OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 299

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 147 khays
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@c man end
7
 
8
@ifset GENERIC
9
@page
10
@node i386-Dependent
11
@chapter 80386 Dependent Features
12
@end ifset
13
@ifclear GENERIC
14
@node Machine Dependencies
15
@chapter 80386 Dependent Features
16
@end ifclear
17
 
18
@cindex i386 support
19
@cindex i80386 support
20
@cindex x86-64 support
21
 
22
The i386 version @code{@value{AS}} supports both the original Intel 386
23
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24
extending the Intel architecture to 64-bits.
25
 
26
@menu
27
* i386-Options::                Options
28
* i386-Directives::             X86 specific directives
29
* i386-Syntax::                 Syntactical considerations
30
* i386-Mnemonics::              Instruction Naming
31
* i386-Regs::                   Register Naming
32
* i386-Prefixes::               Instruction Prefixes
33
* i386-Memory::                 Memory References
34
* i386-Jumps::                  Handling of Jump Instructions
35
* i386-Float::                  Floating Point
36
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
37
* i386-LWP::                    AMD's Lightweight Profiling Instructions
38
* i386-BMI::                    Bit Manipulation Instruction
39
* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
40
* i386-16bit::                  Writing 16-bit Code
41
* i386-Arch::                   Specifying an x86 CPU architecture
42
* i386-Bugs::                   AT&T Syntax bugs
43
* i386-Notes::                  Notes
44
@end menu
45
 
46
@node i386-Options
47
@section Options
48
 
49
@cindex options for i386
50
@cindex options for x86-64
51
@cindex i386 options
52
@cindex x86-64 options
53
 
54
The i386 version of @code{@value{AS}} has a few machine
55
dependent options:
56
 
57
@c man begin OPTIONS
58
@table @gcctabopt
59
@cindex @samp{--32} option, i386
60
@cindex @samp{--32} option, x86-64
61
@cindex @samp{--x32} option, i386
62
@cindex @samp{--x32} option, x86-64
63
@cindex @samp{--64} option, i386
64
@cindex @samp{--64} option, x86-64
65
@item --32 | --x32 | --64
66
Select the word size, either 32 bits or 64 bits.  @samp{--32}
67
implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68
imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69
respectively.
70
 
71
These options are only available with the ELF object file format, and
72
require that the necessary BFD support has been included (on a 32-bit
73
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74
usage and use x86-64 as target platform).
75
 
76
@item -n
77
By default, x86 GAS replaces multiple nop instructions used for
78
alignment within code sections with multi-byte nop instructions such
79
as leal 0(%esi,1),%esi.  This switch disables the optimization.
80
 
81
@cindex @samp{--divide} option, i386
82
@item --divide
83
On SVR4-derived platforms, the character @samp{/} is treated as a comment
84
character, which means that it cannot be used in expressions.  The
85
@samp{--divide} option turns @samp{/} into a normal character.  This does
86
not disable @samp{/} at the beginning of a line starting a comment, or
87
affect using @samp{#} for starting a comment.
88
 
89
@cindex @samp{-march=} option, i386
90
@cindex @samp{-march=} option, x86-64
91
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92
This option specifies the target processor.  The assembler will
93
issue an error message if an attempt is made to assemble an instruction
94
which will not execute on the target processor.  The following
95
processor names are recognized:
96
@code{i8086},
97
@code{i186},
98
@code{i286},
99
@code{i386},
100
@code{i486},
101
@code{i586},
102
@code{i686},
103
@code{pentium},
104
@code{pentiumpro},
105
@code{pentiumii},
106
@code{pentiumiii},
107
@code{pentium4},
108
@code{prescott},
109
@code{nocona},
110
@code{core},
111
@code{core2},
112
@code{corei7},
113
@code{l1om},
114 160 khays
@code{k1om},
115 147 khays
@code{k6},
116
@code{k6_2},
117
@code{athlon},
118
@code{opteron},
119
@code{k8},
120
@code{amdfam10},
121
@code{bdver1},
122
@code{bdver2},
123
@code{generic32} and
124
@code{generic64}.
125
 
