OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-arm.texi] - Blame information for rev 279

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 179 jshamlet
@c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2
@c 2006, 2007, 2008, 2009, 2010, 2011  Free Software Foundation, Inc.
3
@c This is part of the GAS manual.
4
@c For copying conditions, see the file as.texinfo.
5
 
6
@ifset GENERIC
7
@page
8
@node ARM-Dependent
9
@chapter ARM Dependent Features
10
@end ifset
11
 
12
@ifclear GENERIC
13
@node Machine Dependencies
14
@chapter ARM Dependent Features
15
@end ifclear
16
 
17
@cindex ARM support
18
@cindex Thumb support
19
@menu
20
* ARM Options::              Options
21
* ARM Syntax::               Syntax
22
* ARM Floating Point::       Floating Point
23
* ARM Directives::           ARM Machine Directives
24
* ARM Opcodes::              Opcodes
25
* ARM Mapping Symbols::      Mapping Symbols
26
* ARM Unwinding Tutorial::   Unwinding
27
@end menu
28
 
29
@node ARM Options
30
@section Options
31
@cindex ARM options (none)
32
@cindex options for ARM (none)
33
 
34
@table @code
35
 
36
@cindex @code{-mcpu=} command line option, ARM
37
@item -mcpu=@var{processor}[+@var{extension}@dots{}]
38
This option specifies the target processor.  The assembler will issue an
39
error message if an attempt is made to assemble an instruction which
40
will not execute on the target processor.  The following processor names are
41
recognized:
42
@code{arm1},
43
@code{arm2},
44
@code{arm250},
45
@code{arm3},
46
@code{arm6},
47
@code{arm60},
48
@code{arm600},
49
@code{arm610},
50
@code{arm620},
51
@code{arm7},
52
@code{arm7m},
53
@code{arm7d},
54
@code{arm7dm},
55
@code{arm7di},
56
@code{arm7dmi},
57
@code{arm70},
58
@code{arm700},
59
@code{arm700i},
60
@code{arm710},
61
@code{arm710t},
62
@code{arm720},
63
@code{arm720t},
64
@code{arm740t},
65
@code{arm710c},
66
@code{arm7100},
67
@code{arm7500},
68
@code{arm7500fe},
69
@code{arm7t},
70
@code{arm7tdmi},
71
@code{arm7tdmi-s},
72
@code{arm8},
73
@code{arm810},
74
@code{strongarm},
75
@code{strongarm1},
76
@code{strongarm110},
77
@code{strongarm1100},
78
@code{strongarm1110},
79
@code{arm9},
80
@code{arm920},
81
@code{arm920t},
82
@code{arm922t},
83
@code{arm940t},
84
@code{arm9tdmi},
85
@code{fa526} (Faraday FA526 processor),
86
@code{fa626} (Faraday FA626 processor),
87
@code{arm9e},
88
@code{arm926e},
89
@code{arm926ej-s},
90
@code{arm946e-r0},
91
@code{arm946e},
92
@code{arm946e-s},
93
@code{arm966e-r0},
94
@code{arm966e},
95
@code{arm966e-s},
96
@code{arm968e-s},
97
@code{arm10t},
98
@code{arm10tdmi},
99
@code{arm10e},
100
@code{arm1020},
101
@code{arm1020t},
102
@code{arm1020e},
103
@code{arm1022e},
104
@code{arm1026ej-s},
105
@code{fa606te} (Faraday FA606TE processor),
106
@code{fa616te} (Faraday FA616TE processor),
107
@code{fa626te} (Faraday FA626TE processor),
108
@code{fmp626} (Faraday FMP626 processor),
109
@code{fa726te} (Faraday FA726TE processor),
110
@code{arm1136j-s},
111
@code{arm1136jf-s},
112
@code{arm1156t2-s},
113
@code{arm1156t2f-s},
114
@code{arm1176jz-s},
115
@code{arm1176jzf-s},
116
@code{mpcore},
117
@code{mpcorenovfp},
118
@code{cortex-a5},
119
@code{cortex-a7},
120
@code{cortex-a8},
121
@code{cortex-a9},
122
@code{cortex-a15},
123
@code{cortex-r4},
124
@code{cortex-r4f},
125
@code{cortex-m4},
126
@code{cortex-m3},
127
@code{cortex-m1},
128
@code{cortex-m0},
129
@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
130
@code{i80200} (Intel XScale processor)
131
@code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
132
and
133
@code{xscale}.
134
The special name @code{all} may be used to allow the
135
assembler to accept instructions valid for any ARM processor.
136
 
137
In addition to the basic instruction set, the assembler can be told to
138
accept various extension mnemonics that extend the processor using the
139
co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
140
is equivalent to specifying @code{-mcpu=ep9312}.
141
 
142
Multiple extensions may be specified, separated by a @code{+}.  The
143
extensions should be specified in ascending alphabetical order.
144
 
145
Some extensions may be restricted to particular architectures; this is
146
documented in the list of extensions below.
147
 
148
Extension mnemonics may also be removed from those the assembler accepts.
149
This is done be prepending @code{no} to the option that adds the extension.
150
Extensions that are removed should be listed after all extensions which have
151
been added, again in ascending alphabetical order.  For example,
152
@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
153
 
154
 
155
The following extensions are currently supported:
156
@code{idiv}, (Integer Divide Extensions for v7-A and v7-R architectures),
157
@code{iwmmxt},
158
@code{iwmmxt2},
159
@code{maverick},
160
@code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
161
@code{os} (Operating System for v6M architecture),
162
@code{sec} (Security Extensions for v6K and v7-A architectures),
163
@code{virt} (Virtualization Extensions for v7-A architecture, implies
164
@code{idiv}),
165
and
166
@code{xscale}.
167
 
