1 |
27 |
khays |
// arm.cc -- arm target support for gold.
|
2 |
|
|
|
3 |
159 |
khays |
// Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
|
4 |
27 |
khays |
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
|
5 |
|
|
// by Ian Lance Taylor <iant@google.com>.
|
6 |
|
|
// This file also contains borrowed and adapted code from
|
7 |
|
|
// bfd/elf32-arm.c.
|
8 |
|
|
|
9 |
|
|
// This file is part of gold.
|
10 |
|
|
|
11 |
|
|
// This program is free software; you can redistribute it and/or modify
|
12 |
|
|
// it under the terms of the GNU General Public License as published by
|
13 |
|
|
// the Free Software Foundation; either version 3 of the License, or
|
14 |
|
|
// (at your option) any later version.
|
15 |
|
|
|
16 |
|
|
// This program is distributed in the hope that it will be useful,
|
17 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
// GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
// You should have received a copy of the GNU General Public License
|
22 |
|
|
// along with this program; if not, write to the Free Software
|
23 |
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
24 |
|
|
// MA 02110-1301, USA.
|
25 |
|
|
|
26 |
|
|
#include "gold.h"
|
27 |
|
|
|
28 |
|
|
#include <cstring>
|
29 |
|
|
#include <limits>
|
30 |
|
|
#include <cstdio>
|
31 |
|
|
#include <string>
|
32 |
|
|
#include <algorithm>
|
33 |
|
|
#include <map>
|
34 |
|
|
#include <utility>
|
35 |
|
|
#include <set>
|
36 |
|
|
|
37 |
|
|
#include "elfcpp.h"
|
38 |
|
|
#include "parameters.h"
|
39 |
|
|
#include "reloc.h"
|
40 |
|
|
#include "arm.h"
|
41 |
|
|
#include "object.h"
|
42 |
|
|
#include "symtab.h"
|
43 |
|
|
#include "layout.h"
|
44 |
|
|
#include "output.h"
|
45 |
|
|
#include "copy-relocs.h"
|
46 |
|
|
#include "target.h"
|
47 |
|
|
#include "target-reloc.h"
|
48 |
|
|
#include "target-select.h"
|
49 |
|
|
#include "tls.h"
|
50 |
|
|
#include "defstd.h"
|
51 |
|
|
#include "gc.h"
|
52 |
|
|
#include "attributes.h"
|
53 |
|
|
#include "arm-reloc-property.h"
|
54 |
|
|
|
55 |
|
|
namespace
|
56 |
|
|
{
|
57 |
|
|
|
58 |
|
|
using namespace gold;
|
59 |
|
|
|
60 |
|
|
template<bool big_endian>
|
61 |
|
|
class Output_data_plt_arm;
|
62 |
|
|
|
63 |
|
|
template<bool big_endian>
|
64 |
|
|
class Stub_table;
|
65 |
|
|
|
66 |
|
|
template<bool big_endian>
|
67 |
|
|
class Arm_input_section;
|
68 |
|
|
|
69 |
|
|
class Arm_exidx_cantunwind;
|
70 |
|
|
|
71 |
|
|
class Arm_exidx_merged_section;
|
72 |
|
|
|
73 |
|
|
class Arm_exidx_fixup;
|
74 |
|
|
|
75 |
|
|
template<bool big_endian>
|
76 |
|
|
class Arm_output_section;
|
77 |
|
|
|
78 |
|
|
class Arm_exidx_input_section;
|
79 |
|
|
|
80 |
|
|
template<bool big_endian>
|
81 |
|
|
class Arm_relobj;
|
82 |
|
|
|
83 |
|
|
template<bool big_endian>
|
84 |
|
|
class Arm_relocate_functions;
|
85 |
|
|
|
86 |
|
|
template<bool big_endian>
|
87 |
|
|
class Arm_output_data_got;
|
88 |
|
|
|
89 |
|
|
template<bool big_endian>
|
90 |
|
|
class Target_arm;
|
91 |
|
|
|
92 |
|
|
// For convenience.
|
93 |
|
|
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
|
94 |
|
|
|
95 |
|
|
// Maximum branch offsets for ARM, THUMB and THUMB2.
|
96 |
|
|
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
|
97 |
|
|
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
|
98 |
|
|
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
|
99 |
|
|
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
|
100 |
|
|
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
|
101 |
|
|
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
|
102 |
|
|
|
103 |
|
|
// Thread Control Block size.
|
104 |
|
|
const size_t ARM_TCB_SIZE = 8;
|
105 |
|
|
|
106 |
|
|
// The arm target class.
|
107 |
|
|
//
|
108 |
|
|
// This is a very simple port of gold for ARM-EABI. It is intended for
|
109 |
|
|
// supporting Android only for the time being.
|
110 |
|
|
//
|
111 |
|
|
// TODOs:
|
112 |
|
|
// - Implement all static relocation types documented in arm-reloc.def.
|
113 |
|
|
// - Make PLTs more flexible for different architecture features like
|
114 |
|
|
// Thumb-2 and BE8.
|
115 |
|
|
// There are probably a lot more.
|
116 |
|
|
|
117 |
|
|
// Ideally we would like to avoid using global variables but this is used
|
118 |
|
|
// very in many places and sometimes in loops. If we use a function
|
119 |
|
|
// returning a static instance of Arm_reloc_property_table, it will be very
|
120 |
|
|
// slow in an threaded environment since the static instance needs to be
|
121 |
|
|
// locked. The pointer is below initialized in the
|
122 |
|
|
// Target::do_select_as_default_target() hook so that we do not spend time
|
123 |
|
|
// building the table if we are not linking ARM objects.
|
124 |
|
|
//
|
125 |
|
|
// An alternative is to to process the information in arm-reloc.def in
|
126 |
|
|
// compilation time and generate a representation of it in PODs only. That
|
127 |
|
|
// way we can avoid initialization when the linker starts.
|
128 |
|
|
|
129 |
|
|
Arm_reloc_property_table* arm_reloc_property_table = NULL;
|
130 |
|
|
|
131 |
|
|
// Instruction template class. This class is similar to the insn_sequence
|
132 |
|
|
// struct in bfd/elf32-arm.c.
