OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 158

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 147 khays
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@c man end
7
 
8
@ifset GENERIC
9
@page
10
@node i386-Dependent
11
@chapter 80386 Dependent Features
12
@end ifset
13
@ifclear GENERIC
14
@node Machine Dependencies
15
@chapter 80386 Dependent Features
16
@end ifclear
17
 
18
@cindex i386 support
19
@cindex i80386 support
20
@cindex x86-64 support
21
 
22
The i386 version @code{@value{AS}} supports both the original Intel 386
23
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24
extending the Intel architecture to 64-bits.
25
 
26
@menu
27
* i386-Options::                Options
28
* i386-Directives::             X86 specific directives
29
* i386-Syntax::                 Syntactical considerations
30
* i386-Mnemonics::              Instruction Naming
31
* i386-Regs::                   Register Naming
32
* i386-Prefixes::               Instruction Prefixes
33
* i386-Memory::                 Memory References
34
* i386-Jumps::                  Handling of Jump Instructions
35
* i386-Float::                  Floating Point
36
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
37
* i386-LWP::                    AMD's Lightweight Profiling Instructions
38
* i386-BMI::                    Bit Manipulation Instruction
39
* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
40
* i386-16bit::                  Writing 16-bit Code
41
* i386-Arch::                   Specifying an x86 CPU architecture
42
* i386-Bugs::                   AT&T Syntax bugs
43
* i386-Notes::                  Notes
44
@end menu
45
 
46
@node i386-Options
47
@section Options
48
 
49
@cindex options for i386
50
@cindex options for x86-64
51
@cindex i386 options
52
@cindex x86-64 options
53
 
54
The i386 version of @code{@value{AS}} has a few machine
55
dependent options:
56
 
57
@c man begin OPTIONS
58
@table @gcctabopt
59
@cindex @samp{--32} option, i386
60
@cindex @samp{--32} option, x86-64
61
@cindex @samp{--x32} option, i386
62
@cindex @samp{--x32} option, x86-64
63
@cindex @samp{--64} option, i386
64
@cindex @samp{--64} option, x86-64
65
@item --32 | --x32 | --64
66
Select the word size, either 32 bits or 64 bits.  @samp{--32}
67
implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68
imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69
respectively.
70
 
71
These options are only available with the ELF object file format, and
72
require that the necessary BFD support has been included (on a 32-bit
73
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74
usage and use x86-64 as target platform).
75
 
76
@item -n
77
By default, x86 GAS replaces multiple nop instructions used for
78
alignment within code sections with multi-byte nop instructions such
79
as leal 0(%esi,1),%esi.  This switch disables the optimization.
80
 
81
@cindex @samp{--divide} option, i386
82
@item --divide
83
On SVR4-derived platforms, the character @samp{/} is treated as a comment
84
character, which means that it cannot be used in expressions.  The
85
@samp{--divide} option turns @samp{/} into a normal character.  This does
86
not disable @samp{/} at the beginning of a line starting a comment, or
87
affect using @samp{#} for starting a comment.
88
 
89
@cindex @samp{-march=} option, i386
90
@cindex @samp{-march=} option, x86-64
91
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92
This option specifies the target processor.  The assembler will
93
issue an error message if an attempt is made to assemble an instruction
94
which will not execute on the target processor.  The following
95
processor names are recognized:
96
@code{i8086},
97
@code{i186},
98
@code{i286},
99
@code{i386},
100
@code{i486},
101
@code{i586},
102
@code{i686},
103
@code{pentium},
104
@code{pentiumpro},
105
@code{pentiumii},
106
@code{pentiumiii},
107
@code{pentium4},
108
@code{prescott},
109
@code{nocona},
110
@code{core},
111
@code{core2},
112
@code{corei7},
113
@code{l1om},
114
@code{k6},
115
@code{k6_2},
116
@code{athlon},
117
@code{opteron},
118
@code{k8},
119
@code{amdfam10},
120
@code{bdver1},
121
@code{bdver2},
122
@code{generic32} and
123
@code{generic64}.
124
 
