OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 147

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 147 khays
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@c man end
7
 
8
@ifset GENERIC
9
@page
10
@node i386-Dependent
11
@chapter 80386 Dependent Features
12
@end ifset
13
@ifclear GENERIC
14
@node Machine Dependencies
15
@chapter 80386 Dependent Features
16
@end ifclear
17
 
18
@cindex i386 support
19
@cindex i80386 support
20
@cindex x86-64 support
21
 
22
The i386 version @code{@value{AS}} supports both the original Intel 386
23
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24
extending the Intel architecture to 64-bits.
25
 
26
@menu
27
* i386-Options::                Options
28
* i386-Directives::             X86 specific directives
29
* i386-Syntax::                 Syntactical considerations
30
* i386-Mnemonics::              Instruction Naming
31
* i386-Regs::                   Register Naming
32
* i386-Prefixes::               Instruction Prefixes
33
* i386-Memory::                 Memory References
34
* i386-Jumps::                  Handling of Jump Instructions
35
* i386-Float::                  Floating Point
36
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
37
* i386-LWP::                    AMD's Lightweight Profiling Instructions
38
* i386-BMI::                    Bit Manipulation Instruction
39
* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
40
* i386-16bit::                  Writing 16-bit Code
41
* i386-Arch::                   Specifying an x86 CPU architecture
42
* i386-Bugs::                   AT&T Syntax bugs
43
* i386-Notes::                  Notes
44
@end menu
45
 
46
@node i386-Options
47
@section Options
48
 
49
@cindex options for i386
50
@cindex options for x86-64
51
@cindex i386 options
52
@cindex x86-64 options
53
 
54
The i386 version of @code{@value{AS}} has a few machine
55
dependent options:
56
 
57
@c man begin OPTIONS
58
@table @gcctabopt
59
@cindex @samp{--32} option, i386
60
@cindex @samp{--32} option, x86-64
61
@cindex @samp{--x32} option, i386
62
@cindex @samp{--x32} option, x86-64
63
@cindex @samp{--64} option, i386
64
@cindex @samp{--64} option, x86-64
65
@item --32 | --x32 | --64
66
Select the word size, either 32 bits or 64 bits.  @samp{--32}
67
implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68
imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69
respectively.
70
 
71
These options are only available with the ELF object file format, and
72
require that the necessary BFD support has been included (on a 32-bit
73
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74
usage and use x86-64 as target platform).
75
 
76
@item -n
77
By default, x86 GAS replaces multiple nop instructions used for
78
alignment within code sections with multi-byte nop instructions such
79
as leal 0(%esi,1),%esi.  This switch disables the optimization.
80
 
81
@cindex @samp{--divide} option, i386
82
@item --divide
83
On SVR4-derived platforms, the character @samp{/} is treated as a comment
84
character, which means that it cannot be used in expressions.  The
85
@samp{--divide} option turns @samp{/} into a normal character.  This does
86
not disable @samp{/} at the beginning of a line starting a comment, or
87
affect using @samp{#} for starting a comment.
88
 
89
@cindex @samp{-march=} option, i386
90
@cindex @samp{-march=} option, x86-64
91
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92
This option specifies the target processor.  The assembler will
93
issue an error message if an attempt is made to assemble an instruction
94
which will not execute on the target processor.  The following
95
processor names are recognized:
96
@code{i8086},
97
@code{i186},
98
@code{i286},
99
@code{i386},
100
@code{i486},
101
@code{i586},
102
@code{i686},
103
@code{pentium},
104
@code{pentiumpro},
105
@code{pentiumii},
106
@code{pentiumiii},
107
@code{pentium4},
108
@code{prescott},
109
@code{nocona},
110
@code{core},
111
@code{core2},
112
@code{corei7},
113
@code{l1om},
114
@code{k6},
115
@code{k6_2},
116
@code{athlon},
117
@code{opteron},
118
@code{k8},
119
@code{amdfam10},
120
@code{bdver1},
121
@code{bdver2},
122
@code{generic32} and
123
@code{generic64}.
124
 
