
6325
 
6326
  if (!is_elf_hash_table (info->hash))
6327
    return TRUE;
6328
 
6329
  bed = get_elf_backend_data (output_bfd);
6330
  (*bed->elf_backend_init_index_section) (output_bfd, info);
6331
 
6332
  if (elf_hash_table (info)->dynamic_sections_created)
6333
    {
6334
      bfd *dynobj;
6335
      asection *s;
6336
      bfd_size_type dynsymcount;
6337
      unsigned long section_sym_count;
6338
      unsigned int dtagcount;
6339
 
6340
      dynobj = elf_hash_table (info)->dynobj;
6341
 
6342
      /* Assign dynsym indicies.  In a shared library we generate a
6343
         section symbol for each output section, which come first.
6344
         Next come all of the back-end allocated local dynamic syms,
6345
         followed by the rest of the global symbols.  */
6346
 
6347
      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6348
                                                    &section_sym_count);
6349
 
6350
      /* Work out the size of the symbol version section.  */
6351
      s = bfd_get_section_by_name (dynobj, ".gnu.version");
6352
      BFD_ASSERT (s != NULL);
6353
      if (dynsymcount != 0
6354
          && (s->flags & SEC_EXCLUDE) == 0)
6355
        {
6356
          s->size = dynsymcount * sizeof (Elf_External_Versym);
6357
          s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6358
          if (s->contents == NULL)
6359
            return FALSE;
6360
 
6361
          if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6362
            return FALSE;
6363
        }
6364
 
6365
      /* Set the size of the .dynsym and .hash sections.  We counted
6366
         the number of dynamic symbols in elf_link_add_object_symbols.
6367
         We will build the contents of .dynsym and .hash when we build
6368
         the final symbol table, because until then we do not know the
6369
         correct value to give the symbols.  We built the .dynstr
6370
         section as we went along in elf_link_add_object_symbols.  */
6371
      s = bfd_get_section_by_name (dynobj, ".dynsym");
6372
      BFD_ASSERT (s != NULL);
6373
      s->size = dynsymcount * bed->s->sizeof_sym;
6374
 
6375
      if (dynsymcount != 0)
6376
        {
6377
          s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6378
          if (s->contents == NULL)
6379
            return FALSE;
6380
 
6381
          /* The first entry in .dynsym is a dummy symbol.
6382
             Clear all the section syms, in case we don't output them all.  */
6383
          ++section_sym_count;
6384
          memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6385
        }
6386
 
6387
      elf_hash_table (info)->bucketcount = 0;
6388
 
6389
      /* Compute the size of the hashing table.  As a side effect this
6390
         computes the hash values for all the names we export.  */
6391
      if (info->emit_hash)
6392
        {
6393
          unsigned long int *hashcodes;
6394
          struct hash_codes_info hashinf;
6395
          bfd_size_type amt;
6396
          unsigned long int nsyms;
6397
          size_t bucketcount;
6398
          size_t hash_entry_size;
6399
 
6400
          /* Compute the hash values for all exported symbols.  At the same
6401
             time store the values in an array so that we could use them for
6402
             optimizations.  */
6403
          amt = dynsymcount * sizeof (unsigned long int);
6404
          hashcodes = (unsigned long int *) bfd_malloc (amt);
6405
          if (hashcodes == NULL)
6406
            return FALSE;
6407
          hashinf.hashcodes = hashcodes;
6408
          hashinf.error = FALSE;
6409
 
6410
          /* Put all hash values in HASHCODES.  */
6411
          elf_link_hash_traverse (elf_hash_table (info),
6412
                                  elf_collect_hash_codes, &hashinf);
6413
          if (hashinf.error)
6414
            {
6415
              free (hashcodes);
6416
              return FALSE;
6417
            }
6418
 
6419
          nsyms = hashinf.hashcodes - hashcodes;
6420
          bucketcount
6421
            = compute_bucket_count (info, hashcodes, nsyms, 0);
6422
          free (hashcodes);
6423
 
6424
          if (bucketcount == 0)
6425
            return FALSE;
6426
 
6427
          elf_hash_table (info)->bucketcount = bucketcount;
6428
 
6429
          s = bfd_get_section_by_name (dynobj, ".hash");
6430
          BFD_ASSERT (s != NULL);
6431
          hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6432
          s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6433
          s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6434
          if (s->contents == NULL)
6435
            return FALSE;
6436
 
6437
          bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6438
          bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6439
                   s->contents + hash_entry_size);
6440
        }
6441
 
6442
      if (info->emit_gnu_hash)
6443
        {
6444
          size_t i, cnt;
6445
          unsigned char *contents;
6446
          struct collect_gnu_hash_codes cinfo;
6447
          bfd_size_type amt;
6448
          size_t bucketcount;
6449
 
6450
          memset (&cinfo, 0, sizeof (cinfo));
6451
 
6452
          /* Compute the hash values for all exported symbols.  At the same
6453
             time store the values in an array so that we could use them for
6454
             optimizations.  */
6455
          amt = dynsymcount * 2 * sizeof (unsigned long int);
6456
          cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6457
          if (cinfo.hashcodes == NULL)
6458
            return FALSE;
6459
 
6460
          cinfo.hashval = cinfo.hashcodes + dynsymcount;
6461
          cinfo.min_dynindx = -1;
6462
          cinfo.output_bfd = output_bfd;
6463
          cinfo.bed = bed;
6464
 
6465
          /* Put all hash values in HASHCODES.  */
6466
          elf_link_hash_traverse (elf_hash_table (info),
6467
                                  elf_collect_gnu_hash_codes, &cinfo);
6468
          if (cinfo.error)
6469
            {
6470
              free (cinfo.hashcodes);
6471
              return FALSE;
6472
            }
6473
 
6474
          bucketcount
6475
            = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6476
 
6477
          if (bucketcount == 0)
6478
            {
6479
              free (cinfo.hashcodes);
6480
              return FALSE;
6481
            }
6482
 
6483
          s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6484
          BFD_ASSERT (s != NULL);
6485
 
6486
          if (cinfo.nsyms == 0)
6487
            {
6488
              /* Empty .gnu.hash section is special.  */
6489
              BFD_ASSERT (cinfo.min_dynindx == -1);
6490
              free (cinfo.hashcodes);
6491
              s->size = 5 * 4 + bed->s->arch_size / 8;
6492
              contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6493
              if (contents == NULL)
6494
                return FALSE;
6495
              s->contents = contents;
6496
              /* 1 empty bucket.  */
6497
              bfd_put_32 (output_bfd, 1, contents);
6498
              /* SYMIDX above the special symbol 0.  */
6499
              bfd_put_32 (output_bfd, 1, contents + 4);
6500
              /* Just one word for bitmask.  */
6501
              bfd_put_32 (output_bfd, 1, contents + 8);
6502
              /* Only hash fn bloom filter.  */
6503
              bfd_put_32 (output_bfd, 0, contents + 12);
6504
              /* No hashes are valid - empty bitmask.  */
6505
              bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6506
              /* No hashes in the only bucket.  */
6507
              bfd_put_32 (output_bfd, 0,
6508
                          contents + 16 + bed->s->arch_size / 8);
6509
            }
6510
          else
6511
            {
6512
              unsigned long int maskwords, maskbitslog2, x;
6513
              BFD_ASSERT (cinfo.min_dynindx != -1);
6514
 
6515
              x = cinfo.nsyms;
6516
              maskbitslog2 = 1;
6517
              while ((x >>= 1) != 0)
6518
                ++maskbitslog2;
6519
              if (maskbitslog2 < 3)
6520
                maskbitslog2 = 5;
6521
              else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6522
                maskbitslog2 = maskbitslog2 + 3;
6523
              else
6524
                maskbitslog2 = maskbitslog2 + 2;
6525
              if (bed->s->arch_size == 64)
6526
                {
6527
                  if (maskbitslog2 == 5)
6528
                    maskbitslog2 = 6;
6529
                  cinfo.shift1 = 6;
6530
                }
6531
              else
6532
                cinfo.shift1 = 5;
6533
              cinfo.mask = (1 << cinfo.shift1) - 1;
6534
              cinfo.shift2 = maskbitslog2;
6535
              cinfo.maskbits = 1 << maskbitslog2;
6536
              maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6537
              amt = bucketcount * sizeof (unsigned long int) * 2;
6538
              amt += maskwords * sizeof (bfd_vma);
6539
              cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6540
              if (cinfo.bitmask == NULL)
6541
                {
6542
                  free (cinfo.hashcodes);
6543
                  return FALSE;
6544
                }
6545
 
6546
              cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6547
              cinfo.indx = cinfo.counts + bucketcount;
6548
              cinfo.symindx = dynsymcount - cinfo.nsyms;
6549
              memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6550
 
6551
              /* Determine how often each hash bucket is used.  */
6552
              memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6553
              for (i = 0; i < cinfo.nsyms; ++i)
6554
                ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6555
 
6556
              for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6557
                if (cinfo.counts[i] != 0)
6558
                  {
6559
                    cinfo.indx[i] = cnt;
6560
                    cnt += cinfo.counts[i];
6561
                  }
6562
              BFD_ASSERT (cnt == dynsymcount);
6563
              cinfo.bucketcount = bucketcount;
6564
              cinfo.local_indx = cinfo.min_dynindx;
6565
 
6566
              s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6567
              s->size += cinfo.maskbits / 8;
6568
              contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6569
              if (contents == NULL)
6570
                {
6571
                  free (cinfo.bitmask);
6572
                  free (cinfo.hashcodes);
6573
                  return FALSE;
6574
                }
6575
 
6576
              s->contents = contents;
6577
              bfd_put_32 (output_bfd, bucketcount, contents);
6578
              bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6579
              bfd_put_32 (output_bfd, maskwords, contents + 8);
6580
              bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6581
              contents += 16 + cinfo.maskbits / 8;
6582
 
6583
              for (i = 0; i < bucketcount; ++i)
6584
                {
6585
                  if (cinfo.counts[i] == 0)
6586
                    bfd_put_32 (output_bfd, 0, contents);
6587
                  else
6588
                    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6589
                  contents += 4;
6590
                }
6591
 
6592
              cinfo.contents = contents;
6593
 
6594
              /* Renumber dynamic symbols, populate .gnu.hash section.  */
6595
              elf_link_hash_traverse (elf_hash_table (info),
6596
                                      elf_renumber_gnu_hash_syms, &cinfo);
6597
 
6598
              contents = s->contents + 16;
6599
              for (i = 0; i < maskwords; ++i)
6600
                {
6601
                  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6602
                           contents);
6603
                  contents += bed->s->arch_size / 8;
6604
                }
6605
 
6606
              free (cinfo.bitmask);
6607
              free (cinfo.hashcodes);
6608
            }
6609
        }
6610
 
6611
      s = bfd_get_section_by_name (dynobj, ".dynstr");
6612
      BFD_ASSERT (s != NULL);
6613
 
6614
      elf_finalize_dynstr (output_bfd, info);
6615
 
6616
      s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6617
 
6618
      for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6619
        if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6620
          return FALSE;
6621
    }
6622
 
6623
  return TRUE;
6624
}
6625
 
6626
/* Indicate that we are only retrieving symbol values from this
6627
   section.  */
6628
 
6629
void
6630
_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6631
{
6632
  if (is_elf_hash_table (info->hash))
6633
    sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6634
  _bfd_generic_link_just_syms (sec, info);
6635
}
6636
 
6637
/* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6638
 
6639
static void
6640
merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6641
                            asection *sec)
6642
{
6643
  BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6644
  sec->sec_info_type = ELF_INFO_TYPE_NONE;
6645
}
6646
 
6647
/* Finish SHF_MERGE section merging.  */
6648
 
6649
bfd_boolean
6650
_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6651
{
6652
  bfd *ibfd;
6653
  asection *sec;
6654
 
6655
  if (!is_elf_hash_table (info->hash))
6656
    return FALSE;
6657
 
6658
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6659
    if ((ibfd->flags & DYNAMIC) == 0)
6660
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6661
        if ((sec->flags & SEC_MERGE) != 0
6662
            && !bfd_is_abs_section (sec->output_section))
6663
          {
6664
            struct bfd_elf_section_data *secdata;
6665
 
6666
            secdata = elf_section_data (sec);
6667
            if (! _bfd_add_merge_section (abfd,
6668
                                          &elf_hash_table (info)->merge_info,
6669
                                          sec, &secdata->sec_info))
6670
              return FALSE;
6671
            else if (secdata->sec_info)
6672
              sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6673
          }
6674
 
6675
  if (elf_hash_table (info)->merge_info != NULL)
6676
    _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6677
                         merge_sections_remove_hook);
6678
  return TRUE;
6679
}
6680
 
6681
/* Create an entry in an ELF linker hash table.  */
6682
 
6683
struct bfd_hash_entry *
6684
_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6685
                            struct bfd_hash_table *table,
6686
                            const char *string)
6687
{
6688
  /* Allocate the structure if it has not already been allocated by a
6689
     subclass.  */
6690
  if (entry == NULL)
6691
    {
6692
      entry = (struct bfd_hash_entry *)
6693
          bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6694
      if (entry == NULL)
6695
        return entry;
6696
    }
6697
 
6698
  /* Call the allocation method of the superclass.  */
6699
  entry = _bfd_link_hash_newfunc (entry, table, string);
6700
  if (entry != NULL)
6701
    {
6702
      struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6703
      struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6704
 
6705
      /* Set local fields.  */
6706
      ret->indx = -1;
6707
      ret->dynindx = -1;
6708
      ret->got = htab->init_got_refcount;
6709
      ret->plt = htab->init_plt_refcount;
6710
      memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6711
                              - offsetof (struct elf_link_hash_entry, size)));
6712
      /* Assume that we have been called by a non-ELF symbol reader.
6713
         This flag is then reset by the code which reads an ELF input
6714
         file.  This ensures that a symbol created by a non-ELF symbol
6715
         reader will have the flag set correctly.  */
6716
      ret->non_elf = 1;
6717
    }
6718
 
6719
  return entry;
6720
}
6721
 
6722
/* Copy data from an indirect symbol to its direct symbol, hiding the
6723
   old indirect symbol.  Also used for copying flags to a weakdef.  */
6724
 
6725
void
6726
_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6727
                                  struct elf_link_hash_entry *dir,
6728
                                  struct elf_link_hash_entry *ind)
6729
{
6730
  struct elf_link_hash_table *htab;
6731
 
6732
  /* Copy down any references that we may have already seen to the
6733
     symbol which just became indirect.  */
6734
 
6735
  dir->ref_dynamic |= ind->ref_dynamic;
6736
  dir->ref_regular |= ind->ref_regular;
6737
  dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6738
  dir->non_got_ref |= ind->non_got_ref;
6739
  dir->needs_plt |= ind->needs_plt;
6740
  dir->pointer_equality_needed |= ind->pointer_equality_needed;
6741
 
6742
  if (ind->root.type != bfd_link_hash_indirect)
6743
    return;
6744
 
6745
  /* Copy over the global and procedure linkage table refcount entries.
6746
     These may have been already set up by a check_relocs routine.  */
6747
  htab = elf_hash_table (info);
6748
  if (ind->got.refcount > htab->init_got_refcount.refcount)
6749
    {
6750
      if (dir->got.refcount < 0)
6751
        dir->got.refcount = 0;
6752
      dir->got.refcount += ind->got.refcount;
6753
      ind->got.refcount = htab->init_got_refcount.refcount;
6754
    }
6755
 
6756
  if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6757
    {
6758
      if (dir->plt.refcount < 0)
6759
        dir->plt.refcount = 0;
6760
      dir->plt.refcount += ind->plt.refcount;
6761
      ind->plt.refcount = htab->init_plt_refcount.refcount;
6762
    }
6763
 
6764
  if (ind->dynindx != -1)
6765
    {
6766
      if (dir->dynindx != -1)
6767
        _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6768
      dir->dynindx = ind->dynindx;
6769
      dir->dynstr_index = ind->dynstr_index;
6770
      ind->dynindx = -1;
6771
      ind->dynstr_index = 0;
6772
    }
6773
}
6774
 
6775
void
6776
_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6777
                                struct elf_link_hash_entry *h,
6778
                                bfd_boolean force_local)
6779
{
6780
  /* STT_GNU_IFUNC symbol must go through PLT.  */
6781
  if (h->type != STT_GNU_IFUNC)
6782
    {
6783
      h->plt = elf_hash_table (info)->init_plt_offset;
6784
      h->needs_plt = 0;
6785
    }
6786
  if (force_local)
6787
    {
6788
      h->forced_local = 1;
6789
      if (h->dynindx != -1)
6790
        {
6791
          h->dynindx = -1;
6792
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6793
                                  h->dynstr_index);
6794
        }
6795
    }
6796
}
6797
 
6798
/* Initialize an ELF linker hash table.  */
6799
 
6800
bfd_boolean
6801
_bfd_elf_link_hash_table_init
6802
  (struct elf_link_hash_table *table,
6803
   bfd *abfd,
6804
   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6805
                                      struct bfd_hash_table *,
6806
                                      const char *),
6807
   unsigned int entsize,
6808
   enum elf_target_id target_id)
6809
{
6810
  bfd_boolean ret;
6811
  int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6812
 
6813
  memset (table, 0, sizeof * table);
6814
  table->init_got_refcount.refcount = can_refcount - 1;
6815
  table->init_plt_refcount.refcount = can_refcount - 1;
6816
  table->init_got_offset.offset = -(bfd_vma) 1;
6817
  table->init_plt_offset.offset = -(bfd_vma) 1;
6818
  /* The first dynamic symbol is a dummy.  */
6819
  table->dynsymcount = 1;
6820
 
6821
  ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6822
 
6823
  table->root.type = bfd_link_elf_hash_table;
6824
  table->hash_table_id = target_id;
6825
 
6826
  return ret;
6827
}
6828
 
6829
/* Create an ELF linker hash table.  */
6830
 
6831
struct bfd_link_hash_table *
6832
_bfd_elf_link_hash_table_create (bfd *abfd)
6833
{
6834
  struct elf_link_hash_table *ret;
6835
  bfd_size_type amt = sizeof (struct elf_link_hash_table);
6836
 
6837
  ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6838
  if (ret == NULL)
6839
    return NULL;
6840
 
6841
  if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6842
                                       sizeof (struct elf_link_hash_entry),
6843
                                       GENERIC_ELF_DATA))
6844
    {
6845
      free (ret);
6846
      return NULL;
6847
    }
6848
 
6849
  return &ret->root;
6850
}
6851
 
6852
/* This is a hook for the ELF emulation code in the generic linker to
6853
   tell the backend linker what file name to use for the DT_NEEDED
6854
   entry for a dynamic object.  */
6855
 
6856
void
6857
bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6858
{
6859
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6860
      && bfd_get_format (abfd) == bfd_object)
6861
    elf_dt_name (abfd) = name;
6862
}
6863
 
6864
int
6865
bfd_elf_get_dyn_lib_class (bfd *abfd)
6866
{
6867
  int lib_class;
6868
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6869
      && bfd_get_format (abfd) == bfd_object)
6870
    lib_class = elf_dyn_lib_class (abfd);
6871
  else
6872
    lib_class = 0;
6873
  return lib_class;
6874
}
6875
 
6876
void
6877
bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6878
{
6879
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6880
      && bfd_get_format (abfd) == bfd_object)
6881
    elf_dyn_lib_class (abfd) = lib_class;
6882
}
6883
 
6884
/* Get the list of DT_NEEDED entries for a link.  This is a hook for
6885
   the linker ELF emulation code.  */
6886
 
6887
struct bfd_link_needed_list *
6888
bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6889
                         struct bfd_link_info *info)
6890
{
6891
  if (! is_elf_hash_table (info->hash))
6892
    return NULL;
6893
  return elf_hash_table (info)->needed;
6894
}
6895
 
6896
/* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6897
   hook for the linker ELF emulation code.  */
6898
 
6899
struct bfd_link_needed_list *
6900
bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6901
                          struct bfd_link_info *info)
6902
{
6903
  if (! is_elf_hash_table (info->hash))
6904
    return NULL;
6905
  return elf_hash_table (info)->runpath;
6906
}
6907
 
6908
/* Get the name actually used for a dynamic object for a link.  This
6909
   is the SONAME entry if there is one.  Otherwise, it is the string
6910
   passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6911
 
6912
const char *
6913
bfd_elf_get_dt_soname (bfd *abfd)
6914
{
6915
  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6916
      && bfd_get_format (abfd) == bfd_object)
6917
    return elf_dt_name (abfd);
6918
  return NULL;
6919
}
6920
 
6921
/* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6922
   the ELF linker emulation code.  */
6923
 
6924
bfd_boolean
6925
bfd_elf_get_bfd_needed_list (bfd *abfd,
6926
                             struct bfd_link_needed_list **pneeded)
6927
{
6928
  asection *s;
6929
  bfd_byte *dynbuf = NULL;
6930
  unsigned int elfsec;
6931
  unsigned long shlink;
6932
  bfd_byte *extdyn, *extdynend;
6933
  size_t extdynsize;
6934
  void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6935
 
6936
  *pneeded = NULL;
6937
 
6938
  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6939
      || bfd_get_format (abfd) != bfd_object)
6940
    return TRUE;
6941
 
6942
  s = bfd_get_section_by_name (abfd, ".dynamic");
6943
  if (s == NULL || s->size == 0)
6944
    return TRUE;
6945
 
6946
  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6947
    goto error_return;
6948
 
6949
  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6950
  if (elfsec == SHN_BAD)
6951
    goto error_return;
6952
 
6953
  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6954
 
6955
  extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6956
  swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6957
 
6958
  extdyn = dynbuf;
6959
  extdynend = extdyn + s->size;
6960
  for (; extdyn < extdynend; extdyn += extdynsize)
6961
    {
6962
      Elf_Internal_Dyn dyn;
6963
 
6964
      (*swap_dyn_in) (abfd, extdyn, &dyn);
6965
 
6966
      if (dyn.d_tag == DT_NULL)
6967
        break;
6968
 
6969
      if (dyn.d_tag == DT_NEEDED)
6970
        {
6971
          const char *string;
6972
          struct bfd_link_needed_list *l;
6973
          unsigned int tagv = dyn.d_un.d_val;
6974
          bfd_size_type amt;
6975
 
6976
          string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6977
          if (string == NULL)
6978
            goto error_return;
6979
 
6980
          amt = sizeof *l;
6981
          l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6982
          if (l == NULL)
6983
            goto error_return;
6984
 
6985
          l->by = abfd;
6986
          l->name = string;
6987
          l->next = *pneeded;
6988
          *pneeded = l;
6989
        }
6990
    }
6991
 
6992
  free (dynbuf);
6993
 
6994
  return TRUE;
6995
 
6996
 error_return:
6997
  if (dynbuf != NULL)
6998
    free (dynbuf);
6999
  return FALSE;
7000
}
7001
 
7002
struct elf_symbuf_symbol
7003
{
7004
  unsigned long st_name;        /* Symbol name, index in string tbl */
7005
  unsigned char st_info;        /* Type and binding attributes */
7006
  unsigned char st_other;       /* Visibilty, and target specific */
7007
};
7008
 
7009
struct elf_symbuf_head
7010
{
7011
  struct elf_symbuf_symbol *ssym;
7012
  bfd_size_type count;
7013
  unsigned int st_shndx;
7014
};
7015
 
7016
struct elf_symbol
7017
{
7018
  union
7019
    {
7020
      Elf_Internal_Sym *isym;
7021
      struct elf_symbuf_symbol *ssym;
7022
    } u;
7023
  const char *name;
7024
};
7025
 
7026
/* Sort references to symbols by ascending section number.  */
7027
 
7028
static int
7029
elf_sort_elf_symbol (const void *arg1, const void *arg2)
7030
{
7031
  const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7032
  const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7033
 
7034
  return s1->st_shndx - s2->st_shndx;
7035
}
7036
 
7037
static int
7038
elf_sym_name_compare (const void *arg1, const void *arg2)
7039
{
7040
  const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7041
  const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7042
  return strcmp (s1->name, s2->name);
7043
}
7044
 
7045
static struct elf_symbuf_head *
7046
elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7047
{
7048
  Elf_Internal_Sym **ind, **indbufend, **indbuf;
7049
  struct elf_symbuf_symbol *ssym;
7050
  struct elf_symbuf_head *ssymbuf, *ssymhead;
7051
  bfd_size_type i, shndx_count, total_size;
7052
 
7053
  indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7054
  if (indbuf == NULL)
7055
    return NULL;
7056
 
7057
  for (ind = indbuf, i = 0; i < symcount; i++)
7058
    if (isymbuf[i].st_shndx != SHN_UNDEF)
7059
      *ind++ = &isymbuf[i];
7060
  indbufend = ind;
7061
 
7062
  qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7063
         elf_sort_elf_symbol);
7064
 
7065
  shndx_count = 0;
7066
  if (indbufend > indbuf)
7067
    for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7068
      if (ind[0]->st_shndx != ind[1]->st_shndx)
7069
        shndx_count++;
7070
 
7071
  total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7072
                + (indbufend - indbuf) * sizeof (*ssym));
7073
  ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7074
  if (ssymbuf == NULL)
7075
    {
7076
      free (indbuf);
7077
      return NULL;
7078
    }
7079
 
7080
  ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7081
  ssymbuf->ssym = NULL;
7082
  ssymbuf->count = shndx_count;
7083
  ssymbuf->st_shndx = 0;
7084
  for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7085
    {
7086
      if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7087
        {
7088
          ssymhead++;
7089
          ssymhead->ssym = ssym;
7090
          ssymhead->count = 0;
7091
          ssymhead->st_shndx = (*ind)->st_shndx;
7092
        }
7093
      ssym->st_name = (*ind)->st_name;
7094
      ssym->st_info = (*ind)->st_info;
7095
      ssym->st_other = (*ind)->st_other;
7096
      ssymhead->count++;
7097
    }
7098
  BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7099
              && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7100
                  == total_size));
7101
 
7102
  free (indbuf);
7103
  return ssymbuf;
7104
}
7105
 
7106
/* Check if 2 sections define the same set of local and global
7107
   symbols.  */
7108
 
7109
static bfd_boolean
7110
bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7111
                                   struct bfd_link_info *info)
7112
{
7113
  bfd *bfd1, *bfd2;
7114
  const struct elf_backend_data *bed1, *bed2;
7115
  Elf_Internal_Shdr *hdr1, *hdr2;
7116
  bfd_size_type symcount1, symcount2;
7117
  Elf_Internal_Sym *isymbuf1, *isymbuf2;
7118
  struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7119
  Elf_Internal_Sym *isym, *isymend;
7120
  struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7121
  bfd_size_type count1, count2, i;
7122
  unsigned int shndx1, shndx2;
7123
  bfd_boolean result;
7124
 
7125
  bfd1 = sec1->owner;
7126
  bfd2 = sec2->owner;
7127
 
7128
  /* Both sections have to be in ELF.  */
7129
  if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7130
      || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7131
    return FALSE;
7132
 
7133
  if (elf_section_type (sec1) != elf_section_type (sec2))
7134
    return FALSE;
7135
 
7136
  shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7137
  shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7138
  if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7139
    return FALSE;
7140
 
7141
  bed1 = get_elf_backend_data (bfd1);
7142
  bed2 = get_elf_backend_data (bfd2);
7143
  hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7144
  symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7145
  hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7146
  symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7147
 