|
133 |
|
|
|
134 |
|
|
class Insn_template
|
135 |
|
|
{
|
136 |
|
|
public:
|
137 |
|
|
// Types of instruction templates.
|
138 |
|
|
enum Type
|
139 |
|
|
{
|
140 |
|
|
THUMB16_TYPE = 1,
|
141 |
|
|
// THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
|
142 |
|
|
// templates with class-specific semantics. Currently this is used
|
143 |
|
|
// only by the Cortex_a8_stub class for handling condition codes in
|
144 |
|
|
// conditional branches.
|
145 |
|
|
THUMB16_SPECIAL_TYPE,
|
146 |
|
|
THUMB32_TYPE,
|
147 |
|
|
ARM_TYPE,
|
148 |
|
|
DATA_TYPE
|
149 |
|
|
};
|
150 |
|
|
|
151 |
|
|
// Factory methods to create instruction templates in different formats.
|
152 |
|
|
|
153 |
|
|
static const Insn_template
|
154 |
|
|
thumb16_insn(uint32_t data)
|
155 |
|
|
{ return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
|
156 |
|
|
|
157 |
|
|
// A Thumb conditional branch, in which the proper condition is inserted
|
158 |
|
|
// when we build the stub.
|
159 |
|
|
static const Insn_template
|
160 |
|
|
thumb16_bcond_insn(uint32_t data)
|
161 |
|
|
{ return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
|
162 |
|
|
|
163 |
|
|
static const Insn_template
|
164 |
|
|
thumb32_insn(uint32_t data)
|
165 |
|
|
{ return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
|
166 |
|
|
|
167 |
|
|
static const Insn_template
|
168 |
|
|
thumb32_b_insn(uint32_t data, int reloc_addend)
|
169 |
|
|
{
|
170 |
|
|
return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
|
171 |
|
|
reloc_addend);
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
static const Insn_template
|
175 |
|
|
arm_insn(uint32_t data)
|
176 |
|
|
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
|
177 |
|
|
|
178 |
|
|
static const Insn_template
|
179 |
|
|
arm_rel_insn(unsigned data, int reloc_addend)
|
180 |
|
|
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
|
181 |
|
|
|
182 |
|
|
static const Insn_template
|
183 |
|
|
data_word(unsigned data, unsigned int r_type, int reloc_addend)
|
184 |
|
|
{ return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
|
185 |
|
|
|
186 |
|
|
// Accessors. This class is used for read-only objects so no modifiers
|
187 |
|
|
// are provided.
|
188 |
|
|
|
189 |
|
|
uint32_t
|
190 |
|
|
data() const
|
191 |
|
|
{ return this->data_; }
|
192 |
|
|
|
193 |
|
|
// Return the instruction sequence type of this.
|
194 |
|
|
Type
|
195 |
|
|
type() const
|
196 |
|
|
{ return this->type_; }
|
197 |
|
|
|
198 |
|
|
// Return the ARM relocation type of this.
|
199 |
|
|
unsigned int
|
200 |
|
|
r_type() const
|
201 |
|
|
{ return this->r_type_; }
|
202 |
|
|
|
203 |
|
|
int32_t
|
204 |
|
|
reloc_addend() const
|
205 |
|
|
{ return this->reloc_addend_; }
|
206 |
|
|
|
207 |
|
|
// Return size of instruction template in bytes.
|
208 |
|
|
size_t
|
209 |
|
|
size() const;
|
210 |
|
|
|
211 |
|
|
// Return byte-alignment of instruction template.
|
212 |
|
|
unsigned
|
213 |
|
|
alignment() const;
|
214 |
|
|
|
215 |
|
|
private:
|
216 |
|
|
// We make the constructor private to ensure that only the factory
|
217 |
|
|
// methods are used.
|
218 |
|
|
inline
|
219 |
|
|
Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
|
220 |
|
|
: data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
|
221 |
|
|
{ }
|
222 |
|
|
|
223 |
|
|
// Instruction specific data. This is used to store information like
|
224 |
|
|
// some of the instruction bits.
|
225 |
|
|
uint32_t data_;
|
226 |
|
|
// Instruction template type.
|
227 |
|
|
Type type_;
|
228 |
|
|
// Relocation type if there is a relocation or R_ARM_NONE otherwise.
|
229 |
|
|
unsigned int r_type_;
|
230 |
|
|
// Relocation addend.
|
231 |
|
|
int32_t reloc_addend_;
|
232 |
|
|
};
|
233 |
|
|
|
234 |
|
|
// Macro for generating code to stub types. One entry per long/short
|
235 |
|
|
// branch stub
|
236 |
|
|
|
237 |
|
|
#define DEF_STUBS \
|
238 |
|
|
DEF_STUB(long_branch_any_any) \
|
239 |
|
|
DEF_STUB(long_branch_v4t_arm_thumb) \
|
240 |
|
|
DEF_STUB(long_branch_thumb_only) \
|
241 |
|
|
DEF_STUB(long_branch_v4t_thumb_thumb) \
|
242 |
|
|
DEF_STUB(long_branch_v4t_thumb_arm) \
|
243 |
|
|
DEF_STUB(short_branch_v4t_thumb_arm) \
|
244 |
|
|
DEF_STUB(long_branch_any_arm_pic) \
|
245 |
|
|
DEF_STUB(long_branch_any_thumb_pic) \
|
246 |
|
|
DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
|
247 |
|
|
DEF_STUB(long_branch_v4t_arm_thumb_pic) \
|
248 |
|
|
DEF_STUB(long_branch_v4t_thumb_arm_pic) \
|
249 |
|
|
DEF_STUB(long_branch_thumb_only_pic) \
|
250 |
|
|
DEF_STUB(a8_veneer_b_cond) \
|
251 |
|
|
DEF_STUB(a8_veneer_b) \
|
252 |
|
|
DEF_STUB(a8_veneer_bl) \
|
253 |
|
|
DEF_STUB(a8_veneer_blx) \
|
254 |
|
|
DEF_STUB(v4_veneer_bx)
|
255 |
|
|
|
256 |
|
|
// Stub types.