125
In addition to the basic instruction set, the assembler can be told to
126
accept various extension mnemonics.  For example,
127
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
128
@var{vmx}.  The following extensions are currently supported:
129
@code{8087},
130
@code{287},
131
@code{387},
132
@code{no87},
133
@code{mmx},
134
@code{nommx},
135
@code{sse},
136
@code{sse2},
137
@code{sse3},
138
@code{ssse3},
139
@code{sse4.1},
140
@code{sse4.2},
141
@code{sse4},
142
@code{nosse},
143
@code{avx},
144 148 khays
@code{avx2},
145 147 khays
@code{noavx},
146
@code{vmx},
147
@code{smx},
148
@code{xsave},
149
@code{xsaveopt},
150
@code{aes},
151
@code{pclmul},
152
@code{fsgsbase},
153
@code{rdrnd},
154
@code{f16c},
155 148 khays
@code{bmi2},
156 147 khays
@code{fma},
157
@code{movbe},
158
@code{ept},
159 148 khays
@code{lzcnt},
160
@code{invpcid},
161 147 khays
@code{clflush},
162
@code{lwp},
163
@code{fma4},
164
@code{xop},
165
@code{syscall},
166
@code{rdtscp},
167
@code{3dnow},
168
@code{3dnowa},
169
@code{sse4a},
170
@code{sse5},
171
@code{svme},
172
@code{abm} and
173
@code{padlock}.
174
Note that rather than extending a basic instruction set, the extension
175
mnemonics starting with @code{no} revoke the respective functionality.
176
 
177
When the @code{.arch} directive is used with @option{-march}, the
178
@code{.arch} directive will take precedent.
179
 
180
@cindex @samp{-mtune=} option, i386
181
@cindex @samp{-mtune=} option, x86-64
182
@item -mtune=@var{CPU}
183
This option specifies a processor to optimize for. When used in
184
conjunction with the @option{-march} option, only instructions
185
of the processor specified by the @option{-march} option will be
186
generated.
187
 
188
Valid @var{CPU} values are identical to the processor list of
189
@option{-march=@var{CPU}}.
190
 
191
@cindex @samp{-msse2avx} option, i386
192
@cindex @samp{-msse2avx} option, x86-64
193
@item -msse2avx
194
This option specifies that the assembler should encode SSE instructions
195
with VEX prefix.
196
 
197
@cindex @samp{-msse-check=} option, i386
198
@cindex @samp{-msse-check=} option, x86-64
199
@item -msse-check=@var{none}
200
@itemx -msse-check=@var{warning}
201
@itemx -msse-check=@var{error}
202
These options control if the assembler should check SSE intructions.
203
@option{-msse-check=@var{none}} will make the assembler not to check SSE
204
instructions,  which is the default.  @option{-msse-check=@var{warning}}
205
will make the assembler issue a warning for any SSE intruction.
206
@option{-msse-check=@var{error}} will make the assembler issue an error
207
for any SSE intruction.
208
 
209
@cindex @samp{-mavxscalar=} option, i386
210
@cindex @samp{-mavxscalar=} option, x86-64
211
@item -mavxscalar=@var{128}
212
@itemx -mavxscalar=@var{256}
213
This options control how the assembler should encode scalar AVX
214
instructions.  @option{-mavxscalar=@var{128}} will encode scalar
215
AVX instructions with 128bit vector length, which is the default.
216
@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
217
with 256bit vector length.
218
 
219
@cindex @samp{-mmnemonic=} option, i386
220
@cindex @samp{-mmnemonic=} option, x86-64
221
@item -mmnemonic=@var{att}
222
@itemx -mmnemonic=@var{intel}
223
This option specifies instruction mnemonic for matching instructions.
224
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
225
take precedent.
226
 
227
@cindex @samp{-msyntax=} option, i386
228
@cindex @samp{-msyntax=} option, x86-64
229
@item -msyntax=@var{att}
230
@itemx -msyntax=@var{intel}
231
This option specifies instruction syntax when processing instructions.
232
The @code{.att_syntax} and @code{.intel_syntax} directives will
233
take precedent.
234
 
235
@cindex @samp{-mnaked-reg} option, i386
236
@cindex @samp{-mnaked-reg} option, x86-64
237
@item -mnaked-reg
238
This opetion specifies that registers don't require a @samp{%} prefix.
239
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
240
 
241
@end table
242
@c man end
243
 
244
@node i386-Directives
245
@section x86 specific Directives
246
 
247
@cindex machine directives, x86
248
@cindex x86 machine directives
249
@table @code
250
 
251
@cindex @code{lcomm} directive, COFF
252
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
253
Reserve @var{length} (an absolute expression) bytes for a local common
254
denoted by @var{symbol}.  The section and value of @var{symbol} are
255
those of the new local common.  The addresses are allocated in the bss
256
section, so that at run-time the bytes start off zeroed.  Since
257
@var{symbol} is not declared global, it is normally not visible to
258
@code{@value{LD}}.  The optional third parameter, @var{alignment},
259
specifies the desired alignment of the symbol in the bss section.
260
 