7148
  if (symcount1 == 0 || symcount2 == 0)
7149
    return FALSE;
7150
 
7151
  result = FALSE;
7152
  isymbuf1 = NULL;
7153
  isymbuf2 = NULL;
7154
  ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7155
  ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7156
 
7157
  if (ssymbuf1 == NULL)
7158
    {
7159
      isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7160
                                       NULL, NULL, NULL);
7161
      if (isymbuf1 == NULL)
7162
        goto done;
7163
 
7164
      if (!info->reduce_memory_overheads)
7165
        elf_tdata (bfd1)->symbuf = ssymbuf1
7166
          = elf_create_symbuf (symcount1, isymbuf1);
7167
    }
7168
 
7169
  if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7170
    {
7171
      isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7172
                                       NULL, NULL, NULL);
7173
      if (isymbuf2 == NULL)
7174
        goto done;
7175
 
7176
      if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7177
        elf_tdata (bfd2)->symbuf = ssymbuf2
7178
          = elf_create_symbuf (symcount2, isymbuf2);
7179
    }
7180
 
7181
  if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7182
    {
7183
      /* Optimized faster version.  */
7184
      bfd_size_type lo, hi, mid;
7185
      struct elf_symbol *symp;
7186
      struct elf_symbuf_symbol *ssym, *ssymend;
7187
 
7188
      lo = 0;
7189
      hi = ssymbuf1->count;
7190
      ssymbuf1++;
7191
      count1 = 0;
7192
      while (lo < hi)
7193
        {
7194
          mid = (lo + hi) / 2;
7195
          if (shndx1 < ssymbuf1[mid].st_shndx)
7196
            hi = mid;
7197
          else if (shndx1 > ssymbuf1[mid].st_shndx)
7198
            lo = mid + 1;
7199
          else
7200
            {
7201
              count1 = ssymbuf1[mid].count;
7202
              ssymbuf1 += mid;
7203
              break;
7204
            }
7205
        }
7206
 
7207
      lo = 0;
7208
      hi = ssymbuf2->count;
7209
      ssymbuf2++;
7210
      count2 = 0;
7211
      while (lo < hi)
7212
        {
7213
          mid = (lo + hi) / 2;
7214
          if (shndx2 < ssymbuf2[mid].st_shndx)
7215
            hi = mid;
7216
          else if (shndx2 > ssymbuf2[mid].st_shndx)
7217
            lo = mid + 1;
7218
          else
7219
            {
7220
              count2 = ssymbuf2[mid].count;
7221
              ssymbuf2 += mid;
7222
              break;
7223
            }
7224
        }
7225
 
7226
      if (count1 == 0 || count2 == 0 || count1 != count2)
7227
        goto done;
7228
 
7229
      symtable1 = (struct elf_symbol *)
7230
          bfd_malloc (count1 * sizeof (struct elf_symbol));
7231
      symtable2 = (struct elf_symbol *)
7232
          bfd_malloc (count2 * sizeof (struct elf_symbol));
7233
      if (symtable1 == NULL || symtable2 == NULL)
7234
        goto done;
7235
 
7236
      symp = symtable1;
7237
      for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7238
           ssym < ssymend; ssym++, symp++)
7239
        {
7240
          symp->u.ssym = ssym;
7241
          symp->name = bfd_elf_string_from_elf_section (bfd1,
7242
                                                        hdr1->sh_link,
7243
                                                        ssym->st_name);
7244
        }
7245
 
7246
      symp = symtable2;
7247
      for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7248
           ssym < ssymend; ssym++, symp++)
7249
        {
7250
          symp->u.ssym = ssym;
7251
          symp->name = bfd_elf_string_from_elf_section (bfd2,
7252
                                                        hdr2->sh_link,
7253
                                                        ssym->st_name);
7254
        }
7255
 
7256
      /* Sort symbol by name.  */
7257
      qsort (symtable1, count1, sizeof (struct elf_symbol),
7258
             elf_sym_name_compare);
7259
      qsort (symtable2, count1, sizeof (struct elf_symbol),
7260
             elf_sym_name_compare);
7261
 
7262
      for (i = 0; i < count1; i++)
7263
        /* Two symbols must have the same binding, type and name.  */
7264
        if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7265
            || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7266
            || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7267
          goto done;
7268
 
7269
      result = TRUE;
7270
      goto done;
7271
    }
7272
 
7273
  symtable1 = (struct elf_symbol *)
7274
      bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7275
  symtable2 = (struct elf_symbol *)
7276
      bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7277
  if (symtable1 == NULL || symtable2 == NULL)
7278
    goto done;
7279
 
7280
  /* Count definitions in the section.  */
7281
  count1 = 0;
7282
  for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7283
    if (isym->st_shndx == shndx1)
7284
      symtable1[count1++].u.isym = isym;
7285
 
7286
  count2 = 0;
7287
  for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7288
    if (isym->st_shndx == shndx2)
7289
      symtable2[count2++].u.isym = isym;
7290
 
7291
  if (count1 == 0 || count2 == 0 || count1 != count2)
7292
    goto done;
7293
 
7294
  for (i = 0; i < count1; i++)
7295
    symtable1[i].name
7296
      = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7297
                                         symtable1[i].u.isym->st_name);
7298
 
7299
  for (i = 0; i < count2; i++)
7300
    symtable2[i].name
7301
      = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7302
                                         symtable2[i].u.isym->st_name);
7303
 
7304
  /* Sort symbol by name.  */
7305
  qsort (symtable1, count1, sizeof (struct elf_symbol),
7306
         elf_sym_name_compare);
7307
  qsort (symtable2, count1, sizeof (struct elf_symbol),
7308
         elf_sym_name_compare);
7309
 
7310
  for (i = 0; i < count1; i++)
7311
    /* Two symbols must have the same binding, type and name.  */
7312
    if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7313
        || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7314
        || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7315
      goto done;
7316
 
7317
  result = TRUE;
7318
 
7319
done:
7320
  if (symtable1)
7321
    free (symtable1);
7322
  if (symtable2)
7323
    free (symtable2);
7324
  if (isymbuf1)
7325
    free (isymbuf1);
7326
  if (isymbuf2)
7327
    free (isymbuf2);
7328
 
7329
  return result;
7330
}
7331
 
7332
/* Return TRUE if 2 section types are compatible.  */
7333
 
7334
bfd_boolean
7335
_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7336
                                 bfd *bbfd, const asection *bsec)
7337
{
7338
  if (asec == NULL
7339
      || bsec == NULL
7340
      || abfd->xvec->flavour != bfd_target_elf_flavour
7341
      || bbfd->xvec->flavour != bfd_target_elf_flavour)
7342
    return TRUE;
7343
 
7344
  return elf_section_type (asec) == elf_section_type (bsec);
7345
}
7346
 
7347
/* Final phase of ELF linker.  */
7348
 
7349
/* A structure we use to avoid passing large numbers of arguments.  */
7350
 
7351
struct elf_final_link_info
7352
{
7353
  /* General link information.  */
7354
  struct bfd_link_info *info;
7355
  /* Output BFD.  */
7356
  bfd *output_bfd;
7357
  /* Symbol string table.  */
7358
  struct bfd_strtab_hash *symstrtab;
7359
  /* .dynsym section.  */
7360
  asection *dynsym_sec;
7361
  /* .hash section.  */
7362
  asection *hash_sec;
7363
  /* symbol version section (.gnu.version).  */
7364
  asection *symver_sec;
7365
  /* Buffer large enough to hold contents of any section.  */
7366
  bfd_byte *contents;
7367
  /* Buffer large enough to hold external relocs of any section.  */
7368
  void *external_relocs;
7369
  /* Buffer large enough to hold internal relocs of any section.  */
7370
  Elf_Internal_Rela *internal_relocs;
7371
  /* Buffer large enough to hold external local symbols of any input
7372
     BFD.  */
7373
  bfd_byte *external_syms;
7374
  /* And a buffer for symbol section indices.  */
7375
  Elf_External_Sym_Shndx *locsym_shndx;
7376
  /* Buffer large enough to hold internal local symbols of any input
7377
     BFD.  */
7378
  Elf_Internal_Sym *internal_syms;
7379
  /* Array large enough to hold a symbol index for each local symbol
7380
     of any input BFD.  */
7381
  long *indices;
7382
  /* Array large enough to hold a section pointer for each local
7383
     symbol of any input BFD.  */
7384
  asection **sections;
7385
  /* Buffer to hold swapped out symbols.  */
7386
  bfd_byte *symbuf;
7387
  /* And one for symbol section indices.  */
7388
  Elf_External_Sym_Shndx *symshndxbuf;
7389
  /* Number of swapped out symbols in buffer.  */
7390
  size_t symbuf_count;
7391
  /* Number of symbols which fit in symbuf.  */
7392
  size_t symbuf_size;
7393
  /* And same for symshndxbuf.  */
7394
  size_t shndxbuf_size;
7395
};
7396
 
7397
/* This struct is used to pass information to elf_link_output_extsym.  */
7398
 
7399
struct elf_outext_info
7400
{
7401
  bfd_boolean failed;
7402
  bfd_boolean localsyms;
7403
  struct elf_final_link_info *finfo;
7404
};
7405
 
7406
 
7407
/* Support for evaluating a complex relocation.
7408
 
7409
   Complex relocations are generalized, self-describing relocations.  The
7410
   implementation of them consists of two parts: complex symbols, and the
7411
   relocations themselves.
7412
 
7413
   The relocations are use a reserved elf-wide relocation type code (R_RELC
7414
   external / BFD_RELOC_RELC internal) and an encoding of relocation field
7415
   information (start bit, end bit, word width, etc) into the addend.  This
7416
   information is extracted from CGEN-generated operand tables within gas.
7417
 
7418
   Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7419
   internal) representing prefix-notation expressions, including but not
7420
   limited to those sorts of expressions normally encoded as addends in the
7421
   addend field.  The symbol mangling format is:
7422
 
7423
   <node> := <literal>
7424
          |  <unary-operator> ':' <node>
7425
          |  <binary-operator> ':' <node> ':' <node>
7426
          ;
7427
 
7428
   <literal> := 's' <digits=N> ':' <N character symbol name>
7429
             |  'S' <digits=N> ':' <N character section name>
7430
             |  '#' <hexdigits>
7431
             ;
7432
 
7433
   <binary-operator> := as in C
7434
   <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7435
 
7436
static void
7437
set_symbol_value (bfd *bfd_with_globals,
7438
                  Elf_Internal_Sym *isymbuf,
7439
                  size_t locsymcount,
7440
                  size_t symidx,
7441
                  bfd_vma val)
7442
{
7443
  struct elf_link_hash_entry **sym_hashes;
7444
  struct elf_link_hash_entry *h;
7445
  size_t extsymoff = locsymcount;
7446
 
7447
  if (symidx < locsymcount)
7448
    {
7449
      Elf_Internal_Sym *sym;
7450
 
7451
      sym = isymbuf + symidx;
7452
      if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7453
        {
7454
          /* It is a local symbol: move it to the
7455
             "absolute" section and give it a value.  */
7456
          sym->st_shndx = SHN_ABS;
7457
          sym->st_value = val;
7458
          return;
7459
        }
7460
      BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7461
      extsymoff = 0;
7462
    }
7463
 
7464
  /* It is a global symbol: set its link type
7465
     to "defined" and give it a value.  */
7466
 
7467
  sym_hashes = elf_sym_hashes (bfd_with_globals);
7468
  h = sym_hashes [symidx - extsymoff];
7469
  while (h->root.type == bfd_link_hash_indirect
7470
         || h->root.type == bfd_link_hash_warning)
7471
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7472
  h->root.type = bfd_link_hash_defined;
7473
  h->root.u.def.value = val;
7474
  h->root.u.def.section = bfd_abs_section_ptr;
7475
}
7476
 
7477
static bfd_boolean
7478
resolve_symbol (const char *name,
7479
                bfd *input_bfd,
7480
                struct elf_final_link_info *finfo,
7481
                bfd_vma *result,
7482
                Elf_Internal_Sym *isymbuf,
7483
                size_t locsymcount)
7484
{
7485
  Elf_Internal_Sym *sym;
7486
  struct bfd_link_hash_entry *global_entry;
7487
  const char *candidate = NULL;
7488
  Elf_Internal_Shdr *symtab_hdr;
7489
  size_t i;
7490
 
7491
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7492
 
7493
  for (i = 0; i < locsymcount; ++ i)
7494
    {
7495
      sym = isymbuf + i;
7496
 
7497
      if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7498
        continue;
7499
 
7500
      candidate = bfd_elf_string_from_elf_section (input_bfd,
7501
                                                   symtab_hdr->sh_link,
7502
                                                   sym->st_name);
7503
#ifdef DEBUG
7504
      printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7505
              name, candidate, (unsigned long) sym->st_value);
7506
#endif
7507
      if (candidate && strcmp (candidate, name) == 0)
7508
        {
7509
          asection *sec = finfo->sections [i];
7510
 
7511
          *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7512
          *result += sec->output_offset + sec->output_section->vma;
7513
#ifdef DEBUG
7514
          printf ("Found symbol with value %8.8lx\n",
7515
                  (unsigned long) *result);
7516
#endif
7517
          return TRUE;
7518
        }
7519
    }
7520
 
7521
  /* Hmm, haven't found it yet. perhaps it is a global.  */
7522
  global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7523
                                       FALSE, FALSE, TRUE);
7524
  if (!global_entry)
7525
    return FALSE;
7526
 
7527
  if (global_entry->type == bfd_link_hash_defined
7528
      || global_entry->type == bfd_link_hash_defweak)
7529
    {
7530
      *result = (global_entry->u.def.value
7531
                 + global_entry->u.def.section->output_section->vma
7532
                 + global_entry->u.def.section->output_offset);
7533
#ifdef DEBUG
7534
      printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7535
              global_entry->root.string, (unsigned long) *result);
7536
#endif
7537
      return TRUE;
7538
    }
7539
 
7540
  return FALSE;
7541
}
7542
 
7543
static bfd_boolean
7544
resolve_section (const char *name,
7545
                 asection *sections,
7546
                 bfd_vma *result)
7547
{
7548
  asection *curr;
7549
  unsigned int len;
7550
 
7551
  for (curr = sections; curr; curr = curr->next)
7552
    if (strcmp (curr->name, name) == 0)
7553
      {
7554
        *result = curr->vma;
7555
        return TRUE;
7556
      }
7557
 
7558
  /* Hmm. still haven't found it. try pseudo-section names.  */
7559
  for (curr = sections; curr; curr = curr->next)
7560
    {
7561
      len = strlen (curr->name);
7562
      if (len > strlen (name))
7563
        continue;
7564
 
7565
      if (strncmp (curr->name, name, len) == 0)
7566
        {
7567
          if (strncmp (".end", name + len, 4) == 0)
7568
            {
7569
              *result = curr->vma + curr->size;
7570
              return TRUE;
7571
            }
7572
 
7573
          /* Insert more pseudo-section names here, if you like.  */
7574
        }
7575
    }
7576
 
7577
  return FALSE;
7578
}
7579
 
7580
static void
7581
undefined_reference (const char *reftype, const char *name)
7582
{
7583
  _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7584
                      reftype, name);
7585
}
7586
 
7587
static bfd_boolean
7588
eval_symbol (bfd_vma *result,
7589
             const char **symp,
7590
             bfd *input_bfd,
7591
             struct elf_final_link_info *finfo,
7592
             bfd_vma dot,
7593
             Elf_Internal_Sym *isymbuf,
7594
             size_t locsymcount,
7595
             int signed_p)
7596
{
7597
  size_t len;
7598
  size_t symlen;
7599
  bfd_vma a;
7600
  bfd_vma b;
7601
  char symbuf[4096];
7602
  const char *sym = *symp;
7603
  const char *symend;
7604
  bfd_boolean symbol_is_section = FALSE;
7605
 
7606
  len = strlen (sym);
7607
  symend = sym + len;
7608
 
7609
  if (len < 1 || len > sizeof (symbuf))
7610
    {
7611
      bfd_set_error (bfd_error_invalid_operation);
7612
      return FALSE;
7613
    }
7614
 
7615
  switch (* sym)
7616
    {
7617
    case '.':
7618
      *result = dot;
7619
      *symp = sym + 1;
7620
      return TRUE;
7621
 
7622
    case '#':
7623
      ++sym;
7624
      *result = strtoul (sym, (char **) symp, 16);
7625
      return TRUE;
7626
 
7627
    case 'S':
7628
      symbol_is_section = TRUE;
7629
    case 's':
7630
      ++sym;
7631
      symlen = strtol (sym, (char **) symp, 10);
7632
      sym = *symp + 1; /* Skip the trailing ':'.  */
7633
 
7634
      if (symend < sym || symlen + 1 > sizeof (symbuf))
7635
        {
7636
          bfd_set_error (bfd_error_invalid_operation);
7637
          return FALSE;
7638
        }
7639
 
7640
      memcpy (symbuf, sym, symlen);
7641
      symbuf[symlen] = '\0';
7642
      *symp = sym + symlen;
7643
 
7644
      /* Is it always possible, with complex symbols, that gas "mis-guessed"
7645
         the symbol as a section, or vice-versa. so we're pretty liberal in our
7646
         interpretation here; section means "try section first", not "must be a
7647
         section", and likewise with symbol.  */
7648
 
7649
      if (symbol_is_section)
7650
        {
7651
          if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7652
              && !resolve_symbol (symbuf, input_bfd, finfo, result,
7653
                                  isymbuf, locsymcount))
7654
            {
7655
              undefined_reference ("section", symbuf);
7656
              return FALSE;
7657
            }
7658
        }
7659
      else
7660
        {
7661
          if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7662
                               isymbuf, locsymcount)
7663
              && !resolve_section (symbuf, finfo->output_bfd->sections,
7664
                                   result))
7665
            {
7666
              undefined_reference ("symbol", symbuf);
7667
              return FALSE;
7668
            }
7669
        }
7670
 
7671
      return TRUE;
7672
 
7673
      /* All that remains are operators.  */
7674
 
7675
#define UNARY_OP(op)                                            \
7676
  if (strncmp (sym, #op, strlen (#op)) == 0)                    \
7677
    {                                                           \
7678
      sym += strlen (#op);                                      \
7679
      if (*sym == ':')                                          \
7680
        ++sym;                                                  \
7681
      *symp = sym;                                              \
7682
      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,        \
7683
                        isymbuf, locsymcount, signed_p))        \
7684
        return FALSE;                                           \
7685
      if (signed_p)                                             \
7686
        *result = op ((bfd_signed_vma) a);                      \
7687
      else                                                      \
7688
        *result = op a;                                         \
7689
      return TRUE;                                              \
7690
    }
7691
 
7692
#define BINARY_OP(op)                                           \
7693
  if (strncmp (sym, #op, strlen (#op)) == 0)                    \
7694
    {                                                           \
7695
      sym += strlen (#op);                                      \
7696
      if (*sym == ':')                                          \
7697
        ++sym;                                                  \
7698
      *symp = sym;                                              \
7699
      if (!eval_symbol (&a, symp, input_bfd, finfo, dot,        \
7700
                        isymbuf, locsymcount, signed_p))        \
7701
        return FALSE;                                           \
7702
      ++*symp;                                                  \
7703
      if (!eval_symbol (&b, symp, input_bfd, finfo, dot,        \
7704
                        isymbuf, locsymcount, signed_p))        \
7705
        return FALSE;                                           \
7706
      if (signed_p)                                             \
7707
        *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7708
      else                                                      \
7709
        *result = a op b;                                       \
7710
      return TRUE;                                              \
7711
    }
7712
 
7713
    default:
7714
      UNARY_OP  (0-);
7715
      BINARY_OP (<<);
7716
      BINARY_OP (>>);
7717
      BINARY_OP (==);
7718
      BINARY_OP (!=);
7719
      BINARY_OP (<=);
7720
      BINARY_OP (>=);
7721
      BINARY_OP (&&);
7722
      BINARY_OP (||);
7723
      UNARY_OP  (~);
7724
      UNARY_OP  (!);
7725
      BINARY_OP (*);
7726
      BINARY_OP (/);
7727
      BINARY_OP (%);
7728
      BINARY_OP (^);
7729
      BINARY_OP (|);
7730
      BINARY_OP (&);
7731
      BINARY_OP (+);
7732
      BINARY_OP (-);
7733
      BINARY_OP (<);
7734
      BINARY_OP (>);
7735
#undef UNARY_OP
7736
#undef BINARY_OP
7737
      _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7738
      bfd_set_error (bfd_error_invalid_operation);
7739
      return FALSE;
7740
    }
7741
}
7742
 
7743
static void
7744
put_value (bfd_vma size,
7745
           unsigned long chunksz,
7746
           bfd *input_bfd,
7747
           bfd_vma x,
7748
           bfd_byte *location)
7749
{
7750
  location += (size - chunksz);
7751
 
7752
  for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7753
    {
7754
      switch (chunksz)
7755
        {
7756
        default:
7757
        case 0:
7758
          abort ();
7759
        case 1:
7760
          bfd_put_8 (input_bfd, x, location);
7761
          break;
7762
        case 2:
7763
          bfd_put_16 (input_bfd, x, location);
7764
          break;
7765
        case 4:
7766
          bfd_put_32 (input_bfd, x, location);
7767
          break;
7768
        case 8:
7769
#ifdef BFD64
7770
          bfd_put_64 (input_bfd, x, location);
7771
#else
7772
          abort ();
7773
#endif
7774
          break;
7775
        }
7776
    }
7777
}
7778
 
7779
static bfd_vma
7780
get_value (bfd_vma size,
7781
           unsigned long chunksz,
7782
           bfd *input_bfd,
7783
           bfd_byte *location)
7784
{
7785
  bfd_vma x = 0;
7786
 
7787
  for (; size; size -= chunksz, location += chunksz)
7788
    {
7789
      switch (chunksz)
7790
        {
7791
        default:
7792
        case 0:
7793
          abort ();
7794
        case 1:
7795
          x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7796
          break;
7797
        case 2:
7798
          x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7799
          break;
7800
        case 4:
7801
          x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7802
          break;
7803
        case 8:
7804
#ifdef BFD64
7805
          x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7806
#else
7807
          abort ();
7808
#endif
7809
          break;
7810
        }
7811
    }
7812
  return x;
7813
}
7814
 
7815
static void
7816
decode_complex_addend (unsigned long *start,   /* in bits */
7817
                       unsigned long *oplen,   /* in bits */
7818
                       unsigned long *len,     /* in bits */
7819
                       unsigned long *wordsz,  /* in bytes */
7820
                       unsigned long *chunksz, /* in bytes */
7821
                       unsigned long *lsb0_p,
7822
                       unsigned long *signed_p,
7823
                       unsigned long *trunc_p,
7824
                       unsigned long encoded)
7825
{
7826
  * start     =  encoded        & 0x3F;
7827
  * len       = (encoded >>  6) & 0x3F;
7828
  * oplen     = (encoded >> 12) & 0x3F;
7829
  * wordsz    = (encoded >> 18) & 0xF;
7830
  * chunksz   = (encoded >> 22) & 0xF;
7831
  * lsb0_p    = (encoded >> 27) & 1;
7832
  * signed_p  = (encoded >> 28) & 1;
7833
  * trunc_p   = (encoded >> 29) & 1;
7834
}
7835
 
7836
bfd_reloc_status_type
7837
bfd_elf_perform_complex_relocation (bfd *input_bfd,
7838
                                    asection *input_section ATTRIBUTE_UNUSED,
7839
                                    bfd_byte *contents,
7840
                                    Elf_Internal_Rela *rel,
7841
                                    bfd_vma relocation)
7842
{
7843
  bfd_vma shift, x, mask;
7844
  unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7845
  bfd_reloc_status_type r;
7846
 
7847
  /*  Perform this reloc, since it is complex.
7848
      (this is not to say that it necessarily refers to a complex
7849
      symbol; merely that it is a self-describing CGEN based reloc.
7850
      i.e. the addend has the complete reloc information (bit start, end,
7851
      word size, etc) encoded within it.).  */
7852
 
7853
  decode_complex_addend (&start, &oplen, &len, &wordsz,
7854
                         &chunksz, &lsb0_p, &signed_p,
7855
                         &trunc_p, rel->r_addend);
7856
 
7857
  mask = (((1L << (len - 1)) - 1) << 1) | 1;
7858
 
7859
  if (lsb0_p)
7860
    shift = (start + 1) - len;
7861
  else
7862
    shift = (8 * wordsz) - (start + len);
7863
 
7864
  /* FIXME: octets_per_byte.  */
7865
  x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7866
 
7867
#ifdef DEBUG
7868
  printf ("Doing complex reloc: "
7869
          "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7870
          "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7871
          "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7872
          lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7873
          oplen, (unsigned long) x, (unsigned long) mask,
7874
          (unsigned long) relocation);
7875
#endif
7876
 
7877
  r = bfd_reloc_ok;
7878
  if (! trunc_p)
7879
    /* Now do an overflow check.  */
7880
    r = bfd_check_overflow ((signed_p
7881
                             ? complain_overflow_signed
7882
                             : complain_overflow_unsigned),
7883
                            len, 0, (8 * wordsz),
7884
                            relocation);
7885
 
7886
  /* Do the deed.  */
7887
  x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7888
 
7889
#ifdef DEBUG
7890
  printf ("           relocation: %8.8lx\n"
7891
          "         shifted mask: %8.8lx\n"
7892
          " shifted/masked reloc: %8.8lx\n"
7893
          "               result: %8.8lx\n",
7894
          (unsigned long) relocation, (unsigned long) (mask << shift),
7895
          (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7896
#endif
7897
  /* FIXME: octets_per_byte.  */
7898
  put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7899
  return r;
7900
}
7901
 
7902
/* When performing a relocatable link, the input relocations are
7903
   preserved.  But, if they reference global symbols, the indices
7904
   referenced must be updated.  Update all the relocations found in
7905
   RELDATA.  */
7906
 
7907
static void
7908
elf_link_adjust_relocs (bfd *abfd,
7909
                        struct bfd_elf_section_reloc_data *reldata)
7910
{
7911
  unsigned int i;
7912
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7913
  bfd_byte *erela;
7914
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7915
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7916
  bfd_vma r_type_mask;
7917
  int r_sym_shift;
7918
  unsigned int count = reldata->count;
7919
  struct elf_link_hash_entry **rel_hash = reldata->hashes;
7920
 
7921
  if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7922
    {
7923
      swap_in = bed->s->swap_reloc_in;
7924
      swap_out = bed->s->swap_reloc_out;
7925
    }
7926
  else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7927
    {
7928
      swap_in = bed->s->swap_reloca_in;
7929
      swap_out = bed->s->swap_reloca_out;
7930
    }
7931
  else
7932
    abort ();
7933
 
7934
  if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7935
    abort ();
7936
 
7937
  if (bed->s->arch_size == 32)
7938
    {
7939
      r_type_mask = 0xff;
7940
      r_sym_shift = 8;
7941
    }
7942
  else
7943
    {
7944
      r_type_mask = 0xffffffff;
7945
      r_sym_shift = 32;
7946
    }
7947
 
7948
  erela = reldata->hdr->contents;
7949
  for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7950
    {
7951
      Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7952
      unsigned int j;
7953
 
7954
      if (*rel_hash == NULL)
7955
        continue;
7956
 
7957
      BFD_ASSERT ((*rel_hash)->indx >= 0);
7958
 
7959
      (*swap_in) (abfd, erela, irela);
7960
      for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7961
        irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7962
                           | (irela[j].r_info & r_type_mask));
7963
      (*swap_out) (abfd, irela, erela);
7964
    }
7965
}
7966
 
