OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elfxx-mips.c] - Blame information for rev 163

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 khays
/* MIPS-specific support for ELF
2
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
 
6
   Most of the information added by Ian Lance Taylor, Cygnus Support,
7
   <ian@cygnus.com>.
8
   N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9
   <mark@codesourcery.com>
10
   Traditional MIPS targets support added by Koundinya.K, Dansk Data
11
   Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
 
13
   This file is part of BFD, the Binary File Descriptor library.
14
 
15
   This program is free software; you can redistribute it and/or modify
16
   it under the terms of the GNU General Public License as published by
17
   the Free Software Foundation; either version 3 of the License, or
18
   (at your option) any later version.
19
 
20
   This program is distributed in the hope that it will be useful,
21
   but WITHOUT ANY WARRANTY; without even the implied warranty of
22
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23
   GNU General Public License for more details.
24
 
25
   You should have received a copy of the GNU General Public License
26
   along with this program; if not, write to the Free Software
27
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28
   MA 02110-1301, USA.  */
29
 
30
 
31
/* This file handles functionality common to the different MIPS ABI's.  */
32
 
33
#include "sysdep.h"
34
#include "bfd.h"
35
#include "libbfd.h"
36
#include "libiberty.h"
37
#include "elf-bfd.h"
38
#include "elfxx-mips.h"
39
#include "elf/mips.h"
40
#include "elf-vxworks.h"
41
 
42
/* Get the ECOFF swapping routines.  */
43
#include "coff/sym.h"
44
#include "coff/symconst.h"
45
#include "coff/ecoff.h"
46
#include "coff/mips.h"
47
 
48
#include "hashtab.h"
49
 
50
/* This structure is used to hold information about one GOT entry.
51
   There are three types of entry:
52
 
53
      (1) absolute addresses
54
            (abfd == NULL)
55
      (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56
            (abfd != NULL, symndx >= 0)
57
      (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58
            (abfd != NULL, symndx == -1)
59
 
60
   Type (3) entries are treated differently for different types of GOT.
61
   In the "master" GOT -- i.e.  the one that describes every GOT
62
   reference needed in the link -- the mips_got_entry is keyed on both
63
   the symbol and the input bfd that references it.  If it turns out
64
   that we need multiple GOTs, we can then use this information to
65
   create separate GOTs for each input bfd.
66
 
67
   However, we want each of these separate GOTs to have at most one
68
   entry for a given symbol, so their type (3) entries are keyed only
69
   on the symbol.  The input bfd given by the "abfd" field is somewhat
70
   arbitrary in this case.
71
 
72
   This means that when there are multiple GOTs, each GOT has a unique
73
   mips_got_entry for every symbol within it.  We can therefore use the
74
   mips_got_entry fields (tls_type and gotidx) to track the symbol's
75
   GOT index.
76
 
77
   However, if it turns out that we need only a single GOT, we continue
78
   to use the master GOT to describe it.  There may therefore be several
79
   mips_got_entries for the same symbol, each with a different input bfd.
80
   We want to make sure that each symbol gets a unique GOT entry, so when
81
   there's a single GOT, we use the symbol's hash entry, not the
82
   mips_got_entry fields, to track a symbol's GOT index.  */
83
struct mips_got_entry
84
{
85
  /* The input bfd in which the symbol is defined.  */
86
  bfd *abfd;
87
  /* The index of the symbol, as stored in the relocation r_info, if
88
     we have a local symbol; -1 otherwise.  */
89
  long symndx;
90
  union
91
  {
92
    /* If abfd == NULL, an address that must be stored in the got.  */
93
    bfd_vma address;
94
    /* If abfd != NULL && symndx != -1, the addend of the relocation
95
       that should be added to the symbol value.  */
96
    bfd_vma addend;
97
    /* If abfd != NULL && symndx == -1, the hash table entry
98
       corresponding to symbol in the GOT.  The symbol's entry
99
       is in the local area if h->global_got_area is GGA_NONE,
100
       otherwise it is in the global area.  */
101
    struct mips_elf_link_hash_entry *h;
102
  } d;
103
 
104
  /* The TLS types included in this GOT entry (specifically, GD and
105
     IE).  The GD and IE flags can be added as we encounter new
106
     relocations.  LDM can also be set; it will always be alone, not
107
     combined with any GD or IE flags.  An LDM GOT entry will be
108
     a local symbol entry with r_symndx == 0.  */
109
  unsigned char tls_type;
110
 
111
  /* The offset from the beginning of the .got section to the entry
112
     corresponding to this symbol+addend.  If it's a global symbol
113
     whose offset is yet to be decided, it's going to be -1.  */
114
  long gotidx;
115
};
116
 
117
/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118
   The structures form a non-overlapping list that is sorted by increasing
119
   MIN_ADDEND.  */
120
struct mips_got_page_range
121
{
122
  struct mips_got_page_range *next;
123
  bfd_signed_vma min_addend;
124
  bfd_signed_vma max_addend;
125
};
126
 
127
/* This structure describes the range of addends that are applied to page
128
   relocations against a given symbol.  */
129
struct mips_got_page_entry
130
{
131
  /* The input bfd in which the symbol is defined.  */
132
  bfd *abfd;
133
  /* The index of the symbol, as stored in the relocation r_info.  */
134
  long symndx;
135
  /* The ranges for this page entry.  */
136
  struct mips_got_page_range *ranges;
137
  /* The maximum number of page entries needed for RANGES.  */
138
  bfd_vma num_pages;
139
};
140
 
141
/* This structure is used to hold .got information when linking.  */
142
 
143
struct mips_got_info
144
{
145
  /* The global symbol in the GOT with the lowest index in the dynamic
146
     symbol table.  */
147
  struct elf_link_hash_entry *global_gotsym;
148
  /* The number of global .got entries.  */
149
  unsigned int global_gotno;
150
  /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
151
  unsigned int reloc_only_gotno;
152
  /* The number of .got slots used for TLS.  */
153
  unsigned int tls_gotno;
154
  /* The first unused TLS .got entry.  Used only during
155
     mips_elf_initialize_tls_index.  */
156
  unsigned int tls_assigned_gotno;
157
  /* The number of local .got entries, eventually including page entries.  */
158
  unsigned int local_gotno;
159
  /* The maximum number of page entries needed.  */
160
  unsigned int page_gotno;
161
  /* The number of local .got entries we have used.  */
162
  unsigned int assigned_gotno;
163
  /* A hash table holding members of the got.  */
164
  struct htab *got_entries;
165
  /* A hash table of mips_got_page_entry structures.  */
166
  struct htab *got_page_entries;
167
  /* A hash table mapping input bfds to other mips_got_info.  NULL
168
     unless multi-got was necessary.  */
169
  struct htab *bfd2got;
170
  /* In multi-got links, a pointer to the next got (err, rather, most
171
     of the time, it points to the previous got).  */
172
  struct mips_got_info *next;
173
  /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174
     for none, or MINUS_TWO for not yet assigned.  This is needed
175
     because a single-GOT link may have multiple hash table entries
176
     for the LDM.  It does not get initialized in multi-GOT mode.  */
177
  bfd_vma tls_ldm_offset;
178
};
179
 
180
/* Map an input bfd to a got in a multi-got link.  */
181
 
182
struct mips_elf_bfd2got_hash
183
{
184
  bfd *bfd;
185
  struct mips_got_info *g;
186
};
187
 
188
/* Structure passed when traversing the bfd2got hash table, used to
189
   create and merge bfd's gots.  */
190
 
191
struct mips_elf_got_per_bfd_arg
192
{
193
  /* A hashtable that maps bfds to gots.  */
194
  htab_t bfd2got;
195
  /* The output bfd.  */
196
  bfd *obfd;
197
  /* The link information.  */
198
  struct bfd_link_info *info;
199
  /* A pointer to the primary got, i.e., the one that's going to get
200
     the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201
     DT_MIPS_GOTSYM.  */
202
  struct mips_got_info *primary;
203
  /* A non-primary got we're trying to merge with other input bfd's
204
     gots.  */
205
  struct mips_got_info *current;
206
  /* The maximum number of got entries that can be addressed with a
207
     16-bit offset.  */
208
  unsigned int max_count;
209
  /* The maximum number of page entries needed by each got.  */
210
  unsigned int max_pages;
211
  /* The total number of global entries which will live in the
212
     primary got and be automatically relocated.  This includes
213
     those not referenced by the primary GOT but included in
214
     the "master" GOT.  */
215
  unsigned int global_count;
216
};
217
 
218
/* Another structure used to pass arguments for got entries traversal.  */
219
 
220
struct mips_elf_set_global_got_offset_arg
221
{
222
  struct mips_got_info *g;
223
  int value;
224
  unsigned int needed_relocs;
225
  struct bfd_link_info *info;
226
};
227
 
228
/* A structure used to count TLS relocations or GOT entries, for GOT
229
   entry or ELF symbol table traversal.  */
230
 
231
struct mips_elf_count_tls_arg
232
{
233
  struct bfd_link_info *info;
234
  unsigned int needed;
235
};
236
 
237
struct _mips_elf_section_data
238
{
239
  struct bfd_elf_section_data elf;
240
  union
241
  {
242
    bfd_byte *tdata;
243
  } u;
244
};
245
 
246
#define mips_elf_section_data(sec) \
247
  ((struct _mips_elf_section_data *) elf_section_data (sec))
248
 
249
#define is_mips_elf(bfd)                                \
250
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour      \
251
   && elf_tdata (bfd) != NULL                           \
252
   && elf_object_id (bfd) == MIPS_ELF_DATA)
253
 
254
/* The ABI says that every symbol used by dynamic relocations must have
255
   a global GOT entry.  Among other things, this provides the dynamic
256
   linker with a free, directly-indexed cache.  The GOT can therefore
257
   contain symbols that are not referenced by GOT relocations themselves
258
   (in other words, it may have symbols that are not referenced by things
259
   like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
 
261
   GOT relocations are less likely to overflow if we put the associated
262
   GOT entries towards the beginning.  We therefore divide the global
263
   GOT entries into two areas: "normal" and "reloc-only".  Entries in
264
   the first area can be used for both dynamic relocations and GP-relative
265
   accesses, while those in the "reloc-only" area are for dynamic
266
   relocations only.
267
 
268
   These GGA_* ("Global GOT Area") values are organised so that lower
269
   values are more general than higher values.  Also, non-GGA_NONE
270
   values are ordered by the position of the area in the GOT.  */
271
#define GGA_NORMAL 0
272
#define GGA_RELOC_ONLY 1
273
#define GGA_NONE 2
274
 
275
/* Information about a non-PIC interface to a PIC function.  There are
276
   two ways of creating these interfaces.  The first is to add:
277
 
278
        lui     $25,%hi(func)
279
        addiu   $25,$25,%lo(func)
280
 
281
   immediately before a PIC function "func".  The second is to add:
282
 
283
        lui     $25,%hi(func)
284
        j       func
285
        addiu   $25,$25,%lo(func)
286
 
287
   to a separate trampoline section.
288
 
289
   Stubs of the first kind go in a new section immediately before the
290
   target function.  Stubs of the second kind go in a single section
291
   pointed to by the hash table's "strampoline" field.  */
292
struct mips_elf_la25_stub {
293
  /* The generated section that contains this stub.  */
294
  asection *stub_section;
295
 
296
  /* The offset of the stub from the start of STUB_SECTION.  */
297
  bfd_vma offset;
298
 
299
  /* One symbol for the original function.  Its location is available
300
     in H->root.root.u.def.  */
301
  struct mips_elf_link_hash_entry *h;
302
};
303
 
304
/* Macros for populating a mips_elf_la25_stub.  */
305
 
306
#define LA25_LUI(VAL) (0x3c190000 | (VAL))      /* lui t9,VAL */
307
#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308
#define LA25_ADDIU(VAL) (0x27390000 | (VAL))    /* addiu t9,t9,VAL */
309 161 khays
#define LA25_LUI_MICROMIPS_1(VAL) (0x41b9)      /* lui t9,VAL */
310
#define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311
#define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312
#define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313
#define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339)    /* addiu t9,t9,VAL */
314
#define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315 14 khays
 
316
/* This structure is passed to mips_elf_sort_hash_table_f when sorting
317
   the dynamic symbols.  */
318
 
319
struct mips_elf_hash_sort_data
320
{
321
  /* The symbol in the global GOT with the lowest dynamic symbol table
322
     index.  */
323
  struct elf_link_hash_entry *low;
324
  /* The least dynamic symbol table index corresponding to a non-TLS
325
     symbol with a GOT entry.  */
326
  long min_got_dynindx;
327
  /* The greatest dynamic symbol table index corresponding to a symbol
328
     with a GOT entry that is not referenced (e.g., a dynamic symbol
329
     with dynamic relocations pointing to it from non-primary GOTs).  */
330
  long max_unref_got_dynindx;
331
  /* The greatest dynamic symbol table index not corresponding to a
332
     symbol without a GOT entry.  */
333
  long max_non_got_dynindx;
334
};
335
 
336
/* The MIPS ELF linker needs additional information for each symbol in
337
   the global hash table.  */
338
 
339
struct mips_elf_link_hash_entry
340
{
341
  struct elf_link_hash_entry root;
342
 
343
  /* External symbol information.  */
344
  EXTR esym;
345
 
346
  /* The la25 stub we have created for ths symbol, if any.  */
347
  struct mips_elf_la25_stub *la25_stub;
348
 
349
  /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350
     this symbol.  */
351
  unsigned int possibly_dynamic_relocs;
352
 
353
  /* If there is a stub that 32 bit functions should use to call this
354
     16 bit function, this points to the section containing the stub.  */
355
  asection *fn_stub;
356
 
357
  /* If there is a stub that 16 bit functions should use to call this
358
     32 bit function, this points to the section containing the stub.  */
359
  asection *call_stub;
360
 
361
  /* This is like the call_stub field, but it is used if the function
362
     being called returns a floating point value.  */
363
  asection *call_fp_stub;
364
 
365
#define GOT_NORMAL      0
366
#define GOT_TLS_GD      1
367
#define GOT_TLS_LDM     2
368
#define GOT_TLS_IE      4
369
#define GOT_TLS_OFFSET_DONE    0x40
370
#define GOT_TLS_DONE    0x80
371
  unsigned char tls_type;
372
 
373
  /* This is only used in single-GOT mode; in multi-GOT mode there
374
     is one mips_got_entry per GOT entry, so the offset is stored
375
     there.  In single-GOT mode there may be many mips_got_entry
376
     structures all referring to the same GOT slot.  It might be
377
     possible to use root.got.offset instead, but that field is
378
     overloaded already.  */
379
  bfd_vma tls_got_offset;
380
 
381
  /* The highest GGA_* value that satisfies all references to this symbol.  */
382
  unsigned int global_got_area : 2;
383
 
384
  /* True if all GOT relocations against this symbol are for calls.  This is
385
     a looser condition than no_fn_stub below, because there may be other
386
     non-call non-GOT relocations against the symbol.  */
387
  unsigned int got_only_for_calls : 1;
388
 
389
  /* True if one of the relocations described by possibly_dynamic_relocs
390
     is against a readonly section.  */
391
  unsigned int readonly_reloc : 1;
392
 
393
  /* True if there is a relocation against this symbol that must be
394
     resolved by the static linker (in other words, if the relocation
395
     cannot possibly be made dynamic).  */
396
  unsigned int has_static_relocs : 1;
397
 
398
  /* True if we must not create a .MIPS.stubs entry for this symbol.
399
     This is set, for example, if there are relocations related to
400
     taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401
     See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
402
  unsigned int no_fn_stub : 1;
403
 
404
  /* Whether we need the fn_stub; this is true if this symbol appears
405
     in any relocs other than a 16 bit call.  */
406
  unsigned int need_fn_stub : 1;
407
 
408
  /* True if this symbol is referenced by branch relocations from
409
     any non-PIC input file.  This is used to determine whether an
410
     la25 stub is required.  */
411
  unsigned int has_nonpic_branches : 1;
412
 
413
  /* Does this symbol need a traditional MIPS lazy-binding stub
414
     (as opposed to a PLT entry)?  */
415
  unsigned int needs_lazy_stub : 1;
416
};
417
 
418
/* MIPS ELF linker hash table.  */
419
 
420
struct mips_elf_link_hash_table
421
{
422
  struct elf_link_hash_table root;
423
#if 0
424
  /* We no longer use this.  */
425
  /* String section indices for the dynamic section symbols.  */
426
  bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427
#endif
428
 
429
  /* The number of .rtproc entries.  */
430
  bfd_size_type procedure_count;
431
 
432
  /* The size of the .compact_rel section (if SGI_COMPAT).  */
433
  bfd_size_type compact_rel_size;
434
 
435
  /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436
     entry is set to the address of __rld_obj_head as in IRIX5.  */
437
  bfd_boolean use_rld_obj_head;
438
 
439
  /* This is the value of the __rld_map or __rld_obj_head symbol.  */
440
  bfd_vma rld_value;
441
 
442
  /* This is set if we see any mips16 stub sections.  */
443
  bfd_boolean mips16_stubs_seen;
444
 
445
  /* True if we can generate copy relocs and PLTs.  */
446
  bfd_boolean use_plts_and_copy_relocs;
447
 
448
  /* True if we're generating code for VxWorks.  */
449
  bfd_boolean is_vxworks;
450
 
451
  /* True if we already reported the small-data section overflow.  */
452
  bfd_boolean small_data_overflow_reported;
453
 
454
  /* Shortcuts to some dynamic sections, or NULL if they are not
455
     being used.  */
456
  asection *srelbss;
457
  asection *sdynbss;
458
  asection *srelplt;
459
  asection *srelplt2;
460
  asection *sgotplt;
461
  asection *splt;
462
  asection *sstubs;
463
  asection *sgot;
464
 
465
  /* The master GOT information.  */
466
  struct mips_got_info *got_info;
467
 
468
  /* The size of the PLT header in bytes.  */
469
  bfd_vma plt_header_size;
470
 
471
  /* The size of a PLT entry in bytes.  */
472
  bfd_vma plt_entry_size;
473
 
474
  /* The number of functions that need a lazy-binding stub.  */
475
  bfd_vma lazy_stub_count;
476
 
477
  /* The size of a function stub entry in bytes.  */
478
  bfd_vma function_stub_size;
479
 
480
  /* The number of reserved entries at the beginning of the GOT.  */
481
  unsigned int reserved_gotno;
482
 
483
  /* The section used for mips_elf_la25_stub trampolines.
484
     See the comment above that structure for details.  */
485
  asection *strampoline;
486
 
487
  /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488
     pairs.  */
489
  htab_t la25_stubs;
490
 
491
  /* A function FN (NAME, IS, OS) that creates a new input section
492
     called NAME and links it to output section OS.  If IS is nonnull,
493
     the new section should go immediately before it, otherwise it
494
     should go at the (current) beginning of OS.
495
 
496
     The function returns the new section on success, otherwise it
497
     returns null.  */
498
  asection *(*add_stub_section) (const char *, asection *, asection *);
499
};
500
 
501
/* Get the MIPS ELF linker hash table from a link_info structure.  */
502
 
503
#define mips_elf_hash_table(p) \
504
  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505
  == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
 
507
/* A structure used to communicate with htab_traverse callbacks.  */
508
struct mips_htab_traverse_info
509
{
510
  /* The usual link-wide information.  */
511
  struct bfd_link_info *info;
512
  bfd *output_bfd;
513
 
514
  /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
515
  bfd_boolean error;
516
};
517
 
518
#define TLS_RELOC_P(r_type) \
519
  (r_type == R_MIPS_TLS_DTPMOD32                \
520
   || r_type == R_MIPS_TLS_DTPMOD64             \
521
   || r_type == R_MIPS_TLS_DTPREL32             \
522
   || r_type == R_MIPS_TLS_DTPREL64             \
523
   || r_type == R_MIPS_TLS_GD                   \
524
   || r_type == R_MIPS_TLS_LDM                  \
525
   || r_type == R_MIPS_TLS_DTPREL_HI16          \
526
   || r_type == R_MIPS_TLS_DTPREL_LO16          \
527
   || r_type == R_MIPS_TLS_GOTTPREL             \
528
   || r_type == R_MIPS_TLS_TPREL32              \
529
   || r_type == R_MIPS_TLS_TPREL64              \
530
   || r_type == R_MIPS_TLS_TPREL_HI16           \
531 161 khays
   || r_type == R_MIPS_TLS_TPREL_LO16           \
532
   || r_type == R_MICROMIPS_TLS_GD              \
533
   || r_type == R_MICROMIPS_TLS_LDM             \
534
   || r_type == R_MICROMIPS_TLS_DTPREL_HI16     \
535
   || r_type == R_MICROMIPS_TLS_DTPREL_LO16     \
536
   || r_type == R_MICROMIPS_TLS_GOTTPREL        \
537
   || r_type == R_MICROMIPS_TLS_TPREL_HI16      \
538
   || r_type == R_MICROMIPS_TLS_TPREL_LO16)
539 14 khays
 
540
/* Structure used to pass information to mips_elf_output_extsym.  */
541
 
542
struct extsym_info
543
{
544
  bfd *abfd;
545
  struct bfd_link_info *info;
546
  struct ecoff_debug_info *debug;
547
  const struct ecoff_debug_swap *swap;
548
  bfd_boolean failed;
549
};
550
 
551
/* The names of the runtime procedure table symbols used on IRIX5.  */
552
 
553
static const char * const mips_elf_dynsym_rtproc_names[] =
554
{
555
  "_procedure_table",
556
  "_procedure_string_table",
557
  "_procedure_table_size",
558
  NULL
559
};
560
 
561
/* These structures are used to generate the .compact_rel section on
562
   IRIX5.  */
563
 
564
typedef struct
565
{
566
  unsigned long id1;            /* Always one?  */
567
  unsigned long num;            /* Number of compact relocation entries.  */
568
  unsigned long id2;            /* Always two?  */
569
  unsigned long offset;         /* The file offset of the first relocation.  */
570
  unsigned long reserved0;      /* Zero?  */
571
  unsigned long reserved1;      /* Zero?  */
572
} Elf32_compact_rel;
573
 
574
typedef struct
575
{
576
  bfd_byte id1[4];
577
  bfd_byte num[4];
578
  bfd_byte id2[4];
579
  bfd_byte offset[4];
580
  bfd_byte reserved0[4];
581
  bfd_byte reserved1[4];
582
} Elf32_External_compact_rel;
583
 
584
typedef struct
585
{
586
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
587
  unsigned int rtype : 4;       /* Relocation types. See below.  */
588
  unsigned int dist2to : 8;
589
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
590
  unsigned long konst;          /* KONST field. See below.  */
591
  unsigned long vaddr;          /* VADDR to be relocated.  */
592
} Elf32_crinfo;
593
 
594
typedef struct
595
{
596
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
597
  unsigned int rtype : 4;       /* Relocation types. See below.  */
598
  unsigned int dist2to : 8;
599
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
600
  unsigned long konst;          /* KONST field. See below.  */
601
} Elf32_crinfo2;
602
 
603
typedef struct
604
{
605
  bfd_byte info[4];
606
  bfd_byte konst[4];
607
  bfd_byte vaddr[4];
608
} Elf32_External_crinfo;
609
 
610
typedef struct
611
{
612
  bfd_byte info[4];
613
  bfd_byte konst[4];
614
} Elf32_External_crinfo2;
615
 
616
/* These are the constants used to swap the bitfields in a crinfo.  */
617
 
618
#define CRINFO_CTYPE (0x1)
619
#define CRINFO_CTYPE_SH (31)
620
#define CRINFO_RTYPE (0xf)
621
#define CRINFO_RTYPE_SH (27)
622
#define CRINFO_DIST2TO (0xff)
623
#define CRINFO_DIST2TO_SH (19)
624
#define CRINFO_RELVADDR (0x7ffff)
625
#define CRINFO_RELVADDR_SH (0)
626
 
627
/* A compact relocation info has long (3 words) or short (2 words)
628
   formats.  A short format doesn't have VADDR field and relvaddr
629
   fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
630
#define CRF_MIPS_LONG                   1
631
#define CRF_MIPS_SHORT                  0
632
 
633
/* There are 4 types of compact relocation at least. The value KONST
634
   has different meaning for each type:
635
 
636
   (type)               (konst)
637
   CT_MIPS_REL32        Address in data
638
   CT_MIPS_WORD         Address in word (XXX)
639
   CT_MIPS_GPHI_LO      GP - vaddr
640
   CT_MIPS_JMPAD        Address to jump
641
   */
642
 
643
#define CRT_MIPS_REL32                  0xa
644
#define CRT_MIPS_WORD                   0xb
645
#define CRT_MIPS_GPHI_LO                0xc
646
#define CRT_MIPS_JMPAD                  0xd
647
 
648
#define mips_elf_set_cr_format(x,format)        ((x).ctype = (format))
649
#define mips_elf_set_cr_type(x,type)            ((x).rtype = (type))
650
#define mips_elf_set_cr_dist2to(x,v)            ((x).dist2to = (v))
651
#define mips_elf_set_cr_relvaddr(x,d)           ((x).relvaddr = (d)<<2)
652
 
653
/* The structure of the runtime procedure descriptor created by the
654
   loader for use by the static exception system.  */
655
 
656
typedef struct runtime_pdr {
657
        bfd_vma adr;            /* Memory address of start of procedure.  */
658
        long    regmask;        /* Save register mask.  */
659
        long    regoffset;      /* Save register offset.  */
660
        long    fregmask;       /* Save floating point register mask.  */
661
        long    fregoffset;     /* Save floating point register offset.  */
662
        long    frameoffset;    /* Frame size.  */
663
        short   framereg;       /* Frame pointer register.  */
664
        short   pcreg;          /* Offset or reg of return pc.  */
665
        long    irpss;          /* Index into the runtime string table.  */
666
        long    reserved;
667
        struct exception_info *exception_info;/* Pointer to exception array.  */
668
} RPDR, *pRPDR;
669
#define cbRPDR sizeof (RPDR)
670
#define rpdNil ((pRPDR) 0)
671
 
672
static struct mips_got_entry *mips_elf_create_local_got_entry
673
  (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674
   struct mips_elf_link_hash_entry *, int);
675
static bfd_boolean mips_elf_sort_hash_table_f
676
  (struct mips_elf_link_hash_entry *, void *);
677
static bfd_vma mips_elf_high
678
  (bfd_vma);
679
static bfd_boolean mips_elf_create_dynamic_relocation
680
  (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681
   struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682
   bfd_vma *, asection *);
683
static hashval_t mips_elf_got_entry_hash
684
  (const void *);
685
static bfd_vma mips_elf_adjust_gp
686
  (bfd *, struct mips_got_info *, bfd *);
687
static struct mips_got_info *mips_elf_got_for_ibfd
688
  (struct mips_got_info *, bfd *);
689
 
690
/* This will be used when we sort the dynamic relocation records.  */
691
static bfd *reldyn_sorting_bfd;
692
 
693
/* True if ABFD is for CPUs with load interlocking that include
694
   non-MIPS1 CPUs and R3900.  */
695
#define LOAD_INTERLOCKS_P(abfd) \
696
  (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697
   || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
698
 
699
/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700
   This should be safe for all architectures.  We enable this predicate
701
   for RM9000 for now.  */
702
#define JAL_TO_BAL_P(abfd) \
703
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
704
 
705
/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706
   This should be safe for all architectures.  We enable this predicate for
707
   all CPUs.  */
708
#define JALR_TO_BAL_P(abfd) 1
709
 
710
/* True if ABFD is for CPUs that are faster if JR is converted to B.
711
   This should be safe for all architectures.  We enable this predicate for
712
   all CPUs.  */
713
#define JR_TO_B_P(abfd) 1
714
 
715
/* True if ABFD is a PIC object.  */
716
#define PIC_OBJECT_P(abfd) \
717
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
718
 
719
/* Nonzero if ABFD is using the N32 ABI.  */
720
#define ABI_N32_P(abfd) \
721
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
722
 
723
/* Nonzero if ABFD is using the N64 ABI.  */
724
#define ABI_64_P(abfd) \
725
  (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
726
 
727
/* Nonzero if ABFD is using NewABI conventions.  */
728
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
729
 
730
/* The IRIX compatibility level we are striving for.  */
731
#define IRIX_COMPAT(abfd) \
732
  (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
733
 
734
/* Whether we are trying to be compatible with IRIX at all.  */
735
#define SGI_COMPAT(abfd) \
736
  (IRIX_COMPAT (abfd) != ict_none)
737
 
738
/* The name of the options section.  */
739
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740
  (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
741
 
742
/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743
   Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
744
#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745
  (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
746
 
747
/* Whether the section is readonly.  */
748
#define MIPS_ELF_READONLY_SECTION(sec) \
749
  ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))         \
750
   == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
751
 
752
/* The name of the stub section.  */
753
#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
754
 
755
/* The size of an external REL relocation.  */
756
#define MIPS_ELF_REL_SIZE(abfd) \
757
  (get_elf_backend_data (abfd)->s->sizeof_rel)
758
 
759
/* The size of an external RELA relocation.  */
760
#define MIPS_ELF_RELA_SIZE(abfd) \
761
  (get_elf_backend_data (abfd)->s->sizeof_rela)
762
 
763
/* The size of an external dynamic table entry.  */
764
#define MIPS_ELF_DYN_SIZE(abfd) \
765
  (get_elf_backend_data (abfd)->s->sizeof_dyn)
766
 
767
/* The size of a GOT entry.  */
768
#define MIPS_ELF_GOT_SIZE(abfd) \
769
  (get_elf_backend_data (abfd)->s->arch_size / 8)
770
 
771
/* The size of a symbol-table entry.  */
772
#define MIPS_ELF_SYM_SIZE(abfd) \
773
  (get_elf_backend_data (abfd)->s->sizeof_sym)
774
 
775
/* The default alignment for sections, as a power of two.  */
776
#define MIPS_ELF_LOG_FILE_ALIGN(abfd)                           \
777
  (get_elf_backend_data (abfd)->s->log_file_align)
778
 
779
/* Get word-sized data.  */
780
#define MIPS_ELF_GET_WORD(abfd, ptr) \
781
  (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
782
 
783
/* Put out word-sized data.  */
784
#define MIPS_ELF_PUT_WORD(abfd, val, ptr)       \
785
  (ABI_64_P (abfd)                              \
786
   ? bfd_put_64 (abfd, val, ptr)                \
787
   : bfd_put_32 (abfd, val, ptr))
788
 
789
/* The opcode for word-sized loads (LW or LD).  */
790
#define MIPS_ELF_LOAD_WORD(abfd) \
791
  (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
792
 
793
/* Add a dynamic symbol table-entry.  */
794
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)      \
795
  _bfd_elf_add_dynamic_entry (info, tag, val)
796
 
797
#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)                      \
798
  (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
799
 
800
/* The name of the dynamic relocation section.  */
801
#define MIPS_ELF_REL_DYN_NAME(INFO) \
802
  (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
803
 
804
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
805
   from smaller values.  Start with zero, widen, *then* decrement.  */
806
#define MINUS_ONE       (((bfd_vma)0) - 1)
807
#define MINUS_TWO       (((bfd_vma)0) - 2)
808
 
809
/* The value to write into got[1] for SVR4 targets, to identify it is
810
   a GNU object.  The dynamic linker can then use got[1] to store the
811
   module pointer.  */
812
#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
813
  ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
814
 
815
/* The offset of $gp from the beginning of the .got section.  */
816
#define ELF_MIPS_GP_OFFSET(INFO) \
817
  (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
818
 
819
/* The maximum size of the GOT for it to be addressable using 16-bit
820
   offsets from $gp.  */
821
#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
822
 
823
/* Instructions which appear in a stub.  */
824
#define STUB_LW(abfd)                                                   \
825
  ((ABI_64_P (abfd)                                                     \
826
    ? 0xdf998010                                /* ld t9,0x8010(gp) */  \
827
    : 0x8f998010))                              /* lw t9,0x8010(gp) */
828
#define STUB_MOVE(abfd)                                                 \
829
   ((ABI_64_P (abfd)                                                    \
830
     ? 0x03e0782d                               /* daddu t7,ra */       \
831
     : 0x03e07821))                             /* addu t7,ra */
832
#define STUB_LUI(VAL) (0x3c180000 + (VAL))      /* lui t8,VAL */
833
#define STUB_JALR 0x0320f809                    /* jalr t9,ra */
834
#define STUB_ORI(VAL) (0x37180000 + (VAL))      /* ori t8,t8,VAL */
835
#define STUB_LI16U(VAL) (0x34180000 + (VAL))    /* ori t8,zero,VAL unsigned */
836
#define STUB_LI16S(abfd, VAL)                                           \
837
   ((ABI_64_P (abfd)                                                    \
838
    ? (0x64180000 + (VAL))      /* daddiu t8,zero,VAL sign extended */  \
839
    : (0x24180000 + (VAL))))    /* addiu t8,zero,VAL sign extended */
840
 
841
#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
842
#define MIPS_FUNCTION_STUB_BIG_SIZE 20
843
 
844
/* The name of the dynamic interpreter.  This is put in the .interp
845
   section.  */
846
 
847
#define ELF_DYNAMIC_INTERPRETER(abfd)           \
848
   (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"   \
849
    : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"  \
850
    : "/usr/lib/libc.so.1")
851
 
852
#ifdef BFD64
853
#define MNAME(bfd,pre,pos) \
854
  (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
855
#define ELF_R_SYM(bfd, i)                                       \
856
  (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
857
#define ELF_R_TYPE(bfd, i)                                      \
858
  (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
859
#define ELF_R_INFO(bfd, s, t)                                   \
860
  (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
861
#else
862
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
863
#define ELF_R_SYM(bfd, i)                                       \
864
  (ELF32_R_SYM (i))
865
#define ELF_R_TYPE(bfd, i)                                      \
866
  (ELF32_R_TYPE (i))
867
#define ELF_R_INFO(bfd, s, t)                                   \
868
  (ELF32_R_INFO (s, t))
869
#endif
870
 
871
  /* The mips16 compiler uses a couple of special sections to handle
872
     floating point arguments.
873
 
874
     Section names that look like .mips16.fn.FNNAME contain stubs that
875
     copy floating point arguments from the fp regs to the gp regs and
876
     then jump to FNNAME.  If any 32 bit function calls FNNAME, the
877
     call should be redirected to the stub instead.  If no 32 bit
878
     function calls FNNAME, the stub should be discarded.  We need to
879
     consider any reference to the function, not just a call, because
880
     if the address of the function is taken we will need the stub,
881
     since the address might be passed to a 32 bit function.
882
 
883
     Section names that look like .mips16.call.FNNAME contain stubs
884
     that copy floating point arguments from the gp regs to the fp
885
     regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
886
     then any 16 bit function that calls FNNAME should be redirected
887
     to the stub instead.  If FNNAME is not a 32 bit function, the
888
     stub should be discarded.
889
 
890
     .mips16.call.fp.FNNAME sections are similar, but contain stubs
891
     which call FNNAME and then copy the return value from the fp regs
892
     to the gp regs.  These stubs store the return value in $18 while
893
     calling FNNAME; any function which might call one of these stubs
894
     must arrange to save $18 around the call.  (This case is not
895
     needed for 32 bit functions that call 16 bit functions, because
896
     16 bit functions always return floating point values in both
897
     $f0/$f1 and $2/$3.)
898
 
899
     Note that in all cases FNNAME might be defined statically.
900
     Therefore, FNNAME is not used literally.  Instead, the relocation
901
     information will indicate which symbol the section is for.
902
 
903
     We record any stubs that we find in the symbol table.  */
904
 
905
#define FN_STUB ".mips16.fn."
906
#define CALL_STUB ".mips16.call."
907
#define CALL_FP_STUB ".mips16.call.fp."
908
 
909
#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
910
#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
911
#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
912
 
913
/* The format of the first PLT entry in an O32 executable.  */
914
static const bfd_vma mips_o32_exec_plt0_entry[] =
915
{
916
  0x3c1c0000,   /* lui $28, %hi(&GOTPLT[0])                             */
917
  0x8f990000,   /* lw $25, %lo(&GOTPLT[0])($28)                         */
918
  0x279c0000,   /* addiu $28, $28, %lo(&GOTPLT[0])                      */
919
  0x031cc023,   /* subu $24, $24, $28                                   */
920
  0x03e07821,   /* move $15, $31                                        */
921
  0x0018c082,   /* srl $24, $24, 2                                      */
922
  0x0320f809,   /* jalr $25                                             */
923
  0x2718fffe    /* subu $24, $24, 2                                     */
924
};
925
 
926
/* The format of the first PLT entry in an N32 executable.  Different
927
   because gp ($28) is not available; we use t2 ($14) instead.  */
928
static const bfd_vma mips_n32_exec_plt0_entry[] =
929
{
930
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
931
  0x8dd90000,   /* lw $25, %lo(&GOTPLT[0])($14)                         */
932
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
933
  0x030ec023,   /* subu $24, $24, $14                                   */
934
  0x03e07821,   /* move $15, $31                                        */
935
  0x0018c082,   /* srl $24, $24, 2                                      */
936
  0x0320f809,   /* jalr $25                                             */
937
  0x2718fffe    /* subu $24, $24, 2                                     */
938
};
939
 
940
/* The format of the first PLT entry in an N64 executable.  Different
941
   from N32 because of the increased size of GOT entries.  */
942
static const bfd_vma mips_n64_exec_plt0_entry[] =
943
{
944
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
945
  0xddd90000,   /* ld $25, %lo(&GOTPLT[0])($14)                         */
946
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
947
  0x030ec023,   /* subu $24, $24, $14                                   */
948
  0x03e07821,   /* move $15, $31                                        */
949
  0x0018c0c2,   /* srl $24, $24, 3                                      */
950
  0x0320f809,   /* jalr $25                                             */
951
  0x2718fffe    /* subu $24, $24, 2                                     */
952
};
953
 
954
/* The format of subsequent PLT entries.  */
955
static const bfd_vma mips_exec_plt_entry[] =
956
{
957
  0x3c0f0000,   /* lui $15, %hi(.got.plt entry)                 */
958
  0x01f90000,   /* l[wd] $25, %lo(.got.plt entry)($15)          */
959
  0x25f80000,   /* addiu $24, $15, %lo(.got.plt entry)          */
960
  0x03200008    /* jr $25                                       */
961
};
962
 
963
/* The format of the first PLT entry in a VxWorks executable.  */
964
static const bfd_vma mips_vxworks_exec_plt0_entry[] =
965
{
966
  0x3c190000,   /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)           */
967
  0x27390000,   /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)     */
968
  0x8f390008,   /* lw t9, 8(t9)                                 */
969
  0x00000000,   /* nop                                          */
970
  0x03200008,   /* jr t9                                        */
971
  0x00000000    /* nop                                          */
972
};
973
 
974
/* The format of subsequent PLT entries.  */
975
static const bfd_vma mips_vxworks_exec_plt_entry[] =
976
{
977
  0x10000000,   /* b .PLT_resolver                      */
978
  0x24180000,   /* li t8, <pltindex>                    */
979
  0x3c190000,   /* lui t9, %hi(<.got.plt slot>)         */
980
  0x27390000,   /* addiu t9, t9, %lo(<.got.plt slot>)   */
981
  0x8f390000,   /* lw t9, 0(t9)                         */
982
  0x00000000,   /* nop                                  */
983
  0x03200008,   /* jr t9                                */
984
  0x00000000    /* nop                                  */
985
};
986
 
987
/* The format of the first PLT entry in a VxWorks shared object.  */
988
static const bfd_vma mips_vxworks_shared_plt0_entry[] =
989
{
990
  0x8f990008,   /* lw t9, 8(gp)         */
991
  0x00000000,   /* nop                  */
992
  0x03200008,   /* jr t9                */
993
  0x00000000,   /* nop                  */
994
  0x00000000,   /* nop                  */
995
  0x00000000    /* nop                  */
996
};
997
 
998
/* The format of subsequent PLT entries.  */
999
static const bfd_vma mips_vxworks_shared_plt_entry[] =
1000
{
1001
  0x10000000,   /* b .PLT_resolver      */
1002
  0x24180000    /* li t8, <pltindex>    */
1003
};
1004
 
1005
/* Look up an entry in a MIPS ELF linker hash table.  */
1006
 
1007
#define mips_elf_link_hash_lookup(table, string, create, copy, follow)  \
1008
  ((struct mips_elf_link_hash_entry *)                                  \
1009
   elf_link_hash_lookup (&(table)->root, (string), (create),            \
1010
                         (copy), (follow)))
1011
 
1012
/* Traverse a MIPS ELF linker hash table.  */
1013
 
1014
#define mips_elf_link_hash_traverse(table, func, info)                  \
1015
  (elf_link_hash_traverse                                               \
1016
   (&(table)->root,                                                     \
1017
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
1018
    (info)))
1019
 
1020
/* Find the base offsets for thread-local storage in this object,
1021
   for GD/LD and IE/LE respectively.  */
1022
 
1023
#define TP_OFFSET 0x7000
1024
#define DTP_OFFSET 0x8000
1025
 
1026
static bfd_vma
1027
dtprel_base (struct bfd_link_info *info)
1028
{
1029
  /* If tls_sec is NULL, we should have signalled an error already.  */
1030
  if (elf_hash_table (info)->tls_sec == NULL)
1031
    return 0;
1032
  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1033
}
1034
 
1035
static bfd_vma
1036
tprel_base (struct bfd_link_info *info)
1037
{
1038
  /* If tls_sec is NULL, we should have signalled an error already.  */
1039
  if (elf_hash_table (info)->tls_sec == NULL)
1040
    return 0;
1041
  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1042
}
1043
 
1044
/* Create an entry in a MIPS ELF linker hash table.  */
1045
 
1046
static struct bfd_hash_entry *
1047
mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1048
                            struct bfd_hash_table *table, const char *string)
1049
{
1050
  struct mips_elf_link_hash_entry *ret =
1051
    (struct mips_elf_link_hash_entry *) entry;
1052
 
1053
  /* Allocate the structure if it has not already been allocated by a
1054
     subclass.  */
1055
  if (ret == NULL)
1056
    ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1057
  if (ret == NULL)
1058
    return (struct bfd_hash_entry *) ret;
1059
 
1060
  /* Call the allocation method of the superclass.  */
1061
  ret = ((struct mips_elf_link_hash_entry *)
1062
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1063
                                     table, string));
1064
  if (ret != NULL)
1065
    {
1066
      /* Set local fields.  */
1067
      memset (&ret->esym, 0, sizeof (EXTR));
1068
      /* We use -2 as a marker to indicate that the information has
1069
         not been set.  -1 means there is no associated ifd.  */
1070
      ret->esym.ifd = -2;
1071
      ret->la25_stub = 0;
1072
      ret->possibly_dynamic_relocs = 0;
1073
      ret->fn_stub = NULL;
1074
      ret->call_stub = NULL;
1075
      ret->call_fp_stub = NULL;
1076
      ret->tls_type = GOT_NORMAL;
1077
      ret->global_got_area = GGA_NONE;
1078
      ret->got_only_for_calls = TRUE;
1079
      ret->readonly_reloc = FALSE;
1080
      ret->has_static_relocs = FALSE;
1081
      ret->no_fn_stub = FALSE;
1082
      ret->need_fn_stub = FALSE;
1083
      ret->has_nonpic_branches = FALSE;
1084
      ret->needs_lazy_stub = FALSE;
1085
    }
1086
 
1087
  return (struct bfd_hash_entry *) ret;
1088
}
1089
 
1090
bfd_boolean
1091
_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1092
{
1093
  if (!sec->used_by_bfd)
1094
    {
1095
      struct _mips_elf_section_data *sdata;
1096
      bfd_size_type amt = sizeof (*sdata);
1097
 
1098
      sdata = bfd_zalloc (abfd, amt);
1099
      if (sdata == NULL)
1100
        return FALSE;
1101
      sec->used_by_bfd = sdata;
1102
    }
1103
 
1104
  return _bfd_elf_new_section_hook (abfd, sec);
1105
}
1106
 
1107
/* Read ECOFF debugging information from a .mdebug section into a
1108
   ecoff_debug_info structure.  */
1109
 
1110
bfd_boolean
1111
_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1112
                               struct ecoff_debug_info *debug)
1113
{
1114
  HDRR *symhdr;
1115
  const struct ecoff_debug_swap *swap;
1116
  char *ext_hdr;
1117
 
1118
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1119
  memset (debug, 0, sizeof (*debug));
1120
 
1121
  ext_hdr = bfd_malloc (swap->external_hdr_size);
1122
  if (ext_hdr == NULL && swap->external_hdr_size != 0)
1123
    goto error_return;
1124
 
1125
  if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1126
                                  swap->external_hdr_size))
1127
    goto error_return;
1128
 
1129
  symhdr = &debug->symbolic_header;
1130
  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1131
 
1132
  /* The symbolic header contains absolute file offsets and sizes to
1133
     read.  */
1134
#define READ(ptr, offset, count, size, type)                            \
1135
  if (symhdr->count == 0)                                                \
1136
    debug->ptr = NULL;                                                  \
1137
  else                                                                  \
1138
    {                                                                   \
1139
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;         \
1140
      debug->ptr = bfd_malloc (amt);                                    \
1141
      if (debug->ptr == NULL)                                           \
1142
        goto error_return;                                              \
1143
      if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0         \
1144
          || bfd_bread (debug->ptr, amt, abfd) != amt)                  \
1145
        goto error_return;                                              \
1146
    }
1147
 
1148
  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1149
  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1150
  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1151
  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1152
  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1153
  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1154
        union aux_ext *);
1155
  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1156
  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1157
  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1158
  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1159
  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1160
#undef READ
1161
 
1162
  debug->fdr = NULL;
1163
 
1164
  return TRUE;
1165
 
1166
 error_return:
1167
  if (ext_hdr != NULL)
1168
    free (ext_hdr);
1169
  if (debug->line != NULL)
1170
    free (debug->line);
1171
  if (debug->external_dnr != NULL)
1172
    free (debug->external_dnr);
1173
  if (debug->external_pdr != NULL)
1174
    free (debug->external_pdr);
1175
  if (debug->external_sym != NULL)
1176
    free (debug->external_sym);
1177
  if (debug->external_opt != NULL)
1178
    free (debug->external_opt);
1179
  if (debug->external_aux != NULL)
1180
    free (debug->external_aux);
1181
  if (debug->ss != NULL)
1182
    free (debug->ss);
1183
  if (debug->ssext != NULL)
1184
    free (debug->ssext);
1185
  if (debug->external_fdr != NULL)
1186
    free (debug->external_fdr);
1187
  if (debug->external_rfd != NULL)
1188
    free (debug->external_rfd);
1189
  if (debug->external_ext != NULL)
1190
    free (debug->external_ext);
1191
  return FALSE;
1192
}
1193
 
1194
/* Swap RPDR (runtime procedure table entry) for output.  */
1195
 
1196
static void
1197
ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1198
{
1199
  H_PUT_S32 (abfd, in->adr, ex->p_adr);
1200
  H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1201
  H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1202
  H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1203
  H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1204
  H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1205
 
1206
  H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1207
  H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1208
 
1209
  H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1210
}
1211
 
1212
/* Create a runtime procedure table from the .mdebug section.  */
1213
 
1214
static bfd_boolean
1215
mips_elf_create_procedure_table (void *handle, bfd *abfd,
1216
                                 struct bfd_link_info *info, asection *s,
1217
                                 struct ecoff_debug_info *debug)
1218
{
1219
  const struct ecoff_debug_swap *swap;
1220
  HDRR *hdr = &debug->symbolic_header;
1221
  RPDR *rpdr, *rp;
1222
  struct rpdr_ext *erp;
1223
  void *rtproc;
1224
  struct pdr_ext *epdr;
1225
  struct sym_ext *esym;
1226
  char *ss, **sv;
1227
  char *str;
1228
  bfd_size_type size;
1229
  bfd_size_type count;
1230
  unsigned long sindex;
1231
  unsigned long i;
1232
  PDR pdr;
1233
  SYMR sym;
1234
  const char *no_name_func = _("static procedure (no name)");
1235
 
1236
  epdr = NULL;
1237
  rpdr = NULL;
1238
  esym = NULL;
1239
  ss = NULL;
1240
  sv = NULL;
1241
 
1242
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1243
 
1244
  sindex = strlen (no_name_func) + 1;
1245
  count = hdr->ipdMax;
1246
  if (count > 0)
1247
    {
1248
      size = swap->external_pdr_size;
1249
 
1250
      epdr = bfd_malloc (size * count);
1251
      if (epdr == NULL)
1252
        goto error_return;
1253
 
1254
      if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1255
        goto error_return;
1256
 
1257
      size = sizeof (RPDR);
1258
      rp = rpdr = bfd_malloc (size * count);
1259
      if (rpdr == NULL)
1260
        goto error_return;
1261
 
1262
      size = sizeof (char *);
1263
      sv = bfd_malloc (size * count);
1264
      if (sv == NULL)
1265
        goto error_return;
1266
 
1267
      count = hdr->isymMax;
1268
      size = swap->external_sym_size;
1269
      esym = bfd_malloc (size * count);
1270
      if (esym == NULL)
1271
        goto error_return;
1272
 
1273
      if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1274
        goto error_return;
1275
 
1276
      count = hdr->issMax;
1277
      ss = bfd_malloc (count);
1278
      if (ss == NULL)
1279
        goto error_return;
1280
      if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1281
        goto error_return;
1282
 
1283
      count = hdr->ipdMax;
1284
      for (i = 0; i < (unsigned long) count; i++, rp++)
1285
        {
1286
          (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1287
          (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1288
          rp->adr = sym.value;
1289
          rp->regmask = pdr.regmask;
1290
          rp->regoffset = pdr.regoffset;
1291
          rp->fregmask = pdr.fregmask;
1292
          rp->fregoffset = pdr.fregoffset;
1293
          rp->frameoffset = pdr.frameoffset;
1294
          rp->framereg = pdr.framereg;
1295
          rp->pcreg = pdr.pcreg;
1296
          rp->irpss = sindex;
1297
          sv[i] = ss + sym.iss;
1298
          sindex += strlen (sv[i]) + 1;
1299
        }
1300
    }
1301
 
1302
  size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1303
  size = BFD_ALIGN (size, 16);
1304
  rtproc = bfd_alloc (abfd, size);
1305
  if (rtproc == NULL)
1306
    {
1307
      mips_elf_hash_table (info)->procedure_count = 0;
1308
      goto error_return;
1309
    }
1310
 
1311
  mips_elf_hash_table (info)->procedure_count = count + 2;
1312
 
1313
  erp = rtproc;
1314
  memset (erp, 0, sizeof (struct rpdr_ext));
1315
  erp++;
1316
  str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1317
  strcpy (str, no_name_func);
1318
  str += strlen (no_name_func) + 1;
1319
  for (i = 0; i < count; i++)
1320
    {
1321
      ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1322
      strcpy (str, sv[i]);
1323
      str += strlen (sv[i]) + 1;
1324
    }
1325
  H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1326
 
1327
  /* Set the size and contents of .rtproc section.  */
1328
  s->size = size;
1329
  s->contents = rtproc;
1330
 
1331
  /* Skip this section later on (I don't think this currently
1332
     matters, but someday it might).  */
1333
  s->map_head.link_order = NULL;
1334
 
1335
  if (epdr != NULL)
1336
    free (epdr);
1337
  if (rpdr != NULL)
1338
    free (rpdr);
1339
  if (esym != NULL)
1340
    free (esym);
1341
  if (ss != NULL)
1342
    free (ss);
1343
  if (sv != NULL)
1344
    free (sv);
1345
 
1346
  return TRUE;
1347
 
1348
 error_return:
1349
  if (epdr != NULL)
1350
    free (epdr);
1351
  if (rpdr != NULL)
1352
    free (rpdr);
1353
  if (esym != NULL)
1354
    free (esym);
1355
  if (ss != NULL)
1356
    free (ss);
1357
  if (sv != NULL)
1358
    free (sv);
1359
  return FALSE;
1360
}
1361
 
1362
/* We're going to create a stub for H.  Create a symbol for the stub's
1363
   value and size, to help make the disassembly easier to read.  */
1364
 
1365
static bfd_boolean
1366
mips_elf_create_stub_symbol (struct bfd_link_info *info,
1367
                             struct mips_elf_link_hash_entry *h,
1368
                             const char *prefix, asection *s, bfd_vma value,
1369
                             bfd_vma size)
1370
{
1371
  struct bfd_link_hash_entry *bh;
1372
  struct elf_link_hash_entry *elfh;
1373
  const char *name;
1374
 
1375 161 khays
  if (ELF_ST_IS_MICROMIPS (h->root.other))
1376
    value |= 1;
1377
 
1378 14 khays
  /* Create a new symbol.  */
1379
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1380
  bh = NULL;
1381
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1382
                                         BSF_LOCAL, s, value, NULL,
1383
                                         TRUE, FALSE, &bh))
1384
    return FALSE;
1385
 
1386
  /* Make it a local function.  */
1387
  elfh = (struct elf_link_hash_entry *) bh;
1388
  elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1389
  elfh->size = size;
1390
  elfh->forced_local = 1;
1391
  return TRUE;
1392
}
1393
 
1394
/* We're about to redefine H.  Create a symbol to represent H's
1395
   current value and size, to help make the disassembly easier
1396
   to read.  */
1397
 
1398
static bfd_boolean
1399
mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1400
                               struct mips_elf_link_hash_entry *h,
1401
                               const char *prefix)
1402
{
1403
  struct bfd_link_hash_entry *bh;
1404
  struct elf_link_hash_entry *elfh;
1405
  const char *name;
1406
  asection *s;
1407
  bfd_vma value;
1408
 
1409
  /* Read the symbol's value.  */
1410
  BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1411
              || h->root.root.type == bfd_link_hash_defweak);
1412
  s = h->root.root.u.def.section;
1413
  value = h->root.root.u.def.value;
1414
 
1415
  /* Create a new symbol.  */
1416
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1417
  bh = NULL;
1418
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1419
                                         BSF_LOCAL, s, value, NULL,
1420
                                         TRUE, FALSE, &bh))
1421
    return FALSE;
1422
 
1423
  /* Make it local and copy the other attributes from H.  */
1424
  elfh = (struct elf_link_hash_entry *) bh;
1425
  elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1426
  elfh->other = h->root.other;
1427
  elfh->size = h->root.size;
1428
  elfh->forced_local = 1;
1429
  return TRUE;
1430
}
1431
 
1432
/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1433
   function rather than to a hard-float stub.  */
1434
 
1435
static bfd_boolean
1436
section_allows_mips16_refs_p (asection *section)
1437
{
1438
  const char *name;
1439
 
1440
  name = bfd_get_section_name (section->owner, section);
1441
  return (FN_STUB_P (name)
1442
          || CALL_STUB_P (name)
1443
          || CALL_FP_STUB_P (name)
1444
          || strcmp (name, ".pdr") == 0);
1445
}
1446
 
1447
/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1448
   stub section of some kind.  Return the R_SYMNDX of the target
1449
   function, or 0 if we can't decide which function that is.  */
1450
 
1451
static unsigned long
1452
mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1453
                    const Elf_Internal_Rela *relocs,
1454
                    const Elf_Internal_Rela *relend)
1455
{
1456
  const Elf_Internal_Rela *rel;
1457
 
1458
  /* Trust the first R_MIPS_NONE relocation, if any.  */
1459
  for (rel = relocs; rel < relend; rel++)
1460
    if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1461
      return ELF_R_SYM (sec->owner, rel->r_info);
1462
 
1463
  /* Otherwise trust the first relocation, whatever its kind.  This is
1464
     the traditional behavior.  */
1465
  if (relocs < relend)
1466
    return ELF_R_SYM (sec->owner, relocs->r_info);
1467
 
1468
  return 0;
1469
}
1470
 
1471
/* Check the mips16 stubs for a particular symbol, and see if we can
1472
   discard them.  */
1473
 
1474
static void
1475
mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1476
                             struct mips_elf_link_hash_entry *h)
1477
{
1478
  /* Dynamic symbols must use the standard call interface, in case other
1479
     objects try to call them.  */
1480
  if (h->fn_stub != NULL
1481
      && h->root.dynindx != -1)
1482
    {
1483
      mips_elf_create_shadow_symbol (info, h, ".mips16.");
1484
      h->need_fn_stub = TRUE;
1485
    }
1486
 
1487
  if (h->fn_stub != NULL
1488
      && ! h->need_fn_stub)
1489
    {
1490
      /* We don't need the fn_stub; the only references to this symbol
1491
         are 16 bit calls.  Clobber the size to 0 to prevent it from
1492
         being included in the link.  */
1493
      h->fn_stub->size = 0;
1494
      h->fn_stub->flags &= ~SEC_RELOC;
1495
      h->fn_stub->reloc_count = 0;
1496
      h->fn_stub->flags |= SEC_EXCLUDE;
1497
    }
1498
 
1499
  if (h->call_stub != NULL
1500
      && ELF_ST_IS_MIPS16 (h->root.other))
1501
    {
1502
      /* We don't need the call_stub; this is a 16 bit function, so
1503
         calls from other 16 bit functions are OK.  Clobber the size
1504
         to 0 to prevent it from being included in the link.  */
1505
      h->call_stub->size = 0;
1506
      h->call_stub->flags &= ~SEC_RELOC;
1507
      h->call_stub->reloc_count = 0;
1508
      h->call_stub->flags |= SEC_EXCLUDE;
1509
    }
1510
 
1511
  if (h->call_fp_stub != NULL
1512
      && ELF_ST_IS_MIPS16 (h->root.other))
1513
    {
1514
      /* We don't need the call_stub; this is a 16 bit function, so
1515
         calls from other 16 bit functions are OK.  Clobber the size
1516
         to 0 to prevent it from being included in the link.  */
1517
      h->call_fp_stub->size = 0;
1518
      h->call_fp_stub->flags &= ~SEC_RELOC;
1519
      h->call_fp_stub->reloc_count = 0;
1520
      h->call_fp_stub->flags |= SEC_EXCLUDE;
1521
    }
1522
}
1523
 
1524
/* Hashtable callbacks for mips_elf_la25_stubs.  */
1525
 
1526
static hashval_t
1527
mips_elf_la25_stub_hash (const void *entry_)
1528
{
1529
  const struct mips_elf_la25_stub *entry;
1530
 
1531
  entry = (struct mips_elf_la25_stub *) entry_;
1532
  return entry->h->root.root.u.def.section->id
1533
    + entry->h->root.root.u.def.value;
1534
}
1535
 
1536
static int
1537
mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1538
{
1539
  const struct mips_elf_la25_stub *entry1, *entry2;
1540
 
1541
  entry1 = (struct mips_elf_la25_stub *) entry1_;
1542
  entry2 = (struct mips_elf_la25_stub *) entry2_;
1543
  return ((entry1->h->root.root.u.def.section
1544
           == entry2->h->root.root.u.def.section)
1545
          && (entry1->h->root.root.u.def.value
1546
              == entry2->h->root.root.u.def.value));
1547
}
1548
 
1549
/* Called by the linker to set up the la25 stub-creation code.  FN is
1550
   the linker's implementation of add_stub_function.  Return true on
1551
   success.  */
1552
 
1553
bfd_boolean
1554
_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1555
                          asection *(*fn) (const char *, asection *,
1556
                                           asection *))
1557
{
1558
  struct mips_elf_link_hash_table *htab;
1559
 
1560
  htab = mips_elf_hash_table (info);
1561
  if (htab == NULL)
1562
    return FALSE;
1563
 
1564
  htab->add_stub_section = fn;
1565
  htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1566
                                      mips_elf_la25_stub_eq, NULL);
1567
  if (htab->la25_stubs == NULL)
1568
    return FALSE;
1569
 
1570
  return TRUE;
1571
}
1572
 
1573
/* Return true if H is a locally-defined PIC function, in the sense
1574
   that it might need $25 to be valid on entry.  Note that MIPS16
1575
   functions never need $25 to be valid on entry; they set up $gp
1576
   using PC-relative instructions instead.  */
1577
 
1578
static bfd_boolean
1579
mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1580
{
1581
  return ((h->root.root.type == bfd_link_hash_defined
1582
           || h->root.root.type == bfd_link_hash_defweak)
1583
          && h->root.def_regular
1584
          && !bfd_is_abs_section (h->root.root.u.def.section)
1585
          && !ELF_ST_IS_MIPS16 (h->root.other)
1586
          && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1587
              || ELF_ST_IS_MIPS_PIC (h->root.other)));
1588
}
1589
 
1590
/* STUB describes an la25 stub that we have decided to implement
1591
   by inserting an LUI/ADDIU pair before the target function.
1592
   Create the section and redirect the function symbol to it.  */
1593
 
1594
static bfd_boolean
1595
mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1596
                         struct bfd_link_info *info)
1597
{
1598
  struct mips_elf_link_hash_table *htab;
1599
  char *name;
1600
  asection *s, *input_section;
1601
  unsigned int align;
1602
 
1603
  htab = mips_elf_hash_table (info);
1604
  if (htab == NULL)
1605
    return FALSE;
1606
 
1607
  /* Create a unique name for the new section.  */
1608
  name = bfd_malloc (11 + sizeof (".text.stub."));
1609
  if (name == NULL)
1610
    return FALSE;
1611
  sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1612
 
1613
  /* Create the section.  */
1614
  input_section = stub->h->root.root.u.def.section;
1615
  s = htab->add_stub_section (name, input_section,
1616
                              input_section->output_section);
1617
  if (s == NULL)
1618
    return FALSE;
1619
 
1620
  /* Make sure that any padding goes before the stub.  */
1621
  align = input_section->alignment_power;
1622
  if (!bfd_set_section_alignment (s->owner, s, align))
1623
    return FALSE;
1624
  if (align > 3)
1625
    s->size = (1 << align) - 8;
1626
 
1627
  /* Create a symbol for the stub.  */
1628
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1629
  stub->stub_section = s;
1630
  stub->offset = s->size;
1631
 
1632
  /* Allocate room for it.  */
1633
  s->size += 8;
1634
  return TRUE;
1635
}
1636
 
1637
/* STUB describes an la25 stub that we have decided to implement
1638
   with a separate trampoline.  Allocate room for it and redirect
1639
   the function symbol to it.  */
1640
 
1641
static bfd_boolean
1642
mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1643
                              struct bfd_link_info *info)
1644
{
1645
  struct mips_elf_link_hash_table *htab;
1646
  asection *s;
1647
 
1648
  htab = mips_elf_hash_table (info);
1649
  if (htab == NULL)
1650
    return FALSE;
1651
 