|
257 |
|
|
|
258 |
|
|
#define DEF_STUB(x) arm_stub_##x,
|
259 |
|
|
typedef enum
|
260 |
|
|
{
|
261 |
|
|
arm_stub_none,
|
262 |
|
|
DEF_STUBS
|
263 |
|
|
|
264 |
|
|
// First reloc stub type.
|
265 |
|
|
arm_stub_reloc_first = arm_stub_long_branch_any_any,
|
266 |
|
|
// Last reloc stub type.
|
267 |
|
|
arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
|
268 |
|
|
|
269 |
|
|
// First Cortex-A8 stub type.
|
270 |
|
|
arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
|
271 |
|
|
// Last Cortex-A8 stub type.
|
272 |
|
|
arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
|
273 |
|
|
|
274 |
|
|
// Last stub type.
|
275 |
|
|
arm_stub_type_last = arm_stub_v4_veneer_bx
|
276 |
|
|
} Stub_type;
|
277 |
|
|
#undef DEF_STUB
|
278 |
|
|
|
279 |
|
|
// Stub template class. Templates are meant to be read-only objects.
|
280 |
|
|
// A stub template for a stub type contains all read-only attributes
|
281 |
|
|
// common to all stubs of the same type.
|
282 |
|
|
|
283 |
|
|
class Stub_template
|
284 |
|
|
{
|
285 |
|
|
public:
|
286 |
|
|
Stub_template(Stub_type, const Insn_template*, size_t);
|
287 |
|
|
|
288 |
|
|
~Stub_template()
|
289 |
|
|
{ }
|
290 |
|
|
|
291 |
|
|
// Return stub type.
|
292 |
|
|
Stub_type
|
293 |
|
|
type() const
|
294 |
|
|
{ return this->type_; }
|
295 |
|
|
|
296 |
|
|
// Return an array of instruction templates.
|
297 |
|
|
const Insn_template*
|
298 |
|
|
insns() const
|
299 |
|
|
{ return this->insns_; }
|
300 |
|
|
|
301 |
|
|
// Return size of template in number of instructions.
|
302 |
|
|
size_t
|
303 |
|
|
insn_count() const
|
304 |
|
|
{ return this->insn_count_; }
|
305 |
|
|
|
306 |
|
|
// Return size of template in bytes.
|
307 |
|
|
size_t
|
308 |
|
|
size() const
|
309 |
|
|
{ return this->size_; }
|
310 |
|
|
|
311 |
|
|
// Return alignment of the stub template.
|
312 |
|
|
unsigned
|
313 |
|
|
alignment() const
|
314 |
|
|
{ return this->alignment_; }
|
315 |
|
|
|
316 |
|
|
// Return whether entry point is in thumb mode.
|
317 |
|
|
bool
|
318 |
|
|
entry_in_thumb_mode() const
|
319 |
|
|
{ return this->entry_in_thumb_mode_; }
|
320 |
|
|
|
321 |
|
|
// Return number of relocations in this template.
|
322 |
|
|
size_t
|
323 |
|
|
reloc_count() const
|
324 |
|
|
{ return this->relocs_.size(); }
|
325 |
|
|
|
326 |
|
|
// Return index of the I-th instruction with relocation.
|
327 |
|
|
size_t
|
328 |
|
|
reloc_insn_index(size_t i) const
|
329 |
|
|
{
|
330 |
|
|
gold_assert(i < this->relocs_.size());
|
331 |
|
|
return this->relocs_[i].first;
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
// Return the offset of the I-th instruction with relocation from the
|
335 |
|
|
// beginning of the stub.
|
336 |
|
|
section_size_type
|
337 |
|
|
reloc_offset(size_t i) const
|
338 |
|
|
{
|
339 |
|
|
gold_assert(i < this->relocs_.size());
|
340 |
|
|
return this->relocs_[i].second;
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
private:
|
344 |
|
|
// This contains information about an instruction template with a relocation
|
345 |
|
|
// and its offset from start of stub.
|
346 |
|
|
typedef std::pair<size_t, section_size_type> Reloc;
|
347 |
|
|
|
348 |
|
|
// A Stub_template may not be copied. We want to share templates as much
|
349 |
|
|
// as possible.
|
350 |
|
|
Stub_template(const Stub_template&);
|
351 |
|
|
Stub_template& operator=(const Stub_template&);
|
352 |
|
|
|
353 |
|
|
// Stub type.
|
354 |
|
|
Stub_type type_;
|
355 |
|
|
// Points to an array of Insn_templates.
|
356 |
|
|
const Insn_template* insns_;
|
357 |
|
|
// Number of Insn_templates in insns_[].
|
358 |
|
|
size_t insn_count_;
|
359 |
|
|
// Size of templated instructions in bytes.
|
360 |
|
|
size_t size_;
|
361 |
|
|
// Alignment of templated instructions.
|
362 |
|
|
unsigned alignment_;
|
363 |
|
|
// Flag to indicate if entry is in thumb mode.
|
364 |
|
|
bool entry_in_thumb_mode_;
|
365 |
|
|
// A table of reloc instruction indices and offsets. We can find these by
|
366 |
|
|
// looking at the instruction templates but we pre-compute and then stash
|
367 |
|
|
// them here for speed.
|
368 |
|
|
std::vector<Reloc> relocs_;
|
369 |
|
|
};
|
370 |
|
|
|
371 |
|
|
//
|
372 |
|
|
// A class for code stubs. This is a base class for different type of
|
373 |
|
|
// stubs used in the ARM target.
|
374 |
|
|
//
|
375 |
|
|
|
376 |
|
|
class Stub
|
377 |
|
|
{
|
378 |
|
|
private:
|
379 |
|
|
static const section_offset_type invalid_offset =
|
380 |
|
|
static_cast<section_offset_type>(-1);
|
381 |
|
|
|
382 |
|
|
public:
|
383 |
|
|
Stub(const Stub_template* stub_template)
|
384 |
|
|
: stub_template_(stub_template), offset_(invalid_offset)
|
385 |
|
|
{ }
|
386 |
|
|
|
387 |
|
|
virtual
|
388 |
|
|
~Stub()
|
389 |
|
|
{ }
|
390 |
|
|
|
391 |
|
|
// Return the stub template.