7967
struct elf_link_sort_rela
7968
{
7969
  union {
7970
    bfd_vma offset;
7971
    bfd_vma sym_mask;
7972
  } u;
7973
  enum elf_reloc_type_class type;
7974
  /* We use this as an array of size int_rels_per_ext_rel.  */
7975
  Elf_Internal_Rela rela[1];
7976
};
7977
 
7978
static int
7979
elf_link_sort_cmp1 (const void *A, const void *B)
7980
{
7981
  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7982
  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7983
  int relativea, relativeb;
7984
 
7985
  relativea = a->type == reloc_class_relative;
7986
  relativeb = b->type == reloc_class_relative;
7987
 
7988
  if (relativea < relativeb)
7989
    return 1;
7990
  if (relativea > relativeb)
7991
    return -1;
7992
  if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7993
    return -1;
7994
  if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7995
    return 1;
7996
  if (a->rela->r_offset < b->rela->r_offset)
7997
    return -1;
7998
  if (a->rela->r_offset > b->rela->r_offset)
7999
    return 1;
8000
  return 0;
8001
}
8002
 
8003
static int
8004
elf_link_sort_cmp2 (const void *A, const void *B)
8005
{
8006
  const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8007
  const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8008
  int copya, copyb;
8009
 
8010
  if (a->u.offset < b->u.offset)
8011
    return -1;
8012
  if (a->u.offset > b->u.offset)
8013
    return 1;
8014
  copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8015
  copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8016
  if (copya < copyb)
8017
    return -1;
8018
  if (copya > copyb)
8019
    return 1;
8020
  if (a->rela->r_offset < b->rela->r_offset)
8021
    return -1;
8022
  if (a->rela->r_offset > b->rela->r_offset)
8023
    return 1;
8024
  return 0;
8025
}
8026
 
8027
static size_t
8028
elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8029
{
8030
  asection *dynamic_relocs;
8031
  asection *rela_dyn;
8032
  asection *rel_dyn;
8033
  bfd_size_type count, size;
8034
  size_t i, ret, sort_elt, ext_size;
8035
  bfd_byte *sort, *s_non_relative, *p;
8036
  struct elf_link_sort_rela *sq;
8037
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8038
  int i2e = bed->s->int_rels_per_ext_rel;
8039
  void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8040
  void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8041
  struct bfd_link_order *lo;
8042
  bfd_vma r_sym_mask;
8043
  bfd_boolean use_rela;
8044
 
8045
  /* Find a dynamic reloc section.  */
8046
  rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8047
  rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8048
  if (rela_dyn != NULL && rela_dyn->size > 0
8049
      && rel_dyn != NULL && rel_dyn->size > 0)
8050
    {
8051
      bfd_boolean use_rela_initialised = FALSE;
8052
 
8053
      /* This is just here to stop gcc from complaining.
8054
         It's initialization checking code is not perfect.  */
8055
      use_rela = TRUE;
8056
 
8057
      /* Both sections are present.  Examine the sizes
8058
         of the indirect sections to help us choose.  */
8059
      for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8060
        if (lo->type == bfd_indirect_link_order)
8061
          {
8062
            asection *o = lo->u.indirect.section;
8063
 
8064
            if ((o->size % bed->s->sizeof_rela) == 0)
8065
              {
8066
                if ((o->size % bed->s->sizeof_rel) == 0)
8067
                  /* Section size is divisible by both rel and rela sizes.
8068
                     It is of no help to us.  */
8069
                  ;
8070
                else
8071
                  {
8072
                    /* Section size is only divisible by rela.  */
8073
                    if (use_rela_initialised && (use_rela == FALSE))
8074
                      {
8075
                        _bfd_error_handler
8076
                          (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8077
                        bfd_set_error (bfd_error_invalid_operation);
8078
                        return 0;
8079
                      }
8080
                    else
8081
                      {
8082
                        use_rela = TRUE;
8083
                        use_rela_initialised = TRUE;
8084
                      }
8085
                  }
8086
              }
8087
            else if ((o->size % bed->s->sizeof_rel) == 0)
8088
              {
8089
                /* Section size is only divisible by rel.  */
8090
                if (use_rela_initialised && (use_rela == TRUE))
8091
                  {
8092
                    _bfd_error_handler
8093
                      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8094
                    bfd_set_error (bfd_error_invalid_operation);
8095
                    return 0;
8096
                  }
8097
                else
8098
                  {
8099
                    use_rela = FALSE;
8100
                    use_rela_initialised = TRUE;
8101
                  }
8102
              }
8103
            else
8104
              {
8105
                /* The section size is not divisible by either - something is wrong.  */
8106
                _bfd_error_handler
8107
                  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8108
                bfd_set_error (bfd_error_invalid_operation);
8109
                return 0;
8110
              }
8111
          }
8112
 
8113
      for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8114
        if (lo->type == bfd_indirect_link_order)
8115
          {
8116
            asection *o = lo->u.indirect.section;
8117
 
8118
            if ((o->size % bed->s->sizeof_rela) == 0)
8119
              {
8120
                if ((o->size % bed->s->sizeof_rel) == 0)
8121
                  /* Section size is divisible by both rel and rela sizes.
8122
                     It is of no help to us.  */
8123
                  ;
8124
                else
8125
                  {
8126
                    /* Section size is only divisible by rela.  */
8127
                    if (use_rela_initialised && (use_rela == FALSE))
8128
                      {
8129
                        _bfd_error_handler
8130
                          (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8131
                        bfd_set_error (bfd_error_invalid_operation);
8132
                        return 0;
8133
                      }
8134
                    else
8135
                      {
8136
                        use_rela = TRUE;
8137
                        use_rela_initialised = TRUE;
8138
                      }
8139
                  }
8140
              }
8141
            else if ((o->size % bed->s->sizeof_rel) == 0)
8142
              {
8143
                /* Section size is only divisible by rel.  */
8144
                if (use_rela_initialised && (use_rela == TRUE))
8145
                  {
8146
                    _bfd_error_handler
8147
                      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8148
                    bfd_set_error (bfd_error_invalid_operation);
8149
                    return 0;
8150
                  }
8151
                else
8152
                  {
8153
                    use_rela = FALSE;
8154
                    use_rela_initialised = TRUE;
8155
                  }
8156
              }
8157
            else
8158
              {
8159
                /* The section size is not divisible by either - something is wrong.  */
8160
                _bfd_error_handler
8161
                  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8162
                bfd_set_error (bfd_error_invalid_operation);
8163
                return 0;
8164
              }
8165
          }
8166
 
8167
      if (! use_rela_initialised)
8168
        /* Make a guess.  */
8169
        use_rela = TRUE;
8170
    }
8171
  else if (rela_dyn != NULL && rela_dyn->size > 0)
8172
    use_rela = TRUE;
8173
  else if (rel_dyn != NULL && rel_dyn->size > 0)
8174
    use_rela = FALSE;
8175
  else
8176
    return 0;
8177
 
8178
  if (use_rela)
8179
    {
8180
      dynamic_relocs = rela_dyn;
8181
      ext_size = bed->s->sizeof_rela;
8182
      swap_in = bed->s->swap_reloca_in;
8183
      swap_out = bed->s->swap_reloca_out;
8184
    }
8185
  else
8186
    {
8187
      dynamic_relocs = rel_dyn;
8188
      ext_size = bed->s->sizeof_rel;
8189
      swap_in = bed->s->swap_reloc_in;
8190
      swap_out = bed->s->swap_reloc_out;
8191
    }
8192
 
8193
  size = 0;
8194
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8195
    if (lo->type == bfd_indirect_link_order)
8196
      size += lo->u.indirect.section->size;
8197
 
8198
  if (size != dynamic_relocs->size)
8199
    return 0;
8200
 
8201
  sort_elt = (sizeof (struct elf_link_sort_rela)
8202
              + (i2e - 1) * sizeof (Elf_Internal_Rela));
8203
 
8204
  count = dynamic_relocs->size / ext_size;
8205
  if (count == 0)
8206
    return 0;
8207
  sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8208
 
8209
  if (sort == NULL)
8210
    {
8211
      (*info->callbacks->warning)
8212
        (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8213
      return 0;
8214
    }
8215
 
8216
  if (bed->s->arch_size == 32)
8217
    r_sym_mask = ~(bfd_vma) 0xff;
8218
  else
8219
    r_sym_mask = ~(bfd_vma) 0xffffffff;
8220
 
8221
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8222
    if (lo->type == bfd_indirect_link_order)
8223
      {
8224
        bfd_byte *erel, *erelend;
8225
        asection *o = lo->u.indirect.section;
8226
 
8227
        if (o->contents == NULL && o->size != 0)
8228
          {
8229
            /* This is a reloc section that is being handled as a normal
8230
               section.  See bfd_section_from_shdr.  We can't combine
8231
               relocs in this case.  */
8232
            free (sort);
8233
            return 0;
8234
          }
8235
        erel = o->contents;
8236
        erelend = o->contents + o->size;
8237
        /* FIXME: octets_per_byte.  */
8238
        p = sort + o->output_offset / ext_size * sort_elt;
8239
 
8240
        while (erel < erelend)
8241
          {
8242
            struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8243
 
8244
            (*swap_in) (abfd, erel, s->rela);
8245
            s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8246
            s->u.sym_mask = r_sym_mask;
8247
            p += sort_elt;
8248
            erel += ext_size;
8249
          }
8250
      }
8251
 
8252
  qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8253
 
8254
  for (i = 0, p = sort; i < count; i++, p += sort_elt)
8255
    {
8256
      struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8257
      if (s->type != reloc_class_relative)
8258
        break;
8259
    }
8260
  ret = i;
8261
  s_non_relative = p;
8262
 
8263
  sq = (struct elf_link_sort_rela *) s_non_relative;
8264
  for (; i < count; i++, p += sort_elt)
8265
    {
8266
      struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8267
      if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8268
        sq = sp;
8269
      sp->u.offset = sq->rela->r_offset;
8270
    }
8271
 
8272
  qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8273
 
8274
  for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8275
    if (lo->type == bfd_indirect_link_order)
8276
      {
8277
        bfd_byte *erel, *erelend;
8278
        asection *o = lo->u.indirect.section;
8279
 
8280
        erel = o->contents;
8281
        erelend = o->contents + o->size;
8282
        /* FIXME: octets_per_byte.  */
8283
        p = sort + o->output_offset / ext_size * sort_elt;
8284
        while (erel < erelend)
8285
          {
8286
            struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8287
            (*swap_out) (abfd, s->rela, erel);
8288
            p += sort_elt;
8289
            erel += ext_size;
8290
          }
8291
      }
8292
 
8293
  free (sort);
8294
  *psec = dynamic_relocs;
8295
  return ret;
8296
}
8297
 
8298
/* Flush the output symbols to the file.  */
8299
 
8300
static bfd_boolean
8301
elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8302
                            const struct elf_backend_data *bed)
8303
{
8304
  if (finfo->symbuf_count > 0)
8305
    {
8306
      Elf_Internal_Shdr *hdr;
8307
      file_ptr pos;
8308
      bfd_size_type amt;
8309
 
8310
      hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8311
      pos = hdr->sh_offset + hdr->sh_size;
8312
      amt = finfo->symbuf_count * bed->s->sizeof_sym;
8313
      if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8314
          || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8315
        return FALSE;
8316
 
8317
      hdr->sh_size += amt;
8318
      finfo->symbuf_count = 0;
8319
    }
8320
 
8321
  return TRUE;
8322
}
8323
 
8324
/* Add a symbol to the output symbol table.  */
8325
 
8326
static int
8327
elf_link_output_sym (struct elf_final_link_info *finfo,
8328
                     const char *name,
8329
                     Elf_Internal_Sym *elfsym,
8330
                     asection *input_sec,
8331
                     struct elf_link_hash_entry *h)
8332
{
8333
  bfd_byte *dest;
8334
  Elf_External_Sym_Shndx *destshndx;
8335
  int (*output_symbol_hook)
8336
    (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8337
     struct elf_link_hash_entry *);
8338
  const struct elf_backend_data *bed;
8339
 
8340
  bed = get_elf_backend_data (finfo->output_bfd);
8341
  output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8342
  if (output_symbol_hook != NULL)
8343
    {
8344
      int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8345
      if (ret != 1)
8346
        return ret;
8347
    }
8348
 
8349
  if (name == NULL || *name == '\0')
8350
    elfsym->st_name = 0;
8351
  else if (input_sec->flags & SEC_EXCLUDE)
8352
    elfsym->st_name = 0;
8353
  else
8354
    {
8355
      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8356
                                                            name, TRUE, FALSE);
8357
      if (elfsym->st_name == (unsigned long) -1)
8358
        return 0;
8359
    }
8360
 
8361
  if (finfo->symbuf_count >= finfo->symbuf_size)
8362
    {
8363
      if (! elf_link_flush_output_syms (finfo, bed))
8364
        return 0;
8365
    }
8366
 
8367
  dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8368
  destshndx = finfo->symshndxbuf;
8369
  if (destshndx != NULL)
8370
    {
8371
      if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8372
        {
8373
          bfd_size_type amt;
8374
 
8375
          amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8376
          destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8377
                                                              amt * 2);
8378
          if (destshndx == NULL)
8379
            return 0;
8380
          finfo->symshndxbuf = destshndx;
8381
          memset ((char *) destshndx + amt, 0, amt);
8382
          finfo->shndxbuf_size *= 2;
8383
        }
8384
      destshndx += bfd_get_symcount (finfo->output_bfd);
8385
    }
8386
 
8387
  bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8388
  finfo->symbuf_count += 1;
8389
  bfd_get_symcount (finfo->output_bfd) += 1;
8390
 
8391
  return 1;
8392
}
8393
 
8394
/* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8395
 
8396
static bfd_boolean
8397
check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8398
{
8399
  if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8400
      && sym->st_shndx < SHN_LORESERVE)
8401
    {
8402
      /* The gABI doesn't support dynamic symbols in output sections
8403
         beyond 64k.  */
8404
      (*_bfd_error_handler)
8405
        (_("%B: Too many sections: %d (>= %d)"),
8406
         abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8407
      bfd_set_error (bfd_error_nonrepresentable_section);
8408
      return FALSE;
8409
    }
8410
  return TRUE;
8411
}
8412
 
8413
/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8414
   allowing an unsatisfied unversioned symbol in the DSO to match a
8415
   versioned symbol that would normally require an explicit version.
8416
   We also handle the case that a DSO references a hidden symbol
8417
   which may be satisfied by a versioned symbol in another DSO.  */
8418
 
8419
static bfd_boolean
8420
elf_link_check_versioned_symbol (struct bfd_link_info *info,
8421
                                 const struct elf_backend_data *bed,
8422
                                 struct elf_link_hash_entry *h)
8423
{
8424
  bfd *abfd;
8425
  struct elf_link_loaded_list *loaded;
8426
 
8427
  if (!is_elf_hash_table (info->hash))
8428
    return FALSE;
8429
 
8430
  switch (h->root.type)
8431
    {
8432
    default:
8433
      abfd = NULL;
8434
      break;
8435
 
8436
    case bfd_link_hash_undefined:
8437
    case bfd_link_hash_undefweak:
8438
      abfd = h->root.u.undef.abfd;
8439
      if ((abfd->flags & DYNAMIC) == 0
8440
          || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8441
        return FALSE;
8442
      break;
8443
 
8444
    case bfd_link_hash_defined:
8445
    case bfd_link_hash_defweak:
8446
      abfd = h->root.u.def.section->owner;
8447
      break;
8448
 
8449
    case bfd_link_hash_common:
8450
      abfd = h->root.u.c.p->section->owner;
8451
      break;
8452
    }
8453
  BFD_ASSERT (abfd != NULL);
8454
 
8455
  for (loaded = elf_hash_table (info)->loaded;
8456
       loaded != NULL;
8457
       loaded = loaded->next)
8458
    {
8459
      bfd *input;
8460
      Elf_Internal_Shdr *hdr;
8461
      bfd_size_type symcount;
8462
      bfd_size_type extsymcount;
8463
      bfd_size_type extsymoff;
8464
      Elf_Internal_Shdr *versymhdr;
8465
      Elf_Internal_Sym *isym;
8466
      Elf_Internal_Sym *isymend;
8467
      Elf_Internal_Sym *isymbuf;
8468
      Elf_External_Versym *ever;
8469
      Elf_External_Versym *extversym;
8470
 
8471
      input = loaded->abfd;
8472
 
8473
      /* We check each DSO for a possible hidden versioned definition.  */
8474
      if (input == abfd
8475
          || (input->flags & DYNAMIC) == 0
8476
          || elf_dynversym (input) == 0)
8477
        continue;
8478
 
8479
      hdr = &elf_tdata (input)->dynsymtab_hdr;
8480
 
8481
      symcount = hdr->sh_size / bed->s->sizeof_sym;
8482
      if (elf_bad_symtab (input))
8483
        {
8484
          extsymcount = symcount;
8485
          extsymoff = 0;
8486
        }
8487
      else
8488
        {
8489
          extsymcount = symcount - hdr->sh_info;
8490
          extsymoff = hdr->sh_info;
8491
        }
8492
 
8493
      if (extsymcount == 0)
8494
        continue;
8495
 
8496
      isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8497
                                      NULL, NULL, NULL);
8498
      if (isymbuf == NULL)
8499
        return FALSE;
8500
 
8501
      /* Read in any version definitions.  */
8502
      versymhdr = &elf_tdata (input)->dynversym_hdr;
8503
      extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8504
      if (extversym == NULL)
8505
        goto error_ret;
8506
 
8507
      if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8508
          || (bfd_bread (extversym, versymhdr->sh_size, input)
8509
              != versymhdr->sh_size))
8510
        {
8511
          free (extversym);
8512
        error_ret:
8513
          free (isymbuf);
8514
          return FALSE;
8515
        }
8516
 
8517
      ever = extversym + extsymoff;
8518
      isymend = isymbuf + extsymcount;
8519
      for (isym = isymbuf; isym < isymend; isym++, ever++)
8520
        {
8521
          const char *name;
8522
          Elf_Internal_Versym iver;
8523
          unsigned short version_index;
8524
 
8525
          if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8526
              || isym->st_shndx == SHN_UNDEF)
8527
            continue;
8528
 
8529
          name = bfd_elf_string_from_elf_section (input,
8530
                                                  hdr->sh_link,
8531
                                                  isym->st_name);
8532
          if (strcmp (name, h->root.root.string) != 0)
8533
            continue;
8534
 
8535
          _bfd_elf_swap_versym_in (input, ever, &iver);
8536
 
8537
          if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8538
              && !(h->def_regular
8539
                   && h->forced_local))
8540
            {
8541
              /* If we have a non-hidden versioned sym, then it should
8542
                 have provided a definition for the undefined sym unless
8543
                 it is defined in a non-shared object and forced local.
8544
               */
8545
              abort ();
8546
            }
8547
 
8548
          version_index = iver.vs_vers & VERSYM_VERSION;
8549
          if (version_index == 1 || version_index == 2)
8550
            {
8551
              /* This is the base or first version.  We can use it.  */
8552
              free (extversym);
8553
              free (isymbuf);
8554
              return TRUE;
8555
            }
8556
        }
8557
 
8558
      free (extversym);
8559
      free (isymbuf);
8560
    }
8561
 
8562
  return FALSE;
8563
}
8564
 
8565
/* Add an external symbol to the symbol table.  This is called from
8566
   the hash table traversal routine.  When generating a shared object,
8567
   we go through the symbol table twice.  The first time we output
8568
   anything that might have been forced to local scope in a version
8569
   script.  The second time we output the symbols that are still
8570
   global symbols.  */
8571
 
8572
static bfd_boolean
8573 148 khays
elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8574 14 khays
{
8575 148 khays
  struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8576 14 khays
  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8577
  struct elf_final_link_info *finfo = eoinfo->finfo;
8578
  bfd_boolean strip;
8579
  Elf_Internal_Sym sym;
8580
  asection *input_sec;
8581
  const struct elf_backend_data *bed;
8582
  long indx;
8583
  int ret;
8584
 
8585
  if (h->root.type == bfd_link_hash_warning)
8586
    {
8587
      h = (struct elf_link_hash_entry *) h->root.u.i.link;
8588
      if (h->root.type == bfd_link_hash_new)
8589
        return TRUE;
8590
    }
8591
 
8592
  /* Decide whether to output this symbol in this pass.  */
8593
  if (eoinfo->localsyms)
8594
    {
8595
      if (!h->forced_local)
8596
        return TRUE;
8597
    }
8598
  else
8599
    {
8600
      if (h->forced_local)
8601
        return TRUE;
8602
    }
8603
 
8604
  bed = get_elf_backend_data (finfo->output_bfd);
8605
 
8606
  if (h->root.type == bfd_link_hash_undefined)
8607
    {
8608
      /* If we have an undefined symbol reference here then it must have
8609
         come from a shared library that is being linked in.  (Undefined
8610
         references in regular files have already been handled unless
8611
         they are in unreferenced sections which are removed by garbage
8612
         collection).  */
8613
      bfd_boolean ignore_undef = FALSE;
8614
 
8615
      /* Some symbols may be special in that the fact that they're
8616
         undefined can be safely ignored - let backend determine that.  */
8617
      if (bed->elf_backend_ignore_undef_symbol)
8618
        ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8619
 
8620
      /* If we are reporting errors for this situation then do so now.  */
8621
      if (!ignore_undef
8622
          && h->ref_dynamic
8623
          && (!h->ref_regular || finfo->info->gc_sections)
8624
          && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8625
          && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8626
        {
8627
          if (! (finfo->info->callbacks->undefined_symbol
8628
                 (finfo->info, h->root.root.string,
8629
                  h->ref_regular ? NULL : h->root.u.undef.abfd,
8630
                  NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8631
            {
8632
              bfd_set_error (bfd_error_bad_value);
8633
              eoinfo->failed = TRUE;
8634
              return FALSE;
8635
            }
8636
        }
8637
    }
8638
 
8639
  /* We should also warn if a forced local symbol is referenced from
8640
     shared libraries.  */
8641
  if (! finfo->info->relocatable
8642
      && (! finfo->info->shared)
8643
      && h->forced_local
8644
      && h->ref_dynamic
8645
      && !h->dynamic_def
8646
      && !h->dynamic_weak
8647
      && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8648
    {
8649
      bfd *def_bfd;
8650
      const char *msg;
8651
 
8652
      if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8653
        msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8654
      else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8655
        msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8656
      else
8657
        msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8658
      def_bfd = finfo->output_bfd;
8659
      if (h->root.u.def.section != bfd_abs_section_ptr)
8660
        def_bfd = h->root.u.def.section->owner;
8661
      (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8662
                             h->root.root.string);
8663
      bfd_set_error (bfd_error_bad_value);
8664
      eoinfo->failed = TRUE;
8665
      return FALSE;
8666
    }
8667
 
8668
  /* We don't want to output symbols that have never been mentioned by
8669
     a regular file, or that we have been told to strip.  However, if
8670
     h->indx is set to -2, the symbol is used by a reloc and we must
8671
     output it.  */
8672
  if (h->indx == -2)
8673
    strip = FALSE;
8674
  else if ((h->def_dynamic
8675
            || h->ref_dynamic
8676
            || h->root.type == bfd_link_hash_new)
8677
           && !h->def_regular
8678
           && !h->ref_regular)
8679
    strip = TRUE;
8680
  else if (finfo->info->strip == strip_all)
8681
    strip = TRUE;
8682
  else if (finfo->info->strip == strip_some
8683
           && bfd_hash_lookup (finfo->info->keep_hash,
8684
                               h->root.root.string, FALSE, FALSE) == NULL)
8685
    strip = TRUE;
8686
  else if (finfo->info->strip_discarded
8687
           && (h->root.type == bfd_link_hash_defined
8688
               || h->root.type == bfd_link_hash_defweak)
8689
           && elf_discarded_section (h->root.u.def.section))
8690
    strip = TRUE;
8691
  else if ((h->root.type == bfd_link_hash_undefined
8692
            || h->root.type == bfd_link_hash_undefweak)
8693
           && h->root.u.undef.abfd != NULL
8694
           && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8695
    strip = TRUE;
8696
  else
8697
    strip = FALSE;
8698
 
8699
  /* If we're stripping it, and it's not a dynamic symbol, there's
8700
     nothing else to do unless it is a forced local symbol or a
8701
     STT_GNU_IFUNC symbol.  */
8702
  if (strip
8703
      && h->dynindx == -1
8704
      && h->type != STT_GNU_IFUNC
8705
      && !h->forced_local)
8706
    return TRUE;
8707
 
8708
  sym.st_value = 0;
8709
  sym.st_size = h->size;
8710
  sym.st_other = h->other;
8711
  if (h->forced_local)
8712
    {
8713
      sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8714
      /* Turn off visibility on local symbol.  */
8715
      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8716
    }
8717
  else if (h->unique_global)
8718
    sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8719
  else if (h->root.type == bfd_link_hash_undefweak
8720
           || h->root.type == bfd_link_hash_defweak)
8721
    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8722
  else
8723
    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8724
  sym.st_target_internal = h->target_internal;
8725
 
8726
  switch (h->root.type)
8727
    {
8728
    default:
8729
    case bfd_link_hash_new:
8730
    case bfd_link_hash_warning:
8731
      abort ();
8732
      return FALSE;
8733
 
8734
    case bfd_link_hash_undefined:
8735
    case bfd_link_hash_undefweak:
8736
      input_sec = bfd_und_section_ptr;
8737
      sym.st_shndx = SHN_UNDEF;
8738
      break;
8739
 
8740
    case bfd_link_hash_defined:
8741
    case bfd_link_hash_defweak:
8742
      {
8743
        input_sec = h->root.u.def.section;
8744
        if (input_sec->output_section != NULL)
8745
          {
8746
            sym.st_shndx =
8747
              _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8748
                                                 input_sec->output_section);
8749
            if (sym.st_shndx == SHN_BAD)
8750
              {
8751
                (*_bfd_error_handler)
8752
                  (_("%B: could not find output section %A for input section %A"),
8753
                   finfo->output_bfd, input_sec->output_section, input_sec);
8754
                bfd_set_error (bfd_error_nonrepresentable_section);
8755
                eoinfo->failed = TRUE;
8756
                return FALSE;
8757
              }
8758
 
8759
            /* ELF symbols in relocatable files are section relative,
8760
               but in nonrelocatable files they are virtual
8761
               addresses.  */
8762
            sym.st_value = h->root.u.def.value + input_sec->output_offset;
8763
            if (! finfo->info->relocatable)
8764
              {
8765
                sym.st_value += input_sec->output_section->vma;
8766
                if (h->type == STT_TLS)
8767
                  {
8768
                    asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8769
                    if (tls_sec != NULL)
8770
                      sym.st_value -= tls_sec->vma;
8771
                    else
8772
                      {
8773
                        /* The TLS section may have been garbage collected.  */
8774
                        BFD_ASSERT (finfo->info->gc_sections
8775
                                    && !input_sec->gc_mark);
8776
                      }
8777
                  }
8778
              }
8779
          }
8780
        else
8781
          {
8782
            BFD_ASSERT (input_sec->owner == NULL
8783
                        || (input_sec->owner->flags & DYNAMIC) != 0);
8784
            sym.st_shndx = SHN_UNDEF;
8785
            input_sec = bfd_und_section_ptr;
8786
          }
8787
      }
8788
      break;
8789
 