1652
  /* Create a trampoline section, if we haven't already.  */
1653
  s = htab->strampoline;
1654
  if (s == NULL)
1655
    {
1656
      asection *input_section = stub->h->root.root.u.def.section;
1657
      s = htab->add_stub_section (".text", NULL,
1658
                                  input_section->output_section);
1659
      if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1660
        return FALSE;
1661
      htab->strampoline = s;
1662
    }
1663
 
1664
  /* Create a symbol for the stub.  */
1665
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1666
  stub->stub_section = s;
1667
  stub->offset = s->size;
1668
 
1669
  /* Allocate room for it.  */
1670
  s->size += 16;
1671
  return TRUE;
1672
}
1673
 
1674
/* H describes a symbol that needs an la25 stub.  Make sure that an
1675
   appropriate stub exists and point H at it.  */
1676
 
1677
static bfd_boolean
1678
mips_elf_add_la25_stub (struct bfd_link_info *info,
1679
                        struct mips_elf_link_hash_entry *h)
1680
{
1681
  struct mips_elf_link_hash_table *htab;
1682
  struct mips_elf_la25_stub search, *stub;
1683
  bfd_boolean use_trampoline_p;
1684
  asection *s;
1685
  bfd_vma value;
1686
  void **slot;
1687
 
1688
  /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1689
     of the section and if we would need no more than 2 nops.  */
1690
  s = h->root.root.u.def.section;
1691
  value = h->root.root.u.def.value;
1692
  use_trampoline_p = (value != 0 || s->alignment_power > 4);
1693
 
1694
  /* Describe the stub we want.  */
1695
  search.stub_section = NULL;
1696
  search.offset = 0;
1697
  search.h = h;
1698
 
1699
  /* See if we've already created an equivalent stub.  */
1700
  htab = mips_elf_hash_table (info);
1701
  if (htab == NULL)
1702
    return FALSE;
1703
 
1704
  slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1705
  if (slot == NULL)
1706
    return FALSE;
1707
 
1708
  stub = (struct mips_elf_la25_stub *) *slot;
1709
  if (stub != NULL)
1710
    {
1711
      /* We can reuse the existing stub.  */
1712
      h->la25_stub = stub;
1713
      return TRUE;
1714
    }
1715
 
1716
  /* Create a permanent copy of ENTRY and add it to the hash table.  */
1717
  stub = bfd_malloc (sizeof (search));
1718
  if (stub == NULL)
1719
    return FALSE;
1720
  *stub = search;
1721
  *slot = stub;
1722
 
1723
  h->la25_stub = stub;
1724
  return (use_trampoline_p
1725
          ? mips_elf_add_la25_trampoline (stub, info)
1726
          : mips_elf_add_la25_intro (stub, info));
1727
}
1728
 
1729
/* A mips_elf_link_hash_traverse callback that is called before sizing
1730
   sections.  DATA points to a mips_htab_traverse_info structure.  */
1731
 
1732
static bfd_boolean
1733
mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1734
{
1735
  struct mips_htab_traverse_info *hti;
1736
 
1737
  hti = (struct mips_htab_traverse_info *) data;
1738
  if (!hti->info->relocatable)
1739
    mips_elf_check_mips16_stubs (hti->info, h);
1740
 
1741
  if (mips_elf_local_pic_function_p (h))
1742
    {
1743 148 khays
      /* PR 12845: If H is in a section that has been garbage
1744
         collected it will have its output section set to *ABS*.  */
1745
      if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1746
        return TRUE;
1747
 
1748 14 khays
      /* H is a function that might need $25 to be valid on entry.
1749
         If we're creating a non-PIC relocatable object, mark H as
1750
         being PIC.  If we're creating a non-relocatable object with
1751
         non-PIC branches and jumps to H, make sure that H has an la25
1752
         stub.  */
1753
      if (hti->info->relocatable)
1754
        {
1755
          if (!PIC_OBJECT_P (hti->output_bfd))
1756
            h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1757
        }
1758
      else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1759
        {
1760
          hti->error = TRUE;
1761
          return FALSE;
1762
        }
1763
    }
1764
  return TRUE;
1765
}
1766
 
1767
/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1768
   Most mips16 instructions are 16 bits, but these instructions
1769
   are 32 bits.
1770
 
1771
   The format of these instructions is:
1772
 
1773
   +--------------+--------------------------------+
1774
   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
1775
   +--------------+--------------------------------+
1776
   |                Immediate  15:0                |
1777
   +-----------------------------------------------+
1778
 
1779
   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
1780
   Note that the immediate value in the first word is swapped.
1781
 
1782
   When producing a relocatable object file, R_MIPS16_26 is
1783
   handled mostly like R_MIPS_26.  In particular, the addend is
1784
   stored as a straight 26-bit value in a 32-bit instruction.
1785
   (gas makes life simpler for itself by never adjusting a
1786
   R_MIPS16_26 reloc to be against a section, so the addend is
1787
   always zero).  However, the 32 bit instruction is stored as 2
1788
   16-bit values, rather than a single 32-bit value.  In a
1789
   big-endian file, the result is the same; in a little-endian
1790
   file, the two 16-bit halves of the 32 bit value are swapped.
1791
   This is so that a disassembler can recognize the jal
1792
   instruction.
1793
 
1794
   When doing a final link, R_MIPS16_26 is treated as a 32 bit
1795
   instruction stored as two 16-bit values.  The addend A is the
1796
   contents of the targ26 field.  The calculation is the same as
1797
   R_MIPS_26.  When storing the calculated value, reorder the
1798
   immediate value as shown above, and don't forget to store the
1799
   value as two 16-bit values.
1800
 
1801
   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1802
   defined as
1803
 
1804
   big-endian:
1805
   +--------+----------------------+
1806
   |        |                      |
1807
   |        |    targ26-16         |
1808
   |31    26|25                   0|
1809
   +--------+----------------------+
1810
 
1811
   little-endian:
1812
   +----------+------+-------------+
1813
   |          |      |             |
1814
   |  sub1    |      |     sub2    |
1815
   |0        9|10  15|16         31|
1816
   +----------+--------------------+
1817
   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1818
   ((sub1 << 16) | sub2)).
1819
 
1820
   When producing a relocatable object file, the calculation is
1821
   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1822
   When producing a fully linked file, the calculation is
1823
   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1824
   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1825
 
1826
   The table below lists the other MIPS16 instruction relocations.
1827
   Each one is calculated in the same way as the non-MIPS16 relocation
1828
   given on the right, but using the extended MIPS16 layout of 16-bit
1829
   immediate fields:
1830
 
1831
        R_MIPS16_GPREL          R_MIPS_GPREL16
1832
        R_MIPS16_GOT16          R_MIPS_GOT16
1833
        R_MIPS16_CALL16         R_MIPS_CALL16
1834
        R_MIPS16_HI16           R_MIPS_HI16
1835
        R_MIPS16_LO16           R_MIPS_LO16
1836
 
1837
   A typical instruction will have a format like this:
1838
 
1839
   +--------------+--------------------------------+
1840
   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
1841
   +--------------+--------------------------------+
1842
   |    Major     |   rx   |   ry   |   Imm  4:0   |
1843
   +--------------+--------------------------------+
1844
 
1845
   EXTEND is the five bit value 11110.  Major is the instruction
1846
   opcode.
1847
 
1848
   All we need to do here is shuffle the bits appropriately.
1849
   As above, the two 16-bit halves must be swapped on a
1850
   little-endian system.  */
1851
 
1852
static inline bfd_boolean
1853
mips16_reloc_p (int r_type)
1854
{
1855
  switch (r_type)
1856
    {
1857
    case R_MIPS16_26:
1858
    case R_MIPS16_GPREL:
1859
    case R_MIPS16_GOT16:
1860
    case R_MIPS16_CALL16:
1861
    case R_MIPS16_HI16:
1862
    case R_MIPS16_LO16:
1863
      return TRUE;
1864
 
1865
    default:
1866
      return FALSE;
1867
    }
1868
}
1869
 
1870 161 khays
/* Check if a microMIPS reloc.  */
1871
 
1872 14 khays
static inline bfd_boolean
1873 161 khays
micromips_reloc_p (unsigned int r_type)
1874
{
1875
  return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1876
}
1877
 
1878
/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1879
   on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
1880
   and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
1881
 
1882
static inline bfd_boolean
1883
micromips_reloc_shuffle_p (unsigned int r_type)
1884
{
1885
  return (micromips_reloc_p (r_type)
1886
          && r_type != R_MICROMIPS_PC7_S1
1887
          && r_type != R_MICROMIPS_PC10_S1);
1888
}
1889
 
1890
static inline bfd_boolean
1891 14 khays
got16_reloc_p (int r_type)
1892
{
1893 161 khays
  return (r_type == R_MIPS_GOT16
1894
          || r_type == R_MIPS16_GOT16
1895
          || r_type == R_MICROMIPS_GOT16);
1896 14 khays
}
1897
 
1898
static inline bfd_boolean
1899
call16_reloc_p (int r_type)
1900
{
1901 161 khays
  return (r_type == R_MIPS_CALL16
1902
          || r_type == R_MIPS16_CALL16
1903
          || r_type == R_MICROMIPS_CALL16);
1904 14 khays
}
1905
 
1906
static inline bfd_boolean
1907 161 khays
got_disp_reloc_p (unsigned int r_type)
1908
{
1909
  return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1910
}
1911
 
1912
static inline bfd_boolean
1913
got_page_reloc_p (unsigned int r_type)
1914
{
1915
  return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1916
}
1917
 
1918
static inline bfd_boolean
1919
got_ofst_reloc_p (unsigned int r_type)
1920
{
1921
  return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1922
}
1923
 
1924
static inline bfd_boolean
1925
got_hi16_reloc_p (unsigned int r_type)
1926
{
1927
  return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1928
}
1929
 
1930
static inline bfd_boolean
1931
got_lo16_reloc_p (unsigned int r_type)
1932
{
1933
  return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1934
}
1935
 
1936
static inline bfd_boolean
1937
call_hi16_reloc_p (unsigned int r_type)
1938
{
1939
  return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1940
}
1941
 
1942
static inline bfd_boolean
1943
call_lo16_reloc_p (unsigned int r_type)
1944
{
1945
  return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1946
}
1947
 
1948
static inline bfd_boolean
1949 14 khays
hi16_reloc_p (int r_type)
1950
{
1951 161 khays
  return (r_type == R_MIPS_HI16
1952
          || r_type == R_MIPS16_HI16
1953
          || r_type == R_MICROMIPS_HI16);
1954 14 khays
}
1955
 
1956
static inline bfd_boolean
1957
lo16_reloc_p (int r_type)
1958
{
1959 161 khays
  return (r_type == R_MIPS_LO16
1960
          || r_type == R_MIPS16_LO16
1961
          || r_type == R_MICROMIPS_LO16);
1962 14 khays
}
1963
 
1964
static inline bfd_boolean
1965
mips16_call_reloc_p (int r_type)
1966
{
1967
  return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1968
}
1969
 
1970
static inline bfd_boolean
1971
jal_reloc_p (int r_type)
1972
{
1973 161 khays
  return (r_type == R_MIPS_26
1974
          || r_type == R_MIPS16_26
1975
          || r_type == R_MICROMIPS_26_S1);
1976 14 khays
}
1977
 
1978 161 khays
static inline bfd_boolean
1979
micromips_branch_reloc_p (int r_type)
1980
{
1981
  return (r_type == R_MICROMIPS_26_S1
1982
          || r_type == R_MICROMIPS_PC16_S1
1983
          || r_type == R_MICROMIPS_PC10_S1
1984
          || r_type == R_MICROMIPS_PC7_S1);
1985
}
1986
 
1987
static inline bfd_boolean
1988
tls_gd_reloc_p (unsigned int r_type)
1989
{
1990
  return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1991
}
1992
 
1993
static inline bfd_boolean
1994
tls_ldm_reloc_p (unsigned int r_type)
1995
{
1996
  return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
1997
}
1998
 
1999
static inline bfd_boolean
2000
tls_gottprel_reloc_p (unsigned int r_type)
2001
{
2002
  return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2003
}
2004
 
2005 14 khays
void
2006 161 khays
_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2007
                               bfd_boolean jal_shuffle, bfd_byte *data)
2008 14 khays
{
2009 161 khays
  bfd_vma first, second, val;
2010 14 khays
 
2011 161 khays
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2012 14 khays
    return;
2013
 
2014 161 khays
  /* Pick up the first and second halfwords of the instruction.  */
2015
  first = bfd_get_16 (abfd, data);
2016
  second = bfd_get_16 (abfd, data + 2);
2017
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2018
    val = first << 16 | second;
2019
  else if (r_type != R_MIPS16_26)
2020
    val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2021
           | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2022 14 khays
  else
2023 161 khays
    val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2024
           | ((first & 0x1f) << 21) | second);
2025 14 khays
  bfd_put_32 (abfd, val, data);
2026
}
2027
 
2028
void
2029 161 khays
_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2030
                             bfd_boolean jal_shuffle, bfd_byte *data)
2031 14 khays
{
2032 161 khays
  bfd_vma first, second, val;
2033 14 khays
 
2034 161 khays
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2035 14 khays
    return;
2036
 
2037
  val = bfd_get_32 (abfd, data);
2038 161 khays
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2039 14 khays
    {
2040 161 khays
      second = val & 0xffff;
2041
      first = val >> 16;
2042 14 khays
    }
2043 161 khays
  else if (r_type != R_MIPS16_26)
2044
    {
2045
      second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2046
      first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2047
    }
2048 14 khays
  else
2049
    {
2050 161 khays
      second = val & 0xffff;
2051
      first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2052
               | ((val >> 21) & 0x1f);
2053 14 khays
    }
2054 161 khays
  bfd_put_16 (abfd, second, data + 2);
2055
  bfd_put_16 (abfd, first, data);
2056 14 khays
}
2057
 
2058
bfd_reloc_status_type
2059
_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2060
                               arelent *reloc_entry, asection *input_section,
2061
                               bfd_boolean relocatable, void *data, bfd_vma gp)
2062
{
2063
  bfd_vma relocation;
2064
  bfd_signed_vma val;
2065
  bfd_reloc_status_type status;
2066
 
2067
  if (bfd_is_com_section (symbol->section))
2068
    relocation = 0;
2069
  else
2070
    relocation = symbol->value;
2071
 
2072
  relocation += symbol->section->output_section->vma;
2073
  relocation += symbol->section->output_offset;
2074
 
2075
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2076
    return bfd_reloc_outofrange;
2077
 
2078
  /* Set val to the offset into the section or symbol.  */
2079
  val = reloc_entry->addend;
2080
 
2081
  _bfd_mips_elf_sign_extend (val, 16);
2082
 
2083
  /* Adjust val for the final section location and GP value.  If we
2084
     are producing relocatable output, we don't want to do this for
2085
     an external symbol.  */
2086
  if (! relocatable
2087
      || (symbol->flags & BSF_SECTION_SYM) != 0)
2088
    val += relocation - gp;
2089
 
2090
  if (reloc_entry->howto->partial_inplace)
2091
    {
2092
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2093
                                       (bfd_byte *) data
2094
                                       + reloc_entry->address);
2095
      if (status != bfd_reloc_ok)
2096
        return status;
2097
    }
2098
  else
2099
    reloc_entry->addend = val;
2100
 
2101
  if (relocatable)
2102
    reloc_entry->address += input_section->output_offset;
2103
 
2104
  return bfd_reloc_ok;
2105
}
2106
 
2107
/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2108
   R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2109
   that contains the relocation field and DATA points to the start of
2110
   INPUT_SECTION.  */
2111
 
2112
struct mips_hi16
2113
{
2114
  struct mips_hi16 *next;
2115
  bfd_byte *data;
2116
  asection *input_section;
2117
  arelent rel;
2118
};
2119
 
2120
/* FIXME: This should not be a static variable.  */
2121
 
2122
static struct mips_hi16 *mips_hi16_list;
2123
 
2124
/* A howto special_function for REL *HI16 relocations.  We can only
2125
   calculate the correct value once we've seen the partnering
2126
   *LO16 relocation, so just save the information for later.
2127
 
2128
   The ABI requires that the *LO16 immediately follow the *HI16.
2129
   However, as a GNU extension, we permit an arbitrary number of
2130
   *HI16s to be associated with a single *LO16.  This significantly
2131
   simplies the relocation handling in gcc.  */
2132
 
2133
bfd_reloc_status_type
2134
_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135
                          asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2136
                          asection *input_section, bfd *output_bfd,
2137
                          char **error_message ATTRIBUTE_UNUSED)
2138
{
2139
  struct mips_hi16 *n;
2140
 
2141
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2142
    return bfd_reloc_outofrange;
2143
 
2144
  n = bfd_malloc (sizeof *n);
2145
  if (n == NULL)
2146
    return bfd_reloc_outofrange;
2147
 
2148
  n->next = mips_hi16_list;
2149
  n->data = data;
2150
  n->input_section = input_section;
2151
  n->rel = *reloc_entry;
2152
  mips_hi16_list = n;
2153
 
2154
  if (output_bfd != NULL)
2155
    reloc_entry->address += input_section->output_offset;
2156
 
2157
  return bfd_reloc_ok;
2158
}
2159
 
2160
/* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2161
   like any other 16-bit relocation when applied to global symbols, but is
2162
   treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2163
 
2164
bfd_reloc_status_type
2165
_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2166
                           void *data, asection *input_section,
2167
                           bfd *output_bfd, char **error_message)
2168
{
2169
  if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2170
      || bfd_is_und_section (bfd_get_section (symbol))
2171
      || bfd_is_com_section (bfd_get_section (symbol)))
2172
    /* The relocation is against a global symbol.  */
2173
    return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2174
                                        input_section, output_bfd,
2175
                                        error_message);
2176
 
2177
  return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2178
                                   input_section, output_bfd, error_message);
2179
}
2180
 
2181
/* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2182
   is a straightforward 16 bit inplace relocation, but we must deal with
2183
   any partnering high-part relocations as well.  */
2184
 
2185
bfd_reloc_status_type
2186
_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2187
                          void *data, asection *input_section,
2188
                          bfd *output_bfd, char **error_message)
2189
{
2190
  bfd_vma vallo;
2191
  bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2192
 
2193
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2194
    return bfd_reloc_outofrange;
2195
 
2196 161 khays
  _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2197
                                 location);
2198 14 khays
  vallo = bfd_get_32 (abfd, location);
2199 161 khays
  _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2200
                               location);
2201 14 khays
 
2202
  while (mips_hi16_list != NULL)
2203
    {
2204
      bfd_reloc_status_type ret;
2205
      struct mips_hi16 *hi;
2206
 
2207
      hi = mips_hi16_list;
2208
 
2209
      /* R_MIPS*_GOT16 relocations are something of a special case.  We
2210
         want to install the addend in the same way as for a R_MIPS*_HI16
2211
         relocation (with a rightshift of 16).  However, since GOT16
2212
         relocations can also be used with global symbols, their howto
2213
         has a rightshift of 0.  */
2214
      if (hi->rel.howto->type == R_MIPS_GOT16)
2215
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2216
      else if (hi->rel.howto->type == R_MIPS16_GOT16)
2217
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2218 161 khays
      else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2219
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2220 14 khays
 
2221
      /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2222
         carry or borrow will induce a change of +1 or -1 in the high part.  */
2223
      hi->rel.addend += (vallo + 0x8000) & 0xffff;
2224
 
2225
      ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2226
                                         hi->input_section, output_bfd,
2227
                                         error_message);
2228
      if (ret != bfd_reloc_ok)
2229
        return ret;
2230
 
2231
      mips_hi16_list = hi->next;
2232
      free (hi);
2233
    }
2234
 
2235
  return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2236
                                      input_section, output_bfd,
2237
                                      error_message);
2238
}
2239
 
2240
/* A generic howto special_function.  This calculates and installs the
2241
   relocation itself, thus avoiding the oft-discussed problems in
2242
   bfd_perform_relocation and bfd_install_relocation.  */
2243
 
2244
bfd_reloc_status_type
2245
_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2246
                             asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2247
                             asection *input_section, bfd *output_bfd,
2248
                             char **error_message ATTRIBUTE_UNUSED)
2249
{
2250
  bfd_signed_vma val;
2251
  bfd_reloc_status_type status;
2252
  bfd_boolean relocatable;
2253
 
2254
  relocatable = (output_bfd != NULL);
2255
 
2256
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2257
    return bfd_reloc_outofrange;
2258
 
2259
  /* Build up the field adjustment in VAL.  */
2260
  val = 0;
2261
  if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2262
    {
2263
      /* Either we're calculating the final field value or we have a
2264
         relocation against a section symbol.  Add in the section's
2265
         offset or address.  */
2266
      val += symbol->section->output_section->vma;
2267
      val += symbol->section->output_offset;
2268
    }
2269
 
2270
  if (!relocatable)
2271
    {
2272
      /* We're calculating the final field value.  Add in the symbol's value
2273
         and, if pc-relative, subtract the address of the field itself.  */
2274
      val += symbol->value;
2275
      if (reloc_entry->howto->pc_relative)
2276
        {
2277
          val -= input_section->output_section->vma;
2278
          val -= input_section->output_offset;
2279
          val -= reloc_entry->address;
2280
        }
2281
    }
2282
 
2283
  /* VAL is now the final adjustment.  If we're keeping this relocation
2284
     in the output file, and if the relocation uses a separate addend,
2285
     we just need to add VAL to that addend.  Otherwise we need to add
2286
     VAL to the relocation field itself.  */
2287
  if (relocatable && !reloc_entry->howto->partial_inplace)
2288
    reloc_entry->addend += val;
2289
  else
2290
    {
2291
      bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2292
 
2293
      /* Add in the separate addend, if any.  */
2294
      val += reloc_entry->addend;
2295
 
2296
      /* Add VAL to the relocation field.  */
2297 161 khays
      _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2298
                                     location);
2299 14 khays
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2300
                                       location);
2301 161 khays
      _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2302
                                   location);
2303 14 khays
 
2304
      if (status != bfd_reloc_ok)
2305
        return status;
2306
    }
2307
 
2308
  if (relocatable)
2309
    reloc_entry->address += input_section->output_offset;
2310
 
2311
  return bfd_reloc_ok;
2312
}
2313
 
2314
/* Swap an entry in a .gptab section.  Note that these routines rely
2315
   on the equivalence of the two elements of the union.  */
2316
 
2317
static void
2318
bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2319
                              Elf32_gptab *in)
2320
{
2321
  in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2322
  in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2323
}
2324
 
2325
static void
2326
bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2327
                               Elf32_External_gptab *ex)
2328
{
2329
  H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2330
  H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2331
}
2332
 
2333
static void
2334
bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2335
                                Elf32_External_compact_rel *ex)
2336
{
2337
  H_PUT_32 (abfd, in->id1, ex->id1);
2338
  H_PUT_32 (abfd, in->num, ex->num);
2339
  H_PUT_32 (abfd, in->id2, ex->id2);
2340
  H_PUT_32 (abfd, in->offset, ex->offset);
2341
  H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2342
  H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2343
}
2344
 
2345
static void
2346
bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2347
                           Elf32_External_crinfo *ex)
2348
{
2349
  unsigned long l;
2350
 
2351
  l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2352
       | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2353
       | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2354
       | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2355
  H_PUT_32 (abfd, l, ex->info);
2356
  H_PUT_32 (abfd, in->konst, ex->konst);
2357
  H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2358
}
2359
 
2360
/* A .reginfo section holds a single Elf32_RegInfo structure.  These
2361
   routines swap this structure in and out.  They are used outside of
2362
   BFD, so they are globally visible.  */
2363
 
2364
void
2365
bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2366
                                Elf32_RegInfo *in)
2367
{
2368
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2369
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2370
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2371
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2372
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2373
  in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2374
}
2375
 
2376
void
2377
bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2378
                                 Elf32_External_RegInfo *ex)
2379
{
2380
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2381
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2382
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2383
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2384
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2385
  H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2386
}
2387
 
2388
/* In the 64 bit ABI, the .MIPS.options section holds register
2389
   information in an Elf64_Reginfo structure.  These routines swap
2390
   them in and out.  They are globally visible because they are used
2391
   outside of BFD.  These routines are here so that gas can call them
2392
   without worrying about whether the 64 bit ABI has been included.  */
2393
 
2394
void
2395
bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2396
                                Elf64_Internal_RegInfo *in)
2397
{
2398
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2399
  in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2400
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2401
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2402
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2403
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2404
  in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2405
}
2406
 
2407
void
2408
bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2409
                                 Elf64_External_RegInfo *ex)
2410
{
2411
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2412
  H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2413
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2414
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2415
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2416
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2417
  H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2418
}
2419
 
2420
/* Swap in an options header.  */
2421
 
2422
void
2423
bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2424
                              Elf_Internal_Options *in)
2425
{
2426
  in->kind = H_GET_8 (abfd, ex->kind);
2427
  in->size = H_GET_8 (abfd, ex->size);
2428
  in->section = H_GET_16 (abfd, ex->section);
2429
  in->info = H_GET_32 (abfd, ex->info);
2430
}
2431
 
2432
/* Swap out an options header.  */
2433
 
2434
void
2435
bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2436
                               Elf_External_Options *ex)
2437
{
2438
  H_PUT_8 (abfd, in->kind, ex->kind);
2439
  H_PUT_8 (abfd, in->size, ex->size);
2440
  H_PUT_16 (abfd, in->section, ex->section);
2441
  H_PUT_32 (abfd, in->info, ex->info);
2442
}
2443
 
2444
/* This function is called via qsort() to sort the dynamic relocation
2445
   entries by increasing r_symndx value.  */
2446
 
2447
static int
2448
sort_dynamic_relocs (const void *arg1, const void *arg2)
2449
{
2450
  Elf_Internal_Rela int_reloc1;
2451
  Elf_Internal_Rela int_reloc2;
2452
  int diff;
2453
 
2454
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2455
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2456
 
2457
  diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2458
  if (diff != 0)
2459
    return diff;
2460
 
2461
  if (int_reloc1.r_offset < int_reloc2.r_offset)
2462
    return -1;
2463
  if (int_reloc1.r_offset > int_reloc2.r_offset)
2464
    return 1;
2465
  return 0;
2466
}
2467
 
2468
/* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2469
 
2470
static int
2471
sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2472
                        const void *arg2 ATTRIBUTE_UNUSED)
2473
{
2474
#ifdef BFD64
2475
  Elf_Internal_Rela int_reloc1[3];
2476
  Elf_Internal_Rela int_reloc2[3];
2477
 
2478
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2479
    (reldyn_sorting_bfd, arg1, int_reloc1);
2480
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2481
    (reldyn_sorting_bfd, arg2, int_reloc2);
2482
 
2483
  if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2484
    return -1;
2485
  if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2486
    return 1;
2487
 
2488
  if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2489
    return -1;
2490
  if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2491
    return 1;
2492
  return 0;
2493
#else
2494
  abort ();
2495
#endif
2496
}
2497
 
2498
 
2499
/* This routine is used to write out ECOFF debugging external symbol
2500
   information.  It is called via mips_elf_link_hash_traverse.  The
2501
   ECOFF external symbol information must match the ELF external
2502
   symbol information.  Unfortunately, at this point we don't know
2503
   whether a symbol is required by reloc information, so the two
2504
   tables may wind up being different.  We must sort out the external
2505
   symbol information before we can set the final size of the .mdebug
2506
   section, and we must set the size of the .mdebug section before we
2507
   can relocate any sections, and we can't know which symbols are
2508
   required by relocation until we relocate the sections.
2509
   Fortunately, it is relatively unlikely that any symbol will be
2510
   stripped but required by a reloc.  In particular, it can not happen
2511
   when generating a final executable.  */
2512
 
2513
static bfd_boolean
2514
mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2515
{
2516
  struct extsym_info *einfo = data;
2517
  bfd_boolean strip;
2518
  asection *sec, *output_section;
2519
 
2520
  if (h->root.indx == -2)
2521
    strip = FALSE;
2522
  else if ((h->root.def_dynamic
2523
            || h->root.ref_dynamic
2524
            || h->root.type == bfd_link_hash_new)
2525
           && !h->root.def_regular
2526
           && !h->root.ref_regular)
2527
    strip = TRUE;
2528
  else if (einfo->info->strip == strip_all
2529
           || (einfo->info->strip == strip_some
2530
               && bfd_hash_lookup (einfo->info->keep_hash,
2531
                                   h->root.root.root.string,
2532
                                   FALSE, FALSE) == NULL))
2533
    strip = TRUE;
2534
  else
2535
    strip = FALSE;
2536
 
2537
  if (strip)
2538
    return TRUE;
2539
 
2540
  if (h->esym.ifd == -2)
2541
    {
2542
      h->esym.jmptbl = 0;
2543
      h->esym.cobol_main = 0;
2544
      h->esym.weakext = 0;
2545
      h->esym.reserved = 0;
2546
      h->esym.ifd = ifdNil;
2547
      h->esym.asym.value = 0;
2548
      h->esym.asym.st = stGlobal;
2549
 
2550
      if (h->root.root.type == bfd_link_hash_undefined
2551
          || h->root.root.type == bfd_link_hash_undefweak)
2552
        {
2553
          const char *name;
2554
 
2555
          /* Use undefined class.  Also, set class and type for some
2556
             special symbols.  */
2557
          name = h->root.root.root.string;
2558
          if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2559
              || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2560
            {
2561
              h->esym.asym.sc = scData;
2562
              h->esym.asym.st = stLabel;
2563
              h->esym.asym.value = 0;
2564
            }
2565
          else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2566
            {
2567
              h->esym.asym.sc = scAbs;
2568
              h->esym.asym.st = stLabel;
2569
              h->esym.asym.value =
2570
                mips_elf_hash_table (einfo->info)->procedure_count;
2571
            }
2572
          else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2573
            {
2574
              h->esym.asym.sc = scAbs;
2575
              h->esym.asym.st = stLabel;
2576
              h->esym.asym.value = elf_gp (einfo->abfd);
2577
            }
2578
          else
2579
            h->esym.asym.sc = scUndefined;
2580
        }
2581
      else if (h->root.root.type != bfd_link_hash_defined
2582
          && h->root.root.type != bfd_link_hash_defweak)
2583
        h->esym.asym.sc = scAbs;
2584
      else
2585
        {
2586
          const char *name;
2587
 
2588
          sec = h->root.root.u.def.section;
2589
          output_section = sec->output_section;
2590
 
2591
          /* When making a shared library and symbol h is the one from
2592
             the another shared library, OUTPUT_SECTION may be null.  */
2593
          if (output_section == NULL)
2594
            h->esym.asym.sc = scUndefined;
2595
          else
2596
            {
2597
              name = bfd_section_name (output_section->owner, output_section);
2598
 
2599
              if (strcmp (name, ".text") == 0)
2600
                h->esym.asym.sc = scText;
2601
              else if (strcmp (name, ".data") == 0)
2602
                h->esym.asym.sc = scData;
2603
              else if (strcmp (name, ".sdata") == 0)
2604
                h->esym.asym.sc = scSData;
2605
              else if (strcmp (name, ".rodata") == 0
2606
                       || strcmp (name, ".rdata") == 0)
2607
                h->esym.asym.sc = scRData;
2608
              else if (strcmp (name, ".bss") == 0)
2609
                h->esym.asym.sc = scBss;
2610
              else if (strcmp (name, ".sbss") == 0)
2611
                h->esym.asym.sc = scSBss;
2612
              else if (strcmp (name, ".init") == 0)
2613
                h->esym.asym.sc = scInit;
2614
              else if (strcmp (name, ".fini") == 0)
2615
                h->esym.asym.sc = scFini;
2616
              else
2617
                h->esym.asym.sc = scAbs;
2618
            }
2619
        }
2620
 
2621
      h->esym.asym.reserved = 0;
2622
      h->esym.asym.index = indexNil;
2623
    }
2624
 
2625
  if (h->root.root.type == bfd_link_hash_common)
2626
    h->esym.asym.value = h->root.root.u.c.size;
2627
  else if (h->root.root.type == bfd_link_hash_defined
2628
           || h->root.root.type == bfd_link_hash_defweak)
2629
    {
2630
      if (h->esym.asym.sc == scCommon)
2631
        h->esym.asym.sc = scBss;
2632
      else if (h->esym.asym.sc == scSCommon)
2633
        h->esym.asym.sc = scSBss;
2634
 
2635
      sec = h->root.root.u.def.section;
2636
      output_section = sec->output_section;
2637
      if (output_section != NULL)
2638
        h->esym.asym.value = (h->root.root.u.def.value
2639
                              + sec->output_offset
2640
                              + output_section->vma);
2641
      else
2642
        h->esym.asym.value = 0;
2643
    }
2644
  else
2645
    {
2646
      struct mips_elf_link_hash_entry *hd = h;
2647
 
2648
      while (hd->root.root.type == bfd_link_hash_indirect)
2649
        hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2650
 
2651
      if (hd->needs_lazy_stub)
2652
        {
2653
          /* Set type and value for a symbol with a function stub.  */
2654
          h->esym.asym.st = stProc;
2655
          sec = hd->root.root.u.def.section;
2656
          if (sec == NULL)
2657
            h->esym.asym.value = 0;
2658
          else
2659
            {
2660
              output_section = sec->output_section;
2661
              if (output_section != NULL)
2662
                h->esym.asym.value = (hd->root.plt.offset
2663
                                      + sec->output_offset
2664
                                      + output_section->vma);
2665
              else
2666
                h->esym.asym.value = 0;
2667
            }
2668
        }
2669
    }
2670
 
2671
  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2672
                                      h->root.root.root.string,
2673
                                      &h->esym))
2674
    {
2675
      einfo->failed = TRUE;
2676
      return FALSE;
2677
    }
2678
 
2679
  return TRUE;
2680
}
2681
 
2682
/* A comparison routine used to sort .gptab entries.  */
2683
 
2684
static int
2685
gptab_compare (const void *p1, const void *p2)
2686
{
2687
  const Elf32_gptab *a1 = p1;
2688
  const Elf32_gptab *a2 = p2;
2689
 
2690
  return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2691
}
2692
 
2693
/* Functions to manage the got entry hash table.  */
2694
 
2695
/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2696
   hash number.  */
2697
 
2698
static INLINE hashval_t
2699
mips_elf_hash_bfd_vma (bfd_vma addr)
2700
{
2701
#ifdef BFD64
2702
  return addr + (addr >> 32);
2703
#else
2704
  return addr;
2705
#endif
2706
}
2707
 
2708
/* got_entries only match if they're identical, except for gotidx, so
2709
   use all fields to compute the hash, and compare the appropriate
2710
   union members.  */
2711
 
2712
static hashval_t
2713
mips_elf_got_entry_hash (const void *entry_)
2714
{
2715
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2716
 
2717
  return entry->symndx
2718
    + ((entry->tls_type & GOT_TLS_LDM) << 17)
2719
    + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2720
       : entry->abfd->id
2721
         + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2722
            : entry->d.h->root.root.root.hash));
2723
}
2724
 
2725
static int
2726
mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2727
{
2728
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2729
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2730
 
2731
  /* An LDM entry can only match another LDM entry.  */
2732
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2733
    return 0;
2734
 
2735
  return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2736
    && (! e1->abfd ? e1->d.address == e2->d.address
2737
        : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2738
        : e1->d.h == e2->d.h);
2739
}
2740
 
2741
/* multi_got_entries are still a match in the case of global objects,
2742
   even if the input bfd in which they're referenced differs, so the
2743
   hash computation and compare functions are adjusted
2744
   accordingly.  */
2745
 
2746
static hashval_t
2747
mips_elf_multi_got_entry_hash (const void *entry_)
2748
{
2749
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2750
 
2751
  return entry->symndx
2752
    + (! entry->abfd
2753
       ? mips_elf_hash_bfd_vma (entry->d.address)
2754
       : entry->symndx >= 0
2755
       ? ((entry->tls_type & GOT_TLS_LDM)
2756
          ? (GOT_TLS_LDM << 17)
2757
          : (entry->abfd->id
2758
             + mips_elf_hash_bfd_vma (entry->d.addend)))
2759
       : entry->d.h->root.root.root.hash);
2760
}
2761
 
2762
static int
2763
mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2764
{
2765
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2766
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2767
 
2768
  /* Any two LDM entries match.  */
2769
  if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2770
    return 1;
2771
 
2772
  /* Nothing else matches an LDM entry.  */
2773
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2774
    return 0;
2775
 
2776
  return e1->symndx == e2->symndx
2777
    && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2778
        : e1->abfd == NULL || e2->abfd == NULL
2779
        ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2780
        : e1->d.h == e2->d.h);
2781
}
2782
 
2783
static hashval_t
2784
mips_got_page_entry_hash (const void *entry_)
2785
{
2786
  const struct mips_got_page_entry *entry;
2787
 
2788
  entry = (const struct mips_got_page_entry *) entry_;
2789
  return entry->abfd->id + entry->symndx;
2790
}
2791
 
2792
static int
2793
mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2794
{
2795
  const struct mips_got_page_entry *entry1, *entry2;
2796
 
2797
  entry1 = (const struct mips_got_page_entry *) entry1_;
2798
  entry2 = (const struct mips_got_page_entry *) entry2_;
2799
  return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2800
}
2801
 
2802
/* Return the dynamic relocation section.  If it doesn't exist, try to
2803
   create a new it if CREATE_P, otherwise return NULL.  Also return NULL
2804
   if creation fails.  */
2805
 
2806
static asection *
2807
mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2808
{
2809
  const char *dname;
2810
  asection *sreloc;
2811
  bfd *dynobj;
2812
 
2813
  dname = MIPS_ELF_REL_DYN_NAME (info);
2814
  dynobj = elf_hash_table (info)->dynobj;
2815
  sreloc = bfd_get_section_by_name (dynobj, dname);
2816
  if (sreloc == NULL && create_p)
2817
    {
2818
      sreloc = bfd_make_section_with_flags (dynobj, dname,
2819
                                            (SEC_ALLOC
2820
                                             | SEC_LOAD
2821
                                             | SEC_HAS_CONTENTS
2822
                                             | SEC_IN_MEMORY
2823
                                             | SEC_LINKER_CREATED
2824
                                             | SEC_READONLY));
2825
      if (sreloc == NULL
2826
          || ! bfd_set_section_alignment (dynobj, sreloc,
2827
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2828
        return NULL;
2829
    }
2830
  return sreloc;
2831
}
2832
 
2833
/* Count the number of relocations needed for a TLS GOT entry, with
2834
   access types from TLS_TYPE, and symbol H (or a local symbol if H
2835
   is NULL).  */
2836
 
2837
static int
2838
mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2839
                     struct elf_link_hash_entry *h)
2840
{
2841
  int indx = 0;
2842
  int ret = 0;
2843
  bfd_boolean need_relocs = FALSE;
2844
  bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2845
 
2846
  if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2847
      && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2848
    indx = h->dynindx;
2849
 
2850
  if ((info->shared || indx != 0)
2851
      && (h == NULL
2852
          || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2853
          || h->root.type != bfd_link_hash_undefweak))
2854
    need_relocs = TRUE;
2855
 
2856
  if (!need_relocs)
2857
    return FALSE;
2858
 
2859
  if (tls_type & GOT_TLS_GD)
2860
    {
2861
      ret++;
2862
      if (indx != 0)
2863
        ret++;
2864
    }
2865
 
2866
  if (tls_type & GOT_TLS_IE)
2867
    ret++;
2868
 
2869
  if ((tls_type & GOT_TLS_LDM) && info->shared)
2870
    ret++;
2871
 
2872
  return ret;
2873
}
2874
 
2875
/* Count the number of TLS relocations required for the GOT entry in
2876
   ARG1, if it describes a local symbol.  */
2877
 
2878
static int
2879
mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2880
{
2881
  struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2882
  struct mips_elf_count_tls_arg *arg = arg2;
2883
 
2884
  if (entry->abfd != NULL && entry->symndx != -1)
2885
    arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2886
 
2887
  return 1;
2888
}
2889
 
2890
/* Count the number of TLS GOT entries required for the global (or
2891
   forced-local) symbol in ARG1.  */
2892
 
2893
static int
2894
mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2895
{
2896
  struct mips_elf_link_hash_entry *hm
2897
    = (struct mips_elf_link_hash_entry *) arg1;
2898
  struct mips_elf_count_tls_arg *arg = arg2;
2899
 
2900
  if (hm->tls_type & GOT_TLS_GD)
2901
    arg->needed += 2;
2902
  if (hm->tls_type & GOT_TLS_IE)
2903
    arg->needed += 1;
2904
 
2905
  return 1;
2906
}
2907
 
2908
/* Count the number of TLS relocations required for the global (or
2909
   forced-local) symbol in ARG1.  */
2910
 
2911
static int
2912
mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2913
{
2914
  struct mips_elf_link_hash_entry *hm
2915
    = (struct mips_elf_link_hash_entry *) arg1;
2916
  struct mips_elf_count_tls_arg *arg = arg2;
2917
 
2918
  arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2919
 
2920
  return 1;
2921
}
2922
 
2923
/* Output a simple dynamic relocation into SRELOC.  */
2924
 
2925
static void
2926
mips_elf_output_dynamic_relocation (bfd *output_bfd,
2927
                                    asection *sreloc,
2928
                                    unsigned long reloc_index,
2929
                                    unsigned long indx,
2930
                                    int r_type,
2931
                                    bfd_vma offset)
2932
{
2933
  Elf_Internal_Rela rel[3];
2934
 
2935
  memset (rel, 0, sizeof (rel));
2936
 
2937
  rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2938
  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2939
 
2940
  if (ABI_64_P (output_bfd))
2941
    {
2942
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2943
        (output_bfd, &rel[0],
2944
         (sreloc->contents
2945
          + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2946
    }
2947
  else
2948
    bfd_elf32_swap_reloc_out
2949
      (output_bfd, &rel[0],
2950
       (sreloc->contents
2951
        + reloc_index * sizeof (Elf32_External_Rel)));
2952
}
2953
 
2954
/* Initialize a set of TLS GOT entries for one symbol.  */
2955
 
2956
static void
2957
mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2958
                               unsigned char *tls_type_p,
2959
                               struct bfd_link_info *info,
2960
                               struct mips_elf_link_hash_entry *h,
2961
                               bfd_vma value)
2962
{
2963
  struct mips_elf_link_hash_table *htab;
2964
  int indx;
2965
  asection *sreloc, *sgot;
2966
  bfd_vma offset, offset2;
2967
  bfd_boolean need_relocs = FALSE;
2968
 
2969
  htab = mips_elf_hash_table (info);
2970
  if (htab == NULL)
2971
    return;
2972
 
2973
  sgot = htab->sgot;
2974
 
2975
  indx = 0;
2976
  if (h != NULL)
2977
    {
2978
      bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2979
 
2980
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2981
          && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2982
        indx = h->root.dynindx;
2983
    }
2984
 
2985
  if (*tls_type_p & GOT_TLS_DONE)
2986
    return;
2987
 
2988
  if ((info->shared || indx != 0)
2989
      && (h == NULL
2990
          || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2991
          || h->root.type != bfd_link_hash_undefweak))
2992
    need_relocs = TRUE;
2993
 
2994
  /* MINUS_ONE means the symbol is not defined in this object.  It may not
2995
     be defined at all; assume that the value doesn't matter in that
2996
     case.  Otherwise complain if we would use the value.  */
2997
  BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2998
              || h->root.root.type == bfd_link_hash_undefweak);
2999
 
3000
  /* Emit necessary relocations.  */
3001
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
3002
 
3003
  /* General Dynamic.  */
3004
  if (*tls_type_p & GOT_TLS_GD)
3005
    {
3006
      offset = got_offset;
3007
      offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3008
 
3009
      if (need_relocs)
3010
        {
3011
          mips_elf_output_dynamic_relocation
3012
            (abfd, sreloc, sreloc->reloc_count++, indx,
3013
             ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3014
             sgot->output_offset + sgot->output_section->vma + offset);
3015
 
3016
          if (indx)
3017
            mips_elf_output_dynamic_relocation
3018
              (abfd, sreloc, sreloc->reloc_count++, indx,
3019
               ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3020
               sgot->output_offset + sgot->output_section->vma + offset2);
3021
          else
3022
            MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3023
                               sgot->contents + offset2);
3024
        }
3025
      else
3026
        {
3027
          MIPS_ELF_PUT_WORD (abfd, 1,
3028
                             sgot->contents + offset);
3029
          MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3030
                             sgot->contents + offset2);
3031
        }
3032
 
3033
      got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3034
    }
3035
 
3036
  /* Initial Exec model.  */
3037
  if (*tls_type_p & GOT_TLS_IE)
3038
    {
3039
      offset = got_offset;
3040
 
3041
      if (need_relocs)
3042
        {
3043
          if (indx == 0)
3044
            MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3045
                               sgot->contents + offset);
3046
          else
3047
            MIPS_ELF_PUT_WORD (abfd, 0,
3048
                               sgot->contents + offset);
3049
 
3050
          mips_elf_output_dynamic_relocation
3051
            (abfd, sreloc, sreloc->reloc_count++, indx,
3052
             ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3053
             sgot->output_offset + sgot->output_section->vma + offset);
3054
        }
3055
      else
3056
        MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3057
                           sgot->contents + offset);
3058
    }
3059
 
3060
  if (*tls_type_p & GOT_TLS_LDM)
3061
    {
3062
      /* The initial offset is zero, and the LD offsets will include the
3063
         bias by DTP_OFFSET.  */
3064
      MIPS_ELF_PUT_WORD (abfd, 0,
3065
                         sgot->contents + got_offset
3066
                         + MIPS_ELF_GOT_SIZE (abfd));
3067
 
3068
      if (!info->shared)
3069
        MIPS_ELF_PUT_WORD (abfd, 1,
3070
                           sgot->contents + got_offset);
3071
      else
3072
        mips_elf_output_dynamic_relocation
3073
          (abfd, sreloc, sreloc->reloc_count++, indx,
3074
           ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3075
           sgot->output_offset + sgot->output_section->vma + got_offset);
3076
    }
3077
 
3078
  *tls_type_p |= GOT_TLS_DONE;
3079
}
3080
 
3081
/* Return the GOT index to use for a relocation of type R_TYPE against
3082
   a symbol accessed using TLS_TYPE models.  The GOT entries for this
3083
   symbol in this GOT start at GOT_INDEX.  This function initializes the
3084
   GOT entries and corresponding relocations.  */
3085
 
3086
static bfd_vma
3087
mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3088
                    int r_type, struct bfd_link_info *info,
3089
                    struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3090
{
3091 161 khays
  BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3092
              || tls_gd_reloc_p (r_type)
3093
              || tls_ldm_reloc_p (r_type));
3094 14 khays
 
3095
  mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3096
 
3097 161 khays
  if (tls_gottprel_reloc_p (r_type))
3098 14 khays
    {
3099
      BFD_ASSERT (*tls_type & GOT_TLS_IE);
3100
      if (*tls_type & GOT_TLS_GD)
3101
        return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3102
      else
3103
        return got_index;
3104
    }
3105
 
3106 161 khays
  if (tls_gd_reloc_p (r_type))
3107 14 khays
    {
3108
      BFD_ASSERT (*tls_type & GOT_TLS_GD);
3109
      return got_index;
3110
    }
3111
 
3112 161 khays
  if (tls_ldm_reloc_p (r_type))
3113 14 khays
    {
3114
      BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3115
      return got_index;
3116
    }
3117
 
3118
  return got_index;
3119
}
3120
 
3121
/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3122
   for global symbol H.  .got.plt comes before the GOT, so the offset
3123
   will be negative.  */
3124
 
3125
static bfd_vma
3126
mips_elf_gotplt_index (struct bfd_link_info *info,
3127
                       struct elf_link_hash_entry *h)
3128
{
3129
  bfd_vma plt_index, got_address, got_value;
3130
  struct mips_elf_link_hash_table *htab;
3131
 
3132
  htab = mips_elf_hash_table (info);
3133
  BFD_ASSERT (htab != NULL);
3134
 
3135
  BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3136
 
3137
  /* This function only works for VxWorks, because a non-VxWorks .got.plt
3138
     section starts with reserved entries.  */
3139
  BFD_ASSERT (htab->is_vxworks);
3140
 
3141
  /* Calculate the index of the symbol's PLT entry.  */
3142
  plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3143
 
3144
  /* Calculate the address of the associated .got.plt entry.  */
3145
  got_address = (htab->sgotplt->output_section->vma
3146
                 + htab->sgotplt->output_offset
3147
                 + plt_index * 4);
3148
 
3149
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3150
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3151
               + htab->root.hgot->root.u.def.section->output_offset
3152
               + htab->root.hgot->root.u.def.value);
3153
 
3154
  return got_address - got_value;
3155
}
3156
 
3157
/* Return the GOT offset for address VALUE.   If there is not yet a GOT
3158
   entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3159
   create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3160
   offset can be found.  */
3161
 
3162
static bfd_vma
3163
mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3164
                          bfd_vma value, unsigned long r_symndx,
3165
                          struct mips_elf_link_hash_entry *h, int r_type)
3166
{
3167
  struct mips_elf_link_hash_table *htab;
3168
  struct mips_got_entry *entry;
3169
 
3170
  htab = mips_elf_hash_table (info);
3171
  BFD_ASSERT (htab != NULL);
3172
 
3173
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3174
                                           r_symndx, h, r_type);
3175
  if (!entry)
3176
    return MINUS_ONE;
3177
 
3178
  if (TLS_RELOC_P (r_type))
3179
    {
3180
      if (entry->symndx == -1 && htab->got_info->next == NULL)
3181
        /* A type (3) entry in the single-GOT case.  We use the symbol's
3182
           hash table entry to track the index.  */
3183
        return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3184
                                   r_type, info, h, value);
3185
      else
3186
        return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3187
                                   r_type, info, h, value);
3188
    }
3189
  else
3190
    return entry->gotidx;
3191
}
3192
 
3193
/* Returns the GOT index for the global symbol indicated by H.  */
3194
 
3195
static bfd_vma
3196
mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3197
                           int r_type, struct bfd_link_info *info)
3198
{
3199
  struct mips_elf_link_hash_table *htab;
3200
  bfd_vma got_index;
3201
  struct mips_got_info *g, *gg;
3202
  long global_got_dynindx = 0;
3203
 
3204
  htab = mips_elf_hash_table (info);
3205
  BFD_ASSERT (htab != NULL);
3206
 
3207
  gg = g = htab->got_info;
3208
  if (g->bfd2got && ibfd)
3209
    {
3210
      struct mips_got_entry e, *p;
3211
 
3212
      BFD_ASSERT (h->dynindx >= 0);
3213
 
3214
      g = mips_elf_got_for_ibfd (g, ibfd);
3215
      if (g->next != gg || TLS_RELOC_P (r_type))
3216
        {
3217
          e.abfd = ibfd;
3218
          e.symndx = -1;
3219
          e.d.h = (struct mips_elf_link_hash_entry *)h;
3220
          e.tls_type = 0;
3221
 
3222
          p = htab_find (g->got_entries, &e);
3223
 
3224
          BFD_ASSERT (p->gotidx > 0);
3225
 
3226
          if (TLS_RELOC_P (r_type))
3227
            {
3228
              bfd_vma value = MINUS_ONE;
3229
              if ((h->root.type == bfd_link_hash_defined
3230
                   || h->root.type == bfd_link_hash_defweak)
3231
                  && h->root.u.def.section->output_section)
3232
                value = (h->root.u.def.value
3233
                         + h->root.u.def.section->output_offset
3234
                         + h->root.u.def.section->output_section->vma);
3235
 
3236
              return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3237
                                         info, e.d.h, value);
3238
            }
3239
          else
3240
            return p->gotidx;
3241
        }
3242
    }
3243
 
3244
  if (gg->global_gotsym != NULL)
3245
    global_got_dynindx = gg->global_gotsym->dynindx;
3246
 
3247
  if (TLS_RELOC_P (r_type))
3248
    {
3249
      struct mips_elf_link_hash_entry *hm
3250
        = (struct mips_elf_link_hash_entry *) h;
3251
      bfd_vma value = MINUS_ONE;
3252
 
3253
      if ((h->root.type == bfd_link_hash_defined
3254
           || h->root.type == bfd_link_hash_defweak)
3255
          && h->root.u.def.section->output_section)
3256
        value = (h->root.u.def.value
3257
                 + h->root.u.def.section->output_offset
3258
                 + h->root.u.def.section->output_section->vma);
3259
 
3260
      got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3261
                                      r_type, info, hm, value);
3262
    }
3263
  else
3264
    {
3265
      /* Once we determine the global GOT entry with the lowest dynamic
3266
         symbol table index, we must put all dynamic symbols with greater
3267
         indices into the GOT.  That makes it easy to calculate the GOT
3268
         offset.  */
3269
      BFD_ASSERT (h->dynindx >= global_got_dynindx);
3270
      got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3271
                   * MIPS_ELF_GOT_SIZE (abfd));
3272
    }
3273
  BFD_ASSERT (got_index < htab->sgot->size);
3274
 
3275
  return got_index;
3276
}
3277
 
3278
/* Find a GOT page entry that points to within 32KB of VALUE.  These
3279
   entries are supposed to be placed at small offsets in the GOT, i.e.,
3280
   within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3281
   entry could be created.  If OFFSETP is nonnull, use it to return the
3282
   offset of the GOT entry from VALUE.  */
3283
 
3284
static bfd_vma
3285
mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286
                   bfd_vma value, bfd_vma *offsetp)
3287
{
3288
  bfd_vma page, got_index;
3289
  struct mips_got_entry *entry;
3290
 
3291
  page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293
                                           NULL, R_MIPS_GOT_PAGE);
3294
 
3295
  if (!entry)
3296
    return MINUS_ONE;
3297
 
3298
  got_index = entry->gotidx;
3299
 
3300
  if (offsetp)
3301
    *offsetp = value - entry->d.address;
3302
 
3303
  return got_index;
3304
}
3305
 
3306
/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307
   EXTERNAL is true if the relocation was originally against a global
3308
   symbol that binds locally.  */
3309
 
3310
static bfd_vma
3311
mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312
                      bfd_vma value, bfd_boolean external)
3313
{
3314
  struct mips_got_entry *entry;
3315
 
3316
  /* GOT16 relocations against local symbols are followed by a LO16
3317
     relocation; those against global symbols are not.  Thus if the
3318
     symbol was originally local, the GOT16 relocation should load the
3319
     equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3320
  if (! external)
3321
    value = mips_elf_high (value) << 16;
3322
 
3323
  /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324
     R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3325
     same in all cases.  */
3326
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327
                                           NULL, R_MIPS_GOT16);
3328
  if (entry)
3329
    return entry->gotidx;
3330
  else
3331
    return MINUS_ONE;
3332
}
3333
 
3334
/* Returns the offset for the entry at the INDEXth position
3335
   in the GOT.  */
3336
 
3337
static bfd_vma
3338
mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339
                                bfd *input_bfd, bfd_vma got_index)
3340
{
3341
  struct mips_elf_link_hash_table *htab;
3342
  asection *sgot;
3343
  bfd_vma gp;
3344
 
3345
  htab = mips_elf_hash_table (info);
3346
  BFD_ASSERT (htab != NULL);
3347
 
3348
  sgot = htab->sgot;
3349
  gp = _bfd_get_gp_value (output_bfd)
3350
    + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3351
 
3352
  return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3353
}
3354
 
3355
/* Create and return a local GOT entry for VALUE, which was calculated
3356
   from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3357
   be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3358
   instead.  */
3359
 
3360
static struct mips_got_entry *
3361
mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362
                                 bfd *ibfd, bfd_vma value,
3363
                                 unsigned long r_symndx,
3364
                                 struct mips_elf_link_hash_entry *h,
3365
                                 int r_type)
3366
{
3367
  struct mips_got_entry entry, **loc;
3368
  struct mips_got_info *g;
3369
  struct mips_elf_link_hash_table *htab;
3370
 
3371
  htab = mips_elf_hash_table (info);
3372
  BFD_ASSERT (htab != NULL);
3373
 
3374
  entry.abfd = NULL;
3375
  entry.symndx = -1;
3376
  entry.d.address = value;
3377
  entry.tls_type = 0;
3378
 
3379
  g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3380
  if (g == NULL)
3381
    {
3382
      g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3383
      BFD_ASSERT (g != NULL);
3384
    }
3385
 
3386
  /* This function shouldn't be called for symbols that live in the global
3387
     area of the GOT.  */
3388
  BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3389
  if (TLS_RELOC_P (r_type))
3390
    {
3391
      struct mips_got_entry *p;
3392
 
3393
      entry.abfd = ibfd;
3394 161 khays
      if (tls_ldm_reloc_p (r_type))
3395 14 khays
        {
3396
          entry.tls_type = GOT_TLS_LDM;
3397
          entry.symndx = 0;
3398
          entry.d.addend = 0;
3399
        }
3400
      else if (h == NULL)
3401
        {
3402
          entry.symndx = r_symndx;
3403
          entry.d.addend = 0;
3404
        }
3405
      else
3406
        entry.d.h = h;
3407
 
3408
      p = (struct mips_got_entry *)
3409
        htab_find (g->got_entries, &entry);
3410
 
3411
      BFD_ASSERT (p);
3412
      return p;
3413
    }
3414
 
3415
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3416
                                                   INSERT);
3417
  if (*loc)
3418
    return *loc;
3419
 
3420
  entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3421
  entry.tls_type = 0;
3422
 
3423
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3424
 
3425
  if (! *loc)
3426
    return NULL;
3427
 
3428
  memcpy (*loc, &entry, sizeof entry);
3429
 
3430
  if (g->assigned_gotno > g->local_gotno)
3431
    {
3432
      (*loc)->gotidx = -1;
3433
      /* We didn't allocate enough space in the GOT.  */
3434
      (*_bfd_error_handler)
3435
        (_("not enough GOT space for local GOT entries"));
3436
      bfd_set_error (bfd_error_bad_value);
3437
      return NULL;
3438
    }
3439
 
3440
  MIPS_ELF_PUT_WORD (abfd, value,
3441
                     (htab->sgot->contents + entry.gotidx));
3442
 
3443
  /* These GOT entries need a dynamic relocation on VxWorks.  */
3444
  if (htab->is_vxworks)
3445
    {
3446
      Elf_Internal_Rela outrel;
3447
      asection *s;
3448
      bfd_byte *rloc;
3449
      bfd_vma got_address;
3450
 
3451
      s = mips_elf_rel_dyn_section (info, FALSE);
3452
      got_address = (htab->sgot->output_section->vma
3453
                     + htab->sgot->output_offset
3454
                     + entry.gotidx);
3455
 
3456
      rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3457
      outrel.r_offset = got_address;
3458
      outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3459
      outrel.r_addend = value;
3460
      bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3461
    }
3462
 
3463
  return *loc;
3464
}
3465
 
3466
/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3467
   The number might be exact or a worst-case estimate, depending on how
3468
   much information is available to elf_backend_omit_section_dynsym at
3469
   the current linking stage.  */
3470
 
3471
static bfd_size_type
3472
count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3473
{
3474
  bfd_size_type count;
3475
 
3476
  count = 0;
3477
  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3478
    {
3479
      asection *p;
3480
      const struct elf_backend_data *bed;
3481
 
3482
      bed = get_elf_backend_data (output_bfd);
3483
      for (p = output_bfd->sections; p ; p = p->next)
3484
        if ((p->flags & SEC_EXCLUDE) == 0
3485
            && (p->flags & SEC_ALLOC) != 0
3486
            && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3487
          ++count;
3488
    }
3489
  return count;
3490
}
3491
 
3492
/* Sort the dynamic symbol table so that symbols that need GOT entries
3493
   appear towards the end.  */
3494
 
3495
static bfd_boolean
3496
mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3497
{
3498
  struct mips_elf_link_hash_table *htab;
3499
  struct mips_elf_hash_sort_data hsd;
3500
  struct mips_got_info *g;
3501
 
3502
  if (elf_hash_table (info)->dynsymcount == 0)
3503
    return TRUE;
3504
 
3505
  htab = mips_elf_hash_table (info);
3506
  BFD_ASSERT (htab != NULL);
3507
 
3508
  g = htab->got_info;
3509
  if (g == NULL)
3510
    return TRUE;
3511
 
3512
  hsd.low = NULL;
3513
  hsd.max_unref_got_dynindx
3514
    = hsd.min_got_dynindx
3515
    = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3516
  hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3517
  mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3518
                                elf_hash_table (info)),
3519
                               mips_elf_sort_hash_table_f,
3520
                               &hsd);
3521
 
3522
  /* There should have been enough room in the symbol table to
3523
     accommodate both the GOT and non-GOT symbols.  */
3524
  BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3525
  BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3526
              == elf_hash_table (info)->dynsymcount);
3527
  BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3528
              == g->global_gotno);
3529
 
3530
  /* Now we know which dynamic symbol has the lowest dynamic symbol
3531
     table index in the GOT.  */
3532
  g->global_gotsym = hsd.low;
3533
 
3534
  return TRUE;
3535
}
3536
 
3537
/* If H needs a GOT entry, assign it the highest available dynamic
3538
   index.  Otherwise, assign it the lowest available dynamic
3539
   index.  */
3540
 
3541
static bfd_boolean
3542
mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3543
{
3544
  struct mips_elf_hash_sort_data *hsd = data;
3545
 
3546
  /* Symbols without dynamic symbol table entries aren't interesting
3547
     at all.  */
3548
  if (h->root.dynindx == -1)
3549
    return TRUE;
3550
 
3551
  switch (h->global_got_area)
3552
    {
3553
    case GGA_NONE:
3554
      h->root.dynindx = hsd->max_non_got_dynindx++;
3555
      break;
3556
 
3557
    case GGA_NORMAL:
3558
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
3559
 
3560
      h->root.dynindx = --hsd->min_got_dynindx;
3561
      hsd->low = (struct elf_link_hash_entry *) h;
3562
      break;
3563
 
3564
    case GGA_RELOC_ONLY:
3565
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
3566
 
3567
      if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3568
        hsd->low = (struct elf_link_hash_entry *) h;
3569
      h->root.dynindx = hsd->max_unref_got_dynindx++;
3570
      break;
3571
    }
3572
 
3573
  return TRUE;
3574
}
3575
 
3576
/* If H is a symbol that needs a global GOT entry, but has a dynamic
3577
   symbol table index lower than any we've seen to date, record it for
3578
   posterity.  FOR_CALL is true if the caller is only interested in
3579
   using the GOT entry for calls.  */
3580
 