126
In addition to the basic instruction set, the assembler can be told to
127
accept various extension mnemonics.  For example,
128
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129
@var{vmx}.  The following extensions are currently supported:
130
@code{8087},
131
@code{287},
132
@code{387},
133
@code{no87},
134
@code{mmx},
135
@code{nommx},
136
@code{sse},
137
@code{sse2},
138
@code{sse3},
139
@code{ssse3},
140
@code{sse4.1},
141
@code{sse4.2},
142
@code{sse4},
143
@code{nosse},
144
@code{avx},
145 148 khays
@code{avx2},
146 147 khays
@code{noavx},
147
@code{vmx},
148 166 khays
@code{vmfunc},
149 147 khays
@code{smx},
150
@code{xsave},
151
@code{xsaveopt},
152
@code{aes},
153
@code{pclmul},
154
@code{fsgsbase},
155
@code{rdrnd},
156
@code{f16c},
157 148 khays
@code{bmi2},
158 147 khays
@code{fma},
159
@code{movbe},
160
@code{ept},
161 148 khays
@code{lzcnt},
162 166 khays
@code{hle},
163
@code{rtm},
164 148 khays
@code{invpcid},
165 147 khays
@code{clflush},
166
@code{lwp},
167
@code{fma4},
168
@code{xop},
169
@code{syscall},
170
@code{rdtscp},
171
@code{3dnow},
172
@code{3dnowa},
173
@code{sse4a},
174
@code{sse5},
175
@code{svme},
176
@code{abm} and
177
@code{padlock}.
178
Note that rather than extending a basic instruction set, the extension
179
mnemonics starting with @code{no} revoke the respective functionality.
180
 
181
When the @code{.arch} directive is used with @option{-march}, the
182
@code{.arch} directive will take precedent.
183
 
184
@cindex @samp{-mtune=} option, i386
185
@cindex @samp{-mtune=} option, x86-64
186
@item -mtune=@var{CPU}
187
This option specifies a processor to optimize for. When used in
188
conjunction with the @option{-march} option, only instructions
189
of the processor specified by the @option{-march} option will be
190
generated.
191
 
192
Valid @var{CPU} values are identical to the processor list of
193
@option{-march=@var{CPU}}.
194
 
195
@cindex @samp{-msse2avx} option, i386
196
@cindex @samp{-msse2avx} option, x86-64
197
@item -msse2avx
198
This option specifies that the assembler should encode SSE instructions
199
with VEX prefix.
200
 
201
@cindex @samp{-msse-check=} option, i386
202
@cindex @samp{-msse-check=} option, x86-64
203
@item -msse-check=@var{none}
204
@itemx -msse-check=@var{warning}
205
@itemx -msse-check=@var{error}
206
These options control if the assembler should check SSE intructions.
207
@option{-msse-check=@var{none}} will make the assembler not to check SSE
208
instructions,  which is the default.  @option{-msse-check=@var{warning}}
209
will make the assembler issue a warning for any SSE intruction.
210
@option{-msse-check=@var{error}} will make the assembler issue an error
211
for any SSE intruction.
212
 
213
@cindex @samp{-mavxscalar=} option, i386
214
@cindex @samp{-mavxscalar=} option, x86-64
215
@item -mavxscalar=@var{128}
216
@itemx -mavxscalar=@var{256}
217 160 khays
These options control how the assembler should encode scalar AVX
218 147 khays
instructions.  @option{-mavxscalar=@var{128}} will encode scalar
219
AVX instructions with 128bit vector length, which is the default.
220
@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
221
with 256bit vector length.
222
 
223
@cindex @samp{-mmnemonic=} option, i386
224
@cindex @samp{-mmnemonic=} option, x86-64
225
@item -mmnemonic=@var{att}
226
@itemx -mmnemonic=@var{intel}
227
This option specifies instruction mnemonic for matching instructions.
228
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
229
take precedent.
230
 
231
@cindex @samp{-msyntax=} option, i386
232
@cindex @samp{-msyntax=} option, x86-64
233
@item -msyntax=@var{att}
234
@itemx -msyntax=@var{intel}
235
This option specifies instruction syntax when processing instructions.
236
The @code{.att_syntax} and @code{.intel_syntax} directives will
237
take precedent.
238
 
239
@cindex @samp{-mnaked-reg} option, i386
240
@cindex @samp{-mnaked-reg} option, x86-64
241
@item -mnaked-reg
242
This opetion specifies that registers don't require a @samp{%} prefix.
243
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
244
 
245
@end table
246
@c man end
247
 
248
@node i386-Directives
249
@section x86 specific Directives
250
 
251
@cindex machine directives, x86
252
@cindex x86 machine directives
253
@table @code
254
 