8790
    case bfd_link_hash_common:
8791
      input_sec = h->root.u.c.p->section;
8792
      sym.st_shndx = bed->common_section_index (input_sec);
8793
      sym.st_value = 1 << h->root.u.c.p->alignment_power;
8794
      break;
8795
 
8796
    case bfd_link_hash_indirect:
8797
      /* These symbols are created by symbol versioning.  They point
8798
         to the decorated version of the name.  For example, if the
8799
         symbol foo@@GNU_1.2 is the default, which should be used when
8800
         foo is used with no version, then we add an indirect symbol
8801
         foo which points to foo@@GNU_1.2.  We ignore these symbols,
8802
         since the indirected symbol is already in the hash table.  */
8803
      return TRUE;
8804
    }
8805
 
8806
  /* Give the processor backend a chance to tweak the symbol value,
8807
     and also to finish up anything that needs to be done for this
8808
     symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8809
     forced local syms when non-shared is due to a historical quirk.
8810
     STT_GNU_IFUNC symbol must go through PLT.  */
8811
  if ((h->type == STT_GNU_IFUNC
8812
       && h->def_regular
8813
       && !finfo->info->relocatable)
8814
      || ((h->dynindx != -1
8815
           || h->forced_local)
8816
          && ((finfo->info->shared
8817
               && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8818
                   || h->root.type != bfd_link_hash_undefweak))
8819
              || !h->forced_local)
8820
          && elf_hash_table (finfo->info)->dynamic_sections_created))
8821
    {
8822
      if (! ((*bed->elf_backend_finish_dynamic_symbol)
8823
             (finfo->output_bfd, finfo->info, h, &sym)))
8824
        {
8825
          eoinfo->failed = TRUE;
8826
          return FALSE;
8827
        }
8828
    }
8829
 
8830
  /* If we are marking the symbol as undefined, and there are no
8831
     non-weak references to this symbol from a regular object, then
8832
     mark the symbol as weak undefined; if there are non-weak
8833
     references, mark the symbol as strong.  We can't do this earlier,
8834
     because it might not be marked as undefined until the
8835
     finish_dynamic_symbol routine gets through with it.  */
8836
  if (sym.st_shndx == SHN_UNDEF
8837
      && h->ref_regular
8838
      && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8839
          || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8840
    {
8841
      int bindtype;
8842
      unsigned int type = ELF_ST_TYPE (sym.st_info);
8843
 
8844
      /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8845
      if (type == STT_GNU_IFUNC)
8846
        type = STT_FUNC;
8847
 
8848
      if (h->ref_regular_nonweak)
8849
        bindtype = STB_GLOBAL;
8850
      else
8851
        bindtype = STB_WEAK;
8852
      sym.st_info = ELF_ST_INFO (bindtype, type);
8853
    }
8854
 
8855
  /* If this is a symbol defined in a dynamic library, don't use the
8856
     symbol size from the dynamic library.  Relinking an executable
8857
     against a new library may introduce gratuitous changes in the
8858
     executable's symbols if we keep the size.  */
8859
  if (sym.st_shndx == SHN_UNDEF
8860
      && !h->def_regular
8861
      && h->def_dynamic)
8862
    sym.st_size = 0;
8863
 
8864
  /* If a non-weak symbol with non-default visibility is not defined
8865
     locally, it is a fatal error.  */
8866
  if (! finfo->info->relocatable
8867
      && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8868
      && ELF_ST_BIND (sym.st_info) != STB_WEAK
8869
      && h->root.type == bfd_link_hash_undefined
8870
      && !h->def_regular)
8871
    {
8872
      const char *msg;
8873
 
8874
      if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8875
        msg = _("%B: protected symbol `%s' isn't defined");
8876
      else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8877
        msg = _("%B: internal symbol `%s' isn't defined");
8878
      else
8879
        msg = _("%B: hidden symbol `%s' isn't defined");
8880
      (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8881
      bfd_set_error (bfd_error_bad_value);
8882
      eoinfo->failed = TRUE;
8883
      return FALSE;
8884
    }
8885
 
8886
  /* If this symbol should be put in the .dynsym section, then put it
8887
     there now.  We already know the symbol index.  We also fill in
8888
     the entry in the .hash section.  */
8889
  if (h->dynindx != -1
8890
      && elf_hash_table (finfo->info)->dynamic_sections_created)
8891
    {
8892
      bfd_byte *esym;
8893
 
8894
      sym.st_name = h->dynstr_index;
8895
      esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8896
      if (! check_dynsym (finfo->output_bfd, &sym))
8897
        {
8898
          eoinfo->failed = TRUE;
8899
          return FALSE;
8900
        }
8901
      bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8902
 
8903
      if (finfo->hash_sec != NULL)
8904
        {
8905
          size_t hash_entry_size;
8906
          bfd_byte *bucketpos;
8907
          bfd_vma chain;
8908
          size_t bucketcount;
8909
          size_t bucket;
8910
 
8911
          bucketcount = elf_hash_table (finfo->info)->bucketcount;
8912
          bucket = h->u.elf_hash_value % bucketcount;
8913
 
8914
          hash_entry_size
8915
            = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8916
          bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8917
                       + (bucket + 2) * hash_entry_size);
8918
          chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8919
          bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8920
          bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8921
                   ((bfd_byte *) finfo->hash_sec->contents
8922
                    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8923
        }
8924
 
8925
      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8926
        {
8927
          Elf_Internal_Versym iversym;
8928
          Elf_External_Versym *eversym;
8929
 
8930
          if (!h->def_regular)
8931
            {
8932
              if (h->verinfo.verdef == NULL)
8933
                iversym.vs_vers = 0;
8934
              else
8935
                iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8936
            }
8937
          else
8938
            {
8939
              if (h->verinfo.vertree == NULL)
8940
                iversym.vs_vers = 1;
8941
              else
8942
                iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8943
              if (finfo->info->create_default_symver)
8944
                iversym.vs_vers++;
8945
            }
8946
 
8947
          if (h->hidden)
8948
            iversym.vs_vers |= VERSYM_HIDDEN;
8949
 
8950
          eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8951
          eversym += h->dynindx;
8952
          _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8953
        }
8954
    }
8955
 
8956
  /* If we're stripping it, then it was just a dynamic symbol, and
8957
     there's nothing else to do.  */
8958
  if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8959
    return TRUE;
8960
 
8961
  indx = bfd_get_symcount (finfo->output_bfd);
8962
  ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8963
  if (ret == 0)
8964
    {
8965
      eoinfo->failed = TRUE;
8966
      return FALSE;
8967
    }
8968
  else if (ret == 1)
8969
    h->indx = indx;
8970
  else if (h->indx == -2)
8971
    abort();
8972
 
8973
  return TRUE;
8974
}
8975
 
8976
/* Return TRUE if special handling is done for relocs in SEC against
8977
   symbols defined in discarded sections.  */
8978
 
8979
static bfd_boolean
8980
elf_section_ignore_discarded_relocs (asection *sec)
8981
{
8982
  const struct elf_backend_data *bed;
8983
 
8984
  switch (sec->sec_info_type)
8985
    {
8986
    case ELF_INFO_TYPE_STABS:
8987
    case ELF_INFO_TYPE_EH_FRAME:
8988
      return TRUE;
8989
    default:
8990
      break;
8991
    }
8992
 
8993
  bed = get_elf_backend_data (sec->owner);
8994
  if (bed->elf_backend_ignore_discarded_relocs != NULL
8995
      && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8996
    return TRUE;
8997
 
8998
  return FALSE;
8999
}
9000
 
9001
/* Return a mask saying how ld should treat relocations in SEC against
9002
   symbols defined in discarded sections.  If this function returns
9003
   COMPLAIN set, ld will issue a warning message.  If this function
9004
   returns PRETEND set, and the discarded section was link-once and the
9005
   same size as the kept link-once section, ld will pretend that the
9006
   symbol was actually defined in the kept section.  Otherwise ld will
9007
   zero the reloc (at least that is the intent, but some cooperation by
9008
   the target dependent code is needed, particularly for REL targets).  */
9009
 
9010
unsigned int
9011
_bfd_elf_default_action_discarded (asection *sec)
9012
{
9013
  if (sec->flags & SEC_DEBUGGING)
9014
    return PRETEND;
9015
 
9016
  if (strcmp (".eh_frame", sec->name) == 0)
9017
    return 0;
9018
 
9019
  if (strcmp (".gcc_except_table", sec->name) == 0)
9020
    return 0;
9021
 
9022
  return COMPLAIN | PRETEND;
9023
}
9024
 
9025
/* Find a match between a section and a member of a section group.  */
9026
 
9027
static asection *
9028
match_group_member (asection *sec, asection *group,
9029
                    struct bfd_link_info *info)
9030
{
9031
  asection *first = elf_next_in_group (group);
9032
  asection *s = first;
9033
 
9034
  while (s != NULL)
9035
    {
9036
      if (bfd_elf_match_symbols_in_sections (s, sec, info))
9037
        return s;
9038
 
9039
      s = elf_next_in_group (s);
9040
      if (s == first)
9041
        break;
9042
    }
9043
 
9044
  return NULL;
9045
}
9046
 
9047
/* Check if the kept section of a discarded section SEC can be used
9048
   to replace it.  Return the replacement if it is OK.  Otherwise return
9049
   NULL.  */
9050
 
9051
asection *
9052
_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9053
{
9054
  asection *kept;
9055
 
9056
  kept = sec->kept_section;
9057
  if (kept != NULL)
9058
    {
9059
      if ((kept->flags & SEC_GROUP) != 0)
9060
        kept = match_group_member (sec, kept, info);
9061
      if (kept != NULL
9062
          && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9063
              != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9064
        kept = NULL;
9065
      sec->kept_section = kept;
9066
    }
9067
  return kept;
9068
}
9069
 
9070
/* Link an input file into the linker output file.  This function
9071
   handles all the sections and relocations of the input file at once.
9072
   This is so that we only have to read the local symbols once, and
9073
   don't have to keep them in memory.  */
9074
 
9075
static bfd_boolean
9076
elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9077
{
9078
  int (*relocate_section)
9079
    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9080
     Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9081
  bfd *output_bfd;
9082
  Elf_Internal_Shdr *symtab_hdr;
9083
  size_t locsymcount;
9084
  size_t extsymoff;
9085
  Elf_Internal_Sym *isymbuf;
9086
  Elf_Internal_Sym *isym;
9087
  Elf_Internal_Sym *isymend;
9088
  long *pindex;
9089
  asection **ppsection;
9090
  asection *o;
9091
  const struct elf_backend_data *bed;
9092
  struct elf_link_hash_entry **sym_hashes;
9093
  bfd_size_type address_size;
9094
  bfd_vma r_type_mask;
9095
  int r_sym_shift;
9096
 
9097
  output_bfd = finfo->output_bfd;
9098
  bed = get_elf_backend_data (output_bfd);
9099
  relocate_section = bed->elf_backend_relocate_section;
9100
 
9101
  /* If this is a dynamic object, we don't want to do anything here:
9102
     we don't want the local symbols, and we don't want the section
9103
     contents.  */
9104
  if ((input_bfd->flags & DYNAMIC) != 0)
9105
    return TRUE;
9106
 
9107
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9108
  if (elf_bad_symtab (input_bfd))
9109
    {
9110
      locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9111
      extsymoff = 0;
9112
    }
9113
  else
9114
    {
9115
      locsymcount = symtab_hdr->sh_info;
9116
      extsymoff = symtab_hdr->sh_info;
9117
    }
9118
 
9119
  /* Read the local symbols.  */
9120
  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9121
  if (isymbuf == NULL && locsymcount != 0)
9122
    {
9123
      isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9124
                                      finfo->internal_syms,
9125
                                      finfo->external_syms,
9126
                                      finfo->locsym_shndx);
9127
      if (isymbuf == NULL)
9128
        return FALSE;
9129
    }
9130
 
9131
  /* Find local symbol sections and adjust values of symbols in
9132
     SEC_MERGE sections.  Write out those local symbols we know are
9133
     going into the output file.  */
9134
  isymend = isymbuf + locsymcount;
9135
  for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9136
       isym < isymend;
9137
       isym++, pindex++, ppsection++)
9138
    {
9139
      asection *isec;
9140
      const char *name;
9141
      Elf_Internal_Sym osym;
9142
      long indx;
9143
      int ret;
9144
 
9145
      *pindex = -1;
9146
 
9147
      if (elf_bad_symtab (input_bfd))
9148
        {
9149
          if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9150
            {
9151
              *ppsection = NULL;
9152
              continue;
9153
            }
9154
        }
9155
 
9156
      if (isym->st_shndx == SHN_UNDEF)
9157
        isec = bfd_und_section_ptr;
9158
      else if (isym->st_shndx == SHN_ABS)
9159
        isec = bfd_abs_section_ptr;
9160
      else if (isym->st_shndx == SHN_COMMON)
9161
        isec = bfd_com_section_ptr;
9162
      else
9163
        {
9164
          isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9165
          if (isec == NULL)
9166
            {
9167
              /* Don't attempt to output symbols with st_shnx in the
9168
                 reserved range other than SHN_ABS and SHN_COMMON.  */
9169
              *ppsection = NULL;
9170
              continue;
9171
            }
9172
          else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9173
                   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9174
            isym->st_value =
9175
              _bfd_merged_section_offset (output_bfd, &isec,
9176
                                          elf_section_data (isec)->sec_info,
9177
                                          isym->st_value);
9178
        }
9179
 
9180
      *ppsection = isec;
9181
 
9182
      /* Don't output the first, undefined, symbol.  */
9183
      if (ppsection == finfo->sections)
9184
        continue;
9185
 
9186
      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9187
        {
9188
          /* We never output section symbols.  Instead, we use the
9189
             section symbol of the corresponding section in the output
9190
             file.  */
9191
          continue;
9192
        }
9193
 
9194
      /* If we are stripping all symbols, we don't want to output this
9195
         one.  */
9196
      if (finfo->info->strip == strip_all)
9197
        continue;
9198
 
9199
      /* If we are discarding all local symbols, we don't want to
9200
         output this one.  If we are generating a relocatable output
9201
         file, then some of the local symbols may be required by
9202
         relocs; we output them below as we discover that they are
9203
         needed.  */
9204
      if (finfo->info->discard == discard_all)
9205
        continue;
9206
 
9207
      /* If this symbol is defined in a section which we are
9208
         discarding, we don't need to keep it.  */
9209
      if (isym->st_shndx != SHN_UNDEF
9210
          && isym->st_shndx < SHN_LORESERVE
9211
          && bfd_section_removed_from_list (output_bfd,
9212
                                            isec->output_section))
9213
        continue;
9214
 
9215
      /* Get the name of the symbol.  */
9216
      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9217
                                              isym->st_name);
9218
      if (name == NULL)
9219
        return FALSE;
9220
 
9221
      /* See if we are discarding symbols with this name.  */
9222
      if ((finfo->info->strip == strip_some
9223
           && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9224
               == NULL))
9225
          || (((finfo->info->discard == discard_sec_merge
9226
                && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9227
               || finfo->info->discard == discard_l)
9228
              && bfd_is_local_label_name (input_bfd, name)))
9229
        continue;
9230
 
9231
      osym = *isym;
9232
 
9233
      /* Adjust the section index for the output file.  */
9234
      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9235
                                                         isec->output_section);
9236
      if (osym.st_shndx == SHN_BAD)
9237
        return FALSE;
9238
 
9239
      /* ELF symbols in relocatable files are section relative, but
9240
         in executable files they are virtual addresses.  Note that
9241
         this code assumes that all ELF sections have an associated
9242
         BFD section with a reasonable value for output_offset; below
9243
         we assume that they also have a reasonable value for
9244
         output_section.  Any special sections must be set up to meet
9245
         these requirements.  */
9246
      osym.st_value += isec->output_offset;
9247
      if (! finfo->info->relocatable)
9248
        {
9249
          osym.st_value += isec->output_section->vma;
9250
          if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9251
            {
9252
              /* STT_TLS symbols are relative to PT_TLS segment base.  */
9253
              BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9254
              osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9255
            }
9256
        }
9257
 
9258
      indx = bfd_get_symcount (output_bfd);
9259
      ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9260
      if (ret == 0)
9261
        return FALSE;
9262
      else if (ret == 1)
9263
        *pindex = indx;
9264
    }
9265
 
9266
  if (bed->s->arch_size == 32)
9267
    {
9268
      r_type_mask = 0xff;
9269
      r_sym_shift = 8;
9270
      address_size = 4;
9271
    }
9272
  else
9273
    {
9274
      r_type_mask = 0xffffffff;
9275
      r_sym_shift = 32;
9276
      address_size = 8;
9277
    }
9278
 
9279
  /* Relocate the contents of each section.  */
9280
  sym_hashes = elf_sym_hashes (input_bfd);
9281
  for (o = input_bfd->sections; o != NULL; o = o->next)
9282
    {
9283
      bfd_byte *contents;
9284
 
9285
      if (! o->linker_mark)
9286
        {
9287
          /* This section was omitted from the link.  */
9288
          continue;
9289
        }
9290
 
9291
      if (finfo->info->relocatable
9292
          && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9293
        {
9294
          /* Deal with the group signature symbol.  */
9295
          struct bfd_elf_section_data *sec_data = elf_section_data (o);
9296
          unsigned long symndx = sec_data->this_hdr.sh_info;
9297
          asection *osec = o->output_section;
9298
 
9299
          if (symndx >= locsymcount
9300
              || (elf_bad_symtab (input_bfd)
9301
                  && finfo->sections[symndx] == NULL))
9302
            {
9303
              struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9304
              while (h->root.type == bfd_link_hash_indirect
9305
                     || h->root.type == bfd_link_hash_warning)
9306
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
9307
              /* Arrange for symbol to be output.  */
9308
              h->indx = -2;
9309
              elf_section_data (osec)->this_hdr.sh_info = -2;
9310
            }
9311
          else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9312
            {
9313
              /* We'll use the output section target_index.  */
9314
              asection *sec = finfo->sections[symndx]->output_section;
9315
              elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9316
            }
9317
          else
9318
            {
9319
              if (finfo->indices[symndx] == -1)
9320
                {
9321
                  /* Otherwise output the local symbol now.  */
9322
                  Elf_Internal_Sym sym = isymbuf[symndx];
9323
                  asection *sec = finfo->sections[symndx]->output_section;
9324
                  const char *name;
9325
                  long indx;
9326
                  int ret;
9327
 
9328
                  name = bfd_elf_string_from_elf_section (input_bfd,
9329
                                                          symtab_hdr->sh_link,
9330
                                                          sym.st_name);
9331
                  if (name == NULL)
9332
                    return FALSE;
9333
 
9334
                  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9335
                                                                    sec);
9336
                  if (sym.st_shndx == SHN_BAD)
9337
                    return FALSE;
9338
 
9339
                  sym.st_value += o->output_offset;
9340
 
9341
                  indx = bfd_get_symcount (output_bfd);
9342
                  ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9343
                  if (ret == 0)
9344
                    return FALSE;
9345
                  else if (ret == 1)
9346
                    finfo->indices[symndx] = indx;
9347
                  else
9348
                    abort ();
9349
                }
9350
              elf_section_data (osec)->this_hdr.sh_info
9351
                = finfo->indices[symndx];
9352
            }
9353
        }
9354
 
9355
      if ((o->flags & SEC_HAS_CONTENTS) == 0
9356
          || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9357
        continue;
9358
 
9359
      if ((o->flags & SEC_LINKER_CREATED) != 0)
9360
        {
9361
          /* Section was created by _bfd_elf_link_create_dynamic_sections
9362
             or somesuch.  */
9363
          continue;
9364
        }
9365
 
9366
      /* Get the contents of the section.  They have been cached by a
9367
         relaxation routine.  Note that o is a section in an input
9368
         file, so the contents field will not have been set by any of
9369
         the routines which work on output files.  */
9370
      if (elf_section_data (o)->this_hdr.contents != NULL)
9371
        contents = elf_section_data (o)->this_hdr.contents;
9372
      else
9373
        {
9374
          contents = finfo->contents;
9375
          if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9376
            return FALSE;
9377
        }
9378
 
9379
      if ((o->flags & SEC_RELOC) != 0)
9380
        {
9381
          Elf_Internal_Rela *internal_relocs;
9382
          Elf_Internal_Rela *rel, *relend;
9383
          int action_discarded;
9384
          int ret;
9385
 
9386
          /* Get the swapped relocs.  */
9387
          internal_relocs
9388
            = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9389
                                         finfo->internal_relocs, FALSE);
9390
          if (internal_relocs == NULL
9391
              && o->reloc_count > 0)
9392
            return FALSE;
9393
 
9394
          /* We need to reverse-copy input .ctors/.dtors sections if
9395
             they are placed in .init_array/.finit_array for output.  */
9396
          if (o->size > address_size
9397
              && ((strncmp (o->name, ".ctors", 6) == 0
9398
                   && strcmp (o->output_section->name,
9399
                              ".init_array") == 0)
9400
                  || (strncmp (o->name, ".dtors", 6) == 0
9401
                      && strcmp (o->output_section->name,
9402
                                 ".fini_array") == 0))
9403
              && (o->name[6] == 0 || o->name[6] == '.'))
9404
            {
9405
              if (o->size != o->reloc_count * address_size)
9406
                {
9407
                  (*_bfd_error_handler)
9408
                    (_("error: %B: size of section %A is not "
9409
                       "multiple of address size"),
9410
                     input_bfd, o);
9411
                  bfd_set_error (bfd_error_on_input);
9412
                  return FALSE;
9413
                }
9414
              o->flags |= SEC_ELF_REVERSE_COPY;
9415
            }
9416
 
9417
          action_discarded = -1;
9418
          if (!elf_section_ignore_discarded_relocs (o))
9419
            action_discarded = (*bed->action_discarded) (o);
9420
 
9421
          /* Run through the relocs evaluating complex reloc symbols and
9422
             looking for relocs against symbols from discarded sections
9423
             or section symbols from removed link-once sections.
9424
             Complain about relocs against discarded sections.  Zero
9425
             relocs against removed link-once sections.  */
9426
 
9427
          rel = internal_relocs;
9428
          relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9429
          for ( ; rel < relend; rel++)
9430
            {
9431
              unsigned long r_symndx = rel->r_info >> r_sym_shift;
9432
              unsigned int s_type;
9433
              asection **ps, *sec;
9434
              struct elf_link_hash_entry *h = NULL;
9435
              const char *sym_name;
9436
 
9437
              if (r_symndx == STN_UNDEF)
9438
                continue;
9439
 
9440
              if (r_symndx >= locsymcount
9441
                  || (elf_bad_symtab (input_bfd)
9442
                      && finfo->sections[r_symndx] == NULL))
9443
                {
9444
                  h = sym_hashes[r_symndx - extsymoff];
9445
 
9446
                  /* Badly formatted input files can contain relocs that
9447
                     reference non-existant symbols.  Check here so that
9448
                     we do not seg fault.  */
9449
                  if (h == NULL)
9450
                    {
9451
                      char buffer [32];
9452
 
9453
                      sprintf_vma (buffer, rel->r_info);
9454
                      (*_bfd_error_handler)
9455
                        (_("error: %B contains a reloc (0x%s) for section %A "
9456
                           "that references a non-existent global symbol"),
9457
                         input_bfd, o, buffer);
9458
                      bfd_set_error (bfd_error_bad_value);
9459
                      return FALSE;
9460
                    }
9461
 
9462
                  while (h->root.type == bfd_link_hash_indirect
9463
                         || h->root.type == bfd_link_hash_warning)
9464
                    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9465
 
9466
                  s_type = h->type;
9467
 
9468
                  ps = NULL;
9469
                  if (h->root.type == bfd_link_hash_defined
9470
                      || h->root.type == bfd_link_hash_defweak)
9471
                    ps = &h->root.u.def.section;
9472
 
9473
                  sym_name = h->root.root.string;
9474
                }
9475
              else
9476
                {
9477
                  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9478
 
9479
                  s_type = ELF_ST_TYPE (sym->st_info);
9480
                  ps = &finfo->sections[r_symndx];
9481
                  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9482
                                               sym, *ps);
9483
                }
9484
 
9485
              if ((s_type == STT_RELC || s_type == STT_SRELC)
9486
                  && !finfo->info->relocatable)
9487
                {
9488
                  bfd_vma val;
9489
                  bfd_vma dot = (rel->r_offset
9490
                                 + o->output_offset + o->output_section->vma);
9491
#ifdef DEBUG
9492
                  printf ("Encountered a complex symbol!");
9493
                  printf (" (input_bfd %s, section %s, reloc %ld\n",
9494
                          input_bfd->filename, o->name,
9495
                          (long) (rel - internal_relocs));
9496
                  printf (" symbol: idx  %8.8lx, name %s\n",
9497
                          r_symndx, sym_name);
9498
                  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9499
                          (unsigned long) rel->r_info,
9500
                          (unsigned long) rel->r_offset);
9501
#endif
9502
                  if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9503
                                    isymbuf, locsymcount, s_type == STT_SRELC))
9504
                    return FALSE;
9505
 
9506
                  /* Symbol evaluated OK.  Update to absolute value.  */
9507
                  set_symbol_value (input_bfd, isymbuf, locsymcount,
9508
                                    r_symndx, val);
9509
                  continue;
9510
                }
9511
 
9512
              if (action_discarded != -1 && ps != NULL)
9513
                {
9514
                  /* Complain if the definition comes from a
9515
                     discarded section.  */
9516
                  if ((sec = *ps) != NULL && elf_discarded_section (sec))
9517
                    {
9518
                      BFD_ASSERT (r_symndx != STN_UNDEF);
9519
                      if (action_discarded & COMPLAIN)
9520
                        (*finfo->info->callbacks->einfo)
9521
                          (_("%X`%s' referenced in section `%A' of %B: "
9522
                             "defined in discarded section `%A' of %B\n"),
9523
                           sym_name, o, input_bfd, sec, sec->owner);
9524
 
9525
                      /* Try to do the best we can to support buggy old
9526
                         versions of gcc.  Pretend that the symbol is
9527
                         really defined in the kept linkonce section.
9528
                         FIXME: This is quite broken.  Modifying the
9529
                         symbol here means we will be changing all later
9530
                         uses of the symbol, not just in this section.  */
9531
                      if (action_discarded & PRETEND)
9532
                        {
9533
                          asection *kept;
9534
 
9535
                          kept = _bfd_elf_check_kept_section (sec,
9536
                                                              finfo->info);
9537
                          if (kept != NULL)
9538
                            {
9539
                              *ps = kept;
9540
                              continue;
9541
                            }
9542
                        }
9543
                    }
9544
                }
9545
            }
9546
 
9547
          /* Relocate the section by invoking a back end routine.
9548
 
9549
             The back end routine is responsible for adjusting the
9550
             section contents as necessary, and (if using Rela relocs
9551
             and generating a relocatable output file) adjusting the
9552
             reloc addend as necessary.
9553
 
9554
             The back end routine does not have to worry about setting
9555
             the reloc address or the reloc symbol index.
9556
 
9557
             The back end routine is given a pointer to the swapped in
9558
             internal symbols, and can access the hash table entries
9559
             for the external symbols via elf_sym_hashes (input_bfd).
9560
 
9561
             When generating relocatable output, the back end routine
9562
             must handle STB_LOCAL/STT_SECTION symbols specially.  The
9563
             output symbol is going to be a section symbol
9564
             corresponding to the output section, which will require
9565
             the addend to be adjusted.  */
9566
 