261
This directive is only available for COFF based x86 targets.
262
 
263
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
264
@c .largecomm
265
 
266
@end table
267
 
268
@node i386-Syntax
269
@section i386 Syntactical Considerations
270
@menu
271
* i386-Variations::           AT&T Syntax versus Intel Syntax
272
* i386-Chars::                Special Characters
273
@end menu
274
 
275
@node i386-Variations
276
@subsection AT&T Syntax versus Intel Syntax
277
 
278
@cindex i386 intel_syntax pseudo op
279
@cindex intel_syntax pseudo op, i386
280
@cindex i386 att_syntax pseudo op
281
@cindex att_syntax pseudo op, i386
282
@cindex i386 syntax compatibility
283
@cindex syntax compatibility, i386
284
@cindex x86-64 intel_syntax pseudo op
285
@cindex intel_syntax pseudo op, x86-64
286
@cindex x86-64 att_syntax pseudo op
287
@cindex att_syntax pseudo op, x86-64
288
@cindex x86-64 syntax compatibility
289
@cindex syntax compatibility, x86-64
290
 
291
@code{@value{AS}} now supports assembly using Intel assembler syntax.
292
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
293
back to the usual AT&T mode for compatibility with the output of
294
@code{@value{GCC}}.  Either of these directives may have an optional
295
argument, @code{prefix}, or @code{noprefix} specifying whether registers
296
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
297
different from Intel syntax.  We mention these differences because
298
almost all 80386 documents use Intel syntax.  Notable differences
299
between the two syntaxes are:
300
 
301
@cindex immediate operands, i386
302
@cindex i386 immediate operands
303
@cindex register operands, i386
304
@cindex i386 register operands
305
@cindex jump/call operands, i386
306
@cindex i386 jump/call operands
307
@cindex operand delimiters, i386
308
 
309
@cindex immediate operands, x86-64
310
@cindex x86-64 immediate operands
311
@cindex register operands, x86-64
312
@cindex x86-64 register operands
313
@cindex jump/call operands, x86-64
314
@cindex x86-64 jump/call operands
315
@cindex operand delimiters, x86-64
316
@itemize @bullet
317
@item
318
AT&T immediate operands are preceded by @samp{$}; Intel immediate
319
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
320
AT&T register operands are preceded by @samp{%}; Intel register operands
321
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
322
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
323
 
324
@cindex i386 source, destination operands
325
@cindex source, destination operands; i386
326
@cindex x86-64 source, destination operands
327
@cindex source, destination operands; x86-64
328
@item
329
AT&T and Intel syntax use the opposite order for source and destination
330
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
331
@samp{source, dest} convention is maintained for compatibility with
332
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
333
instructions with 2 immediate operands, such as the @samp{enter}
334
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
335
 
336
@cindex mnemonic suffixes, i386
337
@cindex sizes operands, i386
338
@cindex i386 size suffixes
339
@cindex mnemonic suffixes, x86-64
340
@cindex sizes operands, x86-64
341
@cindex x86-64 size suffixes
342
@item
343
In AT&T syntax the size of memory operands is determined from the last
344
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
345
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
346
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
347
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
348
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
349
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
350
syntax.
351
 
352
In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
353
instruction with the 64-bit displacement or immediate operand.
354
 
355
@cindex return instructions, i386
356
@cindex i386 jump, call, return
357
@cindex return instructions, x86-64
358
@cindex x86-64 jump, call, return
359
@item
360
Immediate form long jumps and calls are
361
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
362
Intel syntax is
363
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
364
instruction
365
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
366
@samp{ret far @var{stack-adjust}}.
367
 
368
@cindex sections, i386
369
@cindex i386 sections
370
@cindex sections, x86-64
371
@cindex x86-64 sections
372
@item
373
The AT&T assembler does not provide support for multiple section
374
programs.  Unix style systems expect all programs to be single sections.
375
@end itemize
376
 
377
@node i386-Chars
378
@subsection Special Characters
379
 
380
@cindex line comment character, i386
381
@cindex i386 line comment character
382
The presence of a @samp{#} appearing anywhere on a line indicates the
383
start of a comment that extends to the end of that line.
384
 
