OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 160

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 147 khays
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@c man end
7
 
8
@ifset GENERIC
9
@page
10
@node i386-Dependent
11
@chapter 80386 Dependent Features
12
@end ifset
13
@ifclear GENERIC
14
@node Machine Dependencies
15
@chapter 80386 Dependent Features
16
@end ifclear
17
 
18
@cindex i386 support
19
@cindex i80386 support
20
@cindex x86-64 support
21
 
22
The i386 version @code{@value{AS}} supports both the original Intel 386
23
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24
extending the Intel architecture to 64-bits.
25
 
26
@menu
27
* i386-Options::                Options
28
* i386-Directives::             X86 specific directives
29
* i386-Syntax::                 Syntactical considerations
30
* i386-Mnemonics::              Instruction Naming
31
* i386-Regs::                   Register Naming
32
* i386-Prefixes::               Instruction Prefixes
33
* i386-Memory::                 Memory References
34
* i386-Jumps::                  Handling of Jump Instructions
35
* i386-Float::                  Floating Point
36
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
37
* i386-LWP::                    AMD's Lightweight Profiling Instructions
38
* i386-BMI::                    Bit Manipulation Instruction
39
* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
40
* i386-16bit::                  Writing 16-bit Code
41
* i386-Arch::                   Specifying an x86 CPU architecture
42
* i386-Bugs::                   AT&T Syntax bugs
43
* i386-Notes::                  Notes
44
@end menu
45
 
46
@node i386-Options
47
@section Options
48
 
49
@cindex options for i386
50
@cindex options for x86-64
51
@cindex i386 options
52
@cindex x86-64 options
53
 
54
The i386 version of @code{@value{AS}} has a few machine
55
dependent options:
56
 
57
@c man begin OPTIONS
58
@table @gcctabopt
59
@cindex @samp{--32} option, i386
60
@cindex @samp{--32} option, x86-64
61
@cindex @samp{--x32} option, i386
62
@cindex @samp{--x32} option, x86-64
63
@cindex @samp{--64} option, i386
64
@cindex @samp{--64} option, x86-64
65
@item --32 | --x32 | --64
66
Select the word size, either 32 bits or 64 bits.  @samp{--32}
67
implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68
imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69
respectively.
70
 
71
These options are only available with the ELF object file format, and
72
require that the necessary BFD support has been included (on a 32-bit
73
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74
usage and use x86-64 as target platform).
75
 
76
@item -n
77
By default, x86 GAS replaces multiple nop instructions used for
78
alignment within code sections with multi-byte nop instructions such
79
as leal 0(%esi,1),%esi.  This switch disables the optimization.
80
 
81
@cindex @samp{--divide} option, i386
82
@item --divide
83
On SVR4-derived platforms, the character @samp{/} is treated as a comment
84
character, which means that it cannot be used in expressions.  The
85
@samp{--divide} option turns @samp{/} into a normal character.  This does
86
not disable @samp{/} at the beginning of a line starting a comment, or
87
affect using @samp{#} for starting a comment.
88
 
89
@cindex @samp{-march=} option, i386
90
@cindex @samp{-march=} option, x86-64
91
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92
This option specifies the target processor.  The assembler will
93
issue an error message if an attempt is made to assemble an instruction
94
which will not execute on the target processor.  The following
95
processor names are recognized:
96
@code{i8086},
97
@code{i186},
98
@code{i286},
99
@code{i386},
100
@code{i486},
101
@code{i586},
102
@code{i686},
103
@code{pentium},
104
@code{pentiumpro},
105
@code{pentiumii},
106
@code{pentiumiii},
107
@code{pentium4},
108
@code{prescott},
109
@code{nocona},
110
@code{core},
111
@code{core2},
112
@code{corei7},
113
@code{l1om},
114 160 khays
@code{k1om},
115 147 khays
@code{k6},
116
@code{k6_2},
117
@code{athlon},
118
@code{opteron},
119
@code{k8},
120
@code{amdfam10},
121
@code{bdver1},
122
@code{bdver2},
123
@code{generic32} and
124
@code{generic64}.
125
 