125
In addition to the basic instruction set, the assembler can be told to
126
accept various extension mnemonics.  For example,
127
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
128
@var{vmx}.  The following extensions are currently supported:
129
@code{8087},
130
@code{287},
131
@code{387},
132
@code{no87},
133
@code{mmx},
134
@code{nommx},
135
@code{sse},
136
@code{sse2},
137
@code{sse3},
138
@code{ssse3},
139
@code{sse4.1},
140
@code{sse4.2},
141
@code{sse4},
142
@code{nosse},
143
@code{avx},
144
@code{noavx},
145
@code{vmx},
146
@code{smx},
147
@code{xsave},
148
@code{xsaveopt},
149
@code{aes},
150
@code{pclmul},
151
@code{fsgsbase},
152
@code{rdrnd},
153
@code{f16c},
154
@code{fma},
155
@code{movbe},
156
@code{ept},
157
@code{clflush},
158
@code{lwp},
159
@code{fma4},
160
@code{xop},
161
@code{syscall},
162
@code{rdtscp},
163
@code{3dnow},
164
@code{3dnowa},
165
@code{sse4a},
166
@code{sse5},
167
@code{svme},
168
@code{abm} and
169
@code{padlock}.
170
Note that rather than extending a basic instruction set, the extension
171
mnemonics starting with @code{no} revoke the respective functionality.
172
 
173
When the @code{.arch} directive is used with @option{-march}, the
174
@code{.arch} directive will take precedent.
175
 
176
@cindex @samp{-mtune=} option, i386
177
@cindex @samp{-mtune=} option, x86-64
178
@item -mtune=@var{CPU}
179
This option specifies a processor to optimize for. When used in
180
conjunction with the @option{-march} option, only instructions
181
of the processor specified by the @option{-march} option will be
182
generated.
183
 
184
Valid @var{CPU} values are identical to the processor list of
185
@option{-march=@var{CPU}}.
186
 
187
@cindex @samp{-msse2avx} option, i386
188
@cindex @samp{-msse2avx} option, x86-64
189
@item -msse2avx
190
This option specifies that the assembler should encode SSE instructions
191
with VEX prefix.
192
 
193
@cindex @samp{-msse-check=} option, i386
194
@cindex @samp{-msse-check=} option, x86-64
195
@item -msse-check=@var{none}
196
@itemx -msse-check=@var{warning}
197
@itemx -msse-check=@var{error}
198
These options control if the assembler should check SSE intructions.
199
@option{-msse-check=@var{none}} will make the assembler not to check SSE
200
instructions,  which is the default.  @option{-msse-check=@var{warning}}
201
will make the assembler issue a warning for any SSE intruction.
202
@option{-msse-check=@var{error}} will make the assembler issue an error
203
for any SSE intruction.
204
 
205
@cindex @samp{-mavxscalar=} option, i386
206
@cindex @samp{-mavxscalar=} option, x86-64
207
@item -mavxscalar=@var{128}
208
@itemx -mavxscalar=@var{256}
209
This options control how the assembler should encode scalar AVX
210
instructions.  @option{-mavxscalar=@var{128}} will encode scalar
211
AVX instructions with 128bit vector length, which is the default.
212
@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
213
with 256bit vector length.
214
 
215
@cindex @samp{-mmnemonic=} option, i386
216
@cindex @samp{-mmnemonic=} option, x86-64
217
@item -mmnemonic=@var{att}
218
@itemx -mmnemonic=@var{intel}
219
This option specifies instruction mnemonic for matching instructions.
220
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
221
take precedent.
222
 
223
@cindex @samp{-msyntax=} option, i386
224
@cindex @samp{-msyntax=} option, x86-64
225
@item -msyntax=@var{att}
226
@itemx -msyntax=@var{intel}
227
This option specifies instruction syntax when processing instructions.
228
The @code{.att_syntax} and @code{.intel_syntax} directives will
229
take precedent.
230
 
231
@cindex @samp{-mnaked-reg} option, i386
232
@cindex @samp{-mnaked-reg} option, x86-64
233
@item -mnaked-reg
234
This opetion specifies that registers don't require a @samp{%} prefix.
235
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
236
 
237
@end table
238
@c man end
239
 
240
@node i386-Directives
241
@section x86 specific Directives
242
 
243
@cindex machine directives, x86
244
@cindex x86 machine directives
245
@table @code
246
 
247
@cindex @code{lcomm} directive, COFF
248
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
249
Reserve @var{length} (an absolute expression) bytes for a local common
250
denoted by @var{symbol}.  The section and value of @var{symbol} are
251
those of the new local common.  The addresses are allocated in the bss
252
section, so that at run-time the bytes start off zeroed.  Since
253
@var{symbol} is not declared global, it is normally not visible to
254
@code{@value{LD}}.  The optional third parameter, @var{alignment},
255
specifies the desired alignment of the symbol in the bss section.
256
 