|
392 |
|
|
const Stub_template*
|
393 |
|
|
stub_template() const
|
394 |
|
|
{ return this->stub_template_; }
|
395 |
|
|
|
396 |
|
|
// Return offset of code stub from beginning of its containing stub table.
|
397 |
|
|
section_offset_type
|
398 |
|
|
offset() const
|
399 |
|
|
{
|
400 |
|
|
gold_assert(this->offset_ != invalid_offset);
|
401 |
|
|
return this->offset_;
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
// Set offset of code stub from beginning of its containing stub table.
|
405 |
|
|
void
|
406 |
|
|
set_offset(section_offset_type offset)
|
407 |
|
|
{ this->offset_ = offset; }
|
408 |
|
|
|
409 |
|
|
// Return the relocation target address of the i-th relocation in the
|
410 |
|
|
// stub. This must be defined in a child class.
|
411 |
|
|
Arm_address
|
412 |
|
|
reloc_target(size_t i)
|
413 |
|
|
{ return this->do_reloc_target(i); }
|
414 |
|
|
|
415 |
|
|
// Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
|
416 |
|
|
void
|
417 |
|
|
write(unsigned char* view, section_size_type view_size, bool big_endian)
|
418 |
|
|
{ this->do_write(view, view_size, big_endian); }
|
419 |
|
|
|
420 |
|
|
// Return the instruction for THUMB16_SPECIAL_TYPE instruction template
|
421 |
|
|
// for the i-th instruction.
|
422 |
|
|
uint16_t
|
423 |
|
|
thumb16_special(size_t i)
|
424 |
|
|
{ return this->do_thumb16_special(i); }
|
425 |
|
|
|
426 |
|
|
protected:
|
427 |
|
|
// This must be defined in the child class.
|
428 |
|
|
virtual Arm_address
|
429 |
|
|
do_reloc_target(size_t) = 0;
|
430 |
|
|
|
431 |
|
|
// This may be overridden in the child class.
|
432 |
|
|
virtual void
|
433 |
|
|
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
|
434 |
|
|
{
|
435 |
|
|
if (big_endian)
|
436 |
|
|
this->do_fixed_endian_write<true>(view, view_size);
|
437 |
|
|
else
|
438 |
|
|
this->do_fixed_endian_write<false>(view, view_size);
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
// This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
|
442 |
|
|
// instruction template.
|
443 |
|
|
virtual uint16_t
|
444 |
|
|
do_thumb16_special(size_t)
|
445 |
|
|
{ gold_unreachable(); }
|
446 |
|
|
|
447 |
|
|
private:
|
448 |
|
|
// A template to implement do_write.
|
449 |
|
|
template<bool big_endian>
|
450 |
|
|
void inline
|
451 |
|
|
do_fixed_endian_write(unsigned char*, section_size_type);
|
452 |
|
|
|
453 |
|
|
// Its template.
|
454 |
|
|
const Stub_template* stub_template_;
|
455 |
|
|
// Offset within the section of containing this stub.
|
456 |
|
|
section_offset_type offset_;
|
457 |
|
|
};
|
458 |
|
|
|
459 |
|
|
// Reloc stub class. These are stubs we use to fix up relocation because
|
460 |
|
|
// of limited branch ranges.
|
461 |
|
|
|
462 |
|
|
class Reloc_stub : public Stub
|
463 |
|
|
{
|
464 |
|
|
public:
|
465 |
|
|
static const unsigned int invalid_index = static_cast<unsigned int>(-1);
|
466 |
|
|
// We assume we never jump to this address.
|
467 |
|
|
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
|
468 |
|
|
|
469 |
|
|
// Return destination address.
|
470 |
|
|
Arm_address
|
471 |
|
|
destination_address() const
|
472 |
|
|
{
|
473 |
|
|
gold_assert(this->destination_address_ != this->invalid_address);
|
474 |
|
|
return this->destination_address_;
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
// Set destination address.
|
478 |
|
|
void
|
479 |
|
|
set_destination_address(Arm_address address)
|
480 |
|
|
{
|
481 |
|
|
gold_assert(address != this->invalid_address);
|
482 |
|
|
this->destination_address_ = address;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
// Reset destination address.
|
486 |
|
|
void
|
487 |
|
|
reset_destination_address()
|
488 |
|
|
{ this->destination_address_ = this->invalid_address; }
|
489 |
|
|
|
490 |
|
|
// Determine stub type for a branch of a relocation of R_TYPE going
|
491 |
|
|
// from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
|
492 |
|
|
// the branch target is a thumb instruction. TARGET is used for look
|
493 |
|
|
// up ARM-specific linker settings.
|
494 |
|
|
static Stub_type
|
495 |
|
|
stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
|
496 |
|
|
Arm_address branch_target, bool target_is_thumb);
|
497 |
|
|
|
498 |
|
|
// Reloc_stub key. A key is logically a triplet of a stub type, a symbol
|
499 |
|
|
// and an addend. Since we treat global and local symbol differently, we
|
500 |
|
|
// use a Symbol object for a global symbol and a object-index pair for
|
501 |
|
|
// a local symbol.
|
502 |
|
|
class Key
|
503 |
|
|
{
|
504 |
|
|
public:
|
505 |
|
|
// If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
|
506 |
|
|
// R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
|
507 |
|
|
// and R_SYM must not be invalid_index.
|
508 |
|
|
Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
|
509 |
|
|
unsigned int r_sym, int32_t addend)
|
510 |
|
|
: stub_type_(stub_type), addend_(addend)
|
511 |
|
|
{
|
512 |
|
|
if (symbol != NULL)
|
513 |
|
|
{
|
514 |
|
|
this->r_sym_ = Reloc_stub::invalid_index;
|
515 |
|
|
this->u_.symbol = symbol;
|
516 |
|
|
}
|
517 |
|
|
else
|
518 |
|
|
{
|
519 |
|
|
gold_assert(relobj != NULL && r_sym != invalid_index);
|
520 |
|
|
this->r_sym_ = r_sym;
|
521 |
|
|
this->u_.relobj = relobj;
|
522 |
|
|
}
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
~Key()
|
526 |
|
|
{ }
|
527 |
|
|
|
528 |
|
|
// Accessors: Keys are meant to be read-only object so no modifiers are
|
529 |
|
|
// provided.