255
@cindex @code{lcomm} directive, COFF
256
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
257
Reserve @var{length} (an absolute expression) bytes for a local common
258
denoted by @var{symbol}.  The section and value of @var{symbol} are
259
those of the new local common.  The addresses are allocated in the bss
260
section, so that at run-time the bytes start off zeroed.  Since
261
@var{symbol} is not declared global, it is normally not visible to
262
@code{@value{LD}}.  The optional third parameter, @var{alignment},
263
specifies the desired alignment of the symbol in the bss section.
264
 
265
This directive is only available for COFF based x86 targets.
266
 
267
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
268
@c .largecomm
269
 
270
@end table
271
 
272
@node i386-Syntax
273
@section i386 Syntactical Considerations
274
@menu
275
* i386-Variations::           AT&T Syntax versus Intel Syntax
276
* i386-Chars::                Special Characters
277
@end menu
278
 
279
@node i386-Variations
280
@subsection AT&T Syntax versus Intel Syntax
281
 
282
@cindex i386 intel_syntax pseudo op
283
@cindex intel_syntax pseudo op, i386
284
@cindex i386 att_syntax pseudo op
285
@cindex att_syntax pseudo op, i386
286
@cindex i386 syntax compatibility
287
@cindex syntax compatibility, i386
288
@cindex x86-64 intel_syntax pseudo op
289
@cindex intel_syntax pseudo op, x86-64
290
@cindex x86-64 att_syntax pseudo op
291
@cindex att_syntax pseudo op, x86-64
292
@cindex x86-64 syntax compatibility
293
@cindex syntax compatibility, x86-64
294
 
295
@code{@value{AS}} now supports assembly using Intel assembler syntax.
296
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
297
back to the usual AT&T mode for compatibility with the output of
298
@code{@value{GCC}}.  Either of these directives may have an optional
299
argument, @code{prefix}, or @code{noprefix} specifying whether registers
300
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
301
different from Intel syntax.  We mention these differences because
302
almost all 80386 documents use Intel syntax.  Notable differences
303
between the two syntaxes are:
304
 
305
@cindex immediate operands, i386
306
@cindex i386 immediate operands
307
@cindex register operands, i386
308
@cindex i386 register operands
309
@cindex jump/call operands, i386
310
@cindex i386 jump/call operands
311
@cindex operand delimiters, i386
312
 
313
@cindex immediate operands, x86-64
314
@cindex x86-64 immediate operands
315
@cindex register operands, x86-64
316
@cindex x86-64 register operands
317
@cindex jump/call operands, x86-64
318
@cindex x86-64 jump/call operands
319
@cindex operand delimiters, x86-64
320
@itemize @bullet
321
@item
322
AT&T immediate operands are preceded by @samp{$}; Intel immediate
323
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
324
AT&T register operands are preceded by @samp{%}; Intel register operands
325
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
326
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
327
 
328
@cindex i386 source, destination operands
329
@cindex source, destination operands; i386
330
@cindex x86-64 source, destination operands
331
@cindex source, destination operands; x86-64
332
@item
333
AT&T and Intel syntax use the opposite order for source and destination
334
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
335
@samp{source, dest} convention is maintained for compatibility with
336
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
337
instructions with 2 immediate operands, such as the @samp{enter}
338
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
339
 
340
@cindex mnemonic suffixes, i386
341
@cindex sizes operands, i386
342
@cindex i386 size suffixes
343
@cindex mnemonic suffixes, x86-64
344
@cindex sizes operands, x86-64
345
@cindex x86-64 size suffixes
346
@item
347
In AT&T syntax the size of memory operands is determined from the last
348
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
349
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
350
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
351
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
352
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
353
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
354
syntax.
355
 
356
In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
357
instruction with the 64-bit displacement or immediate operand.
358
 
359
@cindex return instructions, i386
360
@cindex i386 jump, call, return
361
@cindex return instructions, x86-64
362
@cindex x86-64 jump, call, return
363
@item
364
Immediate form long jumps and calls are
365
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
366
Intel syntax is
367
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
368
instruction
369
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
370
@samp{ret far @var{stack-adjust}}.
371
 
372
@cindex sections, i386
373
@cindex i386 sections
374
@cindex sections, x86-64
375
@cindex x86-64 sections
376
@item
377
The AT&T assembler does not provide support for multiple section
378
programs.  Unix style systems expect all programs to be single sections.
379
@end itemize
380
 
381
@node i386-Chars
382
@subsection Special Characters
383
 
384
@cindex line comment character, i386
385
@cindex i386 line comment character
386
The presence of a @samp{#} appearing anywhere on a line indicates the
387
start of a comment that extends to the end of that line.
388
 