126
In addition to the basic instruction set, the assembler can be told to
127
accept various extension mnemonics.  For example,
128
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129
@var{vmx}.  The following extensions are currently supported:
130
@code{8087},
131
@code{287},
132
@code{387},
133
@code{no87},
134
@code{mmx},
135
@code{nommx},
136
@code{sse},
137
@code{sse2},
138
@code{sse3},
139
@code{ssse3},
140
@code{sse4.1},
141
@code{sse4.2},
142
@code{sse4},
143
@code{nosse},
144
@code{avx},
145 148 khays
@code{avx2},
146 147 khays
@code{noavx},
147
@code{vmx},
148
@code{smx},
149
@code{xsave},
150
@code{xsaveopt},
151
@code{aes},
152
@code{pclmul},
153
@code{fsgsbase},
154
@code{rdrnd},
155
@code{f16c},
156 148 khays
@code{bmi2},
157 147 khays
@code{fma},
158
@code{movbe},
159
@code{ept},
160 148 khays
@code{lzcnt},
161
@code{invpcid},
162 147 khays
@code{clflush},
163
@code{lwp},
164
@code{fma4},
165
@code{xop},
166
@code{syscall},
167
@code{rdtscp},
168
@code{3dnow},
169
@code{3dnowa},
170
@code{sse4a},
171
@code{sse5},
172
@code{svme},
173
@code{abm} and
174
@code{padlock}.
175
Note that rather than extending a basic instruction set, the extension
176
mnemonics starting with @code{no} revoke the respective functionality.
177
 
178
When the @code{.arch} directive is used with @option{-march}, the
179
@code{.arch} directive will take precedent.
180
 
181
@cindex @samp{-mtune=} option, i386
182
@cindex @samp{-mtune=} option, x86-64
183
@item -mtune=@var{CPU}
184
This option specifies a processor to optimize for. When used in
185
conjunction with the @option{-march} option, only instructions
186
of the processor specified by the @option{-march} option will be
187
generated.
188
 
189
Valid @var{CPU} values are identical to the processor list of
190
@option{-march=@var{CPU}}.
191
 
192
@cindex @samp{-msse2avx} option, i386
193
@cindex @samp{-msse2avx} option, x86-64
194
@item -msse2avx
195
This option specifies that the assembler should encode SSE instructions
196
with VEX prefix.
197
 
198
@cindex @samp{-msse-check=} option, i386
199
@cindex @samp{-msse-check=} option, x86-64
200
@item -msse-check=@var{none}
201
@itemx -msse-check=@var{warning}
202
@itemx -msse-check=@var{error}
203
These options control if the assembler should check SSE intructions.
204
@option{-msse-check=@var{none}} will make the assembler not to check SSE
205
instructions,  which is the default.  @option{-msse-check=@var{warning}}
206
will make the assembler issue a warning for any SSE intruction.
207
@option{-msse-check=@var{error}} will make the assembler issue an error
208
for any SSE intruction.
209
 
210
@cindex @samp{-mavxscalar=} option, i386
211
@cindex @samp{-mavxscalar=} option, x86-64
212
@item -mavxscalar=@var{128}
213
@itemx -mavxscalar=@var{256}
214 160 khays
These options control how the assembler should encode scalar AVX
215 147 khays
instructions.  @option{-mavxscalar=@var{128}} will encode scalar
216
AVX instructions with 128bit vector length, which is the default.
217
@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
218
with 256bit vector length.
219
 
220
@cindex @samp{-mmnemonic=} option, i386
221
@cindex @samp{-mmnemonic=} option, x86-64
222
@item -mmnemonic=@var{att}
223
@itemx -mmnemonic=@var{intel}
224
This option specifies instruction mnemonic for matching instructions.
225
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
226
take precedent.
227
 
228
@cindex @samp{-msyntax=} option, i386
229
@cindex @samp{-msyntax=} option, x86-64
230
@item -msyntax=@var{att}
231
@itemx -msyntax=@var{intel}
232
This option specifies instruction syntax when processing instructions.
233
The @code{.att_syntax} and @code{.intel_syntax} directives will
234
take precedent.
235
 
236
@cindex @samp{-mnaked-reg} option, i386
237
@cindex @samp{-mnaked-reg} option, x86-64
238
@item -mnaked-reg
239
This opetion specifies that registers don't require a @samp{%} prefix.
240
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
241
 
242
@end table
243
@c man end
244
 
245
@node i386-Directives
246
@section x86 specific Directives
247
 
248
@cindex machine directives, x86
249
@cindex x86 machine directives
250
@table @code
251
 