|
530 |
|
|
|
531 |
|
|
// Return stub type.
|
532 |
|
|
Stub_type
|
533 |
|
|
stub_type() const
|
534 |
|
|
{ return this->stub_type_; }
|
535 |
|
|
|
536 |
|
|
// Return the local symbol index or invalid_index.
|
537 |
|
|
unsigned int
|
538 |
|
|
r_sym() const
|
539 |
|
|
{ return this->r_sym_; }
|
540 |
|
|
|
541 |
|
|
// Return the symbol if there is one.
|
542 |
|
|
const Symbol*
|
543 |
|
|
symbol() const
|
544 |
|
|
{ return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
|
545 |
|
|
|
546 |
|
|
// Return the relobj if there is one.
|
547 |
|
|
const Relobj*
|
548 |
|
|
relobj() const
|
549 |
|
|
{ return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
|
550 |
|
|
|
551 |
|
|
// Whether this equals to another key k.
|
552 |
|
|
bool
|
553 |
|
|
eq(const Key& k) const
|
554 |
|
|
{
|
555 |
|
|
return ((this->stub_type_ == k.stub_type_)
|
556 |
|
|
&& (this->r_sym_ == k.r_sym_)
|
557 |
|
|
&& ((this->r_sym_ != Reloc_stub::invalid_index)
|
558 |
|
|
? (this->u_.relobj == k.u_.relobj)
|
559 |
|
|
: (this->u_.symbol == k.u_.symbol))
|
560 |
|
|
&& (this->addend_ == k.addend_));
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
// Return a hash value.
|
564 |
|
|
size_t
|
565 |
|
|
hash_value() const
|
566 |
|
|
{
|
567 |
|
|
return (this->stub_type_
|
568 |
|
|
^ this->r_sym_
|
569 |
|
|
^ gold::string_hash<char>(
|
570 |
|
|
(this->r_sym_ != Reloc_stub::invalid_index)
|
571 |
|
|
? this->u_.relobj->name().c_str()
|
572 |
|
|
: this->u_.symbol->name())
|
573 |
|
|
^ this->addend_);
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
// Functors for STL associative containers.
|
577 |
|
|
struct hash
|
578 |
|
|
{
|
579 |
|
|
size_t
|
580 |
|
|
operator()(const Key& k) const
|
581 |
|
|
{ return k.hash_value(); }
|
582 |
|
|
};
|
583 |
|
|
|
584 |
|
|
struct equal_to
|
585 |
|
|
{
|
586 |
|
|
bool
|
587 |
|
|
operator()(const Key& k1, const Key& k2) const
|
588 |
|
|
{ return k1.eq(k2); }
|
589 |
|
|
};
|
590 |
|
|
|
591 |
|
|
// Name of key. This is mainly for debugging.
|
592 |
|
|
std::string
|
593 |
|
|
name() const;
|
594 |
|
|
|
595 |
|
|
private:
|
596 |
|
|
// Stub type.
|
597 |
|
|
Stub_type stub_type_;
|
598 |
|
|
// If this is a local symbol, this is the index in the defining object.
|
599 |
|
|
// Otherwise, it is invalid_index for a global symbol.
|
600 |
|
|
unsigned int r_sym_;
|
601 |
|
|
// If r_sym_ is an invalid index, this points to a global symbol.
|
602 |
|
|
// Otherwise, it points to a relobj. We used the unsized and target
|
603 |
|
|
// independent Symbol and Relobj classes instead of Sized_symbol<32> and
|
604 |
|
|
// Arm_relobj, in order to avoid making the stub class a template
|
605 |
|
|
// as most of the stub machinery is endianness-neutral. However, it
|
606 |
|
|
// may require a bit of casting done by users of this class.
|
607 |
|
|
union
|
608 |
|
|
{
|
609 |
|
|
const Symbol* symbol;
|
610 |
|
|
const Relobj* relobj;
|
611 |
|
|
} u_;
|
612 |
|
|
// Addend associated with a reloc.
|
613 |
|
|
int32_t addend_;
|
614 |
|
|
};
|
615 |
|
|
|
616 |
|
|
protected:
|
617 |
|
|
// Reloc_stubs are created via a stub factory. So these are protected.
|
618 |
|
|
Reloc_stub(const Stub_template* stub_template)
|
619 |
|
|
: Stub(stub_template), destination_address_(invalid_address)
|
620 |
|
|
{ }
|
621 |
|
|
|
622 |
|
|
~Reloc_stub()
|
623 |
|
|
{ }
|
624 |
|
|
|
625 |
|
|
friend class Stub_factory;
|
626 |
|
|
|
627 |
|
|
// Return the relocation target address of the i-th relocation in the
|
628 |
|
|
// stub.
|
629 |
|
|
Arm_address
|
630 |
|
|
do_reloc_target(size_t i)
|
631 |
|
|
{
|
632 |
|
|
// All reloc stub have only one relocation.
|
633 |
|
|
gold_assert(i == 0);
|
634 |
|
|
return this->destination_address_;
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
private:
|
638 |
|
|
// Address of destination.
|
639 |
|
|
Arm_address destination_address_;
|
640 |
|
|
};
|
641 |
|
|
|
642 |
|
|
// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
|
643 |
|
|
// THUMB branch that meets the following conditions:
|
644 |
|
|
//
|
645 |
|
|
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
|
646 |
|
|
// branch address is 0xffe.
|
647 |
|
|
// 2. The branch target address is in the same page as the first word of the
|
648 |
|
|
// branch.
|
649 |
|
|
// 3. The branch follows a 32-bit instruction which is not a branch.