389
If a @samp{#} appears as the first character of a line then the whole
390
line is treated as a comment, but in this case the line can also be a
391
logical line number directive (@pxref{Comments}) or a preprocessor
392
control command (@pxref{Preprocessing}).
393
 
394
If the @option{--divide} command line option has not been specified
395
then the @samp{/} character appearing anywhere on a line also
396
introduces a line comment.
397
 
398
@cindex line separator, i386
399
@cindex statement separator, i386
400
@cindex i386 line separator
401
The @samp{;} character can be used to separate statements on the same
402
line.
403
 
404
@node i386-Mnemonics
405
@section Instruction Naming
406
 
407
@cindex i386 instruction naming
408
@cindex instruction naming, i386
409
@cindex x86-64 instruction naming
410
@cindex instruction naming, x86-64
411
 
412
Instruction mnemonics are suffixed with one character modifiers which
413
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
414
and @samp{q} specify byte, word, long and quadruple word operands.  If
415
no suffix is specified by an instruction then @code{@value{AS}} tries to
416
fill in the missing suffix based on the destination register operand
417
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
418
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
419
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
420
assembler which assumes that a missing mnemonic suffix implies long
421
operand size.  (This incompatibility does not affect compiler output
422
since compilers always explicitly specify the mnemonic suffix.)
423
 
424
Almost all instructions have the same names in AT&T and Intel format.
425
There are a few exceptions.  The sign extend and zero extend
426
instructions need two sizes to specify them.  They need a size to
427
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
428
is accomplished by using two instruction mnemonic suffixes in AT&T
429
syntax.  Base names for sign extend and zero extend are
430
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
431
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
432
are tacked on to this base name, the @emph{from} suffix before the
433
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
434
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
435
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
436
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
437
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
438
quadruple word).
439
 
440
@cindex encoding options, i386
441
@cindex encoding options, x86-64
442
 
443
Different encoding options can be specified via optional mnemonic
444
suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
445 166 khays
moving from one register to another.  @samp{.d8} or @samp{.d32} suffix
446
prefers 8bit or 32bit displacement in encoding.
447 147 khays
 
448
@cindex conversion instructions, i386
449
@cindex i386 conversion instructions
450
@cindex conversion instructions, x86-64
451
@cindex x86-64 conversion instructions
452
The Intel-syntax conversion instructions
453
 
454
@itemize @bullet
455
@item
456
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
457
 
458
@item
459
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
460
 
461
@item
462
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
463
 
464
@item
465
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
466
 
467
@item
468
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
469
(x86-64 only),
470
 
471
@item
472
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
473
@samp{%rdx:%rax} (x86-64 only),
474
@end itemize
475
 
476
@noindent
477
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
478
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
479
instructions.
480
 
481
@cindex jump instructions, i386
482
@cindex call instructions, i386
483
@cindex jump instructions, x86-64
484
@cindex call instructions, x86-64
485
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
486
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
487
convention.
488
 
489
@section AT&T Mnemonic versus Intel Mnemonic
490
 
491
@cindex i386 mnemonic compatibility
492
@cindex mnemonic compatibility, i386
493
 
494
@code{@value{AS}} supports assembly using Intel mnemonic.
495
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
496
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
497
syntax for compatibility with the output of @code{@value{GCC}}.
498
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
499
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
500
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
501
assembler with different mnemonics from those in Intel IA32 specification.
502
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
503
 
504
@node i386-Regs
505
@section Register Naming
506
 
507
@cindex i386 registers
508
@cindex registers, i386
509
@cindex x86-64 registers
510
@cindex registers, x86-64
511
Register operands are always prefixed with @samp{%}.  The 80386 registers
512
consist of
513
 
514
@itemize @bullet
515
@item
516
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
517
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
518
frame pointer), and @samp{%esp} (the stack pointer).
519
 
520
@item
521
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
522
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
523
 
524
@item
525
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
526
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
527
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
528
@samp{%cx}, and @samp{%dx})
529
 
530
@item
531
the 6 section registers @samp{%cs} (code section), @samp{%ds}
532
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
533
and @samp{%gs}.
534
 
535
@item
536
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
537
@samp{%cr3}.
538
 
539
@item
540
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
541
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
542
 
543
@item
544
the 2 test registers @samp{%tr6} and @samp{%tr7}.
545
 
546
@item
547
the 8 floating point register stack @samp{%st} or equivalently
548
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
549
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
550
These registers are overloaded by 8 MMX registers @samp{%mm0},
551
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
552
@samp{%mm6} and @samp{%mm7}.
553
 