168
@cindex @code{-march=} command line option, ARM
169
@item -march=@var{architecture}[+@var{extension}@dots{}]
170
This option specifies the target architecture.  The assembler will issue
171
an error message if an attempt is made to assemble an instruction which
172
will not execute on the target architecture.  The following architecture
173
names are recognized:
174
@code{armv1},
175
@code{armv2},
176
@code{armv2a},
177
@code{armv2s},
178
@code{armv3},
179
@code{armv3m},
180
@code{armv4},
181
@code{armv4xm},
182
@code{armv4t},
183
@code{armv4txm},
184
@code{armv5},
185
@code{armv5t},
186
@code{armv5txm},
187
@code{armv5te},
188
@code{armv5texp},
189
@code{armv6},
190
@code{armv6j},
191
@code{armv6k},
192
@code{armv6z},
193
@code{armv6zk},
194
@code{armv6-m},
195
@code{armv6s-m},
196
@code{armv7},
197
@code{armv7-a},
198
@code{armv7-r},
199
@code{armv7-m},
200
@code{armv7e-m},
201
@code{iwmmxt}
202
and
203
@code{xscale}.
204
If both @code{-mcpu} and
205
@code{-march} are specified, the assembler will use
206
the setting for @code{-mcpu}.
207
 
208
The architecture option can be extended with the same instruction set
209
extension options as the @code{-mcpu} option.
210
 
211
@cindex @code{-mfpu=} command line option, ARM
212
@item -mfpu=@var{floating-point-format}
213
 
214
This option specifies the floating point format to assemble for.  The
215
assembler will issue an error message if an attempt is made to assemble
216
an instruction which will not execute on the target floating point unit.
217
The following format options are recognized:
218
@code{softfpa},
219
@code{fpe},
220
@code{fpe2},
221
@code{fpe3},
222
@code{fpa},
223
@code{fpa10},
224
@code{fpa11},
225
@code{arm7500fe},
226
@code{softvfp},
227
@code{softvfp+vfp},
228
@code{vfp},
229
@code{vfp10},
230
@code{vfp10-r0},
231
@code{vfp9},
232
@code{vfpxd},
233
@code{vfpv2},
234
@code{vfpv3},
235
@code{vfpv3-fp16},
236
@code{vfpv3-d16},
237
@code{vfpv3-d16-fp16},
238
@code{vfpv3xd},
239
@code{vfpv3xd-d16},
240
@code{vfpv4},
241
@code{vfpv4-d16},
242
@code{fpv4-sp-d16},
243
@code{arm1020t},
244
@code{arm1020e},
245
@code{arm1136jf-s},
246
@code{maverick},
247
@code{neon},
248
and
249
@code{neon-vfpv4}.
250
 
251
In addition to determining which instructions are assembled, this option
252
also affects the way in which the @code{.double} assembler directive behaves
253
when assembling little-endian code.
254
 
255
The default is dependent on the processor selected.  For Architecture 5 or
256
later, the default is to assembler for VFP instructions; for earlier
257
architectures the default is to assemble for FPA instructions.
258
 
259
@cindex @code{-mthumb} command line option, ARM
260
@item -mthumb
261
This option specifies that the assembler should start assembling Thumb
262
instructions; that is, it should behave as though the file starts with a
263
@code{.code 16} directive.
264
 
265
@cindex @code{-mthumb-interwork} command line option, ARM
266
@item -mthumb-interwork
267
This option specifies that the output generated by the assembler should
268
be marked as supporting interworking.
269
 
270
@cindex @code{-mimplicit-it} command line option, ARM
271
@item -mimplicit-it=never
272
@itemx -mimplicit-it=always
273
@itemx -mimplicit-it=arm
274
@itemx -mimplicit-it=thumb
275
The @code{-mimplicit-it} option controls the behavior of the assembler when
276
conditional instructions are not enclosed in IT blocks.
277
There are four possible behaviors.
278
If @code{never} is specified, such constructs cause a warning in ARM
279
code and an error in Thumb-2 code.
280
If @code{always} is specified, such constructs are accepted in both
281
ARM and Thumb-2 code, where the IT instruction is added implicitly.
282
If @code{arm} is specified, such constructs are accepted in ARM code
283
and cause an error in Thumb-2 code.
284
If @code{thumb} is specified, such constructs cause a warning in ARM
285
code and are accepted in Thumb-2 code.  If you omit this option, the
286
behavior is equivalent to @code{-mimplicit-it=arm}.
287
 
288
@cindex @code{-mapcs-26} command line option, ARM
289
@cindex @code{-mapcs-32} command line option, ARM
290
@item -mapcs-26
291
@itemx -mapcs-32
292
These options specify that the output generated by the assembler should
293
be marked as supporting the indicated version of the Arm Procedure.
294
Calling Standard.
295
 
296
@cindex @code{-matpcs} command line option, ARM
297
@item -matpcs
298
This option specifies that the output generated by the assembler should
299
be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
300
enabled this option will cause the assembler to create an empty
301
debugging section in the object file called .arm.atpcs.  Debuggers can
302
use this to determine the ABI being used by.
303
 
304
@cindex @code{-mapcs-float} command line option, ARM
305
@item -mapcs-float
306
This indicates the floating point variant of the APCS should be
307
used.  In this variant floating point arguments are passed in FP
308
registers rather than integer registers.
309
 