|
650 |
|
|
//
|
651 |
|
|
// To do the fix up, we need to store the address of the branch instruction
|
652 |
|
|
// and its target at least. We also need to store the original branch
|
653 |
|
|
// instruction bits for the condition code in a conditional branch. The
|
654 |
|
|
// condition code is used in a special instruction template. We also want
|
655 |
|
|
// to identify input sections needing Cortex-A8 workaround quickly. We store
|
656 |
|
|
// extra information about object and section index of the code section
|
657 |
|
|
// containing a branch being fixed up. The information is used to mark
|
658 |
|
|
// the code section when we finalize the Cortex-A8 stubs.
|
659 |
|
|
//
|
660 |
|
|
|
661 |
|
|
class Cortex_a8_stub : public Stub
|
662 |
|
|
{
|
663 |
|
|
public:
|
664 |
|
|
~Cortex_a8_stub()
|
665 |
|
|
{ }
|
666 |
|
|
|
667 |
|
|
// Return the object of the code section containing the branch being fixed
|
668 |
|
|
// up.
|
669 |
|
|
Relobj*
|
670 |
|
|
relobj() const
|
671 |
|
|
{ return this->relobj_; }
|
672 |
|
|
|
673 |
|
|
// Return the section index of the code section containing the branch being
|
674 |
|
|
// fixed up.
|
675 |
|
|
unsigned int
|
676 |
|
|
shndx() const
|
677 |
|
|
{ return this->shndx_; }
|
678 |
|
|
|
679 |
|
|
// Return the source address of stub. This is the address of the original
|
680 |
|
|
// branch instruction. LSB is 1 always set to indicate that it is a THUMB
|
681 |
|
|
// instruction.
|
682 |
|
|
Arm_address
|
683 |
|
|
source_address() const
|
684 |
|
|
{ return this->source_address_; }
|
685 |
|
|
|
686 |
|
|
// Return the destination address of the stub. This is the branch taken
|
687 |
|
|
// address of the original branch instruction. LSB is 1 if it is a THUMB
|
688 |
|
|
// instruction address.
|
689 |
|
|
Arm_address
|
690 |
|
|
destination_address() const
|
691 |
|
|
{ return this->destination_address_; }
|
692 |
|
|
|
693 |
|
|
// Return the instruction being fixed up.
|
694 |
|
|
uint32_t
|
695 |
|
|
original_insn() const
|
696 |
|
|
{ return this->original_insn_; }
|
697 |
|
|
|
698 |
|
|
protected:
|
699 |
|
|
// Cortex_a8_stubs are created via a stub factory. So these are protected.
|
700 |
|
|
Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
|
701 |
|
|
unsigned int shndx, Arm_address source_address,
|
702 |
|
|
Arm_address destination_address, uint32_t original_insn)
|
703 |
|
|
: Stub(stub_template), relobj_(relobj), shndx_(shndx),
|
704 |
|
|
source_address_(source_address | 1U),
|
705 |
|
|
destination_address_(destination_address),
|
706 |
|
|
original_insn_(original_insn)
|
707 |
|
|
{ }
|
708 |
|
|
|
709 |
|
|
friend class Stub_factory;
|
710 |
|
|
|
711 |
|
|
// Return the relocation target address of the i-th relocation in the
|
712 |
|
|
// stub.
|
713 |
|
|
Arm_address
|
714 |
|
|
do_reloc_target(size_t i)
|
715 |
|
|
{
|
716 |
|
|
if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
|
717 |
|
|
{
|
718 |
|
|
// The conditional branch veneer has two relocations.
|
719 |
|
|
gold_assert(i < 2);
|
720 |
|
|
return i == 0 ? this->source_address_ + 4 : this->destination_address_;
|
721 |
|
|
}
|
722 |
|
|
else
|
723 |
|
|
{
|
724 |
|
|
// All other Cortex-A8 stubs have only one relocation.
|
725 |
|
|
gold_assert(i == 0);
|
726 |
|
|
return this->destination_address_;
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
// Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
|
731 |
|
|
uint16_t
|
732 |
|
|
do_thumb16_special(size_t);
|
733 |
|
|
|
734 |
|
|
private:
|
735 |
|
|
// Object of the code section containing the branch being fixed up.
|
736 |
|
|
Relobj* relobj_;
|
737 |
|
|
// Section index of the code section containing the branch begin fixed up.
|
738 |
|
|
unsigned int shndx_;
|
739 |
|
|
// Source address of original branch.
|
740 |
|
|
Arm_address source_address_;
|
741 |
|
|
// Destination address of the original branch.
|
742 |
|
|
Arm_address destination_address_;
|
743 |
|
|
// Original branch instruction. This is needed for copying the condition
|
744 |
|
|
// code from a condition branch to its stub.
|
745 |
|
|
uint32_t original_insn_;
|
746 |
|
|
};
|
747 |
|
|
|
748 |
|
|
// ARMv4 BX Rx branch relocation stub class.
|
749 |
|
|
class Arm_v4bx_stub : public Stub
|
750 |
|
|
{
|
751 |
|
|
public:
|
752 |
|
|
~Arm_v4bx_stub()
|
753 |
|
|
{ }
|
754 |
|
|
|
755 |
|
|
// Return the associated register.
|
756 |
|
|
uint32_t
|
757 |
|
|
reg() const
|
758 |
|
|
{ return this->reg_; }
|
759 |
|
|
|
760 |
|
|
protected:
|
761 |
|
|
// Arm V4BX stubs are created via a stub factory. So these are protected.
|
762 |
|
|
Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
|
763 |
|
|
: Stub(stub_template), reg_(reg)
|
764 |
|
|
{ }
|
765 |
|
|
|
766 |
|
|
friend class Stub_factory;
|
767 |
|
|
|
768 |
|
|
// Return the relocation target address of the i-th relocation in the
|
769 |
|
|
// stub.
|
770 |
|
|
Arm_address
|
771 |
|
|
do_reloc_target(size_t)
|
772 |
|
|
{ gold_unreachable(); }
|
773 |
|
|
|
774 |
|
|
// This may be overridden in the child class.
|
775 |
|
|
virtual void
|
776 |
|
|
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
|
777 |
|
|
{
|
778 |
|
|
if (big_endian)
|
779 |
|
|
this->do_fixed_endian_v4bx_write<true>(view, view_size);
|
780 |
|
|
else
|
781 |
|
|
this->do_fixed_endian_v4bx_write<false>(view, view_size);
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
private:
|
785 |
|
|
// A template to implement do_write.