252
@cindex @code{lcomm} directive, COFF
253
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
254
Reserve @var{length} (an absolute expression) bytes for a local common
255
denoted by @var{symbol}.  The section and value of @var{symbol} are
256
those of the new local common.  The addresses are allocated in the bss
257
section, so that at run-time the bytes start off zeroed.  Since
258
@var{symbol} is not declared global, it is normally not visible to
259
@code{@value{LD}}.  The optional third parameter, @var{alignment},
260
specifies the desired alignment of the symbol in the bss section.
261
 
262
This directive is only available for COFF based x86 targets.
263
 
264
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
265
@c .largecomm
266
 
267
@end table
268
 
269
@node i386-Syntax
270
@section i386 Syntactical Considerations
271
@menu
272
* i386-Variations::           AT&T Syntax versus Intel Syntax
273
* i386-Chars::                Special Characters
274
@end menu
275
 
276
@node i386-Variations
277
@subsection AT&T Syntax versus Intel Syntax
278
 
279
@cindex i386 intel_syntax pseudo op
280
@cindex intel_syntax pseudo op, i386
281
@cindex i386 att_syntax pseudo op
282
@cindex att_syntax pseudo op, i386
283
@cindex i386 syntax compatibility
284
@cindex syntax compatibility, i386
285
@cindex x86-64 intel_syntax pseudo op
286
@cindex intel_syntax pseudo op, x86-64
287
@cindex x86-64 att_syntax pseudo op
288
@cindex att_syntax pseudo op, x86-64
289
@cindex x86-64 syntax compatibility
290
@cindex syntax compatibility, x86-64
291
 
292
@code{@value{AS}} now supports assembly using Intel assembler syntax.
293
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
294
back to the usual AT&T mode for compatibility with the output of
295
@code{@value{GCC}}.  Either of these directives may have an optional
296
argument, @code{prefix}, or @code{noprefix} specifying whether registers
297
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
298
different from Intel syntax.  We mention these differences because
299
almost all 80386 documents use Intel syntax.  Notable differences
300
between the two syntaxes are:
301
 
302
@cindex immediate operands, i386
303
@cindex i386 immediate operands
304
@cindex register operands, i386
305
@cindex i386 register operands
306
@cindex jump/call operands, i386
307
@cindex i386 jump/call operands
308
@cindex operand delimiters, i386
309
 
310
@cindex immediate operands, x86-64
311
@cindex x86-64 immediate operands
312
@cindex register operands, x86-64
313
@cindex x86-64 register operands
314
@cindex jump/call operands, x86-64
315
@cindex x86-64 jump/call operands
316
@cindex operand delimiters, x86-64
317
@itemize @bullet
318
@item
319
AT&T immediate operands are preceded by @samp{$}; Intel immediate
320
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
321
AT&T register operands are preceded by @samp{%}; Intel register operands
322
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
323
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
324
 
325
@cindex i386 source, destination operands
326
@cindex source, destination operands; i386
327
@cindex x86-64 source, destination operands
328
@cindex source, destination operands; x86-64
329
@item
330
AT&T and Intel syntax use the opposite order for source and destination
331
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
332
@samp{source, dest} convention is maintained for compatibility with
333
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
334
instructions with 2 immediate operands, such as the @samp{enter}
335
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
336
 
337
@cindex mnemonic suffixes, i386
338
@cindex sizes operands, i386
339
@cindex i386 size suffixes
340
@cindex mnemonic suffixes, x86-64
341
@cindex sizes operands, x86-64
342
@cindex x86-64 size suffixes
343
@item
344
In AT&T syntax the size of memory operands is determined from the last
345
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
346
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
347
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
348
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
349
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
350
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
351
syntax.
352
 
353
In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
354
instruction with the 64-bit displacement or immediate operand.
355
 
356
@cindex return instructions, i386
357
@cindex i386 jump, call, return
358
@cindex return instructions, x86-64
359
@cindex x86-64 jump, call, return
360
@item
361
Immediate form long jumps and calls are
362
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
363
Intel syntax is
364
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
365
instruction
366
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
367
@samp{ret far @var{stack-adjust}}.
368
 
369
@cindex sections, i386
370
@cindex i386 sections
371
@cindex sections, x86-64
372
@cindex x86-64 sections
373
@item
374
The AT&T assembler does not provide support for multiple section
375
programs.  Unix style systems expect all programs to be single sections.
376
@end itemize
377
 
378
@node i386-Chars
379
@subsection Special Characters
380
 
381
@cindex line comment character, i386
382
@cindex i386 line comment character
383
The presence of a @samp{#} appearing anywhere on a line indicates the
384
start of a comment that extends to the end of that line.
385
 