9567
          ret = (*relocate_section) (output_bfd, finfo->info,
9568
                                     input_bfd, o, contents,
9569
                                     internal_relocs,
9570
                                     isymbuf,
9571
                                     finfo->sections);
9572
          if (!ret)
9573
            return FALSE;
9574
 
9575
          if (ret == 2
9576
              || finfo->info->relocatable
9577
              || finfo->info->emitrelocations)
9578
            {
9579
              Elf_Internal_Rela *irela;
9580
              Elf_Internal_Rela *irelaend, *irelamid;
9581
              bfd_vma last_offset;
9582
              struct elf_link_hash_entry **rel_hash;
9583
              struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9584
              Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9585
              unsigned int next_erel;
9586
              bfd_boolean rela_normal;
9587
              struct bfd_elf_section_data *esdi, *esdo;
9588
 
9589
              esdi = elf_section_data (o);
9590
              esdo = elf_section_data (o->output_section);
9591
              rela_normal = FALSE;
9592
 
9593
              /* Adjust the reloc addresses and symbol indices.  */
9594
 
9595
              irela = internal_relocs;
9596
              irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9597
              rel_hash = esdo->rel.hashes + esdo->rel.count;
9598
              /* We start processing the REL relocs, if any.  When we reach
9599
                 IRELAMID in the loop, we switch to the RELA relocs.  */
9600
              irelamid = irela;
9601
              if (esdi->rel.hdr != NULL)
9602
                irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9603
                             * bed->s->int_rels_per_ext_rel);
9604
              rel_hash_list = rel_hash;
9605
              rela_hash_list = NULL;
9606
              last_offset = o->output_offset;
9607
              if (!finfo->info->relocatable)
9608
                last_offset += o->output_section->vma;
9609
              for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9610
                {
9611
                  unsigned long r_symndx;
9612
                  asection *sec;
9613
                  Elf_Internal_Sym sym;
9614
 
9615
                  if (next_erel == bed->s->int_rels_per_ext_rel)
9616
                    {
9617
                      rel_hash++;
9618
                      next_erel = 0;
9619
                    }
9620
 
9621
                  if (irela == irelamid)
9622
                    {
9623
                      rel_hash = esdo->rela.hashes + esdo->rela.count;
9624
                      rela_hash_list = rel_hash;
9625
                      rela_normal = bed->rela_normal;
9626
                    }
9627
 
9628
                  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9629
                                                             finfo->info, o,
9630
                                                             irela->r_offset);
9631
                  if (irela->r_offset >= (bfd_vma) -2)
9632
                    {
9633
                      /* This is a reloc for a deleted entry or somesuch.
9634
                         Turn it into an R_*_NONE reloc, at the same
9635
                         offset as the last reloc.  elf_eh_frame.c and
9636
                         bfd_elf_discard_info rely on reloc offsets
9637
                         being ordered.  */
9638
                      irela->r_offset = last_offset;
9639
                      irela->r_info = 0;
9640
                      irela->r_addend = 0;
9641
                      continue;
9642
                    }
9643
 
9644
                  irela->r_offset += o->output_offset;
9645
 
9646
                  /* Relocs in an executable have to be virtual addresses.  */
9647
                  if (!finfo->info->relocatable)
9648
                    irela->r_offset += o->output_section->vma;
9649
 
9650
                  last_offset = irela->r_offset;
9651
 
9652
                  r_symndx = irela->r_info >> r_sym_shift;
9653
                  if (r_symndx == STN_UNDEF)
9654
                    continue;
9655
 
9656
                  if (r_symndx >= locsymcount
9657
                      || (elf_bad_symtab (input_bfd)
9658
                          && finfo->sections[r_symndx] == NULL))
9659
                    {
9660
                      struct elf_link_hash_entry *rh;
9661
                      unsigned long indx;
9662
 
9663
                      /* This is a reloc against a global symbol.  We
9664
                         have not yet output all the local symbols, so
9665
                         we do not know the symbol index of any global
9666
                         symbol.  We set the rel_hash entry for this
9667
                         reloc to point to the global hash table entry
9668
                         for this symbol.  The symbol index is then
9669
                         set at the end of bfd_elf_final_link.  */
9670
                      indx = r_symndx - extsymoff;
9671
                      rh = elf_sym_hashes (input_bfd)[indx];
9672
                      while (rh->root.type == bfd_link_hash_indirect
9673
                             || rh->root.type == bfd_link_hash_warning)
9674
                        rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9675
 
9676
                      /* Setting the index to -2 tells
9677
                         elf_link_output_extsym that this symbol is
9678
                         used by a reloc.  */
9679
                      BFD_ASSERT (rh->indx < 0);
9680
                      rh->indx = -2;
9681
 
9682
                      *rel_hash = rh;
9683
 
9684
                      continue;
9685
                    }
9686
 
9687
                  /* This is a reloc against a local symbol.  */
9688
 
9689
                  *rel_hash = NULL;
9690
                  sym = isymbuf[r_symndx];
9691
                  sec = finfo->sections[r_symndx];
9692
                  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9693
                    {
9694
                      /* I suppose the backend ought to fill in the
9695
                         section of any STT_SECTION symbol against a
9696
                         processor specific section.  */
9697
                      r_symndx = STN_UNDEF;
9698
                      if (bfd_is_abs_section (sec))
9699
                        ;
9700
                      else if (sec == NULL || sec->owner == NULL)
9701
                        {
9702
                          bfd_set_error (bfd_error_bad_value);
9703
                          return FALSE;
9704
                        }
9705
                      else
9706
                        {
9707
                          asection *osec = sec->output_section;
9708
 
9709
                          /* If we have discarded a section, the output
9710
                             section will be the absolute section.  In
9711
                             case of discarded SEC_MERGE sections, use
9712
                             the kept section.  relocate_section should
9713
                             have already handled discarded linkonce
9714
                             sections.  */
9715
                          if (bfd_is_abs_section (osec)
9716
                              && sec->kept_section != NULL
9717
                              && sec->kept_section->output_section != NULL)
9718
                            {
9719
                              osec = sec->kept_section->output_section;
9720
                              irela->r_addend -= osec->vma;
9721
                            }
9722
 
9723
                          if (!bfd_is_abs_section (osec))
9724
                            {
9725
                              r_symndx = osec->target_index;
9726
                              if (r_symndx == STN_UNDEF)
9727
                                {
9728
                                  struct elf_link_hash_table *htab;
9729
                                  asection *oi;
9730
 
9731
                                  htab = elf_hash_table (finfo->info);
9732
                                  oi = htab->text_index_section;
9733
                                  if ((osec->flags & SEC_READONLY) == 0
9734
                                      && htab->data_index_section != NULL)
9735
                                    oi = htab->data_index_section;
9736
 
9737
                                  if (oi != NULL)
9738
                                    {
9739
                                      irela->r_addend += osec->vma - oi->vma;
9740
                                      r_symndx = oi->target_index;
9741
                                    }
9742
                                }
9743
 
9744
                              BFD_ASSERT (r_symndx != STN_UNDEF);
9745
                            }
9746
                        }
9747
 
9748
                      /* Adjust the addend according to where the
9749
                         section winds up in the output section.  */
9750
                      if (rela_normal)
9751
                        irela->r_addend += sec->output_offset;
9752
                    }
9753
                  else
9754
                    {
9755
                      if (finfo->indices[r_symndx] == -1)
9756
                        {
9757
                          unsigned long shlink;
9758
                          const char *name;
9759
                          asection *osec;
9760
                          long indx;
9761
 
9762
                          if (finfo->info->strip == strip_all)
9763
                            {
9764
                              /* You can't do ld -r -s.  */
9765
                              bfd_set_error (bfd_error_invalid_operation);
9766
                              return FALSE;
9767
                            }
9768
 
9769
                          /* This symbol was skipped earlier, but
9770
                             since it is needed by a reloc, we
9771
                             must output it now.  */
9772
                          shlink = symtab_hdr->sh_link;
9773
                          name = (bfd_elf_string_from_elf_section
9774
                                  (input_bfd, shlink, sym.st_name));
9775
                          if (name == NULL)
9776
                            return FALSE;
9777
 
9778
                          osec = sec->output_section;
9779
                          sym.st_shndx =
9780
                            _bfd_elf_section_from_bfd_section (output_bfd,
9781
                                                               osec);
9782
                          if (sym.st_shndx == SHN_BAD)
9783
                            return FALSE;
9784
 
9785
                          sym.st_value += sec->output_offset;
9786
                          if (! finfo->info->relocatable)
9787
                            {
9788
                              sym.st_value += osec->vma;
9789
                              if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9790
                                {
9791
                                  /* STT_TLS symbols are relative to PT_TLS
9792
                                     segment base.  */
9793
                                  BFD_ASSERT (elf_hash_table (finfo->info)
9794
                                              ->tls_sec != NULL);
9795
                                  sym.st_value -= (elf_hash_table (finfo->info)
9796
                                                   ->tls_sec->vma);
9797
                                }
9798
                            }
9799
 
9800
                          indx = bfd_get_symcount (output_bfd);
9801
                          ret = elf_link_output_sym (finfo, name, &sym, sec,
9802
                                                     NULL);
9803
                          if (ret == 0)
9804
                            return FALSE;
9805
                          else if (ret == 1)
9806
                            finfo->indices[r_symndx] = indx;
9807
                          else
9808
                            abort ();
9809
                        }
9810
 
9811
                      r_symndx = finfo->indices[r_symndx];
9812
                    }
9813
 
9814
                  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9815
                                   | (irela->r_info & r_type_mask));
9816
                }
9817
 
9818
              /* Swap out the relocs.  */
9819
              input_rel_hdr = esdi->rel.hdr;
9820
              if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9821
                {
9822
                  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9823
                                                     input_rel_hdr,
9824
                                                     internal_relocs,
9825
                                                     rel_hash_list))
9826
                    return FALSE;
9827
                  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9828
                                      * bed->s->int_rels_per_ext_rel);
9829
                  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9830
                }
9831
 
9832
              input_rela_hdr = esdi->rela.hdr;
9833
              if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9834
                {
9835
                  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9836
                                                     input_rela_hdr,
9837
                                                     internal_relocs,
9838
                                                     rela_hash_list))
9839
                    return FALSE;
9840
                }
9841
            }
9842
        }
9843
 
9844
      /* Write out the modified section contents.  */
9845
      if (bed->elf_backend_write_section
9846
          && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9847
                                                contents))
9848
        {
9849
          /* Section written out.  */
9850
        }
9851
      else switch (o->sec_info_type)
9852
        {
9853
        case ELF_INFO_TYPE_STABS:
9854
          if (! (_bfd_write_section_stabs
9855
                 (output_bfd,
9856
                  &elf_hash_table (finfo->info)->stab_info,
9857
                  o, &elf_section_data (o)->sec_info, contents)))
9858
            return FALSE;
9859
          break;
9860
        case ELF_INFO_TYPE_MERGE:
9861
          if (! _bfd_write_merged_section (output_bfd, o,
9862
                                           elf_section_data (o)->sec_info))
9863
            return FALSE;
9864
          break;
9865
        case ELF_INFO_TYPE_EH_FRAME:
9866
          {
9867
            if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9868
                                                   o, contents))
9869
              return FALSE;
9870
          }
9871
          break;
9872
        default:
9873
          {
9874
            /* FIXME: octets_per_byte.  */
9875
            if (! (o->flags & SEC_EXCLUDE))
9876
              {
9877
                file_ptr offset = (file_ptr) o->output_offset;
9878
                bfd_size_type todo = o->size;
9879
                if ((o->flags & SEC_ELF_REVERSE_COPY))
9880
                  {
9881
                    /* Reverse-copy input section to output.  */
9882
                    do
9883
                      {
9884
                        todo -= address_size;
9885
                        if (! bfd_set_section_contents (output_bfd,
9886
                                                        o->output_section,
9887
                                                        contents + todo,
9888
                                                        offset,
9889
                                                        address_size))
9890
                          return FALSE;
9891
                        if (todo == 0)
9892
                          break;
9893
                        offset += address_size;
9894
                      }
9895
                    while (1);
9896
                  }
9897
                else if (! bfd_set_section_contents (output_bfd,
9898
                                                     o->output_section,
9899
                                                     contents,
9900
                                                     offset, todo))
9901
                  return FALSE;
9902
              }
9903
          }
9904
          break;
9905
        }
9906
    }
9907
 
9908
  return TRUE;
9909
}
9910
 
9911
/* Generate a reloc when linking an ELF file.  This is a reloc
9912
   requested by the linker, and does not come from any input file.  This
9913
   is used to build constructor and destructor tables when linking
9914
   with -Ur.  */
9915
 
9916
static bfd_boolean
9917
elf_reloc_link_order (bfd *output_bfd,
9918
                      struct bfd_link_info *info,
9919
                      asection *output_section,
9920
                      struct bfd_link_order *link_order)
9921
{
9922
  reloc_howto_type *howto;
9923
  long indx;
9924
  bfd_vma offset;
9925
  bfd_vma addend;
9926
  struct bfd_elf_section_reloc_data *reldata;
9927
  struct elf_link_hash_entry **rel_hash_ptr;
9928
  Elf_Internal_Shdr *rel_hdr;
9929
  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9930
  Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9931
  bfd_byte *erel;
9932
  unsigned int i;
9933
  struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9934
 
9935
  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9936
  if (howto == NULL)
9937
    {
9938
      bfd_set_error (bfd_error_bad_value);
9939
      return FALSE;
9940
    }
9941
 
9942
  addend = link_order->u.reloc.p->addend;
9943
 
9944
  if (esdo->rel.hdr)
9945
    reldata = &esdo->rel;
9946
  else if (esdo->rela.hdr)
9947
    reldata = &esdo->rela;
9948
  else
9949
    {
9950
      reldata = NULL;
9951
      BFD_ASSERT (0);
9952
    }
9953
 
9954
  /* Figure out the symbol index.  */
9955
  rel_hash_ptr = reldata->hashes + reldata->count;
9956
  if (link_order->type == bfd_section_reloc_link_order)
9957
    {
9958
      indx = link_order->u.reloc.p->u.section->target_index;
9959
      BFD_ASSERT (indx != 0);
9960
      *rel_hash_ptr = NULL;
9961
    }
9962
  else
9963
    {
9964
      struct elf_link_hash_entry *h;
9965
 
9966
      /* Treat a reloc against a defined symbol as though it were
9967
         actually against the section.  */
9968
      h = ((struct elf_link_hash_entry *)
9969
           bfd_wrapped_link_hash_lookup (output_bfd, info,
9970
                                         link_order->u.reloc.p->u.name,
9971
                                         FALSE, FALSE, TRUE));
9972
      if (h != NULL
9973
          && (h->root.type == bfd_link_hash_defined
9974
              || h->root.type == bfd_link_hash_defweak))
9975
        {
9976
          asection *section;
9977
 
9978
          section = h->root.u.def.section;
9979
          indx = section->output_section->target_index;
9980
          *rel_hash_ptr = NULL;
9981
          /* It seems that we ought to add the symbol value to the
9982
             addend here, but in practice it has already been added
9983
             because it was passed to constructor_callback.  */
9984
          addend += section->output_section->vma + section->output_offset;
9985
        }
9986
      else if (h != NULL)
9987
        {
9988
          /* Setting the index to -2 tells elf_link_output_extsym that
9989
             this symbol is used by a reloc.  */
9990
          h->indx = -2;
9991
          *rel_hash_ptr = h;
9992
          indx = 0;
9993
        }
9994
      else
9995
        {
9996
          if (! ((*info->callbacks->unattached_reloc)
9997
                 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9998
            return FALSE;
9999
          indx = 0;
10000
        }
10001
    }
10002
 
10003
  /* If this is an inplace reloc, we must write the addend into the
10004
     object file.  */
10005
  if (howto->partial_inplace && addend != 0)
10006
    {
10007
      bfd_size_type size;
10008
      bfd_reloc_status_type rstat;
10009
      bfd_byte *buf;
10010
      bfd_boolean ok;
10011
      const char *sym_name;
10012
 
10013
      size = (bfd_size_type) bfd_get_reloc_size (howto);
10014
      buf = (bfd_byte *) bfd_zmalloc (size);
10015
      if (buf == NULL)
10016
        return FALSE;
10017
      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10018
      switch (rstat)
10019
        {
10020
        case bfd_reloc_ok:
10021
          break;
10022
 
10023
        default:
10024
        case bfd_reloc_outofrange:
10025
          abort ();
10026
 
10027
        case bfd_reloc_overflow:
10028
          if (link_order->type == bfd_section_reloc_link_order)
10029
            sym_name = bfd_section_name (output_bfd,
10030
                                         link_order->u.reloc.p->u.section);
10031
          else
10032
            sym_name = link_order->u.reloc.p->u.name;
10033
          if (! ((*info->callbacks->reloc_overflow)
10034
                 (info, NULL, sym_name, howto->name, addend, NULL,
10035
                  NULL, (bfd_vma) 0)))
10036
            {
10037
              free (buf);
10038
              return FALSE;
10039
            }
10040
          break;
10041
        }
10042
      ok = bfd_set_section_contents (output_bfd, output_section, buf,
10043
                                     link_order->offset, size);
10044
      free (buf);
10045
      if (! ok)
10046
        return FALSE;
10047
    }
10048
 
10049
  /* The address of a reloc is relative to the section in a
10050
     relocatable file, and is a virtual address in an executable
10051
     file.  */
10052
  offset = link_order->offset;
10053
  if (! info->relocatable)
10054
    offset += output_section->vma;
10055
 
10056
  for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10057
    {
10058
      irel[i].r_offset = offset;
10059
      irel[i].r_info = 0;
10060
      irel[i].r_addend = 0;
10061
    }
10062
  if (bed->s->arch_size == 32)
10063
    irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10064
  else
10065
    irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10066
 
10067
  rel_hdr = reldata->hdr;
10068
  erel = rel_hdr->contents;
10069
  if (rel_hdr->sh_type == SHT_REL)
10070
    {
10071
      erel += reldata->count * bed->s->sizeof_rel;
10072
      (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10073
    }
10074
  else
10075
    {
10076
      irel[0].r_addend = addend;
10077
      erel += reldata->count * bed->s->sizeof_rela;
10078
      (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10079
    }
10080
 
10081
  ++reldata->count;
10082
 
10083
  return TRUE;
10084
}
10085
 
10086
 
10087
/* Get the output vma of the section pointed to by the sh_link field.  */
10088
 
10089
static bfd_vma
10090
elf_get_linked_section_vma (struct bfd_link_order *p)
10091
{
10092
  Elf_Internal_Shdr **elf_shdrp;
10093
  asection *s;
10094
  int elfsec;
10095
 
10096
  s = p->u.indirect.section;
10097
  elf_shdrp = elf_elfsections (s->owner);
10098
  elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10099
  elfsec = elf_shdrp[elfsec]->sh_link;
10100
  /* PR 290:
10101
     The Intel C compiler generates SHT_IA_64_UNWIND with
10102
     SHF_LINK_ORDER.  But it doesn't set the sh_link or
10103
     sh_info fields.  Hence we could get the situation
10104
     where elfsec is 0.  */
10105
  if (elfsec == 0)
10106
    {
10107
      const struct elf_backend_data *bed
10108
        = get_elf_backend_data (s->owner);
10109
      if (bed->link_order_error_handler)
10110
        bed->link_order_error_handler
10111
          (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10112
      return 0;
10113
    }
10114
  else
10115
    {
10116
      s = elf_shdrp[elfsec]->bfd_section;
10117
      return s->output_section->vma + s->output_offset;
10118
    }
10119
}
10120
 
10121
 
10122
/* Compare two sections based on the locations of the sections they are
10123
   linked to.  Used by elf_fixup_link_order.  */
10124
 
10125
static int
10126
compare_link_order (const void * a, const void * b)
10127
{
10128
  bfd_vma apos;
10129
  bfd_vma bpos;
10130
 
10131
  apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10132
  bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10133
  if (apos < bpos)
10134
    return -1;
10135
  return apos > bpos;
10136
}
10137
 
10138
 
10139
/* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10140
   order as their linked sections.  Returns false if this could not be done
10141
   because an output section includes both ordered and unordered
10142
   sections.  Ideally we'd do this in the linker proper.  */
10143
 
10144
static bfd_boolean
10145
elf_fixup_link_order (bfd *abfd, asection *o)
10146
{
10147
  int seen_linkorder;
10148
  int seen_other;
10149
  int n;
10150
  struct bfd_link_order *p;
10151
  bfd *sub;
10152
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10153
  unsigned elfsec;
10154
  struct bfd_link_order **sections;
10155
  asection *s, *other_sec, *linkorder_sec;
10156
  bfd_vma offset;
10157
 
10158
  other_sec = NULL;
10159
  linkorder_sec = NULL;
10160
  seen_other = 0;
10161
  seen_linkorder = 0;
10162
  for (p = o->map_head.link_order; p != NULL; p = p->next)
10163
    {
10164
      if (p->type == bfd_indirect_link_order)
10165
        {
10166
          s = p->u.indirect.section;
10167
          sub = s->owner;
10168
          if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10169
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10170
              && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10171
              && elfsec < elf_numsections (sub)
10172
              && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10173
              && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10174
            {
10175
              seen_linkorder++;
10176
              linkorder_sec = s;
10177
            }
10178
          else
10179
            {
10180
              seen_other++;
10181
              other_sec = s;
10182
            }
10183
        }
10184
      else
10185
        seen_other++;
10186
 
10187
      if (seen_other && seen_linkorder)
10188
        {
10189
          if (other_sec && linkorder_sec)
10190
            (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10191
                                   o, linkorder_sec,
10192
                                   linkorder_sec->owner, other_sec,
10193
                                   other_sec->owner);
10194
          else
10195
            (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10196
                                   o);
10197
          bfd_set_error (bfd_error_bad_value);
10198
          return FALSE;
10199
        }
10200
    }
10201
 
10202
  if (!seen_linkorder)
10203
    return TRUE;
10204
 
10205
  sections = (struct bfd_link_order **)
10206
    bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10207
  if (sections == NULL)
10208
    return FALSE;
10209
  seen_linkorder = 0;
10210
 
10211
  for (p = o->map_head.link_order; p != NULL; p = p->next)
10212
    {
10213
      sections[seen_linkorder++] = p;
10214
    }
10215
  /* Sort the input sections in the order of their linked section.  */
10216
  qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10217
         compare_link_order);
10218
 
10219
  /* Change the offsets of the sections.  */
10220
  offset = 0;
10221
  for (n = 0; n < seen_linkorder; n++)
10222
    {
10223
      s = sections[n]->u.indirect.section;
10224
      offset &= ~(bfd_vma) 0 << s->alignment_power;
10225
      s->output_offset = offset;
10226
      sections[n]->offset = offset;
10227
      /* FIXME: octets_per_byte.  */
10228
      offset += sections[n]->size;
10229
    }
10230
 
10231
  free (sections);
10232
  return TRUE;
10233
}
10234
 
10235
 
10236
/* Do the final step of an ELF link.  */
10237
 
10238
bfd_boolean
10239
bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10240
{
10241
  bfd_boolean dynamic;
10242
  bfd_boolean emit_relocs;
10243
  bfd *dynobj;
10244
  struct elf_final_link_info finfo;
10245
  asection *o;
10246
  struct bfd_link_order *p;
10247
  bfd *sub;
10248
  bfd_size_type max_contents_size;
10249
  bfd_size_type max_external_reloc_size;
10250
  bfd_size_type max_internal_reloc_count;
10251
  bfd_size_type max_sym_count;
10252
  bfd_size_type max_sym_shndx_count;
10253
  file_ptr off;
10254
  Elf_Internal_Sym elfsym;
10255
  unsigned int i;
10256
  Elf_Internal_Shdr *symtab_hdr;
10257
  Elf_Internal_Shdr *symtab_shndx_hdr;
10258
  Elf_Internal_Shdr *symstrtab_hdr;
10259
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10260
  struct elf_outext_info eoinfo;
10261
  bfd_boolean merged;
10262
  size_t relativecount = 0;
10263
  asection *reldyn = 0;
10264
  bfd_size_type amt;
10265
  asection *attr_section = NULL;
10266
  bfd_vma attr_size = 0;
10267
  const char *std_attrs_section;
10268
 
10269
  if (! is_elf_hash_table (info->hash))
10270
    return FALSE;
10271
 
10272
  if (info->shared)
10273
    abfd->flags |= DYNAMIC;
10274
 
10275
  dynamic = elf_hash_table (info)->dynamic_sections_created;
10276
  dynobj = elf_hash_table (info)->dynobj;
10277
 
10278
  emit_relocs = (info->relocatable
10279
                 || info->emitrelocations);
10280
 
10281
  finfo.info = info;
10282
  finfo.output_bfd = abfd;
10283
  finfo.symstrtab = _bfd_elf_stringtab_init ();
10284
  if (finfo.symstrtab == NULL)
10285
    return FALSE;
10286
 
10287
  if (! dynamic)
10288
    {
10289
      finfo.dynsym_sec = NULL;
10290
      finfo.hash_sec = NULL;
10291
      finfo.symver_sec = NULL;
10292
    }
10293
  else
10294
    {
10295
      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10296
      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10297
      BFD_ASSERT (finfo.dynsym_sec != NULL);
10298
      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10299
      /* Note that it is OK if symver_sec is NULL.  */
10300
    }
10301
 
10302
  finfo.contents = NULL;
10303
  finfo.external_relocs = NULL;
10304
  finfo.internal_relocs = NULL;
10305
  finfo.external_syms = NULL;
10306
  finfo.locsym_shndx = NULL;
10307
  finfo.internal_syms = NULL;
10308
  finfo.indices = NULL;
10309
  finfo.sections = NULL;
10310
  finfo.symbuf = NULL;
10311
  finfo.symshndxbuf = NULL;
10312
  finfo.symbuf_count = 0;
10313
  finfo.shndxbuf_size = 0;
10314
 
10315
  /* The object attributes have been merged.  Remove the input
10316
     sections from the link, and set the contents of the output
10317
     secton.  */
10318
  std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10319
  for (o = abfd->sections; o != NULL; o = o->next)
10320
    {
10321
      if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10322
          || strcmp (o->name, ".gnu.attributes") == 0)
10323
        {
10324
          for (p = o->map_head.link_order; p != NULL; p = p->next)
10325
            {
10326
              asection *input_section;
10327
 
10328
              if (p->type != bfd_indirect_link_order)
10329
                continue;
10330
              input_section = p->u.indirect.section;
10331
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
10332
                 elf_link_input_bfd ignores this section.  */
10333
              input_section->flags &= ~SEC_HAS_CONTENTS;
10334
            }
10335
 
10336
          attr_size = bfd_elf_obj_attr_size (abfd);
10337
          if (attr_size)
10338
            {
10339
              bfd_set_section_size (abfd, o, attr_size);
10340
              attr_section = o;
10341
              /* Skip this section later on.  */
10342
              o->map_head.link_order = NULL;
10343
            }
10344
          else
10345
            o->flags |= SEC_EXCLUDE;
10346
        }
10347
    }
10348
 
10349
  /* Count up the number of relocations we will output for each output
10350
     section, so that we know the sizes of the reloc sections.  We
10351
     also figure out some maximum sizes.  */
10352
  max_contents_size = 0;
10353
  max_external_reloc_size = 0;
10354
  max_internal_reloc_count = 0;
10355
  max_sym_count = 0;
10356
  max_sym_shndx_count = 0;
10357
  merged = FALSE;
10358
  for (o = abfd->sections; o != NULL; o = o->next)
10359
    {
10360
      struct bfd_elf_section_data *esdo = elf_section_data (o);
10361
      o->reloc_count = 0;
10362
 