310
@cindex @code{-mapcs-reentrant} command line option, ARM
311
@item -mapcs-reentrant
312
This indicates that the reentrant variant of the APCS should be used.
313
This variant supports position independent code.
314
 
315
@cindex @code{-mfloat-abi=} command line option, ARM
316
@item -mfloat-abi=@var{abi}
317
This option specifies that the output generated by the assembler should be
318
marked as using specified floating point ABI.
319
The following values are recognized:
320
@code{soft},
321
@code{softfp}
322
and
323
@code{hard}.
324
 
325
@cindex @code{-eabi=} command line option, ARM
326
@item -meabi=@var{ver}
327
This option specifies which EABI version the produced object files should
328
conform to.
329
The following values are recognized:
330
@code{gnu},
331
@code{4}
332
and
333
@code{5}.
334
 
335
@cindex @code{-EB} command line option, ARM
336
@item -EB
337
This option specifies that the output generated by the assembler should
338
be marked as being encoded for a big-endian processor.
339
 
340
@cindex @code{-EL} command line option, ARM
341
@item -EL
342
This option specifies that the output generated by the assembler should
343
be marked as being encoded for a little-endian processor.
344
 
345
@cindex @code{-k} command line option, ARM
346
@cindex PIC code generation for ARM
347
@item -k
348
This option specifies that the output of the assembler should be marked
349
as position-independent code (PIC).
350
 
351
@cindex @code{--fix-v4bx} command line option, ARM
352
@item --fix-v4bx
353
Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
354
the linker option of the same name.
355
 
356
@cindex @code{-mwarn-deprecated} command line option, ARM
357
@item -mwarn-deprecated
358
@itemx -mno-warn-deprecated
359
Enable or disable warnings about using deprecated options or
360
features.  The default is to warn.
361
 
362
@end table
363
 
364
 
365
@node ARM Syntax
366
@section Syntax
367
@menu
368
* ARM-Instruction-Set::      Instruction Set
369
* ARM-Chars::                Special Characters
370
* ARM-Regs::                 Register Names
371
* ARM-Relocations::          Relocations
372
* ARM-Neon-Alignment::       NEON Alignment Specifiers
373
@end menu
374
 
375
@node ARM-Instruction-Set
376
@subsection Instruction Set Syntax
377
Two slightly different syntaxes are support for ARM and THUMB
378
instructions.  The default, @code{divided}, uses the old style where
379
ARM and THUMB instructions had their own, separate syntaxes.  The new,
380
@code{unified} syntax, which can be selected via the @code{.syntax}
381
directive, and has the following main features:
382
 
383
@table @bullet
384
@item
385
Immediate operands do not require a @code{#} prefix.
386
 
387
@item
388
The @code{IT} instruction may appear, and if it does it is validated
389
against subsequent conditional affixes.  In ARM mode it does not
390
generate machine code, in THUMB mode it does.
391
 
392
@item
393
For ARM instructions the conditional affixes always appear at the end
394
of the instruction.  For THUMB instructions conditional affixes can be
395
used, but only inside the scope of an @code{IT} instruction.
396
 
397
@item
398
All of the instructions new to the V6T2 architecture (and later) are
399
available.  (Only a few such instructions can be written in the
400
@code{divided} syntax).
401
 
402
@item
403
The @code{.N} and @code{.W} suffixes are recognized and honored.
404
 
405
@item
406
All instructions set the flags if and only if they have an @code{s}
407
affix.
408
@end table
409
 
410
@node ARM-Chars
411
@subsection Special Characters
412
 
413
@cindex line comment character, ARM
414
@cindex ARM line comment character
415
The presence of a @samp{@@} anywhere on a line indicates the start of
416
a comment that extends to the end of that line.
417
 
418
If a @samp{#} appears as the first character of a line then the whole
419
line is treated as a comment, but in this case the line could also be
420
a logical line number directive (@pxref{Comments}) or a preprocessor
421
control command (@pxref{Preprocessing}).
422
 
423
@cindex line separator, ARM
424
@cindex statement separator, ARM
425
@cindex ARM line separator
426
The @samp{;} character can be used instead of a newline to separate
427
statements.
428
 
429
@cindex immediate character, ARM
430
@cindex ARM immediate character
431
Either @samp{#} or @samp{$} can be used to indicate immediate operands.
432
 
433
@cindex identifiers, ARM
434
@cindex ARM identifiers
435
*TODO* Explain about /data modifier on symbols.
436
 
437
@node ARM-Regs
438
@subsection Register Names
439
 
440
@cindex ARM register names
441
@cindex register names, ARM
442
*TODO* Explain about ARM register naming, and the predefined names.
443
 
444
@node ARM-Neon-Alignment
445
@subsection NEON Alignment Specifiers
446
 
447
@cindex alignment for NEON instructions
448
Some NEON load/store instructions allow an optional address
449
alignment qualifier.
450
The ARM documentation specifies that this is indicated by
451
@samp{@@ @var{align}}. However GAS already interprets
452
the @samp{@@} character as a "line comment" start,
453
so @samp{: @var{align}} is used instead.  For example:
454
 
455
@smallexample
456
        vld1.8 @{q0@}, [r0, :128]
457
@end smallexample
458
 
459
@node ARM Floating Point
460
@section Floating Point
461
 
462
@cindex floating point, ARM (@sc{ieee})
463
@cindex ARM floating point (@sc{ieee})
464
The ARM family uses @sc{ieee} floating-point numbers.
465
 