257
This directive is only available for COFF based x86 targets.
258
 
259
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
260
@c .largecomm
261
 
262
@end table
263
 
264
@node i386-Syntax
265
@section i386 Syntactical Considerations
266
@menu
267
* i386-Variations::           AT&T Syntax versus Intel Syntax
268
* i386-Chars::                Special Characters
269
@end menu
270
 
271
@node i386-Variations
272
@subsection AT&T Syntax versus Intel Syntax
273
 
274
@cindex i386 intel_syntax pseudo op
275
@cindex intel_syntax pseudo op, i386
276
@cindex i386 att_syntax pseudo op
277
@cindex att_syntax pseudo op, i386
278
@cindex i386 syntax compatibility
279
@cindex syntax compatibility, i386
280
@cindex x86-64 intel_syntax pseudo op
281
@cindex intel_syntax pseudo op, x86-64
282
@cindex x86-64 att_syntax pseudo op
283
@cindex att_syntax pseudo op, x86-64
284
@cindex x86-64 syntax compatibility
285
@cindex syntax compatibility, x86-64
286
 
287
@code{@value{AS}} now supports assembly using Intel assembler syntax.
288
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
289
back to the usual AT&T mode for compatibility with the output of
290
@code{@value{GCC}}.  Either of these directives may have an optional
291
argument, @code{prefix}, or @code{noprefix} specifying whether registers
292
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
293
different from Intel syntax.  We mention these differences because
294
almost all 80386 documents use Intel syntax.  Notable differences
295
between the two syntaxes are:
296
 
297
@cindex immediate operands, i386
298
@cindex i386 immediate operands
299
@cindex register operands, i386
300
@cindex i386 register operands
301
@cindex jump/call operands, i386
302
@cindex i386 jump/call operands
303
@cindex operand delimiters, i386
304
 
305
@cindex immediate operands, x86-64
306
@cindex x86-64 immediate operands
307
@cindex register operands, x86-64
308
@cindex x86-64 register operands
309
@cindex jump/call operands, x86-64
310
@cindex x86-64 jump/call operands
311
@cindex operand delimiters, x86-64
312
@itemize @bullet
313
@item
314
AT&T immediate operands are preceded by @samp{$}; Intel immediate
315
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
316
AT&T register operands are preceded by @samp{%}; Intel register operands
317
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
318
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
319
 
320
@cindex i386 source, destination operands
321
@cindex source, destination operands; i386
322
@cindex x86-64 source, destination operands
323
@cindex source, destination operands; x86-64
324
@item
325
AT&T and Intel syntax use the opposite order for source and destination
326
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
327
@samp{source, dest} convention is maintained for compatibility with
328
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
329
instructions with 2 immediate operands, such as the @samp{enter}
330
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
331
 
332
@cindex mnemonic suffixes, i386
333
@cindex sizes operands, i386
334
@cindex i386 size suffixes
335
@cindex mnemonic suffixes, x86-64
336
@cindex sizes operands, x86-64
337
@cindex x86-64 size suffixes
338
@item
339
In AT&T syntax the size of memory operands is determined from the last
340
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
341
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
342
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
343
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
344
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
345
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
346
syntax.
347
 
348
In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
349
instruction with the 64-bit displacement or immediate operand.
350
 
351
@cindex return instructions, i386
352
@cindex i386 jump, call, return
353
@cindex return instructions, x86-64
354
@cindex x86-64 jump, call, return
355
@item
356
Immediate form long jumps and calls are
357
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
358
Intel syntax is
359
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
360
instruction
361
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
362
@samp{ret far @var{stack-adjust}}.
363
 
364
@cindex sections, i386
365
@cindex i386 sections
366
@cindex sections, x86-64
367
@cindex x86-64 sections
368
@item
369
The AT&T assembler does not provide support for multiple section
370
programs.  Unix style systems expect all programs to be single sections.
371
@end itemize
372
 
373
@node i386-Chars
374
@subsection Special Characters
375
 
376
@cindex line comment character, i386
377
@cindex i386 line comment character
378
The presence of a @samp{#} appearing anywhere on a line indicates the
379
start of a comment that extends to the end of that line.
380
 
381
If a @samp{#} appears as the first character of a line then the whole
382
line is treated as a comment, but in this case the line can also be a
383
logical line number directive (@pxref{Comments}) or a preprocessor
384
control command (@pxref{Preprocessing}).
385
 