10363
      for (p = o->map_head.link_order; p != NULL; p = p->next)
10364
        {
10365
          unsigned int reloc_count = 0;
10366
          struct bfd_elf_section_data *esdi = NULL;
10367
 
10368
          if (p->type == bfd_section_reloc_link_order
10369
              || p->type == bfd_symbol_reloc_link_order)
10370
            reloc_count = 1;
10371
          else if (p->type == bfd_indirect_link_order)
10372
            {
10373
              asection *sec;
10374
 
10375
              sec = p->u.indirect.section;
10376
              esdi = elf_section_data (sec);
10377
 
10378
              /* Mark all sections which are to be included in the
10379
                 link.  This will normally be every section.  We need
10380
                 to do this so that we can identify any sections which
10381
                 the linker has decided to not include.  */
10382
              sec->linker_mark = TRUE;
10383
 
10384
              if (sec->flags & SEC_MERGE)
10385
                merged = TRUE;
10386
 
10387
              if (info->relocatable || info->emitrelocations)
10388
                reloc_count = sec->reloc_count;
10389
              else if (bed->elf_backend_count_relocs)
10390
                reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10391
 
10392
              if (sec->rawsize > max_contents_size)
10393
                max_contents_size = sec->rawsize;
10394
              if (sec->size > max_contents_size)
10395
                max_contents_size = sec->size;
10396
 
10397
              /* We are interested in just local symbols, not all
10398
                 symbols.  */
10399
              if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10400
                  && (sec->owner->flags & DYNAMIC) == 0)
10401
                {
10402
                  size_t sym_count;
10403
 
10404
                  if (elf_bad_symtab (sec->owner))
10405
                    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10406
                                 / bed->s->sizeof_sym);
10407
                  else
10408
                    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10409
 
10410
                  if (sym_count > max_sym_count)
10411
                    max_sym_count = sym_count;
10412
 
10413
                  if (sym_count > max_sym_shndx_count
10414
                      && elf_symtab_shndx (sec->owner) != 0)
10415
                    max_sym_shndx_count = sym_count;
10416
 
10417
                  if ((sec->flags & SEC_RELOC) != 0)
10418
                    {
10419
                      size_t ext_size = 0;
10420
 
10421
                      if (esdi->rel.hdr != NULL)
10422
                        ext_size = esdi->rel.hdr->sh_size;
10423
                      if (esdi->rela.hdr != NULL)
10424
                        ext_size += esdi->rela.hdr->sh_size;
10425
 
10426
                      if (ext_size > max_external_reloc_size)
10427
                        max_external_reloc_size = ext_size;
10428
                      if (sec->reloc_count > max_internal_reloc_count)
10429
                        max_internal_reloc_count = sec->reloc_count;
10430
                    }
10431
                }
10432
            }
10433
 
10434
          if (reloc_count == 0)
10435
            continue;
10436
 
10437
          o->reloc_count += reloc_count;
10438
 
10439
          if (p->type == bfd_indirect_link_order
10440
              && (info->relocatable || info->emitrelocations))
10441
            {
10442
              if (esdi->rel.hdr)
10443
                esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10444
              if (esdi->rela.hdr)
10445
                esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10446
            }
10447
          else
10448
            {
10449
              if (o->use_rela_p)
10450
                esdo->rela.count += reloc_count;
10451
              else
10452
                esdo->rel.count += reloc_count;
10453
            }
10454
        }
10455
 
10456
      if (o->reloc_count > 0)
10457
        o->flags |= SEC_RELOC;
10458
      else
10459
        {
10460
          /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10461
             set it (this is probably a bug) and if it is set
10462
             assign_section_numbers will create a reloc section.  */
10463
          o->flags &=~ SEC_RELOC;
10464
        }
10465
 
10466
      /* If the SEC_ALLOC flag is not set, force the section VMA to
10467
         zero.  This is done in elf_fake_sections as well, but forcing
10468
         the VMA to 0 here will ensure that relocs against these
10469
         sections are handled correctly.  */
10470
      if ((o->flags & SEC_ALLOC) == 0
10471
          && ! o->user_set_vma)
10472
        o->vma = 0;
10473
    }
10474
 
10475
  if (! info->relocatable && merged)
10476
    elf_link_hash_traverse (elf_hash_table (info),
10477
                            _bfd_elf_link_sec_merge_syms, abfd);
10478
 
10479
  /* Figure out the file positions for everything but the symbol table
10480
     and the relocs.  We set symcount to force assign_section_numbers
10481
     to create a symbol table.  */
10482
  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10483
  BFD_ASSERT (! abfd->output_has_begun);
10484
  if (! _bfd_elf_compute_section_file_positions (abfd, info))
10485
    goto error_return;
10486
 
10487
  /* Set sizes, and assign file positions for reloc sections.  */
10488
  for (o = abfd->sections; o != NULL; o = o->next)
10489
    {
10490
      struct bfd_elf_section_data *esdo = elf_section_data (o);
10491
      if ((o->flags & SEC_RELOC) != 0)
10492
        {
10493
          if (esdo->rel.hdr
10494
              && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10495
            goto error_return;
10496
 
10497
          if (esdo->rela.hdr
10498
              && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10499
            goto error_return;
10500
        }
10501
 
10502
      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10503
         to count upwards while actually outputting the relocations.  */
10504
      esdo->rel.count = 0;
10505
      esdo->rela.count = 0;
10506
    }
10507
 
10508
  _bfd_elf_assign_file_positions_for_relocs (abfd);
10509
 
10510
  /* We have now assigned file positions for all the sections except
10511
     .symtab and .strtab.  We start the .symtab section at the current
10512
     file position, and write directly to it.  We build the .strtab
10513
     section in memory.  */
10514
  bfd_get_symcount (abfd) = 0;
10515
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10516
  /* sh_name is set in prep_headers.  */
10517
  symtab_hdr->sh_type = SHT_SYMTAB;
10518
  /* sh_flags, sh_addr and sh_size all start off zero.  */
10519
  symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10520
  /* sh_link is set in assign_section_numbers.  */
10521
  /* sh_info is set below.  */
10522
  /* sh_offset is set just below.  */
10523
  symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10524
 
10525
  off = elf_tdata (abfd)->next_file_pos;
10526
  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10527
 
10528
  /* Note that at this point elf_tdata (abfd)->next_file_pos is
10529
     incorrect.  We do not yet know the size of the .symtab section.
10530
     We correct next_file_pos below, after we do know the size.  */
10531
 
10532
  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10533
     continuously seeking to the right position in the file.  */
10534
  if (! info->keep_memory || max_sym_count < 20)
10535
    finfo.symbuf_size = 20;
10536
  else
10537
    finfo.symbuf_size = max_sym_count;
10538
  amt = finfo.symbuf_size;
10539
  amt *= bed->s->sizeof_sym;
10540
  finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10541
  if (finfo.symbuf == NULL)
10542
    goto error_return;
10543
  if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10544
    {
10545
      /* Wild guess at number of output symbols.  realloc'd as needed.  */
10546
      amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10547
      finfo.shndxbuf_size = amt;
10548
      amt *= sizeof (Elf_External_Sym_Shndx);
10549
      finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10550
      if (finfo.symshndxbuf == NULL)
10551
        goto error_return;
10552
    }
10553
 
10554
  /* Start writing out the symbol table.  The first symbol is always a
10555
     dummy symbol.  */
10556
  if (info->strip != strip_all
10557
      || emit_relocs)
10558
    {
10559
      elfsym.st_value = 0;
10560
      elfsym.st_size = 0;
10561
      elfsym.st_info = 0;
10562
      elfsym.st_other = 0;
10563
      elfsym.st_shndx = SHN_UNDEF;
10564
      elfsym.st_target_internal = 0;
10565
      if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10566
                               NULL) != 1)
10567
        goto error_return;
10568
    }
10569
 
10570
  /* Output a symbol for each section.  We output these even if we are
10571
     discarding local symbols, since they are used for relocs.  These
10572
     symbols have no names.  We store the index of each one in the
10573
     index field of the section, so that we can find it again when
10574
     outputting relocs.  */
10575
  if (info->strip != strip_all
10576
      || emit_relocs)
10577
    {
10578
      elfsym.st_size = 0;
10579
      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10580
      elfsym.st_other = 0;
10581
      elfsym.st_value = 0;
10582
      elfsym.st_target_internal = 0;
10583
      for (i = 1; i < elf_numsections (abfd); i++)
10584
        {
10585
          o = bfd_section_from_elf_index (abfd, i);
10586
          if (o != NULL)
10587
            {
10588
              o->target_index = bfd_get_symcount (abfd);
10589
              elfsym.st_shndx = i;
10590
              if (!info->relocatable)
10591
                elfsym.st_value = o->vma;
10592
              if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10593
                goto error_return;
10594
            }
10595
        }
10596
    }
10597
 
10598
  /* Allocate some memory to hold information read in from the input
10599
     files.  */
10600
  if (max_contents_size != 0)
10601
    {
10602
      finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10603
      if (finfo.contents == NULL)
10604
        goto error_return;
10605
    }
10606
 
10607
  if (max_external_reloc_size != 0)
10608
    {
10609
      finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10610
      if (finfo.external_relocs == NULL)
10611
        goto error_return;
10612
    }
10613
 
10614
  if (max_internal_reloc_count != 0)
10615
    {
10616
      amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10617
      amt *= sizeof (Elf_Internal_Rela);
10618
      finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10619
      if (finfo.internal_relocs == NULL)
10620
        goto error_return;
10621
    }
10622
 
10623
  if (max_sym_count != 0)
10624
    {
10625
      amt = max_sym_count * bed->s->sizeof_sym;
10626
      finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10627
      if (finfo.external_syms == NULL)
10628
        goto error_return;
10629
 
10630
      amt = max_sym_count * sizeof (Elf_Internal_Sym);
10631
      finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10632
      if (finfo.internal_syms == NULL)
10633
        goto error_return;
10634
 
10635
      amt = max_sym_count * sizeof (long);
10636
      finfo.indices = (long int *) bfd_malloc (amt);
10637
      if (finfo.indices == NULL)
10638
        goto error_return;
10639
 
10640
      amt = max_sym_count * sizeof (asection *);
10641
      finfo.sections = (asection **) bfd_malloc (amt);
10642
      if (finfo.sections == NULL)
10643
        goto error_return;
10644
    }
10645
 
10646
  if (max_sym_shndx_count != 0)
10647
    {
10648
      amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10649
      finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10650
      if (finfo.locsym_shndx == NULL)
10651
        goto error_return;
10652
    }
10653
 
10654
  if (elf_hash_table (info)->tls_sec)
10655
    {
10656
      bfd_vma base, end = 0;
10657
      asection *sec;
10658
 
10659
      for (sec = elf_hash_table (info)->tls_sec;
10660
           sec && (sec->flags & SEC_THREAD_LOCAL);
10661
           sec = sec->next)
10662
        {
10663
          bfd_size_type size = sec->size;
10664
 
10665
          if (size == 0
10666
              && (sec->flags & SEC_HAS_CONTENTS) == 0)
10667
            {
10668
              struct bfd_link_order *ord = sec->map_tail.link_order;
10669
 
10670
              if (ord != NULL)
10671
                size = ord->offset + ord->size;
10672
            }
10673
          end = sec->vma + size;
10674
        }
10675
      base = elf_hash_table (info)->tls_sec->vma;
10676
      /* Only align end of TLS section if static TLS doesn't have special
10677
         alignment requirements.  */
10678
      if (bed->static_tls_alignment == 1)
10679
        end = align_power (end,
10680
                           elf_hash_table (info)->tls_sec->alignment_power);
10681
      elf_hash_table (info)->tls_size = end - base;
10682
    }
10683
 
10684
  /* Reorder SHF_LINK_ORDER sections.  */
10685
  for (o = abfd->sections; o != NULL; o = o->next)
10686
    {
10687
      if (!elf_fixup_link_order (abfd, o))
10688
        return FALSE;
10689
    }
10690
 
10691
  /* Since ELF permits relocations to be against local symbols, we
10692
     must have the local symbols available when we do the relocations.
10693
     Since we would rather only read the local symbols once, and we
10694
     would rather not keep them in memory, we handle all the
10695
     relocations for a single input file at the same time.
10696
 
10697
     Unfortunately, there is no way to know the total number of local
10698
     symbols until we have seen all of them, and the local symbol
10699
     indices precede the global symbol indices.  This means that when
10700
     we are generating relocatable output, and we see a reloc against
10701
     a global symbol, we can not know the symbol index until we have
10702
     finished examining all the local symbols to see which ones we are
10703
     going to output.  To deal with this, we keep the relocations in
10704
     memory, and don't output them until the end of the link.  This is
10705
     an unfortunate waste of memory, but I don't see a good way around
10706
     it.  Fortunately, it only happens when performing a relocatable
10707
     link, which is not the common case.  FIXME: If keep_memory is set
10708
     we could write the relocs out and then read them again; I don't
10709
     know how bad the memory loss will be.  */
10710
 
10711
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10712
    sub->output_has_begun = FALSE;
10713
  for (o = abfd->sections; o != NULL; o = o->next)
10714
    {
10715
      for (p = o->map_head.link_order; p != NULL; p = p->next)
10716
        {
10717
          if (p->type == bfd_indirect_link_order
10718
              && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10719
                  == bfd_target_elf_flavour)
10720
              && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10721
            {
10722
              if (! sub->output_has_begun)
10723
                {
10724
                  if (! elf_link_input_bfd (&finfo, sub))
10725
                    goto error_return;
10726
                  sub->output_has_begun = TRUE;
10727
                }
10728
            }
10729
          else if (p->type == bfd_section_reloc_link_order
10730
                   || p->type == bfd_symbol_reloc_link_order)
10731
            {
10732
              if (! elf_reloc_link_order (abfd, info, o, p))
10733
                goto error_return;
10734
            }
10735
          else
10736
            {
10737
              if (! _bfd_default_link_order (abfd, info, o, p))
10738
                {
10739
                  if (p->type == bfd_indirect_link_order
10740
                      && (bfd_get_flavour (sub)
10741
                          == bfd_target_elf_flavour)
10742
                      && (elf_elfheader (sub)->e_ident[EI_CLASS]
10743
                          != bed->s->elfclass))
10744
                    {
10745
                      const char *iclass, *oclass;
10746
 
10747
                      if (bed->s->elfclass == ELFCLASS64)
10748
                        {
10749
                          iclass = "ELFCLASS32";
10750
                          oclass = "ELFCLASS64";
10751
                        }
10752
                      else
10753
                        {
10754
                          iclass = "ELFCLASS64";
10755
                          oclass = "ELFCLASS32";
10756
                        }
10757
 
10758
                      bfd_set_error (bfd_error_wrong_format);
10759
                      (*_bfd_error_handler)
10760
                        (_("%B: file class %s incompatible with %s"),
10761
                         sub, iclass, oclass);
10762
                    }
10763
 
10764
                  goto error_return;
10765
                }
10766
            }
10767
        }
10768
    }
10769
 
10770
  /* Free symbol buffer if needed.  */
10771
  if (!info->reduce_memory_overheads)
10772
    {
10773
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10774
        if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10775
            && elf_tdata (sub)->symbuf)
10776
          {
10777
            free (elf_tdata (sub)->symbuf);
10778
            elf_tdata (sub)->symbuf = NULL;
10779
          }
10780
    }
10781
 
10782
  /* Output any global symbols that got converted to local in a
10783
     version script or due to symbol visibility.  We do this in a
10784
     separate step since ELF requires all local symbols to appear
10785
     prior to any global symbols.  FIXME: We should only do this if
10786
     some global symbols were, in fact, converted to become local.
10787
     FIXME: Will this work correctly with the Irix 5 linker?  */
10788
  eoinfo.failed = FALSE;
10789
  eoinfo.finfo = &finfo;
10790
  eoinfo.localsyms = TRUE;
10791 148 khays
  bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10792 14 khays
  if (eoinfo.failed)
10793
    return FALSE;
10794
 
10795
  /* If backend needs to output some local symbols not present in the hash
10796
     table, do it now.  */
10797
  if (bed->elf_backend_output_arch_local_syms)
10798
    {
10799
      typedef int (*out_sym_func)
10800
        (void *, const char *, Elf_Internal_Sym *, asection *,
10801
         struct elf_link_hash_entry *);
10802
 
10803
      if (! ((*bed->elf_backend_output_arch_local_syms)
10804
             (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10805
        return FALSE;
10806
    }
10807
 
10808
  /* That wrote out all the local symbols.  Finish up the symbol table
10809
     with the global symbols. Even if we want to strip everything we
10810
     can, we still need to deal with those global symbols that got
10811
     converted to local in a version script.  */
10812
 
10813
  /* The sh_info field records the index of the first non local symbol.  */
10814
  symtab_hdr->sh_info = bfd_get_symcount (abfd);
10815
 
10816
  if (dynamic
10817
      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10818
    {
10819
      Elf_Internal_Sym sym;
10820
      bfd_byte *dynsym = finfo.dynsym_sec->contents;
10821
      long last_local = 0;
10822
 
10823
      /* Write out the section symbols for the output sections.  */
10824
      if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10825
        {
10826
          asection *s;
10827
 
10828
          sym.st_size = 0;
10829
          sym.st_name = 0;
10830
          sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10831
          sym.st_other = 0;
10832
          sym.st_target_internal = 0;
10833
 
10834
          for (s = abfd->sections; s != NULL; s = s->next)
10835
            {
10836
              int indx;
10837
              bfd_byte *dest;
10838
              long dynindx;
10839
 
10840
              dynindx = elf_section_data (s)->dynindx;
10841
              if (dynindx <= 0)
10842
                continue;
10843
              indx = elf_section_data (s)->this_idx;
10844
              BFD_ASSERT (indx > 0);
10845
              sym.st_shndx = indx;
10846
              if (! check_dynsym (abfd, &sym))
10847
                return FALSE;
10848
              sym.st_value = s->vma;
10849
              dest = dynsym + dynindx * bed->s->sizeof_sym;
10850
              if (last_local < dynindx)
10851
                last_local = dynindx;
10852
              bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10853
            }
10854
        }
10855
 
10856
      /* Write out the local dynsyms.  */
10857
      if (elf_hash_table (info)->dynlocal)
10858
        {
10859
          struct elf_link_local_dynamic_entry *e;
10860
          for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10861
            {
10862
              asection *s;
10863
              bfd_byte *dest;
10864
 
10865
              /* Copy the internal symbol and turn off visibility.
10866
                 Note that we saved a word of storage and overwrote
10867
                 the original st_name with the dynstr_index.  */
10868
              sym = e->isym;
10869
              sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10870
 
10871
              s = bfd_section_from_elf_index (e->input_bfd,
10872
                                              e->isym.st_shndx);
10873
              if (s != NULL)
10874
                {
10875
                  sym.st_shndx =
10876
                    elf_section_data (s->output_section)->this_idx;
10877
                  if (! check_dynsym (abfd, &sym))
10878
                    return FALSE;
10879
                  sym.st_value = (s->output_section->vma
10880
                                  + s->output_offset
10881
                                  + e->isym.st_value);
10882
                }
10883
 
10884
              if (last_local < e->dynindx)
10885
                last_local = e->dynindx;
10886
 
10887
              dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10888
              bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10889
            }
10890
        }
10891
 
10892
      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10893
        last_local + 1;
10894
    }
10895
 
10896
  /* We get the global symbols from the hash table.  */
10897
  eoinfo.failed = FALSE;
10898
  eoinfo.localsyms = FALSE;
10899
  eoinfo.finfo = &finfo;
10900 148 khays
  bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10901 14 khays
  if (eoinfo.failed)
10902
    return FALSE;
10903
 
10904
  /* If backend needs to output some symbols not present in the hash
10905
     table, do it now.  */
10906
  if (bed->elf_backend_output_arch_syms)
10907
    {
10908
      typedef int (*out_sym_func)
10909
        (void *, const char *, Elf_Internal_Sym *, asection *,
10910
         struct elf_link_hash_entry *);
10911
 
10912
      if (! ((*bed->elf_backend_output_arch_syms)
10913
             (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10914
        return FALSE;
10915
    }
10916
 
10917
  /* Flush all symbols to the file.  */
10918
  if (! elf_link_flush_output_syms (&finfo, bed))
10919
    return FALSE;
10920
 
10921
  /* Now we know the size of the symtab section.  */
10922
  off += symtab_hdr->sh_size;
10923
 
10924
  symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10925
  if (symtab_shndx_hdr->sh_name != 0)
10926
    {
10927
      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10928
      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10929
      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10930
      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10931
      symtab_shndx_hdr->sh_size = amt;
10932
 
10933
      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10934
                                                       off, TRUE);
10935
 
10936
      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10937
          || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10938
        return FALSE;
10939
    }
10940
 
10941
 
10942
  /* Finish up and write out the symbol string table (.strtab)
10943
     section.  */
10944
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10945
  /* sh_name was set in prep_headers.  */
10946
  symstrtab_hdr->sh_type = SHT_STRTAB;
10947
  symstrtab_hdr->sh_flags = 0;
10948
  symstrtab_hdr->sh_addr = 0;
10949
  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10950
  symstrtab_hdr->sh_entsize = 0;
10951
  symstrtab_hdr->sh_link = 0;
10952
  symstrtab_hdr->sh_info = 0;
10953
  /* sh_offset is set just below.  */
10954
  symstrtab_hdr->sh_addralign = 1;
10955
 
10956
  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10957
  elf_tdata (abfd)->next_file_pos = off;
10958
 
10959
  if (bfd_get_symcount (abfd) > 0)
10960
    {
10961
      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10962
          || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10963
        return FALSE;
10964
    }
10965
 
10966
  /* Adjust the relocs to have the correct symbol indices.  */
10967
  for (o = abfd->sections; o != NULL; o = o->next)
10968
    {
10969
      struct bfd_elf_section_data *esdo = elf_section_data (o);
10970
      if ((o->flags & SEC_RELOC) == 0)
10971
        continue;
10972
 
10973
      if (esdo->rel.hdr != NULL)
10974
        elf_link_adjust_relocs (abfd, &esdo->rel);
10975
      if (esdo->rela.hdr != NULL)
10976
        elf_link_adjust_relocs (abfd, &esdo->rela);
10977
 
10978
      /* Set the reloc_count field to 0 to prevent write_relocs from
10979
         trying to swap the relocs out itself.  */
10980
      o->reloc_count = 0;
10981
    }
10982
 
10983
  if (dynamic && info->combreloc && dynobj != NULL)
10984
    relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10985
 
10986
  /* If we are linking against a dynamic object, or generating a
10987
     shared library, finish up the dynamic linking information.  */
10988
  if (dynamic)
10989
    {
10990
      bfd_byte *dyncon, *dynconend;
10991
 
10992
      /* Fix up .dynamic entries.  */
10993
      o = bfd_get_section_by_name (dynobj, ".dynamic");
10994
      BFD_ASSERT (o != NULL);
10995
 
10996
      dyncon = o->contents;
10997
      dynconend = o->contents + o->size;
10998
      for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10999
        {
11000
          Elf_Internal_Dyn dyn;
11001
          const char *name;
11002
          unsigned int type;
11003
 
11004
          bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11005
 
11006
          switch (dyn.d_tag)
11007
            {
11008
            default:
11009
              continue;
11010
            case DT_NULL:
11011
              if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11012
                {
11013
                  switch (elf_section_data (reldyn)->this_hdr.sh_type)
11014
                    {
11015
                    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11016
                    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11017
                    default: continue;
11018
                    }
11019
                  dyn.d_un.d_val = relativecount;
11020
                  relativecount = 0;
11021
                  break;
11022
                }
11023
              continue;
11024
 
11025
            case DT_INIT:
11026
              name = info->init_function;
11027
              goto get_sym;
11028
            case DT_FINI:
11029
              name = info->fini_function;
11030
            get_sym:
11031
              {
11032
                struct elf_link_hash_entry *h;
11033
 
11034
                h = elf_link_hash_lookup (elf_hash_table (info), name,
11035
                                          FALSE, FALSE, TRUE);
11036
                if (h != NULL
11037
                    && (h->root.type == bfd_link_hash_defined
11038
                        || h->root.type == bfd_link_hash_defweak))
11039
                  {
11040
                    dyn.d_un.d_ptr = h->root.u.def.value;
11041
                    o = h->root.u.def.section;
11042
                    if (o->output_section != NULL)
11043
                      dyn.d_un.d_ptr += (o->output_section->vma
11044
                                         + o->output_offset);
11045
                    else
11046
                      {
11047
                        /* The symbol is imported from another shared
11048
                           library and does not apply to this one.  */
11049
                        dyn.d_un.d_ptr = 0;
11050
                      }
11051
                    break;
11052
                  }
11053
              }
11054
              continue;
11055
 
11056
            case DT_PREINIT_ARRAYSZ:
11057
              name = ".preinit_array";
11058
              goto get_size;
11059
            case DT_INIT_ARRAYSZ:
11060
              name = ".init_array";
11061
              goto get_size;
11062
            case DT_FINI_ARRAYSZ:
11063
              name = ".fini_array";
11064
            get_size:
11065
              o = bfd_get_section_by_name (abfd, name);
11066
              if (o == NULL)
11067
                {
11068
                  (*_bfd_error_handler)
11069
                    (_("%B: could not find output section %s"), abfd, name);
11070
                  goto error_return;
11071
                }
11072
              if (o->size == 0)
11073
                (*_bfd_error_handler)
11074
                  (_("warning: %s section has zero size"), name);
11075
              dyn.d_un.d_val = o->size;
11076
              break;
11077
 
11078
            case DT_PREINIT_ARRAY:
11079
              name = ".preinit_array";
11080
              goto get_vma;
11081
            case DT_INIT_ARRAY:
11082
              name = ".init_array";
11083
              goto get_vma;
11084
            case DT_FINI_ARRAY:
11085
              name = ".fini_array";
11086
              goto get_vma;
11087
 
11088
            case DT_HASH:
11089
              name = ".hash";
11090
              goto get_vma;
11091
            case DT_GNU_HASH:
11092
              name = ".gnu.hash";
11093
              goto get_vma;
11094
            case DT_STRTAB:
11095
              name = ".dynstr";
11096
              goto get_vma;
11097
            case DT_SYMTAB:
11098
              name = ".dynsym";
11099
              goto get_vma;
11100
            case DT_VERDEF:
11101
              name = ".gnu.version_d";
11102
              goto get_vma;
11103
            case DT_VERNEED:
11104
              name = ".gnu.version_r";
11105
              goto get_vma;
11106
            case DT_VERSYM:
11107
              name = ".gnu.version";
11108
            get_vma:
11109
              o = bfd_get_section_by_name (abfd, name);
11110
              if (o == NULL)
11111
                {
11112
                  (*_bfd_error_handler)
11113
                    (_("%B: could not find output section %s"), abfd, name);
11114
                  goto error_return;
11115
                }
11116 148 khays
              if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11117
                {
11118
                  (*_bfd_error_handler)
11119
                    (_("warning: section '%s' is being made into a note"), name);
11120
                  bfd_set_error (bfd_error_nonrepresentable_section);
11121
                  goto error_return;
11122
                }
11123 14 khays
              dyn.d_un.d_ptr = o->vma;
11124
              break;
11125
 