386
If a @samp{#} appears as the first character of a line then the whole
387
line is treated as a comment, but in this case the line can also be a
388
logical line number directive (@pxref{Comments}) or a preprocessor
389
control command (@pxref{Preprocessing}).
390
 
391
If the @option{--divide} command line option has not been specified
392
then the @samp{/} character appearing anywhere on a line also
393
introduces a line comment.
394
 
395
@cindex line separator, i386
396
@cindex statement separator, i386
397
@cindex i386 line separator
398
The @samp{;} character can be used to separate statements on the same
399
line.
400
 
401
@node i386-Mnemonics
402
@section Instruction Naming
403
 
404
@cindex i386 instruction naming
405
@cindex instruction naming, i386
406
@cindex x86-64 instruction naming
407
@cindex instruction naming, x86-64
408
 
409
Instruction mnemonics are suffixed with one character modifiers which
410
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
411
and @samp{q} specify byte, word, long and quadruple word operands.  If
412
no suffix is specified by an instruction then @code{@value{AS}} tries to
413
fill in the missing suffix based on the destination register operand
414
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
415
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
416
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
417
assembler which assumes that a missing mnemonic suffix implies long
418
operand size.  (This incompatibility does not affect compiler output
419
since compilers always explicitly specify the mnemonic suffix.)
420
 
421
Almost all instructions have the same names in AT&T and Intel format.
422
There are a few exceptions.  The sign extend and zero extend
423
instructions need two sizes to specify them.  They need a size to
424
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
425
is accomplished by using two instruction mnemonic suffixes in AT&T
426
syntax.  Base names for sign extend and zero extend are
427
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
428
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
429
are tacked on to this base name, the @emph{from} suffix before the
430
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
431
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
432
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
433
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
434
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
435
quadruple word).
436
 
437
@cindex encoding options, i386
438
@cindex encoding options, x86-64
439
 
440
Different encoding options can be specified via optional mnemonic
441
suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
442
moving from one register to another.  @samp{.d32} suffix forces 32bit
443
displacement in encoding.
444
 
445
@cindex conversion instructions, i386
446
@cindex i386 conversion instructions
447
@cindex conversion instructions, x86-64
448
@cindex x86-64 conversion instructions
449
The Intel-syntax conversion instructions
450
 
451
@itemize @bullet
452
@item
453
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
454
 
455
@item
456
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
457
 
458
@item
459
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
460
 
461
@item
462
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
463
 
464
@item
465
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
466
(x86-64 only),
467
 
468
@item
469
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
470
@samp{%rdx:%rax} (x86-64 only),
471
@end itemize
472
 
473
@noindent
474
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
475
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
476
instructions.
477
 
478
@cindex jump instructions, i386
479
@cindex call instructions, i386
480
@cindex jump instructions, x86-64
481
@cindex call instructions, x86-64
482
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
483
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
484
convention.
485
 
486
@section AT&T Mnemonic versus Intel Mnemonic
487
 
488
@cindex i386 mnemonic compatibility
489
@cindex mnemonic compatibility, i386
490
 
491
@code{@value{AS}} supports assembly using Intel mnemonic.
492
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
493
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
494
syntax for compatibility with the output of @code{@value{GCC}}.
495
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
496
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
497
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
498
assembler with different mnemonics from those in Intel IA32 specification.
499
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
500
 
501
@node i386-Regs
502
@section Register Naming
503
 
504
@cindex i386 registers
505
@cindex registers, i386
506
@cindex x86-64 registers
507
@cindex registers, x86-64
508
Register operands are always prefixed with @samp{%}.  The 80386 registers
509
consist of
510
 
511
@itemize @bullet
512
@item
513
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
514
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
515
frame pointer), and @samp{%esp} (the stack pointer).
516
 
517
@item
518
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
519
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
520
 
521
@item
522
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
523
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
524
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
525
@samp{%cx}, and @samp{%dx})
526
 
527
@item
528
the 6 section registers @samp{%cs} (code section), @samp{%ds}
529
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
530
and @samp{%gs}.
531
 
532
@item
533
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
534
@samp{%cr3}.
535
 
536
@item
537
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
538
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
539
 
540
@item
541
the 2 test registers @samp{%tr6} and @samp{%tr7}.
542
 
543
@item
544
the 8 floating point register stack @samp{%st} or equivalently
545
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
546
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
547
These registers are overloaded by 8 MMX registers @samp{%mm0},
548
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
549
@samp{%mm6} and @samp{%mm7}.
550
 