386
If the @option{--divide} command line option has not been specified
387
then the @samp{/} character appearing anywhere on a line also
388
introduces a line comment.
389
 
390
@cindex line separator, i386
391
@cindex statement separator, i386
392
@cindex i386 line separator
393
The @samp{;} character can be used to separate statements on the same
394
line.
395
 
396
@node i386-Mnemonics
397
@section Instruction Naming
398
 
399
@cindex i386 instruction naming
400
@cindex instruction naming, i386
401
@cindex x86-64 instruction naming
402
@cindex instruction naming, x86-64
403
 
404
Instruction mnemonics are suffixed with one character modifiers which
405
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
406
and @samp{q} specify byte, word, long and quadruple word operands.  If
407
no suffix is specified by an instruction then @code{@value{AS}} tries to
408
fill in the missing suffix based on the destination register operand
409
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
410
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
411
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
412
assembler which assumes that a missing mnemonic suffix implies long
413
operand size.  (This incompatibility does not affect compiler output
414
since compilers always explicitly specify the mnemonic suffix.)
415
 
416
Almost all instructions have the same names in AT&T and Intel format.
417
There are a few exceptions.  The sign extend and zero extend
418
instructions need two sizes to specify them.  They need a size to
419
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
420
is accomplished by using two instruction mnemonic suffixes in AT&T
421
syntax.  Base names for sign extend and zero extend are
422
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
423
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
424
are tacked on to this base name, the @emph{from} suffix before the
425
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
426
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
427
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
428
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
429
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
430
quadruple word).
431
 
432
@cindex encoding options, i386
433
@cindex encoding options, x86-64
434
 
435
Different encoding options can be specified via optional mnemonic
436
suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
437
moving from one register to another.  @samp{.d32} suffix forces 32bit
438
displacement in encoding.
439
 
440
@cindex conversion instructions, i386
441
@cindex i386 conversion instructions
442
@cindex conversion instructions, x86-64
443
@cindex x86-64 conversion instructions
444
The Intel-syntax conversion instructions
445
 
446
@itemize @bullet
447
@item
448
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
449
 
450
@item
451
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
452
 
453
@item
454
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
455
 
456
@item
457
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
458
 
459
@item
460
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
461
(x86-64 only),
462
 
463
@item
464
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
465
@samp{%rdx:%rax} (x86-64 only),
466
@end itemize
467
 
468
@noindent
469
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
470
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
471
instructions.
472
 
473
@cindex jump instructions, i386
474
@cindex call instructions, i386
475
@cindex jump instructions, x86-64
476
@cindex call instructions, x86-64
477
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
478
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
479
convention.
480
 
481
@section AT&T Mnemonic versus Intel Mnemonic
482
 
483
@cindex i386 mnemonic compatibility
484
@cindex mnemonic compatibility, i386
485
 
486
@code{@value{AS}} supports assembly using Intel mnemonic.
487
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
488
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
489
syntax for compatibility with the output of @code{@value{GCC}}.
490
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
491
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
492
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
493
assembler with different mnemonics from those in Intel IA32 specification.
494
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
495
 
496
@node i386-Regs
497
@section Register Naming
498
 
499
@cindex i386 registers
500
@cindex registers, i386
501
@cindex x86-64 registers
502
@cindex registers, x86-64
503
Register operands are always prefixed with @samp{%}.  The 80386 registers
504
consist of
505
 
506
@itemize @bullet
507
@item
508
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
509
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
510
frame pointer), and @samp{%esp} (the stack pointer).
511
 
512
@item
513
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
514
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
515
 
516
@item
517
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
518
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
519
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
520
@samp{%cx}, and @samp{%dx})
521
 
522
@item
523
the 6 section registers @samp{%cs} (code section), @samp{%ds}
524
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
525
and @samp{%gs}.
526
 
527
@item
528
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
529
@samp{%cr3}.
530
 
531
@item
532
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
533
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
534
 
535
@item
536
the 2 test registers @samp{%tr6} and @samp{%tr7}.
537
 
538
@item
539
the 8 floating point register stack @samp{%st} or equivalently
540
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
541
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
542
These registers are overloaded by 8 MMX registers @samp{%mm0},
543
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
544
@samp{%mm6} and @samp{%mm7}.
545
 
546
@item
547
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
548
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
549
@end itemize
550
 