385
If a @samp{#} appears as the first character of a line then the whole
386
line is treated as a comment, but in this case the line can also be a
387
logical line number directive (@pxref{Comments}) or a preprocessor
388
control command (@pxref{Preprocessing}).
389
 
390
If the @option{--divide} command line option has not been specified
391
then the @samp{/} character appearing anywhere on a line also
392
introduces a line comment.
393
 
394
@cindex line separator, i386
395
@cindex statement separator, i386
396
@cindex i386 line separator
397
The @samp{;} character can be used to separate statements on the same
398
line.
399
 
400
@node i386-Mnemonics
401
@section Instruction Naming
402
 
403
@cindex i386 instruction naming
404
@cindex instruction naming, i386
405
@cindex x86-64 instruction naming
406
@cindex instruction naming, x86-64
407
 
408
Instruction mnemonics are suffixed with one character modifiers which
409
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
410
and @samp{q} specify byte, word, long and quadruple word operands.  If
411
no suffix is specified by an instruction then @code{@value{AS}} tries to
412
fill in the missing suffix based on the destination register operand
413
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
414
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
415
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
416
assembler which assumes that a missing mnemonic suffix implies long
417
operand size.  (This incompatibility does not affect compiler output
418
since compilers always explicitly specify the mnemonic suffix.)
419
 
420
Almost all instructions have the same names in AT&T and Intel format.
421
There are a few exceptions.  The sign extend and zero extend
422
instructions need two sizes to specify them.  They need a size to
423
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
424
is accomplished by using two instruction mnemonic suffixes in AT&T
425
syntax.  Base names for sign extend and zero extend are
426
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
427
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
428
are tacked on to this base name, the @emph{from} suffix before the
429
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
430
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
431
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
432
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
433
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
434
quadruple word).
435
 
436
@cindex encoding options, i386
437
@cindex encoding options, x86-64
438
 
439
Different encoding options can be specified via optional mnemonic
440
suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
441
moving from one register to another.  @samp{.d32} suffix forces 32bit
442
displacement in encoding.
443
 
444
@cindex conversion instructions, i386
445
@cindex i386 conversion instructions
446
@cindex conversion instructions, x86-64
447
@cindex x86-64 conversion instructions
448
The Intel-syntax conversion instructions
449
 
450
@itemize @bullet
451
@item
452
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
453
 
454
@item
455
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
456
 
457
@item
458
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
459
 
460
@item
461
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
462
 
463
@item
464
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
465
(x86-64 only),
466
 
467
@item
468
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
469
@samp{%rdx:%rax} (x86-64 only),
470
@end itemize
471
 
472
@noindent
473
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
474
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
475
instructions.
476
 
477
@cindex jump instructions, i386
478
@cindex call instructions, i386
479
@cindex jump instructions, x86-64
480
@cindex call instructions, x86-64
481
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
482
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
483
convention.
484
 
485
@section AT&T Mnemonic versus Intel Mnemonic
486
 
487
@cindex i386 mnemonic compatibility
488
@cindex mnemonic compatibility, i386
489
 
490
@code{@value{AS}} supports assembly using Intel mnemonic.
491
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
492
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
493
syntax for compatibility with the output of @code{@value{GCC}}.
494
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
495
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
496
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
497
assembler with different mnemonics from those in Intel IA32 specification.
498
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
499
 
500
@node i386-Regs
501
@section Register Naming
502
 
503
@cindex i386 registers
504
@cindex registers, i386
505
@cindex x86-64 registers
506
@cindex registers, x86-64
507
Register operands are always prefixed with @samp{%}.  The 80386 registers
508
consist of
509
 
510
@itemize @bullet
511
@item
512
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
513
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
514
frame pointer), and @samp{%esp} (the stack pointer).
515
 
516
@item
517
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
518
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
519
 
520
@item
521
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
522
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
523
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
524
@samp{%cx}, and @samp{%dx})
525
 
526
@item
527
the 6 section registers @samp{%cs} (code section), @samp{%ds}
528
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
529
and @samp{%gs}.
530
 
531
@item
532
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
533
@samp{%cr3}.
534
 
535
@item
536
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
537
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
538
 
539
@item
540
the 2 test registers @samp{%tr6} and @samp{%tr7}.
541
 
542
@item
543
the 8 floating point register stack @samp{%st} or equivalently
544
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
545
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
546
These registers are overloaded by 8 MMX registers @samp{%mm0},
547
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
548
@samp{%mm6} and @samp{%mm7}.
549
 
550
@item
551
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
552
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
553
@end itemize
554
 