551
@item
552
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
553
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
554
@end itemize
555
 
556
The AMD x86-64 architecture extends the register set by:
557
 
558
@itemize @bullet
559
@item
560
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
561
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
562
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
563
pointer)
564
 
565
@item
566
the 8 extended registers @samp{%r8}--@samp{%r15}.
567
 
568
@item
569
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
570
 
571
@item
572
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
573
 
574
@item
575
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
576
 
577
@item
578
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
579
 
580
@item
581
the 8 debug registers: @samp{%db8}--@samp{%db15}.
582
 
583
@item
584
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
585
@end itemize
586
 
587
@node i386-Prefixes
588
@section Instruction Prefixes
589
 
590
@cindex i386 instruction prefixes
591
@cindex instruction prefixes, i386
592
@cindex prefixes, i386
593
Instruction prefixes are used to modify the following instruction.  They
594
are used to repeat string instructions, to provide section overrides, to
595
perform bus lock operations, and to change operand and address sizes.
596
(Most instructions that normally operate on 32-bit operands will use
597
16-bit operands if the instruction has an ``operand size'' prefix.)
598
Instruction prefixes are best written on the same line as the instruction
599
they act upon. For example, the @samp{scas} (scan string) instruction is
600
repeated with:
601
 
602
@smallexample
603
        repne scas %es:(%edi),%al
604
@end smallexample
605
 
606
You may also place prefixes on the lines immediately preceding the
607
instruction, but this circumvents checks that @code{@value{AS}} does
608
with prefixes, and will not work with all prefixes.
609
 
610
Here is a list of instruction prefixes:
611
 
612
@cindex section override prefixes, i386
613
@itemize @bullet
614
@item
615
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
616
@samp{fs}, @samp{gs}.  These are automatically added by specifying
617
using the @var{section}:@var{memory-operand} form for memory references.
618
 
619
@cindex size prefixes, i386
620
@item
621
Operand/Address size prefixes @samp{data16} and @samp{addr16}
622
change 32-bit operands/addresses into 16-bit operands/addresses,
623
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
624
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
625
@emph{must} appear on the same line of code as the instruction they
626
modify. For example, in a 16-bit @code{.code16} section, you might
627
write:
628
 
629
@smallexample
630
        addr32 jmpl *(%ebx)
631
@end smallexample
632
 
633
@cindex bus lock prefixes, i386
634
@cindex inhibiting interrupts, i386
635
@item
636
The bus lock prefix @samp{lock} inhibits interrupts during execution of
637
the instruction it precedes.  (This is only valid with certain
638
instructions; see a 80386 manual for details).
639
 
640
@cindex coprocessor wait, i386
641
@item
642
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
643
complete the current instruction.  This should never be needed for the
644
80386/80387 combination.
645
 
646
@cindex repeat prefixes, i386
647
@item
648
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
649
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
650
times if the current address size is 16-bits).
651
@cindex REX prefixes, i386
652
@item
653
The @samp{rex} family of prefixes is used by x86-64 to encode
654
extensions to i386 instruction set.  The @samp{rex} prefix has four
655
bits --- an operand size overwrite (@code{64}) used to change operand size
656
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
657
register set.
658
 
659
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
660
instruction emits @samp{rex} prefix with all the bits set.  By omitting
661
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
662
prefixes as well.  Normally, there is no need to write the prefixes
663
explicitly, since gas will automatically generate them based on the
664
instruction operands.
665
@end itemize
666
 
667
@node i386-Memory
668
@section Memory References
669
 
670
@cindex i386 memory references
671
@cindex memory references, i386
672
@cindex x86-64 memory references
673
@cindex memory references, x86-64
674
An Intel syntax indirect memory reference of the form
675
 
676
@smallexample
677
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
678
@end smallexample
679
 
680
@noindent
681
is translated into the AT&T syntax
682
 
683
@smallexample
684
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
685
@end smallexample
686
 
687
@noindent
688
where @var{base} and @var{index} are the optional 32-bit base and
689
index registers, @var{disp} is the optional displacement, and
690
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
691
to calculate the address of the operand.  If no @var{scale} is
692
specified, @var{scale} is taken to be 1.  @var{section} specifies the
693
optional section register for the memory operand, and may override the
694
default section register (see a 80386 manual for section register
695
defaults). Note that section overrides in AT&T syntax @emph{must}
696
be preceded by a @samp{%}.  If you specify a section override which
697
coincides with the default section register, @code{@value{AS}} does @emph{not}
698
output any section register override prefixes to assemble the given
699
instruction.  Thus, section overrides can be specified to emphasize which
700
section register is used for a given memory operand.
701
 