551
The AMD x86-64 architecture extends the register set by:
552
 
553
@itemize @bullet
554
@item
555
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
556
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
557
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
558
pointer)
559
 
560
@item
561
the 8 extended registers @samp{%r8}--@samp{%r15}.
562
 
563
@item
564
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
565
 
566
@item
567
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
568
 
569
@item
570
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
571
 
572
@item
573
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
574
 
575
@item
576
the 8 debug registers: @samp{%db8}--@samp{%db15}.
577
 
578
@item
579
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
580
@end itemize
581
 
582
@node i386-Prefixes
583
@section Instruction Prefixes
584
 
585
@cindex i386 instruction prefixes
586
@cindex instruction prefixes, i386
587
@cindex prefixes, i386
588
Instruction prefixes are used to modify the following instruction.  They
589
are used to repeat string instructions, to provide section overrides, to
590
perform bus lock operations, and to change operand and address sizes.
591
(Most instructions that normally operate on 32-bit operands will use
592
16-bit operands if the instruction has an ``operand size'' prefix.)
593
Instruction prefixes are best written on the same line as the instruction
594
they act upon. For example, the @samp{scas} (scan string) instruction is
595
repeated with:
596
 
597
@smallexample
598
        repne scas %es:(%edi),%al
599
@end smallexample
600
 
601
You may also place prefixes on the lines immediately preceding the
602
instruction, but this circumvents checks that @code{@value{AS}} does
603
with prefixes, and will not work with all prefixes.
604
 
605
Here is a list of instruction prefixes:
606
 
607
@cindex section override prefixes, i386
608
@itemize @bullet
609
@item
610
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
611
@samp{fs}, @samp{gs}.  These are automatically added by specifying
612
using the @var{section}:@var{memory-operand} form for memory references.
613
 
614
@cindex size prefixes, i386
615
@item
616
Operand/Address size prefixes @samp{data16} and @samp{addr16}
617
change 32-bit operands/addresses into 16-bit operands/addresses,
618
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
619
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
620
@emph{must} appear on the same line of code as the instruction they
621
modify. For example, in a 16-bit @code{.code16} section, you might
622
write:
623
 
624
@smallexample
625
        addr32 jmpl *(%ebx)
626
@end smallexample
627
 
628
@cindex bus lock prefixes, i386
629
@cindex inhibiting interrupts, i386
630
@item
631
The bus lock prefix @samp{lock} inhibits interrupts during execution of
632
the instruction it precedes.  (This is only valid with certain
633
instructions; see a 80386 manual for details).
634
 
635
@cindex coprocessor wait, i386
636
@item
637
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
638
complete the current instruction.  This should never be needed for the
639
80386/80387 combination.
640
 
641
@cindex repeat prefixes, i386
642
@item
643
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
644
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
645
times if the current address size is 16-bits).
646
@cindex REX prefixes, i386
647
@item
648
The @samp{rex} family of prefixes is used by x86-64 to encode
649
extensions to i386 instruction set.  The @samp{rex} prefix has four
650
bits --- an operand size overwrite (@code{64}) used to change operand size
651
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
652
register set.
653
 
654
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
655
instruction emits @samp{rex} prefix with all the bits set.  By omitting
656
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
657
prefixes as well.  Normally, there is no need to write the prefixes
658
explicitly, since gas will automatically generate them based on the
659
instruction operands.
660
@end itemize
661
 
662
@node i386-Memory
663
@section Memory References
664
 
665
@cindex i386 memory references
666
@cindex memory references, i386
667
@cindex x86-64 memory references
668
@cindex memory references, x86-64
669
An Intel syntax indirect memory reference of the form
670
 
671
@smallexample
672
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
673
@end smallexample
674
 
675
@noindent
676
is translated into the AT&T syntax
677
 
678
@smallexample
679
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
680
@end smallexample
681
 
682
@noindent
683
where @var{base} and @var{index} are the optional 32-bit base and
684
index registers, @var{disp} is the optional displacement, and
685
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
686
to calculate the address of the operand.  If no @var{scale} is
687
specified, @var{scale} is taken to be 1.  @var{section} specifies the
688
optional section register for the memory operand, and may override the
689
default section register (see a 80386 manual for section register
690
defaults). Note that section overrides in AT&T syntax @emph{must}
691
be preceded by a @samp{%}.  If you specify a section override which
692
coincides with the default section register, @code{@value{AS}} does @emph{not}
693
output any section register override prefixes to assemble the given
694
instruction.  Thus, section overrides can be specified to emphasize which
695
section register is used for a given memory operand.
696
 