3581
static bfd_boolean
3582
mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3583
                                   bfd *abfd, struct bfd_link_info *info,
3584
                                   bfd_boolean for_call,
3585
                                   unsigned char tls_flag)
3586
{
3587
  struct mips_elf_link_hash_table *htab;
3588
  struct mips_elf_link_hash_entry *hmips;
3589
  struct mips_got_entry entry, **loc;
3590
  struct mips_got_info *g;
3591
 
3592
  htab = mips_elf_hash_table (info);
3593
  BFD_ASSERT (htab != NULL);
3594
 
3595
  hmips = (struct mips_elf_link_hash_entry *) h;
3596
  if (!for_call)
3597
    hmips->got_only_for_calls = FALSE;
3598
 
3599
  /* A global symbol in the GOT must also be in the dynamic symbol
3600
     table.  */
3601
  if (h->dynindx == -1)
3602
    {
3603
      switch (ELF_ST_VISIBILITY (h->other))
3604
        {
3605
        case STV_INTERNAL:
3606
        case STV_HIDDEN:
3607
          _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3608
          break;
3609
        }
3610
      if (!bfd_elf_link_record_dynamic_symbol (info, h))
3611
        return FALSE;
3612
    }
3613
 
3614
  /* Make sure we have a GOT to put this entry into.  */
3615
  g = htab->got_info;
3616
  BFD_ASSERT (g != NULL);
3617
 
3618
  entry.abfd = abfd;
3619
  entry.symndx = -1;
3620
  entry.d.h = (struct mips_elf_link_hash_entry *) h;
3621
  entry.tls_type = 0;
3622
 
3623
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3624
                                                   INSERT);
3625
 
3626
  /* If we've already marked this entry as needing GOT space, we don't
3627
     need to do it again.  */
3628
  if (*loc)
3629
    {
3630
      (*loc)->tls_type |= tls_flag;
3631
      return TRUE;
3632
    }
3633
 
3634
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3635
 
3636
  if (! *loc)
3637
    return FALSE;
3638
 
3639
  entry.gotidx = -1;
3640
  entry.tls_type = tls_flag;
3641
 
3642
  memcpy (*loc, &entry, sizeof entry);
3643
 
3644
  if (tls_flag == 0)
3645
    hmips->global_got_area = GGA_NORMAL;
3646
 
3647
  return TRUE;
3648
}
3649
 
3650
/* Reserve space in G for a GOT entry containing the value of symbol
3651
   SYMNDX in input bfd ABDF, plus ADDEND.  */
3652
 
3653
static bfd_boolean
3654
mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3655
                                  struct bfd_link_info *info,
3656
                                  unsigned char tls_flag)
3657
{
3658
  struct mips_elf_link_hash_table *htab;
3659
  struct mips_got_info *g;
3660
  struct mips_got_entry entry, **loc;
3661
 
3662
  htab = mips_elf_hash_table (info);
3663
  BFD_ASSERT (htab != NULL);
3664
 
3665
  g = htab->got_info;
3666
  BFD_ASSERT (g != NULL);
3667
 
3668
  entry.abfd = abfd;
3669
  entry.symndx = symndx;
3670
  entry.d.addend = addend;
3671
  entry.tls_type = tls_flag;
3672
  loc = (struct mips_got_entry **)
3673
    htab_find_slot (g->got_entries, &entry, INSERT);
3674
 
3675
  if (*loc)
3676
    {
3677
      if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3678
        {
3679
          g->tls_gotno += 2;
3680
          (*loc)->tls_type |= tls_flag;
3681
        }
3682
      else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3683
        {
3684
          g->tls_gotno += 1;
3685
          (*loc)->tls_type |= tls_flag;
3686
        }
3687
      return TRUE;
3688
    }
3689
 
3690
  if (tls_flag != 0)
3691
    {
3692
      entry.gotidx = -1;
3693
      entry.tls_type = tls_flag;
3694
      if (tls_flag == GOT_TLS_IE)
3695
        g->tls_gotno += 1;
3696
      else if (tls_flag == GOT_TLS_GD)
3697
        g->tls_gotno += 2;
3698
      else if (g->tls_ldm_offset == MINUS_ONE)
3699
        {
3700
          g->tls_ldm_offset = MINUS_TWO;
3701
          g->tls_gotno += 2;
3702
        }
3703
    }
3704
  else
3705
    {
3706
      entry.gotidx = g->local_gotno++;
3707
      entry.tls_type = 0;
3708
    }
3709
 
3710
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3711
 
3712
  if (! *loc)
3713
    return FALSE;
3714
 
3715
  memcpy (*loc, &entry, sizeof entry);
3716
 
3717
  return TRUE;
3718
}
3719
 
3720
/* Return the maximum number of GOT page entries required for RANGE.  */
3721
 
3722
static bfd_vma
3723
mips_elf_pages_for_range (const struct mips_got_page_range *range)
3724
{
3725
  return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3726
}
3727
 
3728
/* Record that ABFD has a page relocation against symbol SYMNDX and
3729
   that ADDEND is the addend for that relocation.
3730
 
3731
   This function creates an upper bound on the number of GOT slots
3732
   required; no attempt is made to combine references to non-overridable
3733
   global symbols across multiple input files.  */
3734
 
3735
static bfd_boolean
3736
mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3737
                                long symndx, bfd_signed_vma addend)
3738
{
3739
  struct mips_elf_link_hash_table *htab;
3740
  struct mips_got_info *g;
3741
  struct mips_got_page_entry lookup, *entry;
3742
  struct mips_got_page_range **range_ptr, *range;
3743
  bfd_vma old_pages, new_pages;
3744
  void **loc;
3745
 
3746
  htab = mips_elf_hash_table (info);
3747
  BFD_ASSERT (htab != NULL);
3748
 
3749
  g = htab->got_info;
3750
  BFD_ASSERT (g != NULL);
3751
 
3752
  /* Find the mips_got_page_entry hash table entry for this symbol.  */
3753
  lookup.abfd = abfd;
3754
  lookup.symndx = symndx;
3755
  loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3756
  if (loc == NULL)
3757
    return FALSE;
3758
 
3759
  /* Create a mips_got_page_entry if this is the first time we've
3760
     seen the symbol.  */
3761
  entry = (struct mips_got_page_entry *) *loc;
3762
  if (!entry)
3763
    {
3764
      entry = bfd_alloc (abfd, sizeof (*entry));
3765
      if (!entry)
3766
        return FALSE;
3767
 
3768
      entry->abfd = abfd;
3769
      entry->symndx = symndx;
3770
      entry->ranges = NULL;
3771
      entry->num_pages = 0;
3772
      *loc = entry;
3773
    }
3774
 
3775
  /* Skip over ranges whose maximum extent cannot share a page entry
3776
     with ADDEND.  */
3777
  range_ptr = &entry->ranges;
3778
  while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3779
    range_ptr = &(*range_ptr)->next;
3780
 
3781
  /* If we scanned to the end of the list, or found a range whose
3782
     minimum extent cannot share a page entry with ADDEND, create
3783
     a new singleton range.  */
3784
  range = *range_ptr;
3785
  if (!range || addend < range->min_addend - 0xffff)
3786
    {
3787
      range = bfd_alloc (abfd, sizeof (*range));
3788
      if (!range)
3789
        return FALSE;
3790
 
3791
      range->next = *range_ptr;
3792
      range->min_addend = addend;
3793
      range->max_addend = addend;
3794
 
3795
      *range_ptr = range;
3796
      entry->num_pages++;
3797
      g->page_gotno++;
3798
      return TRUE;
3799
    }
3800
 
3801
  /* Remember how many pages the old range contributed.  */
3802
  old_pages = mips_elf_pages_for_range (range);
3803
 
3804
  /* Update the ranges.  */
3805
  if (addend < range->min_addend)
3806
    range->min_addend = addend;
3807
  else if (addend > range->max_addend)
3808
    {
3809
      if (range->next && addend >= range->next->min_addend - 0xffff)
3810
        {
3811
          old_pages += mips_elf_pages_for_range (range->next);
3812
          range->max_addend = range->next->max_addend;
3813
          range->next = range->next->next;
3814
        }
3815
      else
3816
        range->max_addend = addend;
3817
    }
3818
 
3819
  /* Record any change in the total estimate.  */
3820
  new_pages = mips_elf_pages_for_range (range);
3821
  if (old_pages != new_pages)
3822
    {
3823
      entry->num_pages += new_pages - old_pages;
3824
      g->page_gotno += new_pages - old_pages;
3825
    }
3826
 
3827
  return TRUE;
3828
}
3829
 
3830
/* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
3831
 
3832
static void
3833
mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3834
                                       unsigned int n)
3835
{
3836
  asection *s;
3837
  struct mips_elf_link_hash_table *htab;
3838
 
3839
  htab = mips_elf_hash_table (info);
3840
  BFD_ASSERT (htab != NULL);
3841
 
3842
  s = mips_elf_rel_dyn_section (info, FALSE);
3843
  BFD_ASSERT (s != NULL);
3844
 
3845
  if (htab->is_vxworks)
3846
    s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3847
  else
3848
    {
3849
      if (s->size == 0)
3850
        {
3851
          /* Make room for a null element.  */
3852
          s->size += MIPS_ELF_REL_SIZE (abfd);
3853
          ++s->reloc_count;
3854
        }
3855
      s->size += n * MIPS_ELF_REL_SIZE (abfd);
3856
    }
3857
}
3858
 
3859
/* A htab_traverse callback for GOT entries.  Set boolean *DATA to true
3860
   if the GOT entry is for an indirect or warning symbol.  */
3861
 
3862
static int
3863
mips_elf_check_recreate_got (void **entryp, void *data)
3864
{
3865
  struct mips_got_entry *entry;
3866
  bfd_boolean *must_recreate;
3867
 
3868
  entry = (struct mips_got_entry *) *entryp;
3869
  must_recreate = (bfd_boolean *) data;
3870
  if (entry->abfd != NULL && entry->symndx == -1)
3871
    {
3872
      struct mips_elf_link_hash_entry *h;
3873
 
3874
      h = entry->d.h;
3875
      if (h->root.root.type == bfd_link_hash_indirect
3876
          || h->root.root.type == bfd_link_hash_warning)
3877
        {
3878
          *must_recreate = TRUE;
3879
          return 0;
3880
        }
3881
    }
3882
  return 1;
3883
}
3884
 
3885
/* A htab_traverse callback for GOT entries.  Add all entries to
3886
   hash table *DATA, converting entries for indirect and warning
3887
   symbols into entries for the target symbol.  Set *DATA to null
3888
   on error.  */
3889
 
3890
static int
3891
mips_elf_recreate_got (void **entryp, void *data)
3892
{
3893
  htab_t *new_got;
3894
  struct mips_got_entry *entry;
3895
  void **slot;
3896
 
3897
  new_got = (htab_t *) data;
3898
  entry = (struct mips_got_entry *) *entryp;
3899
  if (entry->abfd != NULL && entry->symndx == -1)
3900
    {
3901
      struct mips_elf_link_hash_entry *h;
3902
 
3903
      h = entry->d.h;
3904
      while (h->root.root.type == bfd_link_hash_indirect
3905
             || h->root.root.type == bfd_link_hash_warning)
3906
        {
3907
          BFD_ASSERT (h->global_got_area == GGA_NONE);
3908
          h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3909
        }
3910
      entry->d.h = h;
3911
    }
3912
  slot = htab_find_slot (*new_got, entry, INSERT);
3913
  if (slot == NULL)
3914
    {
3915
      *new_got = NULL;
3916
      return 0;
3917
    }
3918
  if (*slot == NULL)
3919
    *slot = entry;
3920
  else
3921
    free (entry);
3922
  return 1;
3923
}
3924
 
3925
/* If any entries in G->got_entries are for indirect or warning symbols,
3926
   replace them with entries for the target symbol.  */
3927
 
3928
static bfd_boolean
3929
mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3930
{
3931
  bfd_boolean must_recreate;
3932
  htab_t new_got;
3933
 
3934
  must_recreate = FALSE;
3935
  htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3936
  if (must_recreate)
3937
    {
3938
      new_got = htab_create (htab_size (g->got_entries),
3939
                             mips_elf_got_entry_hash,
3940
                             mips_elf_got_entry_eq, NULL);
3941
      htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3942
      if (new_got == NULL)
3943
        return FALSE;
3944
 
3945
      /* Each entry in g->got_entries has either been copied to new_got
3946
         or freed.  Now delete the hash table itself.  */
3947
      htab_delete (g->got_entries);
3948
      g->got_entries = new_got;
3949
    }
3950
  return TRUE;
3951
}
3952
 
3953
/* A mips_elf_link_hash_traverse callback for which DATA points
3954
   to the link_info structure.  Count the number of type (3) entries
3955
   in the master GOT.  */
3956
 
3957
static int
3958
mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3959
{
3960
  struct bfd_link_info *info;
3961
  struct mips_elf_link_hash_table *htab;
3962
  struct mips_got_info *g;
3963
 
3964
  info = (struct bfd_link_info *) data;
3965
  htab = mips_elf_hash_table (info);
3966
  g = htab->got_info;
3967
  if (h->global_got_area != GGA_NONE)
3968
    {
3969
      /* Make a final decision about whether the symbol belongs in the
3970
         local or global GOT.  Symbols that bind locally can (and in the
3971
         case of forced-local symbols, must) live in the local GOT.
3972
         Those that are aren't in the dynamic symbol table must also
3973
         live in the local GOT.
3974
 
3975
         Note that the former condition does not always imply the
3976
         latter: symbols do not bind locally if they are completely
3977
         undefined.  We'll report undefined symbols later if appropriate.  */
3978
      if (h->root.dynindx == -1
3979
          || (h->got_only_for_calls
3980
              ? SYMBOL_CALLS_LOCAL (info, &h->root)
3981
              : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3982
        {
3983
          /* The symbol belongs in the local GOT.  We no longer need this
3984
             entry if it was only used for relocations; those relocations
3985
             will be against the null or section symbol instead of H.  */
3986
          if (h->global_got_area != GGA_RELOC_ONLY)
3987
            g->local_gotno++;
3988
          h->global_got_area = GGA_NONE;
3989
        }
3990
      else if (htab->is_vxworks
3991
               && h->got_only_for_calls
3992
               && h->root.plt.offset != MINUS_ONE)
3993
        /* On VxWorks, calls can refer directly to the .got.plt entry;
3994
           they don't need entries in the regular GOT.  .got.plt entries
3995
           will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
3996
        h->global_got_area = GGA_NONE;
3997
      else
3998
        {
3999
          g->global_gotno++;
4000
          if (h->global_got_area == GGA_RELOC_ONLY)
4001
            g->reloc_only_gotno++;
4002
        }
4003
    }
4004
  return 1;
4005
}
4006
 
4007
/* Compute the hash value of the bfd in a bfd2got hash entry.  */
4008
 
4009
static hashval_t
4010
mips_elf_bfd2got_entry_hash (const void *entry_)
4011
{
4012
  const struct mips_elf_bfd2got_hash *entry
4013
    = (struct mips_elf_bfd2got_hash *)entry_;
4014
 
4015
  return entry->bfd->id;
4016
}
4017
 
4018
/* Check whether two hash entries have the same bfd.  */
4019
 
4020
static int
4021
mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4022
{
4023
  const struct mips_elf_bfd2got_hash *e1
4024
    = (const struct mips_elf_bfd2got_hash *)entry1;
4025
  const struct mips_elf_bfd2got_hash *e2
4026
    = (const struct mips_elf_bfd2got_hash *)entry2;
4027
 
4028
  return e1->bfd == e2->bfd;
4029
}
4030
 
4031
/* In a multi-got link, determine the GOT to be used for IBFD.  G must
4032
   be the master GOT data.  */
4033
 
4034
static struct mips_got_info *
4035
mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4036
{
4037
  struct mips_elf_bfd2got_hash e, *p;
4038
 
4039
  if (! g->bfd2got)
4040
    return g;
4041
 
4042
  e.bfd = ibfd;
4043
  p = htab_find (g->bfd2got, &e);
4044
  return p ? p->g : NULL;
4045
}
4046
 
4047
/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4048
   Return NULL if an error occured.  */
4049
 
4050
static struct mips_got_info *
4051
mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4052
                          bfd *input_bfd)
4053
{
4054
  struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4055
  struct mips_got_info *g;
4056
  void **bfdgotp;
4057
 
4058
  bfdgot_entry.bfd = input_bfd;
4059
  bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4060
  bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4061
 
4062
  if (bfdgot == NULL)
4063
    {
4064
      bfdgot = ((struct mips_elf_bfd2got_hash *)
4065
                bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4066
      if (bfdgot == NULL)
4067
        return NULL;
4068
 
4069
      *bfdgotp = bfdgot;
4070
 
4071
      g = ((struct mips_got_info *)
4072
           bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4073
      if (g == NULL)
4074
        return NULL;
4075
 
4076
      bfdgot->bfd = input_bfd;
4077
      bfdgot->g = g;
4078
 
4079
      g->global_gotsym = NULL;
4080
      g->global_gotno = 0;
4081
      g->reloc_only_gotno = 0;
4082
      g->local_gotno = 0;
4083
      g->page_gotno = 0;
4084
      g->assigned_gotno = -1;
4085
      g->tls_gotno = 0;
4086
      g->tls_assigned_gotno = 0;
4087
      g->tls_ldm_offset = MINUS_ONE;
4088
      g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4089
                                        mips_elf_multi_got_entry_eq, NULL);
4090
      if (g->got_entries == NULL)
4091
        return NULL;
4092
 
4093
      g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4094
                                             mips_got_page_entry_eq, NULL);
4095
      if (g->got_page_entries == NULL)
4096
        return NULL;
4097
 
4098
      g->bfd2got = NULL;
4099
      g->next = NULL;
4100
    }
4101
 
4102
  return bfdgot->g;
4103
}
4104
 
4105
/* A htab_traverse callback for the entries in the master got.
4106
   Create one separate got for each bfd that has entries in the global
4107
   got, such that we can tell how many local and global entries each
4108
   bfd requires.  */
4109
 
4110
static int
4111
mips_elf_make_got_per_bfd (void **entryp, void *p)
4112
{
4113
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4114
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4115
  struct mips_got_info *g;
4116
 
4117
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4118
  if (g == NULL)
4119
    {
4120
      arg->obfd = NULL;
4121
      return 0;
4122
    }
4123
 
4124
  /* Insert the GOT entry in the bfd's got entry hash table.  */
4125
  entryp = htab_find_slot (g->got_entries, entry, INSERT);
4126
  if (*entryp != NULL)
4127
    return 1;
4128
 
4129
  *entryp = entry;
4130
 
4131
  if (entry->tls_type)
4132
    {
4133
      if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4134
        g->tls_gotno += 2;
4135
      if (entry->tls_type & GOT_TLS_IE)
4136
        g->tls_gotno += 1;
4137
    }
4138
  else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4139
    ++g->local_gotno;
4140
  else
4141
    ++g->global_gotno;
4142
 
4143
  return 1;
4144
}
4145
 
4146
/* A htab_traverse callback for the page entries in the master got.
4147
   Associate each page entry with the bfd's got.  */
4148
 
4149
static int
4150
mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4151
{
4152
  struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4153
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4154
  struct mips_got_info *g;
4155
 
4156
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4157
  if (g == NULL)
4158
    {
4159
      arg->obfd = NULL;
4160
      return 0;
4161
    }
4162
 
4163
  /* Insert the GOT entry in the bfd's got entry hash table.  */
4164
  entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4165
  if (*entryp != NULL)
4166
    return 1;
4167
 
4168
  *entryp = entry;
4169
  g->page_gotno += entry->num_pages;
4170
  return 1;
4171
}
4172
 
4173
/* Consider merging the got described by BFD2GOT with TO, using the
4174
   information given by ARG.  Return -1 if this would lead to overflow,
4175
   1 if they were merged successfully, and 0 if a merge failed due to
4176
   lack of memory.  (These values are chosen so that nonnegative return
4177
   values can be returned by a htab_traverse callback.)  */
4178
 
4179
static int
4180
mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4181
                         struct mips_got_info *to,
4182
                         struct mips_elf_got_per_bfd_arg *arg)
4183
{
4184
  struct mips_got_info *from = bfd2got->g;
4185
  unsigned int estimate;
4186
 
4187
  /* Work out how many page entries we would need for the combined GOT.  */
4188
  estimate = arg->max_pages;
4189
  if (estimate >= from->page_gotno + to->page_gotno)
4190
    estimate = from->page_gotno + to->page_gotno;
4191
 
4192
  /* And conservatively estimate how many local and TLS entries
4193
     would be needed.  */
4194
  estimate += from->local_gotno + to->local_gotno;
4195
  estimate += from->tls_gotno + to->tls_gotno;
4196
 
4197
  /* If we're merging with the primary got, we will always have
4198
     the full set of global entries.  Otherwise estimate those
4199
     conservatively as well.  */
4200
  if (to == arg->primary)
4201
    estimate += arg->global_count;
4202
  else
4203
    estimate += from->global_gotno + to->global_gotno;
4204
 
4205
  /* Bail out if the combined GOT might be too big.  */
4206
  if (estimate > arg->max_count)
4207
    return -1;
4208
 
4209
  /* Commit to the merge.  Record that TO is now the bfd for this got.  */
4210
  bfd2got->g = to;
4211
 
4212
  /* Transfer the bfd's got information from FROM to TO.  */
4213
  htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4214
  if (arg->obfd == NULL)
4215
    return 0;
4216
 
4217
  htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4218
  if (arg->obfd == NULL)
4219
    return 0;
4220
 
4221
  /* We don't have to worry about releasing memory of the actual
4222
     got entries, since they're all in the master got_entries hash
4223
     table anyway.  */
4224
  htab_delete (from->got_entries);
4225
  htab_delete (from->got_page_entries);
4226
  return 1;
4227
}
4228
 
4229
/* Attempt to merge gots of different input bfds.  Try to use as much
4230
   as possible of the primary got, since it doesn't require explicit
4231
   dynamic relocations, but don't use bfds that would reference global
4232
   symbols out of the addressable range.  Failing the primary got,
4233
   attempt to merge with the current got, or finish the current got
4234
   and then make make the new got current.  */
4235
 
4236
static int
4237
mips_elf_merge_gots (void **bfd2got_, void *p)
4238
{
4239
  struct mips_elf_bfd2got_hash *bfd2got
4240
    = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4241
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4242
  struct mips_got_info *g;
4243
  unsigned int estimate;
4244
  int result;
4245
 
4246
  g = bfd2got->g;
4247
 
4248
  /* Work out the number of page, local and TLS entries.  */
4249
  estimate = arg->max_pages;
4250
  if (estimate > g->page_gotno)
4251
    estimate = g->page_gotno;
4252
  estimate += g->local_gotno + g->tls_gotno;
4253
 
4254
  /* We place TLS GOT entries after both locals and globals.  The globals
4255
     for the primary GOT may overflow the normal GOT size limit, so be
4256
     sure not to merge a GOT which requires TLS with the primary GOT in that
4257
     case.  This doesn't affect non-primary GOTs.  */
4258
  estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4259
 
4260
  if (estimate <= arg->max_count)
4261
    {
4262
      /* If we don't have a primary GOT, use it as
4263
         a starting point for the primary GOT.  */
4264
      if (!arg->primary)
4265
        {
4266
          arg->primary = bfd2got->g;
4267
          return 1;
4268
        }
4269
 
4270
      /* Try merging with the primary GOT.  */
4271
      result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4272
      if (result >= 0)
4273
        return result;
4274
    }
4275
 
4276
  /* If we can merge with the last-created got, do it.  */
4277
  if (arg->current)
4278
    {
4279
      result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4280
      if (result >= 0)
4281
        return result;
4282
    }
4283
 
4284
  /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4285
     fits; if it turns out that it doesn't, we'll get relocation
4286
     overflows anyway.  */
4287
  g->next = arg->current;
4288
  arg->current = g;
4289
 
4290
  return 1;
4291
}
4292
 
4293
/* Set the TLS GOT index for the GOT entry in ENTRYP.  ENTRYP's NEXT field
4294
   is null iff there is just a single GOT.  */
4295
 
4296
static int
4297
mips_elf_initialize_tls_index (void **entryp, void *p)
4298
{
4299
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4300
  struct mips_got_info *g = p;
4301
  bfd_vma next_index;
4302
  unsigned char tls_type;
4303
 
4304
  /* We're only interested in TLS symbols.  */
4305
  if (entry->tls_type == 0)
4306
    return 1;
4307
 
4308
  next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4309
 
4310
  if (entry->symndx == -1 && g->next == NULL)
4311
    {
4312
      /* A type (3) got entry in the single-GOT case.  We use the symbol's
4313
         hash table entry to track its index.  */
4314
      if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4315
        return 1;
4316
      entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4317
      entry->d.h->tls_got_offset = next_index;
4318
      tls_type = entry->d.h->tls_type;
4319
    }
4320
  else
4321
    {
4322
      if (entry->tls_type & GOT_TLS_LDM)
4323
        {
4324
          /* There are separate mips_got_entry objects for each input bfd
4325
             that requires an LDM entry.  Make sure that all LDM entries in
4326
             a GOT resolve to the same index.  */
4327
          if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4328
            {
4329
              entry->gotidx = g->tls_ldm_offset;
4330
              return 1;
4331
            }
4332
          g->tls_ldm_offset = next_index;
4333
        }
4334
      entry->gotidx = next_index;
4335
      tls_type = entry->tls_type;
4336
    }
4337
 
4338
  /* Account for the entries we've just allocated.  */
4339
  if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4340
    g->tls_assigned_gotno += 2;
4341
  if (tls_type & GOT_TLS_IE)
4342
    g->tls_assigned_gotno += 1;
4343
 
4344
  return 1;
4345
}
4346
 
4347
/* If passed a NULL mips_got_info in the argument, set the marker used
4348
   to tell whether a global symbol needs a got entry (in the primary
4349
   got) to the given VALUE.
4350
 
4351
   If passed a pointer G to a mips_got_info in the argument (it must
4352
   not be the primary GOT), compute the offset from the beginning of
4353
   the (primary) GOT section to the entry in G corresponding to the
4354
   global symbol.  G's assigned_gotno must contain the index of the
4355
   first available global GOT entry in G.  VALUE must contain the size
4356
   of a GOT entry in bytes.  For each global GOT entry that requires a
4357
   dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4358
   marked as not eligible for lazy resolution through a function
4359
   stub.  */
4360
static int
4361
mips_elf_set_global_got_offset (void **entryp, void *p)
4362
{
4363
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4364
  struct mips_elf_set_global_got_offset_arg *arg
4365
    = (struct mips_elf_set_global_got_offset_arg *)p;
4366
  struct mips_got_info *g = arg->g;
4367
 
4368
  if (g && entry->tls_type != GOT_NORMAL)
4369
    arg->needed_relocs +=
4370
      mips_tls_got_relocs (arg->info, entry->tls_type,
4371
                           entry->symndx == -1 ? &entry->d.h->root : NULL);
4372
 
4373
  if (entry->abfd != NULL
4374
      && entry->symndx == -1
4375
      && entry->d.h->global_got_area != GGA_NONE)
4376
    {
4377
      if (g)
4378
        {
4379
          BFD_ASSERT (g->global_gotsym == NULL);
4380
 
4381
          entry->gotidx = arg->value * (long) g->assigned_gotno++;
4382
          if (arg->info->shared
4383
              || (elf_hash_table (arg->info)->dynamic_sections_created
4384
                  && entry->d.h->root.def_dynamic
4385
                  && !entry->d.h->root.def_regular))
4386
            ++arg->needed_relocs;
4387
        }
4388
      else
4389
        entry->d.h->global_got_area = arg->value;
4390
    }
4391
 
4392
  return 1;
4393
}
4394
 
4395
/* A htab_traverse callback for GOT entries for which DATA is the
4396
   bfd_link_info.  Forbid any global symbols from having traditional
4397
   lazy-binding stubs.  */
4398
 
4399
static int
4400
mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4401
{
4402
  struct bfd_link_info *info;
4403
  struct mips_elf_link_hash_table *htab;
4404
  struct mips_got_entry *entry;
4405
 
4406
  entry = (struct mips_got_entry *) *entryp;
4407
  info = (struct bfd_link_info *) data;
4408
  htab = mips_elf_hash_table (info);
4409
  BFD_ASSERT (htab != NULL);
4410
 
4411
  if (entry->abfd != NULL
4412
      && entry->symndx == -1
4413
      && entry->d.h->needs_lazy_stub)
4414
    {
4415
      entry->d.h->needs_lazy_stub = FALSE;
4416
      htab->lazy_stub_count--;
4417
    }
4418
 
4419
  return 1;
4420
}
4421
 
4422
/* Return the offset of an input bfd IBFD's GOT from the beginning of
4423
   the primary GOT.  */
4424
static bfd_vma
4425
mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4426
{
4427
  if (g->bfd2got == NULL)
4428
    return 0;
4429
 
4430
  g = mips_elf_got_for_ibfd (g, ibfd);
4431
  if (! g)
4432
    return 0;
4433
 
4434
  BFD_ASSERT (g->next);
4435
 
4436
  g = g->next;
4437
 
4438
  return (g->local_gotno + g->global_gotno + g->tls_gotno)
4439
    * MIPS_ELF_GOT_SIZE (abfd);
4440
}
4441
 
4442
/* Turn a single GOT that is too big for 16-bit addressing into
4443
   a sequence of GOTs, each one 16-bit addressable.  */
4444
 
4445
static bfd_boolean
4446
mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4447
                    asection *got, bfd_size_type pages)
4448
{
4449
  struct mips_elf_link_hash_table *htab;
4450
  struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4451
  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4452
  struct mips_got_info *g, *gg;
4453
  unsigned int assign, needed_relocs;
4454
  bfd *dynobj;
4455
 
4456
  dynobj = elf_hash_table (info)->dynobj;
4457
  htab = mips_elf_hash_table (info);
4458
  BFD_ASSERT (htab != NULL);
4459
 
4460
  g = htab->got_info;
4461
  g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4462
                                mips_elf_bfd2got_entry_eq, NULL);
4463
  if (g->bfd2got == NULL)
4464
    return FALSE;
4465
 
4466
  got_per_bfd_arg.bfd2got = g->bfd2got;
4467
  got_per_bfd_arg.obfd = abfd;
4468
  got_per_bfd_arg.info = info;
4469
 
4470
  /* Count how many GOT entries each input bfd requires, creating a
4471
     map from bfd to got info while at that.  */
4472
  htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4473
  if (got_per_bfd_arg.obfd == NULL)
4474
    return FALSE;
4475
 
4476
  /* Also count how many page entries each input bfd requires.  */
4477
  htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4478
                 &got_per_bfd_arg);
4479
  if (got_per_bfd_arg.obfd == NULL)
4480
    return FALSE;
4481
 
4482
  got_per_bfd_arg.current = NULL;
4483
  got_per_bfd_arg.primary = NULL;
4484
  got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4485
                                / MIPS_ELF_GOT_SIZE (abfd))
4486
                               - htab->reserved_gotno);
4487
  got_per_bfd_arg.max_pages = pages;
4488
  /* The number of globals that will be included in the primary GOT.
4489
     See the calls to mips_elf_set_global_got_offset below for more
4490
     information.  */
4491
  got_per_bfd_arg.global_count = g->global_gotno;
4492
 
4493
  /* Try to merge the GOTs of input bfds together, as long as they
4494
     don't seem to exceed the maximum GOT size, choosing one of them
4495
     to be the primary GOT.  */
4496
  htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4497
  if (got_per_bfd_arg.obfd == NULL)
4498
    return FALSE;
4499
 
4500
  /* If we do not find any suitable primary GOT, create an empty one.  */
4501
  if (got_per_bfd_arg.primary == NULL)
4502
    {
4503
      g->next = (struct mips_got_info *)
4504
        bfd_alloc (abfd, sizeof (struct mips_got_info));
4505
      if (g->next == NULL)
4506
        return FALSE;
4507
 
4508
      g->next->global_gotsym = NULL;
4509
      g->next->global_gotno = 0;
4510
      g->next->reloc_only_gotno = 0;
4511
      g->next->local_gotno = 0;
4512
      g->next->page_gotno = 0;
4513
      g->next->tls_gotno = 0;
4514
      g->next->assigned_gotno = 0;
4515
      g->next->tls_assigned_gotno = 0;
4516
      g->next->tls_ldm_offset = MINUS_ONE;
4517
      g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4518
                                              mips_elf_multi_got_entry_eq,
4519
                                              NULL);
4520
      if (g->next->got_entries == NULL)
4521
        return FALSE;
4522
      g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4523
                                                   mips_got_page_entry_eq,
4524
                                                   NULL);
4525
      if (g->next->got_page_entries == NULL)
4526
        return FALSE;
4527
      g->next->bfd2got = NULL;
4528
    }
4529
  else
4530
    g->next = got_per_bfd_arg.primary;
4531
  g->next->next = got_per_bfd_arg.current;
4532
 
4533
  /* GG is now the master GOT, and G is the primary GOT.  */
4534
  gg = g;
4535
  g = g->next;
4536
 
4537
  /* Map the output bfd to the primary got.  That's what we're going
4538
     to use for bfds that use GOT16 or GOT_PAGE relocations that we
4539
     didn't mark in check_relocs, and we want a quick way to find it.
4540
     We can't just use gg->next because we're going to reverse the
4541
     list.  */
4542
  {
4543
    struct mips_elf_bfd2got_hash *bfdgot;
4544
    void **bfdgotp;
4545
 
4546
    bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4547
      (abfd, sizeof (struct mips_elf_bfd2got_hash));
4548
 
4549
    if (bfdgot == NULL)
4550
      return FALSE;
4551
 
4552
    bfdgot->bfd = abfd;
4553
    bfdgot->g = g;
4554
    bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4555
 
4556
    BFD_ASSERT (*bfdgotp == NULL);
4557
    *bfdgotp = bfdgot;
4558
  }
4559
 
4560
  /* Every symbol that is referenced in a dynamic relocation must be
4561
     present in the primary GOT, so arrange for them to appear after
4562
     those that are actually referenced.  */
4563
  gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4564
  g->global_gotno = gg->global_gotno;
4565
 
4566
  set_got_offset_arg.g = NULL;
4567
  set_got_offset_arg.value = GGA_RELOC_ONLY;
4568
  htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4569
                 &set_got_offset_arg);
4570
  set_got_offset_arg.value = GGA_NORMAL;
4571
  htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4572
                 &set_got_offset_arg);
4573
 
4574
  /* Now go through the GOTs assigning them offset ranges.
4575
     [assigned_gotno, local_gotno[ will be set to the range of local
4576
     entries in each GOT.  We can then compute the end of a GOT by
4577
     adding local_gotno to global_gotno.  We reverse the list and make
4578
     it circular since then we'll be able to quickly compute the
4579
     beginning of a GOT, by computing the end of its predecessor.  To
4580
     avoid special cases for the primary GOT, while still preserving
4581
     assertions that are valid for both single- and multi-got links,
4582
     we arrange for the main got struct to have the right number of
4583
     global entries, but set its local_gotno such that the initial
4584
     offset of the primary GOT is zero.  Remember that the primary GOT
4585
     will become the last item in the circular linked list, so it
4586
     points back to the master GOT.  */
4587
  gg->local_gotno = -g->global_gotno;
4588
  gg->global_gotno = g->global_gotno;
4589
  gg->tls_gotno = 0;
4590
  assign = 0;
4591
  gg->next = gg;
4592
 
4593
  do
4594
    {
4595
      struct mips_got_info *gn;
4596
 
4597
      assign += htab->reserved_gotno;
4598
      g->assigned_gotno = assign;
4599
      g->local_gotno += assign;
4600
      g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4601
      assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4602
 
4603
      /* Take g out of the direct list, and push it onto the reversed
4604
         list that gg points to.  g->next is guaranteed to be nonnull after
4605
         this operation, as required by mips_elf_initialize_tls_index. */
4606
      gn = g->next;
4607
      g->next = gg->next;
4608
      gg->next = g;
4609
 
4610
      /* Set up any TLS entries.  We always place the TLS entries after
4611
         all non-TLS entries.  */
4612
      g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4613
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4614
 
4615
      /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4616
      g = gn;
4617
 
4618
      /* Forbid global symbols in every non-primary GOT from having
4619
         lazy-binding stubs.  */
4620
      if (g)
4621
        htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4622
    }
4623
  while (g);
4624
 
4625
  got->size = (gg->next->local_gotno
4626
               + gg->next->global_gotno
4627
               + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4628
 
4629
  needed_relocs = 0;
4630
  set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4631
  set_got_offset_arg.info = info;
4632
  for (g = gg->next; g && g->next != gg; g = g->next)
4633
    {
4634
      unsigned int save_assign;
4635
 
4636
      /* Assign offsets to global GOT entries.  */
4637
      save_assign = g->assigned_gotno;
4638
      g->assigned_gotno = g->local_gotno;
4639
      set_got_offset_arg.g = g;
4640
      set_got_offset_arg.needed_relocs = 0;
4641
      htab_traverse (g->got_entries,
4642
                     mips_elf_set_global_got_offset,
4643
                     &set_got_offset_arg);
4644
      needed_relocs += set_got_offset_arg.needed_relocs;
4645
      BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4646
 
4647
      g->assigned_gotno = save_assign;
4648
      if (info->shared)
4649
        {
4650
          needed_relocs += g->local_gotno - g->assigned_gotno;
4651
          BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4652
                      + g->next->global_gotno
4653
                      + g->next->tls_gotno
4654
                      + htab->reserved_gotno);
4655
        }
4656
    }
4657
 
4658
  if (needed_relocs)
4659
    mips_elf_allocate_dynamic_relocations (dynobj, info,
4660
                                           needed_relocs);
4661
 
4662
  return TRUE;
4663
}
4664
 
4665
 
4666
/* Returns the first relocation of type r_type found, beginning with
4667
   RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4668
 
4669
static const Elf_Internal_Rela *
4670
mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4671
                          const Elf_Internal_Rela *relocation,
4672
                          const Elf_Internal_Rela *relend)
4673
{
4674
  unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4675
 
4676
  while (relocation < relend)
4677
    {
4678
      if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4679
          && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4680
        return relocation;
4681
 
4682
      ++relocation;
4683
    }
4684
 
4685
  /* We didn't find it.  */
4686
  return NULL;
4687
}
4688
 
4689
/* Return whether an input relocation is against a local symbol.  */
4690
 
4691
static bfd_boolean
4692
mips_elf_local_relocation_p (bfd *input_bfd,
4693
                             const Elf_Internal_Rela *relocation,
4694
                             asection **local_sections)
4695
{
4696
  unsigned long r_symndx;
4697
  Elf_Internal_Shdr *symtab_hdr;
4698
  size_t extsymoff;
4699
 
4700
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4701
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4702
  extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4703
 
4704
  if (r_symndx < extsymoff)
4705
    return TRUE;
4706
  if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4707
    return TRUE;
4708
 
4709
  return FALSE;
4710
}
4711
 
4712
/* Sign-extend VALUE, which has the indicated number of BITS.  */
4713
 
4714
bfd_vma
4715
_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4716
{
4717
  if (value & ((bfd_vma) 1 << (bits - 1)))
4718
    /* VALUE is negative.  */
4719
    value |= ((bfd_vma) - 1) << bits;
4720
 
4721
  return value;
4722
}
4723
 
4724
/* Return non-zero if the indicated VALUE has overflowed the maximum
4725
   range expressible by a signed number with the indicated number of
4726
   BITS.  */
4727
 
4728
static bfd_boolean
4729
mips_elf_overflow_p (bfd_vma value, int bits)
4730
{
4731
  bfd_signed_vma svalue = (bfd_signed_vma) value;
4732
 
4733
  if (svalue > (1 << (bits - 1)) - 1)
4734
    /* The value is too big.  */
4735
    return TRUE;
4736
  else if (svalue < -(1 << (bits - 1)))
4737
    /* The value is too small.  */
4738
    return TRUE;
4739
 
4740
  /* All is well.  */
4741
  return FALSE;
4742
}
4743
 
4744
/* Calculate the %high function.  */
4745
 
4746
static bfd_vma
4747
mips_elf_high (bfd_vma value)
4748
{
4749
  return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4750
}
4751
 
4752
/* Calculate the %higher function.  */
4753
 
4754
static bfd_vma
4755
mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4756
{
4757
#ifdef BFD64
4758
  return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4759
#else
4760
  abort ();
4761
  return MINUS_ONE;
4762
#endif
4763
}
4764
 
4765
/* Calculate the %highest function.  */
4766
 
4767
static bfd_vma
4768
mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4769
{
4770
#ifdef BFD64
4771
  return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4772
#else
4773
  abort ();
4774
  return MINUS_ONE;
4775
#endif
4776
}
4777
 
4778
/* Create the .compact_rel section.  */
4779
 
4780
static bfd_boolean
4781
mips_elf_create_compact_rel_section
4782
  (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4783
{
4784
  flagword flags;
4785
  register asection *s;
4786
 
4787
  if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4788
    {
4789
      flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4790
               | SEC_READONLY);
4791
 
4792
      s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4793
      if (s == NULL
4794
          || ! bfd_set_section_alignment (abfd, s,
4795
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4796
        return FALSE;
4797
 
4798
      s->size = sizeof (Elf32_External_compact_rel);
4799
    }
4800
 
4801
  return TRUE;
4802
}
4803
 
4804
/* Create the .got section to hold the global offset table.  */
4805
 
4806
static bfd_boolean
4807
mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4808
{
4809
  flagword flags;
4810
  register asection *s;
4811
  struct elf_link_hash_entry *h;
4812
  struct bfd_link_hash_entry *bh;
4813
  struct mips_got_info *g;
4814
  bfd_size_type amt;
4815
  struct mips_elf_link_hash_table *htab;
4816
 
4817
  htab = mips_elf_hash_table (info);
4818
  BFD_ASSERT (htab != NULL);
4819
 
4820
  /* This function may be called more than once.  */
4821
  if (htab->sgot)
4822
    return TRUE;
4823
 
4824
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4825
           | SEC_LINKER_CREATED);
4826
 
4827
  /* We have to use an alignment of 2**4 here because this is hardcoded
4828
     in the function stub generation and in the linker script.  */
4829
  s = bfd_make_section_with_flags (abfd, ".got", flags);
4830
  if (s == NULL
4831
      || ! bfd_set_section_alignment (abfd, s, 4))
4832
    return FALSE;
4833
  htab->sgot = s;
4834
 
4835
  /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
4836
     linker script because we don't want to define the symbol if we
4837
     are not creating a global offset table.  */
4838
  bh = NULL;
4839
  if (! (_bfd_generic_link_add_one_symbol
4840
         (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4841
          0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4842
    return FALSE;
4843
 
4844
  h = (struct elf_link_hash_entry *) bh;
4845
  h->non_elf = 0;
4846
  h->def_regular = 1;
4847
  h->type = STT_OBJECT;
4848
  elf_hash_table (info)->hgot = h;
4849
 
4850
  if (info->shared
4851
      && ! bfd_elf_link_record_dynamic_symbol (info, h))
4852
    return FALSE;
4853
 
4854
  amt = sizeof (struct mips_got_info);
4855
  g = bfd_alloc (abfd, amt);
4856
  if (g == NULL)
4857
    return FALSE;
4858
  g->global_gotsym = NULL;
4859
  g->global_gotno = 0;
4860
  g->reloc_only_gotno = 0;
4861
  g->tls_gotno = 0;
4862
  g->local_gotno = 0;
4863
  g->page_gotno = 0;
4864
  g->assigned_gotno = 0;
4865
  g->bfd2got = NULL;
4866
  g->next = NULL;
4867
  g->tls_ldm_offset = MINUS_ONE;
4868
  g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4869
                                    mips_elf_got_entry_eq, NULL);
4870
  if (g->got_entries == NULL)
4871
    return FALSE;
4872
  g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4873
                                         mips_got_page_entry_eq, NULL);
4874
  if (g->got_page_entries == NULL)
4875
    return FALSE;
4876
  htab->got_info = g;
4877
  mips_elf_section_data (s)->elf.this_hdr.sh_flags
4878
    |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4879
 
4880
  /* We also need a .got.plt section when generating PLTs.  */
4881
  s = bfd_make_section_with_flags (abfd, ".got.plt",
4882
                                   SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4883
                                   | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4884
  if (s == NULL)
4885
    return FALSE;
4886
  htab->sgotplt = s;
4887
 
4888
  return TRUE;
4889
}
4890
 
4891
/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4892
   __GOTT_INDEX__ symbols.  These symbols are only special for
4893
   shared objects; they are not used in executables.  */
4894
 
4895
static bfd_boolean
4896
is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4897
{
4898
  return (mips_elf_hash_table (info)->is_vxworks
4899
          && info->shared
4900
          && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4901
              || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4902
}
4903
 
4904
/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4905
   require an la25 stub.  See also mips_elf_local_pic_function_p,
4906
   which determines whether the destination function ever requires a
4907
   stub.  */
4908
 
4909
static bfd_boolean
4910
mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4911
{
4912
  /* We specifically ignore branches and jumps from EF_PIC objects,
4913
     where the onus is on the compiler or programmer to perform any
4914
     necessary initialization of $25.  Sometimes such initialization
4915
     is unnecessary; for example, -mno-shared functions do not use
4916
     the incoming value of $25, and may therefore be called directly.  */
4917
  if (PIC_OBJECT_P (input_bfd))
4918
    return FALSE;
4919
 
4920
  switch (r_type)
4921
    {
4922
    case R_MIPS_26:
4923
    case R_MIPS_PC16:
4924
    case R_MIPS16_26:
4925 161 khays
    case R_MICROMIPS_26_S1:
4926
    case R_MICROMIPS_PC7_S1:
4927
    case R_MICROMIPS_PC10_S1:
4928
    case R_MICROMIPS_PC16_S1:
4929
    case R_MICROMIPS_PC23_S2:
4930 14 khays
      return TRUE;
4931
 
4932
    default:
4933
      return FALSE;
4934
    }
4935
}
4936
 
4937
/* Calculate the value produced by the RELOCATION (which comes from
4938
   the INPUT_BFD).  The ADDEND is the addend to use for this
4939
   RELOCATION; RELOCATION->R_ADDEND is ignored.
4940
 
4941
   The result of the relocation calculation is stored in VALUEP.
4942
   On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4943 161 khays
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4944 14 khays
 
4945
   This function returns bfd_reloc_continue if the caller need take no
4946
   further action regarding this relocation, bfd_reloc_notsupported if
4947
   something goes dramatically wrong, bfd_reloc_overflow if an
4948
   overflow occurs, and bfd_reloc_ok to indicate success.  */
4949
 
4950
static bfd_reloc_status_type
4951
mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4952
                               asection *input_section,
4953
                               struct bfd_link_info *info,
4954
                               const Elf_Internal_Rela *relocation,
4955
                               bfd_vma addend, reloc_howto_type *howto,
4956
                               Elf_Internal_Sym *local_syms,
4957
                               asection **local_sections, bfd_vma *valuep,
4958
                               const char **namep,
4959
                               bfd_boolean *cross_mode_jump_p,
4960
                               bfd_boolean save_addend)
4961
{
4962
  /* The eventual value we will return.  */
4963
  bfd_vma value;
4964
  /* The address of the symbol against which the relocation is
4965
     occurring.  */
4966
  bfd_vma symbol = 0;
4967
  /* The final GP value to be used for the relocatable, executable, or
4968
     shared object file being produced.  */
4969
  bfd_vma gp;
4970
  /* The place (section offset or address) of the storage unit being
4971
     relocated.  */
4972
  bfd_vma p;
4973
  /* The value of GP used to create the relocatable object.  */
4974
  bfd_vma gp0;
4975
  /* The offset into the global offset table at which the address of
4976
     the relocation entry symbol, adjusted by the addend, resides
4977
     during execution.  */
4978
  bfd_vma g = MINUS_ONE;
4979
  /* The section in which the symbol referenced by the relocation is
4980
     located.  */
4981
  asection *sec = NULL;
4982
  struct mips_elf_link_hash_entry *h = NULL;
4983
  /* TRUE if the symbol referred to by this relocation is a local
4984
     symbol.  */
4985
  bfd_boolean local_p, was_local_p;
4986
  /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
4987
  bfd_boolean gp_disp_p = FALSE;
4988
  /* TRUE if the symbol referred to by this relocation is
4989
     "__gnu_local_gp".  */
4990
  bfd_boolean gnu_local_gp_p = FALSE;
4991
  Elf_Internal_Shdr *symtab_hdr;
4992
  size_t extsymoff;
4993
  unsigned long r_symndx;
4994
  int r_type;
4995
  /* TRUE if overflow occurred during the calculation of the
4996
     relocation value.  */
4997
  bfd_boolean overflowed_p;
4998
  /* TRUE if this relocation refers to a MIPS16 function.  */
4999
  bfd_boolean target_is_16_bit_code_p = FALSE;
5000 161 khays
  bfd_boolean target_is_micromips_code_p = FALSE;
5001 14 khays
  struct mips_elf_link_hash_table *htab;
5002
  bfd *dynobj;
5003
 
5004
  dynobj = elf_hash_table (info)->dynobj;
5005
  htab = mips_elf_hash_table (info);
5006
  BFD_ASSERT (htab != NULL);
5007
 
5008
  /* Parse the relocation.  */
5009
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5010
  r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5011
  p = (input_section->output_section->vma
5012
       + input_section->output_offset
5013
       + relocation->r_offset);
5014
 
5015
  /* Assume that there will be no overflow.  */
5016
  overflowed_p = FALSE;
5017
 
5018
  /* Figure out whether or not the symbol is local, and get the offset
5019
     used in the array of hash table entries.  */
5020
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021
  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5022
                                         local_sections);
5023
  was_local_p = local_p;
5024
  if (! elf_bad_symtab (input_bfd))
5025
    extsymoff = symtab_hdr->sh_info;
5026
  else
5027
    {
5028
      /* The symbol table does not follow the rule that local symbols
5029
         must come before globals.  */
5030
      extsymoff = 0;
5031
    }
5032
 
5033
  /* Figure out the value of the symbol.  */
5034
  if (local_p)
5035
    {
5036
      Elf_Internal_Sym *sym;
5037
 
5038
      sym = local_syms + r_symndx;
5039
      sec = local_sections[r_symndx];
5040
 
5041
      symbol = sec->output_section->vma + sec->output_offset;
5042
      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5043
          || (sec->flags & SEC_MERGE))
5044
        symbol += sym->st_value;
5045
      if ((sec->flags & SEC_MERGE)
5046
          && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5047
        {
5048
          addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5049
          addend -= symbol;
5050
          addend += sec->output_section->vma + sec->output_offset;
5051
        }
5052
 
5053 161 khays
      /* MIPS16/microMIPS text labels should be treated as odd.  */
5054
      if (ELF_ST_IS_COMPRESSED (sym->st_other))
5055 14 khays
        ++symbol;
5056
 
5057
      /* Record the name of this symbol, for our caller.  */
5058
      *namep = bfd_elf_string_from_elf_section (input_bfd,
5059
                                                symtab_hdr->sh_link,
5060
                                                sym->st_name);
5061
      if (*namep == '\0')
5062
        *namep = bfd_section_name (input_bfd, sec);
5063
 
5064
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5065 161 khays
      target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5066 14 khays
    }
5067
  else
5068
    {
5069
      /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5070
 
5071
      /* For global symbols we look up the symbol in the hash-table.  */
5072
      h = ((struct mips_elf_link_hash_entry *)
5073
           elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5074
      /* Find the real hash-table entry for this symbol.  */
5075
      while (h->root.root.type == bfd_link_hash_indirect
5076
             || h->root.root.type == bfd_link_hash_warning)
5077
        h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5078
 
5079
      /* Record the name of this symbol, for our caller.  */
5080
      *namep = h->root.root.root.string;
5081
 
5082
      /* See if this is the special _gp_disp symbol.  Note that such a
5083
         symbol must always be a global symbol.  */
5084
      if (strcmp (*namep, "_gp_disp") == 0
5085
          && ! NEWABI_P (input_bfd))
5086
        {
5087
          /* Relocations against _gp_disp are permitted only with
5088
             R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5089
          if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5090
            return bfd_reloc_notsupported;
5091
 
5092
          gp_disp_p = TRUE;
5093
        }
5094
      /* See if this is the special _gp symbol.  Note that such a
5095
         symbol must always be a global symbol.  */
5096
      else if (strcmp (*namep, "__gnu_local_gp") == 0)
5097
        gnu_local_gp_p = TRUE;
5098
 
5099
 
5100
      /* If this symbol is defined, calculate its address.  Note that
5101
         _gp_disp is a magic symbol, always implicitly defined by the
5102
         linker, so it's inappropriate to check to see whether or not
5103
         its defined.  */
5104
      else if ((h->root.root.type == bfd_link_hash_defined
5105
                || h->root.root.type == bfd_link_hash_defweak)
5106
               && h->root.root.u.def.section)
5107
        {
5108
          sec = h->root.root.u.def.section;
5109
          if (sec->output_section)
5110
            symbol = (h->root.root.u.def.value
5111
                      + sec->output_section->vma
5112
                      + sec->output_offset);
5113
          else
5114
            symbol = h->root.root.u.def.value;
5115
        }
5116
      else if (h->root.root.type == bfd_link_hash_undefweak)
5117
        /* We allow relocations against undefined weak symbols, giving
5118
           it the value zero, so that you can undefined weak functions
5119
           and check to see if they exist by looking at their
5120
           addresses.  */
5121
        symbol = 0;
5122
      else if (info->unresolved_syms_in_objects == RM_IGNORE
5123
               && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5124
        symbol = 0;
5125
      else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5126
                       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5127
        {
5128
          /* If this is a dynamic link, we should have created a
5129
             _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5130
             in in _bfd_mips_elf_create_dynamic_sections.
5131
             Otherwise, we should define the symbol with a value of 0.
5132
             FIXME: It should probably get into the symbol table
5133
             somehow as well.  */
5134
          BFD_ASSERT (! info->shared);
5135
          BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5136
          symbol = 0;
5137
        }
5138
      else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5139
        {
5140
          /* This is an optional symbol - an Irix specific extension to the
5141
             ELF spec.  Ignore it for now.
5142
             XXX - FIXME - there is more to the spec for OPTIONAL symbols
5143
             than simply ignoring them, but we do not handle this for now.
5144
             For information see the "64-bit ELF Object File Specification"
5145
             which is available from here:
5146
             http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5147
          symbol = 0;
5148
        }
5149
      else if ((*info->callbacks->undefined_symbol)
5150
               (info, h->root.root.root.string, input_bfd,
5151
                input_section, relocation->r_offset,
5152
                (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5153
                 || ELF_ST_VISIBILITY (h->root.other)))
5154
        {
5155
          return bfd_reloc_undefined;
5156
        }
5157
      else
5158
        {
5159
          return bfd_reloc_notsupported;
5160
        }
5161
 
5162
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5163 161 khays
      /* If the output section is the PLT section,
5164
         then the target is not microMIPS.  */
5165
      target_is_micromips_code_p = (htab->splt != sec
5166
                                    && ELF_ST_IS_MICROMIPS (h->root.other));
5167 14 khays
    }
5168
 
5169
  /* If this is a reference to a 16-bit function with a stub, we need
5170
     to redirect the relocation to the stub unless:
5171
 
5172
     (a) the relocation is for a MIPS16 JAL;
5173
 
5174
     (b) the relocation is for a MIPS16 PIC call, and there are no
5175
         non-MIPS16 uses of the GOT slot; or
5176
 
5177
     (c) the section allows direct references to MIPS16 functions.  */
5178
  if (r_type != R_MIPS16_26
5179
      && !info->relocatable
5180
      && ((h != NULL
5181
           && h->fn_stub != NULL
5182
           && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5183
          || (local_p
5184
              && elf_tdata (input_bfd)->local_stubs != NULL
5185
              && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5186
      && !section_allows_mips16_refs_p (input_section))
5187
    {
5188
      /* This is a 32- or 64-bit call to a 16-bit function.  We should
5189
         have already noticed that we were going to need the
5190
         stub.  */
5191
      if (local_p)
5192
        sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5193
      else
5194
        {
5195
          BFD_ASSERT (h->need_fn_stub);
5196
          sec = h->fn_stub;
5197
        }
5198
 
5199
      symbol = sec->output_section->vma + sec->output_offset;
5200
      /* The target is 16-bit, but the stub isn't.  */
5201
      target_is_16_bit_code_p = FALSE;
5202
    }
5203
  /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5204
     need to redirect the call to the stub.  Note that we specifically
5205
     exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5206
     use an indirect stub instead.  */
5207
  else if (r_type == R_MIPS16_26 && !info->relocatable
5208
           && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5209
               || (local_p
5210
                   && elf_tdata (input_bfd)->local_call_stubs != NULL
5211
                   && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5212
           && !target_is_16_bit_code_p)
5213
    {
5214
      if (local_p)
5215
        sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5216
      else
5217
        {
5218
          /* If both call_stub and call_fp_stub are defined, we can figure
5219
             out which one to use by checking which one appears in the input
5220
             file.  */
5221
          if (h->call_stub != NULL && h->call_fp_stub != NULL)
5222
            {
5223
              asection *o;
5224
 
5225
              sec = NULL;
5226
              for (o = input_bfd->sections; o != NULL; o = o->next)
5227
                {
5228
                  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5229
                    {
5230
                      sec = h->call_fp_stub;
5231
                      break;
5232
                    }
5233
                }
5234
              if (sec == NULL)
5235
                sec = h->call_stub;
5236
            }
5237
          else if (h->call_stub != NULL)
5238
            sec = h->call_stub;
5239
          else
5240
            sec = h->call_fp_stub;
5241
        }
5242
 
5243
      BFD_ASSERT (sec->size > 0);
5244
      symbol = sec->output_section->vma + sec->output_offset;
5245
    }
5246
  /* If this is a direct call to a PIC function, redirect to the
5247
     non-PIC stub.  */
5248
  else if (h != NULL && h->la25_stub
5249
           && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5250
    symbol = (h->la25_stub->stub_section->output_section->vma
5251
              + h->la25_stub->stub_section->output_offset
5252
              + h->la25_stub->offset);
5253
 
5254 161 khays
  /* Make sure MIPS16 and microMIPS are not used together.  */
5255
  if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5256
      || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5257
   {
5258
      (*_bfd_error_handler)
5259
        (_("MIPS16 and microMIPS functions cannot call each other"));
5260
      return bfd_reloc_notsupported;
5261
   }
5262
 
5263 14 khays
  /* Calls from 16-bit code to 32-bit code and vice versa require the
5264 161 khays
     mode change.  However, we can ignore calls to undefined weak symbols,
5265
     which should never be executed at runtime.  This exception is important
5266
     because the assembly writer may have "known" that any definition of the
5267
     symbol would be 16-bit code, and that direct jumps were therefore
5268
     acceptable.  */
5269
  *cross_mode_jump_p = (!info->relocatable
5270
                        && !(h && h->root.root.type == bfd_link_hash_undefweak)
5271
                        && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5272
                            || (r_type == R_MICROMIPS_26_S1
5273
                                && !target_is_micromips_code_p)
5274
                            || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5275
                                && (target_is_16_bit_code_p
5276
                                    || target_is_micromips_code_p))));
5277 14 khays
 
5278
  local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5279
 
5280
  gp0 = _bfd_get_gp_value (input_bfd);
5281
  gp = _bfd_get_gp_value (abfd);
5282
  if (htab->got_info)
5283
    gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5284
 
5285
  if (gnu_local_gp_p)
5286
    symbol = gp;
5287
 
5288 161 khays
  /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5289
     to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5290
     corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5291
  if (got_page_reloc_p (r_type) && !local_p)
5292 14 khays
    {
5293 161 khays
      r_type = (micromips_reloc_p (r_type)
5294
                ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5295 14 khays
      addend = 0;
5296
    }
5297
 
5298
  /* If we haven't already determined the GOT offset, and we're going
5299
     to need it, get it now.  */
5300
  switch (r_type)
5301
    {
5302
    case R_MIPS16_CALL16:
5303
    case R_MIPS16_GOT16:
5304
    case R_MIPS_CALL16:
5305
    case R_MIPS_GOT16:
5306
    case R_MIPS_GOT_DISP:
5307
    case R_MIPS_GOT_HI16:
5308
    case R_MIPS_CALL_HI16:
5309
    case R_MIPS_GOT_LO16:
5310
    case R_MIPS_CALL_LO16:
5311 161 khays
    case R_MICROMIPS_CALL16:
5312
    case R_MICROMIPS_GOT16:
5313
    case R_MICROMIPS_GOT_DISP:
5314
    case R_MICROMIPS_GOT_HI16:
5315
    case R_MICROMIPS_CALL_HI16:
5316
    case R_MICROMIPS_GOT_LO16:
5317
    case R_MICROMIPS_CALL_LO16:
5318 14 khays
    case R_MIPS_TLS_GD:
5319
    case R_MIPS_TLS_GOTTPREL:
5320
    case R_MIPS_TLS_LDM:
5321 161 khays
    case R_MICROMIPS_TLS_GD:
5322
    case R_MICROMIPS_TLS_GOTTPREL:
5323
    case R_MICROMIPS_TLS_LDM:
5324 14 khays
      /* Find the index into the GOT where this value is located.  */
5325 161 khays
      if (tls_ldm_reloc_p (r_type))
5326 14 khays
        {
5327
          g = mips_elf_local_got_index (abfd, input_bfd, info,
5328
                                        0, 0, NULL, r_type);
5329
          if (g == MINUS_ONE)
5330
            return bfd_reloc_outofrange;
5331
        }
5332
      else if (!local_p)
5333
        {
5334
          /* On VxWorks, CALL relocations should refer to the .got.plt
5335
             entry, which is initialized to point at the PLT stub.  */
5336
          if (htab->is_vxworks
5337 161 khays
              && (call_hi16_reloc_p (r_type)
5338
                  || call_lo16_reloc_p (r_type)
5339 14 khays
                  || call16_reloc_p (r_type)))
5340
            {
5341
              BFD_ASSERT (addend == 0);
5342
              BFD_ASSERT (h->root.needs_plt);
5343
              g = mips_elf_gotplt_index (info, &h->root);
5344
            }
5345
          else
5346
            {
5347
              BFD_ASSERT (addend == 0);
5348
              g = mips_elf_global_got_index (dynobj, input_bfd,
5349
                                             &h->root, r_type, info);
5350
              if (h->tls_type == GOT_NORMAL
5351
                  && !elf_hash_table (info)->dynamic_sections_created)
5352
                /* This is a static link.  We must initialize the GOT entry.  */
5353
                MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5354
            }
5355
        }
5356
      else if (!htab->is_vxworks
5357
               && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5358
        /* The calculation below does not involve "g".  */
5359
        break;
5360
      else
5361
        {
5362
          g = mips_elf_local_got_index (abfd, input_bfd, info,
5363
                                        symbol + addend, r_symndx, h, r_type);
5364
          if (g == MINUS_ONE)
5365
            return bfd_reloc_outofrange;
5366
        }
5367
 