466
@node ARM-Relocations
467
@subsection ARM relocation generation
468
 
469
@cindex data relocations, ARM
470
@cindex ARM data relocations
471
Specific data relocations can be generated by putting the relocation name
472
in parentheses after the symbol name.  For example:
473
 
474
@smallexample
475
        .word foo(TARGET1)
476
@end smallexample
477
 
478
This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
479
@var{foo}.
480
The following relocations are supported:
481
@code{GOT},
482
@code{GOTOFF},
483
@code{TARGET1},
484
@code{TARGET2},
485
@code{SBREL},
486
@code{TLSGD},
487
@code{TLSLDM},
488
@code{TLSLDO},
489
@code{TLSDESC},
490
@code{TLSCALL},
491
@code{GOTTPOFF},
492
@code{GOT_PREL}
493
and
494
@code{TPOFF}.
495
 
496
For compatibility with older toolchains the assembler also accepts
497
@code{(PLT)} after branch targets.  On legacy targets this will
498
generate the deprecated @samp{R_ARM_PLT32} relocation.  On EABI
499
targets it will encode either the @samp{R_ARM_CALL} or
500
@samp{R_ARM_JUMP24} relocation, as appropriate.
501
 
502
@cindex MOVW and MOVT relocations, ARM
503
Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
504
by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
505
respectively.  For example to load the 32-bit address of foo into r0:
506
 
507
@smallexample
508
        MOVW r0, #:lower16:foo
509
        MOVT r0, #:upper16:foo
510
@end smallexample
511
 
512
@node ARM Directives
513
@section ARM Machine Directives
514
 
515
@cindex machine directives, ARM
516
@cindex ARM machine directives
517
@table @code
518
 
519
@c AAAAAAAAAAAAAAAAAAAAAAAAA
520
 
521
@cindex @code{.2byte} directive, ARM
522
@cindex @code{.4byte} directive, ARM
523
@cindex @code{.8byte} directive, ARM
524
@item .2byte @var{expression} [, @var{expression}]*
525
@itemx .4byte @var{expression} [, @var{expression}]*
526
@itemx .8byte @var{expression} [, @var{expression}]*
527
These directives write 2, 4 or 8 byte values to the output section.
528
 
529
@cindex @code{.align} directive, ARM
530
@item .align @var{expression} [, @var{expression}]
531
This is the generic @var{.align} directive.  For the ARM however if the
532
first argument is zero (ie no alignment is needed) the assembler will
533
behave as if the argument had been 2 (ie pad to the next four byte
534
boundary).  This is for compatibility with ARM's own assembler.
535
 
536
@cindex @code{.arch} directive, ARM
537
@item .arch @var{name}
538
Select the target architecture.  Valid values for @var{name} are the same as
539
for the @option{-march} commandline option.
540
 
541
Specifying @code{.arch} clears any previously selected architecture
542
extensions.
543
 
544
@cindex @code{.arch_extension} directive, ARM
545
@item .arch_extension @var{name}
546
Add or remove an architecture extension to the target architecture.  Valid
547
values for @var{name} are the same as those accepted as architectural
548
extensions by the @option{-mcpu} commandline option.
549
 
550
@code{.arch_extension} may be used multiple times to add or remove extensions
551
incrementally to the architecture being compiled for.
552
 
553
@cindex @code{.arm} directive, ARM
554
@item .arm
555
This performs the same action as @var{.code 32}.
556
 
557
@anchor{arm_pad}
558
@cindex @code{.pad} directive, ARM
559
@item .pad #@var{count}
560
Generate unwinder annotations for a stack adjustment of @var{count} bytes.
561
A positive value indicates the function prologue allocated stack space by
562
decrementing the stack pointer.
563
 
564
@c BBBBBBBBBBBBBBBBBBBBBBBBBB
565
 
566
@cindex @code{.bss} directive, ARM
567
@item .bss
568
This directive switches to the @code{.bss} section.
569
 
570
@c CCCCCCCCCCCCCCCCCCCCCCCCCC
571
 
572
@cindex @code{.cantunwind} directive, ARM
573
@item .cantunwind
574
Prevents unwinding through the current function.  No personality routine
575
or exception table data is required or permitted.
576
 
577
@cindex @code{.code} directive, ARM
578
@item .code @code{[16|32]}
579
This directive selects the instruction set being generated. The value 16
580
selects Thumb, with the value 32 selecting ARM.
581
 
582
@cindex @code{.cpu} directive, ARM
583
@item .cpu @var{name}
584
Select the target processor.  Valid values for @var{name} are the same as
585
for the @option{-mcpu} commandline option.
586
 
587
Specifying @code{.cpu} clears any previously selected architecture
588
extensions.
589
 
590
@c DDDDDDDDDDDDDDDDDDDDDDDDDD
591
 
592
@cindex @code{.dn} and @code{.qn} directives, ARM
593
@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
594
@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
595
 
596
The @code{dn} and @code{qn} directives are used to create typed
597
and/or indexed register aliases for use in Advanced SIMD Extension
598
(Neon) instructions.  The former should be used to create aliases
599
of double-precision registers, and the latter to create aliases of
600
quad-precision registers.
601
 
602
If these directives are used to create typed aliases, those aliases can
603
be used in Neon instructions instead of writing types after the mnemonic
604
or after each operand.  For example:
605
 
606
@smallexample
607
        x .dn d2.f32
608
        y .dn d3.f32
609
        z .dn d4.f32[1]
610
        vmul x,y,z
611
@end smallexample
612
 