702
Here are some examples of Intel and AT&T style memory references:
703
 
704
@table @asis
705
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
706
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
707
missing, and the default section is used (@samp{%ss} for addressing with
708
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
709
 
710
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
711
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
712
@samp{foo}.  All other fields are missing.  The section register here
713
defaults to @samp{%ds}.
714
 
715
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
716
This uses the value pointed to by @samp{foo} as a memory operand.
717
Note that @var{base} and @var{index} are both missing, but there is only
718
@emph{one} @samp{,}.  This is a syntactic exception.
719
 
720
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
721
This selects the contents of the variable @samp{foo} with section
722
register @var{section} being @samp{%gs}.
723
@end table
724
 
725
Absolute (as opposed to PC relative) call and jump operands must be
726
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
727
always chooses PC relative addressing for jump/call labels.
728
 
729
Any instruction that has a memory operand, but no register operand,
730
@emph{must} specify its size (byte, word, long, or quadruple) with an
731
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
732
respectively).
733
 
734
The x86-64 architecture adds an RIP (instruction pointer relative)
735
addressing.  This addressing mode is specified by using @samp{rip} as a
736
base register.  Only constant offsets are valid. For example:
737
 
738
@table @asis
739
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
740
Points to the address 1234 bytes past the end of the current
741
instruction.
742
 
743
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
744
Points to the @code{symbol} in RIP relative way, this is shorter than
745
the default absolute addressing.
746
@end table
747
 
748
Other addressing modes remain unchanged in x86-64 architecture, except
749
registers used are 64-bit instead of 32-bit.
750
 
751
@node i386-Jumps
752
@section Handling of Jump Instructions
753
 
754
@cindex jump optimization, i386
755
@cindex i386 jump optimization
756
@cindex jump optimization, x86-64
757
@cindex x86-64 jump optimization
758
Jump instructions are always optimized to use the smallest possible
759
displacements.  This is accomplished by using byte (8-bit) displacement
760
jumps whenever the target is sufficiently close.  If a byte displacement
761
is insufficient a long displacement is used.  We do not support
762
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
763
instruction with the @samp{data16} instruction prefix), since the 80386
764
insists upon masking @samp{%eip} to 16 bits after the word displacement
765
is added. (See also @pxref{i386-Arch})
766
 
767
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
768
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
769
displacements, so that if you use these instructions (@code{@value{GCC}} does
770
not use them) you may get an error message (and incorrect code).  The AT&T
771
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
772
to
773
 
774
@smallexample
775
         jcxz cx_zero
776
         jmp cx_nonzero
777
cx_zero: jmp foo
778
cx_nonzero:
779
@end smallexample
780
 
781
@node i386-Float
782
@section Floating Point
783
 
784
@cindex i386 floating point
785
@cindex floating point, i386
786
@cindex x86-64 floating point
787
@cindex floating point, x86-64
788
All 80387 floating point types except packed BCD are supported.
789
(BCD support may be added without much difficulty).  These data
790
types are 16-, 32-, and 64- bit integers, and single (32-bit),
791
double (64-bit), and extended (80-bit) precision floating point.
792
Each supported type has an instruction mnemonic suffix and a constructor
793
associated with it.  Instruction mnemonic suffixes specify the operand's
794
data type.  Constructors build these data types into memory.
795
 
796
@cindex @code{float} directive, i386
797
@cindex @code{single} directive, i386
798
@cindex @code{double} directive, i386
799
@cindex @code{tfloat} directive, i386
800
@cindex @code{float} directive, x86-64
801
@cindex @code{single} directive, x86-64
802
@cindex @code{double} directive, x86-64
803
@cindex @code{tfloat} directive, x86-64
804
@itemize @bullet
805
@item
806
Floating point constructors are @samp{.float} or @samp{.single},
807
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
808
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
809
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
810
only supports this format via the @samp{fldt} (load 80-bit real to stack
811
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
812
 
813
@cindex @code{word} directive, i386
814
@cindex @code{long} directive, i386
815
@cindex @code{int} directive, i386
816
@cindex @code{quad} directive, i386
817
@cindex @code{word} directive, x86-64
818
@cindex @code{long} directive, x86-64
819
@cindex @code{int} directive, x86-64
820
@cindex @code{quad} directive, x86-64
821
@item
822
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
823
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
824
corresponding instruction mnemonic suffixes are @samp{s} (single),
825
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
826
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
827
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
828
stack) instructions.
829
@end itemize
830
 