5368
      /* Convert GOT indices to actual offsets.  */
5369
      g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5370
      break;
5371
    }
5372
 
5373
  /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5374
     symbols are resolved by the loader.  Add them to .rela.dyn.  */
5375
  if (h != NULL && is_gott_symbol (info, &h->root))
5376
    {
5377
      Elf_Internal_Rela outrel;
5378
      bfd_byte *loc;
5379
      asection *s;
5380
 
5381
      s = mips_elf_rel_dyn_section (info, FALSE);
5382
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5383
 
5384
      outrel.r_offset = (input_section->output_section->vma
5385
                         + input_section->output_offset
5386
                         + relocation->r_offset);
5387
      outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5388
      outrel.r_addend = addend;
5389
      bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5390
 
5391
      /* If we've written this relocation for a readonly section,
5392
         we need to set DF_TEXTREL again, so that we do not delete the
5393
         DT_TEXTREL tag.  */
5394
      if (MIPS_ELF_READONLY_SECTION (input_section))
5395
        info->flags |= DF_TEXTREL;
5396
 
5397
      *valuep = 0;
5398
      return bfd_reloc_ok;
5399
    }
5400
 
5401
  /* Figure out what kind of relocation is being performed.  */
5402
  switch (r_type)
5403
    {
5404
    case R_MIPS_NONE:
5405
      return bfd_reloc_continue;
5406
 
5407
    case R_MIPS_16:
5408
      value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5409
      overflowed_p = mips_elf_overflow_p (value, 16);
5410
      break;
5411
 
5412
    case R_MIPS_32:
5413
    case R_MIPS_REL32:
5414
    case R_MIPS_64:
5415
      if ((info->shared
5416
           || (htab->root.dynamic_sections_created
5417
               && h != NULL
5418
               && h->root.def_dynamic
5419
               && !h->root.def_regular
5420
               && !h->has_static_relocs))
5421
          && r_symndx != STN_UNDEF
5422
          && (h == NULL
5423
              || h->root.root.type != bfd_link_hash_undefweak
5424
              || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5425
          && (input_section->flags & SEC_ALLOC) != 0)
5426
        {
5427
          /* If we're creating a shared library, then we can't know
5428
             where the symbol will end up.  So, we create a relocation
5429
             record in the output, and leave the job up to the dynamic
5430
             linker.  We must do the same for executable references to
5431
             shared library symbols, unless we've decided to use copy
5432
             relocs or PLTs instead.  */
5433
          value = addend;
5434
          if (!mips_elf_create_dynamic_relocation (abfd,
5435
                                                   info,
5436
                                                   relocation,
5437
                                                   h,
5438
                                                   sec,
5439
                                                   symbol,
5440
                                                   &value,
5441
                                                   input_section))
5442
            return bfd_reloc_undefined;
5443
        }
5444
      else
5445
        {
5446
          if (r_type != R_MIPS_REL32)
5447
            value = symbol + addend;
5448
          else
5449
            value = addend;
5450
        }
5451
      value &= howto->dst_mask;
5452
      break;
5453
 
5454
    case R_MIPS_PC32:
5455
      value = symbol + addend - p;
5456
      value &= howto->dst_mask;
5457
      break;
5458
 
5459
    case R_MIPS16_26:
5460
      /* The calculation for R_MIPS16_26 is just the same as for an
5461
         R_MIPS_26.  It's only the storage of the relocated field into
5462
         the output file that's different.  That's handled in
5463
         mips_elf_perform_relocation.  So, we just fall through to the
5464
         R_MIPS_26 case here.  */
5465
    case R_MIPS_26:
5466 161 khays
    case R_MICROMIPS_26_S1:
5467
      {
5468
        unsigned int shift;
5469
 
5470
        /* Make sure the target of JALX is word-aligned.  Bit 0 must be
5471
           the correct ISA mode selector and bit 1 must be 0.  */
5472
        if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5473
          return bfd_reloc_outofrange;
5474
 
5475
        /* Shift is 2, unusually, for microMIPS JALX.  */
5476
        shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5477
 
5478
        if (was_local_p)
5479
          value = addend | ((p + 4) & (0xfc000000 << shift));
5480
        else
5481
          value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5482
        value = (value + symbol) >> shift;
5483
        if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5484
          overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5485
        value &= howto->dst_mask;
5486
      }
5487 14 khays
      break;
5488
 
5489
    case R_MIPS_TLS_DTPREL_HI16:
5490 161 khays
    case R_MICROMIPS_TLS_DTPREL_HI16:
5491 14 khays
      value = (mips_elf_high (addend + symbol - dtprel_base (info))
5492
               & howto->dst_mask);
5493
      break;
5494
 
5495
    case R_MIPS_TLS_DTPREL_LO16:
5496
    case R_MIPS_TLS_DTPREL32:
5497
    case R_MIPS_TLS_DTPREL64:
5498 161 khays
    case R_MICROMIPS_TLS_DTPREL_LO16:
5499 14 khays
      value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5500
      break;
5501
 
5502
    case R_MIPS_TLS_TPREL_HI16:
5503 161 khays
    case R_MICROMIPS_TLS_TPREL_HI16:
5504 14 khays
      value = (mips_elf_high (addend + symbol - tprel_base (info))
5505
               & howto->dst_mask);
5506
      break;
5507
 
5508
    case R_MIPS_TLS_TPREL_LO16:
5509 161 khays
    case R_MICROMIPS_TLS_TPREL_LO16:
5510 14 khays
      value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5511
      break;
5512
 
5513
    case R_MIPS_HI16:
5514
    case R_MIPS16_HI16:
5515 161 khays
    case R_MICROMIPS_HI16:
5516 14 khays
      if (!gp_disp_p)
5517
        {
5518
          value = mips_elf_high (addend + symbol);
5519
          value &= howto->dst_mask;
5520
        }
5521
      else
5522
        {
5523
          /* For MIPS16 ABI code we generate this sequence
5524
                0: li      $v0,%hi(_gp_disp)
5525
                4: addiupc $v1,%lo(_gp_disp)
5526
                8: sll     $v0,16
5527
               12: addu    $v0,$v1
5528
               14: move    $gp,$v0
5529
             So the offsets of hi and lo relocs are the same, but the
5530
             $pc is four higher than $t9 would be, so reduce
5531
             both reloc addends by 4. */
5532
          if (r_type == R_MIPS16_HI16)
5533
            value = mips_elf_high (addend + gp - p - 4);
5534 161 khays
          /* The microMIPS .cpload sequence uses the same assembly
5535
             instructions as the traditional psABI version, but the
5536
             incoming $t9 has the low bit set.  */
5537
          else if (r_type == R_MICROMIPS_HI16)
5538
            value = mips_elf_high (addend + gp - p - 1);
5539 14 khays
          else
5540
            value = mips_elf_high (addend + gp - p);
5541
          overflowed_p = mips_elf_overflow_p (value, 16);
5542
        }
5543
      break;
5544
 
5545
    case R_MIPS_LO16:
5546
    case R_MIPS16_LO16:
5547 161 khays
    case R_MICROMIPS_LO16:
5548
    case R_MICROMIPS_HI0_LO16:
5549 14 khays
      if (!gp_disp_p)
5550
        value = (symbol + addend) & howto->dst_mask;
5551
      else
5552
        {
5553
          /* See the comment for R_MIPS16_HI16 above for the reason
5554
             for this conditional.  */
5555
          if (r_type == R_MIPS16_LO16)
5556
            value = addend + gp - p;
5557 161 khays
          else if (r_type == R_MICROMIPS_LO16
5558
                   || r_type == R_MICROMIPS_HI0_LO16)
5559
            value = addend + gp - p + 3;
5560 14 khays
          else
5561
            value = addend + gp - p + 4;
5562
          /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5563
             for overflow.  But, on, say, IRIX5, relocations against
5564
             _gp_disp are normally generated from the .cpload
5565
             pseudo-op.  It generates code that normally looks like
5566
             this:
5567
 
5568
               lui    $gp,%hi(_gp_disp)
5569
               addiu  $gp,$gp,%lo(_gp_disp)
5570
               addu   $gp,$gp,$t9
5571
 
5572
             Here $t9 holds the address of the function being called,
5573
             as required by the MIPS ELF ABI.  The R_MIPS_LO16
5574
             relocation can easily overflow in this situation, but the
5575
             R_MIPS_HI16 relocation will handle the overflow.
5576
             Therefore, we consider this a bug in the MIPS ABI, and do
5577
             not check for overflow here.  */
5578
        }
5579
      break;
5580
 
5581
    case R_MIPS_LITERAL:
5582 161 khays
    case R_MICROMIPS_LITERAL:
5583 14 khays
      /* Because we don't merge literal sections, we can handle this
5584
         just like R_MIPS_GPREL16.  In the long run, we should merge
5585
         shared literals, and then we will need to additional work
5586
         here.  */
5587
 
5588
      /* Fall through.  */
5589
 
5590
    case R_MIPS16_GPREL:
5591
      /* The R_MIPS16_GPREL performs the same calculation as
5592
         R_MIPS_GPREL16, but stores the relocated bits in a different
5593
         order.  We don't need to do anything special here; the
5594
         differences are handled in mips_elf_perform_relocation.  */
5595
    case R_MIPS_GPREL16:
5596 161 khays
    case R_MICROMIPS_GPREL7_S2:
5597
    case R_MICROMIPS_GPREL16:
5598 14 khays
      /* Only sign-extend the addend if it was extracted from the
5599
         instruction.  If the addend was separate, leave it alone,
5600
         otherwise we may lose significant bits.  */
5601
      if (howto->partial_inplace)
5602
        addend = _bfd_mips_elf_sign_extend (addend, 16);
5603
      value = symbol + addend - gp;
5604
      /* If the symbol was local, any earlier relocatable links will
5605
         have adjusted its addend with the gp offset, so compensate
5606
         for that now.  Don't do it for symbols forced local in this
5607
         link, though, since they won't have had the gp offset applied
5608
         to them before.  */
5609
      if (was_local_p)
5610
        value += gp0;
5611
      overflowed_p = mips_elf_overflow_p (value, 16);
5612
      break;
5613
 
5614
    case R_MIPS16_GOT16:
5615
    case R_MIPS16_CALL16:
5616
    case R_MIPS_GOT16:
5617
    case R_MIPS_CALL16:
5618 161 khays
    case R_MICROMIPS_GOT16:
5619
    case R_MICROMIPS_CALL16:
5620 14 khays
      /* VxWorks does not have separate local and global semantics for
5621
         R_MIPS*_GOT16; every relocation evaluates to "G".  */
5622
      if (!htab->is_vxworks && local_p)
5623
        {
5624
          value = mips_elf_got16_entry (abfd, input_bfd, info,
5625
                                        symbol + addend, !was_local_p);
5626
          if (value == MINUS_ONE)
5627
            return bfd_reloc_outofrange;
5628
          value
5629
            = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5630
          overflowed_p = mips_elf_overflow_p (value, 16);
5631
          break;
5632
        }
5633
 
5634
      /* Fall through.  */
5635
 
5636
    case R_MIPS_TLS_GD:
5637
    case R_MIPS_TLS_GOTTPREL:
5638
    case R_MIPS_TLS_LDM:
5639
    case R_MIPS_GOT_DISP:
5640 161 khays
    case R_MICROMIPS_TLS_GD:
5641
    case R_MICROMIPS_TLS_GOTTPREL:
5642
    case R_MICROMIPS_TLS_LDM:
5643
    case R_MICROMIPS_GOT_DISP:
5644 14 khays
      value = g;
5645
      overflowed_p = mips_elf_overflow_p (value, 16);
5646
      break;
5647
 
5648
    case R_MIPS_GPREL32:
5649
      value = (addend + symbol + gp0 - gp);
5650
      if (!save_addend)
5651
        value &= howto->dst_mask;
5652
      break;
5653
 
5654
    case R_MIPS_PC16:
5655
    case R_MIPS_GNU_REL16_S2:
5656
      value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5657
      overflowed_p = mips_elf_overflow_p (value, 18);
5658
      value >>= howto->rightshift;
5659
      value &= howto->dst_mask;
5660
      break;
5661
 
5662 161 khays
    case R_MICROMIPS_PC7_S1:
5663
      value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5664
      overflowed_p = mips_elf_overflow_p (value, 8);
5665
      value >>= howto->rightshift;
5666
      value &= howto->dst_mask;
5667
      break;
5668
 
5669
    case R_MICROMIPS_PC10_S1:
5670
      value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5671
      overflowed_p = mips_elf_overflow_p (value, 11);
5672
      value >>= howto->rightshift;
5673
      value &= howto->dst_mask;
5674
      break;
5675
 
5676
    case R_MICROMIPS_PC16_S1:
5677
      value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5678
      overflowed_p = mips_elf_overflow_p (value, 17);
5679
      value >>= howto->rightshift;
5680
      value &= howto->dst_mask;
5681
      break;
5682
 
5683
    case R_MICROMIPS_PC23_S2:
5684
      value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5685
      overflowed_p = mips_elf_overflow_p (value, 25);
5686
      value >>= howto->rightshift;
5687
      value &= howto->dst_mask;
5688
      break;
5689
 
5690 14 khays
    case R_MIPS_GOT_HI16:
5691
    case R_MIPS_CALL_HI16:
5692 161 khays
    case R_MICROMIPS_GOT_HI16:
5693
    case R_MICROMIPS_CALL_HI16:
5694 14 khays
      /* We're allowed to handle these two relocations identically.
5695
         The dynamic linker is allowed to handle the CALL relocations
5696
         differently by creating a lazy evaluation stub.  */
5697
      value = g;
5698
      value = mips_elf_high (value);
5699
      value &= howto->dst_mask;
5700
      break;
5701
 
5702
    case R_MIPS_GOT_LO16:
5703
    case R_MIPS_CALL_LO16:
5704 161 khays
    case R_MICROMIPS_GOT_LO16:
5705
    case R_MICROMIPS_CALL_LO16:
5706 14 khays
      value = g & howto->dst_mask;
5707
      break;
5708
 
5709
    case R_MIPS_GOT_PAGE:
5710 161 khays
    case R_MICROMIPS_GOT_PAGE:
5711 14 khays
      value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5712
      if (value == MINUS_ONE)
5713
        return bfd_reloc_outofrange;
5714
      value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5715
      overflowed_p = mips_elf_overflow_p (value, 16);
5716
      break;
5717
 
5718
    case R_MIPS_GOT_OFST:
5719 161 khays
    case R_MICROMIPS_GOT_OFST:
5720 14 khays
      if (local_p)
5721
        mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5722
      else
5723
        value = addend;
5724
      overflowed_p = mips_elf_overflow_p (value, 16);
5725
      break;
5726
 
5727
    case R_MIPS_SUB:
5728 161 khays
    case R_MICROMIPS_SUB:
5729 14 khays
      value = symbol - addend;
5730
      value &= howto->dst_mask;
5731
      break;
5732
 
5733
    case R_MIPS_HIGHER:
5734 161 khays
    case R_MICROMIPS_HIGHER:
5735 14 khays
      value = mips_elf_higher (addend + symbol);
5736
      value &= howto->dst_mask;
5737
      break;
5738
 
5739
    case R_MIPS_HIGHEST:
5740 161 khays
    case R_MICROMIPS_HIGHEST:
5741 14 khays
      value = mips_elf_highest (addend + symbol);
5742
      value &= howto->dst_mask;
5743
      break;
5744
 
5745
    case R_MIPS_SCN_DISP:
5746 161 khays
    case R_MICROMIPS_SCN_DISP:
5747 14 khays
      value = symbol + addend - sec->output_offset;
5748
      value &= howto->dst_mask;
5749
      break;
5750
 
5751
    case R_MIPS_JALR:
5752 161 khays
    case R_MICROMIPS_JALR:
5753 14 khays
      /* This relocation is only a hint.  In some cases, we optimize
5754
         it into a bal instruction.  But we don't try to optimize
5755
         when the symbol does not resolve locally.  */
5756
      if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5757
        return bfd_reloc_continue;
5758
      value = symbol + addend;
5759
      break;
5760
 
5761
    case R_MIPS_PJUMP:
5762
    case R_MIPS_GNU_VTINHERIT:
5763
    case R_MIPS_GNU_VTENTRY:
5764
      /* We don't do anything with these at present.  */
5765
      return bfd_reloc_continue;
5766
 
5767
    default:
5768
      /* An unrecognized relocation type.  */
5769
      return bfd_reloc_notsupported;
5770
    }
5771
 
5772
  /* Store the VALUE for our caller.  */
5773
  *valuep = value;
5774
  return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5775
}
5776
 
5777
/* Obtain the field relocated by RELOCATION.  */
5778
 
5779
static bfd_vma
5780
mips_elf_obtain_contents (reloc_howto_type *howto,
5781
                          const Elf_Internal_Rela *relocation,
5782
                          bfd *input_bfd, bfd_byte *contents)
5783
{
5784
  bfd_vma x;
5785
  bfd_byte *location = contents + relocation->r_offset;
5786
 
5787
  /* Obtain the bytes.  */
5788
  x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5789
 
5790
  return x;
5791
}
5792
 
5793
/* It has been determined that the result of the RELOCATION is the
5794
   VALUE.  Use HOWTO to place VALUE into the output file at the
5795
   appropriate position.  The SECTION is the section to which the
5796
   relocation applies.
5797
   CROSS_MODE_JUMP_P is true if the relocation field
5798 161 khays
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5799 14 khays
 
5800
   Returns FALSE if anything goes wrong.  */
5801
 
5802
static bfd_boolean
5803
mips_elf_perform_relocation (struct bfd_link_info *info,
5804
                             reloc_howto_type *howto,
5805
                             const Elf_Internal_Rela *relocation,
5806
                             bfd_vma value, bfd *input_bfd,
5807
                             asection *input_section, bfd_byte *contents,
5808
                             bfd_boolean cross_mode_jump_p)
5809
{
5810
  bfd_vma x;
5811
  bfd_byte *location;
5812
  int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5813
 
5814
  /* Figure out where the relocation is occurring.  */
5815
  location = contents + relocation->r_offset;
5816
 
5817 161 khays
  _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5818 14 khays
 
5819
  /* Obtain the current value.  */
5820
  x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5821
 
5822
  /* Clear the field we are setting.  */
5823
  x &= ~howto->dst_mask;
5824
 
5825
  /* Set the field.  */
5826
  x |= (value & howto->dst_mask);
5827
 
5828
  /* If required, turn JAL into JALX.  */
5829
  if (cross_mode_jump_p && jal_reloc_p (r_type))
5830
    {
5831
      bfd_boolean ok;
5832
      bfd_vma opcode = x >> 26;
5833
      bfd_vma jalx_opcode;
5834
 
5835
      /* Check to see if the opcode is already JAL or JALX.  */
5836
      if (r_type == R_MIPS16_26)
5837
        {
5838
          ok = ((opcode == 0x6) || (opcode == 0x7));
5839
          jalx_opcode = 0x7;
5840
        }
5841 161 khays
      else if (r_type == R_MICROMIPS_26_S1)
5842
        {
5843
          ok = ((opcode == 0x3d) || (opcode == 0x3c));
5844
          jalx_opcode = 0x3c;
5845
        }
5846 14 khays
      else
5847
        {
5848
          ok = ((opcode == 0x3) || (opcode == 0x1d));
5849
          jalx_opcode = 0x1d;
5850
        }
5851
 
5852
      /* If the opcode is not JAL or JALX, there's a problem.  */
5853
      if (!ok)
5854
        {
5855
          (*_bfd_error_handler)
5856
            (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5857
             input_bfd,
5858
             input_section,
5859
             (unsigned long) relocation->r_offset);
5860
          bfd_set_error (bfd_error_bad_value);
5861
          return FALSE;
5862
        }
5863
 
5864
      /* Make this the JALX opcode.  */
5865
      x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5866
    }
5867
 
5868
  /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5869
     range.  */
5870
  if (!info->relocatable
5871
      && !cross_mode_jump_p
5872
      && ((JAL_TO_BAL_P (input_bfd)
5873
           && r_type == R_MIPS_26
5874
           && (x >> 26) == 0x3)         /* jal addr */
5875
          || (JALR_TO_BAL_P (input_bfd)
5876
              && r_type == R_MIPS_JALR
5877
              && x == 0x0320f809)       /* jalr t9 */
5878
          || (JR_TO_B_P (input_bfd)
5879
              && r_type == R_MIPS_JALR
5880
              && x == 0x03200008)))     /* jr t9 */
5881
    {
5882
      bfd_vma addr;
5883
      bfd_vma dest;
5884
      bfd_signed_vma off;
5885
 
5886
      addr = (input_section->output_section->vma
5887
              + input_section->output_offset
5888
              + relocation->r_offset
5889
              + 4);
5890
      if (r_type == R_MIPS_26)
5891
        dest = (value << 2) | ((addr >> 28) << 28);
5892
      else
5893
        dest = value;
5894
      off = dest - addr;
5895
      if (off <= 0x1ffff && off >= -0x20000)
5896
        {
5897
          if (x == 0x03200008)  /* jr t9 */
5898
            x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
5899
          else
5900
            x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
5901
        }
5902
    }
5903
 
5904
  /* Put the value into the output.  */
5905
  bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5906
 
5907 161 khays
  _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5908
                               location);
5909 14 khays
 
5910
  return TRUE;
5911
}
5912
 
5913
/* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
5914
   is the original relocation, which is now being transformed into a
5915
   dynamic relocation.  The ADDENDP is adjusted if necessary; the
5916
   caller should store the result in place of the original addend.  */
5917
 
5918
static bfd_boolean
5919
mips_elf_create_dynamic_relocation (bfd *output_bfd,
5920
                                    struct bfd_link_info *info,
5921
                                    const Elf_Internal_Rela *rel,
5922
                                    struct mips_elf_link_hash_entry *h,
5923
                                    asection *sec, bfd_vma symbol,
5924
                                    bfd_vma *addendp, asection *input_section)
5925
{
5926
  Elf_Internal_Rela outrel[3];
5927
  asection *sreloc;
5928
  bfd *dynobj;
5929
  int r_type;
5930
  long indx;
5931
  bfd_boolean defined_p;
5932
  struct mips_elf_link_hash_table *htab;
5933
 
5934
  htab = mips_elf_hash_table (info);
5935
  BFD_ASSERT (htab != NULL);
5936
 
5937
  r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5938
  dynobj = elf_hash_table (info)->dynobj;
5939
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
5940
  BFD_ASSERT (sreloc != NULL);
5941
  BFD_ASSERT (sreloc->contents != NULL);
5942
  BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5943
              < sreloc->size);
5944
 
5945
  outrel[0].r_offset =
5946
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5947
  if (ABI_64_P (output_bfd))
5948
    {
5949
      outrel[1].r_offset =
5950
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5951
      outrel[2].r_offset =
5952
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5953
    }
5954
 
5955
  if (outrel[0].r_offset == MINUS_ONE)
5956
    /* The relocation field has been deleted.  */
5957
    return TRUE;
5958
 
5959
  if (outrel[0].r_offset == MINUS_TWO)
5960
    {
5961
      /* The relocation field has been converted into a relative value of
5962
         some sort.  Functions like _bfd_elf_write_section_eh_frame expect
5963
         the field to be fully relocated, so add in the symbol's value.  */
5964
      *addendp += symbol;
5965
      return TRUE;
5966
    }
5967
 
5968
  /* We must now calculate the dynamic symbol table index to use
5969
     in the relocation.  */
5970
  if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5971
    {
5972
      BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5973
      indx = h->root.dynindx;
5974
      if (SGI_COMPAT (output_bfd))
5975
        defined_p = h->root.def_regular;
5976
      else
5977
        /* ??? glibc's ld.so just adds the final GOT entry to the
5978
           relocation field.  It therefore treats relocs against
5979
           defined symbols in the same way as relocs against
5980
           undefined symbols.  */
5981
        defined_p = FALSE;
5982
    }
5983
  else
5984
    {
5985
      if (sec != NULL && bfd_is_abs_section (sec))
5986
        indx = 0;
5987
      else if (sec == NULL || sec->owner == NULL)
5988
        {
5989
          bfd_set_error (bfd_error_bad_value);
5990
          return FALSE;
5991
        }
5992
      else
5993
        {
5994
          indx = elf_section_data (sec->output_section)->dynindx;
5995
          if (indx == 0)
5996
            {
5997
              asection *osec = htab->root.text_index_section;
5998
              indx = elf_section_data (osec)->dynindx;
5999
            }
6000
          if (indx == 0)
6001
            abort ();
6002
        }
6003
 
6004
      /* Instead of generating a relocation using the section
6005
         symbol, we may as well make it a fully relative
6006
         relocation.  We want to avoid generating relocations to
6007
         local symbols because we used to generate them
6008
         incorrectly, without adding the original symbol value,
6009
         which is mandated by the ABI for section symbols.  In
6010
         order to give dynamic loaders and applications time to
6011
         phase out the incorrect use, we refrain from emitting
6012
         section-relative relocations.  It's not like they're
6013
         useful, after all.  This should be a bit more efficient
6014
         as well.  */
6015
      /* ??? Although this behavior is compatible with glibc's ld.so,
6016
         the ABI says that relocations against STN_UNDEF should have
6017
         a symbol value of 0.  Irix rld honors this, so relocations
6018
         against STN_UNDEF have no effect.  */
6019
      if (!SGI_COMPAT (output_bfd))
6020
        indx = 0;
6021
      defined_p = TRUE;
6022
    }
6023
 
6024
  /* If the relocation was previously an absolute relocation and
6025
     this symbol will not be referred to by the relocation, we must
6026
     adjust it by the value we give it in the dynamic symbol table.
6027
     Otherwise leave the job up to the dynamic linker.  */
6028
  if (defined_p && r_type != R_MIPS_REL32)
6029
    *addendp += symbol;
6030
 
6031
  if (htab->is_vxworks)
6032
    /* VxWorks uses non-relative relocations for this.  */
6033
    outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6034
  else
6035
    /* The relocation is always an REL32 relocation because we don't
6036
       know where the shared library will wind up at load-time.  */
6037
    outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6038
                                   R_MIPS_REL32);
6039
 
6040
  /* For strict adherence to the ABI specification, we should
6041
     generate a R_MIPS_64 relocation record by itself before the
6042
     _REL32/_64 record as well, such that the addend is read in as
6043
     a 64-bit value (REL32 is a 32-bit relocation, after all).
6044
     However, since none of the existing ELF64 MIPS dynamic
6045
     loaders seems to care, we don't waste space with these
6046
     artificial relocations.  If this turns out to not be true,
6047
     mips_elf_allocate_dynamic_relocation() should be tweaked so
6048
     as to make room for a pair of dynamic relocations per
6049
     invocation if ABI_64_P, and here we should generate an
6050
     additional relocation record with R_MIPS_64 by itself for a
6051
     NULL symbol before this relocation record.  */
6052
  outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6053
                                 ABI_64_P (output_bfd)
6054
                                 ? R_MIPS_64
6055
                                 : R_MIPS_NONE);
6056
  outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6057
 
6058
  /* Adjust the output offset of the relocation to reference the
6059
     correct location in the output file.  */
6060
  outrel[0].r_offset += (input_section->output_section->vma
6061
                         + input_section->output_offset);
6062
  outrel[1].r_offset += (input_section->output_section->vma
6063
                         + input_section->output_offset);
6064
  outrel[2].r_offset += (input_section->output_section->vma
6065
                         + input_section->output_offset);
6066
 
6067
  /* Put the relocation back out.  We have to use the special
6068
     relocation outputter in the 64-bit case since the 64-bit
6069
     relocation format is non-standard.  */
6070
  if (ABI_64_P (output_bfd))
6071
    {
6072
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6073
        (output_bfd, &outrel[0],
6074
         (sreloc->contents
6075
          + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6076
    }
6077
  else if (htab->is_vxworks)
6078
    {
6079
      /* VxWorks uses RELA rather than REL dynamic relocations.  */
6080
      outrel[0].r_addend = *addendp;
6081
      bfd_elf32_swap_reloca_out
6082
        (output_bfd, &outrel[0],
6083
         (sreloc->contents
6084
          + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6085
    }
6086
  else
6087
    bfd_elf32_swap_reloc_out
6088
      (output_bfd, &outrel[0],
6089
       (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6090
 
6091
  /* We've now added another relocation.  */
6092
  ++sreloc->reloc_count;
6093
 
6094
  /* Make sure the output section is writable.  The dynamic linker
6095
     will be writing to it.  */
6096
  elf_section_data (input_section->output_section)->this_hdr.sh_flags
6097
    |= SHF_WRITE;
6098
 
6099
  /* On IRIX5, make an entry of compact relocation info.  */
6100
  if (IRIX_COMPAT (output_bfd) == ict_irix5)
6101
    {
6102
      asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6103
      bfd_byte *cr;
6104
 
6105
      if (scpt)
6106
        {
6107
          Elf32_crinfo cptrel;
6108
 
6109
          mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6110
          cptrel.vaddr = (rel->r_offset
6111
                          + input_section->output_section->vma
6112
                          + input_section->output_offset);
6113
          if (r_type == R_MIPS_REL32)
6114
            mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6115
          else
6116
            mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6117
          mips_elf_set_cr_dist2to (cptrel, 0);
6118
          cptrel.konst = *addendp;
6119
 
6120
          cr = (scpt->contents
6121
                + sizeof (Elf32_External_compact_rel));
6122
          mips_elf_set_cr_relvaddr (cptrel, 0);
6123
          bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6124
                                     ((Elf32_External_crinfo *) cr
6125
                                      + scpt->reloc_count));
6126
          ++scpt->reloc_count;
6127
        }
6128
    }
6129
 
6130
  /* If we've written this relocation for a readonly section,
6131
     we need to set DF_TEXTREL again, so that we do not delete the
6132
     DT_TEXTREL tag.  */
6133
  if (MIPS_ELF_READONLY_SECTION (input_section))
6134
    info->flags |= DF_TEXTREL;
6135
 
6136
  return TRUE;
6137
}
6138
 
6139
/* Return the MACH for a MIPS e_flags value.  */
6140
 
6141
unsigned long
6142
_bfd_elf_mips_mach (flagword flags)
6143
{
6144
  switch (flags & EF_MIPS_MACH)
6145
    {
6146
    case E_MIPS_MACH_3900:
6147
      return bfd_mach_mips3900;
6148
 
6149
    case E_MIPS_MACH_4010:
6150
      return bfd_mach_mips4010;
6151
 
6152
    case E_MIPS_MACH_4100:
6153
      return bfd_mach_mips4100;
6154
 
6155
    case E_MIPS_MACH_4111:
6156
      return bfd_mach_mips4111;
6157
 
6158
    case E_MIPS_MACH_4120:
6159
      return bfd_mach_mips4120;
6160
 
6161
    case E_MIPS_MACH_4650:
6162
      return bfd_mach_mips4650;
6163
 
6164
    case E_MIPS_MACH_5400:
6165
      return bfd_mach_mips5400;
6166
 
6167
    case E_MIPS_MACH_5500:
6168
      return bfd_mach_mips5500;
6169
 
6170
    case E_MIPS_MACH_9000:
6171
      return bfd_mach_mips9000;
6172
 
6173
    case E_MIPS_MACH_SB1:
6174
      return bfd_mach_mips_sb1;
6175
 
6176
    case E_MIPS_MACH_LS2E:
6177
      return bfd_mach_mips_loongson_2e;
6178
 
6179
    case E_MIPS_MACH_LS2F:
6180
      return bfd_mach_mips_loongson_2f;
6181
 
6182
    case E_MIPS_MACH_LS3A:
6183
      return bfd_mach_mips_loongson_3a;
6184
 
6185
    case E_MIPS_MACH_OCTEON:
6186
      return bfd_mach_mips_octeon;
6187
 
6188
    case E_MIPS_MACH_XLR:
6189
      return bfd_mach_mips_xlr;
6190
 
6191
    default:
6192
      switch (flags & EF_MIPS_ARCH)
6193
        {
6194
        default:
6195
        case E_MIPS_ARCH_1:
6196
          return bfd_mach_mips3000;
6197
 
6198
        case E_MIPS_ARCH_2:
6199
          return bfd_mach_mips6000;
6200
 
6201
        case E_MIPS_ARCH_3:
6202
          return bfd_mach_mips4000;
6203
 
6204
        case E_MIPS_ARCH_4:
6205
          return bfd_mach_mips8000;
6206
 
6207
        case E_MIPS_ARCH_5:
6208
          return bfd_mach_mips5;
6209
 
6210
        case E_MIPS_ARCH_32:
6211
          return bfd_mach_mipsisa32;
6212
 
6213
        case E_MIPS_ARCH_64:
6214
          return bfd_mach_mipsisa64;
6215
 
6216
        case E_MIPS_ARCH_32R2:
6217
          return bfd_mach_mipsisa32r2;
6218
 
6219
        case E_MIPS_ARCH_64R2:
6220
          return bfd_mach_mipsisa64r2;
6221
        }
6222
    }
6223
 
6224
  return 0;
6225
}
6226
 
6227
/* Return printable name for ABI.  */
6228
 
6229
static INLINE char *
6230
elf_mips_abi_name (bfd *abfd)
6231
{
6232
  flagword flags;
6233
 
6234
  flags = elf_elfheader (abfd)->e_flags;
6235
  switch (flags & EF_MIPS_ABI)
6236
    {
6237
    case 0:
6238
      if (ABI_N32_P (abfd))
6239
        return "N32";
6240
      else if (ABI_64_P (abfd))
6241
        return "64";
6242
      else
6243
        return "none";
6244
    case E_MIPS_ABI_O32:
6245
      return "O32";
6246
    case E_MIPS_ABI_O64:
6247
      return "O64";
6248
    case E_MIPS_ABI_EABI32:
6249
      return "EABI32";
6250
    case E_MIPS_ABI_EABI64:
6251
      return "EABI64";
6252
    default:
6253
      return "unknown abi";
6254
    }
6255
}
6256
 
6257
/* MIPS ELF uses two common sections.  One is the usual one, and the
6258
   other is for small objects.  All the small objects are kept
6259
   together, and then referenced via the gp pointer, which yields
6260
   faster assembler code.  This is what we use for the small common
6261
   section.  This approach is copied from ecoff.c.  */
6262
static asection mips_elf_scom_section;
6263
static asymbol mips_elf_scom_symbol;
6264
static asymbol *mips_elf_scom_symbol_ptr;
6265
 
6266
/* MIPS ELF also uses an acommon section, which represents an
6267
   allocated common symbol which may be overridden by a
6268
   definition in a shared library.  */
6269
static asection mips_elf_acom_section;
6270
static asymbol mips_elf_acom_symbol;
6271
static asymbol *mips_elf_acom_symbol_ptr;
6272
 
6273
/* This is used for both the 32-bit and the 64-bit ABI.  */
6274
 
6275
void
6276
_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6277
{
6278
  elf_symbol_type *elfsym;
6279
 
6280
  /* Handle the special MIPS section numbers that a symbol may use.  */
6281
  elfsym = (elf_symbol_type *) asym;
6282
  switch (elfsym->internal_elf_sym.st_shndx)
6283
    {
6284
    case SHN_MIPS_ACOMMON:
6285
      /* This section is used in a dynamically linked executable file.
6286
         It is an allocated common section.  The dynamic linker can
6287
         either resolve these symbols to something in a shared
6288
         library, or it can just leave them here.  For our purposes,
6289
         we can consider these symbols to be in a new section.  */
6290
      if (mips_elf_acom_section.name == NULL)
6291
        {
6292
          /* Initialize the acommon section.  */
6293
          mips_elf_acom_section.name = ".acommon";
6294
          mips_elf_acom_section.flags = SEC_ALLOC;
6295
          mips_elf_acom_section.output_section = &mips_elf_acom_section;
6296
          mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6297
          mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6298
          mips_elf_acom_symbol.name = ".acommon";
6299
          mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6300
          mips_elf_acom_symbol.section = &mips_elf_acom_section;
6301
          mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6302
        }
6303
      asym->section = &mips_elf_acom_section;
6304
      break;
6305
 
6306
    case SHN_COMMON:
6307
      /* Common symbols less than the GP size are automatically
6308
         treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6309
      if (asym->value > elf_gp_size (abfd)
6310
          || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6311
          || IRIX_COMPAT (abfd) == ict_irix6)
6312
        break;
6313
      /* Fall through.  */
6314
    case SHN_MIPS_SCOMMON:
6315
      if (mips_elf_scom_section.name == NULL)
6316
        {
6317
          /* Initialize the small common section.  */
6318
          mips_elf_scom_section.name = ".scommon";
6319
          mips_elf_scom_section.flags = SEC_IS_COMMON;
6320
          mips_elf_scom_section.output_section = &mips_elf_scom_section;
6321
          mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6322
          mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6323
          mips_elf_scom_symbol.name = ".scommon";
6324
          mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6325
          mips_elf_scom_symbol.section = &mips_elf_scom_section;
6326
          mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6327
        }
6328
      asym->section = &mips_elf_scom_section;
6329
      asym->value = elfsym->internal_elf_sym.st_size;
6330
      break;
6331
 
6332
    case SHN_MIPS_SUNDEFINED:
6333
      asym->section = bfd_und_section_ptr;
6334
      break;
6335
 
6336
    case SHN_MIPS_TEXT:
6337
      {
6338
        asection *section = bfd_get_section_by_name (abfd, ".text");
6339
 
6340
        if (section != NULL)
6341
          {
6342
            asym->section = section;
6343
            /* MIPS_TEXT is a bit special, the address is not an offset
6344
               to the base of the .text section.  So substract the section
6345
               base address to make it an offset.  */
6346
            asym->value -= section->vma;
6347
          }
6348
      }
6349
      break;
6350
 
6351
    case SHN_MIPS_DATA:
6352
      {
6353
        asection *section = bfd_get_section_by_name (abfd, ".data");
6354
 
6355
        if (section != NULL)
6356
          {
6357
            asym->section = section;
6358
            /* MIPS_DATA is a bit special, the address is not an offset
6359
               to the base of the .data section.  So substract the section
6360
               base address to make it an offset.  */
6361
            asym->value -= section->vma;
6362
          }
6363
      }
6364
      break;
6365
    }
6366
 
6367 161 khays
  /* If this is an odd-valued function symbol, assume it's a MIPS16
6368
     or microMIPS one.  */
6369 14 khays
  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6370
      && (asym->value & 1) != 0)
6371
    {
6372
      asym->value--;
6373 161 khays
      if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6374
        elfsym->internal_elf_sym.st_other
6375
          = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6376
      else
6377
        elfsym->internal_elf_sym.st_other
6378
          = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6379 14 khays
    }
6380
}
6381
 
6382
/* Implement elf_backend_eh_frame_address_size.  This differs from
6383
   the default in the way it handles EABI64.
6384
 
6385
   EABI64 was originally specified as an LP64 ABI, and that is what
6386
   -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6387
   historically accepted the combination of -mabi=eabi and -mlong32,
6388
   and this ILP32 variation has become semi-official over time.
6389
   Both forms use elf32 and have pointer-sized FDE addresses.
6390
 
6391
   If an EABI object was generated by GCC 4.0 or above, it will have
6392
   an empty .gcc_compiled_longXX section, where XX is the size of longs
6393
   in bits.  Unfortunately, ILP32 objects generated by earlier compilers
6394
   have no special marking to distinguish them from LP64 objects.
6395
 
6396
   We don't want users of the official LP64 ABI to be punished for the
6397
   existence of the ILP32 variant, but at the same time, we don't want
6398
   to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6399
   We therefore take the following approach:
6400
 
6401
      - If ABFD contains a .gcc_compiled_longXX section, use it to
6402
        determine the pointer size.
6403
 
6404
      - Otherwise check the type of the first relocation.  Assume that
6405
        the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6406
 
6407
      - Otherwise punt.
6408
 
6409
   The second check is enough to detect LP64 objects generated by pre-4.0
6410
   compilers because, in the kind of output generated by those compilers,
6411
   the first relocation will be associated with either a CIE personality
6412
   routine or an FDE start address.  Furthermore, the compilers never
6413
   used a special (non-pointer) encoding for this ABI.
6414
 
6415
   Checking the relocation type should also be safe because there is no
6416
   reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
6417
   did so.  */
6418
 
6419
unsigned int
6420
_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6421
{
6422
  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6423
    return 8;
6424
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6425
    {
6426
      bfd_boolean long32_p, long64_p;
6427
 
6428
      long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6429
      long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6430
      if (long32_p && long64_p)
6431
        return 0;
6432
      if (long32_p)
6433
        return 4;
6434
      if (long64_p)
6435
        return 8;
6436
 
6437
      if (sec->reloc_count > 0
6438
          && elf_section_data (sec)->relocs != NULL
6439
          && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6440
              == R_MIPS_64))
6441
        return 8;
6442
 
6443
      return 0;
6444
    }
6445
  return 4;
6446
}
6447
 
6448
/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6449
   relocations against two unnamed section symbols to resolve to the
6450
   same address.  For example, if we have code like:
6451
 
6452
        lw      $4,%got_disp(.data)($gp)
6453
        lw      $25,%got_disp(.text)($gp)
6454
        jalr    $25
6455
 
6456
   then the linker will resolve both relocations to .data and the program
6457
   will jump there rather than to .text.
6458
 
6459
   We can work around this problem by giving names to local section symbols.
6460
   This is also what the MIPSpro tools do.  */
6461
 
6462
bfd_boolean
6463
_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6464
{
6465
  return SGI_COMPAT (abfd);
6466
}
6467
 
6468
/* Work over a section just before writing it out.  This routine is
6469
   used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
6470
   sections that need the SHF_MIPS_GPREL flag by name; there has to be
6471
   a better way.  */
6472
 
6473
bfd_boolean
6474
_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6475
{
6476
  if (hdr->sh_type == SHT_MIPS_REGINFO
6477
      && hdr->sh_size > 0)
6478
    {
6479
      bfd_byte buf[4];
6480
 
6481
      BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6482
      BFD_ASSERT (hdr->contents == NULL);
6483
 
6484
      if (bfd_seek (abfd,
6485
                    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6486
                    SEEK_SET) != 0)
6487
        return FALSE;
6488
      H_PUT_32 (abfd, elf_gp (abfd), buf);
6489
      if (bfd_bwrite (buf, 4, abfd) != 4)
6490
        return FALSE;
6491
    }
6492
 
6493
  if (hdr->sh_type == SHT_MIPS_OPTIONS
6494
      && hdr->bfd_section != NULL
6495
      && mips_elf_section_data (hdr->bfd_section) != NULL
6496
      && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6497
    {
6498
      bfd_byte *contents, *l, *lend;
6499
 
6500
      /* We stored the section contents in the tdata field in the
6501
         set_section_contents routine.  We save the section contents
6502
         so that we don't have to read them again.
6503
         At this point we know that elf_gp is set, so we can look
6504
         through the section contents to see if there is an
6505
         ODK_REGINFO structure.  */
6506
 
6507
      contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6508
      l = contents;
6509
      lend = contents + hdr->sh_size;
6510
      while (l + sizeof (Elf_External_Options) <= lend)
6511
        {
6512
          Elf_Internal_Options intopt;
6513
 
6514
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6515
                                        &intopt);
6516
          if (intopt.size < sizeof (Elf_External_Options))
6517
            {
6518
              (*_bfd_error_handler)
6519
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6520
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6521
              break;
6522
            }
6523
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6524
            {
6525
              bfd_byte buf[8];
6526
 
6527
              if (bfd_seek (abfd,
6528
                            (hdr->sh_offset
6529
                             + (l - contents)
6530
                             + sizeof (Elf_External_Options)
6531
                             + (sizeof (Elf64_External_RegInfo) - 8)),
6532
                             SEEK_SET) != 0)
6533
                return FALSE;
6534
              H_PUT_64 (abfd, elf_gp (abfd), buf);
6535
              if (bfd_bwrite (buf, 8, abfd) != 8)
6536
                return FALSE;
6537
            }
6538
          else if (intopt.kind == ODK_REGINFO)
6539
            {
6540
              bfd_byte buf[4];
6541
 
6542
              if (bfd_seek (abfd,
6543
                            (hdr->sh_offset
6544
                             + (l - contents)
6545
                             + sizeof (Elf_External_Options)
6546
                             + (sizeof (Elf32_External_RegInfo) - 4)),
6547
                            SEEK_SET) != 0)
6548
                return FALSE;
6549
              H_PUT_32 (abfd, elf_gp (abfd), buf);
6550
              if (bfd_bwrite (buf, 4, abfd) != 4)
6551
                return FALSE;
6552
            }
6553
          l += intopt.size;
6554
        }
6555
    }
6556
 
6557
  if (hdr->bfd_section != NULL)
6558
    {
6559
      const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6560
 
6561
      /* .sbss is not handled specially here because the GNU/Linux
6562
         prelinker can convert .sbss from NOBITS to PROGBITS and
6563
         changing it back to NOBITS breaks the binary.  The entry in
6564
         _bfd_mips_elf_special_sections will ensure the correct flags
6565
         are set on .sbss if BFD creates it without reading it from an
6566
         input file, and without special handling here the flags set
6567
         on it in an input file will be followed.  */
6568
      if (strcmp (name, ".sdata") == 0
6569
          || strcmp (name, ".lit8") == 0
6570
          || strcmp (name, ".lit4") == 0)
6571
        {
6572
          hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6573
          hdr->sh_type = SHT_PROGBITS;
6574
        }
6575
      else if (strcmp (name, ".srdata") == 0)
6576
        {
6577
          hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6578
          hdr->sh_type = SHT_PROGBITS;
6579
        }
6580
      else if (strcmp (name, ".compact_rel") == 0)
6581
        {
6582
          hdr->sh_flags = 0;
6583
          hdr->sh_type = SHT_PROGBITS;
6584
        }
6585
      else if (strcmp (name, ".rtproc") == 0)
6586
        {
6587
          if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6588
            {
6589
              unsigned int adjust;
6590
 
6591
              adjust = hdr->sh_size % hdr->sh_addralign;
6592
              if (adjust != 0)
6593
                hdr->sh_size += hdr->sh_addralign - adjust;
6594
            }
6595
        }
6596
    }
6597
 
6598
  return TRUE;
6599
}
6600
 
6601
/* Handle a MIPS specific section when reading an object file.  This
6602
   is called when elfcode.h finds a section with an unknown type.
6603
   This routine supports both the 32-bit and 64-bit ELF ABI.
6604
 
6605
   FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6606
   how to.  */
6607
 
6608
bfd_boolean
6609
_bfd_mips_elf_section_from_shdr (bfd *abfd,
6610
                                 Elf_Internal_Shdr *hdr,
6611
                                 const char *name,
6612
                                 int shindex)
6613
{
6614
  flagword flags = 0;
6615
 
6616
  /* There ought to be a place to keep ELF backend specific flags, but
6617
     at the moment there isn't one.  We just keep track of the
6618
     sections by their name, instead.  Fortunately, the ABI gives
6619
     suggested names for all the MIPS specific sections, so we will
6620
     probably get away with this.  */
6621
  switch (hdr->sh_type)
6622
    {
6623
    case SHT_MIPS_LIBLIST:
6624
      if (strcmp (name, ".liblist") != 0)
6625
        return FALSE;
6626
      break;
6627
    case SHT_MIPS_MSYM:
6628
      if (strcmp (name, ".msym") != 0)
6629
        return FALSE;
6630
      break;
6631
    case SHT_MIPS_CONFLICT:
6632
      if (strcmp (name, ".conflict") != 0)
6633
        return FALSE;
6634
      break;
6635
    case SHT_MIPS_GPTAB:
6636
      if (! CONST_STRNEQ (name, ".gptab."))
6637
        return FALSE;
6638
      break;
6639
    case SHT_MIPS_UCODE:
6640
      if (strcmp (name, ".ucode") != 0)
6641
        return FALSE;
6642
      break;
6643
    case SHT_MIPS_DEBUG:
6644
      if (strcmp (name, ".mdebug") != 0)
6645
        return FALSE;
6646
      flags = SEC_DEBUGGING;
6647
      break;
6648
    case SHT_MIPS_REGINFO:
6649
      if (strcmp (name, ".reginfo") != 0
6650
          || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6651
        return FALSE;
6652
      flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6653
      break;
6654
    case SHT_MIPS_IFACE:
6655
      if (strcmp (name, ".MIPS.interfaces") != 0)
6656
        return FALSE;
6657
      break;
6658
    case SHT_MIPS_CONTENT:
6659
      if (! CONST_STRNEQ (name, ".MIPS.content"))
6660
        return FALSE;
6661
      break;
6662
    case SHT_MIPS_OPTIONS:
6663
      if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6664
        return FALSE;
6665
      break;
6666
    case SHT_MIPS_DWARF:
6667
      if (! CONST_STRNEQ (name, ".debug_")
6668
          && ! CONST_STRNEQ (name, ".zdebug_"))
6669
        return FALSE;
6670
      break;
6671
    case SHT_MIPS_SYMBOL_LIB:
6672
      if (strcmp (name, ".MIPS.symlib") != 0)
6673
        return FALSE;
6674
      break;
6675
    case SHT_MIPS_EVENTS:
6676
      if (! CONST_STRNEQ (name, ".MIPS.events")
6677
          && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6678
        return FALSE;
6679
      break;
6680
    default:
6681
      break;
6682
    }
6683
 
6684
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6685
    return FALSE;
6686
 
6687
  if (flags)
6688
    {
6689
      if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6690
                                   (bfd_get_section_flags (abfd,
6691
                                                           hdr->bfd_section)
6692
                                    | flags)))
6693
        return FALSE;
6694
    }
6695
 
6696
  /* FIXME: We should record sh_info for a .gptab section.  */
6697
 
6698
  /* For a .reginfo section, set the gp value in the tdata information
6699
     from the contents of this section.  We need the gp value while
6700
     processing relocs, so we just get it now.  The .reginfo section
6701
     is not used in the 64-bit MIPS ELF ABI.  */
6702
  if (hdr->sh_type == SHT_MIPS_REGINFO)
6703
    {
6704
      Elf32_External_RegInfo ext;
6705
      Elf32_RegInfo s;
6706
 
6707
      if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6708
                                      &ext, 0, sizeof ext))
6709
        return FALSE;
6710
      bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6711
      elf_gp (abfd) = s.ri_gp_value;
6712
    }
6713
 
6714
  /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6715
     set the gp value based on what we find.  We may see both
6716
     SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6717
     they should agree.  */
6718
  if (hdr->sh_type == SHT_MIPS_OPTIONS)
6719
    {
6720
      bfd_byte *contents, *l, *lend;
6721
 
6722
      contents = bfd_malloc (hdr->sh_size);
6723
      if (contents == NULL)
6724
        return FALSE;
6725
      if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6726
                                      0, hdr->sh_size))
6727
        {
6728
          free (contents);
6729
          return FALSE;
6730
        }
6731
      l = contents;
6732
      lend = contents + hdr->sh_size;
6733
      while (l + sizeof (Elf_External_Options) <= lend)
6734
        {
6735
          Elf_Internal_Options intopt;
6736
 
6737
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6738
                                        &intopt);
6739
          if (intopt.size < sizeof (Elf_External_Options))
6740
            {
6741
              (*_bfd_error_handler)
6742
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6743
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6744
              break;
6745
            }
6746
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6747
            {
6748
              Elf64_Internal_RegInfo intreg;
6749
 
6750
              bfd_mips_elf64_swap_reginfo_in
6751
                (abfd,
6752
                 ((Elf64_External_RegInfo *)
6753
                  (l + sizeof (Elf_External_Options))),
6754
                 &intreg);
6755
              elf_gp (abfd) = intreg.ri_gp_value;
6756
            }
6757
          else if (intopt.kind == ODK_REGINFO)
6758
            {
6759
              Elf32_RegInfo intreg;
6760
 
6761
              bfd_mips_elf32_swap_reginfo_in
6762
                (abfd,
6763
                 ((Elf32_External_RegInfo *)
6764
                  (l + sizeof (Elf_External_Options))),
6765
                 &intreg);
6766
              elf_gp (abfd) = intreg.ri_gp_value;
6767
            }
6768
          l += intopt.size;
6769
        }
6770
      free (contents);
6771
    }
6772
 
6773
  return TRUE;
6774
}
6775
 
6776
/* Set the correct type for a MIPS ELF section.  We do this by the
6777
   section name, which is a hack, but ought to work.  This routine is
6778
   used by both the 32-bit and the 64-bit ABI.  */
6779
 
6780
bfd_boolean
6781
_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6782
{
6783
  const char *name = bfd_get_section_name (abfd, sec);
6784
 
6785
  if (strcmp (name, ".liblist") == 0)
6786
    {
6787
      hdr->sh_type = SHT_MIPS_LIBLIST;
6788
      hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6789
      /* The sh_link field is set in final_write_processing.  */
6790
    }
6791
  else if (strcmp (name, ".conflict") == 0)
6792
    hdr->sh_type = SHT_MIPS_CONFLICT;
6793
  else if (CONST_STRNEQ (name, ".gptab."))
6794
    {
6795
      hdr->sh_type = SHT_MIPS_GPTAB;
6796
      hdr->sh_entsize = sizeof (Elf32_External_gptab);
6797
      /* The sh_info field is set in final_write_processing.  */
6798
    }
6799
  else if (strcmp (name, ".ucode") == 0)
6800
    hdr->sh_type = SHT_MIPS_UCODE;
6801
  else if (strcmp (name, ".mdebug") == 0)
6802
    {
6803
      hdr->sh_type = SHT_MIPS_DEBUG;
6804
      /* In a shared object on IRIX 5.3, the .mdebug section has an
6805
         entsize of 0.  FIXME: Does this matter?  */
6806
      if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6807
        hdr->sh_entsize = 0;
6808
      else
6809
        hdr->sh_entsize = 1;
6810
    }
6811
  else if (strcmp (name, ".reginfo") == 0)
6812
    {
6813
      hdr->sh_type = SHT_MIPS_REGINFO;
6814
      /* In a shared object on IRIX 5.3, the .reginfo section has an
6815
         entsize of 0x18.  FIXME: Does this matter?  */
6816
      if (SGI_COMPAT (abfd))
6817
        {
6818
          if ((abfd->flags & DYNAMIC) != 0)
6819
            hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6820
          else
6821
            hdr->sh_entsize = 1;
6822
        }
6823
      else
6824
        hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6825
    }
6826
  else if (SGI_COMPAT (abfd)
6827
           && (strcmp (name, ".hash") == 0
6828
               || strcmp (name, ".dynamic") == 0
6829
               || strcmp (name, ".dynstr") == 0))
6830
    {
6831
      if (SGI_COMPAT (abfd))
6832
        hdr->sh_entsize = 0;
6833
#if 0
6834
      /* This isn't how the IRIX6 linker behaves.  */
6835
      hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6836
#endif
6837
    }
6838
  else if (strcmp (name, ".got") == 0
6839
           || strcmp (name, ".srdata") == 0
6840
           || strcmp (name, ".sdata") == 0
6841
           || strcmp (name, ".sbss") == 0
6842
           || strcmp (name, ".lit4") == 0
6843
           || strcmp (name, ".lit8") == 0)
6844
    hdr->sh_flags |= SHF_MIPS_GPREL;
6845
  else if (strcmp (name, ".MIPS.interfaces") == 0)
6846
    {
6847
      hdr->sh_type = SHT_MIPS_IFACE;
6848
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6849
    }
6850
  else if (CONST_STRNEQ (name, ".MIPS.content"))
6851
    {
6852
      hdr->sh_type = SHT_MIPS_CONTENT;
6853
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6854
      /* The sh_info field is set in final_write_processing.  */
6855
    }
6856
  else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6857
    {
6858
      hdr->sh_type = SHT_MIPS_OPTIONS;
6859
      hdr->sh_entsize = 1;
6860
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6861
    }
6862
  else if (CONST_STRNEQ (name, ".debug_")
6863
           || CONST_STRNEQ (name, ".zdebug_"))
6864
    {
6865
      hdr->sh_type = SHT_MIPS_DWARF;
6866
 
6867
      /* Irix facilities such as libexc expect a single .debug_frame
6868
         per executable, the system ones have NOSTRIP set and the linker
6869
         doesn't merge sections with different flags so ...  */
6870
      if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6871
        hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6872
    }
6873
  else if (strcmp (name, ".MIPS.symlib") == 0)
6874
    {
6875
      hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6876
      /* The sh_link and sh_info fields are set in
6877
         final_write_processing.  */
6878
    }
6879
  else if (CONST_STRNEQ (name, ".MIPS.events")
6880
           || CONST_STRNEQ (name, ".MIPS.post_rel"))
6881
    {
6882
      hdr->sh_type = SHT_MIPS_EVENTS;
6883
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6884
      /* The sh_link field is set in final_write_processing.  */
6885
    }
6886
  else if (strcmp (name, ".msym") == 0)
6887
    {
6888
      hdr->sh_type = SHT_MIPS_MSYM;
6889
      hdr->sh_flags |= SHF_ALLOC;
6890
      hdr->sh_entsize = 8;
6891
    }
6892
 
6893
  /* The generic elf_fake_sections will set up REL_HDR using the default
6894
   kind of relocations.  We used to set up a second header for the
6895
   non-default kind of relocations here, but only NewABI would use
6896
   these, and the IRIX ld doesn't like resulting empty RELA sections.
6897
   Thus we create those header only on demand now.  */
6898
 
6899
  return TRUE;
6900
}
6901
 
6902
/* Given a BFD section, try to locate the corresponding ELF section
6903
   index.  This is used by both the 32-bit and the 64-bit ABI.
6904
   Actually, it's not clear to me that the 64-bit ABI supports these,
6905
   but for non-PIC objects we will certainly want support for at least
6906
   the .scommon section.  */
6907
 
6908
bfd_boolean
6909
_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6910
                                        asection *sec, int *retval)
6911
{
6912
  if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6913
    {
6914
      *retval = SHN_MIPS_SCOMMON;
6915
      return TRUE;
6916
    }
6917
  if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6918
    {
6919
      *retval = SHN_MIPS_ACOMMON;
6920
      return TRUE;
6921
    }
6922
  return FALSE;
6923
}
6924
 
6925
/* Hook called by the linker routine which adds symbols from an object
6926
   file.  We must handle the special MIPS section numbers here.  */
6927
 
6928
bfd_boolean
6929
_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6930
                               Elf_Internal_Sym *sym, const char **namep,
6931
                               flagword *flagsp ATTRIBUTE_UNUSED,
6932
                               asection **secp, bfd_vma *valp)
6933
{
6934
  if (SGI_COMPAT (abfd)
6935
      && (abfd->flags & DYNAMIC) != 0
6936
      && strcmp (*namep, "_rld_new_interface") == 0)
6937
    {
6938
      /* Skip IRIX5 rld entry name.  */
6939
      *namep = NULL;
6940
      return TRUE;
6941
    }
6942
 
6943
  /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6944
     a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
6945
     by setting a DT_NEEDED for the shared object.  Since _gp_disp is
6946
     a magic symbol resolved by the linker, we ignore this bogus definition
6947
     of _gp_disp.  New ABI objects do not suffer from this problem so this
6948
     is not done for them. */
6949
  if (!NEWABI_P(abfd)
6950
      && (sym->st_shndx == SHN_ABS)
6951
      && (strcmp (*namep, "_gp_disp") == 0))
6952
    {
6953
      *namep = NULL;
6954
      return TRUE;
6955
    }
6956
 
6957
  switch (sym->st_shndx)
6958
    {
6959
    case SHN_COMMON:
6960
      /* Common symbols less than the GP size are automatically
6961
         treated as SHN_MIPS_SCOMMON symbols.  */
6962
      if (sym->st_size > elf_gp_size (abfd)
6963
          || ELF_ST_TYPE (sym->st_info) == STT_TLS
6964
          || IRIX_COMPAT (abfd) == ict_irix6)
6965
        break;
6966
      /* Fall through.  */
6967
    case SHN_MIPS_SCOMMON:
6968
      *secp = bfd_make_section_old_way (abfd, ".scommon");
6969
      (*secp)->flags |= SEC_IS_COMMON;
6970
      *valp = sym->st_size;
6971
      break;
6972
 
6973
    case SHN_MIPS_TEXT:
6974
      /* This section is used in a shared object.  */
6975
      if (elf_tdata (abfd)->elf_text_section == NULL)
6976
        {
6977
          asymbol *elf_text_symbol;
6978
          asection *elf_text_section;
6979
          bfd_size_type amt = sizeof (asection);
6980
 
6981
          elf_text_section = bfd_zalloc (abfd, amt);
6982
          if (elf_text_section == NULL)
6983
            return FALSE;
6984
 
6985
          amt = sizeof (asymbol);
6986
          elf_text_symbol = bfd_zalloc (abfd, amt);
6987
          if (elf_text_symbol == NULL)
6988
            return FALSE;
6989
 
6990
          /* Initialize the section.  */
6991
 
6992
          elf_tdata (abfd)->elf_text_section = elf_text_section;
6993
          elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6994
 
6995
          elf_text_section->symbol = elf_text_symbol;
6996
          elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6997
 
6998
          elf_text_section->name = ".text";
6999
          elf_text_section->flags = SEC_NO_FLAGS;
7000
          elf_text_section->output_section = NULL;
7001
          elf_text_section->owner = abfd;
7002
          elf_text_symbol->name = ".text";
7003
          elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7004
          elf_text_symbol->section = elf_text_section;
7005
        }
7006
      /* This code used to do *secp = bfd_und_section_ptr if
7007
         info->shared.  I don't know why, and that doesn't make sense,
7008
         so I took it out.  */
7009
      *secp = elf_tdata (abfd)->elf_text_section;
7010
      break;
7011
 