697
Here are some examples of Intel and AT&T style memory references:
698
 
699
@table @asis
700
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
701
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
702
missing, and the default section is used (@samp{%ss} for addressing with
703
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
704
 
705
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
706
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
707
@samp{foo}.  All other fields are missing.  The section register here
708
defaults to @samp{%ds}.
709
 
710
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
711
This uses the value pointed to by @samp{foo} as a memory operand.
712
Note that @var{base} and @var{index} are both missing, but there is only
713
@emph{one} @samp{,}.  This is a syntactic exception.
714
 
715
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
716
This selects the contents of the variable @samp{foo} with section
717
register @var{section} being @samp{%gs}.
718
@end table
719
 
720
Absolute (as opposed to PC relative) call and jump operands must be
721
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
722
always chooses PC relative addressing for jump/call labels.
723
 
724
Any instruction that has a memory operand, but no register operand,
725
@emph{must} specify its size (byte, word, long, or quadruple) with an
726
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
727
respectively).
728
 
729
The x86-64 architecture adds an RIP (instruction pointer relative)
730
addressing.  This addressing mode is specified by using @samp{rip} as a
731
base register.  Only constant offsets are valid. For example:
732
 
733
@table @asis
734
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
735
Points to the address 1234 bytes past the end of the current
736
instruction.
737
 
738
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
739
Points to the @code{symbol} in RIP relative way, this is shorter than
740
the default absolute addressing.
741
@end table
742
 
743
Other addressing modes remain unchanged in x86-64 architecture, except
744
registers used are 64-bit instead of 32-bit.
745
 
746
@node i386-Jumps
747
@section Handling of Jump Instructions
748
 
749
@cindex jump optimization, i386
750
@cindex i386 jump optimization
751
@cindex jump optimization, x86-64
752
@cindex x86-64 jump optimization
753
Jump instructions are always optimized to use the smallest possible
754
displacements.  This is accomplished by using byte (8-bit) displacement
755
jumps whenever the target is sufficiently close.  If a byte displacement
756
is insufficient a long displacement is used.  We do not support
757
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
758
instruction with the @samp{data16} instruction prefix), since the 80386
759
insists upon masking @samp{%eip} to 16 bits after the word displacement
760
is added. (See also @pxref{i386-Arch})
761
 
762
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
763
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
764
displacements, so that if you use these instructions (@code{@value{GCC}} does
765
not use them) you may get an error message (and incorrect code).  The AT&T
766
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
767
to
768
 
769
@smallexample
770
         jcxz cx_zero
771
         jmp cx_nonzero
772
cx_zero: jmp foo
773
cx_nonzero:
774
@end smallexample
775
 
776
@node i386-Float
777
@section Floating Point
778
 
779
@cindex i386 floating point
780
@cindex floating point, i386
781
@cindex x86-64 floating point
782
@cindex floating point, x86-64
783
All 80387 floating point types except packed BCD are supported.
784
(BCD support may be added without much difficulty).  These data
785
types are 16-, 32-, and 64- bit integers, and single (32-bit),
786
double (64-bit), and extended (80-bit) precision floating point.
787
Each supported type has an instruction mnemonic suffix and a constructor
788
associated with it.  Instruction mnemonic suffixes specify the operand's
789
data type.  Constructors build these data types into memory.
790
 
791
@cindex @code{float} directive, i386
792
@cindex @code{single} directive, i386
793
@cindex @code{double} directive, i386
794
@cindex @code{tfloat} directive, i386
795
@cindex @code{float} directive, x86-64
796
@cindex @code{single} directive, x86-64
797
@cindex @code{double} directive, x86-64
798
@cindex @code{tfloat} directive, x86-64
799
@itemize @bullet
800
@item
801
Floating point constructors are @samp{.float} or @samp{.single},
802
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
803
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
804
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
805
only supports this format via the @samp{fldt} (load 80-bit real to stack
806
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
807
 
808
@cindex @code{word} directive, i386
809
@cindex @code{long} directive, i386
810
@cindex @code{int} directive, i386
811
@cindex @code{quad} directive, i386
812
@cindex @code{word} directive, x86-64
813
@cindex @code{long} directive, x86-64
814
@cindex @code{int} directive, x86-64
815
@cindex @code{quad} directive, x86-64
816
@item
817
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
818
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
819
corresponding instruction mnemonic suffixes are @samp{s} (single),
820
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
821
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
822
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
823
stack) instructions.
824
@end itemize
825
 