554
@item
555
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
556
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
557
@end itemize
558
 
559
The AMD x86-64 architecture extends the register set by:
560
 
561
@itemize @bullet
562
@item
563
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
564
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
565
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
566
pointer)
567
 
568
@item
569
the 8 extended registers @samp{%r8}--@samp{%r15}.
570
 
571
@item
572
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
573
 
574
@item
575
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
576
 
577
@item
578
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
579
 
580
@item
581
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
582
 
583
@item
584
the 8 debug registers: @samp{%db8}--@samp{%db15}.
585
 
586
@item
587
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
588
@end itemize
589
 
590
@node i386-Prefixes
591
@section Instruction Prefixes
592
 
593
@cindex i386 instruction prefixes
594
@cindex instruction prefixes, i386
595
@cindex prefixes, i386
596
Instruction prefixes are used to modify the following instruction.  They
597
are used to repeat string instructions, to provide section overrides, to
598
perform bus lock operations, and to change operand and address sizes.
599
(Most instructions that normally operate on 32-bit operands will use
600
16-bit operands if the instruction has an ``operand size'' prefix.)
601
Instruction prefixes are best written on the same line as the instruction
602
they act upon. For example, the @samp{scas} (scan string) instruction is
603
repeated with:
604
 
605
@smallexample
606
        repne scas %es:(%edi),%al
607
@end smallexample
608
 
609
You may also place prefixes on the lines immediately preceding the
610
instruction, but this circumvents checks that @code{@value{AS}} does
611
with prefixes, and will not work with all prefixes.
612
 
613
Here is a list of instruction prefixes:
614
 
615
@cindex section override prefixes, i386
616
@itemize @bullet
617
@item
618
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
619
@samp{fs}, @samp{gs}.  These are automatically added by specifying
620
using the @var{section}:@var{memory-operand} form for memory references.
621
 
622
@cindex size prefixes, i386
623
@item
624
Operand/Address size prefixes @samp{data16} and @samp{addr16}
625
change 32-bit operands/addresses into 16-bit operands/addresses,
626
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
627
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
628
@emph{must} appear on the same line of code as the instruction they
629
modify. For example, in a 16-bit @code{.code16} section, you might
630
write:
631
 
632
@smallexample
633
        addr32 jmpl *(%ebx)
634
@end smallexample
635
 
636
@cindex bus lock prefixes, i386
637
@cindex inhibiting interrupts, i386
638
@item
639
The bus lock prefix @samp{lock} inhibits interrupts during execution of
640
the instruction it precedes.  (This is only valid with certain
641
instructions; see a 80386 manual for details).
642
 
643
@cindex coprocessor wait, i386
644
@item
645
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
646
complete the current instruction.  This should never be needed for the
647
80386/80387 combination.
648
 
649
@cindex repeat prefixes, i386
650
@item
651
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
652
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
653
times if the current address size is 16-bits).
654
@cindex REX prefixes, i386
655
@item
656
The @samp{rex} family of prefixes is used by x86-64 to encode
657
extensions to i386 instruction set.  The @samp{rex} prefix has four
658
bits --- an operand size overwrite (@code{64}) used to change operand size
659
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
660
register set.
661
 
662
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
663
instruction emits @samp{rex} prefix with all the bits set.  By omitting
664
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
665
prefixes as well.  Normally, there is no need to write the prefixes
666
explicitly, since gas will automatically generate them based on the
667
instruction operands.
668
@end itemize
669
 
670
@node i386-Memory
671
@section Memory References
672
 
673
@cindex i386 memory references
674
@cindex memory references, i386
675
@cindex x86-64 memory references
676
@cindex memory references, x86-64
677
An Intel syntax indirect memory reference of the form
678
 
679
@smallexample
680
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
681
@end smallexample
682
 
683
@noindent
684
is translated into the AT&T syntax
685
 
686
@smallexample
687
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
688
@end smallexample
689
 
690
@noindent
691
where @var{base} and @var{index} are the optional 32-bit base and
692
index registers, @var{disp} is the optional displacement, and
693
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
694
to calculate the address of the operand.  If no @var{scale} is
695
specified, @var{scale} is taken to be 1.  @var{section} specifies the
696
optional section register for the memory operand, and may override the
697
default section register (see a 80386 manual for section register
698
defaults). Note that section overrides in AT&T syntax @emph{must}
699
be preceded by a @samp{%}.  If you specify a section override which
700
coincides with the default section register, @code{@value{AS}} does @emph{not}
701
output any section register override prefixes to assemble the given
702
instruction.  Thus, section overrides can be specified to emphasize which
703
section register is used for a given memory operand.
704
 