11126
            case DT_REL:
11127
            case DT_RELA:
11128
            case DT_RELSZ:
11129
            case DT_RELASZ:
11130
              if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11131
                type = SHT_REL;
11132
              else
11133
                type = SHT_RELA;
11134
              dyn.d_un.d_val = 0;
11135
              dyn.d_un.d_ptr = 0;
11136
              for (i = 1; i < elf_numsections (abfd); i++)
11137
                {
11138
                  Elf_Internal_Shdr *hdr;
11139
 
11140
                  hdr = elf_elfsections (abfd)[i];
11141
                  if (hdr->sh_type == type
11142
                      && (hdr->sh_flags & SHF_ALLOC) != 0)
11143
                    {
11144
                      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11145
                        dyn.d_un.d_val += hdr->sh_size;
11146
                      else
11147
                        {
11148
                          if (dyn.d_un.d_ptr == 0
11149
                              || hdr->sh_addr < dyn.d_un.d_ptr)
11150
                            dyn.d_un.d_ptr = hdr->sh_addr;
11151
                        }
11152
                    }
11153
                }
11154
              break;
11155
            }
11156
          bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11157
        }
11158
    }
11159
 
11160
  /* If we have created any dynamic sections, then output them.  */
11161
  if (dynobj != NULL)
11162
    {
11163
      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11164
        goto error_return;
11165
 
11166
      /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11167
      if (info->warn_shared_textrel && info->shared)
11168
        {
11169
          bfd_byte *dyncon, *dynconend;
11170
 
11171
          /* Fix up .dynamic entries.  */
11172
          o = bfd_get_section_by_name (dynobj, ".dynamic");
11173
          BFD_ASSERT (o != NULL);
11174
 
11175
          dyncon = o->contents;
11176
          dynconend = o->contents + o->size;
11177
          for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11178
            {
11179
              Elf_Internal_Dyn dyn;
11180
 
11181
              bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11182
 
11183
              if (dyn.d_tag == DT_TEXTREL)
11184
                {
11185
                 info->callbacks->einfo
11186
                    (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11187
                  break;
11188
                }
11189
            }
11190
        }
11191
 
11192
      for (o = dynobj->sections; o != NULL; o = o->next)
11193
        {
11194
          if ((o->flags & SEC_HAS_CONTENTS) == 0
11195
              || o->size == 0
11196
              || o->output_section == bfd_abs_section_ptr)
11197
            continue;
11198
          if ((o->flags & SEC_LINKER_CREATED) == 0)
11199
            {
11200
              /* At this point, we are only interested in sections
11201
                 created by _bfd_elf_link_create_dynamic_sections.  */
11202
              continue;
11203
            }
11204
          if (elf_hash_table (info)->stab_info.stabstr == o)
11205
            continue;
11206
          if (elf_hash_table (info)->eh_info.hdr_sec == o)
11207
            continue;
11208
          if ((elf_section_data (o->output_section)->this_hdr.sh_type
11209
               != SHT_STRTAB)
11210 148 khays
              && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11211 14 khays
            {
11212
              /* FIXME: octets_per_byte.  */
11213
              if (! bfd_set_section_contents (abfd, o->output_section,
11214
                                              o->contents,
11215
                                              (file_ptr) o->output_offset,
11216
                                              o->size))
11217
                goto error_return;
11218
            }
11219
          else
11220
            {
11221
              /* The contents of the .dynstr section are actually in a
11222
                 stringtab.  */
11223
              off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11224
              if (bfd_seek (abfd, off, SEEK_SET) != 0
11225
                  || ! _bfd_elf_strtab_emit (abfd,
11226
                                             elf_hash_table (info)->dynstr))
11227
                goto error_return;
11228
            }
11229
        }
11230
    }
11231
 
11232
  if (info->relocatable)
11233
    {
11234
      bfd_boolean failed = FALSE;
11235
 
11236
      bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11237
      if (failed)
11238
        goto error_return;
11239
    }
11240
 
11241
  /* If we have optimized stabs strings, output them.  */
11242
  if (elf_hash_table (info)->stab_info.stabstr != NULL)
11243
    {
11244
      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11245
        goto error_return;
11246
    }
11247
 
11248
  if (info->eh_frame_hdr)
11249
    {
11250
      if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11251
        goto error_return;
11252
    }
11253
 
11254
  if (finfo.symstrtab != NULL)
11255
    _bfd_stringtab_free (finfo.symstrtab);
11256
  if (finfo.contents != NULL)
11257
    free (finfo.contents);
11258
  if (finfo.external_relocs != NULL)
11259
    free (finfo.external_relocs);
11260
  if (finfo.internal_relocs != NULL)
11261
    free (finfo.internal_relocs);
11262
  if (finfo.external_syms != NULL)
11263
    free (finfo.external_syms);
11264
  if (finfo.locsym_shndx != NULL)
11265
    free (finfo.locsym_shndx);
11266
  if (finfo.internal_syms != NULL)
11267
    free (finfo.internal_syms);
11268
  if (finfo.indices != NULL)
11269
    free (finfo.indices);
11270
  if (finfo.sections != NULL)
11271
    free (finfo.sections);
11272
  if (finfo.symbuf != NULL)
11273
    free (finfo.symbuf);
11274
  if (finfo.symshndxbuf != NULL)
11275
    free (finfo.symshndxbuf);
11276
  for (o = abfd->sections; o != NULL; o = o->next)
11277
    {
11278
      struct bfd_elf_section_data *esdo = elf_section_data (o);
11279
      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11280
        free (esdo->rel.hashes);
11281
      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11282
        free (esdo->rela.hashes);
11283
    }
11284
 
11285
  elf_tdata (abfd)->linker = TRUE;
11286
 
11287
  if (attr_section)
11288
    {
11289
      bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11290
      if (contents == NULL)
11291
        return FALSE;   /* Bail out and fail.  */
11292
      bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11293
      bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11294
      free (contents);
11295
    }
11296
 
11297
  return TRUE;
11298
 
11299
 error_return:
11300
  if (finfo.symstrtab != NULL)
11301
    _bfd_stringtab_free (finfo.symstrtab);
11302
  if (finfo.contents != NULL)
11303
    free (finfo.contents);
11304
  if (finfo.external_relocs != NULL)
11305
    free (finfo.external_relocs);
11306
  if (finfo.internal_relocs != NULL)
11307
    free (finfo.internal_relocs);
11308
  if (finfo.external_syms != NULL)
11309
    free (finfo.external_syms);
11310
  if (finfo.locsym_shndx != NULL)
11311
    free (finfo.locsym_shndx);
11312
  if (finfo.internal_syms != NULL)
11313
    free (finfo.internal_syms);
11314
  if (finfo.indices != NULL)
11315
    free (finfo.indices);
11316
  if (finfo.sections != NULL)
11317
    free (finfo.sections);
11318
  if (finfo.symbuf != NULL)
11319
    free (finfo.symbuf);
11320
  if (finfo.symshndxbuf != NULL)
11321
    free (finfo.symshndxbuf);
11322
  for (o = abfd->sections; o != NULL; o = o->next)
11323
    {
11324
      struct bfd_elf_section_data *esdo = elf_section_data (o);
11325
      if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11326
        free (esdo->rel.hashes);
11327
      if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11328
        free (esdo->rela.hashes);
11329
    }
11330
 
11331
  return FALSE;
11332
}
11333
 
11334
/* Initialize COOKIE for input bfd ABFD.  */
11335
 
11336
static bfd_boolean
11337
init_reloc_cookie (struct elf_reloc_cookie *cookie,
11338
                   struct bfd_link_info *info, bfd *abfd)
11339
{
11340
  Elf_Internal_Shdr *symtab_hdr;
11341
  const struct elf_backend_data *bed;
11342
 
11343
  bed = get_elf_backend_data (abfd);
11344
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11345
 
11346
  cookie->abfd = abfd;
11347
  cookie->sym_hashes = elf_sym_hashes (abfd);
11348
  cookie->bad_symtab = elf_bad_symtab (abfd);
11349
  if (cookie->bad_symtab)
11350
    {
11351
      cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11352
      cookie->extsymoff = 0;
11353
    }
11354
  else
11355
    {
11356
      cookie->locsymcount = symtab_hdr->sh_info;
11357
      cookie->extsymoff = symtab_hdr->sh_info;
11358
    }
11359
 
11360
  if (bed->s->arch_size == 32)
11361
    cookie->r_sym_shift = 8;
11362
  else
11363
    cookie->r_sym_shift = 32;
11364
 
11365
  cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11366
  if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11367
    {
11368
      cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11369
                                              cookie->locsymcount, 0,
11370
                                              NULL, NULL, NULL);
11371
      if (cookie->locsyms == NULL)
11372
        {
11373
          info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11374
          return FALSE;
11375
        }
11376
      if (info->keep_memory)
11377
        symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11378
    }
11379
  return TRUE;
11380
}
11381
 
11382
/* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11383
 
11384
static void
11385
fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11386
{
11387
  Elf_Internal_Shdr *symtab_hdr;
11388
 
11389
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11390
  if (cookie->locsyms != NULL
11391
      && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11392
    free (cookie->locsyms);
11393
}
11394
 
11395
/* Initialize the relocation information in COOKIE for input section SEC
11396
   of input bfd ABFD.  */
11397
 
11398
static bfd_boolean
11399
init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11400
                        struct bfd_link_info *info, bfd *abfd,
11401
                        asection *sec)
11402
{
11403
  const struct elf_backend_data *bed;
11404
 
11405
  if (sec->reloc_count == 0)
11406
    {
11407
      cookie->rels = NULL;
11408
      cookie->relend = NULL;
11409
    }
11410
  else
11411
    {
11412
      bed = get_elf_backend_data (abfd);
11413
 
11414
      cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11415
                                                info->keep_memory);
11416
      if (cookie->rels == NULL)
11417
        return FALSE;
11418
      cookie->rel = cookie->rels;
11419
      cookie->relend = (cookie->rels
11420
                        + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11421
    }
11422
  cookie->rel = cookie->rels;
11423
  return TRUE;
11424
}
11425
 
11426
/* Free the memory allocated by init_reloc_cookie_rels,
11427
   if appropriate.  */
11428
 
11429
static void
11430
fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11431
                        asection *sec)
11432
{
11433
  if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11434
    free (cookie->rels);
11435
}
11436
 
11437
/* Initialize the whole of COOKIE for input section SEC.  */
11438
 
11439
static bfd_boolean
11440
init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11441
                               struct bfd_link_info *info,
11442
                               asection *sec)
11443
{
11444
  if (!init_reloc_cookie (cookie, info, sec->owner))
11445
    goto error1;
11446
  if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11447
    goto error2;
11448
  return TRUE;
11449
 
11450
 error2:
11451
  fini_reloc_cookie (cookie, sec->owner);
11452
 error1:
11453
  return FALSE;
11454
}
11455
 
11456
/* Free the memory allocated by init_reloc_cookie_for_section,
11457
   if appropriate.  */
11458
 
11459
static void
11460
fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11461
                               asection *sec)
11462
{
11463
  fini_reloc_cookie_rels (cookie, sec);
11464
  fini_reloc_cookie (cookie, sec->owner);
11465
}
11466
 
11467
/* Garbage collect unused sections.  */
11468
 
11469
/* Default gc_mark_hook.  */
11470
 
11471
asection *
11472
_bfd_elf_gc_mark_hook (asection *sec,
11473
                       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11474
                       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11475
                       struct elf_link_hash_entry *h,
11476
                       Elf_Internal_Sym *sym)
11477
{
11478
  const char *sec_name;
11479
 
11480
  if (h != NULL)
11481
    {
11482
      switch (h->root.type)
11483
        {
11484
        case bfd_link_hash_defined:
11485
        case bfd_link_hash_defweak:
11486
          return h->root.u.def.section;
11487
 
11488
        case bfd_link_hash_common:
11489
          return h->root.u.c.p->section;
11490
 
11491
        case bfd_link_hash_undefined:
11492
        case bfd_link_hash_undefweak:
11493
          /* To work around a glibc bug, keep all XXX input sections
11494
             when there is an as yet undefined reference to __start_XXX
11495
             or __stop_XXX symbols.  The linker will later define such
11496
             symbols for orphan input sections that have a name
11497
             representable as a C identifier.  */
11498
          if (strncmp (h->root.root.string, "__start_", 8) == 0)
11499
            sec_name = h->root.root.string + 8;
11500
          else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11501
            sec_name = h->root.root.string + 7;
11502
          else
11503
            sec_name = NULL;
11504
 
11505
          if (sec_name && *sec_name != '\0')
11506
            {
11507
              bfd *i;
11508
 
11509
              for (i = info->input_bfds; i; i = i->link_next)
11510
                {
11511
                  sec = bfd_get_section_by_name (i, sec_name);
11512
                  if (sec)
11513
                    sec->flags |= SEC_KEEP;
11514
                }
11515
            }
11516
          break;
11517
 
11518
        default:
11519
          break;
11520
        }
11521
    }
11522
  else
11523
    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11524
 
11525
  return NULL;
11526
}
11527
 
11528
/* COOKIE->rel describes a relocation against section SEC, which is
11529
   a section we've decided to keep.  Return the section that contains
11530
   the relocation symbol, or NULL if no section contains it.  */
11531
 
11532
asection *
11533
_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11534
                       elf_gc_mark_hook_fn gc_mark_hook,
11535
                       struct elf_reloc_cookie *cookie)
11536
{
11537
  unsigned long r_symndx;
11538
  struct elf_link_hash_entry *h;
11539
 
11540
  r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11541
  if (r_symndx == STN_UNDEF)
11542
    return NULL;
11543
 
11544
  if (r_symndx >= cookie->locsymcount
11545
      || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11546
    {
11547
      h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11548
      while (h->root.type == bfd_link_hash_indirect
11549
             || h->root.type == bfd_link_hash_warning)
11550
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
11551
      return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11552
    }
11553
 
11554
  return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11555
                          &cookie->locsyms[r_symndx]);
11556
}
11557
 
11558
/* COOKIE->rel describes a relocation against section SEC, which is
11559
   a section we've decided to keep.  Mark the section that contains
11560
   the relocation symbol.  */
11561
 
11562
bfd_boolean
11563
_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11564
                        asection *sec,
11565
                        elf_gc_mark_hook_fn gc_mark_hook,
11566
                        struct elf_reloc_cookie *cookie)
11567
{
11568
  asection *rsec;
11569
 
11570
  rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11571
  if (rsec && !rsec->gc_mark)
11572
    {
11573
      if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11574
        rsec->gc_mark = 1;
11575
      else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11576
        return FALSE;
11577
    }
11578
  return TRUE;
11579
}
11580
 
11581
/* The mark phase of garbage collection.  For a given section, mark
11582
   it and any sections in this section's group, and all the sections
11583
   which define symbols to which it refers.  */
11584
 
11585
bfd_boolean
11586
_bfd_elf_gc_mark (struct bfd_link_info *info,
11587
                  asection *sec,
11588
                  elf_gc_mark_hook_fn gc_mark_hook)
11589
{
11590
  bfd_boolean ret;
11591
  asection *group_sec, *eh_frame;
11592
 
11593
  sec->gc_mark = 1;
11594
 
11595
  /* Mark all the sections in the group.  */
11596
  group_sec = elf_section_data (sec)->next_in_group;
11597
  if (group_sec && !group_sec->gc_mark)
11598
    if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11599
      return FALSE;
11600
 
11601
  /* Look through the section relocs.  */
11602
  ret = TRUE;
11603
  eh_frame = elf_eh_frame_section (sec->owner);
11604
  if ((sec->flags & SEC_RELOC) != 0
11605
      && sec->reloc_count > 0
11606
      && sec != eh_frame)
11607
    {
11608
      struct elf_reloc_cookie cookie;
11609
 
11610
      if (!init_reloc_cookie_for_section (&cookie, info, sec))
11611
        ret = FALSE;
11612
      else
11613
        {
11614
          for (; cookie.rel < cookie.relend; cookie.rel++)
11615
            if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11616
              {
11617
                ret = FALSE;
11618
                break;
11619
              }
11620
          fini_reloc_cookie_for_section (&cookie, sec);
11621
        }
11622
    }
11623
 
11624
  if (ret && eh_frame && elf_fde_list (sec))
11625
    {
11626
      struct elf_reloc_cookie cookie;
11627
 
11628
      if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11629
        ret = FALSE;
11630
      else
11631
        {
11632
          if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11633
                                      gc_mark_hook, &cookie))
11634
            ret = FALSE;
11635
          fini_reloc_cookie_for_section (&cookie, eh_frame);
11636
        }
11637
    }
11638
 
11639
  return ret;
11640
}
11641
 
11642 161 khays
/* Keep debug and special sections.  */
11643
 
11644
bfd_boolean
11645
_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11646
                                 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11647
{
11648
  bfd *ibfd;
11649
 
11650
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11651
    {
11652
      asection *isec;
11653
      bfd_boolean some_kept;
11654
 
11655
      if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11656
        continue;
11657
 
11658
      /* Ensure all linker created sections are kept, and see whether
11659
         any other section is already marked.  */
11660
      some_kept = FALSE;
11661
      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11662
        {
11663
          if ((isec->flags & SEC_LINKER_CREATED) != 0)
11664
            isec->gc_mark = 1;
11665
          else if (isec->gc_mark)
11666
            some_kept = TRUE;
11667
        }
11668
 
11669
      /* If no section in this file will be kept, then we can
11670
         toss out debug sections.  */
11671
      if (!some_kept)
11672
        continue;
11673
 
11674
      /* Keep debug and special sections like .comment when they are
11675
         not part of a group.  */
11676
      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11677
        if (elf_next_in_group (isec) == NULL
11678
            && ((isec->flags & SEC_DEBUGGING) != 0
11679
                || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11680
          isec->gc_mark = 1;
11681
    }
11682
  return TRUE;
11683
}
11684
 
11685 14 khays
/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11686
 
11687
struct elf_gc_sweep_symbol_info
11688
{
11689
  struct bfd_link_info *info;
11690
  void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11691
                       bfd_boolean);
11692
};
11693
 
11694
static bfd_boolean
11695
elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11696
{
11697
  if ((h->root.type == bfd_link_hash_defined
11698
       || h->root.type == bfd_link_hash_defweak)
11699
      && !h->root.u.def.section->gc_mark
11700
      && !(h->root.u.def.section->owner->flags & DYNAMIC))
11701
    {
11702
      struct elf_gc_sweep_symbol_info *inf =
11703
          (struct elf_gc_sweep_symbol_info *) data;
11704
      (*inf->hide_symbol) (inf->info, h, TRUE);
11705
    }
11706
 
11707
  return TRUE;
11708
}
11709
 
11710
/* The sweep phase of garbage collection.  Remove all garbage sections.  */
11711
 
11712
typedef bfd_boolean (*gc_sweep_hook_fn)
11713
  (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11714
 
11715
static bfd_boolean
11716
elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11717
{
11718
  bfd *sub;
11719
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11720
  gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11721
  unsigned long section_sym_count;
11722
  struct elf_gc_sweep_symbol_info sweep_info;
11723
 
11724
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11725
    {
11726
      asection *o;
11727
 
11728
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11729
        continue;
11730
 
11731
      for (o = sub->sections; o != NULL; o = o->next)
11732
        {
11733
          /* When any section in a section group is kept, we keep all
11734
             sections in the section group.  If the first member of
11735
             the section group is excluded, we will also exclude the
11736
             group section.  */
11737
          if (o->flags & SEC_GROUP)
11738
            {
11739
              asection *first = elf_next_in_group (o);
11740
              o->gc_mark = first->gc_mark;
11741
            }
11742
 
11743
          if (o->gc_mark)
11744
            continue;
11745
 
11746
          /* Skip sweeping sections already excluded.  */
11747
          if (o->flags & SEC_EXCLUDE)
11748
            continue;
11749
 
11750
          /* Since this is early in the link process, it is simple
11751
             to remove a section from the output.  */
11752
          o->flags |= SEC_EXCLUDE;
11753
 
11754
          if (info->print_gc_sections && o->size != 0)
11755
            _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11756
 
11757
          /* But we also have to update some of the relocation
11758
             info we collected before.  */
11759
          if (gc_sweep_hook
11760
              && (o->flags & SEC_RELOC) != 0
11761
              && o->reloc_count > 0
11762
              && !bfd_is_abs_section (o->output_section))
11763
            {
11764
              Elf_Internal_Rela *internal_relocs;
11765
              bfd_boolean r;
11766
 
11767
              internal_relocs
11768
                = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11769
                                             info->keep_memory);
11770
              if (internal_relocs == NULL)
11771
                return FALSE;
11772
 
11773
              r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11774
 
11775
              if (elf_section_data (o)->relocs != internal_relocs)
11776
                free (internal_relocs);
11777
 
11778
              if (!r)
11779
                return FALSE;
11780
            }
11781
        }
11782
    }
11783
 
11784
  /* Remove the symbols that were in the swept sections from the dynamic
11785
     symbol table.  GCFIXME: Anyone know how to get them out of the
11786
     static symbol table as well?  */
11787
  sweep_info.info = info;
11788
  sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11789
  elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11790
                          &sweep_info);
11791
 
11792
  _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11793
  return TRUE;
11794
}
11795
 
11796
/* Propagate collected vtable information.  This is called through
11797
   elf_link_hash_traverse.  */
11798
 
11799
static bfd_boolean
11800
elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11801
{
11802
  /* Those that are not vtables.  */
11803
  if (h->vtable == NULL || h->vtable->parent == NULL)
11804
    return TRUE;
11805
 
11806
  /* Those vtables that do not have parents, we cannot merge.  */
11807
  if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11808
    return TRUE;
11809
 
11810
  /* If we've already been done, exit.  */
11811
  if (h->vtable->used && h->vtable->used[-1])
11812
    return TRUE;
11813
 
11814
  /* Make sure the parent's table is up to date.  */
11815
  elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11816
 
11817
  if (h->vtable->used == NULL)
11818
    {
11819
      /* None of this table's entries were referenced.  Re-use the
11820
         parent's table.  */
11821
      h->vtable->used = h->vtable->parent->vtable->used;
11822
      h->vtable->size = h->vtable->parent->vtable->size;
11823
    }
11824
  else
11825
    {
11826
      size_t n;
11827
      bfd_boolean *cu, *pu;
11828
 
11829
      /* Or the parent's entries into ours.  */
11830
      cu = h->vtable->used;
11831
      cu[-1] = TRUE;
11832
      pu = h->vtable->parent->vtable->used;
11833
      if (pu != NULL)
11834
        {
11835
          const struct elf_backend_data *bed;
11836
          unsigned int log_file_align;
11837
 
11838
          bed = get_elf_backend_data (h->root.u.def.section->owner);
11839
          log_file_align = bed->s->log_file_align;
11840
          n = h->vtable->parent->vtable->size >> log_file_align;
11841
          while (n--)
11842
            {
11843
              if (*pu)
11844
                *cu = TRUE;
11845
              pu++;
11846
              cu++;
11847
            }
11848
        }
11849
    }
11850
 
11851
  return TRUE;
11852
}
11853
 
11854
static bfd_boolean
11855
elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11856
{
11857
  asection *sec;
11858
  bfd_vma hstart, hend;
11859
  Elf_Internal_Rela *relstart, *relend, *rel;
11860
  const struct elf_backend_data *bed;
11861
  unsigned int log_file_align;
11862
 
11863
  /* Take care of both those symbols that do not describe vtables as
11864
     well as those that are not loaded.  */
11865
  if (h->vtable == NULL || h->vtable->parent == NULL)
11866
    return TRUE;
11867
 
11868
  BFD_ASSERT (h->root.type == bfd_link_hash_defined
11869
              || h->root.type == bfd_link_hash_defweak);
11870
 
11871
  sec = h->root.u.def.section;
11872
  hstart = h->root.u.def.value;
11873
  hend = hstart + h->size;
11874
 
11875
  relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11876
  if (!relstart)
11877
    return *(bfd_boolean *) okp = FALSE;
11878
  bed = get_elf_backend_data (sec->owner);
11879
  log_file_align = bed->s->log_file_align;
11880
 
11881
  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11882
 
11883
  for (rel = relstart; rel < relend; ++rel)
11884
    if (rel->r_offset >= hstart && rel->r_offset < hend)
11885
      {
11886
        /* If the entry is in use, do nothing.  */
11887
        if (h->vtable->used
11888
            && (rel->r_offset - hstart) < h->vtable->size)
11889
          {
11890
            bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11891
            if (h->vtable->used[entry])
11892
              continue;
11893
          }
11894
        /* Otherwise, kill it.  */
11895
        rel->r_offset = rel->r_info = rel->r_addend = 0;
11896
      }
11897
 
11898
  return TRUE;
11899
}
11900
 
11901
/* Mark sections containing dynamically referenced symbols.  When
11902
   building shared libraries, we must assume that any visible symbol is
11903
   referenced.  */
11904
 
11905
bfd_boolean
11906
bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11907
{
11908
  struct bfd_link_info *info = (struct bfd_link_info *) inf;
11909
 
11910
  if ((h->root.type == bfd_link_hash_defined
11911
       || h->root.type == bfd_link_hash_defweak)
11912
      && (h->ref_dynamic
11913
          || (!info->executable
11914
              && h->def_regular
11915
              && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11916
              && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11917
    h->root.u.def.section->flags |= SEC_KEEP;
11918
 
11919
  return TRUE;
11920
}
11921
 
11922
/* Keep all sections containing symbols undefined on the command-line,
11923
   and the section containing the entry symbol.  */
11924
 
11925
void
11926
_bfd_elf_gc_keep (struct bfd_link_info *info)
11927
{
11928
  struct bfd_sym_chain *sym;
11929
 
11930
  for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11931
    {
11932
      struct elf_link_hash_entry *h;
11933
 
11934
      h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11935
                                FALSE, FALSE, FALSE);
11936
 
11937
      if (h != NULL
11938
          && (h->root.type == bfd_link_hash_defined
11939
              || h->root.type == bfd_link_hash_defweak)
11940
          && !bfd_is_abs_section (h->root.u.def.section))
11941
        h->root.u.def.section->flags |= SEC_KEEP;
11942
    }
11943
}
11944
 
11945
/* Do mark and sweep of unused sections.  */
11946
 
11947
bfd_boolean
11948
bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11949
{
11950
  bfd_boolean ok = TRUE;
11951
  bfd *sub;
11952
  elf_gc_mark_hook_fn gc_mark_hook;
11953
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11954
 
11955
  if (!bed->can_gc_sections
11956
      || !is_elf_hash_table (info->hash))
11957
    {
11958
      (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11959
      return TRUE;
11960
    }
11961
 
11962
  bed->gc_keep (info);
11963
 
11964
  /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
11965
     at the .eh_frame section if we can mark the FDEs individually.  */
11966
  _bfd_elf_begin_eh_frame_parsing (info);
11967
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11968
    {
11969
      asection *sec;
11970
      struct elf_reloc_cookie cookie;
11971
 
11972
      sec = bfd_get_section_by_name (sub, ".eh_frame");
11973
      if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11974
        {
11975
          _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11976
          if (elf_section_data (sec)->sec_info)
11977
            elf_eh_frame_section (sub) = sec;
11978
          fini_reloc_cookie_for_section (&cookie, sec);
11979
        }
11980
    }
11981
  _bfd_elf_end_eh_frame_parsing (info);
11982
 
11983
  /* Apply transitive closure to the vtable entry usage info.  */
11984
  elf_link_hash_traverse (elf_hash_table (info),
11985
                          elf_gc_propagate_vtable_entries_used,
11986
                          &ok);
11987
  if (!ok)
11988
    return FALSE;
11989
 