|
786 |
|
|
template<bool big_endian>
|
787 |
|
|
void inline
|
788 |
|
|
do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
|
789 |
|
|
{
|
790 |
|
|
const Insn_template* insns = this->stub_template()->insns();
|
791 |
|
|
elfcpp::Swap<32, big_endian>::writeval(view,
|
792 |
|
|
(insns[0].data()
|
793 |
|
|
+ (this->reg_ << 16)));
|
794 |
|
|
view += insns[0].size();
|
795 |
|
|
elfcpp::Swap<32, big_endian>::writeval(view,
|
796 |
|
|
(insns[1].data() + this->reg_));
|
797 |
|
|
view += insns[1].size();
|
798 |
|
|
elfcpp::Swap<32, big_endian>::writeval(view,
|
799 |
|
|
(insns[2].data() + this->reg_));
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
// A register index (r0-r14), which is associated with the stub.
|
803 |
|
|
uint32_t reg_;
|
804 |
|
|
};
|
805 |
|
|
|
806 |
|
|
// Stub factory class.
|
807 |
|
|
|
808 |
|
|
class Stub_factory
|
809 |
|
|
{
|
810 |
|
|
public:
|
811 |
|
|
// Return the unique instance of this class.
|
812 |
|
|
static const Stub_factory&
|
813 |
|
|
get_instance()
|
814 |
|
|
{
|
815 |
|
|
static Stub_factory singleton;
|
816 |
|
|
return singleton;
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
// Make a relocation stub.
|
820 |
|
|
Reloc_stub*
|
821 |
|
|
make_reloc_stub(Stub_type stub_type) const
|
822 |
|
|
{
|
823 |
|
|
gold_assert(stub_type >= arm_stub_reloc_first
|
824 |
|
|
&& stub_type <= arm_stub_reloc_last);
|
825 |
|
|
return new Reloc_stub(this->stub_templates_[stub_type]);
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
// Make a Cortex-A8 stub.
|
829 |
|
|
Cortex_a8_stub*
|
830 |
|
|
make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
|
831 |
|
|
Arm_address source, Arm_address destination,
|
832 |
|
|
uint32_t original_insn) const
|
833 |
|
|
{
|
834 |
|
|
gold_assert(stub_type >= arm_stub_cortex_a8_first
|
835 |
|
|
&& stub_type <= arm_stub_cortex_a8_last);
|
836 |
|
|
return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
|
837 |
|
|
source, destination, original_insn);
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
// Make an ARM V4BX relocation stub.
|
841 |
|
|
// This method creates a stub from the arm_stub_v4_veneer_bx template only.
|
842 |
|
|
Arm_v4bx_stub*
|
843 |
|
|
make_arm_v4bx_stub(uint32_t reg) const
|
844 |
|
|
{
|
845 |
|
|
gold_assert(reg < 0xf);
|
846 |
|
|
return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
|
847 |
|
|
reg);
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
private:
|
851 |
|
|
// Constructor and destructor are protected since we only return a single
|
852 |
|
|
// instance created in Stub_factory::get_instance().
|
853 |
|
|
|
854 |
|
|
Stub_factory();
|
855 |
|
|
|
856 |
|
|
// A Stub_factory may not be copied since it is a singleton.
|
857 |
|
|
Stub_factory(const Stub_factory&);
|
858 |
|
|
Stub_factory& operator=(Stub_factory&);
|
859 |
|
|
|
860 |
|
|
// Stub templates. These are initialized in the constructor.
|
861 |
|
|
const Stub_template* stub_templates_[arm_stub_type_last+1];
|
862 |
|
|
};
|
863 |
|
|
|
864 |
|
|
// A class to hold stubs for the ARM target.
|
865 |
|
|
|
866 |
|
|
template<bool big_endian>
|
867 |
|
|
class Stub_table : public Output_data
|
868 |
|
|
{
|
869 |
|
|
public:
|
870 |
|
|
Stub_table(Arm_input_section<big_endian>* owner)
|
871 |
|
|
: Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
|
872 |
|
|
reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
|
873 |
|
|
prev_data_size_(0), prev_addralign_(1)
|
874 |
|
|
{ }
|
875 |
|
|
|
876 |
|
|
~Stub_table()
|
877 |
|
|
{ }
|
878 |
|
|
|
879 |
|
|
// Owner of this stub table.
|
880 |
|
|
Arm_input_section<big_endian>*
|
881 |
|
|
owner() const
|
882 |
|
|
{ return this->owner_; }
|
883 |
|
|
|
884 |
|
|
// Whether this stub table is empty.
|
885 |
|
|
bool
|
886 |
|
|
empty() const
|
887 |
|
|
{
|
888 |
|
|
return (this->reloc_stubs_.empty()
|
889 |
|
|
&& this->cortex_a8_stubs_.empty()
|
890 |
|
|
&& this->arm_v4bx_stubs_.empty());
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
// Return the current data size.
|
894 |
|
|
off_t
|
895 |
|
|
current_data_size() const
|
896 |
|
|
{ return this->current_data_size_for_child(); }
|
897 |
|
|
|
898 |
|
|
// Add a STUB using KEY. The caller is responsible for avoiding addition
|
899 |
|
|
// if a STUB with the same key has already been added.
|
900 |
|
|
void
|
901 |
|
|
add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
|
902 |
|
|
{
|
903 |
|
|
const Stub_template* stub_template = stub->stub_template();
|
904 |
|
|
gold_assert(stub_template->type() == key.stub_type());
|
905 |
|
|
this->reloc_stubs_[key] = stub;
|
906 |
|
|
|
907 |
|
|
// Assign stub offset early. We can do this because we never remove
|
908 |
|
|
// reloc stubs and they are in the beginning of the stub table.
|
909 |
|
|
uint64_t align = stub_template->alignment();
|
910 |
|
|
this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
|
911 |
|
|
stub->set_offset(this->reloc_stubs_size_);
|
912 |
|
|
this->reloc_stubs_size_ += stub_template->size();
|
913 |
|
|
this->reloc_stubs_addralign_ =
|
914 |
|
|
std::max(this->reloc_stubs_addralign_, align);
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
// Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
|
918 |
|
|
// The caller is responsible for avoiding addition if a STUB with the same
|
919 |
|
|
// address has already been added.