7012
    case SHN_MIPS_ACOMMON:
7013
      /* Fall through. XXX Can we treat this as allocated data?  */
7014
    case SHN_MIPS_DATA:
7015
      /* This section is used in a shared object.  */
7016
      if (elf_tdata (abfd)->elf_data_section == NULL)
7017
        {
7018
          asymbol *elf_data_symbol;
7019
          asection *elf_data_section;
7020
          bfd_size_type amt = sizeof (asection);
7021
 
7022
          elf_data_section = bfd_zalloc (abfd, amt);
7023
          if (elf_data_section == NULL)
7024
            return FALSE;
7025
 
7026
          amt = sizeof (asymbol);
7027
          elf_data_symbol = bfd_zalloc (abfd, amt);
7028
          if (elf_data_symbol == NULL)
7029
            return FALSE;
7030
 
7031
          /* Initialize the section.  */
7032
 
7033
          elf_tdata (abfd)->elf_data_section = elf_data_section;
7034
          elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7035
 
7036
          elf_data_section->symbol = elf_data_symbol;
7037
          elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7038
 
7039
          elf_data_section->name = ".data";
7040
          elf_data_section->flags = SEC_NO_FLAGS;
7041
          elf_data_section->output_section = NULL;
7042
          elf_data_section->owner = abfd;
7043
          elf_data_symbol->name = ".data";
7044
          elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7045
          elf_data_symbol->section = elf_data_section;
7046
        }
7047
      /* This code used to do *secp = bfd_und_section_ptr if
7048
         info->shared.  I don't know why, and that doesn't make sense,
7049
         so I took it out.  */
7050
      *secp = elf_tdata (abfd)->elf_data_section;
7051
      break;
7052
 
7053
    case SHN_MIPS_SUNDEFINED:
7054
      *secp = bfd_und_section_ptr;
7055
      break;
7056
    }
7057
 
7058
  if (SGI_COMPAT (abfd)
7059
      && ! info->shared
7060
      && info->output_bfd->xvec == abfd->xvec
7061
      && strcmp (*namep, "__rld_obj_head") == 0)
7062
    {
7063
      struct elf_link_hash_entry *h;
7064
      struct bfd_link_hash_entry *bh;
7065
 
7066
      /* Mark __rld_obj_head as dynamic.  */
7067
      bh = NULL;
7068
      if (! (_bfd_generic_link_add_one_symbol
7069
             (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7070
              get_elf_backend_data (abfd)->collect, &bh)))
7071
        return FALSE;
7072
 
7073
      h = (struct elf_link_hash_entry *) bh;
7074
      h->non_elf = 0;
7075
      h->def_regular = 1;
7076
      h->type = STT_OBJECT;
7077
 
7078
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
7079
        return FALSE;
7080
 
7081
      mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7082
    }
7083
 
7084
  /* If this is a mips16 text symbol, add 1 to the value to make it
7085
     odd.  This will cause something like .word SYM to come up with
7086
     the right value when it is loaded into the PC.  */
7087 161 khays
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
7088 14 khays
    ++*valp;
7089
 
7090
  return TRUE;
7091
}
7092
 
7093
/* This hook function is called before the linker writes out a global
7094
   symbol.  We mark symbols as small common if appropriate.  This is
7095
   also where we undo the increment of the value for a mips16 symbol.  */
7096
 
7097
int
7098
_bfd_mips_elf_link_output_symbol_hook
7099
  (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7100
   const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7101
   asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7102
{
7103
  /* If we see a common symbol, which implies a relocatable link, then
7104
     if a symbol was small common in an input file, mark it as small
7105
     common in the output file.  */
7106
  if (sym->st_shndx == SHN_COMMON
7107
      && strcmp (input_sec->name, ".scommon") == 0)
7108
    sym->st_shndx = SHN_MIPS_SCOMMON;
7109
 
7110 161 khays
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
7111 14 khays
    sym->st_value &= ~1;
7112
 
7113
  return 1;
7114
}
7115
 
7116
/* Functions for the dynamic linker.  */
7117
 
7118
/* Create dynamic sections when linking against a dynamic object.  */
7119
 
7120
bfd_boolean
7121
_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7122
{
7123
  struct elf_link_hash_entry *h;
7124
  struct bfd_link_hash_entry *bh;
7125
  flagword flags;
7126
  register asection *s;
7127
  const char * const *namep;
7128
  struct mips_elf_link_hash_table *htab;
7129
 
7130
  htab = mips_elf_hash_table (info);
7131
  BFD_ASSERT (htab != NULL);
7132
 
7133
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7134
           | SEC_LINKER_CREATED | SEC_READONLY);
7135
 
7136
  /* The psABI requires a read-only .dynamic section, but the VxWorks
7137
     EABI doesn't.  */
7138
  if (!htab->is_vxworks)
7139
    {
7140
      s = bfd_get_section_by_name (abfd, ".dynamic");
7141
      if (s != NULL)
7142
        {
7143
          if (! bfd_set_section_flags (abfd, s, flags))
7144
            return FALSE;
7145
        }
7146
    }
7147
 
7148
  /* We need to create .got section.  */
7149
  if (!mips_elf_create_got_section (abfd, info))
7150
    return FALSE;
7151
 
7152
  if (! mips_elf_rel_dyn_section (info, TRUE))
7153
    return FALSE;
7154
 
7155
  /* Create .stub section.  */
7156
  s = bfd_make_section_with_flags (abfd,
7157
                                   MIPS_ELF_STUB_SECTION_NAME (abfd),
7158
                                   flags | SEC_CODE);
7159
  if (s == NULL
7160
      || ! bfd_set_section_alignment (abfd, s,
7161
                                      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7162
    return FALSE;
7163
  htab->sstubs = s;
7164
 
7165
  if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7166
      && !info->shared
7167
      && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7168
    {
7169
      s = bfd_make_section_with_flags (abfd, ".rld_map",
7170
                                       flags &~ (flagword) SEC_READONLY);
7171
      if (s == NULL
7172
          || ! bfd_set_section_alignment (abfd, s,
7173
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7174
        return FALSE;
7175
    }
7176
 
7177
  /* On IRIX5, we adjust add some additional symbols and change the
7178
     alignments of several sections.  There is no ABI documentation
7179
     indicating that this is necessary on IRIX6, nor any evidence that
7180
     the linker takes such action.  */
7181
  if (IRIX_COMPAT (abfd) == ict_irix5)
7182
    {
7183
      for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7184
        {
7185
          bh = NULL;
7186
          if (! (_bfd_generic_link_add_one_symbol
7187
                 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7188
                  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7189
            return FALSE;
7190
 
7191
          h = (struct elf_link_hash_entry *) bh;
7192
          h->non_elf = 0;
7193
          h->def_regular = 1;
7194
          h->type = STT_SECTION;
7195
 
7196
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
7197
            return FALSE;
7198
        }
7199
 
7200
      /* We need to create a .compact_rel section.  */
7201
      if (SGI_COMPAT (abfd))
7202
        {
7203
          if (!mips_elf_create_compact_rel_section (abfd, info))
7204
            return FALSE;
7205
        }
7206
 
7207
      /* Change alignments of some sections.  */
7208
      s = bfd_get_section_by_name (abfd, ".hash");
7209
      if (s != NULL)
7210
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7211
      s = bfd_get_section_by_name (abfd, ".dynsym");
7212
      if (s != NULL)
7213
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7214
      s = bfd_get_section_by_name (abfd, ".dynstr");
7215
      if (s != NULL)
7216
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7217
      s = bfd_get_section_by_name (abfd, ".reginfo");
7218
      if (s != NULL)
7219
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7220
      s = bfd_get_section_by_name (abfd, ".dynamic");
7221
      if (s != NULL)
7222
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7223
    }
7224
 
7225
  if (!info->shared)
7226
    {
7227
      const char *name;
7228
 
7229
      name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7230
      bh = NULL;
7231
      if (!(_bfd_generic_link_add_one_symbol
7232
            (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7233
             NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7234
        return FALSE;
7235
 
7236
      h = (struct elf_link_hash_entry *) bh;
7237
      h->non_elf = 0;
7238
      h->def_regular = 1;
7239
      h->type = STT_SECTION;
7240
 
7241
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
7242
        return FALSE;
7243
 
7244
      if (! mips_elf_hash_table (info)->use_rld_obj_head)
7245
        {
7246
          /* __rld_map is a four byte word located in the .data section
7247
             and is filled in by the rtld to contain a pointer to
7248
             the _r_debug structure. Its symbol value will be set in
7249
             _bfd_mips_elf_finish_dynamic_symbol.  */
7250
          s = bfd_get_section_by_name (abfd, ".rld_map");
7251
          BFD_ASSERT (s != NULL);
7252
 
7253
          name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7254
          bh = NULL;
7255
          if (!(_bfd_generic_link_add_one_symbol
7256
                (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7257
                 get_elf_backend_data (abfd)->collect, &bh)))
7258
            return FALSE;
7259
 
7260
          h = (struct elf_link_hash_entry *) bh;
7261
          h->non_elf = 0;
7262
          h->def_regular = 1;
7263
          h->type = STT_OBJECT;
7264
 
7265
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
7266
            return FALSE;
7267
        }
7268
    }
7269
 
7270
  /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7271
     Also create the _PROCEDURE_LINKAGE_TABLE symbol.  */
7272
  if (!_bfd_elf_create_dynamic_sections (abfd, info))
7273
    return FALSE;
7274
 
7275
  /* Cache the sections created above.  */
7276
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
7277
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7278
  if (htab->is_vxworks)
7279
    {
7280
      htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7281
      htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7282
    }
7283
  else
7284
    htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7285
  if (!htab->sdynbss
7286
      || (htab->is_vxworks && !htab->srelbss && !info->shared)
7287
      || !htab->srelplt
7288
      || !htab->splt)
7289
    abort ();
7290
 
7291
  if (htab->is_vxworks)
7292
    {
7293
      /* Do the usual VxWorks handling.  */
7294
      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7295
        return FALSE;
7296
 
7297
      /* Work out the PLT sizes.  */
7298
      if (info->shared)
7299
        {
7300
          htab->plt_header_size
7301
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7302
          htab->plt_entry_size
7303
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7304
        }
7305
      else
7306
        {
7307
          htab->plt_header_size
7308
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7309
          htab->plt_entry_size
7310
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7311
        }
7312
    }
7313
  else if (!info->shared)
7314
    {
7315
      /* All variants of the plt0 entry are the same size.  */
7316
      htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7317
      htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7318
    }
7319
 
7320
  return TRUE;
7321
}
7322
 
7323
/* Return true if relocation REL against section SEC is a REL rather than
7324
   RELA relocation.  RELOCS is the first relocation in the section and
7325
   ABFD is the bfd that contains SEC.  */
7326
 
7327
static bfd_boolean
7328
mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7329
                           const Elf_Internal_Rela *relocs,
7330
                           const Elf_Internal_Rela *rel)
7331
{
7332
  Elf_Internal_Shdr *rel_hdr;
7333
  const struct elf_backend_data *bed;
7334
 
7335
  /* To determine which flavor of relocation this is, we depend on the
7336
     fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7337
  rel_hdr = elf_section_data (sec)->rel.hdr;
7338
  if (rel_hdr == NULL)
7339
    return FALSE;
7340
  bed = get_elf_backend_data (abfd);
7341
  return ((size_t) (rel - relocs)
7342
          < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7343
}
7344
 
7345
/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7346
   HOWTO is the relocation's howto and CONTENTS points to the contents
7347
   of the section that REL is against.  */
7348
 
7349
static bfd_vma
7350
mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7351
                          reloc_howto_type *howto, bfd_byte *contents)
7352
{
7353
  bfd_byte *location;
7354
  unsigned int r_type;
7355
  bfd_vma addend;
7356
 
7357
  r_type = ELF_R_TYPE (abfd, rel->r_info);
7358
  location = contents + rel->r_offset;
7359
 
7360
  /* Get the addend, which is stored in the input file.  */
7361 161 khays
  _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7362 14 khays
  addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7363 161 khays
  _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7364 14 khays
 
7365
  return addend & howto->src_mask;
7366
}
7367
 
7368
/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7369
   and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7370
   and update *ADDEND with the final addend.  Return true on success
7371
   or false if the LO16 could not be found.  RELEND is the exclusive
7372
   upper bound on the relocations for REL's section.  */
7373
 
7374
static bfd_boolean
7375
mips_elf_add_lo16_rel_addend (bfd *abfd,
7376
                              const Elf_Internal_Rela *rel,
7377
                              const Elf_Internal_Rela *relend,
7378
                              bfd_byte *contents, bfd_vma *addend)
7379
{
7380
  unsigned int r_type, lo16_type;
7381
  const Elf_Internal_Rela *lo16_relocation;
7382
  reloc_howto_type *lo16_howto;
7383
  bfd_vma l;
7384
 
7385
  r_type = ELF_R_TYPE (abfd, rel->r_info);
7386
  if (mips16_reloc_p (r_type))
7387
    lo16_type = R_MIPS16_LO16;
7388 161 khays
  else if (micromips_reloc_p (r_type))
7389
    lo16_type = R_MICROMIPS_LO16;
7390 14 khays
  else
7391
    lo16_type = R_MIPS_LO16;
7392
 
7393
  /* The combined value is the sum of the HI16 addend, left-shifted by
7394
     sixteen bits, and the LO16 addend, sign extended.  (Usually, the
7395
     code does a `lui' of the HI16 value, and then an `addiu' of the
7396
     LO16 value.)
7397
 
7398
     Scan ahead to find a matching LO16 relocation.
7399
 
7400
     According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7401
     be immediately following.  However, for the IRIX6 ABI, the next
7402
     relocation may be a composed relocation consisting of several
7403
     relocations for the same address.  In that case, the R_MIPS_LO16
7404
     relocation may occur as one of these.  We permit a similar
7405
     extension in general, as that is useful for GCC.
7406
 
7407
     In some cases GCC dead code elimination removes the LO16 but keeps
7408
     the corresponding HI16.  This is strictly speaking a violation of
7409
     the ABI but not immediately harmful.  */
7410
  lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7411
  if (lo16_relocation == NULL)
7412
    return FALSE;
7413
 
7414
  /* Obtain the addend kept there.  */
7415
  lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7416
  l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7417
 
7418
  l <<= lo16_howto->rightshift;
7419
  l = _bfd_mips_elf_sign_extend (l, 16);
7420
 
7421
  *addend <<= 16;
7422
  *addend += l;
7423
  return TRUE;
7424
}
7425
 
7426
/* Try to read the contents of section SEC in bfd ABFD.  Return true and
7427
   store the contents in *CONTENTS on success.  Assume that *CONTENTS
7428
   already holds the contents if it is nonull on entry.  */
7429
 
7430
static bfd_boolean
7431
mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7432
{
7433
  if (*contents)
7434
    return TRUE;
7435
 
7436
  /* Get cached copy if it exists.  */
7437
  if (elf_section_data (sec)->this_hdr.contents != NULL)
7438
    {
7439
      *contents = elf_section_data (sec)->this_hdr.contents;
7440
      return TRUE;
7441
    }
7442
 
7443
  return bfd_malloc_and_get_section (abfd, sec, contents);
7444
}
7445
 
7446
/* Look through the relocs for a section during the first phase, and
7447
   allocate space in the global offset table.  */
7448
 
7449
bfd_boolean
7450
_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7451
                            asection *sec, const Elf_Internal_Rela *relocs)
7452
{
7453
  const char *name;
7454
  bfd *dynobj;
7455
  Elf_Internal_Shdr *symtab_hdr;
7456
  struct elf_link_hash_entry **sym_hashes;
7457
  size_t extsymoff;
7458
  const Elf_Internal_Rela *rel;
7459
  const Elf_Internal_Rela *rel_end;
7460
  asection *sreloc;
7461
  const struct elf_backend_data *bed;
7462
  struct mips_elf_link_hash_table *htab;
7463
  bfd_byte *contents;
7464
  bfd_vma addend;
7465
  reloc_howto_type *howto;
7466
 
7467
  if (info->relocatable)
7468
    return TRUE;
7469
 
7470
  htab = mips_elf_hash_table (info);
7471
  BFD_ASSERT (htab != NULL);
7472
 
7473
  dynobj = elf_hash_table (info)->dynobj;
7474
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7475
  sym_hashes = elf_sym_hashes (abfd);
7476
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7477
 
7478
  bed = get_elf_backend_data (abfd);
7479
  rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7480
 
7481
  /* Check for the mips16 stub sections.  */
7482
 
7483
  name = bfd_get_section_name (abfd, sec);
7484
  if (FN_STUB_P (name))
7485
    {
7486
      unsigned long r_symndx;
7487
 
7488
      /* Look at the relocation information to figure out which symbol
7489
         this is for.  */
7490
 
7491
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7492
      if (r_symndx == 0)
7493
        {
7494
          (*_bfd_error_handler)
7495
            (_("%B: Warning: cannot determine the target function for"
7496
               " stub section `%s'"),
7497
             abfd, name);
7498
          bfd_set_error (bfd_error_bad_value);
7499
          return FALSE;
7500
        }
7501
 
7502
      if (r_symndx < extsymoff
7503
          || sym_hashes[r_symndx - extsymoff] == NULL)
7504
        {
7505
          asection *o;
7506
 
7507
          /* This stub is for a local symbol.  This stub will only be
7508
             needed if there is some relocation in this BFD, other
7509
             than a 16 bit function call, which refers to this symbol.  */
7510
          for (o = abfd->sections; o != NULL; o = o->next)
7511
            {
7512
              Elf_Internal_Rela *sec_relocs;
7513
              const Elf_Internal_Rela *r, *rend;
7514
 
7515
              /* We can ignore stub sections when looking for relocs.  */
7516
              if ((o->flags & SEC_RELOC) == 0
7517
                  || o->reloc_count == 0
7518
                  || section_allows_mips16_refs_p (o))
7519
                continue;
7520
 
7521
              sec_relocs
7522
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7523
                                             info->keep_memory);
7524
              if (sec_relocs == NULL)
7525
                return FALSE;
7526
 
7527
              rend = sec_relocs + o->reloc_count;
7528
              for (r = sec_relocs; r < rend; r++)
7529
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7530
                    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7531
                  break;
7532
 
7533
              if (elf_section_data (o)->relocs != sec_relocs)
7534
                free (sec_relocs);
7535
 
7536
              if (r < rend)
7537
                break;
7538
            }
7539
 
7540
          if (o == NULL)
7541
            {
7542
              /* There is no non-call reloc for this stub, so we do
7543
                 not need it.  Since this function is called before
7544
                 the linker maps input sections to output sections, we
7545
                 can easily discard it by setting the SEC_EXCLUDE
7546
                 flag.  */
7547
              sec->flags |= SEC_EXCLUDE;
7548
              return TRUE;
7549
            }
7550
 
7551
          /* Record this stub in an array of local symbol stubs for
7552
             this BFD.  */
7553
          if (elf_tdata (abfd)->local_stubs == NULL)
7554
            {
7555
              unsigned long symcount;
7556
              asection **n;
7557
              bfd_size_type amt;
7558
 
7559
              if (elf_bad_symtab (abfd))
7560
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7561
              else
7562
                symcount = symtab_hdr->sh_info;
7563
              amt = symcount * sizeof (asection *);
7564
              n = bfd_zalloc (abfd, amt);
7565
              if (n == NULL)
7566
                return FALSE;
7567
              elf_tdata (abfd)->local_stubs = n;
7568
            }
7569
 
7570
          sec->flags |= SEC_KEEP;
7571
          elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7572
 
7573
          /* We don't need to set mips16_stubs_seen in this case.
7574
             That flag is used to see whether we need to look through
7575
             the global symbol table for stubs.  We don't need to set
7576
             it here, because we just have a local stub.  */
7577
        }
7578
      else
7579
        {
7580
          struct mips_elf_link_hash_entry *h;
7581
 
7582
          h = ((struct mips_elf_link_hash_entry *)
7583
               sym_hashes[r_symndx - extsymoff]);
7584
 
7585
          while (h->root.root.type == bfd_link_hash_indirect
7586
                 || h->root.root.type == bfd_link_hash_warning)
7587
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7588
 
7589
          /* H is the symbol this stub is for.  */
7590
 
7591
          /* If we already have an appropriate stub for this function, we
7592
             don't need another one, so we can discard this one.  Since
7593
             this function is called before the linker maps input sections
7594
             to output sections, we can easily discard it by setting the
7595
             SEC_EXCLUDE flag.  */
7596
          if (h->fn_stub != NULL)
7597
            {
7598
              sec->flags |= SEC_EXCLUDE;
7599
              return TRUE;
7600
            }
7601
 
7602
          sec->flags |= SEC_KEEP;
7603
          h->fn_stub = sec;
7604
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7605
        }
7606
    }
7607
  else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7608
    {
7609
      unsigned long r_symndx;
7610
      struct mips_elf_link_hash_entry *h;
7611
      asection **loc;
7612
 
7613
      /* Look at the relocation information to figure out which symbol
7614
         this is for.  */
7615
 
7616
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7617
      if (r_symndx == 0)
7618
        {
7619
          (*_bfd_error_handler)
7620
            (_("%B: Warning: cannot determine the target function for"
7621
               " stub section `%s'"),
7622
             abfd, name);
7623
          bfd_set_error (bfd_error_bad_value);
7624
          return FALSE;
7625
        }
7626
 
7627
      if (r_symndx < extsymoff
7628
          || sym_hashes[r_symndx - extsymoff] == NULL)
7629
        {
7630
          asection *o;
7631
 
7632
          /* This stub is for a local symbol.  This stub will only be
7633
             needed if there is some relocation (R_MIPS16_26) in this BFD
7634
             that refers to this symbol.  */
7635
          for (o = abfd->sections; o != NULL; o = o->next)
7636
            {
7637
              Elf_Internal_Rela *sec_relocs;
7638
              const Elf_Internal_Rela *r, *rend;
7639
 
7640
              /* We can ignore stub sections when looking for relocs.  */
7641
              if ((o->flags & SEC_RELOC) == 0
7642
                  || o->reloc_count == 0
7643
                  || section_allows_mips16_refs_p (o))
7644
                continue;
7645
 
7646
              sec_relocs
7647
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7648
                                             info->keep_memory);
7649
              if (sec_relocs == NULL)
7650
                return FALSE;
7651
 
7652
              rend = sec_relocs + o->reloc_count;
7653
              for (r = sec_relocs; r < rend; r++)
7654
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7655
                    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7656
                    break;
7657
 
7658
              if (elf_section_data (o)->relocs != sec_relocs)
7659
                free (sec_relocs);
7660
 
7661
              if (r < rend)
7662
                break;
7663
            }
7664
 
7665
          if (o == NULL)
7666
            {
7667
              /* There is no non-call reloc for this stub, so we do
7668
                 not need it.  Since this function is called before
7669
                 the linker maps input sections to output sections, we
7670
                 can easily discard it by setting the SEC_EXCLUDE
7671
                 flag.  */
7672
              sec->flags |= SEC_EXCLUDE;
7673
              return TRUE;
7674
            }
7675
 
7676
          /* Record this stub in an array of local symbol call_stubs for
7677
             this BFD.  */
7678
          if (elf_tdata (abfd)->local_call_stubs == NULL)
7679
            {
7680
              unsigned long symcount;
7681
              asection **n;
7682
              bfd_size_type amt;
7683
 
7684
              if (elf_bad_symtab (abfd))
7685
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7686
              else
7687
                symcount = symtab_hdr->sh_info;
7688
              amt = symcount * sizeof (asection *);
7689
              n = bfd_zalloc (abfd, amt);
7690
              if (n == NULL)
7691
                return FALSE;
7692
              elf_tdata (abfd)->local_call_stubs = n;
7693
            }
7694
 
7695
          sec->flags |= SEC_KEEP;
7696
          elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7697
 
7698
          /* We don't need to set mips16_stubs_seen in this case.
7699
             That flag is used to see whether we need to look through
7700
             the global symbol table for stubs.  We don't need to set
7701
             it here, because we just have a local stub.  */
7702
        }
7703
      else
7704
        {
7705
          h = ((struct mips_elf_link_hash_entry *)
7706
               sym_hashes[r_symndx - extsymoff]);
7707
 
7708
          /* H is the symbol this stub is for.  */
7709
 
7710
          if (CALL_FP_STUB_P (name))
7711
            loc = &h->call_fp_stub;
7712
          else
7713
            loc = &h->call_stub;
7714
 
7715
          /* If we already have an appropriate stub for this function, we
7716
             don't need another one, so we can discard this one.  Since
7717
             this function is called before the linker maps input sections
7718
             to output sections, we can easily discard it by setting the
7719
             SEC_EXCLUDE flag.  */
7720
          if (*loc != NULL)
7721
            {
7722
              sec->flags |= SEC_EXCLUDE;
7723
              return TRUE;
7724
            }
7725
 
7726
          sec->flags |= SEC_KEEP;
7727
          *loc = sec;
7728
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7729
        }
7730
    }
7731
 
7732
  sreloc = NULL;
7733
  contents = NULL;
7734
  for (rel = relocs; rel < rel_end; ++rel)
7735
    {
7736
      unsigned long r_symndx;
7737
      unsigned int r_type;
7738
      struct elf_link_hash_entry *h;
7739
      bfd_boolean can_make_dynamic_p;
7740
 
7741
      r_symndx = ELF_R_SYM (abfd, rel->r_info);
7742
      r_type = ELF_R_TYPE (abfd, rel->r_info);
7743
 
7744
      if (r_symndx < extsymoff)
7745
        h = NULL;
7746
      else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7747
        {
7748
          (*_bfd_error_handler)
7749
            (_("%B: Malformed reloc detected for section %s"),
7750
             abfd, name);
7751
          bfd_set_error (bfd_error_bad_value);
7752
          return FALSE;
7753
        }
7754
      else
7755
        {
7756
          h = sym_hashes[r_symndx - extsymoff];
7757
          while (h != NULL
7758
                 && (h->root.type == bfd_link_hash_indirect
7759
                     || h->root.type == bfd_link_hash_warning))
7760
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
7761
        }
7762
 
7763
      /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7764
         relocation into a dynamic one.  */
7765
      can_make_dynamic_p = FALSE;
7766
      switch (r_type)
7767
        {
7768
        case R_MIPS16_GOT16:
7769
        case R_MIPS16_CALL16:
7770
        case R_MIPS_GOT16:
7771
        case R_MIPS_CALL16:
7772
        case R_MIPS_CALL_HI16:
7773
        case R_MIPS_CALL_LO16:
7774
        case R_MIPS_GOT_HI16:
7775
        case R_MIPS_GOT_LO16:
7776
        case R_MIPS_GOT_PAGE:
7777
        case R_MIPS_GOT_OFST:
7778
        case R_MIPS_GOT_DISP:
7779
        case R_MIPS_TLS_GOTTPREL:
7780
        case R_MIPS_TLS_GD:
7781
        case R_MIPS_TLS_LDM:
7782 161 khays
        case R_MICROMIPS_GOT16:
7783
        case R_MICROMIPS_CALL16:
7784
        case R_MICROMIPS_CALL_HI16:
7785
        case R_MICROMIPS_CALL_LO16:
7786
        case R_MICROMIPS_GOT_HI16:
7787
        case R_MICROMIPS_GOT_LO16:
7788
        case R_MICROMIPS_GOT_PAGE:
7789
        case R_MICROMIPS_GOT_OFST:
7790
        case R_MICROMIPS_GOT_DISP:
7791
        case R_MICROMIPS_TLS_GOTTPREL:
7792
        case R_MICROMIPS_TLS_GD:
7793
        case R_MICROMIPS_TLS_LDM:
7794 14 khays
          if (dynobj == NULL)
7795
            elf_hash_table (info)->dynobj = dynobj = abfd;
7796
          if (!mips_elf_create_got_section (dynobj, info))
7797
            return FALSE;
7798
          if (htab->is_vxworks && !info->shared)
7799
            {
7800
              (*_bfd_error_handler)
7801
                (_("%B: GOT reloc at 0x%lx not expected in executables"),
7802
                 abfd, (unsigned long) rel->r_offset);
7803
              bfd_set_error (bfd_error_bad_value);
7804
              return FALSE;
7805
            }
7806
          break;
7807
 
7808
          /* This is just a hint; it can safely be ignored.  Don't set
7809
             has_static_relocs for the corresponding symbol.  */
7810
        case R_MIPS_JALR:
7811 161 khays
        case R_MICROMIPS_JALR:
7812 14 khays
          break;
7813
 
7814
        case R_MIPS_32:
7815
        case R_MIPS_REL32:
7816
        case R_MIPS_64:
7817
          /* In VxWorks executables, references to external symbols
7818
             must be handled using copy relocs or PLT entries; it is not
7819
             possible to convert this relocation into a dynamic one.
7820
 
7821
             For executables that use PLTs and copy-relocs, we have a
7822
             choice between converting the relocation into a dynamic
7823
             one or using copy relocations or PLT entries.  It is
7824
             usually better to do the former, unless the relocation is
7825
             against a read-only section.  */
7826
          if ((info->shared
7827
               || (h != NULL
7828
                   && !htab->is_vxworks
7829
                   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7830
                   && !(!info->nocopyreloc
7831
                        && !PIC_OBJECT_P (abfd)
7832
                        && MIPS_ELF_READONLY_SECTION (sec))))
7833
              && (sec->flags & SEC_ALLOC) != 0)
7834
            {
7835
              can_make_dynamic_p = TRUE;
7836
              if (dynobj == NULL)
7837
                elf_hash_table (info)->dynobj = dynobj = abfd;
7838
              break;
7839
            }
7840
          /* For sections that are not SEC_ALLOC a copy reloc would be
7841
             output if possible (implying questionable semantics for
7842
             read-only data objects) or otherwise the final link would
7843
             fail as ld.so will not process them and could not therefore
7844
             handle any outstanding dynamic relocations.
7845
 
7846
             For such sections that are also SEC_DEBUGGING, we can avoid
7847
             these problems by simply ignoring any relocs as these
7848
             sections have a predefined use and we know it is safe to do
7849
             so.
7850
 
7851
             This is needed in cases such as a global symbol definition
7852
             in a shared library causing a common symbol from an object
7853
             file to be converted to an undefined reference.  If that
7854
             happens, then all the relocations against this symbol from
7855
             SEC_DEBUGGING sections in the object file will resolve to
7856
             nil.  */
7857
          if ((sec->flags & SEC_DEBUGGING) != 0)
7858
            break;
7859
          /* Fall through.  */
7860
 
7861
        default:
7862
          /* Most static relocations require pointer equality, except
7863
             for branches.  */
7864
          if (h)
7865
            h->pointer_equality_needed = TRUE;
7866
          /* Fall through.  */
7867
 
7868
        case R_MIPS_26:
7869
        case R_MIPS_PC16:
7870
        case R_MIPS16_26:
7871 161 khays
        case R_MICROMIPS_26_S1:
7872
        case R_MICROMIPS_PC7_S1:
7873
        case R_MICROMIPS_PC10_S1:
7874
        case R_MICROMIPS_PC16_S1:
7875
        case R_MICROMIPS_PC23_S2:
7876 14 khays
          if (h)
7877
            ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7878
          break;
7879
        }
7880
 
7881
      if (h)
7882
        {
7883
          /* Relocations against the special VxWorks __GOTT_BASE__ and
7884
             __GOTT_INDEX__ symbols must be left to the loader.  Allocate
7885
             room for them in .rela.dyn.  */
7886
          if (is_gott_symbol (info, h))
7887
            {
7888
              if (sreloc == NULL)
7889
                {
7890
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
7891
                  if (sreloc == NULL)
7892
                    return FALSE;
7893
                }
7894
              mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7895
              if (MIPS_ELF_READONLY_SECTION (sec))
7896
                /* We tell the dynamic linker that there are
7897
                   relocations against the text segment.  */
7898
                info->flags |= DF_TEXTREL;
7899
            }
7900
        }
7901 161 khays
      else if (call_lo16_reloc_p (r_type)
7902
               || got_lo16_reloc_p (r_type)
7903
               || got_disp_reloc_p (r_type)
7904 14 khays
               || (got16_reloc_p (r_type) && htab->is_vxworks))
7905
        {
7906
          /* We may need a local GOT entry for this relocation.  We
7907
             don't count R_MIPS_GOT_PAGE because we can estimate the
7908
             maximum number of pages needed by looking at the size of
7909
             the segment.  Similar comments apply to R_MIPS*_GOT16 and
7910
             R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7911
             always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
7912
             R_MIPS_CALL_HI16 because these are always followed by an
7913
             R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
7914
          if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7915
                                                 rel->r_addend, info, 0))
7916
            return FALSE;
7917
        }
7918
 
7919
      if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7920
        ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7921
 
7922
      switch (r_type)
7923
        {
7924
        case R_MIPS_CALL16:
7925
        case R_MIPS16_CALL16:
7926 161 khays
        case R_MICROMIPS_CALL16:
7927 14 khays
          if (h == NULL)
7928
            {
7929
              (*_bfd_error_handler)
7930
                (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7931
                 abfd, (unsigned long) rel->r_offset);
7932
              bfd_set_error (bfd_error_bad_value);
7933
              return FALSE;
7934
            }
7935
          /* Fall through.  */
7936
 
7937
        case R_MIPS_CALL_HI16:
7938
        case R_MIPS_CALL_LO16:
7939 161 khays
        case R_MICROMIPS_CALL_HI16:
7940
        case R_MICROMIPS_CALL_LO16:
7941 14 khays
          if (h != NULL)
7942
            {
7943
              /* Make sure there is room in the regular GOT to hold the
7944
                 function's address.  We may eliminate it in favour of
7945
                 a .got.plt entry later; see mips_elf_count_got_symbols.  */
7946
              if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7947
                return FALSE;
7948
 
7949
              /* We need a stub, not a plt entry for the undefined
7950
                 function.  But we record it as if it needs plt.  See
7951
                 _bfd_elf_adjust_dynamic_symbol.  */
7952
              h->needs_plt = 1;
7953
              h->type = STT_FUNC;
7954
            }
7955
          break;
7956
 
7957
        case R_MIPS_GOT_PAGE:
7958 161 khays
        case R_MICROMIPS_GOT_PAGE:
7959 14 khays
          /* If this is a global, overridable symbol, GOT_PAGE will
7960
             decay to GOT_DISP, so we'll need a GOT entry for it.  */
7961
          if (h)
7962
            {
7963
              struct mips_elf_link_hash_entry *hmips =
7964
                (struct mips_elf_link_hash_entry *) h;
7965
 
7966
              /* This symbol is definitely not overridable.  */
7967
              if (hmips->root.def_regular
7968
                  && ! (info->shared && ! info->symbolic
7969
                        && ! hmips->root.forced_local))
7970
                h = NULL;
7971
            }
7972
          /* Fall through.  */
7973
 
7974
        case R_MIPS16_GOT16:
7975
        case R_MIPS_GOT16:
7976
        case R_MIPS_GOT_HI16:
7977
        case R_MIPS_GOT_LO16:
7978 161 khays
        case R_MICROMIPS_GOT16:
7979
        case R_MICROMIPS_GOT_HI16:
7980
        case R_MICROMIPS_GOT_LO16:
7981
          if (!h || got_page_reloc_p (r_type))
7982 14 khays
            {
7983
              /* This relocation needs (or may need, if h != NULL) a
7984
                 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
7985
                 know for sure until we know whether the symbol is
7986
                 preemptible.  */
7987
              if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7988
                {
7989
                  if (!mips_elf_get_section_contents (abfd, sec, &contents))
7990
                    return FALSE;
7991
                  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7992
                  addend = mips_elf_read_rel_addend (abfd, rel,
7993
                                                     howto, contents);
7994
                  if (got16_reloc_p (r_type))
7995
                    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7996
                                                  contents, &addend);
7997
                  else
7998
                    addend <<= howto->rightshift;
7999
                }
8000
              else
8001
                addend = rel->r_addend;
8002
              if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8003
                                                   addend))
8004
                return FALSE;
8005
            }
8006
          /* Fall through.  */
8007
 
8008
        case R_MIPS_GOT_DISP:
8009 161 khays
        case R_MICROMIPS_GOT_DISP:
8010 14 khays
          if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8011
                                                       FALSE, 0))
8012
            return FALSE;
8013
          break;
8014
 
8015
        case R_MIPS_TLS_GOTTPREL:
8016 161 khays
        case R_MICROMIPS_TLS_GOTTPREL:
8017 14 khays
          if (info->shared)
8018
            info->flags |= DF_STATIC_TLS;
8019
          /* Fall through */
8020
 
8021
        case R_MIPS_TLS_LDM:
8022 161 khays
        case R_MICROMIPS_TLS_LDM:
8023
          if (tls_ldm_reloc_p (r_type))
8024 14 khays
            {
8025
              r_symndx = STN_UNDEF;
8026
              h = NULL;
8027
            }
8028
          /* Fall through */
8029
 
8030
        case R_MIPS_TLS_GD:
8031 161 khays
        case R_MICROMIPS_TLS_GD:
8032 14 khays
          /* This symbol requires a global offset table entry, or two
8033
             for TLS GD relocations.  */
8034
          {
8035 161 khays
            unsigned char flag;
8036
 
8037
            flag = (tls_gd_reloc_p (r_type)
8038
                    ? GOT_TLS_GD
8039
                    : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8040 14 khays
            if (h != NULL)
8041
              {
8042
                struct mips_elf_link_hash_entry *hmips =
8043
                  (struct mips_elf_link_hash_entry *) h;
8044
                hmips->tls_type |= flag;
8045
 
8046
                if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8047
                                                             FALSE, flag))
8048
                  return FALSE;
8049
              }
8050
            else
8051
              {
8052
                BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8053
 
8054
                if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8055
                                                       rel->r_addend,
8056
                                                       info, flag))
8057
                  return FALSE;
8058
              }
8059
          }
8060
          break;
8061
 
8062
        case R_MIPS_32:
8063
        case R_MIPS_REL32:
8064
        case R_MIPS_64:
8065
          /* In VxWorks executables, references to external symbols
8066
             are handled using copy relocs or PLT stubs, so there's
8067
             no need to add a .rela.dyn entry for this relocation.  */
8068
          if (can_make_dynamic_p)
8069
            {
8070
              if (sreloc == NULL)
8071
                {
8072
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8073
                  if (sreloc == NULL)
8074
                    return FALSE;
8075
                }
8076
              if (info->shared && h == NULL)
8077
                {
8078
                  /* When creating a shared object, we must copy these
8079
                     reloc types into the output file as R_MIPS_REL32
8080
                     relocs.  Make room for this reloc in .rel(a).dyn.  */
8081
                  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8082
                  if (MIPS_ELF_READONLY_SECTION (sec))
8083
                    /* We tell the dynamic linker that there are
8084
                       relocations against the text segment.  */
8085
                    info->flags |= DF_TEXTREL;
8086
                }
8087
              else
8088
                {
8089
                  struct mips_elf_link_hash_entry *hmips;
8090
 
8091
                  /* For a shared object, we must copy this relocation
8092
                     unless the symbol turns out to be undefined and
8093
                     weak with non-default visibility, in which case
8094
                     it will be left as zero.
8095
 
8096
                     We could elide R_MIPS_REL32 for locally binding symbols
8097
                     in shared libraries, but do not yet do so.
8098
 
8099
                     For an executable, we only need to copy this
8100
                     reloc if the symbol is defined in a dynamic
8101
                     object.  */
8102
                  hmips = (struct mips_elf_link_hash_entry *) h;
8103
                  ++hmips->possibly_dynamic_relocs;
8104
                  if (MIPS_ELF_READONLY_SECTION (sec))
8105
                    /* We need it to tell the dynamic linker if there
8106
                       are relocations against the text segment.  */
8107
                    hmips->readonly_reloc = TRUE;
8108
                }
8109
            }
8110
 
8111
          if (SGI_COMPAT (abfd))
8112
            mips_elf_hash_table (info)->compact_rel_size +=
8113
              sizeof (Elf32_External_crinfo);
8114
          break;
8115
 
8116
        case R_MIPS_26:
8117
        case R_MIPS_GPREL16:
8118
        case R_MIPS_LITERAL:
8119
        case R_MIPS_GPREL32:
8120 161 khays
        case R_MICROMIPS_26_S1:
8121
        case R_MICROMIPS_GPREL16:
8122
        case R_MICROMIPS_LITERAL:
8123
        case R_MICROMIPS_GPREL7_S2:
8124 14 khays
          if (SGI_COMPAT (abfd))
8125
            mips_elf_hash_table (info)->compact_rel_size +=
8126
              sizeof (Elf32_External_crinfo);
8127
          break;
8128
 
8129
          /* This relocation describes the C++ object vtable hierarchy.
8130
             Reconstruct it for later use during GC.  */
8131
        case R_MIPS_GNU_VTINHERIT:
8132
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8133
            return FALSE;
8134
          break;
8135
 
8136
          /* This relocation describes which C++ vtable entries are actually
8137
             used.  Record for later use during GC.  */
8138
        case R_MIPS_GNU_VTENTRY:
8139
          BFD_ASSERT (h != NULL);
8140
          if (h != NULL
8141
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8142
            return FALSE;
8143
          break;
8144
 
8145
        default:
8146
          break;
8147
        }
8148
 
8149
      /* We must not create a stub for a symbol that has relocations
8150
         related to taking the function's address.  This doesn't apply to
8151
         VxWorks, where CALL relocs refer to a .got.plt entry instead of
8152
         a normal .got entry.  */
8153
      if (!htab->is_vxworks && h != NULL)
8154
        switch (r_type)
8155
          {
8156
          default:
8157
            ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8158
            break;
8159
          case R_MIPS16_CALL16:
8160
          case R_MIPS_CALL16:
8161
          case R_MIPS_CALL_HI16:
8162
          case R_MIPS_CALL_LO16:
8163
          case R_MIPS_JALR:
8164 161 khays
          case R_MICROMIPS_CALL16:
8165
          case R_MICROMIPS_CALL_HI16:
8166
          case R_MICROMIPS_CALL_LO16:
8167
          case R_MICROMIPS_JALR:
8168 14 khays
            break;
8169
          }
8170
 
8171
      /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8172
         if there is one.  We only need to handle global symbols here;
8173
         we decide whether to keep or delete stubs for local symbols
8174
         when processing the stub's relocations.  */
8175
      if (h != NULL
8176
          && !mips16_call_reloc_p (r_type)
8177
          && !section_allows_mips16_refs_p (sec))
8178
        {
8179
          struct mips_elf_link_hash_entry *mh;
8180
 
8181
          mh = (struct mips_elf_link_hash_entry *) h;
8182
          mh->need_fn_stub = TRUE;
8183
        }
8184
 
8185
      /* Refuse some position-dependent relocations when creating a
8186
         shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8187
         not PIC, but we can create dynamic relocations and the result
8188
         will be fine.  Also do not refuse R_MIPS_LO16, which can be
8189
         combined with R_MIPS_GOT16.  */
8190
      if (info->shared)
8191
        {
8192
          switch (r_type)
8193
            {
8194
            case R_MIPS16_HI16:
8195
            case R_MIPS_HI16:
8196
            case R_MIPS_HIGHER:
8197
            case R_MIPS_HIGHEST:
8198 161 khays
            case R_MICROMIPS_HI16:
8199
            case R_MICROMIPS_HIGHER:
8200
            case R_MICROMIPS_HIGHEST:
8201 14 khays
              /* Don't refuse a high part relocation if it's against
8202
                 no symbol (e.g. part of a compound relocation).  */
8203
              if (r_symndx == STN_UNDEF)
8204
                break;
8205
 
8206
              /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8207
                 and has a special meaning.  */
8208
              if (!NEWABI_P (abfd) && h != NULL
8209
                  && strcmp (h->root.root.string, "_gp_disp") == 0)
8210
                break;
8211
 
8212
              /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
8213
              if (is_gott_symbol (info, h))
8214
                break;
8215
 
8216
              /* FALLTHROUGH */
8217
 
8218
            case R_MIPS16_26:
8219
            case R_MIPS_26:
8220 161 khays
            case R_MICROMIPS_26_S1:
8221 14 khays
              howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8222
              (*_bfd_error_handler)
8223
                (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8224
                 abfd, howto->name,
8225
                 (h) ? h->root.root.string : "a local symbol");
8226
              bfd_set_error (bfd_error_bad_value);
8227
              return FALSE;
8228
            default:
8229
              break;
8230
            }
8231
        }
8232
    }
8233
 
8234
  return TRUE;
8235
}
8236
 
8237
bfd_boolean
8238
_bfd_mips_relax_section (bfd *abfd, asection *sec,
8239
                         struct bfd_link_info *link_info,
8240
                         bfd_boolean *again)
8241
{
8242
  Elf_Internal_Rela *internal_relocs;
8243
  Elf_Internal_Rela *irel, *irelend;
8244
  Elf_Internal_Shdr *symtab_hdr;
8245
  bfd_byte *contents = NULL;
8246
  size_t extsymoff;
8247
  bfd_boolean changed_contents = FALSE;
8248
  bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8249
  Elf_Internal_Sym *isymbuf = NULL;
8250
 
8251
  /* We are not currently changing any sizes, so only one pass.  */
8252
  *again = FALSE;
8253
 
8254
  if (link_info->relocatable)
8255
    return TRUE;
8256
 
8257
  internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8258
                                               link_info->keep_memory);
8259
  if (internal_relocs == NULL)
8260
    return TRUE;
8261
 
8262
  irelend = internal_relocs + sec->reloc_count
8263
    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8264
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8265
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8266
 
8267
  for (irel = internal_relocs; irel < irelend; irel++)
8268
    {
8269
      bfd_vma symval;
8270
      bfd_signed_vma sym_offset;
8271
      unsigned int r_type;
8272
      unsigned long r_symndx;
8273
      asection *sym_sec;
8274
      unsigned long instruction;
8275
 
8276
      /* Turn jalr into bgezal, and jr into beq, if they're marked
8277
         with a JALR relocation, that indicate where they jump to.
8278
         This saves some pipeline bubbles.  */
8279
      r_type = ELF_R_TYPE (abfd, irel->r_info);
8280
      if (r_type != R_MIPS_JALR)
8281
        continue;
8282
 
8283
      r_symndx = ELF_R_SYM (abfd, irel->r_info);
8284
      /* Compute the address of the jump target.  */
8285
      if (r_symndx >= extsymoff)
8286
        {
8287
          struct mips_elf_link_hash_entry *h
8288
            = ((struct mips_elf_link_hash_entry *)
8289
               elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8290
 
8291
          while (h->root.root.type == bfd_link_hash_indirect
8292
                 || h->root.root.type == bfd_link_hash_warning)
8293
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8294
 
8295
          /* If a symbol is undefined, or if it may be overridden,
8296
             skip it.  */
8297
          if (! ((h->root.root.type == bfd_link_hash_defined
8298
                  || h->root.root.type == bfd_link_hash_defweak)
8299
                 && h->root.root.u.def.section)
8300
              || (link_info->shared && ! link_info->symbolic
8301
                  && !h->root.forced_local))
8302
            continue;
8303
 
8304
          sym_sec = h->root.root.u.def.section;
8305
          if (sym_sec->output_section)
8306
            symval = (h->root.root.u.def.value
8307
                      + sym_sec->output_section->vma
8308
                      + sym_sec->output_offset);
8309
          else
8310
            symval = h->root.root.u.def.value;
8311
        }
8312
      else
8313
        {
8314
          Elf_Internal_Sym *isym;
8315
 
8316
          /* Read this BFD's symbols if we haven't done so already.  */
8317
          if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8318
            {
8319
              isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8320
              if (isymbuf == NULL)
8321
                isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8322
                                                symtab_hdr->sh_info, 0,
8323
                                                NULL, NULL, NULL);
8324
              if (isymbuf == NULL)
8325
                goto relax_return;
8326
            }
8327
 
8328
          isym = isymbuf + r_symndx;
8329
          if (isym->st_shndx == SHN_UNDEF)
8330
            continue;
8331
          else if (isym->st_shndx == SHN_ABS)
8332
            sym_sec = bfd_abs_section_ptr;
8333
          else if (isym->st_shndx == SHN_COMMON)
8334
            sym_sec = bfd_com_section_ptr;
8335
          else
8336
            sym_sec
8337
              = bfd_section_from_elf_index (abfd, isym->st_shndx);
8338
          symval = isym->st_value
8339
            + sym_sec->output_section->vma
8340
            + sym_sec->output_offset;
8341
        }
8342
 
8343
      /* Compute branch offset, from delay slot of the jump to the
8344
         branch target.  */
8345
      sym_offset = (symval + irel->r_addend)
8346
        - (sec_start + irel->r_offset + 4);
8347
 
8348
      /* Branch offset must be properly aligned.  */
8349
      if ((sym_offset & 3) != 0)
8350
        continue;
8351
 
8352
      sym_offset >>= 2;
8353
 
8354
      /* Check that it's in range.  */
8355
      if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8356
        continue;
8357
 
8358
      /* Get the section contents if we haven't done so already.  */
8359
      if (!mips_elf_get_section_contents (abfd, sec, &contents))
8360
        goto relax_return;
8361
 
8362
      instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8363
 
8364
      /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
8365
      if ((instruction & 0xfc1fffff) == 0x0000f809)
8366
        instruction = 0x04110000;
8367
      /* If it was jr <reg>, turn it into b <target>.  */
8368
      else if ((instruction & 0xfc1fffff) == 0x00000008)
8369
        instruction = 0x10000000;
8370
      else
8371
        continue;
8372
 
8373
      instruction |= (sym_offset & 0xffff);
8374
      bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8375
      changed_contents = TRUE;
8376
    }
8377
 
8378
  if (contents != NULL
8379
      && elf_section_data (sec)->this_hdr.contents != contents)
8380
    {
8381
      if (!changed_contents && !link_info->keep_memory)
8382
        free (contents);
8383
      else
8384
        {
8385
          /* Cache the section contents for elf_link_input_bfd.  */
8386
          elf_section_data (sec)->this_hdr.contents = contents;
8387
        }
8388
    }
8389
  return TRUE;
8390
 
8391
 relax_return:
8392
  if (contents != NULL
8393
      && elf_section_data (sec)->this_hdr.contents != contents)
8394
    free (contents);
8395
  return FALSE;
8396
}
8397
 
8398
/* Allocate space for global sym dynamic relocs.  */
8399
 
8400
static bfd_boolean
8401
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8402
{
8403
  struct bfd_link_info *info = inf;
8404
  bfd *dynobj;
8405
  struct mips_elf_link_hash_entry *hmips;
8406
  struct mips_elf_link_hash_table *htab;
8407
 
8408
  htab = mips_elf_hash_table (info);
8409
  BFD_ASSERT (htab != NULL);
8410
 
8411
  dynobj = elf_hash_table (info)->dynobj;
8412
  hmips = (struct mips_elf_link_hash_entry *) h;
8413
 
8414
  /* VxWorks executables are handled elsewhere; we only need to
8415
     allocate relocations in shared objects.  */
8416
  if (htab->is_vxworks && !info->shared)
8417
    return TRUE;
8418
 
8419 148 khays
  /* Ignore indirect symbols.  All relocations against such symbols
8420
     will be redirected to the target symbol.  */
8421
  if (h->root.type == bfd_link_hash_indirect)
8422 14 khays
    return TRUE;
8423
 
8424
  /* If this symbol is defined in a dynamic object, or we are creating
8425
     a shared library, we will need to copy any R_MIPS_32 or
8426
     R_MIPS_REL32 relocs against it into the output file.  */
8427
  if (! info->relocatable
8428
      && hmips->possibly_dynamic_relocs != 0
8429
      && (h->root.type == bfd_link_hash_defweak
8430
          || !h->def_regular
8431
          || info->shared))
8432
    {
8433
      bfd_boolean do_copy = TRUE;
8434
 
8435
      if (h->root.type == bfd_link_hash_undefweak)
8436
        {
8437
          /* Do not copy relocations for undefined weak symbols with
8438
             non-default visibility.  */
8439
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8440
            do_copy = FALSE;
8441
 
8442
          /* Make sure undefined weak symbols are output as a dynamic
8443
             symbol in PIEs.  */
8444
          else if (h->dynindx == -1 && !h->forced_local)
8445
            {
8446
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
8447
                return FALSE;
8448
            }
8449
        }
8450
 
8451
      if (do_copy)
8452
        {
8453
          /* Even though we don't directly need a GOT entry for this symbol,
8454
             the SVR4 psABI requires it to have a dynamic symbol table
8455
             index greater that DT_MIPS_GOTSYM if there are dynamic
8456
             relocations against it.
8457
 
8458
             VxWorks does not enforce the same mapping between the GOT
8459
             and the symbol table, so the same requirement does not
8460
             apply there.  */
8461
          if (!htab->is_vxworks)
8462
            {
8463
              if (hmips->global_got_area > GGA_RELOC_ONLY)
8464
                hmips->global_got_area = GGA_RELOC_ONLY;
8465
              hmips->got_only_for_calls = FALSE;
8466
            }
8467
 
8468
          mips_elf_allocate_dynamic_relocations
8469
            (dynobj, info, hmips->possibly_dynamic_relocs);
8470
          if (hmips->readonly_reloc)
8471
            /* We tell the dynamic linker that there are relocations
8472
               against the text segment.  */
8473
            info->flags |= DF_TEXTREL;
8474
        }
8475
    }
8476
 
8477
  return TRUE;
8478
}
8479
 
8480
/* Adjust a symbol defined by a dynamic object and referenced by a
8481
   regular object.  The current definition is in some section of the
8482
   dynamic object, but we're not including those sections.  We have to
8483
   change the definition to something the rest of the link can
8484
   understand.  */
8485
 
8486
bfd_boolean
8487
_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8488
                                     struct elf_link_hash_entry *h)
8489
{
8490
  bfd *dynobj;
8491
  struct mips_elf_link_hash_entry *hmips;
8492
  struct mips_elf_link_hash_table *htab;
8493
 
8494
  htab = mips_elf_hash_table (info);
8495
  BFD_ASSERT (htab != NULL);
8496
 
8497
  dynobj = elf_hash_table (info)->dynobj;
8498
  hmips = (struct mips_elf_link_hash_entry *) h;
8499
 
8500
  /* Make sure we know what is going on here.  */
8501
  BFD_ASSERT (dynobj != NULL
8502
              && (h->needs_plt
8503
                  || h->u.weakdef != NULL
8504
                  || (h->def_dynamic
8505
                      && h->ref_regular
8506
                      && !h->def_regular)));
8507
 
8508
  hmips = (struct mips_elf_link_hash_entry *) h;
8509
 
8510
  /* If there are call relocations against an externally-defined symbol,
8511
     see whether we can create a MIPS lazy-binding stub for it.  We can
8512
     only do this if all references to the function are through call
8513
     relocations, and in that case, the traditional lazy-binding stubs
8514
     are much more efficient than PLT entries.
8515
 
8516
     Traditional stubs are only available on SVR4 psABI-based systems;
8517
     VxWorks always uses PLTs instead.  */
8518
  if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8519
    {
8520
      if (! elf_hash_table (info)->dynamic_sections_created)
8521
        return TRUE;
8522
 
8523
      /* If this symbol is not defined in a regular file, then set
8524
         the symbol to the stub location.  This is required to make
8525
         function pointers compare as equal between the normal
8526
         executable and the shared library.  */
8527
      if (!h->def_regular)
8528
        {
8529
          hmips->needs_lazy_stub = TRUE;
8530
          htab->lazy_stub_count++;
8531
          return TRUE;
8532
        }
8533
    }
8534
  /* As above, VxWorks requires PLT entries for externally-defined
8535
     functions that are only accessed through call relocations.
8536
 
8537
     Both VxWorks and non-VxWorks targets also need PLT entries if there
8538
     are static-only relocations against an externally-defined function.
8539
     This can technically occur for shared libraries if there are
8540
     branches to the symbol, although it is unlikely that this will be
8541
     used in practice due to the short ranges involved.  It can occur
8542
     for any relative or absolute relocation in executables; in that
8543
     case, the PLT entry becomes the function's canonical address.  */
8544
  else if (((h->needs_plt && !hmips->no_fn_stub)
8545
            || (h->type == STT_FUNC && hmips->has_static_relocs))
8546
           && htab->use_plts_and_copy_relocs
8547
           && !SYMBOL_CALLS_LOCAL (info, h)
8548
           && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8549
                && h->root.type == bfd_link_hash_undefweak))
8550
    {
8551
      /* If this is the first symbol to need a PLT entry, allocate room
8552
         for the header.  */
8553
      if (htab->splt->size == 0)
8554
        {
8555
          BFD_ASSERT (htab->sgotplt->size == 0);
8556
 
8557
          /* If we're using the PLT additions to the psABI, each PLT
8558
             entry is 16 bytes and the PLT0 entry is 32 bytes.
8559
             Encourage better cache usage by aligning.  We do this
8560
             lazily to avoid pessimizing traditional objects.  */
8561
          if (!htab->is_vxworks
8562
              && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8563
            return FALSE;
8564
 
8565
          /* Make sure that .got.plt is word-aligned.  We do this lazily
8566
             for the same reason as above.  */
8567
          if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8568
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8569
            return FALSE;
8570
 
8571
          htab->splt->size += htab->plt_header_size;
8572
 
8573
          /* On non-VxWorks targets, the first two entries in .got.plt
8574
             are reserved.  */
8575
          if (!htab->is_vxworks)
8576
            htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8577
 
8578
          /* On VxWorks, also allocate room for the header's
8579
             .rela.plt.unloaded entries.  */
8580
          if (htab->is_vxworks && !info->shared)
8581
            htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8582
        }
8583
 
8584
      /* Assign the next .plt entry to this symbol.  */
8585
      h->plt.offset = htab->splt->size;
8586
      htab->splt->size += htab->plt_entry_size;
8587
 
8588
      /* If the output file has no definition of the symbol, set the
8589
         symbol's value to the address of the stub.  */
8590
      if (!info->shared && !h->def_regular)
8591
        {
8592
          h->root.u.def.section = htab->splt;
8593
          h->root.u.def.value = h->plt.offset;
8594
          /* For VxWorks, point at the PLT load stub rather than the
8595
             lazy resolution stub; this stub will become the canonical
8596
             function address.  */
8597
          if (htab->is_vxworks)
8598
            h->root.u.def.value += 8;
8599
        }
8600
 
8601
      /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8602
         relocation.  */
8603
      htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8604
      htab->srelplt->size += (htab->is_vxworks
8605
                              ? MIPS_ELF_RELA_SIZE (dynobj)
8606
                              : MIPS_ELF_REL_SIZE (dynobj));
8607
 
8608
      /* Make room for the .rela.plt.unloaded relocations.  */
8609
      if (htab->is_vxworks && !info->shared)
8610
        htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8611
 
8612
      /* All relocations against this symbol that could have been made
8613
         dynamic will now refer to the PLT entry instead.  */
8614
      hmips->possibly_dynamic_relocs = 0;
8615
 
8616
      return TRUE;
8617
    }
8618
 
8619
  /* If this is a weak symbol, and there is a real definition, the
8620
     processor independent code will have arranged for us to see the
8621
     real definition first, and we can just use the same value.  */
8622
  if (h->u.weakdef != NULL)
8623
    {
8624
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8625
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
8626
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
8627
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
8628
      return TRUE;
8629
    }
8630
 
8631
  /* Otherwise, there is nothing further to do for symbols defined
8632
     in regular objects.  */
8633
  if (h->def_regular)
8634
    return TRUE;
8635
 
8636
  /* There's also nothing more to do if we'll convert all relocations
8637
     against this symbol into dynamic relocations.  */
8638
  if (!hmips->has_static_relocs)
8639
    return TRUE;
8640
 
8641
  /* We're now relying on copy relocations.  Complain if we have
8642
     some that we can't convert.  */
8643
  if (!htab->use_plts_and_copy_relocs || info->shared)
8644
    {
8645
      (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8646
                               "dynamic symbol %s"),
8647
                             h->root.root.string);
8648
      bfd_set_error (bfd_error_bad_value);
8649
      return FALSE;
8650
    }
8651
 
8652
  /* We must allocate the symbol in our .dynbss section, which will
8653
     become part of the .bss section of the executable.  There will be
8654
     an entry for this symbol in the .dynsym section.  The dynamic
8655
     object will contain position independent code, so all references
8656
     from the dynamic object to this symbol will go through the global
8657
     offset table.  The dynamic linker will use the .dynsym entry to
8658
     determine the address it must put in the global offset table, so
8659
     both the dynamic object and the regular object will refer to the
8660
     same memory location for the variable.  */
8661
 
8662
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8663
    {
8664
      if (htab->is_vxworks)
8665
        htab->srelbss->size += sizeof (Elf32_External_Rela);
8666
      else
8667
        mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8668
      h->needs_copy = 1;
8669
    }
8670
 
8671
  /* All relocations against this symbol that could have been made
8672
     dynamic will now refer to the local copy instead.  */
8673
  hmips->possibly_dynamic_relocs = 0;
8674
 
8675
  return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8676
}
8677
 
8678
/* This function is called after all the input files have been read,
8679
   and the input sections have been assigned to output sections.  We
8680
   check for any mips16 stub sections that we can discard.  */
8681
 
8682
bfd_boolean
8683
_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8684
                                    struct bfd_link_info *info)
8685
{
8686
  asection *ri;
8687
  struct mips_elf_link_hash_table *htab;
8688
  struct mips_htab_traverse_info hti;
8689
 
8690
  htab = mips_elf_hash_table (info);
8691
  BFD_ASSERT (htab != NULL);
8692
 
8693
  /* The .reginfo section has a fixed size.  */
8694
  ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8695
  if (ri != NULL)
8696
    bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8697
 
8698
  hti.info = info;
8699
  hti.output_bfd = output_bfd;
8700
  hti.error = FALSE;
8701
  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8702
                               mips_elf_check_symbols, &hti);
8703
  if (hti.error)
8704
    return FALSE;
8705
 
8706
  return TRUE;
8707
}
8708
 
8709
/* If the link uses a GOT, lay it out and work out its size.  */
8710
 
8711
static bfd_boolean
8712
mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8713
{
8714
  bfd *dynobj;
8715
  asection *s;
8716
  struct mips_got_info *g;
8717
  bfd_size_type loadable_size = 0;
8718
  bfd_size_type page_gotno;
8719
  bfd *sub;
8720
  struct mips_elf_count_tls_arg count_tls_arg;
8721
  struct mips_elf_link_hash_table *htab;
8722
 