555
The AMD x86-64 architecture extends the register set by:
556
 
557
@itemize @bullet
558
@item
559
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
560
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
561
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
562
pointer)
563
 
564
@item
565
the 8 extended registers @samp{%r8}--@samp{%r15}.
566
 
567
@item
568
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
569
 
570
@item
571
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
572
 
573
@item
574
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
575
 
576
@item
577
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
578
 
579
@item
580
the 8 debug registers: @samp{%db8}--@samp{%db15}.
581
 
582
@item
583
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
584
@end itemize
585
 
586
@node i386-Prefixes
587
@section Instruction Prefixes
588
 
589
@cindex i386 instruction prefixes
590
@cindex instruction prefixes, i386
591
@cindex prefixes, i386
592
Instruction prefixes are used to modify the following instruction.  They
593
are used to repeat string instructions, to provide section overrides, to
594
perform bus lock operations, and to change operand and address sizes.
595
(Most instructions that normally operate on 32-bit operands will use
596
16-bit operands if the instruction has an ``operand size'' prefix.)
597
Instruction prefixes are best written on the same line as the instruction
598
they act upon. For example, the @samp{scas} (scan string) instruction is
599
repeated with:
600
 
601
@smallexample
602
        repne scas %es:(%edi),%al
603
@end smallexample
604
 
605
You may also place prefixes on the lines immediately preceding the
606
instruction, but this circumvents checks that @code{@value{AS}} does
607
with prefixes, and will not work with all prefixes.
608
 
609
Here is a list of instruction prefixes:
610
 
611
@cindex section override prefixes, i386
612
@itemize @bullet
613
@item
614
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
615
@samp{fs}, @samp{gs}.  These are automatically added by specifying
616
using the @var{section}:@var{memory-operand} form for memory references.
617
 
618
@cindex size prefixes, i386
619
@item
620
Operand/Address size prefixes @samp{data16} and @samp{addr16}
621
change 32-bit operands/addresses into 16-bit operands/addresses,
622
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
623
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
624
@emph{must} appear on the same line of code as the instruction they
625
modify. For example, in a 16-bit @code{.code16} section, you might
626
write:
627
 
628
@smallexample
629
        addr32 jmpl *(%ebx)
630
@end smallexample
631
 
632
@cindex bus lock prefixes, i386
633
@cindex inhibiting interrupts, i386
634
@item
635
The bus lock prefix @samp{lock} inhibits interrupts during execution of
636
the instruction it precedes.  (This is only valid with certain
637
instructions; see a 80386 manual for details).
638
 
639
@cindex coprocessor wait, i386
640
@item
641
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
642
complete the current instruction.  This should never be needed for the
643
80386/80387 combination.
644
 
645
@cindex repeat prefixes, i386
646
@item
647
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
648
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
649
times if the current address size is 16-bits).
650
@cindex REX prefixes, i386
651
@item
652
The @samp{rex} family of prefixes is used by x86-64 to encode
653
extensions to i386 instruction set.  The @samp{rex} prefix has four
654
bits --- an operand size overwrite (@code{64}) used to change operand size
655
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
656
register set.
657
 
658
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
659
instruction emits @samp{rex} prefix with all the bits set.  By omitting
660
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
661
prefixes as well.  Normally, there is no need to write the prefixes
662
explicitly, since gas will automatically generate them based on the
663
instruction operands.
664
@end itemize
665
 
666
@node i386-Memory
667
@section Memory References
668
 
669
@cindex i386 memory references
670
@cindex memory references, i386
671
@cindex x86-64 memory references
672
@cindex memory references, x86-64
673
An Intel syntax indirect memory reference of the form
674
 
675
@smallexample
676
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
677
@end smallexample
678
 
679
@noindent
680
is translated into the AT&T syntax
681
 
682
@smallexample
683
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
684
@end smallexample
685
 
686
@noindent
687
where @var{base} and @var{index} are the optional 32-bit base and
688
index registers, @var{disp} is the optional displacement, and
689
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
690
to calculate the address of the operand.  If no @var{scale} is
691
specified, @var{scale} is taken to be 1.  @var{section} specifies the
692
optional section register for the memory operand, and may override the
693
default section register (see a 80386 manual for section register
694
defaults). Note that section overrides in AT&T syntax @emph{must}
695
be preceded by a @samp{%}.  If you specify a section override which
696
coincides with the default section register, @code{@value{AS}} does @emph{not}
697
output any section register override prefixes to assemble the given
698
instruction.  Thus, section overrides can be specified to emphasize which
699
section register is used for a given memory operand.
700
 