11990
  /* Kill the vtable relocations that were not used.  */
11991
  elf_link_hash_traverse (elf_hash_table (info),
11992
                          elf_gc_smash_unused_vtentry_relocs,
11993
                          &ok);
11994
  if (!ok)
11995
    return FALSE;
11996
 
11997
  /* Mark dynamically referenced symbols.  */
11998
  if (elf_hash_table (info)->dynamic_sections_created)
11999
    elf_link_hash_traverse (elf_hash_table (info),
12000
                            bed->gc_mark_dynamic_ref,
12001
                            info);
12002
 
12003
  /* Grovel through relocs to find out who stays ...  */
12004
  gc_mark_hook = bed->gc_mark_hook;
12005
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12006
    {
12007
      asection *o;
12008
 
12009
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12010
        continue;
12011
 
12012 161 khays
      /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12013
         Also treat note sections as a root, if the section is not part
12014
         of a group.  */
12015 14 khays
      for (o = sub->sections; o != NULL; o = o->next)
12016 161 khays
        if (!o->gc_mark
12017
            && (o->flags & SEC_EXCLUDE) == 0
12018 148 khays
            && ((o->flags & SEC_KEEP) != 0
12019 161 khays
                || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12020
                    && elf_next_in_group (o) == NULL )))
12021
          {
12022
            if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12023
              return FALSE;
12024
          }
12025 14 khays
    }
12026
 
12027
  /* Allow the backend to mark additional target specific sections.  */
12028 161 khays
  bed->gc_mark_extra_sections (info, gc_mark_hook);
12029 14 khays
 
12030
  /* ... and mark SEC_EXCLUDE for those that go.  */
12031
  return elf_gc_sweep (abfd, info);
12032
}
12033
 
12034
/* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
12035
 
12036
bfd_boolean
12037
bfd_elf_gc_record_vtinherit (bfd *abfd,
12038
                             asection *sec,
12039
                             struct elf_link_hash_entry *h,
12040
                             bfd_vma offset)
12041
{
12042
  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12043
  struct elf_link_hash_entry **search, *child;
12044
  bfd_size_type extsymcount;
12045
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12046
 
12047
  /* The sh_info field of the symtab header tells us where the
12048
     external symbols start.  We don't care about the local symbols at
12049
     this point.  */
12050
  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12051
  if (!elf_bad_symtab (abfd))
12052
    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12053
 
12054
  sym_hashes = elf_sym_hashes (abfd);
12055
  sym_hashes_end = sym_hashes + extsymcount;
12056
 
12057
  /* Hunt down the child symbol, which is in this section at the same
12058
     offset as the relocation.  */
12059
  for (search = sym_hashes; search != sym_hashes_end; ++search)
12060
    {
12061
      if ((child = *search) != NULL
12062
          && (child->root.type == bfd_link_hash_defined
12063
              || child->root.type == bfd_link_hash_defweak)
12064
          && child->root.u.def.section == sec
12065
          && child->root.u.def.value == offset)
12066
        goto win;
12067
    }
12068
 
12069
  (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12070
                         abfd, sec, (unsigned long) offset);
12071
  bfd_set_error (bfd_error_invalid_operation);
12072
  return FALSE;
12073
 
12074
 win:
12075
  if (!child->vtable)
12076
    {
12077
      child->vtable = (struct elf_link_virtual_table_entry *)
12078
          bfd_zalloc (abfd, sizeof (*child->vtable));
12079
      if (!child->vtable)
12080
        return FALSE;
12081
    }
12082
  if (!h)
12083
    {
12084
      /* This *should* only be the absolute section.  It could potentially
12085
         be that someone has defined a non-global vtable though, which
12086
         would be bad.  It isn't worth paging in the local symbols to be
12087
         sure though; that case should simply be handled by the assembler.  */
12088
 
12089
      child->vtable->parent = (struct elf_link_hash_entry *) -1;
12090
    }
12091
  else
12092
    child->vtable->parent = h;
12093
 
12094
  return TRUE;
12095
}
12096
 
12097
/* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12098
 
12099
bfd_boolean
12100
bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12101
                           asection *sec ATTRIBUTE_UNUSED,
12102
                           struct elf_link_hash_entry *h,
12103
                           bfd_vma addend)
12104
{
12105
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12106
  unsigned int log_file_align = bed->s->log_file_align;
12107
 
12108
  if (!h->vtable)
12109
    {
12110
      h->vtable = (struct elf_link_virtual_table_entry *)
12111
          bfd_zalloc (abfd, sizeof (*h->vtable));
12112
      if (!h->vtable)
12113
        return FALSE;
12114
    }
12115
 
12116
  if (addend >= h->vtable->size)
12117
    {
12118
      size_t size, bytes, file_align;
12119
      bfd_boolean *ptr = h->vtable->used;
12120
 
12121
      /* While the symbol is undefined, we have to be prepared to handle
12122
         a zero size.  */
12123
      file_align = 1 << log_file_align;
12124
      if (h->root.type == bfd_link_hash_undefined)
12125
        size = addend + file_align;
12126
      else
12127
        {
12128
          size = h->size;
12129
          if (addend >= size)
12130
            {
12131
              /* Oops!  We've got a reference past the defined end of
12132
                 the table.  This is probably a bug -- shall we warn?  */
12133
              size = addend + file_align;
12134
            }
12135
        }
12136
      size = (size + file_align - 1) & -file_align;
12137
 
12138
      /* Allocate one extra entry for use as a "done" flag for the
12139
         consolidation pass.  */
12140
      bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12141
 
12142
      if (ptr)
12143
        {
12144
          ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12145
 
12146
          if (ptr != NULL)
12147
            {
12148
              size_t oldbytes;
12149
 
12150
              oldbytes = (((h->vtable->size >> log_file_align) + 1)
12151
                          * sizeof (bfd_boolean));
12152
              memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12153
            }
12154
        }
12155
      else
12156
        ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12157
 
12158
      if (ptr == NULL)
12159
        return FALSE;
12160
 
12161
      /* And arrange for that done flag to be at index -1.  */
12162
      h->vtable->used = ptr + 1;
12163
      h->vtable->size = size;
12164
    }
12165
 
12166
  h->vtable->used[addend >> log_file_align] = TRUE;
12167
 
12168
  return TRUE;
12169
}
12170
 
12171 161 khays
/* Map an ELF section header flag to its corresponding string.  */
12172
typedef struct
12173
{
12174
  char *flag_name;
12175
  flagword flag_value;
12176
} elf_flags_to_name_table;
12177
 
12178
static elf_flags_to_name_table elf_flags_to_names [] =
12179
{
12180
  { "SHF_WRITE", SHF_WRITE },
12181
  { "SHF_ALLOC", SHF_ALLOC },
12182
  { "SHF_EXECINSTR", SHF_EXECINSTR },
12183
  { "SHF_MERGE", SHF_MERGE },
12184
  { "SHF_STRINGS", SHF_STRINGS },
12185
  { "SHF_INFO_LINK", SHF_INFO_LINK},
12186
  { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12187
  { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12188
  { "SHF_GROUP", SHF_GROUP },
12189
  { "SHF_TLS", SHF_TLS },
12190
  { "SHF_MASKOS", SHF_MASKOS },
12191
  { "SHF_EXCLUDE", SHF_EXCLUDE },
12192
};
12193
 
12194
void
12195
bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12196
                              struct flag_info *finfo)
12197
{
12198
  bfd *output_bfd = info->output_bfd;
12199
  const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12200
  struct flag_info_list *tf = finfo->flag_list;
12201
  int with_hex = 0;
12202
  int without_hex = 0;
12203
 
12204
  for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12205
    {
12206
      int i;
12207
      if (bed->elf_backend_lookup_section_flags_hook)
12208
        {
12209
          flagword hexval =
12210
             (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12211
 
12212
          if (hexval != 0)
12213
            {
12214
              if (tf->with == with_flags)
12215
                with_hex |= hexval;
12216
              else if (tf->with == without_flags)
12217
                without_hex |= hexval;
12218
              tf->valid = TRUE;
12219
              continue;
12220
            }
12221
        }
12222
      for (i = 0; i < 12; i++)
12223
        {
12224
          if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12225
            {
12226
              if (tf->with == with_flags)
12227
                with_hex |= elf_flags_to_names[i].flag_value;
12228
              else if (tf->with == without_flags)
12229
                without_hex |= elf_flags_to_names[i].flag_value;
12230
              tf->valid = TRUE;
12231
              continue;
12232
            }
12233
        }
12234
      if (tf->valid == FALSE)
12235
        {
12236
          info->callbacks->einfo
12237
                (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12238
          return;
12239
        }
12240
    }
12241
 finfo->flags_initialized = TRUE;
12242
 finfo->only_with_flags |= with_hex;
12243
 finfo->not_with_flags |= without_hex;
12244
 
12245
 return;
12246
}
12247
 
12248 14 khays
struct alloc_got_off_arg {
12249
  bfd_vma gotoff;
12250
  struct bfd_link_info *info;
12251
};
12252
 
12253
/* We need a special top-level link routine to convert got reference counts
12254
   to real got offsets.  */
12255
 
12256
static bfd_boolean
12257
elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12258
{
12259
  struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12260
  bfd *obfd = gofarg->info->output_bfd;
12261
  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12262
 
12263
  if (h->got.refcount > 0)
12264
    {
12265
      h->got.offset = gofarg->gotoff;
12266
      gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12267
    }
12268
  else
12269
    h->got.offset = (bfd_vma) -1;
12270
 
12271
  return TRUE;
12272
}
12273
 
12274
/* And an accompanying bit to work out final got entry offsets once
12275
   we're done.  Should be called from final_link.  */
12276
 
12277
bfd_boolean
12278
bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12279
                                        struct bfd_link_info *info)
12280
{
12281
  bfd *i;
12282
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12283
  bfd_vma gotoff;
12284
  struct alloc_got_off_arg gofarg;
12285
 
12286
  BFD_ASSERT (abfd == info->output_bfd);
12287
 
12288
  if (! is_elf_hash_table (info->hash))
12289
    return FALSE;
12290
 
12291
  /* The GOT offset is relative to the .got section, but the GOT header is
12292
     put into the .got.plt section, if the backend uses it.  */
12293
  if (bed->want_got_plt)
12294
    gotoff = 0;
12295
  else
12296
    gotoff = bed->got_header_size;
12297
 
12298
  /* Do the local .got entries first.  */
12299
  for (i = info->input_bfds; i; i = i->link_next)
12300
    {
12301
      bfd_signed_vma *local_got;
12302
      bfd_size_type j, locsymcount;
12303
      Elf_Internal_Shdr *symtab_hdr;
12304
 
12305
      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12306
        continue;
12307
 
12308
      local_got = elf_local_got_refcounts (i);
12309
      if (!local_got)
12310
        continue;
12311
 
12312
      symtab_hdr = &elf_tdata (i)->symtab_hdr;
12313
      if (elf_bad_symtab (i))
12314
        locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12315
      else
12316
        locsymcount = symtab_hdr->sh_info;
12317
 
12318
      for (j = 0; j < locsymcount; ++j)
12319
        {
12320
          if (local_got[j] > 0)
12321
            {
12322
              local_got[j] = gotoff;
12323
              gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12324
            }
12325
          else
12326
            local_got[j] = (bfd_vma) -1;
12327
        }
12328
    }
12329
 
12330
  /* Then the global .got entries.  .plt refcounts are handled by
12331
     adjust_dynamic_symbol  */
12332
  gofarg.gotoff = gotoff;
12333
  gofarg.info = info;
12334
  elf_link_hash_traverse (elf_hash_table (info),
12335
                          elf_gc_allocate_got_offsets,
12336
                          &gofarg);
12337
  return TRUE;
12338
}
12339
 
12340
/* Many folk need no more in the way of final link than this, once
12341
   got entry reference counting is enabled.  */
12342
 
12343
bfd_boolean
12344
bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12345
{
12346
  if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12347
    return FALSE;
12348
 
12349
  /* Invoke the regular ELF backend linker to do all the work.  */
12350
  return bfd_elf_final_link (abfd, info);
12351
}
12352
 
12353
bfd_boolean
12354
bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12355
{
12356
  struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12357
 
12358
  if (rcookie->bad_symtab)
12359
    rcookie->rel = rcookie->rels;
12360
 
12361
  for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12362
    {
12363
      unsigned long r_symndx;
12364
 
12365
      if (! rcookie->bad_symtab)
12366
        if (rcookie->rel->r_offset > offset)
12367
          return FALSE;
12368
      if (rcookie->rel->r_offset != offset)
12369
        continue;
12370
 
12371
      r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12372
      if (r_symndx == STN_UNDEF)
12373
        return TRUE;
12374
 
12375
      if (r_symndx >= rcookie->locsymcount
12376
          || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12377
        {
12378
          struct elf_link_hash_entry *h;
12379
 
12380
          h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12381
 
12382
          while (h->root.type == bfd_link_hash_indirect
12383
                 || h->root.type == bfd_link_hash_warning)
12384
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
12385
 
12386
          if ((h->root.type == bfd_link_hash_defined
12387
               || h->root.type == bfd_link_hash_defweak)
12388
              && elf_discarded_section (h->root.u.def.section))
12389
            return TRUE;
12390
          else
12391
            return FALSE;
12392
        }
12393
      else
12394
        {
12395
          /* It's not a relocation against a global symbol,
12396
             but it could be a relocation against a local
12397
             symbol for a discarded section.  */
12398
          asection *isec;
12399
          Elf_Internal_Sym *isym;
12400
 
12401
          /* Need to: get the symbol; get the section.  */
12402
          isym = &rcookie->locsyms[r_symndx];
12403
          isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12404
          if (isec != NULL && elf_discarded_section (isec))
12405
            return TRUE;
12406
        }
12407
      return FALSE;
12408
    }
12409
  return FALSE;
12410
}
12411
 
12412
/* Discard unneeded references to discarded sections.
12413
   Returns TRUE if any section's size was changed.  */
12414
/* This function assumes that the relocations are in sorted order,
12415
   which is true for all known assemblers.  */
12416
 
12417
bfd_boolean
12418
bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12419
{
12420
  struct elf_reloc_cookie cookie;
12421
  asection *stab, *eh;
12422
  const struct elf_backend_data *bed;
12423
  bfd *abfd;
12424
  bfd_boolean ret = FALSE;
12425
 
12426
  if (info->traditional_format
12427
      || !is_elf_hash_table (info->hash))
12428
    return FALSE;
12429
 
12430
  _bfd_elf_begin_eh_frame_parsing (info);
12431
  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12432
    {
12433
      if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12434
        continue;
12435
 
12436
      bed = get_elf_backend_data (abfd);
12437
 
12438
      if ((abfd->flags & DYNAMIC) != 0)
12439
        continue;
12440
 
12441
      eh = NULL;
12442
      if (!info->relocatable)
12443
        {
12444
          eh = bfd_get_section_by_name (abfd, ".eh_frame");
12445
          if (eh != NULL
12446
              && (eh->size == 0
12447
                  || bfd_is_abs_section (eh->output_section)))
12448
            eh = NULL;
12449
        }
12450
 
12451
      stab = bfd_get_section_by_name (abfd, ".stab");
12452
      if (stab != NULL
12453
          && (stab->size == 0
12454
              || bfd_is_abs_section (stab->output_section)
12455
              || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12456
        stab = NULL;
12457
 
12458
      if (stab == NULL
12459
          && eh == NULL
12460
          && bed->elf_backend_discard_info == NULL)
12461
        continue;
12462
 
12463
      if (!init_reloc_cookie (&cookie, info, abfd))
12464
        return FALSE;
12465
 
12466
      if (stab != NULL
12467
          && stab->reloc_count > 0
12468
          && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12469
        {
12470
          if (_bfd_discard_section_stabs (abfd, stab,
12471
                                          elf_section_data (stab)->sec_info,
12472
                                          bfd_elf_reloc_symbol_deleted_p,
12473
                                          &cookie))
12474
            ret = TRUE;
12475
          fini_reloc_cookie_rels (&cookie, stab);
12476
        }
12477
 
12478
      if (eh != NULL
12479
          && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12480
        {
12481
          _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12482
          if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12483
                                                 bfd_elf_reloc_symbol_deleted_p,
12484
                                                 &cookie))
12485
            ret = TRUE;
12486
          fini_reloc_cookie_rels (&cookie, eh);
12487
        }
12488
 
12489
      if (bed->elf_backend_discard_info != NULL
12490
          && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12491
        ret = TRUE;
12492
 
12493
      fini_reloc_cookie (&cookie, abfd);
12494
    }
12495
  _bfd_elf_end_eh_frame_parsing (info);
12496
 
12497
  if (info->eh_frame_hdr
12498
      && !info->relocatable
12499
      && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12500
    ret = TRUE;
12501
 
12502
  return ret;
12503
}
12504
 
12505 161 khays
bfd_boolean
12506
_bfd_elf_section_already_linked (bfd *abfd,
12507
                                 asection *sec,
12508 14 khays
                                 struct bfd_link_info *info)
12509
{
12510
  flagword flags;
12511 161 khays
  const char *name, *key;
12512 14 khays
  struct bfd_section_already_linked *l;
12513
  struct bfd_section_already_linked_hash_entry *already_linked_list;
12514
 
12515
  if (sec->output_section == bfd_abs_section_ptr)
12516 161 khays
    return FALSE;
12517 14 khays
 
12518
  flags = sec->flags;
12519
 
12520
  /* Return if it isn't a linkonce section.  A comdat group section
12521
     also has SEC_LINK_ONCE set.  */
12522
  if ((flags & SEC_LINK_ONCE) == 0)
12523 161 khays
    return FALSE;
12524 14 khays
 
12525
  /* Don't put group member sections on our list of already linked
12526
     sections.  They are handled as a group via their group section.  */
12527
  if (elf_sec_group (sec) != NULL)
12528 161 khays
    return FALSE;
12529 14 khays
 
12530 161 khays
  /* For a SHT_GROUP section, use the group signature as the key.  */
12531
  name = sec->name;
12532
  if ((flags & SEC_GROUP) != 0
12533
      && elf_next_in_group (sec) != NULL
12534
      && elf_group_name (elf_next_in_group (sec)) != NULL)
12535
    key = elf_group_name (elf_next_in_group (sec));
12536 14 khays
  else
12537 161 khays
    {
12538
      /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
12539
      if (CONST_STRNEQ (name, ".gnu.linkonce.")
12540
          && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12541
        key++;
12542
      else
12543
        /* Must be a user linkonce section that doesn't follow gcc's
12544
           naming convention.  In this case we won't be matching
12545
           single member groups.  */
12546
        key = name;
12547
    }
12548 14 khays
 
12549 161 khays
  already_linked_list = bfd_section_already_linked_table_lookup (key);
12550 14 khays
 
12551
  for (l = already_linked_list->entry; l != NULL; l = l->next)
12552
    {
12553
      /* We may have 2 different types of sections on the list: group
12554 161 khays
         sections with a signature of <key> (<key> is some string),
12555
         and linkonce sections named .gnu.linkonce.<type>.<key>.
12556
         Match like sections.  LTO plugin sections are an exception.
12557
         They are always named .gnu.linkonce.t.<key> and match either
12558
         type of section.  */
12559
      if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12560
           && ((flags & SEC_GROUP) != 0
12561
               || strcmp (name, l->sec->name) == 0))
12562
          || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12563 14 khays
        {
12564
          /* The section has already been linked.  See if we should
12565
             issue a warning.  */
12566 161 khays
          if (!_bfd_handle_already_linked (sec, l, info))
12567
            return FALSE;
12568 14 khays
 
12569
          if (flags & SEC_GROUP)
12570
            {
12571
              asection *first = elf_next_in_group (sec);
12572
              asection *s = first;
12573
 
12574
              while (s != NULL)
12575
                {
12576
                  s->output_section = bfd_abs_section_ptr;
12577
                  /* Record which group discards it.  */
12578
                  s->kept_section = l->sec;
12579
                  s = elf_next_in_group (s);
12580
                  /* These lists are circular.  */
12581
                  if (s == first)
12582
                    break;
12583
                }
12584
            }
12585
 
12586 161 khays
          return TRUE;
12587 14 khays
        }
12588
    }
12589
 
12590
  /* A single member comdat group section may be discarded by a
12591
     linkonce section and vice versa.  */
12592
  if ((flags & SEC_GROUP) != 0)
12593
    {
12594
      asection *first = elf_next_in_group (sec);
12595
 
12596
      if (first != NULL && elf_next_in_group (first) == first)
12597
        /* Check this single member group against linkonce sections.  */
12598
        for (l = already_linked_list->entry; l != NULL; l = l->next)
12599
          if ((l->sec->flags & SEC_GROUP) == 0
12600
              && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12601
            {
12602
              first->output_section = bfd_abs_section_ptr;
12603
              first->kept_section = l->sec;
12604
              sec->output_section = bfd_abs_section_ptr;
12605
              break;
12606
            }
12607
    }
12608
  else
12609
    /* Check this linkonce section against single member groups.  */
12610
    for (l = already_linked_list->entry; l != NULL; l = l->next)
12611
      if (l->sec->flags & SEC_GROUP)
12612
        {
12613
          asection *first = elf_next_in_group (l->sec);
12614
 
12615
          if (first != NULL
12616
              && elf_next_in_group (first) == first
12617
              && bfd_elf_match_symbols_in_sections (first, sec, info))
12618
            {
12619
              sec->output_section = bfd_abs_section_ptr;
12620
              sec->kept_section = first;
12621
              break;
12622
            }
12623
        }
12624
 
12625
  /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12626
     referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12627
     specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12628
     prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12629
     matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12630
     but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12631
     `.gnu.linkonce.t.F' section from a different bfd not requiring any
12632
     `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12633
     The reverse order cannot happen as there is never a bfd with only the
12634
     `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12635
     matter as here were are looking only for cross-bfd sections.  */
12636
 
12637
  if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12638
    for (l = already_linked_list->entry; l != NULL; l = l->next)
12639
      if ((l->sec->flags & SEC_GROUP) == 0
12640
          && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12641
        {
12642
          if (abfd != l->sec->owner)
12643
            sec->output_section = bfd_abs_section_ptr;
12644
          break;
12645
        }
12646
 
12647
  /* This is the first section with this name.  Record it.  */
12648 161 khays
  if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12649 14 khays
    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12650 161 khays
  return sec->output_section == bfd_abs_section_ptr;
12651 14 khays
}
12652
 
12653
bfd_boolean
12654
_bfd_elf_common_definition (Elf_Internal_Sym *sym)
12655
{
12656
  return sym->st_shndx == SHN_COMMON;
12657
}
12658
 
12659
unsigned int
12660
_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12661
{
12662
  return SHN_COMMON;
12663
}
12664
 
12665
asection *
12666
_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12667
{
12668
  return bfd_com_section_ptr;
12669
}
12670
 
12671
bfd_vma
12672
_bfd_elf_default_got_elt_size (bfd *abfd,
12673
                               struct bfd_link_info *info ATTRIBUTE_UNUSED,
12674
                               struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12675
                               bfd *ibfd ATTRIBUTE_UNUSED,
12676
                               unsigned long symndx ATTRIBUTE_UNUSED)
12677
{
12678
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12679
  return bed->s->arch_size / 8;
12680
}
12681
 
12682
/* Routines to support the creation of dynamic relocs.  */
12683
 
12684
/* Returns the name of the dynamic reloc section associated with SEC.  */
12685
 
12686
static const char *
12687
get_dynamic_reloc_section_name (bfd *       abfd,
12688
                                asection *  sec,
12689
                                bfd_boolean is_rela)
12690
{
12691
  char *name;
12692
  const char *old_name = bfd_get_section_name (NULL, sec);
12693
  const char *prefix = is_rela ? ".rela" : ".rel";
12694
 
12695
  if (old_name == NULL)
12696
    return NULL;
12697
 
12698
  name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12699
  sprintf (name, "%s%s", prefix, old_name);
12700
 
12701
  return name;
12702
}
12703
 
12704
/* Returns the dynamic reloc section associated with SEC.
12705
   If necessary compute the name of the dynamic reloc section based
12706
   on SEC's name (looked up in ABFD's string table) and the setting
12707
   of IS_RELA.  */
12708
 
12709
asection *
12710
_bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12711
                                    asection *  sec,
12712
                                    bfd_boolean is_rela)
12713
{
12714
  asection * reloc_sec = elf_section_data (sec)->sreloc;
12715
 
12716
  if (reloc_sec == NULL)
12717
    {
12718
      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12719
 
12720
      if (name != NULL)
12721
        {
12722
          reloc_sec = bfd_get_section_by_name (abfd, name);
12723
 
12724
          if (reloc_sec != NULL)
12725
            elf_section_data (sec)->sreloc = reloc_sec;
12726
        }
12727
    }
12728
 
12729
  return reloc_sec;
12730
}
12731
 
12732
/* Returns the dynamic reloc section associated with SEC.  If the
12733
   section does not exist it is created and attached to the DYNOBJ
12734
   bfd and stored in the SRELOC field of SEC's elf_section_data
12735
   structure.
12736
 
12737
   ALIGNMENT is the alignment for the newly created section and
12738
   IS_RELA defines whether the name should be .rela.<SEC's name>
12739
   or .rel.<SEC's name>.  The section name is looked up in the
12740
   string table associated with ABFD.  */
12741
 
12742
asection *
12743
_bfd_elf_make_dynamic_reloc_section (asection *         sec,
12744
                                     bfd *              dynobj,
12745
                                     unsigned int       alignment,
12746
                                     bfd *              abfd,
12747
                                     bfd_boolean        is_rela)
12748
{
12749
  asection * reloc_sec = elf_section_data (sec)->sreloc;
12750
 
12751
  if (reloc_sec == NULL)
12752
    {
12753
      const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12754
 
12755
      if (name == NULL)
12756
        return NULL;
12757
 
12758
      reloc_sec = bfd_get_section_by_name (dynobj, name);
12759
 
12760
      if (reloc_sec == NULL)
12761
        {
12762
          flagword flags;
12763
 
12764
          flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12765
          if ((sec->flags & SEC_ALLOC) != 0)
12766
            flags |= SEC_ALLOC | SEC_LOAD;
12767
 
12768
          reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12769
          if (reloc_sec != NULL)
12770
            {
12771
              if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12772
                reloc_sec = NULL;
12773
            }
12774
        }
12775
 
12776
      elf_section_data (sec)->sreloc = reloc_sec;
12777
    }
12778
 
12779
  return reloc_sec;
12780
}
12781
 
12782
/* Copy the ELF symbol type associated with a linker hash entry.  */
12783
void
12784
_bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12785
    struct bfd_link_hash_entry * hdest,
12786
    struct bfd_link_hash_entry * hsrc)
12787
{
12788
  struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12789
  struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12790
 
12791
  ehdest->type = ehsrc->type;
12792
  ehdest->target_internal = ehsrc->target_internal;
12793
}
12794
 
12795
/* Append a RELA relocation REL to section S in BFD.  */
12796
 
12797
void
12798
elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12799
{
12800
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12801
  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12802
  BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12803
  bed->s->swap_reloca_out (abfd, rel, loc);
12804
}
12805
 
12806
/* Append a REL relocation REL to section S in BFD.  */
12807
 
12808
void
12809
elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12810
{
12811
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12812
  bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12813
  BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12814
  bed->s->swap_reloca_out (abfd, rel, loc);
12815
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.