613
This is equivalent to writing the following:
614
 
615
@smallexample
616
        vmul.f32 d2,d3,d4[1]
617
@end smallexample
618
 
619
Aliases created using @code{dn} or @code{qn} can be destroyed using
620
@code{unreq}.
621
 
622
@c EEEEEEEEEEEEEEEEEEEEEEEEEE
623
 
624
@cindex @code{.eabi_attribute} directive, ARM
625
@item .eabi_attribute @var{tag}, @var{value}
626
Set the EABI object attribute @var{tag} to @var{value}.
627
 
628
The @var{tag} is either an attribute number, or one of the following:
629
@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
630
@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
631
@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
632
@code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
633
@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
634
@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
635
@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
636
@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
637
@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
638
@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
639
@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
640
@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
641
@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
642
@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
643
@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
644
@code{Tag_MPextension_use}, @code{Tag_DIV_use},
645
@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
646
@code{Tag_conformance}, @code{Tag_T2EE_use},
647
@code{Tag_Virtualization_use}
648
 
649
The @var{value} is either a @code{number}, @code{"string"}, or
650
@code{number, "string"} depending on the tag.
651
 
652
Note - the following legacy values are also accepted by @var{tag}:
653
@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
654
@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
655
 
656
@cindex @code{.even} directive, ARM
657
@item .even
658
This directive aligns to an even-numbered address.
659
 
660
@cindex @code{.extend} directive, ARM
661
@cindex @code{.ldouble} directive, ARM
662
@item .extend  @var{expression} [, @var{expression}]*
663
@itemx .ldouble  @var{expression} [, @var{expression}]*
664
These directives write 12byte long double floating-point values to the
665
output section.  These are not compatible with current ARM processors
666
or ABIs.
667
 
668
@c FFFFFFFFFFFFFFFFFFFFFFFFFF
669
 
670
@anchor{arm_fnend}
671
@cindex @code{.fnend} directive, ARM
672
@item .fnend
673
Marks the end of a function with an unwind table entry.  The unwind index
674
table entry is created when this directive is processed.
675
 
676
If no personality routine has been specified then standard personality
677
routine 0 or 1 will be used, depending on the number of unwind opcodes
678
required.
679
 
680
@anchor{arm_fnstart}
681
@cindex @code{.fnstart} directive, ARM
682
@item .fnstart
683
Marks the start of a function with an unwind table entry.
684
 
685
@cindex @code{.force_thumb} directive, ARM
686
@item .force_thumb
687
This directive forces the selection of Thumb instructions, even if the
688
target processor does not support those instructions
689
 
690
@cindex @code{.fpu} directive, ARM
691
@item .fpu @var{name}
692
Select the floating-point unit to assemble for.  Valid values for @var{name}
693
are the same as for the @option{-mfpu} commandline option.
694
 
695
@c GGGGGGGGGGGGGGGGGGGGGGGGGG
696
@c HHHHHHHHHHHHHHHHHHHHHHHHHH
697
 
698
@cindex @code{.handlerdata} directive, ARM
699
@item .handlerdata
700
Marks the end of the current function, and the start of the exception table
701
entry for that function.  Anything between this directive and the
702
@code{.fnend} directive will be added to the exception table entry.
703
 
704
Must be preceded by a @code{.personality} or @code{.personalityindex}
705
directive.
706
 
707
@c IIIIIIIIIIIIIIIIIIIIIIIIII
708
 
709
@cindex @code{.inst} directive, ARM
710
@item .inst @var{opcode} [ , @dots{} ]
711
@itemx .inst.n @var{opcode} [ , @dots{} ]
712
@itemx .inst.w @var{opcode} [ , @dots{} ]
713
Generates the instruction corresponding to the numerical value @var{opcode}.
714
@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
715
specified explicitly, overriding the normal encoding rules.
716
 
717
@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
718
@c KKKKKKKKKKKKKKKKKKKKKKKKKK
719
@c LLLLLLLLLLLLLLLLLLLLLLLLLL
720
 
721
@item .ldouble  @var{expression} [, @var{expression}]*
722
See @code{.extend}.
723
 
724
@cindex @code{.ltorg} directive, ARM
725
@item .ltorg
726
This directive causes the current contents of the literal pool to be
727
dumped into the current section (which is assumed to be the .text
728
section) at the current location (aligned to a word boundary).
729
@code{GAS} maintains a separate literal pool for each section and each
730
sub-section.  The @code{.ltorg} directive will only affect the literal
731
pool of the current section and sub-section.  At the end of assembly
732
all remaining, un-empty literal pools will automatically be dumped.
733
 
734
Note - older versions of @code{GAS} would dump the current literal
735
pool any time a section change occurred.  This is no longer done, since
736
it prevents accurate control of the placement of literal pools.
737
 
738
@c MMMMMMMMMMMMMMMMMMMMMMMMMM
739
 
740
@cindex @code{.movsp} directive, ARM
741
@item .movsp @var{reg} [, #@var{offset}]
742
Tell the unwinder that @var{reg} contains an offset from the current
743
stack pointer.  If @var{offset} is not specified then it is assumed to be
744
zero.
745
 
746
@c NNNNNNNNNNNNNNNNNNNNNNNNNN
747
@c OOOOOOOOOOOOOOOOOOOOOOOOOO
748
 
749
@cindex @code{.object_arch} directive, ARM
750
@item .object_arch @var{name}
751
Override the architecture recorded in the EABI object attribute section.
752
Valid values for @var{name} are the same as for the @code{.arch} directive.
753
Typically this is useful when code uses runtime detection of CPU features.
754
 