705
Here are some examples of Intel and AT&T style memory references:
706
 
707
@table @asis
708
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
709
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
710
missing, and the default section is used (@samp{%ss} for addressing with
711
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
712
 
713
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
714
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
715
@samp{foo}.  All other fields are missing.  The section register here
716
defaults to @samp{%ds}.
717
 
718
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
719
This uses the value pointed to by @samp{foo} as a memory operand.
720
Note that @var{base} and @var{index} are both missing, but there is only
721
@emph{one} @samp{,}.  This is a syntactic exception.
722
 
723
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
724
This selects the contents of the variable @samp{foo} with section
725
register @var{section} being @samp{%gs}.
726
@end table
727
 
728
Absolute (as opposed to PC relative) call and jump operands must be
729
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
730
always chooses PC relative addressing for jump/call labels.
731
 
732
Any instruction that has a memory operand, but no register operand,
733
@emph{must} specify its size (byte, word, long, or quadruple) with an
734
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
735
respectively).
736
 
737
The x86-64 architecture adds an RIP (instruction pointer relative)
738
addressing.  This addressing mode is specified by using @samp{rip} as a
739
base register.  Only constant offsets are valid. For example:
740
 
741
@table @asis
742
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
743
Points to the address 1234 bytes past the end of the current
744
instruction.
745
 
746
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
747
Points to the @code{symbol} in RIP relative way, this is shorter than
748
the default absolute addressing.
749
@end table
750
 
751
Other addressing modes remain unchanged in x86-64 architecture, except
752
registers used are 64-bit instead of 32-bit.
753
 
754
@node i386-Jumps
755
@section Handling of Jump Instructions
756
 
757
@cindex jump optimization, i386
758
@cindex i386 jump optimization
759
@cindex jump optimization, x86-64
760
@cindex x86-64 jump optimization
761
Jump instructions are always optimized to use the smallest possible
762
displacements.  This is accomplished by using byte (8-bit) displacement
763
jumps whenever the target is sufficiently close.  If a byte displacement
764
is insufficient a long displacement is used.  We do not support
765
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
766
instruction with the @samp{data16} instruction prefix), since the 80386
767
insists upon masking @samp{%eip} to 16 bits after the word displacement
768
is added. (See also @pxref{i386-Arch})
769
 
770
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
771
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
772
displacements, so that if you use these instructions (@code{@value{GCC}} does
773
not use them) you may get an error message (and incorrect code).  The AT&T
774
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
775
to
776
 
777
@smallexample
778
         jcxz cx_zero
779
         jmp cx_nonzero
780
cx_zero: jmp foo
781
cx_nonzero:
782
@end smallexample
783
 
784
@node i386-Float
785
@section Floating Point
786
 
787
@cindex i386 floating point
788
@cindex floating point, i386
789
@cindex x86-64 floating point
790
@cindex floating point, x86-64
791
All 80387 floating point types except packed BCD are supported.
792
(BCD support may be added without much difficulty).  These data
793
types are 16-, 32-, and 64- bit integers, and single (32-bit),
794
double (64-bit), and extended (80-bit) precision floating point.
795
Each supported type has an instruction mnemonic suffix and a constructor
796
associated with it.  Instruction mnemonic suffixes specify the operand's
797
data type.  Constructors build these data types into memory.
798
 
799
@cindex @code{float} directive, i386
800
@cindex @code{single} directive, i386
801
@cindex @code{double} directive, i386
802
@cindex @code{tfloat} directive, i386
803
@cindex @code{float} directive, x86-64
804
@cindex @code{single} directive, x86-64
805
@cindex @code{double} directive, x86-64
806
@cindex @code{tfloat} directive, x86-64
807
@itemize @bullet
808
@item
809
Floating point constructors are @samp{.float} or @samp{.single},
810
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
811
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
812
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
813
only supports this format via the @samp{fldt} (load 80-bit real to stack
814
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
815
 
816
@cindex @code{word} directive, i386
817
@cindex @code{long} directive, i386
818
@cindex @code{int} directive, i386
819
@cindex @code{quad} directive, i386
820
@cindex @code{word} directive, x86-64
821
@cindex @code{long} directive, x86-64
822
@cindex @code{int} directive, x86-64
823
@cindex @code{quad} directive, x86-64
824
@item
825
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
826
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
827
corresponding instruction mnemonic suffixes are @samp{s} (single),
828
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
829
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
830
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
831
stack) instructions.
832
@end itemize
833
 