831
Register to register operations should not use instruction mnemonic suffixes.
832
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
833
wrote @samp{fst %st, %st(1)}, since all register to register operations
834
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
835
which converts @samp{%st} from 80-bit to 64-bit floating point format,
836
then stores the result in the 4 byte location @samp{mem})
837
 
838
@node i386-SIMD
839
@section Intel's MMX and AMD's 3DNow! SIMD Operations
840
 
841
@cindex MMX, i386
842
@cindex 3DNow!, i386
843
@cindex SIMD, i386
844
@cindex MMX, x86-64
845
@cindex 3DNow!, x86-64
846
@cindex SIMD, x86-64
847
 
848
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
849
instructions for integer data), available on Intel's Pentium MMX
850
processors and Pentium II processors, AMD's K6 and K6-2 processors,
851
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
852
instruction set (SIMD instructions for 32-bit floating point data)
853
available on AMD's K6-2 processor and possibly others in the future.
854
 
855
Currently, @code{@value{AS}} does not support Intel's floating point
856
SIMD, Katmai (KNI).
857
 
858
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
859
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
860
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
861
floating point values.  The MMX registers cannot be used at the same time
862
as the floating point stack.
863
 
864
See Intel and AMD documentation, keeping in mind that the operand order in
865
instructions is reversed from the Intel syntax.
866
 
867
@node i386-LWP
868
@section AMD's Lightweight Profiling Instructions
869
 
870
@cindex LWP, i386
871
@cindex LWP, x86-64
872
 
873
@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
874
instruction set, available on AMD's Family 15h (Orochi) processors.
875
 
876
LWP enables applications to collect and manage performance data, and
877
react to performance events.  The collection of performance data
878
requires no context switches.  LWP runs in the context of a thread and
879
so several counters can be used independently across multiple threads.
880
LWP can be used in both 64-bit and legacy 32-bit modes.
881
 
882
For detailed information on the LWP instruction set, see the
883
@cite{AMD Lightweight Profiling Specification} available at
884
@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
885
 
886
@node i386-BMI
887
@section Bit Manipulation Instructions
888
 
889
@cindex BMI, i386
890
@cindex BMI, x86-64
891
 
892
@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
893
 
894
BMI instructions provide several instructions implementing individual
895
bit manipulation operations such as isolation, masking, setting, or
896
resetting.
897
 
898
@c Need to add a specification citation here when available.
899
 
900
@node i386-TBM
901
@section AMD's Trailing Bit Manipulation Instructions
902
 
903
@cindex TBM, i386
904
@cindex TBM, x86-64
905
 
906
@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
907
instruction set, available on AMD's BDVER2 processors (Trinity and
908
Viperfish).
909
 
910
TBM instructions provide instructions implementing individual bit
911
manipulation operations such as isolating, masking, setting, resetting,
912
complementing, and operations on trailing zeros and ones.
913
 
914
@c Need to add a specification citation here when available.
915
 
916
@node i386-16bit
917
@section Writing 16-bit Code
918
 
919
@cindex i386 16-bit code
920
@cindex 16-bit code, i386
921
@cindex real-mode code, i386
922
@cindex @code{code16gcc} directive, i386
923
@cindex @code{code16} directive, i386
924
@cindex @code{code32} directive, i386
925
@cindex @code{code64} directive, i386
926
@cindex @code{code64} directive, x86-64
927
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
928
or 64-bit x86-64 code depending on the default configuration,
929
it also supports writing code to run in real mode or in 16-bit protected
930
mode code segments.  To do this, put a @samp{.code16} or
931
@samp{.code16gcc} directive before the assembly language instructions to
932
be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
933
32-bit code with the @samp{.code32} directive or 64-bit code with the
934
@samp{.code64} directive.
935
 
936
@samp{.code16gcc} provides experimental support for generating 16-bit
937
code from gcc, and differs from @samp{.code16} in that @samp{call},
938
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
939
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
940
default to 32-bit size.  This is so that the stack pointer is
941
manipulated in the same way over function calls, allowing access to
942
function parameters at the same stack offsets as in 32-bit mode.
943
@samp{.code16gcc} also automatically adds address size prefixes where
944
necessary to use the 32-bit addressing modes that gcc generates.
945
 