701
Here are some examples of Intel and AT&T style memory references:
702
 
703
@table @asis
704
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
705
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
706
missing, and the default section is used (@samp{%ss} for addressing with
707
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
708
 
709
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
710
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
711
@samp{foo}.  All other fields are missing.  The section register here
712
defaults to @samp{%ds}.
713
 
714
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
715
This uses the value pointed to by @samp{foo} as a memory operand.
716
Note that @var{base} and @var{index} are both missing, but there is only
717
@emph{one} @samp{,}.  This is a syntactic exception.
718
 
719
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
720
This selects the contents of the variable @samp{foo} with section
721
register @var{section} being @samp{%gs}.
722
@end table
723
 
724
Absolute (as opposed to PC relative) call and jump operands must be
725
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
726
always chooses PC relative addressing for jump/call labels.
727
 
728
Any instruction that has a memory operand, but no register operand,
729
@emph{must} specify its size (byte, word, long, or quadruple) with an
730
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
731
respectively).
732
 
733
The x86-64 architecture adds an RIP (instruction pointer relative)
734
addressing.  This addressing mode is specified by using @samp{rip} as a
735
base register.  Only constant offsets are valid. For example:
736
 
737
@table @asis
738
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
739
Points to the address 1234 bytes past the end of the current
740
instruction.
741
 
742
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
743
Points to the @code{symbol} in RIP relative way, this is shorter than
744
the default absolute addressing.
745
@end table
746
 
747
Other addressing modes remain unchanged in x86-64 architecture, except
748
registers used are 64-bit instead of 32-bit.
749
 
750
@node i386-Jumps
751
@section Handling of Jump Instructions
752
 
753
@cindex jump optimization, i386
754
@cindex i386 jump optimization
755
@cindex jump optimization, x86-64
756
@cindex x86-64 jump optimization
757
Jump instructions are always optimized to use the smallest possible
758
displacements.  This is accomplished by using byte (8-bit) displacement
759
jumps whenever the target is sufficiently close.  If a byte displacement
760
is insufficient a long displacement is used.  We do not support
761
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
762
instruction with the @samp{data16} instruction prefix), since the 80386
763
insists upon masking @samp{%eip} to 16 bits after the word displacement
764
is added. (See also @pxref{i386-Arch})
765
 
766
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
767
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
768
displacements, so that if you use these instructions (@code{@value{GCC}} does
769
not use them) you may get an error message (and incorrect code).  The AT&T
770
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
771
to
772
 
773
@smallexample
774
         jcxz cx_zero
775
         jmp cx_nonzero
776
cx_zero: jmp foo
777
cx_nonzero:
778
@end smallexample
779
 
780
@node i386-Float
781
@section Floating Point
782
 
783
@cindex i386 floating point
784
@cindex floating point, i386
785
@cindex x86-64 floating point
786
@cindex floating point, x86-64
787
All 80387 floating point types except packed BCD are supported.
788
(BCD support may be added without much difficulty).  These data
789
types are 16-, 32-, and 64- bit integers, and single (32-bit),
790
double (64-bit), and extended (80-bit) precision floating point.
791
Each supported type has an instruction mnemonic suffix and a constructor
792
associated with it.  Instruction mnemonic suffixes specify the operand's
793
data type.  Constructors build these data types into memory.
794
 
795
@cindex @code{float} directive, i386
796
@cindex @code{single} directive, i386
797
@cindex @code{double} directive, i386
798
@cindex @code{tfloat} directive, i386
799
@cindex @code{float} directive, x86-64
800
@cindex @code{single} directive, x86-64
801
@cindex @code{double} directive, x86-64
802
@cindex @code{tfloat} directive, x86-64
803
@itemize @bullet
804
@item
805
Floating point constructors are @samp{.float} or @samp{.single},
806
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
807
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
808
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
809
only supports this format via the @samp{fldt} (load 80-bit real to stack
810
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
811
 
812
@cindex @code{word} directive, i386
813
@cindex @code{long} directive, i386
814
@cindex @code{int} directive, i386
815
@cindex @code{quad} directive, i386
816
@cindex @code{word} directive, x86-64
817
@cindex @code{long} directive, x86-64
818
@cindex @code{int} directive, x86-64
819
@cindex @code{quad} directive, x86-64
820
@item
821
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
822
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
823
corresponding instruction mnemonic suffixes are @samp{s} (single),
824
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
825
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
826
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
827
stack) instructions.
828
@end itemize
829
 