755
@c PPPPPPPPPPPPPPPPPPPPPPPPPP
756
 
757
@cindex @code{.packed} directive, ARM
758
@item .packed  @var{expression} [, @var{expression}]*
759
This directive writes 12-byte packed floating-point values to the
760
output section.  These are not compatible with current ARM processors
761
or ABIs.
762
 
763
@cindex @code{.pad} directive, ARM
764
@item .pad #@var{count}
765
Generate unwinder annotations for a stack adjustment of @var{count} bytes.
766
A positive value indicates the function prologue allocated stack space by
767
decrementing the stack pointer.
768
 
769
@cindex @code{.personality} directive, ARM
770
@item .personality @var{name}
771
Sets the personality routine for the current function to @var{name}.
772
 
773
@cindex @code{.personalityindex} directive, ARM
774
@item .personalityindex @var{index}
775
Sets the personality routine for the current function to the EABI standard
776
routine number @var{index}
777
 
778
@cindex @code{.pool} directive, ARM
779
@item .pool
780
This is a synonym for .ltorg.
781
 
782
@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
783
@c RRRRRRRRRRRRRRRRRRRRRRRRRR
784
 
785
@cindex @code{.req} directive, ARM
786
@item @var{name} .req @var{register name}
787
This creates an alias for @var{register name} called @var{name}.  For
788
example:
789
 
790
@smallexample
791
        foo .req r0
792
@end smallexample
793
 
794
@c SSSSSSSSSSSSSSSSSSSSSSSSSS
795
 
796
@anchor{arm_save}
797
@cindex @code{.save} directive, ARM
798
@item .save @var{reglist}
799
Generate unwinder annotations to restore the registers in @var{reglist}.
800
The format of @var{reglist} is the same as the corresponding store-multiple
801
instruction.
802
 
803
@smallexample
804
@exdent @emph{core registers}
805
  .save @{r4, r5, r6, lr@}
806
  stmfd sp!, @{r4, r5, r6, lr@}
807
@exdent @emph{FPA registers}
808
  .save f4, 2
809
  sfmfd f4, 2, [sp]!
810
@exdent @emph{VFP registers}
811
  .save @{d8, d9, d10@}
812
  fstmdx sp!, @{d8, d9, d10@}
813
@exdent @emph{iWMMXt registers}
814
  .save @{wr10, wr11@}
815
  wstrd wr11, [sp, #-8]!
816
  wstrd wr10, [sp, #-8]!
817
or
818
  .save wr11
819
  wstrd wr11, [sp, #-8]!
820
  .save wr10
821
  wstrd wr10, [sp, #-8]!
822
@end smallexample
823
 
824
@anchor{arm_setfp}
825
@cindex @code{.setfp} directive, ARM
826
@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
827
Make all unwinder annotations relative to a frame pointer.  Without this
828
the unwinder will use offsets from the stack pointer.
829
 
830
The syntax of this directive is the same as the @code{add} or @code{mov}
831
instruction used to set the frame pointer.  @var{spreg} must be either
832
@code{sp} or mentioned in a previous @code{.movsp} directive.
833
 
834
@smallexample
835
.movsp ip
836
mov ip, sp
837
@dots{}
838
.setfp fp, ip, #4
839
add fp, ip, #4
840
@end smallexample
841
 
842
@cindex @code{.secrel32} directive, ARM
843
@item .secrel32 @var{expression} [, @var{expression}]*
844
This directive emits relocations that evaluate to the section-relative
845
offset of each expression's symbol.  This directive is only supported
846
for PE targets.
847
 
848
@cindex @code{.syntax} directive, ARM
849
@item .syntax [@code{unified} | @code{divided}]
850
This directive sets the Instruction Set Syntax as described in the
851
@ref{ARM-Instruction-Set} section.
852
 
853
@c TTTTTTTTTTTTTTTTTTTTTTTTTT
854
 
855
@cindex @code{.thumb} directive, ARM
856
@item .thumb
857
This performs the same action as @var{.code 16}.
858
 
859
@cindex @code{.thumb_func} directive, ARM
860
@item .thumb_func
861
This directive specifies that the following symbol is the name of a
862
Thumb encoded function.  This information is necessary in order to allow
863
the assembler and linker to generate correct code for interworking
864
between Arm and Thumb instructions and should be used even if
865
interworking is not going to be performed.  The presence of this
866
directive also implies @code{.thumb}
867
 
868
This directive is not neccessary when generating EABI objects.  On these
869
targets the encoding is implicit when generating Thumb code.
870
 
871
@cindex @code{.thumb_set} directive, ARM
872
@item .thumb_set
873
This performs the equivalent of a @code{.set} directive in that it
874
creates a symbol which is an alias for another symbol (possibly not yet
875
defined).  This directive also has the added property in that it marks
876
the aliased symbol as being a thumb function entry point, in the same
877
way that the @code{.thumb_func} directive does.
878
 
879
@cindex @code{.tlsdescseq} directive, ARM
880
@item .tlsdescseq @var{tls-variable}
881
This directive is used to annotate parts of an inlined TLS descriptor
882
trampoline.  Normally the trampoline is provided by the linker, and
883
this directive is not needed.
884
 
885
@c UUUUUUUUUUUUUUUUUUUUUUUUUU
886
 
887
@cindex @code{.unreq} directive, ARM
888
@item .unreq @var{alias-name}
889
This undefines a register alias which was previously defined using the
890
@code{req}, @code{dn} or @code{qn} directives.  For example:
891
 
892
@smallexample
893
        foo .req r0
894
        .unreq foo
895
@end smallexample
896
 