8723
  htab = mips_elf_hash_table (info);
8724
  BFD_ASSERT (htab != NULL);
8725
 
8726
  s = htab->sgot;
8727
  if (s == NULL)
8728
    return TRUE;
8729
 
8730
  dynobj = elf_hash_table (info)->dynobj;
8731
  g = htab->got_info;
8732
 
8733
  /* Allocate room for the reserved entries.  VxWorks always reserves
8734
     3 entries; other objects only reserve 2 entries.  */
8735
  BFD_ASSERT (g->assigned_gotno == 0);
8736
  if (htab->is_vxworks)
8737
    htab->reserved_gotno = 3;
8738
  else
8739
    htab->reserved_gotno = 2;
8740
  g->local_gotno += htab->reserved_gotno;
8741
  g->assigned_gotno = htab->reserved_gotno;
8742
 
8743
  /* Replace entries for indirect and warning symbols with entries for
8744
     the target symbol.  */
8745
  if (!mips_elf_resolve_final_got_entries (g))
8746
    return FALSE;
8747
 
8748
  /* Count the number of GOT symbols.  */
8749
  mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8750
 
8751
  /* Calculate the total loadable size of the output.  That
8752
     will give us the maximum number of GOT_PAGE entries
8753
     required.  */
8754
  for (sub = info->input_bfds; sub; sub = sub->link_next)
8755
    {
8756
      asection *subsection;
8757
 
8758
      for (subsection = sub->sections;
8759
           subsection;
8760
           subsection = subsection->next)
8761
        {
8762
          if ((subsection->flags & SEC_ALLOC) == 0)
8763
            continue;
8764
          loadable_size += ((subsection->size + 0xf)
8765
                            &~ (bfd_size_type) 0xf);
8766
        }
8767
    }
8768
 
8769
  if (htab->is_vxworks)
8770
    /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8771
       relocations against local symbols evaluate to "G", and the EABI does
8772
       not include R_MIPS_GOT_PAGE.  */
8773
    page_gotno = 0;
8774
  else
8775
    /* Assume there are two loadable segments consisting of contiguous
8776
       sections.  Is 5 enough?  */
8777
    page_gotno = (loadable_size >> 16) + 5;
8778
 
8779
  /* Choose the smaller of the two estimates; both are intended to be
8780
     conservative.  */
8781
  if (page_gotno > g->page_gotno)
8782
    page_gotno = g->page_gotno;
8783
 
8784
  g->local_gotno += page_gotno;
8785
  s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8786
  s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8787
 
8788
  /* We need to calculate tls_gotno for global symbols at this point
8789
     instead of building it up earlier, to avoid doublecounting
8790
     entries for one global symbol from multiple input files.  */
8791
  count_tls_arg.info = info;
8792
  count_tls_arg.needed = 0;
8793
  elf_link_hash_traverse (elf_hash_table (info),
8794
                          mips_elf_count_global_tls_entries,
8795
                          &count_tls_arg);
8796
  g->tls_gotno += count_tls_arg.needed;
8797
  s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8798
 
8799
  /* VxWorks does not support multiple GOTs.  It initializes $gp to
8800
     __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8801
     dynamic loader.  */
8802
  if (htab->is_vxworks)
8803
    {
8804
      /* VxWorks executables do not need a GOT.  */
8805
      if (info->shared)
8806
        {
8807
          /* Each VxWorks GOT entry needs an explicit relocation.  */
8808
          unsigned int count;
8809
 
8810
          count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8811
          if (count)
8812
            mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8813
        }
8814
    }
8815
  else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8816
    {
8817
      if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8818
        return FALSE;
8819
    }
8820
  else
8821
    {
8822
      struct mips_elf_count_tls_arg arg;
8823
 
8824
      /* Set up TLS entries.  */
8825
      g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8826
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8827
 
8828
      /* Allocate room for the TLS relocations.  */
8829
      arg.info = info;
8830
      arg.needed = 0;
8831
      htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8832
      elf_link_hash_traverse (elf_hash_table (info),
8833
                              mips_elf_count_global_tls_relocs,
8834
                              &arg);
8835
      if (arg.needed)
8836
        mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8837
    }
8838
 
8839
  return TRUE;
8840
}
8841
 
8842
/* Estimate the size of the .MIPS.stubs section.  */
8843
 
8844
static void
8845
mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8846
{
8847
  struct mips_elf_link_hash_table *htab;
8848
  bfd_size_type dynsymcount;
8849
 
8850
  htab = mips_elf_hash_table (info);
8851
  BFD_ASSERT (htab != NULL);
8852
 
8853
  if (htab->lazy_stub_count == 0)
8854
    return;
8855
 
8856
  /* IRIX rld assumes that a function stub isn't at the end of the .text
8857
     section, so add a dummy entry to the end.  */
8858
  htab->lazy_stub_count++;
8859
 
8860
  /* Get a worst-case estimate of the number of dynamic symbols needed.
8861
     At this point, dynsymcount does not account for section symbols
8862
     and count_section_dynsyms may overestimate the number that will
8863
     be needed.  */
8864
  dynsymcount = (elf_hash_table (info)->dynsymcount
8865
                 + count_section_dynsyms (output_bfd, info));
8866
 
8867
  /* Determine the size of one stub entry.  */
8868
  htab->function_stub_size = (dynsymcount > 0x10000
8869
                              ? MIPS_FUNCTION_STUB_BIG_SIZE
8870
                              : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8871
 
8872
  htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8873
}
8874
 
8875
/* A mips_elf_link_hash_traverse callback for which DATA points to the
8876
   MIPS hash table.  If H needs a traditional MIPS lazy-binding stub,
8877
   allocate an entry in the stubs section.  */
8878
 
8879
static bfd_boolean
8880
mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8881
{
8882
  struct mips_elf_link_hash_table *htab;
8883
 
8884
  htab = (struct mips_elf_link_hash_table *) data;
8885
  if (h->needs_lazy_stub)
8886
    {
8887
      h->root.root.u.def.section = htab->sstubs;
8888
      h->root.root.u.def.value = htab->sstubs->size;
8889
      h->root.plt.offset = htab->sstubs->size;
8890
      htab->sstubs->size += htab->function_stub_size;
8891
    }
8892
  return TRUE;
8893
}
8894
 
8895
/* Allocate offsets in the stubs section to each symbol that needs one.
8896
   Set the final size of the .MIPS.stub section.  */
8897
 
8898
static void
8899
mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8900
{
8901
  struct mips_elf_link_hash_table *htab;
8902
 
8903
  htab = mips_elf_hash_table (info);
8904
  BFD_ASSERT (htab != NULL);
8905
 
8906
  if (htab->lazy_stub_count == 0)
8907
    return;
8908
 
8909
  htab->sstubs->size = 0;
8910
  mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8911
  htab->sstubs->size += htab->function_stub_size;
8912
  BFD_ASSERT (htab->sstubs->size
8913
              == htab->lazy_stub_count * htab->function_stub_size);
8914
}
8915
 
8916
/* Set the sizes of the dynamic sections.  */
8917
 
8918
bfd_boolean
8919
_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8920
                                     struct bfd_link_info *info)
8921
{
8922
  bfd *dynobj;
8923
  asection *s, *sreldyn;
8924
  bfd_boolean reltext;
8925
  struct mips_elf_link_hash_table *htab;
8926
 
8927
  htab = mips_elf_hash_table (info);
8928
  BFD_ASSERT (htab != NULL);
8929
  dynobj = elf_hash_table (info)->dynobj;
8930
  BFD_ASSERT (dynobj != NULL);
8931
 
8932
  if (elf_hash_table (info)->dynamic_sections_created)
8933
    {
8934
      /* Set the contents of the .interp section to the interpreter.  */
8935
      if (info->executable)
8936
        {
8937
          s = bfd_get_section_by_name (dynobj, ".interp");
8938
          BFD_ASSERT (s != NULL);
8939
          s->size
8940
            = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8941
          s->contents
8942
            = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8943
        }
8944
 
8945
      /* Create a symbol for the PLT, if we know that we are using it.  */
8946
      if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8947
        {
8948
          struct elf_link_hash_entry *h;
8949
 
8950
          BFD_ASSERT (htab->use_plts_and_copy_relocs);
8951
 
8952
          h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8953
                                           "_PROCEDURE_LINKAGE_TABLE_");
8954
          htab->root.hplt = h;
8955
          if (h == NULL)
8956
            return FALSE;
8957
          h->type = STT_FUNC;
8958
        }
8959
    }
8960
 
8961
  /* Allocate space for global sym dynamic relocs.  */
8962
  elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8963
 
8964
  mips_elf_estimate_stub_size (output_bfd, info);
8965
 
8966
  if (!mips_elf_lay_out_got (output_bfd, info))
8967
    return FALSE;
8968
 
8969
  mips_elf_lay_out_lazy_stubs (info);
8970
 
8971
  /* The check_relocs and adjust_dynamic_symbol entry points have
8972
     determined the sizes of the various dynamic sections.  Allocate
8973
     memory for them.  */
8974
  reltext = FALSE;
8975
  for (s = dynobj->sections; s != NULL; s = s->next)
8976
    {
8977
      const char *name;
8978
 
8979
      /* It's OK to base decisions on the section name, because none
8980
         of the dynobj section names depend upon the input files.  */
8981
      name = bfd_get_section_name (dynobj, s);
8982
 
8983
      if ((s->flags & SEC_LINKER_CREATED) == 0)
8984
        continue;
8985
 
8986
      if (CONST_STRNEQ (name, ".rel"))
8987
        {
8988
          if (s->size != 0)
8989
            {
8990
              const char *outname;
8991
              asection *target;
8992
 
8993
              /* If this relocation section applies to a read only
8994
                 section, then we probably need a DT_TEXTREL entry.
8995
                 If the relocation section is .rel(a).dyn, we always
8996
                 assert a DT_TEXTREL entry rather than testing whether
8997
                 there exists a relocation to a read only section or
8998
                 not.  */
8999
              outname = bfd_get_section_name (output_bfd,
9000
                                              s->output_section);
9001
              target = bfd_get_section_by_name (output_bfd, outname + 4);
9002
              if ((target != NULL
9003
                   && (target->flags & SEC_READONLY) != 0
9004
                   && (target->flags & SEC_ALLOC) != 0)
9005
                  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9006
                reltext = TRUE;
9007
 
9008
              /* We use the reloc_count field as a counter if we need
9009
                 to copy relocs into the output file.  */
9010
              if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9011
                s->reloc_count = 0;
9012
 
9013
              /* If combreloc is enabled, elf_link_sort_relocs() will
9014
                 sort relocations, but in a different way than we do,
9015
                 and before we're done creating relocations.  Also, it
9016
                 will move them around between input sections'
9017
                 relocation's contents, so our sorting would be
9018
                 broken, so don't let it run.  */
9019
              info->combreloc = 0;
9020
            }
9021
        }
9022
      else if (! info->shared
9023
               && ! mips_elf_hash_table (info)->use_rld_obj_head
9024
               && CONST_STRNEQ (name, ".rld_map"))
9025
        {
9026
          /* We add a room for __rld_map.  It will be filled in by the
9027
             rtld to contain a pointer to the _r_debug structure.  */
9028
          s->size += 4;
9029
        }
9030
      else if (SGI_COMPAT (output_bfd)
9031
               && CONST_STRNEQ (name, ".compact_rel"))
9032
        s->size += mips_elf_hash_table (info)->compact_rel_size;
9033
      else if (s == htab->splt)
9034
        {
9035
          /* If the last PLT entry has a branch delay slot, allocate
9036
             room for an extra nop to fill the delay slot.  This is
9037
             for CPUs without load interlocking.  */
9038
          if (! LOAD_INTERLOCKS_P (output_bfd)
9039
              && ! htab->is_vxworks && s->size > 0)
9040
            s->size += 4;
9041
        }
9042
      else if (! CONST_STRNEQ (name, ".init")
9043
               && s != htab->sgot
9044
               && s != htab->sgotplt
9045
               && s != htab->sstubs
9046
               && s != htab->sdynbss)
9047
        {
9048
          /* It's not one of our sections, so don't allocate space.  */
9049
          continue;
9050
        }
9051
 
9052
      if (s->size == 0)
9053
        {
9054
          s->flags |= SEC_EXCLUDE;
9055
          continue;
9056
        }
9057
 
9058
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
9059
        continue;
9060
 
9061
      /* Allocate memory for the section contents.  */
9062
      s->contents = bfd_zalloc (dynobj, s->size);
9063
      if (s->contents == NULL)
9064
        {
9065
          bfd_set_error (bfd_error_no_memory);
9066
          return FALSE;
9067
        }
9068
    }
9069
 
9070
  if (elf_hash_table (info)->dynamic_sections_created)
9071
    {
9072
      /* Add some entries to the .dynamic section.  We fill in the
9073
         values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9074
         must add the entries now so that we get the correct size for
9075
         the .dynamic section.  */
9076
 
9077
      /* SGI object has the equivalence of DT_DEBUG in the
9078
         DT_MIPS_RLD_MAP entry.  This must come first because glibc
9079
         only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9080
         looks at the first one it sees.  */
9081
      if (!info->shared
9082
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9083
        return FALSE;
9084
 
9085
      /* The DT_DEBUG entry may be filled in by the dynamic linker and
9086
         used by the debugger.  */
9087
      if (info->executable
9088
          && !SGI_COMPAT (output_bfd)
9089
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9090
        return FALSE;
9091
 
9092
      if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9093
        info->flags |= DF_TEXTREL;
9094
 
9095
      if ((info->flags & DF_TEXTREL) != 0)
9096
        {
9097
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9098
            return FALSE;
9099
 
9100
          /* Clear the DF_TEXTREL flag.  It will be set again if we
9101
             write out an actual text relocation; we may not, because
9102
             at this point we do not know whether e.g. any .eh_frame
9103
             absolute relocations have been converted to PC-relative.  */
9104
          info->flags &= ~DF_TEXTREL;
9105
        }
9106
 
9107
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9108
        return FALSE;
9109
 
9110
      sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9111
      if (htab->is_vxworks)
9112
        {
9113
          /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
9114
             use any of the DT_MIPS_* tags.  */
9115
          if (sreldyn && sreldyn->size > 0)
9116
            {
9117
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9118
                return FALSE;
9119
 
9120
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9121
                return FALSE;
9122
 
9123
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9124
                return FALSE;
9125
            }
9126
        }
9127
      else
9128
        {
9129
          if (sreldyn && sreldyn->size > 0)
9130
            {
9131
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9132
                return FALSE;
9133
 
9134
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9135
                return FALSE;
9136
 
9137
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9138
                return FALSE;
9139
            }
9140
 
9141
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9142
            return FALSE;
9143
 
9144
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9145
            return FALSE;
9146
 
9147
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9148
            return FALSE;
9149
 
9150
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9151
            return FALSE;
9152
 
9153
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9154
            return FALSE;
9155
 
9156
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9157
            return FALSE;
9158
 
9159
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9160
            return FALSE;
9161
 
9162
          if (IRIX_COMPAT (dynobj) == ict_irix5
9163
              && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9164
            return FALSE;
9165
 
9166
          if (IRIX_COMPAT (dynobj) == ict_irix6
9167
              && (bfd_get_section_by_name
9168
                  (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9169
              && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9170
            return FALSE;
9171
        }
9172
      if (htab->splt->size > 0)
9173
        {
9174
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9175
            return FALSE;
9176
 
9177
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9178
            return FALSE;
9179
 
9180
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9181
            return FALSE;
9182
 
9183
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9184
            return FALSE;
9185
        }
9186
      if (htab->is_vxworks
9187
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9188
        return FALSE;
9189
    }
9190
 
9191
  return TRUE;
9192
}
9193
 
9194
/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9195
   Adjust its R_ADDEND field so that it is correct for the output file.
9196
   LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9197
   and sections respectively; both use symbol indexes.  */
9198
 
9199
static void
9200
mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9201
                        bfd *input_bfd, Elf_Internal_Sym *local_syms,
9202
                        asection **local_sections, Elf_Internal_Rela *rel)
9203
{
9204
  unsigned int r_type, r_symndx;
9205
  Elf_Internal_Sym *sym;
9206
  asection *sec;
9207
 
9208
  if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9209
    {
9210
      r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9211 161 khays
      if (gprel16_reloc_p (r_type)
9212 14 khays
          || r_type == R_MIPS_GPREL32
9213 161 khays
          || literal_reloc_p (r_type))
9214 14 khays
        {
9215
          rel->r_addend += _bfd_get_gp_value (input_bfd);
9216
          rel->r_addend -= _bfd_get_gp_value (output_bfd);
9217
        }
9218
 
9219
      r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9220
      sym = local_syms + r_symndx;
9221
 
9222
      /* Adjust REL's addend to account for section merging.  */
9223
      if (!info->relocatable)
9224
        {
9225
          sec = local_sections[r_symndx];
9226
          _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9227
        }
9228
 
9229
      /* This would normally be done by the rela_normal code in elflink.c.  */
9230
      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9231
        rel->r_addend += local_sections[r_symndx]->output_offset;
9232
    }
9233
}
9234
 
9235
/* Relocate a MIPS ELF section.  */
9236
 
9237
bfd_boolean
9238
_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9239
                                bfd *input_bfd, asection *input_section,
9240
                                bfd_byte *contents, Elf_Internal_Rela *relocs,
9241
                                Elf_Internal_Sym *local_syms,
9242
                                asection **local_sections)
9243
{
9244
  Elf_Internal_Rela *rel;
9245
  const Elf_Internal_Rela *relend;
9246
  bfd_vma addend = 0;
9247
  bfd_boolean use_saved_addend_p = FALSE;
9248
  const struct elf_backend_data *bed;
9249
 
9250
  bed = get_elf_backend_data (output_bfd);
9251
  relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9252
  for (rel = relocs; rel < relend; ++rel)
9253
    {
9254
      const char *name;
9255
      bfd_vma value = 0;
9256
      reloc_howto_type *howto;
9257
      bfd_boolean cross_mode_jump_p;
9258
      /* TRUE if the relocation is a RELA relocation, rather than a
9259
         REL relocation.  */
9260
      bfd_boolean rela_relocation_p = TRUE;
9261
      unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9262
      const char *msg;
9263
      unsigned long r_symndx;
9264
      asection *sec;
9265
      Elf_Internal_Shdr *symtab_hdr;
9266
      struct elf_link_hash_entry *h;
9267
      bfd_boolean rel_reloc;
9268
 
9269
      rel_reloc = (NEWABI_P (input_bfd)
9270
                   && mips_elf_rel_relocation_p (input_bfd, input_section,
9271
                                                 relocs, rel));
9272
      /* Find the relocation howto for this relocation.  */
9273
      howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9274
 
9275
      r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9276
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9277
      if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9278
        {
9279
          sec = local_sections[r_symndx];
9280
          h = NULL;
9281
        }
9282
      else
9283
        {
9284
          unsigned long extsymoff;
9285
 
9286
          extsymoff = 0;
9287
          if (!elf_bad_symtab (input_bfd))
9288
            extsymoff = symtab_hdr->sh_info;
9289
          h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9290
          while (h->root.type == bfd_link_hash_indirect
9291
                 || h->root.type == bfd_link_hash_warning)
9292
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
9293
 
9294
          sec = NULL;
9295
          if (h->root.type == bfd_link_hash_defined
9296
              || h->root.type == bfd_link_hash_defweak)
9297
            sec = h->root.u.def.section;
9298
        }
9299
 
9300
      if (sec != NULL && elf_discarded_section (sec))
9301
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9302
                                         rel, relend, howto, contents);
9303
 
9304
      if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9305
        {
9306
          /* Some 32-bit code uses R_MIPS_64.  In particular, people use
9307
             64-bit code, but make sure all their addresses are in the
9308
             lowermost or uppermost 32-bit section of the 64-bit address
9309
             space.  Thus, when they use an R_MIPS_64 they mean what is
9310
             usually meant by R_MIPS_32, with the exception that the
9311
             stored value is sign-extended to 64 bits.  */
9312
          howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9313
 
9314
          /* On big-endian systems, we need to lie about the position
9315
             of the reloc.  */
9316
          if (bfd_big_endian (input_bfd))
9317
            rel->r_offset += 4;
9318
        }
9319
 
9320
      if (!use_saved_addend_p)
9321
        {
9322
          /* If these relocations were originally of the REL variety,
9323
             we must pull the addend out of the field that will be
9324
             relocated.  Otherwise, we simply use the contents of the
9325
             RELA relocation.  */
9326
          if (mips_elf_rel_relocation_p (input_bfd, input_section,
9327
                                         relocs, rel))
9328
            {
9329
              rela_relocation_p = FALSE;
9330
              addend = mips_elf_read_rel_addend (input_bfd, rel,
9331
                                                 howto, contents);
9332
              if (hi16_reloc_p (r_type)
9333
                  || (got16_reloc_p (r_type)
9334
                      && mips_elf_local_relocation_p (input_bfd, rel,
9335
                                                      local_sections)))
9336
                {
9337
                  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9338
                                                     contents, &addend))
9339
                    {
9340
                      if (h)
9341
                        name = h->root.root.string;
9342
                      else
9343
                        name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9344
                                                 local_syms + r_symndx,
9345
                                                 sec);
9346
                      (*_bfd_error_handler)
9347
                        (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9348
                         input_bfd, input_section, name, howto->name,
9349
                         rel->r_offset);
9350
                    }
9351
                }
9352
              else
9353
                addend <<= howto->rightshift;
9354
            }
9355
          else
9356
            addend = rel->r_addend;
9357
          mips_elf_adjust_addend (output_bfd, info, input_bfd,
9358
                                  local_syms, local_sections, rel);
9359
        }
9360
 
9361
      if (info->relocatable)
9362
        {
9363
          if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9364
              && bfd_big_endian (input_bfd))
9365
            rel->r_offset -= 4;
9366
 
9367
          if (!rela_relocation_p && rel->r_addend)
9368
            {
9369
              addend += rel->r_addend;
9370
              if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9371
                addend = mips_elf_high (addend);
9372
              else if (r_type == R_MIPS_HIGHER)
9373
                addend = mips_elf_higher (addend);
9374
              else if (r_type == R_MIPS_HIGHEST)
9375
                addend = mips_elf_highest (addend);
9376
              else
9377
                addend >>= howto->rightshift;
9378
 
9379
              /* We use the source mask, rather than the destination
9380
                 mask because the place to which we are writing will be
9381
                 source of the addend in the final link.  */
9382
              addend &= howto->src_mask;
9383
 
9384
              if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9385
                /* See the comment above about using R_MIPS_64 in the 32-bit
9386
                   ABI.  Here, we need to update the addend.  It would be
9387
                   possible to get away with just using the R_MIPS_32 reloc
9388
                   but for endianness.  */
9389
                {
9390
                  bfd_vma sign_bits;
9391
                  bfd_vma low_bits;
9392
                  bfd_vma high_bits;
9393
 
9394
                  if (addend & ((bfd_vma) 1 << 31))
9395
#ifdef BFD64
9396
                    sign_bits = ((bfd_vma) 1 << 32) - 1;
9397
#else
9398
                    sign_bits = -1;
9399
#endif
9400
                  else
9401
                    sign_bits = 0;
9402
 
9403
                  /* If we don't know that we have a 64-bit type,
9404
                     do two separate stores.  */
9405
                  if (bfd_big_endian (input_bfd))
9406
                    {
9407
                      /* Store the sign-bits (which are most significant)
9408
                         first.  */
9409
                      low_bits = sign_bits;
9410
                      high_bits = addend;
9411
                    }
9412
                  else
9413
                    {
9414
                      low_bits = addend;
9415
                      high_bits = sign_bits;
9416
                    }
9417
                  bfd_put_32 (input_bfd, low_bits,
9418
                              contents + rel->r_offset);
9419
                  bfd_put_32 (input_bfd, high_bits,
9420
                              contents + rel->r_offset + 4);
9421
                  continue;
9422
                }
9423
 
9424
              if (! mips_elf_perform_relocation (info, howto, rel, addend,
9425
                                                 input_bfd, input_section,
9426
                                                 contents, FALSE))
9427
                return FALSE;
9428
            }
9429
 
9430
          /* Go on to the next relocation.  */
9431
          continue;
9432
        }
9433
 
9434
      /* In the N32 and 64-bit ABIs there may be multiple consecutive
9435
         relocations for the same offset.  In that case we are
9436
         supposed to treat the output of each relocation as the addend
9437
         for the next.  */
9438
      if (rel + 1 < relend
9439
          && rel->r_offset == rel[1].r_offset
9440
          && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9441
        use_saved_addend_p = TRUE;
9442
      else
9443
        use_saved_addend_p = FALSE;
9444
 
9445
      /* Figure out what value we are supposed to relocate.  */
9446
      switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9447
                                             input_section, info, rel,
9448
                                             addend, howto, local_syms,
9449
                                             local_sections, &value,
9450
                                             &name, &cross_mode_jump_p,
9451
                                             use_saved_addend_p))
9452
        {
9453
        case bfd_reloc_continue:
9454
          /* There's nothing to do.  */
9455
          continue;
9456
 
9457
        case bfd_reloc_undefined:
9458
          /* mips_elf_calculate_relocation already called the
9459
             undefined_symbol callback.  There's no real point in
9460
             trying to perform the relocation at this point, so we
9461
             just skip ahead to the next relocation.  */
9462
          continue;
9463
 
9464
        case bfd_reloc_notsupported:
9465
          msg = _("internal error: unsupported relocation error");
9466
          info->callbacks->warning
9467
            (info, msg, name, input_bfd, input_section, rel->r_offset);
9468
          return FALSE;
9469
 
9470
        case bfd_reloc_overflow:
9471
          if (use_saved_addend_p)
9472
            /* Ignore overflow until we reach the last relocation for
9473
               a given location.  */
9474
            ;
9475
          else
9476
            {
9477
              struct mips_elf_link_hash_table *htab;
9478
 
9479
              htab = mips_elf_hash_table (info);
9480
              BFD_ASSERT (htab != NULL);
9481
              BFD_ASSERT (name != NULL);
9482
              if (!htab->small_data_overflow_reported
9483
                  && (gprel16_reloc_p (howto->type)
9484 161 khays
                      || literal_reloc_p (howto->type)))
9485 14 khays
                {
9486
                  msg = _("small-data section exceeds 64KB;"
9487
                          " lower small-data size limit (see option -G)");
9488
 
9489
                  htab->small_data_overflow_reported = TRUE;
9490
                  (*info->callbacks->einfo) ("%P: %s\n", msg);
9491
                }
9492
              if (! ((*info->callbacks->reloc_overflow)
9493
                     (info, NULL, name, howto->name, (bfd_vma) 0,
9494
                      input_bfd, input_section, rel->r_offset)))
9495
                return FALSE;
9496
            }
9497
          break;
9498
 
9499
        case bfd_reloc_ok:
9500
          break;
9501
 
9502 161 khays
        case bfd_reloc_outofrange:
9503
          if (jal_reloc_p (howto->type))
9504
            {
9505
              msg = _("JALX to a non-word-aligned address");
9506
              info->callbacks->warning
9507
                (info, msg, name, input_bfd, input_section, rel->r_offset);
9508
              return FALSE;
9509
            }
9510
          /* Fall through.  */
9511
 
9512 14 khays
        default:
9513
          abort ();
9514
          break;
9515
        }
9516
 
9517
      /* If we've got another relocation for the address, keep going
9518
         until we reach the last one.  */
9519
      if (use_saved_addend_p)
9520
        {
9521
          addend = value;
9522
          continue;
9523
        }
9524
 
9525
      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9526
        /* See the comment above about using R_MIPS_64 in the 32-bit
9527
           ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
9528
           that calculated the right value.  Now, however, we
9529
           sign-extend the 32-bit result to 64-bits, and store it as a
9530
           64-bit value.  We are especially generous here in that we
9531
           go to extreme lengths to support this usage on systems with
9532
           only a 32-bit VMA.  */
9533
        {
9534
          bfd_vma sign_bits;
9535
          bfd_vma low_bits;
9536
          bfd_vma high_bits;
9537
 
9538
          if (value & ((bfd_vma) 1 << 31))
9539
#ifdef BFD64
9540
            sign_bits = ((bfd_vma) 1 << 32) - 1;
9541
#else
9542
            sign_bits = -1;
9543
#endif
9544
          else
9545
            sign_bits = 0;
9546
 
9547
          /* If we don't know that we have a 64-bit type,
9548
             do two separate stores.  */
9549
          if (bfd_big_endian (input_bfd))
9550
            {
9551
              /* Undo what we did above.  */
9552
              rel->r_offset -= 4;
9553
              /* Store the sign-bits (which are most significant)
9554
                 first.  */
9555
              low_bits = sign_bits;
9556
              high_bits = value;
9557
            }
9558
          else
9559
            {
9560
              low_bits = value;
9561
              high_bits = sign_bits;
9562
            }
9563
          bfd_put_32 (input_bfd, low_bits,
9564
                      contents + rel->r_offset);
9565
          bfd_put_32 (input_bfd, high_bits,
9566
                      contents + rel->r_offset + 4);
9567
          continue;
9568
        }
9569
 
9570
      /* Actually perform the relocation.  */
9571
      if (! mips_elf_perform_relocation (info, howto, rel, value,
9572
                                         input_bfd, input_section,
9573
                                         contents, cross_mode_jump_p))
9574
        return FALSE;
9575
    }
9576
 
9577
  return TRUE;
9578
}
9579
 
9580
/* A function that iterates over each entry in la25_stubs and fills
9581
   in the code for each one.  DATA points to a mips_htab_traverse_info.  */
9582
 
9583
static int
9584
mips_elf_create_la25_stub (void **slot, void *data)
9585
{
9586
  struct mips_htab_traverse_info *hti;
9587
  struct mips_elf_link_hash_table *htab;
9588
  struct mips_elf_la25_stub *stub;
9589
  asection *s;
9590
  bfd_byte *loc;
9591
  bfd_vma offset, target, target_high, target_low;
9592
 
9593
  stub = (struct mips_elf_la25_stub *) *slot;
9594
  hti = (struct mips_htab_traverse_info *) data;
9595
  htab = mips_elf_hash_table (hti->info);
9596
  BFD_ASSERT (htab != NULL);
9597
 
9598
  /* Create the section contents, if we haven't already.  */
9599
  s = stub->stub_section;
9600
  loc = s->contents;
9601
  if (loc == NULL)
9602
    {
9603
      loc = bfd_malloc (s->size);
9604
      if (loc == NULL)
9605
        {
9606
          hti->error = TRUE;
9607
          return FALSE;
9608
        }
9609
      s->contents = loc;
9610
    }
9611
 
9612
  /* Work out where in the section this stub should go.  */
9613
  offset = stub->offset;
9614
 
9615
  /* Work out the target address.  */
9616
  target = (stub->h->root.root.u.def.section->output_section->vma
9617
            + stub->h->root.root.u.def.section->output_offset
9618
            + stub->h->root.root.u.def.value);
9619
  target_high = ((target + 0x8000) >> 16) & 0xffff;
9620
  target_low = (target & 0xffff);
9621
 
9622
  if (stub->stub_section != htab->strampoline)
9623
    {
9624 161 khays
      /* This is a simple LUI/ADDIU stub.  Zero out the beginning
9625 14 khays
         of the section and write the two instructions at the end.  */
9626
      memset (loc, 0, offset);
9627
      loc += offset;
9628 161 khays
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9629
        {
9630
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9631
                      loc);
9632
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9633
                      loc + 2);
9634
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9635
                      loc + 4);
9636
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9637
                      loc + 6);
9638
        }
9639
      else
9640
        {
9641
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9642
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9643
        }
9644 14 khays
    }
9645
  else
9646
    {
9647
      /* This is trampoline.  */
9648
      loc += offset;
9649 161 khays
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9650
        {
9651
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9652
                      loc);
9653
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9654
                      loc + 2);
9655
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9656
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9657
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9658
                      loc + 8);
9659
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9660
                      loc + 10);
9661
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
9662
        }
9663
      else
9664
        {
9665
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9666
          bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9667
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9668
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
9669
        }
9670 14 khays
    }
9671
  return TRUE;
9672
}
9673
 
9674
/* If NAME is one of the special IRIX6 symbols defined by the linker,
9675
   adjust it appropriately now.  */
9676
 
9677
static void
9678
mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9679
                                      const char *name, Elf_Internal_Sym *sym)
9680
{
9681
  /* The linker script takes care of providing names and values for
9682
     these, but we must place them into the right sections.  */
9683
  static const char* const text_section_symbols[] = {
9684
    "_ftext",
9685
    "_etext",
9686
    "__dso_displacement",
9687
    "__elf_header",
9688
    "__program_header_table",
9689
    NULL
9690
  };
9691
 
9692
  static const char* const data_section_symbols[] = {
9693
    "_fdata",
9694
    "_edata",
9695
    "_end",
9696
    "_fbss",
9697
    NULL
9698
  };
9699
 
9700
  const char* const *p;
9701
  int i;
9702
 
9703
  for (i = 0; i < 2; ++i)
9704
    for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9705
         *p;
9706
         ++p)
9707
      if (strcmp (*p, name) == 0)
9708
        {
9709
          /* All of these symbols are given type STT_SECTION by the
9710
             IRIX6 linker.  */
9711
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9712
          sym->st_other = STO_PROTECTED;
9713
 
9714
          /* The IRIX linker puts these symbols in special sections.  */
9715
          if (i == 0)
9716
            sym->st_shndx = SHN_MIPS_TEXT;
9717
          else
9718
            sym->st_shndx = SHN_MIPS_DATA;
9719
 
9720
          break;
9721
        }
9722
}
9723
 
9724
/* Finish up dynamic symbol handling.  We set the contents of various
9725
   dynamic sections here.  */
9726
 
9727
bfd_boolean
9728
_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9729
                                     struct bfd_link_info *info,
9730
                                     struct elf_link_hash_entry *h,
9731
                                     Elf_Internal_Sym *sym)
9732
{
9733
  bfd *dynobj;
9734
  asection *sgot;
9735
  struct mips_got_info *g, *gg;
9736
  const char *name;
9737
  int idx;
9738
  struct mips_elf_link_hash_table *htab;
9739
  struct mips_elf_link_hash_entry *hmips;
9740
 
9741
  htab = mips_elf_hash_table (info);
9742
  BFD_ASSERT (htab != NULL);
9743
  dynobj = elf_hash_table (info)->dynobj;
9744
  hmips = (struct mips_elf_link_hash_entry *) h;
9745
 
9746
  BFD_ASSERT (!htab->is_vxworks);
9747
 
9748
  if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9749
    {
9750
      /* We've decided to create a PLT entry for this symbol.  */
9751
      bfd_byte *loc;
9752
      bfd_vma header_address, plt_index, got_address;
9753
      bfd_vma got_address_high, got_address_low, load;
9754
      const bfd_vma *plt_entry;
9755
 
9756
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
9757
      BFD_ASSERT (h->dynindx != -1);
9758
      BFD_ASSERT (htab->splt != NULL);
9759
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
9760
      BFD_ASSERT (!h->def_regular);
9761
 
9762
      /* Calculate the address of the PLT header.  */
9763
      header_address = (htab->splt->output_section->vma
9764
                        + htab->splt->output_offset);
9765
 
9766
      /* Calculate the index of the entry.  */
9767
      plt_index = ((h->plt.offset - htab->plt_header_size)
9768
                   / htab->plt_entry_size);
9769
 
9770
      /* Calculate the address of the .got.plt entry.  */
9771
      got_address = (htab->sgotplt->output_section->vma
9772
                     + htab->sgotplt->output_offset
9773
                     + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9774
      got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9775
      got_address_low = got_address & 0xffff;
9776
 
9777
      /* Initially point the .got.plt entry at the PLT header.  */
9778
      loc = (htab->sgotplt->contents
9779
             + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9780
      if (ABI_64_P (output_bfd))
9781
        bfd_put_64 (output_bfd, header_address, loc);
9782
      else
9783
        bfd_put_32 (output_bfd, header_address, loc);
9784
 
9785
      /* Find out where the .plt entry should go.  */
9786
      loc = htab->splt->contents + h->plt.offset;
9787
 
9788
      /* Pick the load opcode.  */
9789
      load = MIPS_ELF_LOAD_WORD (output_bfd);
9790
 
9791
      /* Fill in the PLT entry itself.  */
9792
      plt_entry = mips_exec_plt_entry;
9793
      bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9794
      bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9795
 
9796
      if (! LOAD_INTERLOCKS_P (output_bfd))
9797
        {
9798
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9799
          bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9800
        }
9801
      else
9802
        {
9803
          bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9804
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9805
        }
9806
 
9807
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
9808
      mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9809
                                          plt_index, h->dynindx,
9810
                                          R_MIPS_JUMP_SLOT, got_address);
9811
 
9812
      /* We distinguish between PLT entries and lazy-binding stubs by
9813
         giving the former an st_other value of STO_MIPS_PLT.  Set the
9814
         flag and leave the value if there are any relocations in the
9815
         binary where pointer equality matters.  */
9816
      sym->st_shndx = SHN_UNDEF;
9817
      if (h->pointer_equality_needed)
9818
        sym->st_other = STO_MIPS_PLT;
9819
      else
9820
        sym->st_value = 0;
9821
    }
9822
  else if (h->plt.offset != MINUS_ONE)
9823
    {
9824
      /* We've decided to create a lazy-binding stub.  */
9825
      bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9826
 
9827
      /* This symbol has a stub.  Set it up.  */
9828
 
9829
      BFD_ASSERT (h->dynindx != -1);
9830
 
9831
      BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9832
                  || (h->dynindx <= 0xffff));
9833
 
9834
      /* Values up to 2^31 - 1 are allowed.  Larger values would cause
9835
         sign extension at runtime in the stub, resulting in a negative
9836
         index value.  */
9837
      if (h->dynindx & ~0x7fffffff)
9838
        return FALSE;
9839
 
9840
      /* Fill the stub.  */
9841
      idx = 0;
9842
      bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9843
      idx += 4;
9844
      bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9845
      idx += 4;
9846
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9847
        {
9848
          bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9849
                      stub + idx);
9850
          idx += 4;
9851
        }
9852
      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9853
      idx += 4;
9854
 
9855
      /* If a large stub is not required and sign extension is not a
9856
         problem, then use legacy code in the stub.  */
9857
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9858
        bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9859
      else if (h->dynindx & ~0x7fff)
9860
        bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9861
      else
9862
        bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9863
                    stub + idx);
9864
 
9865
      BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9866
      memcpy (htab->sstubs->contents + h->plt.offset,
9867
              stub, htab->function_stub_size);
9868
 
9869
      /* Mark the symbol as undefined.  plt.offset != -1 occurs
9870
         only for the referenced symbol.  */
9871
      sym->st_shndx = SHN_UNDEF;
9872
 
9873
      /* The run-time linker uses the st_value field of the symbol
9874
         to reset the global offset table entry for this external
9875
         to its stub address when unlinking a shared object.  */
9876
      sym->st_value = (htab->sstubs->output_section->vma
9877
                       + htab->sstubs->output_offset
9878
                       + h->plt.offset);
9879
    }
9880
 
9881
  /* If we have a MIPS16 function with a stub, the dynamic symbol must
9882
     refer to the stub, since only the stub uses the standard calling
9883
     conventions.  */
9884
  if (h->dynindx != -1 && hmips->fn_stub != NULL)
9885
    {
9886
      BFD_ASSERT (hmips->need_fn_stub);
9887
      sym->st_value = (hmips->fn_stub->output_section->vma
9888
                       + hmips->fn_stub->output_offset);
9889
      sym->st_size = hmips->fn_stub->size;
9890
      sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9891
    }
9892
 
9893
  BFD_ASSERT (h->dynindx != -1
9894
              || h->forced_local);
9895
 
9896
  sgot = htab->sgot;
9897
  g = htab->got_info;
9898
  BFD_ASSERT (g != NULL);
9899
 
9900
  /* Run through the global symbol table, creating GOT entries for all
9901
     the symbols that need them.  */
9902
  if (hmips->global_got_area != GGA_NONE)
9903
    {
9904
      bfd_vma offset;
9905
      bfd_vma value;
9906
 
9907
      value = sym->st_value;
9908
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9909
                                          R_MIPS_GOT16, info);
9910
      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9911
    }
9912
 
9913
  if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9914
    {
9915
      struct mips_got_entry e, *p;
9916
      bfd_vma entry;
9917
      bfd_vma offset;
9918
 
9919
      gg = g;
9920
 
9921
      e.abfd = output_bfd;
9922
      e.symndx = -1;
9923
      e.d.h = hmips;
9924
      e.tls_type = 0;
9925
 
9926
      for (g = g->next; g->next != gg; g = g->next)
9927
        {
9928
          if (g->got_entries
9929
              && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9930
                                                           &e)))
9931
            {
9932
              offset = p->gotidx;
9933
              if (info->shared
9934
                  || (elf_hash_table (info)->dynamic_sections_created
9935
                      && p->d.h != NULL
9936
                      && p->d.h->root.def_dynamic
9937
                      && !p->d.h->root.def_regular))
9938
                {
9939
                  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
9940
                     the various compatibility problems, it's easier to mock
9941
                     up an R_MIPS_32 or R_MIPS_64 relocation and leave
9942
                     mips_elf_create_dynamic_relocation to calculate the
9943
                     appropriate addend.  */
9944
                  Elf_Internal_Rela rel[3];
9945
 
9946
                  memset (rel, 0, sizeof (rel));
9947
                  if (ABI_64_P (output_bfd))
9948
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9949
                  else
9950
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9951
                  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9952
 
9953
                  entry = 0;
9954
                  if (! (mips_elf_create_dynamic_relocation
9955
                         (output_bfd, info, rel,
9956
                          e.d.h, NULL, sym->st_value, &entry, sgot)))
9957
                    return FALSE;
9958
                }
9959
              else
9960
                entry = sym->st_value;
9961
              MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9962
            }
9963
        }
9964
    }
9965
 
9966
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
9967
  name = h->root.root.string;
9968
  if (strcmp (name, "_DYNAMIC") == 0
9969
      || h == elf_hash_table (info)->hgot)
9970
    sym->st_shndx = SHN_ABS;
9971
  else if (strcmp (name, "_DYNAMIC_LINK") == 0
9972
           || strcmp (name, "_DYNAMIC_LINKING") == 0)
9973
    {
9974
      sym->st_shndx = SHN_ABS;
9975
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9976
      sym->st_value = 1;
9977
    }
9978
  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9979
    {
9980
      sym->st_shndx = SHN_ABS;
9981
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9982
      sym->st_value = elf_gp (output_bfd);
9983
    }
9984
  else if (SGI_COMPAT (output_bfd))
9985
    {
9986
      if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9987
          || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9988
        {
9989
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9990
          sym->st_other = STO_PROTECTED;
9991
          sym->st_value = 0;
9992
          sym->st_shndx = SHN_MIPS_DATA;
9993
        }
9994
      else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9995
        {
9996
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9997
          sym->st_other = STO_PROTECTED;
9998
          sym->st_value = mips_elf_hash_table (info)->procedure_count;
9999
          sym->st_shndx = SHN_ABS;
10000
        }
10001
      else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10002
        {
10003
          if (h->type == STT_FUNC)
10004
            sym->st_shndx = SHN_MIPS_TEXT;
10005
          else if (h->type == STT_OBJECT)
10006
            sym->st_shndx = SHN_MIPS_DATA;
10007
        }
10008
    }
10009
 
10010
  /* Emit a copy reloc, if needed.  */
10011
  if (h->needs_copy)
10012
    {
10013
      asection *s;
10014
      bfd_vma symval;
10015
 
10016
      BFD_ASSERT (h->dynindx != -1);
10017
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
10018
 
10019
      s = mips_elf_rel_dyn_section (info, FALSE);
10020
      symval = (h->root.u.def.section->output_section->vma
10021
                + h->root.u.def.section->output_offset
10022
                + h->root.u.def.value);
10023
      mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10024
                                          h->dynindx, R_MIPS_COPY, symval);
10025
    }
10026
 
10027
  /* Handle the IRIX6-specific symbols.  */
10028
  if (IRIX_COMPAT (output_bfd) == ict_irix6)
10029
    mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10030
 
10031
  if (! info->shared)
10032
    {
10033
      if (! mips_elf_hash_table (info)->use_rld_obj_head
10034
          && (strcmp (name, "__rld_map") == 0
10035
              || strcmp (name, "__RLD_MAP") == 0))
10036
        {
10037
          asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
10038
          BFD_ASSERT (s != NULL);
10039
          sym->st_value = s->output_section->vma + s->output_offset;
10040
          bfd_put_32 (output_bfd, 0, s->contents);
10041
          if (mips_elf_hash_table (info)->rld_value == 0)
10042
            mips_elf_hash_table (info)->rld_value = sym->st_value;
10043
        }
10044
      else if (mips_elf_hash_table (info)->use_rld_obj_head
10045
               && strcmp (name, "__rld_obj_head") == 0)
10046
        {
10047
          /* IRIX6 does not use a .rld_map section.  */
10048
          if (IRIX_COMPAT (output_bfd) == ict_irix5
10049
              || IRIX_COMPAT (output_bfd) == ict_none)
10050
            BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
10051
                        != NULL);
10052
          mips_elf_hash_table (info)->rld_value = sym->st_value;
10053
        }
10054
    }
10055
 
10056
  /* Keep dynamic MIPS16 symbols odd.  This allows the dynamic linker to
10057
     treat MIPS16 symbols like any other.  */
10058
  if (ELF_ST_IS_MIPS16 (sym->st_other))
10059
    {
10060
      BFD_ASSERT (sym->st_value & 1);
10061
      sym->st_other -= STO_MIPS16;
10062
    }
10063
 
10064
  return TRUE;
10065
}
10066
 
10067
/* Likewise, for VxWorks.  */
10068
 
10069
bfd_boolean
10070
_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10071
                                         struct bfd_link_info *info,
10072
                                         struct elf_link_hash_entry *h,
10073
                                         Elf_Internal_Sym *sym)
10074
{
10075
  bfd *dynobj;
10076
  asection *sgot;
10077
  struct mips_got_info *g;
10078
  struct mips_elf_link_hash_table *htab;
10079
  struct mips_elf_link_hash_entry *hmips;
10080
 
10081
  htab = mips_elf_hash_table (info);
10082
  BFD_ASSERT (htab != NULL);
10083
  dynobj = elf_hash_table (info)->dynobj;
10084
  hmips = (struct mips_elf_link_hash_entry *) h;
10085
 
10086
  if (h->plt.offset != (bfd_vma) -1)
10087
    {
10088
      bfd_byte *loc;
10089
      bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10090
      Elf_Internal_Rela rel;
10091
      static const bfd_vma *plt_entry;
10092
 
10093
      BFD_ASSERT (h->dynindx != -1);
10094
      BFD_ASSERT (htab->splt != NULL);
10095
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
10096
 
10097
      /* Calculate the address of the .plt entry.  */
10098
      plt_address = (htab->splt->output_section->vma
10099
                     + htab->splt->output_offset
10100
                     + h->plt.offset);
10101
 
10102
      /* Calculate the index of the entry.  */
10103
      plt_index = ((h->plt.offset - htab->plt_header_size)
10104
                   / htab->plt_entry_size);
10105
 
10106
      /* Calculate the address of the .got.plt entry.  */
10107
      got_address = (htab->sgotplt->output_section->vma
10108
                     + htab->sgotplt->output_offset
10109
                     + plt_index * 4);
10110
 
10111
      /* Calculate the offset of the .got.plt entry from
10112
         _GLOBAL_OFFSET_TABLE_.  */
10113
      got_offset = mips_elf_gotplt_index (info, h);
10114
 
10115
      /* Calculate the offset for the branch at the start of the PLT
10116
         entry.  The branch jumps to the beginning of .plt.  */
10117
      branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10118
 
10119
      /* Fill in the initial value of the .got.plt entry.  */
10120
      bfd_put_32 (output_bfd, plt_address,
10121
                  htab->sgotplt->contents + plt_index * 4);
10122
 
10123
      /* Find out where the .plt entry should go.  */
10124
      loc = htab->splt->contents + h->plt.offset;
10125
 
10126
      if (info->shared)
10127
        {
10128
          plt_entry = mips_vxworks_shared_plt_entry;
10129
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10130
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10131
        }
10132
      else
10133
        {
10134
          bfd_vma got_address_high, got_address_low;
10135
 
10136
          plt_entry = mips_vxworks_exec_plt_entry;
10137
          got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10138
          got_address_low = got_address & 0xffff;
10139
 
10140
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10141
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10142
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10143
          bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10144
          bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10145
          bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10146
          bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10147
          bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10148
 
10149
          loc = (htab->srelplt2->contents
10150
                 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10151
 
10152
          /* Emit a relocation for the .got.plt entry.  */
10153
          rel.r_offset = got_address;
10154
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10155
          rel.r_addend = h->plt.offset;
10156
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10157
 
10158
          /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
10159
          loc += sizeof (Elf32_External_Rela);
10160
          rel.r_offset = plt_address + 8;
10161
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10162
          rel.r_addend = got_offset;
10163
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10164
 
10165
          /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
10166
          loc += sizeof (Elf32_External_Rela);
10167
          rel.r_offset += 4;
10168
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10169
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10170
        }
10171
 
10172
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10173
      loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10174
      rel.r_offset = got_address;
10175
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10176
      rel.r_addend = 0;
10177
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10178
 
10179
      if (!h->def_regular)
10180
        sym->st_shndx = SHN_UNDEF;
10181
    }
10182
 
10183
  BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10184
 
10185
  sgot = htab->sgot;
10186
  g = htab->got_info;
10187
  BFD_ASSERT (g != NULL);
10188
 
10189
  /* See if this symbol has an entry in the GOT.  */
10190
  if (hmips->global_got_area != GGA_NONE)
10191
    {
10192
      bfd_vma offset;
10193
      Elf_Internal_Rela outrel;
10194
      bfd_byte *loc;
10195
      asection *s;
10196
 
10197
      /* Install the symbol value in the GOT.   */
10198
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10199
                                          R_MIPS_GOT16, info);
10200
      MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10201
 
10202
      /* Add a dynamic relocation for it.  */
10203
      s = mips_elf_rel_dyn_section (info, FALSE);
10204
      loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10205
      outrel.r_offset = (sgot->output_section->vma
10206
                         + sgot->output_offset
10207
                         + offset);
10208
      outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10209
      outrel.r_addend = 0;
10210
      bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10211
    }
10212
 
10213
  /* Emit a copy reloc, if needed.  */
10214
  if (h->needs_copy)
10215
    {
10216
      Elf_Internal_Rela rel;
10217
 
10218
      BFD_ASSERT (h->dynindx != -1);
10219
 
10220
      rel.r_offset = (h->root.u.def.section->output_section->vma
10221
                      + h->root.u.def.section->output_offset
10222
                      + h->root.u.def.value);
10223
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10224
      rel.r_addend = 0;
10225
      bfd_elf32_swap_reloca_out (output_bfd, &rel,
10226
                                 htab->srelbss->contents
10227
                                 + (htab->srelbss->reloc_count
10228
                                    * sizeof (Elf32_External_Rela)));
10229
      ++htab->srelbss->reloc_count;
10230
    }
10231
 
10232 161 khays
  /* If this is a mips16/microMIPS symbol, force the value to be even.  */
10233
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
10234 14 khays
    sym->st_value &= ~1;
10235
 
10236
  return TRUE;
10237
}
10238
 
10239
/* Write out a plt0 entry to the beginning of .plt.  */
10240
 
10241
static void
10242
mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10243
{
10244
  bfd_byte *loc;
10245
  bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10246
  static const bfd_vma *plt_entry;
10247
  struct mips_elf_link_hash_table *htab;
10248
 
10249
  htab = mips_elf_hash_table (info);
10250
  BFD_ASSERT (htab != NULL);
10251
 
10252
  if (ABI_64_P (output_bfd))
10253
    plt_entry = mips_n64_exec_plt0_entry;
10254
  else if (ABI_N32_P (output_bfd))
10255
    plt_entry = mips_n32_exec_plt0_entry;
10256
  else
10257
    plt_entry = mips_o32_exec_plt0_entry;
10258
 
10259
  /* Calculate the value of .got.plt.  */
10260
  gotplt_value = (htab->sgotplt->output_section->vma
10261
                  + htab->sgotplt->output_offset);
10262
  gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10263
  gotplt_value_low = gotplt_value & 0xffff;
10264
 
10265
  /* The PLT sequence is not safe for N64 if .got.plt's address can
10266
     not be loaded in two instructions.  */
10267
  BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10268
              || ~(gotplt_value | 0x7fffffff) == 0);
10269
 
10270
  /* Install the PLT header.  */
10271
  loc = htab->splt->contents;
10272
  bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10273
  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10274
  bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10275
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10276
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10277
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10278
  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10279
  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10280
}
10281
 
10282
/* Install the PLT header for a VxWorks executable and finalize the
10283
   contents of .rela.plt.unloaded.  */
10284
 
10285
static void
10286
mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10287
{
10288
  Elf_Internal_Rela rela;
10289
  bfd_byte *loc;
10290
  bfd_vma got_value, got_value_high, got_value_low, plt_address;
10291
  static const bfd_vma *plt_entry;
10292
  struct mips_elf_link_hash_table *htab;
10293
 
10294
  htab = mips_elf_hash_table (info);
10295
  BFD_ASSERT (htab != NULL);
10296
 
10297
  plt_entry = mips_vxworks_exec_plt0_entry;
10298
 
10299
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
10300
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10301
               + htab->root.hgot->root.u.def.section->output_offset
10302
               + htab->root.hgot->root.u.def.value);
10303
 
10304
  got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10305
  got_value_low = got_value & 0xffff;
10306
 
10307
  /* Calculate the address of the PLT header.  */
10308
  plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10309
 
10310
  /* Install the PLT header.  */
10311
  loc = htab->splt->contents;
10312
  bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10313
  bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10314
  bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10315
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10316
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10317
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10318
 
10319
  /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
10320
  loc = htab->srelplt2->contents;
10321
  rela.r_offset = plt_address;
10322
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10323
  rela.r_addend = 0;
10324
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10325
  loc += sizeof (Elf32_External_Rela);
10326
 
10327
  /* Output the relocation for the following addiu of
10328
     %lo(_GLOBAL_OFFSET_TABLE_).  */
10329
  rela.r_offset += 4;
10330
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10331
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10332
  loc += sizeof (Elf32_External_Rela);
10333
 
10334
  /* Fix up the remaining relocations.  They may have the wrong
10335
     symbol index for _G_O_T_ or _P_L_T_ depending on the order
10336
     in which symbols were output.  */
10337
  while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10338
    {
10339
      Elf_Internal_Rela rel;
10340
 
10341
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10342
      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10343
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10344
      loc += sizeof (Elf32_External_Rela);
10345
 
10346
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10347
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10348
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10349
      loc += sizeof (Elf32_External_Rela);
10350
 
10351
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10352
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10353
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10354
      loc += sizeof (Elf32_External_Rela);
10355
    }
10356
}
10357
 
10358
/* Install the PLT header for a VxWorks shared library.  */
10359
 
10360
static void
10361
mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10362
{
10363
  unsigned int i;
10364
  struct mips_elf_link_hash_table *htab;
10365
 
10366
  htab = mips_elf_hash_table (info);
10367
  BFD_ASSERT (htab != NULL);
10368
 
10369
  /* We just need to copy the entry byte-by-byte.  */
10370
  for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10371
    bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10372
                htab->splt->contents + i * 4);
10373
}
10374
 
10375
/* Finish up the dynamic sections.  */
10376
 
10377
bfd_boolean
10378
_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10379
                                       struct bfd_link_info *info)
10380
{
10381
  bfd *dynobj;
10382
  asection *sdyn;
10383
  asection *sgot;
10384
  struct mips_got_info *gg, *g;
10385
  struct mips_elf_link_hash_table *htab;
10386
 
10387
  htab = mips_elf_hash_table (info);
10388
  BFD_ASSERT (htab != NULL);
10389
 
10390
  dynobj = elf_hash_table (info)->dynobj;
10391
 
10392
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10393
 
10394
  sgot = htab->sgot;
10395
  gg = htab->got_info;
10396
 
10397
  if (elf_hash_table (info)->dynamic_sections_created)
10398
    {
10399
      bfd_byte *b;
10400
      int dyn_to_skip = 0, dyn_skipped = 0;
10401
 
10402
      BFD_ASSERT (sdyn != NULL);
10403
      BFD_ASSERT (gg != NULL);
10404
 
10405
      g = mips_elf_got_for_ibfd (gg, output_bfd);
10406
      BFD_ASSERT (g != NULL);
10407
 
10408
      for (b = sdyn->contents;
10409
           b < sdyn->contents + sdyn->size;
10410
           b += MIPS_ELF_DYN_SIZE (dynobj))
10411
        {
10412
          Elf_Internal_Dyn dyn;
10413
          const char *name;
10414
          size_t elemsize;
10415
          asection *s;
10416
          bfd_boolean swap_out_p;
10417
 
10418
          /* Read in the current dynamic entry.  */
10419
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10420
 
10421
          /* Assume that we're going to modify it and write it out.  */
10422
          swap_out_p = TRUE;
10423
 
10424
          switch (dyn.d_tag)
10425
            {
10426
            case DT_RELENT:
10427
              dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10428
              break;
10429
 
10430
            case DT_RELAENT:
10431
              BFD_ASSERT (htab->is_vxworks);
10432
              dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10433
              break;
10434
 
10435
            case DT_STRSZ:
10436
              /* Rewrite DT_STRSZ.  */
10437
              dyn.d_un.d_val =
10438
                _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10439
              break;
10440
 
10441
            case DT_PLTGOT:
10442
              s = htab->sgot;
10443
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10444
              break;
10445
 
10446
            case DT_MIPS_PLTGOT:
10447
              s = htab->sgotplt;
10448
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10449
              break;
10450
 
10451
            case DT_MIPS_RLD_VERSION:
10452
              dyn.d_un.d_val = 1; /* XXX */
10453
              break;
10454
 
10455
            case DT_MIPS_FLAGS:
10456
              dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10457
              break;
10458
 
10459
            case DT_MIPS_TIME_STAMP:
10460
              {
10461
                time_t t;
10462
                time (&t);
10463
                dyn.d_un.d_val = t;
10464
              }
10465
              break;
10466
 
10467
            case DT_MIPS_ICHECKSUM:
10468
              /* XXX FIXME: */
10469
              swap_out_p = FALSE;
10470
              break;
10471
 
10472
            case DT_MIPS_IVERSION:
10473
              /* XXX FIXME: */
10474
              swap_out_p = FALSE;
10475
              break;
10476
 
10477
            case DT_MIPS_BASE_ADDRESS:
10478
              s = output_bfd->sections;
10479
              BFD_ASSERT (s != NULL);
10480
              dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10481
              break;
10482
 
10483
            case DT_MIPS_LOCAL_GOTNO:
10484
              dyn.d_un.d_val = g->local_gotno;
10485
              break;
10486
 
10487
            case DT_MIPS_UNREFEXTNO:
10488
              /* The index into the dynamic symbol table which is the
10489
                 entry of the first external symbol that is not
10490
                 referenced within the same object.  */
10491
              dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10492
              break;
10493
 
10494
            case DT_MIPS_GOTSYM:
10495
              if (gg->global_gotsym)
10496
                {
10497
                  dyn.d_un.d_val = gg->global_gotsym->dynindx;
10498
                  break;
10499
                }
10500
              /* In case if we don't have global got symbols we default
10501
                 to setting DT_MIPS_GOTSYM to the same value as
10502
                 DT_MIPS_SYMTABNO, so we just fall through.  */
10503
 
10504
            case DT_MIPS_SYMTABNO:
10505
              name = ".dynsym";
10506
              elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10507
              s = bfd_get_section_by_name (output_bfd, name);
10508
              BFD_ASSERT (s != NULL);
10509
 
10510
              dyn.d_un.d_val = s->size / elemsize;
10511
              break;
10512
 
10513
            case DT_MIPS_HIPAGENO:
10514
              dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10515
              break;
10516
 
10517
            case DT_MIPS_RLD_MAP:
10518
              dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10519
              break;
10520
 
10521
            case DT_MIPS_OPTIONS:
10522
              s = (bfd_get_section_by_name
10523
                   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10524
              dyn.d_un.d_ptr = s->vma;
10525
              break;
10526
 
10527
            case DT_RELASZ:
10528
              BFD_ASSERT (htab->is_vxworks);
10529
              /* The count does not include the JUMP_SLOT relocations.  */
10530
              if (htab->srelplt)
10531
                dyn.d_un.d_val -= htab->srelplt->size;
10532
              break;
10533
 
10534
            case DT_PLTREL:
10535
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
10536
              if (htab->is_vxworks)
10537
                dyn.d_un.d_val = DT_RELA;
10538
              else
10539
                dyn.d_un.d_val = DT_REL;
10540
              break;
10541
 
10542
            case DT_PLTRELSZ:
10543
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
10544
              dyn.d_un.d_val = htab->srelplt->size;
10545
              break;
10546
 
10547
            case DT_JMPREL:
10548
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
10549
              dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10550
                                + htab->srelplt->output_offset);
10551
              break;
10552
 
10553
            case DT_TEXTREL:
10554
              /* If we didn't need any text relocations after all, delete
10555
                 the dynamic tag.  */
10556
              if (!(info->flags & DF_TEXTREL))
10557
                {
10558
                  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10559
                  swap_out_p = FALSE;
10560
                }
10561
              break;
10562
 
10563
            case DT_FLAGS:
10564
              /* If we didn't need any text relocations after all, clear
10565
                 DF_TEXTREL from DT_FLAGS.  */
10566
              if (!(info->flags & DF_TEXTREL))
10567
                dyn.d_un.d_val &= ~DF_TEXTREL;
10568
              else
10569
                swap_out_p = FALSE;
10570
              break;
10571
 
10572
            default:
10573
              swap_out_p = FALSE;
10574
              if (htab->is_vxworks
10575
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10576
                swap_out_p = TRUE;
10577
              break;
10578
            }
10579
 
10580
          if (swap_out_p || dyn_skipped)
10581
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10582
              (dynobj, &dyn, b - dyn_skipped);
10583
 
10584
          if (dyn_to_skip)
10585
            {
10586
              dyn_skipped += dyn_to_skip;
10587
              dyn_to_skip = 0;
10588
            }
10589
        }
10590
 
10591
      /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
10592
      if (dyn_skipped > 0)
10593
        memset (b - dyn_skipped, 0, dyn_skipped);
10594
    }
10595
 