830
Register to register operations should not use instruction mnemonic suffixes.
831
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
832
wrote @samp{fst %st, %st(1)}, since all register to register operations
833
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
834
which converts @samp{%st} from 80-bit to 64-bit floating point format,
835
then stores the result in the 4 byte location @samp{mem})
836
 
837
@node i386-SIMD
838
@section Intel's MMX and AMD's 3DNow! SIMD Operations
839
 
840
@cindex MMX, i386
841
@cindex 3DNow!, i386
842
@cindex SIMD, i386
843
@cindex MMX, x86-64
844
@cindex 3DNow!, x86-64
845
@cindex SIMD, x86-64
846
 
847
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
848
instructions for integer data), available on Intel's Pentium MMX
849
processors and Pentium II processors, AMD's K6 and K6-2 processors,
850
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
851
instruction set (SIMD instructions for 32-bit floating point data)
852
available on AMD's K6-2 processor and possibly others in the future.
853
 
854
Currently, @code{@value{AS}} does not support Intel's floating point
855
SIMD, Katmai (KNI).
856
 
857
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
858
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
859
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
860
floating point values.  The MMX registers cannot be used at the same time
861
as the floating point stack.
862
 
863
See Intel and AMD documentation, keeping in mind that the operand order in
864
instructions is reversed from the Intel syntax.
865
 
866
@node i386-LWP
867
@section AMD's Lightweight Profiling Instructions
868
 
869
@cindex LWP, i386
870
@cindex LWP, x86-64
871
 
872
@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
873
instruction set, available on AMD's Family 15h (Orochi) processors.
874
 
875
LWP enables applications to collect and manage performance data, and
876
react to performance events.  The collection of performance data
877
requires no context switches.  LWP runs in the context of a thread and
878
so several counters can be used independently across multiple threads.
879
LWP can be used in both 64-bit and legacy 32-bit modes.
880
 
881
For detailed information on the LWP instruction set, see the
882
@cite{AMD Lightweight Profiling Specification} available at
883
@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
884
 
885
@node i386-BMI
886
@section Bit Manipulation Instructions
887
 
888
@cindex BMI, i386
889
@cindex BMI, x86-64
890
 
891
@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
892
 
893
BMI instructions provide several instructions implementing individual
894
bit manipulation operations such as isolation, masking, setting, or
895
resetting.
896
 
897
@c Need to add a specification citation here when available.
898
 
899
@node i386-TBM
900
@section AMD's Trailing Bit Manipulation Instructions
901
 
902
@cindex TBM, i386
903
@cindex TBM, x86-64
904
 
905
@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
906
instruction set, available on AMD's BDVER2 processors (Trinity and
907
Viperfish).
908
 
909
TBM instructions provide instructions implementing individual bit
910
manipulation operations such as isolating, masking, setting, resetting,
911
complementing, and operations on trailing zeros and ones.
912
 
913
@c Need to add a specification citation here when available.
914
 
915
@node i386-16bit
916
@section Writing 16-bit Code
917
 
918
@cindex i386 16-bit code
919
@cindex 16-bit code, i386
920
@cindex real-mode code, i386
921
@cindex @code{code16gcc} directive, i386
922
@cindex @code{code16} directive, i386
923
@cindex @code{code32} directive, i386
924
@cindex @code{code64} directive, i386
925
@cindex @code{code64} directive, x86-64
926
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
927
or 64-bit x86-64 code depending on the default configuration,
928
it also supports writing code to run in real mode or in 16-bit protected
929
mode code segments.  To do this, put a @samp{.code16} or
930
@samp{.code16gcc} directive before the assembly language instructions to
931
be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
932
32-bit code with the @samp{.code32} directive or 64-bit code with the
933
@samp{.code64} directive.
934
 
935
@samp{.code16gcc} provides experimental support for generating 16-bit
936
code from gcc, and differs from @samp{.code16} in that @samp{call},
937
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
938
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
939
default to 32-bit size.  This is so that the stack pointer is
940
manipulated in the same way over function calls, allowing access to
941
function parameters at the same stack offsets as in 32-bit mode.
942
@samp{.code16gcc} also automatically adds address size prefixes where
943
necessary to use the 32-bit addressing modes that gcc generates.
944
 