834
Register to register operations should not use instruction mnemonic suffixes.
835
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
836
wrote @samp{fst %st, %st(1)}, since all register to register operations
837
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
838
which converts @samp{%st} from 80-bit to 64-bit floating point format,
839
then stores the result in the 4 byte location @samp{mem})
840
 
841
@node i386-SIMD
842
@section Intel's MMX and AMD's 3DNow! SIMD Operations
843
 
844
@cindex MMX, i386
845
@cindex 3DNow!, i386
846
@cindex SIMD, i386
847
@cindex MMX, x86-64
848
@cindex 3DNow!, x86-64
849
@cindex SIMD, x86-64
850
 
851
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
852
instructions for integer data), available on Intel's Pentium MMX
853
processors and Pentium II processors, AMD's K6 and K6-2 processors,
854
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
855
instruction set (SIMD instructions for 32-bit floating point data)
856
available on AMD's K6-2 processor and possibly others in the future.
857
 
858
Currently, @code{@value{AS}} does not support Intel's floating point
859
SIMD, Katmai (KNI).
860
 
861
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
862
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
863
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
864
floating point values.  The MMX registers cannot be used at the same time
865
as the floating point stack.
866
 
867
See Intel and AMD documentation, keeping in mind that the operand order in
868
instructions is reversed from the Intel syntax.
869
 
870
@node i386-LWP
871
@section AMD's Lightweight Profiling Instructions
872
 
873
@cindex LWP, i386
874
@cindex LWP, x86-64
875
 
876
@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
877
instruction set, available on AMD's Family 15h (Orochi) processors.
878
 
879
LWP enables applications to collect and manage performance data, and
880
react to performance events.  The collection of performance data
881
requires no context switches.  LWP runs in the context of a thread and
882
so several counters can be used independently across multiple threads.
883
LWP can be used in both 64-bit and legacy 32-bit modes.
884
 
885
For detailed information on the LWP instruction set, see the
886
@cite{AMD Lightweight Profiling Specification} available at
887
@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
888
 
889
@node i386-BMI
890
@section Bit Manipulation Instructions
891
 
892
@cindex BMI, i386
893
@cindex BMI, x86-64
894
 
895
@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
896
 
897
BMI instructions provide several instructions implementing individual
898
bit manipulation operations such as isolation, masking, setting, or
899
resetting.
900
 
901
@c Need to add a specification citation here when available.
902
 
903
@node i386-TBM
904
@section AMD's Trailing Bit Manipulation Instructions
905
 
906
@cindex TBM, i386
907
@cindex TBM, x86-64
908
 
909
@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
910
instruction set, available on AMD's BDVER2 processors (Trinity and
911
Viperfish).
912
 
913
TBM instructions provide instructions implementing individual bit
914
manipulation operations such as isolating, masking, setting, resetting,
915
complementing, and operations on trailing zeros and ones.
916
 
917
@c Need to add a specification citation here when available.
918
 
919
@node i386-16bit
920
@section Writing 16-bit Code
921
 
922
@cindex i386 16-bit code
923
@cindex 16-bit code, i386
924
@cindex real-mode code, i386
925
@cindex @code{code16gcc} directive, i386
926
@cindex @code{code16} directive, i386
927
@cindex @code{code32} directive, i386
928
@cindex @code{code64} directive, i386
929
@cindex @code{code64} directive, x86-64
930
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
931
or 64-bit x86-64 code depending on the default configuration,
932
it also supports writing code to run in real mode or in 16-bit protected
933
mode code segments.  To do this, put a @samp{.code16} or
934
@samp{.code16gcc} directive before the assembly language instructions to
935
be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
936
32-bit code with the @samp{.code32} directive or 64-bit code with the
937
@samp{.code64} directive.
938
 
939
@samp{.code16gcc} provides experimental support for generating 16-bit
940
code from gcc, and differs from @samp{.code16} in that @samp{call},
941
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
942
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
943
default to 32-bit size.  This is so that the stack pointer is
944
manipulated in the same way over function calls, allowing access to
945
function parameters at the same stack offsets as in 32-bit mode.
946
@samp{.code16gcc} also automatically adds address size prefixes where
947
necessary to use the 32-bit addressing modes that gcc generates.
948
 