826
Register to register operations should not use instruction mnemonic suffixes.
827
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
828
wrote @samp{fst %st, %st(1)}, since all register to register operations
829
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
830
which converts @samp{%st} from 80-bit to 64-bit floating point format,
831
then stores the result in the 4 byte location @samp{mem})
832
 
833
@node i386-SIMD
834
@section Intel's MMX and AMD's 3DNow! SIMD Operations
835
 
836
@cindex MMX, i386
837
@cindex 3DNow!, i386
838
@cindex SIMD, i386
839
@cindex MMX, x86-64
840
@cindex 3DNow!, x86-64
841
@cindex SIMD, x86-64
842
 
843
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
844
instructions for integer data), available on Intel's Pentium MMX
845
processors and Pentium II processors, AMD's K6 and K6-2 processors,
846
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
847
instruction set (SIMD instructions for 32-bit floating point data)
848
available on AMD's K6-2 processor and possibly others in the future.
849
 
850
Currently, @code{@value{AS}} does not support Intel's floating point
851
SIMD, Katmai (KNI).
852
 
853
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
854
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
855
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
856
floating point values.  The MMX registers cannot be used at the same time
857
as the floating point stack.
858
 
859
See Intel and AMD documentation, keeping in mind that the operand order in
860
instructions is reversed from the Intel syntax.
861
 
862
@node i386-LWP
863
@section AMD's Lightweight Profiling Instructions
864
 
865
@cindex LWP, i386
866
@cindex LWP, x86-64
867
 
868
@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
869
instruction set, available on AMD's Family 15h (Orochi) processors.
870
 
871
LWP enables applications to collect and manage performance data, and
872
react to performance events.  The collection of performance data
873
requires no context switches.  LWP runs in the context of a thread and
874
so several counters can be used independently across multiple threads.
875
LWP can be used in both 64-bit and legacy 32-bit modes.
876
 
877
For detailed information on the LWP instruction set, see the
878
@cite{AMD Lightweight Profiling Specification} available at
879
@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
880
 
881
@node i386-BMI
882
@section Bit Manipulation Instructions
883
 
884
@cindex BMI, i386
885
@cindex BMI, x86-64
886
 
887
@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
888
 
889
BMI instructions provide several instructions implementing individual
890
bit manipulation operations such as isolation, masking, setting, or
891
resetting.
892
 
893
@c Need to add a specification citation here when available.
894
 
895
@node i386-TBM
896
@section AMD's Trailing Bit Manipulation Instructions
897
 
898
@cindex TBM, i386
899
@cindex TBM, x86-64
900
 
901
@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
902
instruction set, available on AMD's BDVER2 processors (Trinity and
903
Viperfish).
904
 
905
TBM instructions provide instructions implementing individual bit
906
manipulation operations such as isolating, masking, setting, resetting,
907
complementing, and operations on trailing zeros and ones.
908
 
909
@c Need to add a specification citation here when available.
910
 
911
@node i386-16bit
912
@section Writing 16-bit Code
913
 
914
@cindex i386 16-bit code
915
@cindex 16-bit code, i386
916
@cindex real-mode code, i386
917
@cindex @code{code16gcc} directive, i386
918
@cindex @code{code16} directive, i386
919
@cindex @code{code32} directive, i386
920
@cindex @code{code64} directive, i386
921
@cindex @code{code64} directive, x86-64
922
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
923
or 64-bit x86-64 code depending on the default configuration,
924
it also supports writing code to run in real mode or in 16-bit protected
925
mode code segments.  To do this, put a @samp{.code16} or
926
@samp{.code16gcc} directive before the assembly language instructions to
927
be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
928
32-bit code with the @samp{.code32} directive or 64-bit code with the
929
@samp{.code64} directive.
930
 
931
@samp{.code16gcc} provides experimental support for generating 16-bit
932
code from gcc, and differs from @samp{.code16} in that @samp{call},
933
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
934
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
935
default to 32-bit size.  This is so that the stack pointer is
936
manipulated in the same way over function calls, allowing access to
937
function parameters at the same stack offsets as in 32-bit mode.
938
@samp{.code16gcc} also automatically adds address size prefixes where
939
necessary to use the 32-bit addressing modes that gcc generates.
940
 