10596
  if (sgot != NULL && sgot->size > 0
10597
      && !bfd_is_abs_section (sgot->output_section))
10598
    {
10599
      if (htab->is_vxworks)
10600
        {
10601
          /* The first entry of the global offset table points to the
10602
             ".dynamic" section.  The second is initialized by the
10603
             loader and contains the shared library identifier.
10604
             The third is also initialized by the loader and points
10605
             to the lazy resolution stub.  */
10606
          MIPS_ELF_PUT_WORD (output_bfd,
10607
                             sdyn->output_offset + sdyn->output_section->vma,
10608
                             sgot->contents);
10609
          MIPS_ELF_PUT_WORD (output_bfd, 0,
10610
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10611
          MIPS_ELF_PUT_WORD (output_bfd, 0,
10612
                             sgot->contents
10613
                             + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10614
        }
10615
      else
10616
        {
10617
          /* The first entry of the global offset table will be filled at
10618
             runtime. The second entry will be used by some runtime loaders.
10619
             This isn't the case of IRIX rld.  */
10620
          MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10621
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10622
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10623
        }
10624
 
10625
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10626
         = MIPS_ELF_GOT_SIZE (output_bfd);
10627
    }
10628
 
10629
  /* Generate dynamic relocations for the non-primary gots.  */
10630
  if (gg != NULL && gg->next)
10631
    {
10632
      Elf_Internal_Rela rel[3];
10633
      bfd_vma addend = 0;
10634
 
10635
      memset (rel, 0, sizeof (rel));
10636
      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10637
 
10638
      for (g = gg->next; g->next != gg; g = g->next)
10639
        {
10640
          bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10641
            + g->next->tls_gotno;
10642
 
10643
          MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10644
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10645
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10646
                             sgot->contents
10647
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10648
 
10649
          if (! info->shared)
10650
            continue;
10651
 
10652
          while (got_index < g->assigned_gotno)
10653
            {
10654
              rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10655
                = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10656
              if (!(mips_elf_create_dynamic_relocation
10657
                    (output_bfd, info, rel, NULL,
10658
                     bfd_abs_section_ptr,
10659
                     0, &addend, sgot)))
10660
                return FALSE;
10661
              BFD_ASSERT (addend == 0);
10662
            }
10663
        }
10664
    }
10665
 
10666
  /* The generation of dynamic relocations for the non-primary gots
10667
     adds more dynamic relocations.  We cannot count them until
10668
     here.  */
10669
 
10670
  if (elf_hash_table (info)->dynamic_sections_created)
10671
    {
10672
      bfd_byte *b;
10673
      bfd_boolean swap_out_p;
10674
 
10675
      BFD_ASSERT (sdyn != NULL);
10676
 
10677
      for (b = sdyn->contents;
10678
           b < sdyn->contents + sdyn->size;
10679
           b += MIPS_ELF_DYN_SIZE (dynobj))
10680
        {
10681
          Elf_Internal_Dyn dyn;
10682
          asection *s;
10683
 
10684
          /* Read in the current dynamic entry.  */
10685
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10686
 
10687
          /* Assume that we're going to modify it and write it out.  */
10688
          swap_out_p = TRUE;
10689
 
10690
          switch (dyn.d_tag)
10691
            {
10692
            case DT_RELSZ:
10693
              /* Reduce DT_RELSZ to account for any relocations we
10694
                 decided not to make.  This is for the n64 irix rld,
10695
                 which doesn't seem to apply any relocations if there
10696
                 are trailing null entries.  */
10697
              s = mips_elf_rel_dyn_section (info, FALSE);
10698
              dyn.d_un.d_val = (s->reloc_count
10699
                                * (ABI_64_P (output_bfd)
10700
                                   ? sizeof (Elf64_Mips_External_Rel)
10701
                                   : sizeof (Elf32_External_Rel)));
10702
              /* Adjust the section size too.  Tools like the prelinker
10703
                 can reasonably expect the values to the same.  */
10704
              elf_section_data (s->output_section)->this_hdr.sh_size
10705
                = dyn.d_un.d_val;
10706
              break;
10707
 
10708
            default:
10709
              swap_out_p = FALSE;
10710
              break;
10711
            }
10712
 
10713
          if (swap_out_p)
10714
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10715
              (dynobj, &dyn, b);
10716
        }
10717
    }
10718
 
10719
  {
10720
    asection *s;
10721
    Elf32_compact_rel cpt;
10722
 
10723
    if (SGI_COMPAT (output_bfd))
10724
      {
10725
        /* Write .compact_rel section out.  */
10726
        s = bfd_get_section_by_name (dynobj, ".compact_rel");
10727
        if (s != NULL)
10728
          {
10729
            cpt.id1 = 1;
10730
            cpt.num = s->reloc_count;
10731
            cpt.id2 = 2;
10732
            cpt.offset = (s->output_section->filepos
10733
                          + sizeof (Elf32_External_compact_rel));
10734
            cpt.reserved0 = 0;
10735
            cpt.reserved1 = 0;
10736
            bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10737
                                            ((Elf32_External_compact_rel *)
10738
                                             s->contents));
10739
 
10740
            /* Clean up a dummy stub function entry in .text.  */
10741
            if (htab->sstubs != NULL)
10742
              {
10743
                file_ptr dummy_offset;
10744
 
10745
                BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10746
                dummy_offset = htab->sstubs->size - htab->function_stub_size;
10747
                memset (htab->sstubs->contents + dummy_offset, 0,
10748
                        htab->function_stub_size);
10749
              }
10750
          }
10751
      }
10752
 
10753
    /* The psABI says that the dynamic relocations must be sorted in
10754
       increasing order of r_symndx.  The VxWorks EABI doesn't require
10755
       this, and because the code below handles REL rather than RELA
10756
       relocations, using it for VxWorks would be outright harmful.  */
10757
    if (!htab->is_vxworks)
10758
      {
10759
        s = mips_elf_rel_dyn_section (info, FALSE);
10760
        if (s != NULL
10761
            && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10762
          {
10763
            reldyn_sorting_bfd = output_bfd;
10764
 
10765
            if (ABI_64_P (output_bfd))
10766
              qsort ((Elf64_External_Rel *) s->contents + 1,
10767
                     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10768
                     sort_dynamic_relocs_64);
10769
            else
10770
              qsort ((Elf32_External_Rel *) s->contents + 1,
10771
                     s->reloc_count - 1, sizeof (Elf32_External_Rel),
10772
                     sort_dynamic_relocs);
10773
          }
10774
      }
10775
  }
10776
 
10777
  if (htab->splt && htab->splt->size > 0)
10778
    {
10779
      if (htab->is_vxworks)
10780
        {
10781
          if (info->shared)
10782
            mips_vxworks_finish_shared_plt (output_bfd, info);
10783
          else
10784
            mips_vxworks_finish_exec_plt (output_bfd, info);
10785
        }
10786
      else
10787
        {
10788
          BFD_ASSERT (!info->shared);
10789
          mips_finish_exec_plt (output_bfd, info);
10790
        }
10791
    }
10792
  return TRUE;
10793
}
10794
 
10795
 
10796
/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
10797
 
10798
static void
10799
mips_set_isa_flags (bfd *abfd)
10800
{
10801
  flagword val;
10802
 
10803
  switch (bfd_get_mach (abfd))
10804
    {
10805
    default:
10806
    case bfd_mach_mips3000:
10807
      val = E_MIPS_ARCH_1;
10808
      break;
10809
 
10810
    case bfd_mach_mips3900:
10811
      val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10812
      break;
10813
 
10814
    case bfd_mach_mips6000:
10815
      val = E_MIPS_ARCH_2;
10816
      break;
10817
 
10818
    case bfd_mach_mips4000:
10819
    case bfd_mach_mips4300:
10820
    case bfd_mach_mips4400:
10821
    case bfd_mach_mips4600:
10822
      val = E_MIPS_ARCH_3;
10823
      break;
10824
 
10825
    case bfd_mach_mips4010:
10826
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10827
      break;
10828
 
10829
    case bfd_mach_mips4100:
10830
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10831
      break;
10832
 
10833
    case bfd_mach_mips4111:
10834
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10835
      break;
10836
 
10837
    case bfd_mach_mips4120:
10838
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10839
      break;
10840
 
10841
    case bfd_mach_mips4650:
10842
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10843
      break;
10844
 
10845
    case bfd_mach_mips5400:
10846
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10847
      break;
10848
 
10849
    case bfd_mach_mips5500:
10850
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10851
      break;
10852
 
10853
    case bfd_mach_mips9000:
10854
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10855
      break;
10856
 
10857
    case bfd_mach_mips5000:
10858
    case bfd_mach_mips7000:
10859
    case bfd_mach_mips8000:
10860
    case bfd_mach_mips10000:
10861
    case bfd_mach_mips12000:
10862
    case bfd_mach_mips14000:
10863
    case bfd_mach_mips16000:
10864
      val = E_MIPS_ARCH_4;
10865
      break;
10866
 
10867
    case bfd_mach_mips5:
10868
      val = E_MIPS_ARCH_5;
10869
      break;
10870
 
10871
    case bfd_mach_mips_loongson_2e:
10872
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10873
      break;
10874
 
10875
    case bfd_mach_mips_loongson_2f:
10876
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10877
      break;
10878
 
10879
    case bfd_mach_mips_sb1:
10880
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10881
      break;
10882
 
10883
    case bfd_mach_mips_loongson_3a:
10884
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10885
      break;
10886
 
10887
    case bfd_mach_mips_octeon:
10888
      val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10889
      break;
10890
 
10891
    case bfd_mach_mips_xlr:
10892
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10893
      break;
10894
 
10895
    case bfd_mach_mipsisa32:
10896
      val = E_MIPS_ARCH_32;
10897
      break;
10898
 
10899
    case bfd_mach_mipsisa64:
10900
      val = E_MIPS_ARCH_64;
10901
      break;
10902
 
10903
    case bfd_mach_mipsisa32r2:
10904
      val = E_MIPS_ARCH_32R2;
10905
      break;
10906
 
10907
    case bfd_mach_mipsisa64r2:
10908
      val = E_MIPS_ARCH_64R2;
10909
      break;
10910
    }
10911
  elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10912
  elf_elfheader (abfd)->e_flags |= val;
10913
 
10914
}
10915
 
10916
 
10917
/* The final processing done just before writing out a MIPS ELF object
10918
   file.  This gets the MIPS architecture right based on the machine
10919
   number.  This is used by both the 32-bit and the 64-bit ABI.  */
10920
 
10921
void
10922
_bfd_mips_elf_final_write_processing (bfd *abfd,
10923
                                      bfd_boolean linker ATTRIBUTE_UNUSED)
10924
{
10925
  unsigned int i;
10926
  Elf_Internal_Shdr **hdrpp;
10927
  const char *name;
10928
  asection *sec;
10929
 
10930
  /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10931
     is nonzero.  This is for compatibility with old objects, which used
10932
     a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
10933
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10934
    mips_set_isa_flags (abfd);
10935
 
10936
  /* Set the sh_info field for .gptab sections and other appropriate
10937
     info for each special section.  */
10938
  for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10939
       i < elf_numsections (abfd);
10940
       i++, hdrpp++)
10941
    {
10942
      switch ((*hdrpp)->sh_type)
10943
        {
10944
        case SHT_MIPS_MSYM:
10945
        case SHT_MIPS_LIBLIST:
10946
          sec = bfd_get_section_by_name (abfd, ".dynstr");
10947
          if (sec != NULL)
10948
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10949
          break;
10950
 
10951
        case SHT_MIPS_GPTAB:
10952
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10953
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10954
          BFD_ASSERT (name != NULL
10955
                      && CONST_STRNEQ (name, ".gptab."));
10956
          sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10957
          BFD_ASSERT (sec != NULL);
10958
          (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10959
          break;
10960
 
10961
        case SHT_MIPS_CONTENT:
10962
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10963
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10964
          BFD_ASSERT (name != NULL
10965
                      && CONST_STRNEQ (name, ".MIPS.content"));
10966
          sec = bfd_get_section_by_name (abfd,
10967
                                         name + sizeof ".MIPS.content" - 1);
10968
          BFD_ASSERT (sec != NULL);
10969
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10970
          break;
10971
 
10972
        case SHT_MIPS_SYMBOL_LIB:
10973
          sec = bfd_get_section_by_name (abfd, ".dynsym");
10974
          if (sec != NULL)
10975
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10976
          sec = bfd_get_section_by_name (abfd, ".liblist");
10977
          if (sec != NULL)
10978
            (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10979
          break;
10980
 
10981
        case SHT_MIPS_EVENTS:
10982
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10983
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10984
          BFD_ASSERT (name != NULL);
10985
          if (CONST_STRNEQ (name, ".MIPS.events"))
10986
            sec = bfd_get_section_by_name (abfd,
10987
                                           name + sizeof ".MIPS.events" - 1);
10988
          else
10989
            {
10990
              BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10991
              sec = bfd_get_section_by_name (abfd,
10992
                                             (name
10993
                                              + sizeof ".MIPS.post_rel" - 1));
10994
            }
10995
          BFD_ASSERT (sec != NULL);
10996
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10997
          break;
10998
 
10999
        }
11000
    }
11001
}
11002
 
11003
/* When creating an IRIX5 executable, we need REGINFO and RTPROC
11004
   segments.  */
11005
 
11006
int
11007
_bfd_mips_elf_additional_program_headers (bfd *abfd,
11008
                                          struct bfd_link_info *info ATTRIBUTE_UNUSED)
11009
{
11010
  asection *s;
11011
  int ret = 0;
11012
 
11013
  /* See if we need a PT_MIPS_REGINFO segment.  */
11014
  s = bfd_get_section_by_name (abfd, ".reginfo");
11015
  if (s && (s->flags & SEC_LOAD))
11016
    ++ret;
11017
 
11018
  /* See if we need a PT_MIPS_OPTIONS segment.  */
11019
  if (IRIX_COMPAT (abfd) == ict_irix6
11020
      && bfd_get_section_by_name (abfd,
11021
                                  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11022
    ++ret;
11023
 
11024
  /* See if we need a PT_MIPS_RTPROC segment.  */
11025
  if (IRIX_COMPAT (abfd) == ict_irix5
11026
      && bfd_get_section_by_name (abfd, ".dynamic")
11027
      && bfd_get_section_by_name (abfd, ".mdebug"))
11028
    ++ret;
11029
 
11030
  /* Allocate a PT_NULL header in dynamic objects.  See
11031
     _bfd_mips_elf_modify_segment_map for details.  */
11032
  if (!SGI_COMPAT (abfd)
11033
      && bfd_get_section_by_name (abfd, ".dynamic"))
11034
    ++ret;
11035
 
11036
  return ret;
11037
}
11038
 
11039
/* Modify the segment map for an IRIX5 executable.  */
11040
 
11041
bfd_boolean
11042
_bfd_mips_elf_modify_segment_map (bfd *abfd,
11043
                                  struct bfd_link_info *info)
11044
{
11045
  asection *s;
11046
  struct elf_segment_map *m, **pm;
11047
  bfd_size_type amt;
11048
 
11049
  /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11050
     segment.  */
11051
  s = bfd_get_section_by_name (abfd, ".reginfo");
11052
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
11053
    {
11054
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11055
        if (m->p_type == PT_MIPS_REGINFO)
11056
          break;
11057
      if (m == NULL)
11058
        {
11059
          amt = sizeof *m;
11060
          m = bfd_zalloc (abfd, amt);
11061
          if (m == NULL)
11062
            return FALSE;
11063
 
11064
          m->p_type = PT_MIPS_REGINFO;
11065
          m->count = 1;
11066
          m->sections[0] = s;
11067
 
11068
          /* We want to put it after the PHDR and INTERP segments.  */
11069
          pm = &elf_tdata (abfd)->segment_map;
11070
          while (*pm != NULL
11071
                 && ((*pm)->p_type == PT_PHDR
11072
                     || (*pm)->p_type == PT_INTERP))
11073
            pm = &(*pm)->next;
11074
 
11075
          m->next = *pm;
11076
          *pm = m;
11077
        }
11078
    }
11079
 
11080
  /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11081
     .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
11082
     PT_MIPS_OPTIONS segment immediately following the program header
11083
     table.  */
11084
  if (NEWABI_P (abfd)
11085
      /* On non-IRIX6 new abi, we'll have already created a segment
11086
         for this section, so don't create another.  I'm not sure this
11087
         is not also the case for IRIX 6, but I can't test it right
11088
         now.  */
11089
      && IRIX_COMPAT (abfd) == ict_irix6)
11090
    {
11091
      for (s = abfd->sections; s; s = s->next)
11092
        if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11093
          break;
11094
 
11095
      if (s)
11096
        {
11097
          struct elf_segment_map *options_segment;
11098
 
11099
          pm = &elf_tdata (abfd)->segment_map;
11100
          while (*pm != NULL
11101
                 && ((*pm)->p_type == PT_PHDR
11102
                     || (*pm)->p_type == PT_INTERP))
11103
            pm = &(*pm)->next;
11104
 
11105
          if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11106
            {
11107
              amt = sizeof (struct elf_segment_map);
11108
              options_segment = bfd_zalloc (abfd, amt);
11109
              options_segment->next = *pm;
11110
              options_segment->p_type = PT_MIPS_OPTIONS;
11111
              options_segment->p_flags = PF_R;
11112
              options_segment->p_flags_valid = TRUE;
11113
              options_segment->count = 1;
11114
              options_segment->sections[0] = s;
11115
              *pm = options_segment;
11116
            }
11117
        }
11118
    }
11119
  else
11120
    {
11121
      if (IRIX_COMPAT (abfd) == ict_irix5)
11122
        {
11123
          /* If there are .dynamic and .mdebug sections, we make a room
11124
             for the RTPROC header.  FIXME: Rewrite without section names.  */
11125
          if (bfd_get_section_by_name (abfd, ".interp") == NULL
11126
              && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11127
              && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11128
            {
11129
              for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11130
                if (m->p_type == PT_MIPS_RTPROC)
11131
                  break;
11132
              if (m == NULL)
11133
                {
11134
                  amt = sizeof *m;
11135
                  m = bfd_zalloc (abfd, amt);
11136
                  if (m == NULL)
11137
                    return FALSE;
11138
 
11139
                  m->p_type = PT_MIPS_RTPROC;
11140
 
11141
                  s = bfd_get_section_by_name (abfd, ".rtproc");
11142
                  if (s == NULL)
11143
                    {
11144
                      m->count = 0;
11145
                      m->p_flags = 0;
11146
                      m->p_flags_valid = 1;
11147
                    }
11148
                  else
11149
                    {
11150
                      m->count = 1;
11151
                      m->sections[0] = s;
11152
                    }
11153
 
11154
                  /* We want to put it after the DYNAMIC segment.  */
11155
                  pm = &elf_tdata (abfd)->segment_map;
11156
                  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11157
                    pm = &(*pm)->next;
11158
                  if (*pm != NULL)
11159
                    pm = &(*pm)->next;
11160
 
11161
                  m->next = *pm;
11162
                  *pm = m;
11163
                }
11164
            }
11165
        }
11166
      /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11167
         .dynstr, .dynsym, and .hash sections, and everything in
11168
         between.  */
11169
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11170
           pm = &(*pm)->next)
11171
        if ((*pm)->p_type == PT_DYNAMIC)
11172
          break;
11173
      m = *pm;
11174
      if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11175
        {
11176
          /* For a normal mips executable the permissions for the PT_DYNAMIC
11177
             segment are read, write and execute. We do that here since
11178
             the code in elf.c sets only the read permission. This matters
11179
             sometimes for the dynamic linker.  */
11180
          if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11181
            {
11182
              m->p_flags = PF_R | PF_W | PF_X;
11183
              m->p_flags_valid = 1;
11184
            }
11185
        }
11186
      /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11187
         glibc's dynamic linker has traditionally derived the number of
11188
         tags from the p_filesz field, and sometimes allocates stack
11189
         arrays of that size.  An overly-big PT_DYNAMIC segment can
11190
         be actively harmful in such cases.  Making PT_DYNAMIC contain
11191
         other sections can also make life hard for the prelinker,
11192
         which might move one of the other sections to a different
11193
         PT_LOAD segment.  */
11194
      if (SGI_COMPAT (abfd)
11195
          && m != NULL
11196
          && m->count == 1
11197
          && strcmp (m->sections[0]->name, ".dynamic") == 0)
11198
        {
11199
          static const char *sec_names[] =
11200
          {
11201
            ".dynamic", ".dynstr", ".dynsym", ".hash"
11202
          };
11203
          bfd_vma low, high;
11204
          unsigned int i, c;
11205
          struct elf_segment_map *n;
11206
 
11207
          low = ~(bfd_vma) 0;
11208
          high = 0;
11209
          for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11210
            {
11211
              s = bfd_get_section_by_name (abfd, sec_names[i]);
11212
              if (s != NULL && (s->flags & SEC_LOAD) != 0)
11213
                {
11214
                  bfd_size_type sz;
11215
 
11216
                  if (low > s->vma)
11217
                    low = s->vma;
11218
                  sz = s->size;
11219
                  if (high < s->vma + sz)
11220
                    high = s->vma + sz;
11221
                }
11222
            }
11223
 
11224
          c = 0;
11225
          for (s = abfd->sections; s != NULL; s = s->next)
11226
            if ((s->flags & SEC_LOAD) != 0
11227
                && s->vma >= low
11228
                && s->vma + s->size <= high)
11229
              ++c;
11230
 
11231
          amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11232
          n = bfd_zalloc (abfd, amt);
11233
          if (n == NULL)
11234
            return FALSE;
11235
          *n = *m;
11236
          n->count = c;
11237
 
11238
          i = 0;
11239
          for (s = abfd->sections; s != NULL; s = s->next)
11240
            {
11241
              if ((s->flags & SEC_LOAD) != 0
11242
                  && s->vma >= low
11243
                  && s->vma + s->size <= high)
11244
                {
11245
                  n->sections[i] = s;
11246
                  ++i;
11247
                }
11248
            }
11249
 
11250
          *pm = n;
11251
        }
11252
    }
11253
 
11254
  /* Allocate a spare program header in dynamic objects so that tools
11255
     like the prelinker can add an extra PT_LOAD entry.
11256
 
11257
     If the prelinker needs to make room for a new PT_LOAD entry, its
11258
     standard procedure is to move the first (read-only) sections into
11259
     the new (writable) segment.  However, the MIPS ABI requires
11260
     .dynamic to be in a read-only segment, and the section will often
11261
     start within sizeof (ElfNN_Phdr) bytes of the last program header.
11262
 
11263
     Although the prelinker could in principle move .dynamic to a
11264
     writable segment, it seems better to allocate a spare program
11265
     header instead, and avoid the need to move any sections.
11266
     There is a long tradition of allocating spare dynamic tags,
11267
     so allocating a spare program header seems like a natural
11268
     extension.
11269
 
11270
     If INFO is NULL, we may be copying an already prelinked binary
11271
     with objcopy or strip, so do not add this header.  */
11272
  if (info != NULL
11273
      && !SGI_COMPAT (abfd)
11274
      && bfd_get_section_by_name (abfd, ".dynamic"))
11275
    {
11276
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11277
        if ((*pm)->p_type == PT_NULL)
11278
          break;
11279
      if (*pm == NULL)
11280
        {
11281
          m = bfd_zalloc (abfd, sizeof (*m));
11282
          if (m == NULL)
11283
            return FALSE;
11284
 
11285
          m->p_type = PT_NULL;
11286
          *pm = m;
11287
        }
11288
    }
11289
 
11290
  return TRUE;
11291
}
11292
 
11293
/* Return the section that should be marked against GC for a given
11294
   relocation.  */
11295
 
11296
asection *
11297
_bfd_mips_elf_gc_mark_hook (asection *sec,
11298
                            struct bfd_link_info *info,
11299
                            Elf_Internal_Rela *rel,
11300
                            struct elf_link_hash_entry *h,
11301
                            Elf_Internal_Sym *sym)
11302
{
11303
  /* ??? Do mips16 stub sections need to be handled special?  */
11304
 
11305
  if (h != NULL)
11306
    switch (ELF_R_TYPE (sec->owner, rel->r_info))
11307
      {
11308
      case R_MIPS_GNU_VTINHERIT:
11309
      case R_MIPS_GNU_VTENTRY:
11310
        return NULL;
11311
      }
11312
 
11313
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11314
}
11315
 
11316
/* Update the got entry reference counts for the section being removed.  */
11317
 
11318
bfd_boolean
11319
_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11320
                             struct bfd_link_info *info ATTRIBUTE_UNUSED,
11321
                             asection *sec ATTRIBUTE_UNUSED,
11322
                             const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11323
{
11324
#if 0
11325
  Elf_Internal_Shdr *symtab_hdr;
11326
  struct elf_link_hash_entry **sym_hashes;
11327
  bfd_signed_vma *local_got_refcounts;
11328
  const Elf_Internal_Rela *rel, *relend;
11329
  unsigned long r_symndx;
11330
  struct elf_link_hash_entry *h;
11331
 
11332
  if (info->relocatable)
11333
    return TRUE;
11334
 
11335
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11336
  sym_hashes = elf_sym_hashes (abfd);
11337
  local_got_refcounts = elf_local_got_refcounts (abfd);
11338
 
11339
  relend = relocs + sec->reloc_count;
11340
  for (rel = relocs; rel < relend; rel++)
11341
    switch (ELF_R_TYPE (abfd, rel->r_info))
11342
      {
11343
      case R_MIPS16_GOT16:
11344
      case R_MIPS16_CALL16:
11345
      case R_MIPS_GOT16:
11346
      case R_MIPS_CALL16:
11347
      case R_MIPS_CALL_HI16:
11348
      case R_MIPS_CALL_LO16:
11349
      case R_MIPS_GOT_HI16:
11350
      case R_MIPS_GOT_LO16:
11351
      case R_MIPS_GOT_DISP:
11352
      case R_MIPS_GOT_PAGE:
11353
      case R_MIPS_GOT_OFST:
11354 161 khays
      case R_MICROMIPS_GOT16:
11355
      case R_MICROMIPS_CALL16:
11356
      case R_MICROMIPS_CALL_HI16:
11357
      case R_MICROMIPS_CALL_LO16:
11358
      case R_MICROMIPS_GOT_HI16:
11359
      case R_MICROMIPS_GOT_LO16:
11360
      case R_MICROMIPS_GOT_DISP:
11361
      case R_MICROMIPS_GOT_PAGE:
11362
      case R_MICROMIPS_GOT_OFST:
11363 14 khays
        /* ??? It would seem that the existing MIPS code does no sort
11364
           of reference counting or whatnot on its GOT and PLT entries,
11365
           so it is not possible to garbage collect them at this time.  */
11366
        break;
11367
 
11368
      default:
11369
        break;
11370
      }
11371
#endif
11372
 
11373
  return TRUE;
11374
}
11375
 
11376
/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11377
   hiding the old indirect symbol.  Process additional relocation
11378
   information.  Also called for weakdefs, in which case we just let
11379
   _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
11380
 
11381
void
11382
_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11383
                                    struct elf_link_hash_entry *dir,
11384
                                    struct elf_link_hash_entry *ind)
11385
{
11386
  struct mips_elf_link_hash_entry *dirmips, *indmips;
11387
 
11388
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11389
 
11390
  dirmips = (struct mips_elf_link_hash_entry *) dir;
11391
  indmips = (struct mips_elf_link_hash_entry *) ind;
11392
  /* Any absolute non-dynamic relocations against an indirect or weak
11393
     definition will be against the target symbol.  */
11394
  if (indmips->has_static_relocs)
11395
    dirmips->has_static_relocs = TRUE;
11396
 
11397
  if (ind->root.type != bfd_link_hash_indirect)
11398
    return;
11399
 
11400
  dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11401
  if (indmips->readonly_reloc)
11402
    dirmips->readonly_reloc = TRUE;
11403
  if (indmips->no_fn_stub)
11404
    dirmips->no_fn_stub = TRUE;
11405
  if (indmips->fn_stub)
11406
    {
11407
      dirmips->fn_stub = indmips->fn_stub;
11408
      indmips->fn_stub = NULL;
11409
    }
11410
  if (indmips->need_fn_stub)
11411
    {
11412
      dirmips->need_fn_stub = TRUE;
11413
      indmips->need_fn_stub = FALSE;
11414
    }
11415
  if (indmips->call_stub)
11416
    {
11417
      dirmips->call_stub = indmips->call_stub;
11418
      indmips->call_stub = NULL;
11419
    }
11420
  if (indmips->call_fp_stub)
11421
    {
11422
      dirmips->call_fp_stub = indmips->call_fp_stub;
11423
      indmips->call_fp_stub = NULL;
11424
    }
11425
  if (indmips->global_got_area < dirmips->global_got_area)
11426
    dirmips->global_got_area = indmips->global_got_area;
11427
  if (indmips->global_got_area < GGA_NONE)
11428
    indmips->global_got_area = GGA_NONE;
11429
  if (indmips->has_nonpic_branches)
11430
    dirmips->has_nonpic_branches = TRUE;
11431
 
11432
  if (dirmips->tls_type == 0)
11433
    dirmips->tls_type = indmips->tls_type;
11434
}
11435
 
11436
#define PDR_SIZE 32
11437
 
11438
bfd_boolean
11439
_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11440
                            struct bfd_link_info *info)
11441
{
11442
  asection *o;
11443
  bfd_boolean ret = FALSE;
11444
  unsigned char *tdata;
11445
  size_t i, skip;
11446
 
11447
  o = bfd_get_section_by_name (abfd, ".pdr");
11448
  if (! o)
11449
    return FALSE;
11450
  if (o->size == 0)
11451
    return FALSE;
11452
  if (o->size % PDR_SIZE != 0)
11453
    return FALSE;
11454
  if (o->output_section != NULL
11455
      && bfd_is_abs_section (o->output_section))
11456
    return FALSE;
11457
 
11458
  tdata = bfd_zmalloc (o->size / PDR_SIZE);
11459
  if (! tdata)
11460
    return FALSE;
11461
 
11462
  cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11463
                                            info->keep_memory);
11464
  if (!cookie->rels)
11465
    {
11466
      free (tdata);
11467
      return FALSE;
11468
    }
11469
 
11470
  cookie->rel = cookie->rels;
11471
  cookie->relend = cookie->rels + o->reloc_count;
11472
 
11473
  for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11474
    {
11475
      if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11476
        {
11477
          tdata[i] = 1;
11478
          skip ++;
11479
        }
11480
    }
11481
 
11482
  if (skip != 0)
11483
    {
11484
      mips_elf_section_data (o)->u.tdata = tdata;
11485
      o->size -= skip * PDR_SIZE;
11486
      ret = TRUE;
11487
    }
11488
  else
11489
    free (tdata);
11490
 
11491
  if (! info->keep_memory)
11492
    free (cookie->rels);
11493
 
11494
  return ret;
11495
}
11496
 
11497
bfd_boolean
11498
_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11499
{
11500
  if (strcmp (sec->name, ".pdr") == 0)
11501
    return TRUE;
11502
  return FALSE;
11503
}
11504
 
11505
bfd_boolean
11506
_bfd_mips_elf_write_section (bfd *output_bfd,
11507
                             struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11508
                             asection *sec, bfd_byte *contents)
11509
{
11510
  bfd_byte *to, *from, *end;
11511
  int i;
11512
 
11513
  if (strcmp (sec->name, ".pdr") != 0)
11514
    return FALSE;
11515
 
11516
  if (mips_elf_section_data (sec)->u.tdata == NULL)
11517
    return FALSE;
11518
 
11519
  to = contents;
11520
  end = contents + sec->size;
11521
  for (from = contents, i = 0;
11522
       from < end;
11523
       from += PDR_SIZE, i++)
11524
    {
11525
      if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11526
        continue;
11527
      if (to != from)
11528
        memcpy (to, from, PDR_SIZE);
11529
      to += PDR_SIZE;
11530
    }
11531
  bfd_set_section_contents (output_bfd, sec->output_section, contents,
11532
                            sec->output_offset, sec->size);
11533
  return TRUE;
11534
}
11535
 
11536 161 khays
/* microMIPS code retains local labels for linker relaxation.  Omit them
11537
   from output by default for clarity.  */
11538
 
11539
bfd_boolean
11540
_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11541
{
11542
  return _bfd_elf_is_local_label_name (abfd, sym->name);
11543
}
11544
 
11545 14 khays
/* MIPS ELF uses a special find_nearest_line routine in order the
11546
   handle the ECOFF debugging information.  */
11547
 
11548
struct mips_elf_find_line
11549
{
11550
  struct ecoff_debug_info d;
11551
  struct ecoff_find_line i;
11552
};
11553
 
11554
bfd_boolean
11555
_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11556
                                 asymbol **symbols, bfd_vma offset,
11557
                                 const char **filename_ptr,
11558
                                 const char **functionname_ptr,
11559
                                 unsigned int *line_ptr)
11560
{
11561
  asection *msec;
11562
 
11563
  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11564
                                     filename_ptr, functionname_ptr,
11565
                                     line_ptr))
11566
    return TRUE;
11567
 
11568 163 khays
  if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11569
                                     section, symbols, offset,
11570 14 khays
                                     filename_ptr, functionname_ptr,
11571
                                     line_ptr, ABI_64_P (abfd) ? 8 : 0,
11572
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
11573
    return TRUE;
11574
 
11575
  msec = bfd_get_section_by_name (abfd, ".mdebug");
11576
  if (msec != NULL)
11577
    {
11578
      flagword origflags;
11579
      struct mips_elf_find_line *fi;
11580
      const struct ecoff_debug_swap * const swap =
11581
        get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11582
 
11583
      /* If we are called during a link, mips_elf_final_link may have
11584
         cleared the SEC_HAS_CONTENTS field.  We force it back on here
11585
         if appropriate (which it normally will be).  */
11586
      origflags = msec->flags;
11587
      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11588
        msec->flags |= SEC_HAS_CONTENTS;
11589
 
11590
      fi = elf_tdata (abfd)->find_line_info;
11591
      if (fi == NULL)
11592
        {
11593
          bfd_size_type external_fdr_size;
11594
          char *fraw_src;
11595
          char *fraw_end;
11596
          struct fdr *fdr_ptr;
11597
          bfd_size_type amt = sizeof (struct mips_elf_find_line);
11598
 
11599
          fi = bfd_zalloc (abfd, amt);
11600
          if (fi == NULL)
11601
            {
11602
              msec->flags = origflags;
11603
              return FALSE;
11604
            }
11605
 
11606
          if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11607
            {
11608
              msec->flags = origflags;
11609
              return FALSE;
11610
            }
11611
 
11612
          /* Swap in the FDR information.  */
11613
          amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11614
          fi->d.fdr = bfd_alloc (abfd, amt);
11615
          if (fi->d.fdr == NULL)
11616
            {
11617
              msec->flags = origflags;
11618
              return FALSE;
11619
            }
11620
          external_fdr_size = swap->external_fdr_size;
11621
          fdr_ptr = fi->d.fdr;
11622
          fraw_src = (char *) fi->d.external_fdr;
11623
          fraw_end = (fraw_src
11624
                      + fi->d.symbolic_header.ifdMax * external_fdr_size);
11625
          for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11626
            (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11627
 
11628
          elf_tdata (abfd)->find_line_info = fi;
11629
 
11630
          /* Note that we don't bother to ever free this information.
11631
             find_nearest_line is either called all the time, as in
11632
             objdump -l, so the information should be saved, or it is
11633
             rarely called, as in ld error messages, so the memory
11634
             wasted is unimportant.  Still, it would probably be a
11635
             good idea for free_cached_info to throw it away.  */
11636
        }
11637
 
11638
      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11639
                                  &fi->i, filename_ptr, functionname_ptr,
11640
                                  line_ptr))
11641
        {
11642
          msec->flags = origflags;
11643
          return TRUE;
11644
        }
11645
 
11646
      msec->flags = origflags;
11647
    }
11648
 
11649
  /* Fall back on the generic ELF find_nearest_line routine.  */
11650
 
11651
  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11652
                                     filename_ptr, functionname_ptr,
11653
                                     line_ptr);
11654
}
11655
 
11656
bfd_boolean
11657
_bfd_mips_elf_find_inliner_info (bfd *abfd,
11658
                                 const char **filename_ptr,
11659
                                 const char **functionname_ptr,
11660
                                 unsigned int *line_ptr)
11661
{
11662
  bfd_boolean found;
11663
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11664
                                         functionname_ptr, line_ptr,
11665
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
11666
  return found;
11667
}
11668
 
11669
 
11670
/* When are writing out the .options or .MIPS.options section,
11671
   remember the bytes we are writing out, so that we can install the
11672
   GP value in the section_processing routine.  */
11673
 
11674
bfd_boolean
11675
_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11676
                                    const void *location,
11677
                                    file_ptr offset, bfd_size_type count)
11678
{
11679
  if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11680
    {
11681
      bfd_byte *c;
11682
 
11683
      if (elf_section_data (section) == NULL)
11684
        {
11685
          bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11686
          section->used_by_bfd = bfd_zalloc (abfd, amt);
11687
          if (elf_section_data (section) == NULL)
11688
            return FALSE;
11689
        }
11690
      c = mips_elf_section_data (section)->u.tdata;
11691
      if (c == NULL)
11692
        {
11693
          c = bfd_zalloc (abfd, section->size);
11694
          if (c == NULL)
11695
            return FALSE;
11696
          mips_elf_section_data (section)->u.tdata = c;
11697
        }
11698
 
11699
      memcpy (c + offset, location, count);
11700
    }
11701
 
11702
  return _bfd_elf_set_section_contents (abfd, section, location, offset,
11703
                                        count);
11704
}
11705
 
11706
/* This is almost identical to bfd_generic_get_... except that some
11707
   MIPS relocations need to be handled specially.  Sigh.  */
11708
 
11709
bfd_byte *
11710
_bfd_elf_mips_get_relocated_section_contents
11711
  (bfd *abfd,
11712
   struct bfd_link_info *link_info,
11713
   struct bfd_link_order *link_order,
11714
   bfd_byte *data,
11715
   bfd_boolean relocatable,
11716
   asymbol **symbols)
11717
{
11718
  /* Get enough memory to hold the stuff */
11719
  bfd *input_bfd = link_order->u.indirect.section->owner;
11720
  asection *input_section = link_order->u.indirect.section;
11721
  bfd_size_type sz;
11722
 
11723
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11724
  arelent **reloc_vector = NULL;
11725
  long reloc_count;
11726
 
11727
  if (reloc_size < 0)
11728
    goto error_return;
11729
 
11730
  reloc_vector = bfd_malloc (reloc_size);
11731
  if (reloc_vector == NULL && reloc_size != 0)
11732
    goto error_return;
11733
 
11734
  /* read in the section */
11735
  sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11736
  if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11737
    goto error_return;
11738
 
11739
  reloc_count = bfd_canonicalize_reloc (input_bfd,
11740
                                        input_section,
11741
                                        reloc_vector,
11742
                                        symbols);
11743
  if (reloc_count < 0)
11744
    goto error_return;
11745
 
11746
  if (reloc_count > 0)
11747
    {
11748
      arelent **parent;
11749
      /* for mips */
11750
      int gp_found;
11751
      bfd_vma gp = 0x12345678;  /* initialize just to shut gcc up */
11752
 
11753
      {
11754
        struct bfd_hash_entry *h;
11755
        struct bfd_link_hash_entry *lh;
11756
        /* Skip all this stuff if we aren't mixing formats.  */
11757
        if (abfd && input_bfd
11758
            && abfd->xvec == input_bfd->xvec)
11759
          lh = 0;
11760
        else
11761
          {
11762
            h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11763
            lh = (struct bfd_link_hash_entry *) h;
11764
          }
11765
      lookup:
11766
        if (lh)
11767
          {
11768
            switch (lh->type)
11769
              {
11770
              case bfd_link_hash_undefined:
11771
              case bfd_link_hash_undefweak:
11772
              case bfd_link_hash_common:
11773
                gp_found = 0;
11774
                break;
11775
              case bfd_link_hash_defined:
11776
              case bfd_link_hash_defweak:
11777
                gp_found = 1;
11778
                gp = lh->u.def.value;
11779
                break;
11780
              case bfd_link_hash_indirect:
11781
              case bfd_link_hash_warning:
11782
                lh = lh->u.i.link;
11783
                /* @@FIXME  ignoring warning for now */
11784
                goto lookup;
11785
              case bfd_link_hash_new:
11786
              default:
11787
                abort ();
11788
              }
11789
          }
11790
        else
11791
          gp_found = 0;
11792
      }
11793
      /* end mips */
11794
      for (parent = reloc_vector; *parent != NULL; parent++)
11795
        {
11796
          char *error_message = NULL;
11797
          bfd_reloc_status_type r;
11798
 
11799
          /* Specific to MIPS: Deal with relocation types that require
11800
             knowing the gp of the output bfd.  */
11801
          asymbol *sym = *(*parent)->sym_ptr_ptr;
11802
 
11803
          /* If we've managed to find the gp and have a special
11804
             function for the relocation then go ahead, else default
11805
             to the generic handling.  */
11806
          if (gp_found
11807
              && (*parent)->howto->special_function
11808
              == _bfd_mips_elf32_gprel16_reloc)
11809
            r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11810
                                               input_section, relocatable,
11811
                                               data, gp);
11812
          else
11813
            r = bfd_perform_relocation (input_bfd, *parent, data,
11814
                                        input_section,
11815
                                        relocatable ? abfd : NULL,
11816
                                        &error_message);
11817
 
11818
          if (relocatable)
11819
            {
11820
              asection *os = input_section->output_section;
11821
 
11822
              /* A partial link, so keep the relocs */
11823
              os->orelocation[os->reloc_count] = *parent;
11824
              os->reloc_count++;
11825
            }
11826
 
11827
          if (r != bfd_reloc_ok)
11828
            {
11829
              switch (r)
11830
                {
11831
                case bfd_reloc_undefined:
11832
                  if (!((*link_info->callbacks->undefined_symbol)
11833
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11834
                         input_bfd, input_section, (*parent)->address, TRUE)))
11835
                    goto error_return;
11836
                  break;
11837
                case bfd_reloc_dangerous:
11838
                  BFD_ASSERT (error_message != NULL);
11839
                  if (!((*link_info->callbacks->reloc_dangerous)
11840
                        (link_info, error_message, input_bfd, input_section,
11841
                         (*parent)->address)))
11842
                    goto error_return;
11843
                  break;
11844
                case bfd_reloc_overflow:
11845
                  if (!((*link_info->callbacks->reloc_overflow)
11846
                        (link_info, NULL,
11847
                         bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11848
                         (*parent)->howto->name, (*parent)->addend,
11849
                         input_bfd, input_section, (*parent)->address)))
11850
                    goto error_return;
11851
                  break;
11852
                case bfd_reloc_outofrange:
11853
                default:
11854
                  abort ();
11855
                  break;
11856
                }
11857
 
11858
            }
11859
        }
11860
    }
11861
  if (reloc_vector != NULL)
11862
    free (reloc_vector);
11863
  return data;
11864
 
11865
error_return:
11866
  if (reloc_vector != NULL)
11867
    free (reloc_vector);
11868
  return NULL;
11869
}
11870
 
11871 161 khays
static bfd_boolean
11872
mips_elf_relax_delete_bytes (bfd *abfd,
11873
                             asection *sec, bfd_vma addr, int count)
11874
{
11875
  Elf_Internal_Shdr *symtab_hdr;
11876
  unsigned int sec_shndx;
11877
  bfd_byte *contents;
11878
  Elf_Internal_Rela *irel, *irelend;
11879
  Elf_Internal_Sym *isym;
11880
  Elf_Internal_Sym *isymend;
11881
  struct elf_link_hash_entry **sym_hashes;
11882
  struct elf_link_hash_entry **end_hashes;
11883
  struct elf_link_hash_entry **start_hashes;
11884
  unsigned int symcount;
11885
 
11886
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11887
  contents = elf_section_data (sec)->this_hdr.contents;
11888
 
11889
  irel = elf_section_data (sec)->relocs;
11890
  irelend = irel + sec->reloc_count;
11891
 
11892
  /* Actually delete the bytes.  */
11893
  memmove (contents + addr, contents + addr + count,
11894
           (size_t) (sec->size - addr - count));
11895
  sec->size -= count;
11896
 
11897
  /* Adjust all the relocs.  */
11898
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11899
    {
11900
      /* Get the new reloc address.  */
11901
      if (irel->r_offset > addr)
11902
        irel->r_offset -= count;
11903
    }
11904
 
11905
  BFD_ASSERT (addr % 2 == 0);
11906
  BFD_ASSERT (count % 2 == 0);
11907
 
11908
  /* Adjust the local symbols defined in this section.  */
11909
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11910
  isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11911
  for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11912
    if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11913
      isym->st_value -= count;
11914
 
11915
  /* Now adjust the global symbols defined in this section.  */
11916
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11917
              - symtab_hdr->sh_info);
11918
  sym_hashes = start_hashes = elf_sym_hashes (abfd);
11919
  end_hashes = sym_hashes + symcount;
11920
 
11921
  for (; sym_hashes < end_hashes; sym_hashes++)
11922
    {
11923
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
11924
 
11925
      if ((sym_hash->root.type == bfd_link_hash_defined
11926
           || sym_hash->root.type == bfd_link_hash_defweak)
11927
          && sym_hash->root.u.def.section == sec)
11928
        {
11929
          bfd_vma value = sym_hash->root.u.def.value;
11930
 
11931
          if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11932
            value &= MINUS_TWO;
11933
          if (value > addr)
11934
            sym_hash->root.u.def.value -= count;
11935
        }
11936
    }
11937
 
11938
  return TRUE;
11939
}
11940
 
11941
 
11942
/* Opcodes needed for microMIPS relaxation as found in
11943
   opcodes/micromips-opc.c.  */
11944
 
11945
struct opcode_descriptor {
11946
  unsigned long match;
11947
  unsigned long mask;
11948
};
11949
 
11950
/* The $ra register aka $31.  */
11951
 
11952
#define RA 31
11953
 
11954
/* 32-bit instruction format register fields.  */
11955
 
11956
#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11957
#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11958
 
11959
/* Check if a 5-bit register index can be abbreviated to 3 bits.  */
11960
 
11961
#define OP16_VALID_REG(r) \
11962
  ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11963
 
11964
 
11965
/* 32-bit and 16-bit branches.  */
11966
 
11967
static const struct opcode_descriptor b_insns_32[] = {
11968
  { /* "b",     "p",            */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11969
  { /* "b",     "p",            */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11970
  { 0, 0 }  /* End marker for find_match().  */
11971
};
11972
 
11973
static const struct opcode_descriptor bc_insn_32 =
11974
  { /* "bc(1|2)(ft)", "N,p",    */ 0x42800000, 0xfec30000 };
11975
 
11976
static const struct opcode_descriptor bz_insn_32 =
11977
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 };
11978
 
11979
static const struct opcode_descriptor bzal_insn_32 =
11980
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 };
11981
 
11982
static const struct opcode_descriptor beq_insn_32 =
11983
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 };
11984
 
11985
static const struct opcode_descriptor b_insn_16 =
11986
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 };
11987
 
11988
static const struct opcode_descriptor bz_insn_16 =
11989
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 };
11990
 
11991
 
11992
/* 32-bit and 16-bit branch EQ and NE zero.  */
11993
 
11994
/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11995
   eq and second the ne.  This convention is used when replacing a
11996
   32-bit BEQ/BNE with the 16-bit version.  */
11997
 
11998
#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
11999
 
12000
static const struct opcode_descriptor bz_rs_insns_32[] = {
12001
  { /* "beqz",  "s,p",          */ 0x94000000, 0xffe00000 },
12002
  { /* "bnez",  "s,p",          */ 0xb4000000, 0xffe00000 },
12003
  { 0, 0 }  /* End marker for find_match().  */
12004
};
12005
 
12006
static const struct opcode_descriptor bz_rt_insns_32[] = {
12007
  { /* "beqz",  "t,p",          */ 0x94000000, 0xfc01f000 },
12008
  { /* "bnez",  "t,p",          */ 0xb4000000, 0xfc01f000 },
12009
  { 0, 0 }  /* End marker for find_match().  */
12010
};
12011
 
12012
static const struct opcode_descriptor bzc_insns_32[] = {
12013
  { /* "beqzc", "s,p",          */ 0x40e00000, 0xffe00000 },
12014
  { /* "bnezc", "s,p",          */ 0x40a00000, 0xffe00000 },
12015
  { 0, 0 }  /* End marker for find_match().  */
12016
};
12017
 
12018
static const struct opcode_descriptor bz_insns_16[] = {
12019
  { /* "beqz",  "md,mE",        */ 0x8c00,     0xfc00 },
12020
  { /* "bnez",  "md,mE",        */ 0xac00,     0xfc00 },
12021
  { 0, 0 }  /* End marker for find_match().  */
12022
};
12023
 
12024
/* Switch between a 5-bit register index and its 3-bit shorthand.  */
12025
 
12026
#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12027
#define BZ16_REG_FIELD(r) \
12028
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12029
 
12030
 
12031
/* 32-bit instructions with a delay slot.  */
12032
 
12033
static const struct opcode_descriptor jal_insn_32_bd16 =
12034
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 };
12035
 
12036
static const struct opcode_descriptor jal_insn_32_bd32 =
12037
  { /* "jal",   "a",            */ 0xf4000000, 0xfc000000 };
12038
 
12039
static const struct opcode_descriptor jal_x_insn_32_bd32 =
12040
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 };
12041
 
12042
static const struct opcode_descriptor j_insn_32 =
12043
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 };
12044
 
12045
static const struct opcode_descriptor jalr_insn_32 =
12046
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff };
12047
 
12048
/* This table can be compacted, because no opcode replacement is made.  */
12049
 
12050
static const struct opcode_descriptor ds_insns_32_bd16[] = {
12051
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 },
12052
 
12053
  { /* "jalrs[.hb]", "t,s",     */ 0x00004f3c, 0xfc00efff },
12054
  { /* "b(ge|lt)zals", "s,p",   */ 0x42200000, 0xffa00000 },
12055
 
12056
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 },
12057
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 },
12058
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 },
12059
  { 0, 0 }  /* End marker for find_match().  */
12060
};
12061
 
12062
/* This table can be compacted, because no opcode replacement is made.  */
12063
 
12064
static const struct opcode_descriptor ds_insns_32_bd32[] = {
12065
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 },
12066
 
12067
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff },
12068
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 },
12069
  { 0, 0 }  /* End marker for find_match().  */
12070
};
12071
 
12072
 
12073
/* 16-bit instructions with a delay slot.  */
12074
 
12075
static const struct opcode_descriptor jalr_insn_16_bd16 =
12076
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 };
12077
 
12078
static const struct opcode_descriptor jalr_insn_16_bd32 =
12079
  { /* "jalr",  "my,mj",        */ 0x45c0,     0xffe0 };
12080
 
12081
static const struct opcode_descriptor jr_insn_16 =
12082
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 };
12083
 
12084
#define JR16_REG(opcode) ((opcode) & 0x1f)
12085
 
12086
/* This table can be compacted, because no opcode replacement is made.  */
12087
 
12088
static const struct opcode_descriptor ds_insns_16_bd16[] = {
12089
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 },
12090
 
12091
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 },
12092
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 },
12093
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 },
12094
  { 0, 0 }  /* End marker for find_match().  */
12095
};
12096
 
12097
 
12098
/* LUI instruction.  */
12099
 
12100
static const struct opcode_descriptor lui_insn =
12101
 { /* "lui",    "s,u",          */ 0x41a00000, 0xffe00000 };
12102
 
12103
 
12104
/* ADDIU instruction.  */
12105
 
12106
static const struct opcode_descriptor addiu_insn =
12107
  { /* "addiu", "t,r,j",        */ 0x30000000, 0xfc000000 };
12108
 
12109
static const struct opcode_descriptor addiupc_insn =
12110
  { /* "addiu", "mb,$pc,mQ",    */ 0x78000000, 0xfc000000 };
12111
 
12112
#define ADDIUPC_REG_FIELD(r) \
12113
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12114
 
12115
 
12116
/* Relaxable instructions in a JAL delay slot: MOVE.  */
12117
 
12118
/* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
12119
   (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
12120
#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12121
#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12122
 
12123
#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12124
#define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
12125
 
12126
static const struct opcode_descriptor move_insns_32[] = {
12127
  { /* "move",  "d,s",          */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12128
  { /* "move",  "d,s",          */ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
12129
  { 0, 0 }  /* End marker for find_match().  */
12130
};
12131
 
12132
static const struct opcode_descriptor move_insn_16 =
12133
  { /* "move",  "mp,mj",        */ 0x0c00,     0xfc00 };
12134
 
12135
 
12136
/* NOP instructions.  */
12137
 
12138
static const struct opcode_descriptor nop_insn_32 =
12139
  { /* "nop",   "",             */ 0x00000000, 0xffffffff };
12140
 
12141
static const struct opcode_descriptor nop_insn_16 =
12142
  { /* "nop",   "",             */ 0x0c00,     0xffff };
12143
 
12144
 
12145
/* Instruction match support.  */
12146
 
12147
#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12148
 
12149
static int
12150
find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12151
{
12152
  unsigned long indx;
12153
 
12154
  for (indx = 0; insn[indx].mask != 0; indx++)
12155
    if (MATCH (opcode, insn[indx]))
12156
      return indx;
12157
 
12158
  return -1;
12159
}
12160
 
12161
 
12162
/* Branch and delay slot decoding support.  */
12163
 
12164
/* If PTR points to what *might* be a 16-bit branch or jump, then
12165
   return the minimum length of its delay slot, otherwise return 0.
12166
   Non-zero results are not definitive as we might be checking against
12167
   the second half of another instruction.  */
12168
 
12169
static int
12170
check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12171
{
12172
  unsigned long opcode;
12173
  int bdsize;
12174
 
12175
  opcode = bfd_get_16 (abfd, ptr);
12176
  if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12177
    /* 16-bit branch/jump with a 32-bit delay slot.  */
12178
    bdsize = 4;
12179
  else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12180
           || find_match (opcode, ds_insns_16_bd16) >= 0)
12181
    /* 16-bit branch/jump with a 16-bit delay slot.  */
12182
    bdsize = 2;
12183
  else
12184
    /* No delay slot.  */
12185
    bdsize = 0;
12186
 
12187
  return bdsize;
12188
}
12189
 
12190
/* If PTR points to what *might* be a 32-bit branch or jump, then
12191
   return the minimum length of its delay slot, otherwise return 0.
12192
   Non-zero results are not definitive as we might be checking against
12193
   the second half of another instruction.  */
12194
 
12195
static int
12196
check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12197
{
12198
  unsigned long opcode;
12199
  int bdsize;
12200
 
12201
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12202
  if (find_match (opcode, ds_insns_32_bd32) >= 0)
12203
    /* 32-bit branch/jump with a 32-bit delay slot.  */
12204
    bdsize = 4;
12205
  else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12206
    /* 32-bit branch/jump with a 16-bit delay slot.  */
12207
    bdsize = 2;
12208
  else
12209
    /* No delay slot.  */
12210
    bdsize = 0;
12211
 
12212
  return bdsize;
12213
}
12214
 
12215
/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12216
   that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
12217
 
12218
static bfd_boolean
12219
check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12220
{
12221
  unsigned long opcode;
12222
 
12223
  opcode = bfd_get_16 (abfd, ptr);
12224
  if (MATCH (opcode, b_insn_16)
12225
                                                /* B16  */
12226
      || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12227
                                                /* JR16  */
12228
      || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12229
                                                /* BEQZ16, BNEZ16  */
12230
      || (MATCH (opcode, jalr_insn_16_bd32)
12231
                                                /* JALR16  */
12232
          && reg != JR16_REG (opcode) && reg != RA))
12233
    return TRUE;
12234
 
12235
  return FALSE;
12236
}
12237
 
12238
/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12239
   then return TRUE, otherwise FALSE.  */
12240
 
12241
static bfd_boolean
12242
check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12243
{
12244
  unsigned long opcode;
12245
 
12246
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12247
  if (MATCH (opcode, j_insn_32)
12248
                                                /* J  */
12249
      || MATCH (opcode, bc_insn_32)
12250
                                                /* BC1F, BC1T, BC2F, BC2T  */
12251
      || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12252
                                                /* JAL, JALX  */
12253
      || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12254
                                                /* BGEZ, BGTZ, BLEZ, BLTZ  */
12255
      || (MATCH (opcode, bzal_insn_32)
12256
                                                /* BGEZAL, BLTZAL  */
12257
          && reg != OP32_SREG (opcode) && reg != RA)
12258
      || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12259
                                                /* JALR, JALR.HB, BEQ, BNE  */
12260
          && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12261
    return TRUE;
12262
 
12263
  return FALSE;
12264
}
12265
 
12266
/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12267
   IRELEND) at OFFSET indicate that there must be a compact branch there,
12268
   then return TRUE, otherwise FALSE.  */
12269
 
12270
static bfd_boolean
12271
check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12272
                     const Elf_Internal_Rela *internal_relocs,
12273
                     const Elf_Internal_Rela *irelend)
12274
{
12275
  const Elf_Internal_Rela *irel;
12276
  unsigned long opcode;
12277
 
12278
  opcode   = bfd_get_16 (abfd, ptr);
12279
  opcode <<= 16;
12280
  opcode  |= bfd_get_16 (abfd, ptr + 2);
12281
  if (find_match (opcode, bzc_insns_32) < 0)
12282
    return FALSE;
12283
 
12284
  for (irel = internal_relocs; irel < irelend; irel++)
12285
    if (irel->r_offset == offset
12286
        && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12287
      return TRUE;
12288
 
12289
  return FALSE;
12290
}
12291
 
12292
/* Bitsize checking.  */
12293
#define IS_BITSIZE(val, N)                                              \
12294
  (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))               \
12295
    - (1ULL << ((N) - 1))) == (val))
12296
 
12297
 
12298
bfd_boolean
12299
_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12300
                             struct bfd_link_info *link_info,
12301
                             bfd_boolean *again)
12302
{
12303
  Elf_Internal_Shdr *symtab_hdr;
12304
  Elf_Internal_Rela *internal_relocs;
12305
  Elf_Internal_Rela *irel, *irelend;
12306
  bfd_byte *contents = NULL;
12307
  Elf_Internal_Sym *isymbuf = NULL;
12308
 
12309
  /* Assume nothing changes.  */
12310
  *again = FALSE;
12311
 
12312
  /* We don't have to do anything for a relocatable link, if
12313
     this section does not have relocs, or if this is not a
12314
     code section.  */
12315
 
12316
  if (link_info->relocatable
12317
      || (sec->flags & SEC_RELOC) == 0
12318
      || sec->reloc_count == 0
12319
      || (sec->flags & SEC_CODE) == 0)
12320
    return TRUE;
12321
 
12322
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12323
 
12324
  /* Get a copy of the native relocations.  */
12325
  internal_relocs = (_bfd_elf_link_read_relocs
12326
                     (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12327
                      link_info->keep_memory));
12328
  if (internal_relocs == NULL)
12329
    goto error_return;
12330
 
12331
  /* Walk through them looking for relaxing opportunities.  */
12332
  irelend = internal_relocs + sec->reloc_count;
12333
  for (irel = internal_relocs; irel < irelend; irel++)
12334
    {
12335
      unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12336
      unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12337
      bfd_boolean target_is_micromips_code_p;
12338
      unsigned long opcode;
12339
      bfd_vma symval;
12340
      bfd_vma pcrval;
12341
      bfd_byte *ptr;
12342
      int fndopc;
12343
 
12344
      /* The number of bytes to delete for relaxation and from where
12345
         to delete these bytes starting at irel->r_offset.  */
12346
      int delcnt = 0;
12347
      int deloff = 0;
12348
 
12349
      /* If this isn't something that can be relaxed, then ignore
12350
         this reloc.  */
12351
      if (r_type != R_MICROMIPS_HI16
12352
          && r_type != R_MICROMIPS_PC16_S1
12353
          && r_type != R_MICROMIPS_26_S1)
12354
        continue;
12355
 
12356
      /* Get the section contents if we haven't done so already.  */
12357
      if (contents == NULL)
12358
        {
12359
          /* Get cached copy if it exists.  */
12360
          if (elf_section_data (sec)->this_hdr.contents != NULL)
12361
            contents = elf_section_data (sec)->this_hdr.contents;
12362
          /* Go get them off disk.  */
12363
          else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12364
            goto error_return;
12365
        }
12366
      ptr = contents + irel->r_offset;
12367
 
12368
      /* Read this BFD's local symbols if we haven't done so already.  */
12369
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12370
        {
12371
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12372
          if (isymbuf == NULL)
12373
            isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12374
                                            symtab_hdr->sh_info, 0,
12375
                                            NULL, NULL, NULL);
12376
          if (isymbuf == NULL)
12377
            goto error_return;
12378
        }
12379
 
12380
      /* Get the value of the symbol referred to by the reloc.  */
12381
      if (r_symndx < symtab_hdr->sh_info)
12382
        {
12383
          /* A local symbol.  */
12384
          Elf_Internal_Sym *isym;
12385
          asection *sym_sec;
12386
 
12387
          isym = isymbuf + r_symndx;
12388
          if (isym->st_shndx == SHN_UNDEF)
12389
            sym_sec = bfd_und_section_ptr;
12390
          else if (isym->st_shndx == SHN_ABS)
12391
            sym_sec = bfd_abs_section_ptr;
12392
          else if (isym->st_shndx == SHN_COMMON)
12393
            sym_sec = bfd_com_section_ptr;
12394
          else
12395
            sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12396
          symval = (isym->st_value
12397
                    + sym_sec->output_section->vma
12398
                    + sym_sec->output_offset);
12399
          target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12400
        }
12401
      else
12402
        {
12403
          unsigned long indx;
12404
          struct elf_link_hash_entry *h;
12405
 
12406
          /* An external symbol.  */
12407
          indx = r_symndx - symtab_hdr->sh_info;
12408
          h = elf_sym_hashes (abfd)[indx];
12409
          BFD_ASSERT (h != NULL);
12410
 
12411
          if (h->root.type != bfd_link_hash_defined
12412
              && h->root.type != bfd_link_hash_defweak)
12413
            /* This appears to be a reference to an undefined
12414
               symbol.  Just ignore it -- it will be caught by the
12415
               regular reloc processing.  */
12416
            continue;
12417
 