949
The code which @code{@value{AS}} generates in 16-bit mode will not
950
necessarily run on a 16-bit pre-80386 processor.  To write code that
951
runs on such a processor, you must refrain from using @emph{any} 32-bit
952
constructs which require @code{@value{AS}} to output address or operand
953
size prefixes.
954
 
955
Note that writing 16-bit code instructions by explicitly specifying a
956
prefix or an instruction mnemonic suffix within a 32-bit code section
957
generates different machine instructions than those generated for a
958
16-bit code segment.  In a 32-bit code section, the following code
959
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
960
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
961
 
962
@smallexample
963
        pushw $4
964
@end smallexample
965
 
966
The same code in a 16-bit code section would generate the machine
967
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
968
is correct since the processor default operand size is assumed to be 16
969
bits in a 16-bit code section.
970
 
971
@node i386-Bugs
972
@section AT&T Syntax bugs
973
 
974
The UnixWare assembler, and probably other AT&T derived ix86 Unix
975
assemblers, generate floating point instructions with reversed source
976
and destination registers in certain cases.  Unfortunately, gcc and
977
possibly many other programs use this reversed syntax, so we're stuck
978
with it.
979
 
980
For example
981
 
982
@smallexample
983
        fsub %st,%st(3)
984
@end smallexample
985
@noindent
986
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
987
than the expected @samp{%st(3) - %st}.  This happens with all the
988
non-commutative arithmetic floating point operations with two register
989
operands where the source register is @samp{%st} and the destination
990
register is @samp{%st(i)}.
991
 
992
@node i386-Arch
993
@section Specifying CPU Architecture
994
 
995
@cindex arch directive, i386
996
@cindex i386 arch directive
997
@cindex arch directive, x86-64
998
@cindex x86-64 arch directive
999
 
1000
@code{@value{AS}} may be told to assemble for a particular CPU
1001
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1002
directive enables a warning when gas detects an instruction that is not
1003
supported on the CPU specified.  The choices for @var{cpu_type} are:
1004
 
1005
@multitable @columnfractions .20 .20 .20 .20
1006
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1007
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1008
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1009
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1010 160 khays
@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1011 147 khays
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1012
@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1013
@item @samp{generic32} @tab @samp{generic64}
1014
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1015
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1016
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1017
@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1018
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1019 148 khays
@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1020 166 khays
@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1021
@item @samp{.rtm}
1022 147 khays
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1023
@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1024
@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1025
@item @samp{.padlock}
1026
@end multitable
1027
 
1028
Apart from the warning, there are only two other effects on
1029
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1030
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1031
will automatically use a two byte opcode sequence.  The larger three
1032
byte opcode sequence is used on the 486 (and when no architecture is
1033
specified) because it executes faster on the 486.  Note that you can
1034
explicitly request the two byte opcode by writing @samp{sarl %eax}.
1035
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1036
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1037
conditional jumps will be promoted when necessary to a two instruction
1038
sequence consisting of a conditional jump of the opposite sense around
1039
an unconditional jump to the target.
1040
 
1041
Following the CPU architecture (but not a sub-architecture, which are those
1042
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1043
control automatic promotion of conditional jumps. @samp{jumps} is the
1044
default, and enables jump promotion;  All external jumps will be of the long
1045
variety, and file-local jumps will be promoted as necessary.
1046
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1047
byte offset jumps, and warns about file-local conditional jumps that
1048
@code{@value{AS}} promotes.
1049
Unconditional jumps are treated as for @samp{jumps}.
1050
 
1051
For example
1052
 
1053
@smallexample
1054
 .arch i8086,nojumps
1055
@end smallexample
1056
 
1057
@node i386-Notes
1058
@section Notes
1059
 
1060
@cindex i386 @code{mul}, @code{imul} instructions
1061
@cindex @code{mul} instruction, i386
1062
@cindex @code{imul} instruction, i386
1063
@cindex @code{mul} instruction, x86-64
1064
@cindex @code{imul} instruction, x86-64
1065
There is some trickery concerning the @samp{mul} and @samp{imul}
1066
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1067
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1068
for @samp{imul}) can be output only in the one operand form.  Thus,
1069
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1070
the expanding multiply would clobber the @samp{%edx} register, and this
1071
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1072
64-bit product in @samp{%edx:%eax}.
1073
 
1074
We have added a two operand form of @samp{imul} when the first operand
1075
is an immediate mode expression and the second operand is a register.
1076
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1077
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1078
$69, %eax, %eax}.
1079
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.