941
The code which @code{@value{AS}} generates in 16-bit mode will not
942
necessarily run on a 16-bit pre-80386 processor.  To write code that
943
runs on such a processor, you must refrain from using @emph{any} 32-bit
944
constructs which require @code{@value{AS}} to output address or operand
945
size prefixes.
946
 
947
Note that writing 16-bit code instructions by explicitly specifying a
948
prefix or an instruction mnemonic suffix within a 32-bit code section
949
generates different machine instructions than those generated for a
950
16-bit code segment.  In a 32-bit code section, the following code
951
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
952
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
953
 
954
@smallexample
955
        pushw $4
956
@end smallexample
957
 
958
The same code in a 16-bit code section would generate the machine
959
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
960
is correct since the processor default operand size is assumed to be 16
961
bits in a 16-bit code section.
962
 
963
@node i386-Bugs
964
@section AT&T Syntax bugs
965
 
966
The UnixWare assembler, and probably other AT&T derived ix86 Unix
967
assemblers, generate floating point instructions with reversed source
968
and destination registers in certain cases.  Unfortunately, gcc and
969
possibly many other programs use this reversed syntax, so we're stuck
970
with it.
971
 
972
For example
973
 
974
@smallexample
975
        fsub %st,%st(3)
976
@end smallexample
977
@noindent
978
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
979
than the expected @samp{%st(3) - %st}.  This happens with all the
980
non-commutative arithmetic floating point operations with two register
981
operands where the source register is @samp{%st} and the destination
982
register is @samp{%st(i)}.
983
 
984
@node i386-Arch
985
@section Specifying CPU Architecture
986
 
987
@cindex arch directive, i386
988
@cindex i386 arch directive
989
@cindex arch directive, x86-64
990
@cindex x86-64 arch directive
991
 
992
@code{@value{AS}} may be told to assemble for a particular CPU
993
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
994
directive enables a warning when gas detects an instruction that is not
995
supported on the CPU specified.  The choices for @var{cpu_type} are:
996
 
997
@multitable @columnfractions .20 .20 .20 .20
998
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
999
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1000
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1001
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1002
@item @samp{corei7} @tab @samp{l1om}
1003
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1004
@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1005
@item @samp{generic32} @tab @samp{generic64}
1006
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1007
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1008
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1009
@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1010
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1011
@item @samp{.rdrnd} @tab @samp{.f16c}
1012
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1013
@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1014
@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1015
@item @samp{.padlock}
1016
@end multitable
1017
 
1018
Apart from the warning, there are only two other effects on
1019
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1020
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1021
will automatically use a two byte opcode sequence.  The larger three
1022
byte opcode sequence is used on the 486 (and when no architecture is
1023
specified) because it executes faster on the 486.  Note that you can
1024
explicitly request the two byte opcode by writing @samp{sarl %eax}.
1025
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1026
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1027
conditional jumps will be promoted when necessary to a two instruction
1028
sequence consisting of a conditional jump of the opposite sense around
1029
an unconditional jump to the target.
1030
 
1031
Following the CPU architecture (but not a sub-architecture, which are those
1032
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1033
control automatic promotion of conditional jumps. @samp{jumps} is the
1034
default, and enables jump promotion;  All external jumps will be of the long
1035
variety, and file-local jumps will be promoted as necessary.
1036
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1037
byte offset jumps, and warns about file-local conditional jumps that
1038
@code{@value{AS}} promotes.
1039
Unconditional jumps are treated as for @samp{jumps}.
1040
 
1041
For example
1042
 
1043
@smallexample
1044
 .arch i8086,nojumps
1045
@end smallexample
1046
 
1047
@node i386-Notes
1048
@section Notes
1049
 
1050
@cindex i386 @code{mul}, @code{imul} instructions
1051
@cindex @code{mul} instruction, i386
1052
@cindex @code{imul} instruction, i386
1053
@cindex @code{mul} instruction, x86-64
1054
@cindex @code{imul} instruction, x86-64
1055
There is some trickery concerning the @samp{mul} and @samp{imul}
1056
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1057
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1058
for @samp{imul}) can be output only in the one operand form.  Thus,
1059
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1060
the expanding multiply would clobber the @samp{%edx} register, and this
1061
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1062
64-bit product in @samp{%edx:%eax}.
1063
 
1064
We have added a two operand form of @samp{imul} when the first operand
1065
is an immediate mode expression and the second operand is a register.
1066
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1067
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1068
$69, %eax, %eax}.
1069
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.