897
An error occurs if the name is undefined.  Note - this pseudo op can
898
be used to delete builtin in register name aliases (eg 'r0').  This
899
should only be done if it is really necessary.
900
 
901
@cindex @code{.unwind_raw} directive, ARM
902
@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
903
Insert one of more arbitary unwind opcode bytes, which are known to adjust
904
the stack pointer by @var{offset} bytes.
905
 
906
For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
907
@code{.save @{r0@}}
908
 
909
@c VVVVVVVVVVVVVVVVVVVVVVVVVV
910
 
911
@cindex @code{.vsave} directive, ARM
912
@item .vsave @var{vfp-reglist}
913
Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
914
using FLDMD.  Also works for VFPv3 registers
915
that are to be restored using VLDM.
916
The format of @var{vfp-reglist} is the same as the corresponding store-multiple
917
instruction.
918
 
919
@smallexample
920
@exdent @emph{VFP registers}
921
  .vsave @{d8, d9, d10@}
922
  fstmdd sp!, @{d8, d9, d10@}
923
@exdent @emph{VFPv3 registers}
924
  .vsave @{d15, d16, d17@}
925
  vstm sp!, @{d15, d16, d17@}
926
@end smallexample
927
 
928
Since FLDMX and FSTMX are now deprecated, this directive should be
929
used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
930
 
931
@c WWWWWWWWWWWWWWWWWWWWWWWWWW
932
@c XXXXXXXXXXXXXXXXXXXXXXXXXX
933
@c YYYYYYYYYYYYYYYYYYYYYYYYYY
934
@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
935
 
936
@end table
937
 
938
@node ARM Opcodes
939
@section Opcodes
940
 
941
@cindex ARM opcodes
942
@cindex opcodes for ARM
943
@code{@value{AS}} implements all the standard ARM opcodes.  It also
944
implements several pseudo opcodes, including several synthetic load
945
instructions.
946
 
947
@table @code
948
 
949
@cindex @code{NOP} pseudo op, ARM
950
@item NOP
951
@smallexample
952
  nop
953
@end smallexample
954
 
955
This pseudo op will always evaluate to a legal ARM instruction that does
956
nothing.  Currently it will evaluate to MOV r0, r0.
957
 
958
@cindex @code{LDR reg,=<label>} pseudo op, ARM
959
@item LDR
960
@smallexample
961
  ldr <register> , = <expression>
962
@end smallexample
963
 
964
If expression evaluates to a numeric constant then a MOV or MVN
965
instruction will be used in place of the LDR instruction, if the
966
constant can be generated by either of these instructions.  Otherwise
967
the constant will be placed into the nearest literal pool (if it not
968
already there) and a PC relative LDR instruction will be generated.
969
 
970
@cindex @code{ADR reg,<label>} pseudo op, ARM
971
@item ADR
972
@smallexample
973
  adr <register> <label>
974
@end smallexample
975
 
976
This instruction will load the address of @var{label} into the indicated
977
register.  The instruction will evaluate to a PC relative ADD or SUB
978
instruction depending upon where the label is located.  If the label is
979
out of range, or if it is not defined in the same file (and section) as
980
the ADR instruction, then an error will be generated.  This instruction
981
will not make use of the literal pool.
982
 
983
@cindex @code{ADRL reg,<label>} pseudo op, ARM
984
@item ADRL
985
@smallexample
986
  adrl <register> <label>
987
@end smallexample
988
 
989
This instruction will load the address of @var{label} into the indicated
990
register.  The instruction will evaluate to one or two PC relative ADD
991
or SUB instructions depending upon where the label is located.  If a
992
second instruction is not needed a NOP instruction will be generated in
993
its place, so that this instruction is always 8 bytes long.
994
 
995
If the label is out of range, or if it is not defined in the same file
996
(and section) as the ADRL instruction, then an error will be generated.
997
This instruction will not make use of the literal pool.
998
 
999
@end table
1000
 
1001
For information on the ARM or Thumb instruction sets, see @cite{ARM
1002
Software Development Toolkit Reference Manual}, Advanced RISC Machines
1003
Ltd.
1004
 
1005
@node ARM Mapping Symbols
1006
@section Mapping Symbols
1007
 
1008
The ARM ELF specification requires that special symbols be inserted
1009
into object files to mark certain features:
1010
 
1011
@table @code
1012
 
1013
@cindex @code{$a}
1014
@item $a
1015
At the start of a region of code containing ARM instructions.
1016
 
1017
@cindex @code{$t}
1018
@item $t
1019
At the start of a region of code containing THUMB instructions.
1020
 
1021
@cindex @code{$d}
1022
@item $d
1023
At the start of a region of data.
1024
 
1025
@end table
1026
 
1027
The assembler will automatically insert these symbols for you - there
1028
is no need to code them yourself.  Support for tagging symbols ($b,
1029
$f, $p and $m) which is also mentioned in the current ARM ELF
1030
specification is not implemented.  This is because they have been
1031
dropped from the new EABI and so tools cannot rely upon their
1032
presence.
1033
 
1034
@node ARM Unwinding Tutorial
1035
@section Unwinding
1036
 
1037
The ABI for the ARM Architecture specifies a standard format for
1038
exception unwind information.  This information is used when an
1039
exception is thrown to determine where control should be transferred.
1040
In particular, the unwind information is used to determine which
1041
function called the function that threw the exception, and which
1042
function called that one, and so forth.  This information is also used
1043
to restore the values of callee-saved registers in the function
1044
catching the exception.
1045
 