946
The code which @code{@value{AS}} generates in 16-bit mode will not
947
necessarily run on a 16-bit pre-80386 processor.  To write code that
948
runs on such a processor, you must refrain from using @emph{any} 32-bit
949
constructs which require @code{@value{AS}} to output address or operand
950
size prefixes.
951
 
952
Note that writing 16-bit code instructions by explicitly specifying a
953
prefix or an instruction mnemonic suffix within a 32-bit code section
954
generates different machine instructions than those generated for a
955
16-bit code segment.  In a 32-bit code section, the following code
956
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
957
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
958
 
959
@smallexample
960
        pushw $4
961
@end smallexample
962
 
963
The same code in a 16-bit code section would generate the machine
964
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
965
is correct since the processor default operand size is assumed to be 16
966
bits in a 16-bit code section.
967
 
968
@node i386-Bugs
969
@section AT&T Syntax bugs
970
 
971
The UnixWare assembler, and probably other AT&T derived ix86 Unix
972
assemblers, generate floating point instructions with reversed source
973
and destination registers in certain cases.  Unfortunately, gcc and
974
possibly many other programs use this reversed syntax, so we're stuck
975
with it.
976
 
977
For example
978
 
979
@smallexample
980
        fsub %st,%st(3)
981
@end smallexample
982
@noindent
983
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
984
than the expected @samp{%st(3) - %st}.  This happens with all the
985
non-commutative arithmetic floating point operations with two register
986
operands where the source register is @samp{%st} and the destination
987
register is @samp{%st(i)}.
988
 
989
@node i386-Arch
990
@section Specifying CPU Architecture
991
 
992
@cindex arch directive, i386
993
@cindex i386 arch directive
994
@cindex arch directive, x86-64
995
@cindex x86-64 arch directive
996
 
997
@code{@value{AS}} may be told to assemble for a particular CPU
998
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
999
directive enables a warning when gas detects an instruction that is not
1000
supported on the CPU specified.  The choices for @var{cpu_type} are:
1001
 
1002
@multitable @columnfractions .20 .20 .20 .20
1003
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1004
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1005
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1006
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1007 160 khays
@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1008 147 khays
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1009
@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1010
@item @samp{generic32} @tab @samp{generic64}
1011
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1012
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1013
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1014
@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1015
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1016 148 khays
@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1017
@item @samp{.lzcnt} @tab @samp{.invpcid}
1018 147 khays
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1019
@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1020
@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1021
@item @samp{.padlock}
1022
@end multitable
1023
 
1024
Apart from the warning, there are only two other effects on
1025
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1026
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1027
will automatically use a two byte opcode sequence.  The larger three
1028
byte opcode sequence is used on the 486 (and when no architecture is
1029
specified) because it executes faster on the 486.  Note that you can
1030
explicitly request the two byte opcode by writing @samp{sarl %eax}.
1031
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1032
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1033
conditional jumps will be promoted when necessary to a two instruction
1034
sequence consisting of a conditional jump of the opposite sense around
1035
an unconditional jump to the target.
1036
 
1037
Following the CPU architecture (but not a sub-architecture, which are those
1038
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1039
control automatic promotion of conditional jumps. @samp{jumps} is the
1040
default, and enables jump promotion;  All external jumps will be of the long
1041
variety, and file-local jumps will be promoted as necessary.
1042
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1043
byte offset jumps, and warns about file-local conditional jumps that
1044
@code{@value{AS}} promotes.
1045
Unconditional jumps are treated as for @samp{jumps}.
1046
 
1047
For example
1048
 
1049
@smallexample
1050
 .arch i8086,nojumps
1051
@end smallexample
1052
 
1053
@node i386-Notes
1054
@section Notes
1055
 
1056
@cindex i386 @code{mul}, @code{imul} instructions
1057
@cindex @code{mul} instruction, i386
1058
@cindex @code{imul} instruction, i386
1059
@cindex @code{mul} instruction, x86-64
1060
@cindex @code{imul} instruction, x86-64
1061
There is some trickery concerning the @samp{mul} and @samp{imul}
1062
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1063
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1064
for @samp{imul}) can be output only in the one operand form.  Thus,
1065
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1066
the expanding multiply would clobber the @samp{%edx} register, and this
1067
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1068
64-bit product in @samp{%edx:%eax}.
1069
 
1070
We have added a two operand form of @samp{imul} when the first operand
1071
is an immediate mode expression and the second operand is a register.
1072
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1073
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1074
$69, %eax, %eax}.
1075
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.