945
The code which @code{@value{AS}} generates in 16-bit mode will not
946
necessarily run on a 16-bit pre-80386 processor.  To write code that
947
runs on such a processor, you must refrain from using @emph{any} 32-bit
948
constructs which require @code{@value{AS}} to output address or operand
949
size prefixes.
950
 
951
Note that writing 16-bit code instructions by explicitly specifying a
952
prefix or an instruction mnemonic suffix within a 32-bit code section
953
generates different machine instructions than those generated for a
954
16-bit code segment.  In a 32-bit code section, the following code
955
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
956
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
957
 
958
@smallexample
959
        pushw $4
960
@end smallexample
961
 
962
The same code in a 16-bit code section would generate the machine
963
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
964
is correct since the processor default operand size is assumed to be 16
965
bits in a 16-bit code section.
966
 
967
@node i386-Bugs
968
@section AT&T Syntax bugs
969
 
970
The UnixWare assembler, and probably other AT&T derived ix86 Unix
971
assemblers, generate floating point instructions with reversed source
972
and destination registers in certain cases.  Unfortunately, gcc and
973
possibly many other programs use this reversed syntax, so we're stuck
974
with it.
975
 
976
For example
977
 
978
@smallexample
979
        fsub %st,%st(3)
980
@end smallexample
981
@noindent
982
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
983
than the expected @samp{%st(3) - %st}.  This happens with all the
984
non-commutative arithmetic floating point operations with two register
985
operands where the source register is @samp{%st} and the destination
986
register is @samp{%st(i)}.
987
 
988
@node i386-Arch
989
@section Specifying CPU Architecture
990
 
991
@cindex arch directive, i386
992
@cindex i386 arch directive
993
@cindex arch directive, x86-64
994
@cindex x86-64 arch directive
995
 
996
@code{@value{AS}} may be told to assemble for a particular CPU
997
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
998
directive enables a warning when gas detects an instruction that is not
999
supported on the CPU specified.  The choices for @var{cpu_type} are:
1000
 
1001
@multitable @columnfractions .20 .20 .20 .20
1002
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1003
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1004
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1005
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1006
@item @samp{corei7} @tab @samp{l1om}
1007
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1008
@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1009
@item @samp{generic32} @tab @samp{generic64}
1010
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1011
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1012
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1013
@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1014
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1015 148 khays
@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1016
@item @samp{.lzcnt} @tab @samp{.invpcid}
1017 147 khays
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1018
@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1019
@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1020
@item @samp{.padlock}
1021
@end multitable
1022
 
1023
Apart from the warning, there are only two other effects on
1024
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1025
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1026
will automatically use a two byte opcode sequence.  The larger three
1027
byte opcode sequence is used on the 486 (and when no architecture is
1028
specified) because it executes faster on the 486.  Note that you can
1029
explicitly request the two byte opcode by writing @samp{sarl %eax}.
1030
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1031
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1032
conditional jumps will be promoted when necessary to a two instruction
1033
sequence consisting of a conditional jump of the opposite sense around
1034
an unconditional jump to the target.
1035
 
1036
Following the CPU architecture (but not a sub-architecture, which are those
1037
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1038
control automatic promotion of conditional jumps. @samp{jumps} is the
1039
default, and enables jump promotion;  All external jumps will be of the long
1040
variety, and file-local jumps will be promoted as necessary.
1041
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1042
byte offset jumps, and warns about file-local conditional jumps that
1043
@code{@value{AS}} promotes.
1044
Unconditional jumps are treated as for @samp{jumps}.
1045
 
1046
For example
1047
 
1048
@smallexample
1049
 .arch i8086,nojumps
1050
@end smallexample
1051
 
1052
@node i386-Notes
1053
@section Notes
1054
 
1055
@cindex i386 @code{mul}, @code{imul} instructions
1056
@cindex @code{mul} instruction, i386
1057
@cindex @code{imul} instruction, i386
1058
@cindex @code{mul} instruction, x86-64
1059
@cindex @code{imul} instruction, x86-64
1060
There is some trickery concerning the @samp{mul} and @samp{imul}
1061
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1062
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1063
for @samp{imul}) can be output only in the one operand form.  Thus,
1064
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1065
the expanding multiply would clobber the @samp{%edx} register, and this
1066
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1067
64-bit product in @samp{%edx:%eax}.
1068
 
1069
We have added a two operand form of @samp{imul} when the first operand
1070
is an immediate mode expression and the second operand is a register.
1071
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1072
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1073
$69, %eax, %eax}.
1074
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.