12418
          symval = (h->root.u.def.value
12419
                    + h->root.u.def.section->output_section->vma
12420
                    + h->root.u.def.section->output_offset);
12421
          target_is_micromips_code_p = (!h->needs_plt
12422
                                        && ELF_ST_IS_MICROMIPS (h->other));
12423
        }
12424
 
12425
 
12426
      /* For simplicity of coding, we are going to modify the
12427
         section contents, the section relocs, and the BFD symbol
12428
         table.  We must tell the rest of the code not to free up this
12429
         information.  It would be possible to instead create a table
12430
         of changes which have to be made, as is done in coff-mips.c;
12431
         that would be more work, but would require less memory when
12432
         the linker is run.  */
12433
 
12434
      /* Only 32-bit instructions relaxed.  */
12435
      if (irel->r_offset + 4 > sec->size)
12436
        continue;
12437
 
12438
      opcode  = bfd_get_16 (abfd, ptr    ) << 16;
12439
      opcode |= bfd_get_16 (abfd, ptr + 2);
12440
 
12441
      /* This is the pc-relative distance from the instruction the
12442
         relocation is applied to, to the symbol referred.  */
12443
      pcrval = (symval
12444
                - (sec->output_section->vma + sec->output_offset)
12445
                - irel->r_offset);
12446
 
12447
      /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12448
         of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12449
         R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
12450
 
12451
           (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12452
 
12453
         where pcrval has first to be adjusted to apply against the LO16
12454
         location (we make the adjustment later on, when we have figured
12455
         out the offset).  */
12456
      if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12457
        {
12458
          bfd_boolean bzc = FALSE;
12459
          unsigned long nextopc;
12460
          unsigned long reg;
12461
          bfd_vma offset;
12462
 
12463
          /* Give up if the previous reloc was a HI16 against this symbol
12464
             too.  */
12465
          if (irel > internal_relocs
12466
              && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12467
              && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12468
            continue;
12469
 
12470
          /* Or if the next reloc is not a LO16 against this symbol.  */
12471
          if (irel + 1 >= irelend
12472
              || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12473
              || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12474
            continue;
12475
 
12476
          /* Or if the second next reloc is a LO16 against this symbol too.  */
12477
          if (irel + 2 >= irelend
12478
              && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12479
              && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12480
            continue;
12481
 
12482
          /* See if the LUI instruction *might* be in a branch delay slot.
12483
             We check whether what looks like a 16-bit branch or jump is
12484
             actually an immediate argument to a compact branch, and let
12485
             it through if so.  */
12486
          if (irel->r_offset >= 2
12487
              && check_br16_dslot (abfd, ptr - 2)
12488
              && !(irel->r_offset >= 4
12489
                   && (bzc = check_relocated_bzc (abfd,
12490
                                                  ptr - 4, irel->r_offset - 4,
12491
                                                  internal_relocs, irelend))))
12492
            continue;
12493
          if (irel->r_offset >= 4
12494
              && !bzc
12495
              && check_br32_dslot (abfd, ptr - 4))
12496
            continue;
12497
 
12498
          reg = OP32_SREG (opcode);
12499
 
12500
          /* We only relax adjacent instructions or ones separated with
12501
             a branch or jump that has a delay slot.  The branch or jump
12502
             must not fiddle with the register used to hold the address.
12503
             Subtract 4 for the LUI itself.  */
12504
          offset = irel[1].r_offset - irel[0].r_offset;
12505
          switch (offset - 4)
12506
            {
12507
            case 0:
12508
              break;
12509
            case 2:
12510
              if (check_br16 (abfd, ptr + 4, reg))
12511
                break;
12512
              continue;
12513
            case 4:
12514
              if (check_br32 (abfd, ptr + 4, reg))
12515
                break;
12516
              continue;
12517
            default:
12518
              continue;
12519
            }
12520
 
12521
          nextopc  = bfd_get_16 (abfd, contents + irel[1].r_offset    ) << 16;
12522
          nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12523
 
12524
          /* Give up unless the same register is used with both
12525
             relocations.  */
12526
          if (OP32_SREG (nextopc) != reg)
12527
            continue;
12528
 
12529
          /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12530
             and rounding up to take masking of the two LSBs into account.  */
12531
          pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12532
 
12533
          /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
12534
          if (IS_BITSIZE (symval, 16))
12535
            {
12536
              /* Fix the relocation's type.  */
12537
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12538
 
12539
              /* Instructions using R_MICROMIPS_LO16 have the base or
12540
                 source register in bits 20:16.  This register becomes $0
12541
                 (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
12542
              nextopc &= ~0x001f0000;
12543
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12544
                          contents + irel[1].r_offset);
12545
            }
12546
 
12547
          /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12548
             We add 4 to take LUI deletion into account while checking
12549
             the PC-relative distance.  */
12550
          else if (symval % 4 == 0
12551
                   && IS_BITSIZE (pcrval + 4, 25)
12552
                   && MATCH (nextopc, addiu_insn)
12553
                   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12554
                   && OP16_VALID_REG (OP32_TREG (nextopc)))
12555
            {
12556
              /* Fix the relocation's type.  */
12557
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12558
 
12559
              /* Replace ADDIU with the ADDIUPC version.  */
12560
              nextopc = (addiupc_insn.match
12561
                         | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12562
 
12563
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12564
                          contents + irel[1].r_offset);
12565
              bfd_put_16 (abfd,  nextopc        & 0xffff,
12566
                          contents + irel[1].r_offset + 2);
12567
            }
12568
 
12569
          /* Can't do anything, give up, sigh...  */
12570
          else
12571
            continue;
12572
 
12573
          /* Fix the relocation's type.  */
12574
          irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12575
 
12576
          /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
12577
          delcnt = 4;
12578
          deloff = 0;
12579
        }
12580
 
12581
      /* Compact branch relaxation -- due to the multitude of macros
12582
         employed by the compiler/assembler, compact branches are not
12583
         always generated.  Obviously, this can/will be fixed elsewhere,
12584
         but there is no drawback in double checking it here.  */
12585
      else if (r_type == R_MICROMIPS_PC16_S1
12586
               && irel->r_offset + 5 < sec->size
12587
               && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12588
                   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12589
               && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12590
        {
12591
          unsigned long reg;
12592
 
12593
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12594
 
12595
          /* Replace BEQZ/BNEZ with the compact version.  */
12596
          opcode = (bzc_insns_32[fndopc].match
12597
                    | BZC32_REG_FIELD (reg)
12598
                    | (opcode & 0xffff));               /* Addend value.  */
12599
 
12600
          bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12601
          bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
12602
 
12603
          /* Delete the 16-bit delay slot NOP: two bytes from
12604
             irel->offset + 4.  */
12605
          delcnt = 2;
12606
          deloff = 4;
12607
        }
12608
 
12609
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
12610
         to check the distance from the next instruction, so subtract 2.  */
12611
      else if (r_type == R_MICROMIPS_PC16_S1
12612
               && IS_BITSIZE (pcrval - 2, 11)
12613
               && find_match (opcode, b_insns_32) >= 0)
12614
        {
12615
          /* Fix the relocation's type.  */
12616
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12617
 
12618
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
12619
          bfd_put_16 (abfd,
12620
                      (b_insn_16.match
12621
                       | (opcode & 0x3ff)),             /* Addend value.  */
12622
                      ptr);
12623
 
12624
          /* Delete 2 bytes from irel->r_offset + 2.  */
12625
          delcnt = 2;
12626
          deloff = 2;
12627
        }
12628
 
12629
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
12630
         to check the distance from the next instruction, so subtract 2.  */
12631
      else if (r_type == R_MICROMIPS_PC16_S1
12632
               && IS_BITSIZE (pcrval - 2, 8)
12633
               && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12634
                    && OP16_VALID_REG (OP32_SREG (opcode)))
12635
                   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12636
                       && OP16_VALID_REG (OP32_TREG (opcode)))))
12637
        {
12638
          unsigned long reg;
12639
 
12640
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12641
 
12642
          /* Fix the relocation's type.  */
12643
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12644
 
12645
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
12646
          bfd_put_16 (abfd,
12647
                      (bz_insns_16[fndopc].match
12648
                       | BZ16_REG_FIELD (reg)
12649
                       | (opcode & 0x7f)),              /* Addend value.  */
12650
                      ptr);
12651
 
12652
          /* Delete 2 bytes from irel->r_offset + 2.  */
12653
          delcnt = 2;
12654
          deloff = 2;
12655
        }
12656
 
12657
      /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
12658
      else if (r_type == R_MICROMIPS_26_S1
12659
               && target_is_micromips_code_p
12660
               && irel->r_offset + 7 < sec->size
12661
               && MATCH (opcode, jal_insn_32_bd32))
12662
        {
12663
          unsigned long n32opc;
12664
          bfd_boolean relaxed = FALSE;
12665
 
12666
          n32opc  = bfd_get_16 (abfd, ptr + 4) << 16;
12667
          n32opc |= bfd_get_16 (abfd, ptr + 6);
12668
 
12669
          if (MATCH (n32opc, nop_insn_32))
12670
            {
12671
              /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
12672
              bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12673
 
12674
              relaxed = TRUE;
12675
            }
12676
          else if (find_match (n32opc, move_insns_32) >= 0)
12677
            {
12678
              /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
12679
              bfd_put_16 (abfd,
12680
                          (move_insn_16.match
12681
                           | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12682
                           | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12683
                          ptr + 4);
12684
 
12685
              relaxed = TRUE;
12686
            }
12687
          /* Other 32-bit instructions relaxable to 16-bit
12688
             instructions will be handled here later.  */
12689
 
12690
          if (relaxed)
12691
            {
12692
              /* JAL with 32-bit delay slot that is changed to a JALS
12693
                 with 16-bit delay slot.  */
12694
              bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12695
                          ptr);
12696
              bfd_put_16 (abfd,  jal_insn_32_bd16.match        & 0xffff,
12697
                          ptr + 2);
12698
 
12699
              /* Delete 2 bytes from irel->r_offset + 6.  */
12700
              delcnt = 2;
12701
              deloff = 6;
12702
            }
12703
        }
12704
 
12705
      if (delcnt != 0)
12706
        {
12707
          /* Note that we've changed the relocs, section contents, etc.  */
12708
          elf_section_data (sec)->relocs = internal_relocs;
12709
          elf_section_data (sec)->this_hdr.contents = contents;
12710
          symtab_hdr->contents = (unsigned char *) isymbuf;
12711
 
12712
          /* Delete bytes depending on the delcnt and deloff.  */
12713
          if (!mips_elf_relax_delete_bytes (abfd, sec,
12714
                                            irel->r_offset + deloff, delcnt))
12715
            goto error_return;
12716
 
12717
          /* That will change things, so we should relax again.
12718
             Note that this is not required, and it may be slow.  */
12719
          *again = TRUE;
12720
        }
12721
    }
12722
 
12723
  if (isymbuf != NULL
12724
      && symtab_hdr->contents != (unsigned char *) isymbuf)
12725
    {
12726
      if (! link_info->keep_memory)
12727
        free (isymbuf);
12728
      else
12729
        {
12730
          /* Cache the symbols for elf_link_input_bfd.  */
12731
          symtab_hdr->contents = (unsigned char *) isymbuf;
12732
        }
12733
    }
12734
 
12735
  if (contents != NULL
12736
      && elf_section_data (sec)->this_hdr.contents != contents)
12737
    {
12738
      if (! link_info->keep_memory)
12739
        free (contents);
12740
      else
12741
        {
12742
          /* Cache the section contents for elf_link_input_bfd.  */
12743
          elf_section_data (sec)->this_hdr.contents = contents;
12744
        }
12745
    }
12746
 
12747
  if (internal_relocs != NULL
12748
      && elf_section_data (sec)->relocs != internal_relocs)
12749
    free (internal_relocs);
12750
 
12751
  return TRUE;
12752
 
12753
 error_return:
12754
  if (isymbuf != NULL
12755
      && symtab_hdr->contents != (unsigned char *) isymbuf)
12756
    free (isymbuf);
12757
  if (contents != NULL
12758
      && elf_section_data (sec)->this_hdr.contents != contents)
12759
    free (contents);
12760
  if (internal_relocs != NULL
12761
      && elf_section_data (sec)->relocs != internal_relocs)
12762
    free (internal_relocs);
12763
 
12764
  return FALSE;
12765
}
12766
 
12767 14 khays
/* Create a MIPS ELF linker hash table.  */
12768
 
12769
struct bfd_link_hash_table *
12770
_bfd_mips_elf_link_hash_table_create (bfd *abfd)
12771
{
12772
  struct mips_elf_link_hash_table *ret;
12773
  bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12774
 
12775
  ret = bfd_malloc (amt);
12776
  if (ret == NULL)
12777
    return NULL;
12778
 
12779
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12780
                                      mips_elf_link_hash_newfunc,
12781
                                      sizeof (struct mips_elf_link_hash_entry),
12782
                                      MIPS_ELF_DATA))
12783
    {
12784
      free (ret);
12785
      return NULL;
12786
    }
12787
 
12788
#if 0
12789
  /* We no longer use this.  */
12790
  for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12791
    ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12792
#endif
12793
  ret->procedure_count = 0;
12794
  ret->compact_rel_size = 0;
12795
  ret->use_rld_obj_head = FALSE;
12796
  ret->rld_value = 0;
12797
  ret->mips16_stubs_seen = FALSE;
12798
  ret->use_plts_and_copy_relocs = FALSE;
12799
  ret->is_vxworks = FALSE;
12800
  ret->small_data_overflow_reported = FALSE;
12801
  ret->srelbss = NULL;
12802
  ret->sdynbss = NULL;
12803
  ret->srelplt = NULL;
12804
  ret->srelplt2 = NULL;
12805
  ret->sgotplt = NULL;
12806
  ret->splt = NULL;
12807
  ret->sstubs = NULL;
12808
  ret->sgot = NULL;
12809
  ret->got_info = NULL;
12810
  ret->plt_header_size = 0;
12811
  ret->plt_entry_size = 0;
12812
  ret->lazy_stub_count = 0;
12813
  ret->function_stub_size = 0;
12814
  ret->strampoline = NULL;
12815
  ret->la25_stubs = NULL;
12816
  ret->add_stub_section = NULL;
12817
 
12818
  return &ret->root.root;
12819
}
12820
 
12821
/* Likewise, but indicate that the target is VxWorks.  */
12822
 
12823
struct bfd_link_hash_table *
12824
_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12825
{
12826
  struct bfd_link_hash_table *ret;
12827
 
12828
  ret = _bfd_mips_elf_link_hash_table_create (abfd);
12829
  if (ret)
12830
    {
12831
      struct mips_elf_link_hash_table *htab;
12832
 
12833
      htab = (struct mips_elf_link_hash_table *) ret;
12834
      htab->use_plts_and_copy_relocs = TRUE;
12835
      htab->is_vxworks = TRUE;
12836
    }
12837
  return ret;
12838
}
12839
 
12840
/* A function that the linker calls if we are allowed to use PLTs
12841
   and copy relocs.  */
12842
 
12843
void
12844
_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12845
{
12846
  mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12847
}
12848
 
12849
/* We need to use a special link routine to handle the .reginfo and
12850
   the .mdebug sections.  We need to merge all instances of these
12851
   sections together, not write them all out sequentially.  */
12852
 
12853
bfd_boolean
12854
_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12855
{
12856
  asection *o;
12857
  struct bfd_link_order *p;
12858
  asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12859
  asection *rtproc_sec;
12860
  Elf32_RegInfo reginfo;
12861
  struct ecoff_debug_info debug;
12862
  struct mips_htab_traverse_info hti;
12863
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12864
  const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12865
  HDRR *symhdr = &debug.symbolic_header;
12866
  void *mdebug_handle = NULL;
12867
  asection *s;
12868
  EXTR esym;
12869
  unsigned int i;
12870
  bfd_size_type amt;
12871
  struct mips_elf_link_hash_table *htab;
12872
 
12873
  static const char * const secname[] =
12874
  {
12875
    ".text", ".init", ".fini", ".data",
12876
    ".rodata", ".sdata", ".sbss", ".bss"
12877
  };
12878
  static const int sc[] =
12879
  {
12880
    scText, scInit, scFini, scData,
12881
    scRData, scSData, scSBss, scBss
12882
  };
12883
 
12884
  /* Sort the dynamic symbols so that those with GOT entries come after
12885
     those without.  */
12886
  htab = mips_elf_hash_table (info);
12887
  BFD_ASSERT (htab != NULL);
12888
 
12889
  if (!mips_elf_sort_hash_table (abfd, info))
12890
    return FALSE;
12891
 
12892
  /* Create any scheduled LA25 stubs.  */
12893
  hti.info = info;
12894
  hti.output_bfd = abfd;
12895
  hti.error = FALSE;
12896
  htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12897
  if (hti.error)
12898
    return FALSE;
12899
 
12900
  /* Get a value for the GP register.  */
12901
  if (elf_gp (abfd) == 0)
12902
    {
12903
      struct bfd_link_hash_entry *h;
12904
 
12905
      h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12906
      if (h != NULL && h->type == bfd_link_hash_defined)
12907
        elf_gp (abfd) = (h->u.def.value
12908
                         + h->u.def.section->output_section->vma
12909
                         + h->u.def.section->output_offset);
12910
      else if (htab->is_vxworks
12911
               && (h = bfd_link_hash_lookup (info->hash,
12912
                                             "_GLOBAL_OFFSET_TABLE_",
12913
                                             FALSE, FALSE, TRUE))
12914
               && h->type == bfd_link_hash_defined)
12915
        elf_gp (abfd) = (h->u.def.section->output_section->vma
12916
                         + h->u.def.section->output_offset
12917
                         + h->u.def.value);
12918
      else if (info->relocatable)
12919
        {
12920
          bfd_vma lo = MINUS_ONE;
12921
 
12922
          /* Find the GP-relative section with the lowest offset.  */
12923
          for (o = abfd->sections; o != NULL; o = o->next)
12924
            if (o->vma < lo
12925
                && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12926
              lo = o->vma;
12927
 
12928
          /* And calculate GP relative to that.  */
12929
          elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12930
        }
12931
      else
12932
        {
12933
          /* If the relocate_section function needs to do a reloc
12934
             involving the GP value, it should make a reloc_dangerous
12935
             callback to warn that GP is not defined.  */
12936
        }
12937
    }
12938
 
12939
  /* Go through the sections and collect the .reginfo and .mdebug
12940
     information.  */
12941
  reginfo_sec = NULL;
12942
  mdebug_sec = NULL;
12943
  gptab_data_sec = NULL;
12944
  gptab_bss_sec = NULL;
12945
  for (o = abfd->sections; o != NULL; o = o->next)
12946
    {
12947
      if (strcmp (o->name, ".reginfo") == 0)
12948
        {
12949
          memset (&reginfo, 0, sizeof reginfo);
12950
 
12951
          /* We have found the .reginfo section in the output file.
12952
             Look through all the link_orders comprising it and merge
12953
             the information together.  */
12954
          for (p = o->map_head.link_order; p != NULL; p = p->next)
12955
            {
12956
              asection *input_section;
12957
              bfd *input_bfd;
12958
              Elf32_External_RegInfo ext;
12959
              Elf32_RegInfo sub;
12960
 
12961
              if (p->type != bfd_indirect_link_order)
12962
                {
12963
                  if (p->type == bfd_data_link_order)
12964
                    continue;
12965
                  abort ();
12966
                }
12967
 
12968
              input_section = p->u.indirect.section;
12969
              input_bfd = input_section->owner;
12970
 
12971
              if (! bfd_get_section_contents (input_bfd, input_section,
12972
                                              &ext, 0, sizeof ext))
12973
                return FALSE;
12974
 
12975
              bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12976
 
12977
              reginfo.ri_gprmask |= sub.ri_gprmask;
12978
              reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12979
              reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12980
              reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12981
              reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12982
 
12983
              /* ri_gp_value is set by the function
12984
                 mips_elf32_section_processing when the section is
12985
                 finally written out.  */
12986
 
12987
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
12988
                 elf_link_input_bfd ignores this section.  */
12989
              input_section->flags &= ~SEC_HAS_CONTENTS;
12990
            }
12991
 
12992
          /* Size has been set in _bfd_mips_elf_always_size_sections.  */
12993
          BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12994
 
12995
          /* Skip this section later on (I don't think this currently
12996
             matters, but someday it might).  */
12997
          o->map_head.link_order = NULL;
12998
 
12999
          reginfo_sec = o;
13000
        }
13001
 
13002
      if (strcmp (o->name, ".mdebug") == 0)
13003
        {
13004
          struct extsym_info einfo;
13005
          bfd_vma last;
13006
 
13007
          /* We have found the .mdebug section in the output file.
13008
             Look through all the link_orders comprising it and merge
13009
             the information together.  */
13010
          symhdr->magic = swap->sym_magic;
13011
          /* FIXME: What should the version stamp be?  */
13012
          symhdr->vstamp = 0;
13013
          symhdr->ilineMax = 0;
13014
          symhdr->cbLine = 0;
13015
          symhdr->idnMax = 0;
13016
          symhdr->ipdMax = 0;
13017
          symhdr->isymMax = 0;
13018
          symhdr->ioptMax = 0;
13019
          symhdr->iauxMax = 0;
13020
          symhdr->issMax = 0;
13021
          symhdr->issExtMax = 0;
13022
          symhdr->ifdMax = 0;
13023
          symhdr->crfd = 0;
13024
          symhdr->iextMax = 0;
13025
 
13026
          /* We accumulate the debugging information itself in the
13027
             debug_info structure.  */
13028
          debug.line = NULL;
13029
          debug.external_dnr = NULL;
13030
          debug.external_pdr = NULL;
13031
          debug.external_sym = NULL;
13032
          debug.external_opt = NULL;
13033
          debug.external_aux = NULL;
13034
          debug.ss = NULL;
13035
          debug.ssext = debug.ssext_end = NULL;
13036
          debug.external_fdr = NULL;
13037
          debug.external_rfd = NULL;
13038
          debug.external_ext = debug.external_ext_end = NULL;
13039
 
13040
          mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13041
          if (mdebug_handle == NULL)
13042
            return FALSE;
13043
 
13044
          esym.jmptbl = 0;
13045
          esym.cobol_main = 0;
13046
          esym.weakext = 0;
13047
          esym.reserved = 0;
13048
          esym.ifd = ifdNil;
13049
          esym.asym.iss = issNil;
13050
          esym.asym.st = stLocal;
13051
          esym.asym.reserved = 0;
13052
          esym.asym.index = indexNil;
13053
          last = 0;
13054
          for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13055
            {
13056
              esym.asym.sc = sc[i];
13057
              s = bfd_get_section_by_name (abfd, secname[i]);
13058
              if (s != NULL)
13059
                {
13060
                  esym.asym.value = s->vma;
13061
                  last = s->vma + s->size;
13062
                }
13063
              else
13064
                esym.asym.value = last;
13065
              if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13066
                                                 secname[i], &esym))
13067
                return FALSE;
13068
            }
13069
 
13070
          for (p = o->map_head.link_order; p != NULL; p = p->next)
13071
            {
13072
              asection *input_section;
13073
              bfd *input_bfd;
13074
              const struct ecoff_debug_swap *input_swap;
13075
              struct ecoff_debug_info input_debug;
13076
              char *eraw_src;
13077
              char *eraw_end;
13078
 
13079
              if (p->type != bfd_indirect_link_order)
13080
                {
13081
                  if (p->type == bfd_data_link_order)
13082
                    continue;
13083
                  abort ();
13084
                }
13085
 
13086
              input_section = p->u.indirect.section;
13087
              input_bfd = input_section->owner;
13088
 
13089
              if (!is_mips_elf (input_bfd))
13090
                {
13091
                  /* I don't know what a non MIPS ELF bfd would be
13092
                     doing with a .mdebug section, but I don't really
13093
                     want to deal with it.  */
13094
                  continue;
13095
                }
13096
 
13097
              input_swap = (get_elf_backend_data (input_bfd)
13098
                            ->elf_backend_ecoff_debug_swap);
13099
 
13100
              BFD_ASSERT (p->size == input_section->size);
13101
 
13102
              /* The ECOFF linking code expects that we have already
13103
                 read in the debugging information and set up an
13104
                 ecoff_debug_info structure, so we do that now.  */
13105
              if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13106
                                                   &input_debug))
13107
                return FALSE;
13108
 
13109
              if (! (bfd_ecoff_debug_accumulate
13110
                     (mdebug_handle, abfd, &debug, swap, input_bfd,
13111
                      &input_debug, input_swap, info)))
13112
                return FALSE;
13113
 
13114
              /* Loop through the external symbols.  For each one with
13115
                 interesting information, try to find the symbol in
13116
                 the linker global hash table and save the information
13117
                 for the output external symbols.  */
13118
              eraw_src = input_debug.external_ext;
13119
              eraw_end = (eraw_src
13120
                          + (input_debug.symbolic_header.iextMax
13121
                             * input_swap->external_ext_size));
13122
              for (;
13123
                   eraw_src < eraw_end;
13124
                   eraw_src += input_swap->external_ext_size)
13125
                {
13126
                  EXTR ext;
13127
                  const char *name;
13128
                  struct mips_elf_link_hash_entry *h;
13129
 
13130
                  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13131
                  if (ext.asym.sc == scNil
13132
                      || ext.asym.sc == scUndefined
13133
                      || ext.asym.sc == scSUndefined)
13134
                    continue;
13135
 
13136
                  name = input_debug.ssext + ext.asym.iss;
13137
                  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13138
                                                 name, FALSE, FALSE, TRUE);
13139
                  if (h == NULL || h->esym.ifd != -2)
13140
                    continue;
13141
 
13142
                  if (ext.ifd != -1)
13143
                    {
13144
                      BFD_ASSERT (ext.ifd
13145
                                  < input_debug.symbolic_header.ifdMax);
13146
                      ext.ifd = input_debug.ifdmap[ext.ifd];
13147
                    }
13148
 
13149
                  h->esym = ext;
13150
                }
13151
 
13152
              /* Free up the information we just read.  */
13153
              free (input_debug.line);
13154
              free (input_debug.external_dnr);
13155
              free (input_debug.external_pdr);
13156
              free (input_debug.external_sym);
13157
              free (input_debug.external_opt);
13158
              free (input_debug.external_aux);
13159
              free (input_debug.ss);
13160
              free (input_debug.ssext);
13161
              free (input_debug.external_fdr);
13162
              free (input_debug.external_rfd);
13163
              free (input_debug.external_ext);
13164
 
13165
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
13166
                 elf_link_input_bfd ignores this section.  */
13167
              input_section->flags &= ~SEC_HAS_CONTENTS;
13168
            }
13169
 
13170
          if (SGI_COMPAT (abfd) && info->shared)
13171
            {
13172
              /* Create .rtproc section.  */
13173
              rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13174
              if (rtproc_sec == NULL)
13175
                {
13176
                  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13177
                                    | SEC_LINKER_CREATED | SEC_READONLY);
13178
 
13179
                  rtproc_sec = bfd_make_section_with_flags (abfd,
13180
                                                            ".rtproc",
13181
                                                            flags);
13182
                  if (rtproc_sec == NULL
13183
                      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13184
                    return FALSE;
13185
                }
13186
 
13187
              if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13188
                                                     info, rtproc_sec,
13189
                                                     &debug))
13190
                return FALSE;
13191
            }
13192
 
13193
          /* Build the external symbol information.  */
13194
          einfo.abfd = abfd;
13195
          einfo.info = info;
13196
          einfo.debug = &debug;
13197
          einfo.swap = swap;
13198
          einfo.failed = FALSE;
13199
          mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13200
                                       mips_elf_output_extsym, &einfo);
13201
          if (einfo.failed)
13202
            return FALSE;
13203
 
13204
          /* Set the size of the .mdebug section.  */
13205
          o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13206
 
13207
          /* Skip this section later on (I don't think this currently
13208
             matters, but someday it might).  */
13209
          o->map_head.link_order = NULL;
13210
 
13211
          mdebug_sec = o;
13212
        }
13213
 
13214
      if (CONST_STRNEQ (o->name, ".gptab."))
13215
        {
13216
          const char *subname;
13217
          unsigned int c;
13218
          Elf32_gptab *tab;
13219
          Elf32_External_gptab *ext_tab;
13220
          unsigned int j;
13221
 
13222
          /* The .gptab.sdata and .gptab.sbss sections hold
13223
             information describing how the small data area would
13224
             change depending upon the -G switch.  These sections
13225
             not used in executables files.  */
13226
          if (! info->relocatable)
13227
            {
13228
              for (p = o->map_head.link_order; p != NULL; p = p->next)
13229
                {
13230
                  asection *input_section;
13231
 
13232
                  if (p->type != bfd_indirect_link_order)
13233
                    {
13234
                      if (p->type == bfd_data_link_order)
13235
                        continue;
13236
                      abort ();
13237
                    }
13238
 
13239
                  input_section = p->u.indirect.section;
13240
 
13241
                  /* Hack: reset the SEC_HAS_CONTENTS flag so that
13242
                     elf_link_input_bfd ignores this section.  */
13243
                  input_section->flags &= ~SEC_HAS_CONTENTS;
13244
                }
13245
 
13246
              /* Skip this section later on (I don't think this
13247
                 currently matters, but someday it might).  */
13248
              o->map_head.link_order = NULL;
13249
 
13250
              /* Really remove the section.  */
13251
              bfd_section_list_remove (abfd, o);
13252
              --abfd->section_count;
13253
 
13254
              continue;
13255
            }
13256
 
13257
          /* There is one gptab for initialized data, and one for
13258
             uninitialized data.  */
13259
          if (strcmp (o->name, ".gptab.sdata") == 0)
13260
            gptab_data_sec = o;
13261
          else if (strcmp (o->name, ".gptab.sbss") == 0)
13262
            gptab_bss_sec = o;
13263
          else
13264
            {
13265
              (*_bfd_error_handler)
13266
                (_("%s: illegal section name `%s'"),
13267
                 bfd_get_filename (abfd), o->name);
13268
              bfd_set_error (bfd_error_nonrepresentable_section);
13269
              return FALSE;
13270
            }
13271
 
13272
          /* The linker script always combines .gptab.data and
13273
             .gptab.sdata into .gptab.sdata, and likewise for
13274
             .gptab.bss and .gptab.sbss.  It is possible that there is
13275
             no .sdata or .sbss section in the output file, in which
13276
             case we must change the name of the output section.  */
13277
          subname = o->name + sizeof ".gptab" - 1;
13278
          if (bfd_get_section_by_name (abfd, subname) == NULL)
13279
            {
13280
              if (o == gptab_data_sec)
13281
                o->name = ".gptab.data";
13282
              else
13283
                o->name = ".gptab.bss";
13284
              subname = o->name + sizeof ".gptab" - 1;
13285
              BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13286
            }
13287
 
13288
          /* Set up the first entry.  */
13289
          c = 1;
13290
          amt = c * sizeof (Elf32_gptab);
13291
          tab = bfd_malloc (amt);
13292
          if (tab == NULL)
13293
            return FALSE;
13294
          tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13295
          tab[0].gt_header.gt_unused = 0;
13296
 
13297
          /* Combine the input sections.  */
13298
          for (p = o->map_head.link_order; p != NULL; p = p->next)
13299
            {
13300
              asection *input_section;
13301
              bfd *input_bfd;
13302
              bfd_size_type size;
13303
              unsigned long last;
13304
              bfd_size_type gpentry;
13305
 
13306
              if (p->type != bfd_indirect_link_order)
13307
                {
13308
                  if (p->type == bfd_data_link_order)
13309
                    continue;
13310
                  abort ();
13311
                }
13312
 
13313
              input_section = p->u.indirect.section;
13314
              input_bfd = input_section->owner;
13315
 
13316
              /* Combine the gptab entries for this input section one
13317
                 by one.  We know that the input gptab entries are
13318
                 sorted by ascending -G value.  */
13319
              size = input_section->size;
13320
              last = 0;
13321
              for (gpentry = sizeof (Elf32_External_gptab);
13322
                   gpentry < size;
13323
                   gpentry += sizeof (Elf32_External_gptab))
13324
                {
13325
                  Elf32_External_gptab ext_gptab;
13326
                  Elf32_gptab int_gptab;
13327
                  unsigned long val;
13328
                  unsigned long add;
13329
                  bfd_boolean exact;
13330
                  unsigned int look;
13331
 
13332
                  if (! (bfd_get_section_contents
13333
                         (input_bfd, input_section, &ext_gptab, gpentry,
13334
                          sizeof (Elf32_External_gptab))))
13335
                    {
13336
                      free (tab);
13337
                      return FALSE;
13338
                    }
13339
 
13340
                  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13341
                                                &int_gptab);
13342
                  val = int_gptab.gt_entry.gt_g_value;
13343
                  add = int_gptab.gt_entry.gt_bytes - last;
13344
 
13345
                  exact = FALSE;
13346
                  for (look = 1; look < c; look++)
13347
                    {
13348
                      if (tab[look].gt_entry.gt_g_value >= val)
13349
                        tab[look].gt_entry.gt_bytes += add;
13350
 
13351
                      if (tab[look].gt_entry.gt_g_value == val)
13352
                        exact = TRUE;
13353
                    }
13354
 
13355
                  if (! exact)
13356
                    {
13357
                      Elf32_gptab *new_tab;
13358
                      unsigned int max;
13359
 
13360
                      /* We need a new table entry.  */
13361
                      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13362
                      new_tab = bfd_realloc (tab, amt);
13363
                      if (new_tab == NULL)
13364
                        {
13365
                          free (tab);
13366
                          return FALSE;
13367
                        }
13368
                      tab = new_tab;
13369
                      tab[c].gt_entry.gt_g_value = val;
13370
                      tab[c].gt_entry.gt_bytes = add;
13371
 
13372
                      /* Merge in the size for the next smallest -G
13373
                         value, since that will be implied by this new
13374
                         value.  */
13375
                      max = 0;
13376
                      for (look = 1; look < c; look++)
13377
                        {
13378
                          if (tab[look].gt_entry.gt_g_value < val
13379
                              && (max == 0
13380
                                  || (tab[look].gt_entry.gt_g_value
13381
                                      > tab[max].gt_entry.gt_g_value)))
13382
                            max = look;
13383
                        }
13384
                      if (max != 0)
13385
                        tab[c].gt_entry.gt_bytes +=
13386
                          tab[max].gt_entry.gt_bytes;
13387
 
13388
                      ++c;
13389
                    }
13390
 
13391
                  last = int_gptab.gt_entry.gt_bytes;
13392
                }
13393
 
13394
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
13395
                 elf_link_input_bfd ignores this section.  */
13396
              input_section->flags &= ~SEC_HAS_CONTENTS;
13397
            }
13398
 
13399
          /* The table must be sorted by -G value.  */
13400
          if (c > 2)
13401
            qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13402
 
13403
          /* Swap out the table.  */
13404
          amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13405
          ext_tab = bfd_alloc (abfd, amt);
13406
          if (ext_tab == NULL)
13407
            {
13408
              free (tab);
13409
              return FALSE;
13410
            }
13411
 
13412
          for (j = 0; j < c; j++)
13413
            bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13414
          free (tab);
13415
 
13416
          o->size = c * sizeof (Elf32_External_gptab);
13417
          o->contents = (bfd_byte *) ext_tab;
13418
 
13419
          /* Skip this section later on (I don't think this currently
13420
             matters, but someday it might).  */
13421
          o->map_head.link_order = NULL;
13422
        }
13423
    }
13424
 
13425
  /* Invoke the regular ELF backend linker to do all the work.  */
13426
  if (!bfd_elf_final_link (abfd, info))
13427
    return FALSE;
13428
 
13429
  /* Now write out the computed sections.  */
13430
 
13431
  if (reginfo_sec != NULL)
13432
    {
13433
      Elf32_External_RegInfo ext;
13434
 
13435
      bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13436
      if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13437
        return FALSE;
13438
    }
13439
 
13440
  if (mdebug_sec != NULL)
13441
    {
13442
      BFD_ASSERT (abfd->output_has_begun);
13443
      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13444
                                               swap, info,
13445
                                               mdebug_sec->filepos))
13446
        return FALSE;
13447
 
13448
      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13449
    }
13450
 
13451
  if (gptab_data_sec != NULL)
13452
    {
13453
      if (! bfd_set_section_contents (abfd, gptab_data_sec,
13454
                                      gptab_data_sec->contents,
13455
                                      0, gptab_data_sec->size))
13456
        return FALSE;
13457
    }
13458
 
13459
  if (gptab_bss_sec != NULL)
13460
    {
13461
      if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13462
                                      gptab_bss_sec->contents,
13463
                                      0, gptab_bss_sec->size))
13464
        return FALSE;
13465
    }
13466
 
13467
  if (SGI_COMPAT (abfd))
13468
    {
13469
      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13470
      if (rtproc_sec != NULL)
13471
        {
13472
          if (! bfd_set_section_contents (abfd, rtproc_sec,
13473
                                          rtproc_sec->contents,
13474
                                          0, rtproc_sec->size))
13475
            return FALSE;
13476
        }
13477
    }
13478
 
13479
  return TRUE;
13480
}
13481
 
13482
/* Structure for saying that BFD machine EXTENSION extends BASE.  */
13483
 
13484
struct mips_mach_extension {
13485
  unsigned long extension, base;
13486
};
13487
 
13488
 
13489
/* An array describing how BFD machines relate to one another.  The entries
13490
   are ordered topologically with MIPS I extensions listed last.  */
13491
 
13492
static const struct mips_mach_extension mips_mach_extensions[] = {
13493
  /* MIPS64r2 extensions.  */
13494
  { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13495
 
13496
  /* MIPS64 extensions.  */
13497
  { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13498
  { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13499
  { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13500
  { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13501
 
13502
  /* MIPS V extensions.  */
13503
  { bfd_mach_mipsisa64, bfd_mach_mips5 },
13504
 
13505
  /* R10000 extensions.  */
13506
  { bfd_mach_mips12000, bfd_mach_mips10000 },
13507
  { bfd_mach_mips14000, bfd_mach_mips10000 },
13508
  { bfd_mach_mips16000, bfd_mach_mips10000 },
13509
 
13510
  /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
13511
     vr5400 ISA, but doesn't include the multimedia stuff.  It seems
13512
     better to allow vr5400 and vr5500 code to be merged anyway, since
13513
     many libraries will just use the core ISA.  Perhaps we could add
13514
     some sort of ASE flag if this ever proves a problem.  */
13515
  { bfd_mach_mips5500, bfd_mach_mips5400 },
13516
  { bfd_mach_mips5400, bfd_mach_mips5000 },
13517
 
13518
  /* MIPS IV extensions.  */
13519
  { bfd_mach_mips5, bfd_mach_mips8000 },
13520
  { bfd_mach_mips10000, bfd_mach_mips8000 },
13521
  { bfd_mach_mips5000, bfd_mach_mips8000 },
13522
  { bfd_mach_mips7000, bfd_mach_mips8000 },
13523
  { bfd_mach_mips9000, bfd_mach_mips8000 },
13524
 
13525
  /* VR4100 extensions.  */
13526
  { bfd_mach_mips4120, bfd_mach_mips4100 },
13527
  { bfd_mach_mips4111, bfd_mach_mips4100 },
13528
 
13529
  /* MIPS III extensions.  */
13530
  { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13531
  { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13532
  { bfd_mach_mips8000, bfd_mach_mips4000 },
13533
  { bfd_mach_mips4650, bfd_mach_mips4000 },
13534
  { bfd_mach_mips4600, bfd_mach_mips4000 },
13535
  { bfd_mach_mips4400, bfd_mach_mips4000 },
13536
  { bfd_mach_mips4300, bfd_mach_mips4000 },
13537
  { bfd_mach_mips4100, bfd_mach_mips4000 },
13538
  { bfd_mach_mips4010, bfd_mach_mips4000 },
13539
 
13540
  /* MIPS32 extensions.  */
13541
  { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13542
 
13543
  /* MIPS II extensions.  */
13544
  { bfd_mach_mips4000, bfd_mach_mips6000 },
13545
  { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13546
 
13547
  /* MIPS I extensions.  */
13548
  { bfd_mach_mips6000, bfd_mach_mips3000 },
13549
  { bfd_mach_mips3900, bfd_mach_mips3000 }
13550
};
13551
 
13552
 
13553
/* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
13554
 
13555
static bfd_boolean
13556
mips_mach_extends_p (unsigned long base, unsigned long extension)
13557
{
13558
  size_t i;
13559
 
13560
  if (extension == base)
13561
    return TRUE;
13562
 
13563
  if (base == bfd_mach_mipsisa32
13564
      && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13565
    return TRUE;
13566
 
13567
  if (base == bfd_mach_mipsisa32r2
13568
      && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13569
    return TRUE;
13570
 
13571
  for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13572
    if (extension == mips_mach_extensions[i].extension)
13573
      {
13574
        extension = mips_mach_extensions[i].base;
13575
        if (extension == base)
13576
          return TRUE;
13577
      }
13578
 
13579
  return FALSE;
13580
}
13581
 
13582
 
13583
/* Return true if the given ELF header flags describe a 32-bit binary.  */
13584
 
13585
static bfd_boolean
13586
mips_32bit_flags_p (flagword flags)
13587
{
13588
  return ((flags & EF_MIPS_32BITMODE) != 0
13589
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13590
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13591
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13592
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13593
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13594
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13595
}
13596
 
13597
 
13598
/* Merge object attributes from IBFD into OBFD.  Raise an error if
13599
   there are conflicting attributes.  */
13600
static bfd_boolean
13601
mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13602
{
13603
  obj_attribute *in_attr;
13604
  obj_attribute *out_attr;
13605
 
13606
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
13607
    {
13608
      /* This is the first object.  Copy the attributes.  */
13609
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
13610
 
13611
      /* Use the Tag_null value to indicate the attributes have been
13612
         initialized.  */
13613
      elf_known_obj_attributes_proc (obfd)[0].i = 1;
13614
 
13615
      return TRUE;
13616
    }
13617
 
13618
  /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13619
     non-conflicting ones.  */
13620
  in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13621
  out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13622
  if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13623
    {
13624
      out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13625
      if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13626
        out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13627
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13628
        ;
13629
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13630
        _bfd_error_handler
13631
          (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13632
           in_attr[Tag_GNU_MIPS_ABI_FP].i);
13633
      else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13634
        _bfd_error_handler
13635
          (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13636
           out_attr[Tag_GNU_MIPS_ABI_FP].i);
13637
      else
13638
        switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13639
          {
13640
          case 1:
13641
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13642
              {
13643
              case 2:
13644
                _bfd_error_handler
13645
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13646
                   obfd, ibfd);
13647
                break;
13648
 
13649
              case 3:
13650
                _bfd_error_handler
13651
                  (_("Warning: %B uses hard float, %B uses soft float"),
13652
                   obfd, ibfd);
13653
                break;
13654
 
13655
              case 4:
13656
                _bfd_error_handler
13657
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13658
                   obfd, ibfd);
13659
                break;
13660
 
13661
              default:
13662
                abort ();
13663
              }
13664
            break;
13665
 
13666
          case 2:
13667
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13668
              {
13669
              case 1:
13670
                _bfd_error_handler
13671
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13672
                   ibfd, obfd);
13673
                break;
13674
 
13675
              case 3:
13676
                _bfd_error_handler
13677
                  (_("Warning: %B uses hard float, %B uses soft float"),
13678
                   obfd, ibfd);
13679
                break;
13680
 
13681
              case 4:
13682
                _bfd_error_handler
13683
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13684
                   obfd, ibfd);
13685
                break;
13686
 
13687
              default:
13688
                abort ();
13689
              }
13690
            break;
13691
 
13692
          case 3:
13693
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13694
              {
13695
              case 1:
13696
              case 2:
13697
              case 4:
13698
                _bfd_error_handler
13699
                  (_("Warning: %B uses hard float, %B uses soft float"),
13700
                   ibfd, obfd);
13701
                break;
13702
 
13703
              default:
13704
                abort ();
13705
              }
13706
            break;
13707
 
13708
          case 4:
13709
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13710
              {
13711
              case 1:
13712
                _bfd_error_handler
13713
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13714
                   ibfd, obfd);
13715
                break;
13716
 
13717
              case 2:
13718
                _bfd_error_handler
13719
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13720
                   ibfd, obfd);
13721
                break;
13722
 
13723
              case 3:
13724
                _bfd_error_handler
13725
                  (_("Warning: %B uses hard float, %B uses soft float"),
13726
                   obfd, ibfd);
13727
                break;
13728
 
13729
              default:
13730
                abort ();
13731
              }
13732
            break;
13733
 
13734
          default:
13735
            abort ();
13736
          }
13737
    }
13738
 
13739
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
13740
  _bfd_elf_merge_object_attributes (ibfd, obfd);
13741
 
13742
  return TRUE;
13743
}
13744
 
13745
/* Merge backend specific data from an object file to the output
13746
   object file when linking.  */
13747
 
13748
bfd_boolean
13749
_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13750
{
13751
  flagword old_flags;
13752
  flagword new_flags;
13753
  bfd_boolean ok;
13754
  bfd_boolean null_input_bfd = TRUE;
13755
  asection *sec;
13756
 
13757
  /* Check if we have the same endianness.  */
13758
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13759
    {
13760
      (*_bfd_error_handler)
13761
        (_("%B: endianness incompatible with that of the selected emulation"),
13762
         ibfd);
13763
      return FALSE;
13764
    }
13765
 
13766
  if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13767
    return TRUE;
13768
 
13769
  if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13770
    {
13771
      (*_bfd_error_handler)
13772
        (_("%B: ABI is incompatible with that of the selected emulation"),
13773
         ibfd);
13774
      return FALSE;
13775
    }
13776
 
13777
  if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13778
    return FALSE;
13779
 
13780
  new_flags = elf_elfheader (ibfd)->e_flags;
13781
  elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13782
  old_flags = elf_elfheader (obfd)->e_flags;
13783
 
13784
  if (! elf_flags_init (obfd))
13785
    {
13786
      elf_flags_init (obfd) = TRUE;
13787
      elf_elfheader (obfd)->e_flags = new_flags;
13788
      elf_elfheader (obfd)->e_ident[EI_CLASS]
13789
        = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13790
 
13791
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13792
          && (bfd_get_arch_info (obfd)->the_default
13793
              || mips_mach_extends_p (bfd_get_mach (obfd),
13794
                                      bfd_get_mach (ibfd))))
13795
        {
13796
          if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13797
                                   bfd_get_mach (ibfd)))
13798
            return FALSE;
13799
        }
13800
 
13801
      return TRUE;
13802
    }
13803
 
13804
  /* Check flag compatibility.  */
13805
 
13806
  new_flags &= ~EF_MIPS_NOREORDER;
13807
  old_flags &= ~EF_MIPS_NOREORDER;
13808
 
13809
  /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
13810
     doesn't seem to matter.  */
13811
  new_flags &= ~EF_MIPS_XGOT;
13812
  old_flags &= ~EF_MIPS_XGOT;
13813
 
13814
  /* MIPSpro generates ucode info in n64 objects.  Again, we should
13815
     just be able to ignore this.  */
13816
  new_flags &= ~EF_MIPS_UCODE;
13817
  old_flags &= ~EF_MIPS_UCODE;
13818
 
13819
  /* DSOs should only be linked with CPIC code.  */
13820
  if ((ibfd->flags & DYNAMIC) != 0)
13821
    new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13822
 
13823
  if (new_flags == old_flags)
13824
    return TRUE;
13825
 
13826
  /* Check to see if the input BFD actually contains any sections.
13827
     If not, its flags may not have been initialised either, but it cannot
13828
     actually cause any incompatibility.  */
13829
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13830
    {
13831
      /* Ignore synthetic sections and empty .text, .data and .bss sections
13832
         which are automatically generated by gas.  Also ignore fake
13833
         (s)common sections, since merely defining a common symbol does
13834
         not affect compatibility.  */
13835
      if ((sec->flags & SEC_IS_COMMON) == 0
13836
          && strcmp (sec->name, ".reginfo")
13837
          && strcmp (sec->name, ".mdebug")
13838
          && (sec->size != 0
13839
              || (strcmp (sec->name, ".text")
13840
                  && strcmp (sec->name, ".data")
13841
                  && strcmp (sec->name, ".bss"))))
13842
        {
13843
          null_input_bfd = FALSE;
13844
          break;
13845
        }
13846
    }
13847
  if (null_input_bfd)
13848
    return TRUE;
13849
 
13850
  ok = TRUE;
13851
 
13852
  if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13853
      != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13854
    {
13855
      (*_bfd_error_handler)
13856
        (_("%B: warning: linking abicalls files with non-abicalls files"),
13857
         ibfd);
13858
      ok = TRUE;
13859
    }
13860
 
13861
  if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13862
    elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13863
  if (! (new_flags & EF_MIPS_PIC))
13864
    elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13865
 
13866
  new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13867
  old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13868
 
13869
  /* Compare the ISAs.  */
13870
  if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13871
    {
13872
      (*_bfd_error_handler)
13873
        (_("%B: linking 32-bit code with 64-bit code"),
13874
         ibfd);
13875
      ok = FALSE;
13876
    }
13877
  else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13878
    {
13879
      /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
13880
      if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13881
        {
13882
          /* Copy the architecture info from IBFD to OBFD.  Also copy
13883
             the 32-bit flag (if set) so that we continue to recognise
13884
             OBFD as a 32-bit binary.  */
13885
          bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13886
          elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13887
          elf_elfheader (obfd)->e_flags
13888
            |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13889
 
13890
          /* Copy across the ABI flags if OBFD doesn't use them
13891
             and if that was what caused us to treat IBFD as 32-bit.  */
13892
          if ((old_flags & EF_MIPS_ABI) == 0
13893
              && mips_32bit_flags_p (new_flags)
13894
              && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13895
            elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13896
        }
13897
      else
13898
        {
13899
          /* The ISAs aren't compatible.  */
13900
          (*_bfd_error_handler)
13901
            (_("%B: linking %s module with previous %s modules"),
13902
             ibfd,
13903
             bfd_printable_name (ibfd),
13904
             bfd_printable_name (obfd));
13905
          ok = FALSE;
13906
        }
13907
    }
13908
 
13909
  new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13910
  old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13911
 
13912
  /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
13913
     does set EI_CLASS differently from any 32-bit ABI.  */
13914
  if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13915
      || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13916
          != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13917
    {
13918
      /* Only error if both are set (to different values).  */
13919
      if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13920
          || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13921
              != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13922
        {
13923
          (*_bfd_error_handler)
13924
            (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13925
             ibfd,
13926
             elf_mips_abi_name (ibfd),
13927
             elf_mips_abi_name (obfd));
13928
          ok = FALSE;
13929
        }
13930
      new_flags &= ~EF_MIPS_ABI;
13931
      old_flags &= ~EF_MIPS_ABI;
13932
    }
13933
 
13934 161 khays
  /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
13935
     and allow arbitrary mixing of the remaining ASEs (retain the union).  */
13936 14 khays
  if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13937
    {
13938 161 khays
      int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13939
      int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13940
      int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13941
      int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13942
      int micro_mis = old_m16 && new_micro;
13943
      int m16_mis = old_micro && new_m16;
13944
 
13945
      if (m16_mis || micro_mis)
13946
        {
13947
          (*_bfd_error_handler)
13948
            (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13949
             ibfd,
13950
             m16_mis ? "MIPS16" : "microMIPS",
13951
             m16_mis ? "microMIPS" : "MIPS16");
13952
          ok = FALSE;
13953
        }
13954
 
13955 14 khays
      elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13956
 
13957
      new_flags &= ~ EF_MIPS_ARCH_ASE;
13958
      old_flags &= ~ EF_MIPS_ARCH_ASE;
13959
    }
13960
 
13961
  /* Warn about any other mismatches */
13962
  if (new_flags != old_flags)
13963
    {
13964
      (*_bfd_error_handler)
13965
        (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13966
         ibfd, (unsigned long) new_flags,
13967
         (unsigned long) old_flags);
13968
      ok = FALSE;
13969
    }
13970
 
13971
  if (! ok)
13972
    {
13973
      bfd_set_error (bfd_error_bad_value);
13974
      return FALSE;
13975
    }
13976
 
13977
  return TRUE;
13978
}
13979
 
13980
/* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
13981
 
13982
bfd_boolean
13983
_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13984
{
13985
  BFD_ASSERT (!elf_flags_init (abfd)
13986
              || elf_elfheader (abfd)->e_flags == flags);
13987
 
13988
  elf_elfheader (abfd)->e_flags = flags;
13989
  elf_flags_init (abfd) = TRUE;
13990
  return TRUE;
13991
}
13992
 
13993
char *
13994
_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13995
{
13996
  switch (dtag)
13997
    {
13998
    default: return "";
13999
    case DT_MIPS_RLD_VERSION:
14000
      return "MIPS_RLD_VERSION";
14001
    case DT_MIPS_TIME_STAMP:
14002
      return "MIPS_TIME_STAMP";
14003
    case DT_MIPS_ICHECKSUM:
14004
      return "MIPS_ICHECKSUM";
14005
    case DT_MIPS_IVERSION:
14006
      return "MIPS_IVERSION";
14007
    case DT_MIPS_FLAGS:
14008
      return "MIPS_FLAGS";
14009
    case DT_MIPS_BASE_ADDRESS:
14010
      return "MIPS_BASE_ADDRESS";
14011
    case DT_MIPS_MSYM:
14012
      return "MIPS_MSYM";
14013
    case DT_MIPS_CONFLICT:
14014
      return "MIPS_CONFLICT";
14015
    case DT_MIPS_LIBLIST:
14016
      return "MIPS_LIBLIST";
14017
    case DT_MIPS_LOCAL_GOTNO:
14018
      return "MIPS_LOCAL_GOTNO";
14019
    case DT_MIPS_CONFLICTNO:
14020
      return "MIPS_CONFLICTNO";
14021
    case DT_MIPS_LIBLISTNO:
14022
      return "MIPS_LIBLISTNO";
14023
    case DT_MIPS_SYMTABNO:
14024
      return "MIPS_SYMTABNO";
14025
    case DT_MIPS_UNREFEXTNO:
14026
      return "MIPS_UNREFEXTNO";
14027
    case DT_MIPS_GOTSYM:
14028
      return "MIPS_GOTSYM";
14029
    case DT_MIPS_HIPAGENO:
14030
      return "MIPS_HIPAGENO";
14031
    case DT_MIPS_RLD_MAP:
14032
      return "MIPS_RLD_MAP";
14033
    case DT_MIPS_DELTA_CLASS:
14034
      return "MIPS_DELTA_CLASS";
14035
    case DT_MIPS_DELTA_CLASS_NO:
14036
      return "MIPS_DELTA_CLASS_NO";
14037
    case DT_MIPS_DELTA_INSTANCE:
14038
      return "MIPS_DELTA_INSTANCE";
14039
    case DT_MIPS_DELTA_INSTANCE_NO:
14040
      return "MIPS_DELTA_INSTANCE_NO";
14041
    case DT_MIPS_DELTA_RELOC:
14042
      return "MIPS_DELTA_RELOC";
14043
    case DT_MIPS_DELTA_RELOC_NO:
14044
      return "MIPS_DELTA_RELOC_NO";
14045
    case DT_MIPS_DELTA_SYM:
14046
      return "MIPS_DELTA_SYM";
14047
    case DT_MIPS_DELTA_SYM_NO:
14048
      return "MIPS_DELTA_SYM_NO";
14049
    case DT_MIPS_DELTA_CLASSSYM:
14050
      return "MIPS_DELTA_CLASSSYM";
14051
    case DT_MIPS_DELTA_CLASSSYM_NO:
14052
      return "MIPS_DELTA_CLASSSYM_NO";
14053
    case DT_MIPS_CXX_FLAGS:
14054
      return "MIPS_CXX_FLAGS";
14055
    case DT_MIPS_PIXIE_INIT:
14056
      return "MIPS_PIXIE_INIT";
14057
    case DT_MIPS_SYMBOL_LIB:
14058
      return "MIPS_SYMBOL_LIB";
14059
    case DT_MIPS_LOCALPAGE_GOTIDX:
14060
      return "MIPS_LOCALPAGE_GOTIDX";
14061
    case DT_MIPS_LOCAL_GOTIDX:
14062
      return "MIPS_LOCAL_GOTIDX";
14063
    case DT_MIPS_HIDDEN_GOTIDX:
14064
      return "MIPS_HIDDEN_GOTIDX";
14065
    case DT_MIPS_PROTECTED_GOTIDX:
14066
      return "MIPS_PROTECTED_GOT_IDX";
14067
    case DT_MIPS_OPTIONS:
14068
      return "MIPS_OPTIONS";
14069
    case DT_MIPS_INTERFACE:
14070
      return "MIPS_INTERFACE";
14071
    case DT_MIPS_DYNSTR_ALIGN:
14072
      return "DT_MIPS_DYNSTR_ALIGN";
14073
    case DT_MIPS_INTERFACE_SIZE:
14074
      return "DT_MIPS_INTERFACE_SIZE";
14075
    case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14076
      return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14077
    case DT_MIPS_PERF_SUFFIX:
14078
      return "DT_MIPS_PERF_SUFFIX";
14079
    case DT_MIPS_COMPACT_SIZE:
14080
      return "DT_MIPS_COMPACT_SIZE";
14081
    case DT_MIPS_GP_VALUE:
14082
      return "DT_MIPS_GP_VALUE";
14083
    case DT_MIPS_AUX_DYNAMIC:
14084
      return "DT_MIPS_AUX_DYNAMIC";
14085
    case DT_MIPS_PLTGOT:
14086
      return "DT_MIPS_PLTGOT";
14087
    case DT_MIPS_RWPLT:
14088
      return "DT_MIPS_RWPLT";
14089
    }
14090
}
14091
 
14092
bfd_boolean
14093
_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14094
{
14095
  FILE *file = ptr;
14096
 
14097
  BFD_ASSERT (abfd != NULL && ptr != NULL);
14098
 
14099
  /* Print normal ELF private data.  */
14100
  _bfd_elf_print_private_bfd_data (abfd, ptr);
14101
 
14102
  /* xgettext:c-format */
14103
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14104
 
14105
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14106
    fprintf (file, _(" [abi=O32]"));
14107
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14108
    fprintf (file, _(" [abi=O64]"));
14109
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14110
    fprintf (file, _(" [abi=EABI32]"));
14111
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14112
    fprintf (file, _(" [abi=EABI64]"));
14113
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14114
    fprintf (file, _(" [abi unknown]"));
14115
  else if (ABI_N32_P (abfd))
14116
    fprintf (file, _(" [abi=N32]"));
14117
  else if (ABI_64_P (abfd))
14118
    fprintf (file, _(" [abi=64]"));
14119
  else
14120
    fprintf (file, _(" [no abi set]"));
14121
 
14122
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14123
    fprintf (file, " [mips1]");
14124
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14125
    fprintf (file, " [mips2]");
14126
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14127
    fprintf (file, " [mips3]");
14128
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14129
    fprintf (file, " [mips4]");
14130
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14131
    fprintf (file, " [mips5]");
14132
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14133
    fprintf (file, " [mips32]");
14134
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14135
    fprintf (file, " [mips64]");
14136
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14137
    fprintf (file, " [mips32r2]");
14138
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14139
    fprintf (file, " [mips64r2]");
14140
  else
14141
    fprintf (file, _(" [unknown ISA]"));
14142
 
14143
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14144
    fprintf (file, " [mdmx]");
14145
 
14146
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14147
    fprintf (file, " [mips16]");
14148
 
14149 161 khays
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14150
    fprintf (file, " [micromips]");
14151
 
14152 14 khays
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14153
    fprintf (file, " [32bitmode]");
14154
  else
14155
    fprintf (file, _(" [not 32bitmode]"));
14156
 
14157
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14158
    fprintf (file, " [noreorder]");
14159
 
14160
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14161
    fprintf (file, " [PIC]");
14162
 
14163
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14164
    fprintf (file, " [CPIC]");
14165
 
14166
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14167
    fprintf (file, " [XGOT]");
14168
 
14169
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14170
    fprintf (file, " [UCODE]");
14171
 
14172
  fputc ('\n', file);
14173
 
14174
  return TRUE;
14175
}
14176
 
14177
const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14178
{
14179
  { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14180
  { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14181
  { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14182
  { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14183
  { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14184
  { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
14185
  { NULL,                     0,  0, 0,              0 }
14186
};
14187
 
14188
/* Merge non visibility st_other attributes.  Ensure that the
14189
   STO_OPTIONAL flag is copied into h->other, even if this is not a
14190
   definiton of the symbol.  */
14191
void
14192
_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14193
                                      const Elf_Internal_Sym *isym,
14194
                                      bfd_boolean definition,
14195
                                      bfd_boolean dynamic ATTRIBUTE_UNUSED)
14196
{
14197
  if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14198
    {
14199
      unsigned char other;
14200
 
14201
      other = (definition ? isym->st_other : h->other);
14202
      other &= ~ELF_ST_VISIBILITY (-1);
14203
      h->other = other | ELF_ST_VISIBILITY (h->other);
14204
    }
14205
 
14206
  if (!definition
14207
      && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14208
    h->other |= STO_OPTIONAL;
14209
}
14210
 
14211
/* Decide whether an undefined symbol is special and can be ignored.
14212
   This is the case for OPTIONAL symbols on IRIX.  */
14213
bfd_boolean
14214
_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14215
{
14216
  return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14217
}
14218
 
14219
bfd_boolean
14220
_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14221
{
14222
  return (sym->st_shndx == SHN_COMMON
14223
          || sym->st_shndx == SHN_MIPS_ACOMMON
14224
          || sym->st_shndx == SHN_MIPS_SCOMMON);
14225
}
14226
 
14227
/* Return address for Ith PLT stub in section PLT, for relocation REL
14228
   or (bfd_vma) -1 if it should not be included.  */
14229
 
14230
bfd_vma
14231
_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14232
                           const arelent *rel ATTRIBUTE_UNUSED)
14233
{
14234
  return (plt->vma
14235
          + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14236
          + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14237
}
14238
 
14239
void
14240
_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14241
{
14242
  struct mips_elf_link_hash_table *htab;
14243
  Elf_Internal_Ehdr *i_ehdrp;
14244
 
14245
  i_ehdrp = elf_elfheader (abfd);
14246
  if (link_info)
14247
    {
14248
      htab = mips_elf_hash_table (link_info);
14249
      BFD_ASSERT (htab != NULL);
14250
 
14251
      if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14252
        i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14253
    }
14254
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.