1046
If you are writing functions in assembly code, and those functions
1047
call other functions that throw exceptions, you must use assembly
1048
pseudo ops to ensure that appropriate exception unwind information is
1049
generated.  Otherwise, if one of the functions called by your assembly
1050
code throws an exception, the run-time library will be unable to
1051
unwind the stack through your assembly code and your program will not
1052
behave correctly.
1053
 
1054
To illustrate the use of these pseudo ops, we will examine the code
1055
that G++ generates for the following C++ input:
1056
 
1057
@verbatim
1058
void callee (int *);
1059
 
1060
int
1061
caller ()
1062
{
1063
  int i;
1064
  callee (&i);
1065
  return i;
1066
}
1067
@end verbatim
1068
 
1069
This example does not show how to throw or catch an exception from
1070
assembly code.  That is a much more complex operation and should
1071
always be done in a high-level language, such as C++, that directly
1072
supports exceptions.
1073
 
1074
The code generated by one particular version of G++ when compiling the
1075
example above is:
1076
 
1077
@verbatim
1078
_Z6callerv:
1079
        .fnstart
1080
.LFB2:
1081
        @ Function supports interworking.
1082
        @ args = 0, pretend = 0, frame = 8
1083
        @ frame_needed = 1, uses_anonymous_args = 0
1084
        stmfd   sp!, {fp, lr}
1085
        .save {fp, lr}
1086
.LCFI0:
1087
        .setfp fp, sp, #4
1088
        add     fp, sp, #4
1089
.LCFI1:
1090
        .pad #8
1091
        sub     sp, sp, #8
1092
.LCFI2:
1093
        sub     r3, fp, #8
1094
        mov     r0, r3
1095
        bl      _Z6calleePi
1096
        ldr     r3, [fp, #-8]
1097
        mov     r0, r3
1098
        sub     sp, fp, #4
1099
        ldmfd   sp!, {fp, lr}
1100
        bx      lr
1101
.LFE2:
1102
        .fnend
1103
@end verbatim
1104
 
1105
Of course, the sequence of instructions varies based on the options
1106
you pass to GCC and on the version of GCC in use.  The exact
1107
instructions are not important since we are focusing on the pseudo ops
1108
that are used to generate unwind information.
1109
 
1110
An important assumption made by the unwinder is that the stack frame
1111
does not change during the body of the function.  In particular, since
1112
we assume that the assembly code does not itself throw an exception,
1113
the only point where an exception can be thrown is from a call, such
1114
as the @code{bl} instruction above.  At each call site, the same saved
1115
registers (including @code{lr}, which indicates the return address)
1116
must be located in the same locations relative to the frame pointer.
1117
 
1118
The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1119
op appears immediately before the first instruction of the function
1120
while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1121
op appears immediately after the last instruction of the function.
1122
These pseudo ops specify the range of the function.
1123
 
1124
Only the order of the other pseudos ops (e.g., @code{.setfp} or
1125
@code{.pad}) matters; their exact locations are irrelevant.  In the
1126
example above, the compiler emits the pseudo ops with particular
1127
instructions.  That makes it easier to understand the code, but it is
1128
not required for correctness.  It would work just as well to emit all
1129
of the pseudo ops other than @code{.fnend} in the same order, but
1130
immediately after @code{.fnstart}.
1131
 
1132
The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1133
indicates registers that have been saved to the stack so that they can
1134
be restored before the function returns.  The argument to the
1135
@code{.save} pseudo op is a list of registers to save.  If a register
1136
is ``callee-saved'' (as specified by the ABI) and is modified by the
1137
function you are writing, then your code must save the value before it
1138
is modified and restore the original value before the function
1139
returns.  If an exception is thrown, the run-time library restores the
1140
values of these registers from their locations on the stack before
1141
returning control to the exception handler.  (Of course, if an
1142
exception is not thrown, the function that contains the @code{.save}
1143
pseudo op restores these registers in the function epilogue, as is
1144
done with the @code{ldmfd} instruction above.)
1145
 
1146
You do not have to save callee-saved registers at the very beginning
1147
of the function and you do not need to use the @code{.save} pseudo op
1148
immediately following the point at which the registers are saved.
1149
However, if you modify a callee-saved register, you must save it on
1150
the stack before modifying it and before calling any functions which
1151
might throw an exception.  And, you must use the @code{.save} pseudo
1152
op to indicate that you have done so.
1153
 
1154
The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1155
modification of the stack pointer that does not save any registers.
1156
The argument is the number of bytes (in decimal) that are subtracted
1157
from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
1158
subtracting from the stack pointer increases the size of the stack.)
1159
 
1160
The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1161
indicates the register that contains the frame pointer.  The first
1162
argument is the register that is set, which is typically @code{fp}.
1163
The second argument indicates the register from which the frame
1164
pointer takes its value.  The third argument, if present, is the value
1165
(in decimal) added to the register specified by the second argument to
1166
compute the value of the frame pointer.  You should not modify the
1167
frame pointer in the body of the function.
1168
 
1169
If you do not use a frame pointer, then you should not use the
1170
@code{.setfp} pseudo op.  If you do not use a frame pointer, then you
1171
should avoid modifying the stack pointer outside of the function
1172
prologue.  Otherwise, the run-time library will be unable to find
1173
saved registers when it is unwinding the stack.
1174
 
1175
The pseudo ops described above are sufficient for writing assembly
1176
code that calls functions which may throw exceptions.  If you need to
1177
know more about the object-file format used to represent unwind
1178
information, you may consult the @cite{Exception Handling ABI for the
1179
ARM Architecture} available from @uref{http://infocenter.arm.com}.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.