|
920 |
|
|
void
|
921 |
|
|
add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
|
922 |
|
|
{
|
923 |
|
|
std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
|
924 |
|
|
this->cortex_a8_stubs_.insert(value);
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
// Add an ARM V4BX relocation stub. A register index will be retrieved
|
928 |
|
|
// from the stub.
|
929 |
|
|
void
|
930 |
|
|
add_arm_v4bx_stub(Arm_v4bx_stub* stub)
|
931 |
|
|
{
|
932 |
|
|
gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
|
933 |
|
|
this->arm_v4bx_stubs_[stub->reg()] = stub;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
// Remove all Cortex-A8 stubs.
|
937 |
|
|
void
|
938 |
|
|
remove_all_cortex_a8_stubs();
|
939 |
|
|
|
940 |
|
|
// Look up a relocation stub using KEY. Return NULL if there is none.
|
941 |
|
|
Reloc_stub*
|
942 |
|
|
find_reloc_stub(const Reloc_stub::Key& key) const
|
943 |
|
|
{
|
944 |
|
|
typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
|
945 |
|
|
return (p != this->reloc_stubs_.end()) ? p->second : NULL;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
// Look up an arm v4bx relocation stub using the register index.
|
949 |
|
|
// Return NULL if there is none.
|
950 |
|
|
Arm_v4bx_stub*
|
951 |
|
|
find_arm_v4bx_stub(const uint32_t reg) const
|
952 |
|
|
{
|
953 |
|
|
gold_assert(reg < 0xf);
|
954 |
|
|
return this->arm_v4bx_stubs_[reg];
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
// Relocate stubs in this stub table.
|
958 |
|
|
void
|
959 |
|
|
relocate_stubs(const Relocate_info<32, big_endian>*,
|
960 |
|
|
Target_arm<big_endian>*, Output_section*,
|
961 |
|
|
unsigned char*, Arm_address, section_size_type);
|
962 |
|
|
|
963 |
|
|
// Update data size and alignment at the end of a relaxation pass. Return
|
964 |
|
|
// true if either data size or alignment is different from that of the
|
965 |
|
|
// previous relaxation pass.
|
966 |
|
|
bool
|
967 |
|
|
update_data_size_and_addralign();
|
968 |
|
|
|
969 |
|
|
// Finalize stubs. Set the offsets of all stubs and mark input sections
|
970 |
|
|
// needing the Cortex-A8 workaround.
|
971 |
|
|
void
|
972 |
|
|
finalize_stubs();
|
973 |
|
|
|
974 |
|
|
// Apply Cortex-A8 workaround to an address range.
|
975 |
|
|
void
|
976 |
|
|
apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
|
977 |
|
|
unsigned char*, Arm_address,
|
978 |
|
|
section_size_type);
|
979 |
|
|
|
980 |
|
|
protected:
|
981 |
|
|
// Write out section contents.
|
982 |
|
|
void
|
983 |
|
|
do_write(Output_file*);
|
984 |
|
|
|
985 |
|
|
// Return the required alignment.
|
986 |
|
|
uint64_t
|
987 |
|
|
do_addralign() const
|
988 |
|
|
{ return this->prev_addralign_; }
|
989 |
|
|
|
990 |
|
|
// Reset address and file offset.
|
991 |
|
|
void
|
992 |
|
|
do_reset_address_and_file_offset()
|
993 |
|
|
{ this->set_current_data_size_for_child(this->prev_data_size_); }
|
994 |
|
|
|
995 |
|
|
// Set final data size.
|
996 |
|
|
void
|
997 |
|
|
set_final_data_size()
|
998 |
|
|
{ this->set_data_size(this->current_data_size()); }
|
999 |
|
|
|
1000 |
|
|
private:
|
1001 |
|
|
// Relocate one stub.
|
1002 |
|
|
void
|
1003 |
|
|
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
|
1004 |
|
|
Target_arm<big_endian>*, Output_section*,
|
1005 |
|
|
unsigned char*, Arm_address, section_size_type);
|
1006 |
|
|
|
1007 |
|
|
// Unordered map of relocation stubs.
|
1008 |
|
|
typedef
|
1009 |
|
|
Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
|
1010 |
|
|
Reloc_stub::Key::equal_to>
|
1011 |
|
|
Reloc_stub_map;
|
1012 |
|
|
|
1013 |
|
|
// List of Cortex-A8 stubs ordered by addresses of branches being
|
1014 |
|
|
// fixed up in output.
|
1015 |
|
|
typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
|
1016 |
|
|
// List of Arm V4BX relocation stubs ordered by associated registers.
|
1017 |
|
|
typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
|
1018 |
|
|
|
1019 |
|
|
// Owner of this stub table.
|
1020 |
|
|
Arm_input_section<big_endian>* owner_;
|
1021 |
|
|
// The relocation stubs.
|
1022 |
|
|
Reloc_stub_map reloc_stubs_;
|
1023 |
|
|
// Size of reloc stubs.
|
1024 |
|
|
off_t reloc_stubs_size_;
|
1025 |
|
|
// Maximum address alignment of reloc stubs.
|
1026 |
|
|
uint64_t reloc_stubs_addralign_;
|
1027 |
|
|
// The cortex_a8_stubs.
|
1028 |
|
|
Cortex_a8_stub_list cortex_a8_stubs_;
|
1029 |
|
|
// The Arm V4BX relocation stubs.
|
1030 |
|
|
Arm_v4bx_stub_list arm_v4bx_stubs_;
|
1031 |
|
|
// data size of this in the previous pass.
|
1032 |
|
|
off_t prev_data_size_;
|
1033 |
|
|
// address alignment of this in the previous pass.
|
1034 |
|
|
uint64_t prev_addralign_;
|
1035 |
|
|
};
|
1036 |
|
|
|
1037 |
|
|
// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
|
1038 |
|
|
// we add to the end of an EXIDX input section that goes into the output.
|
1039 |
|
|
|
1040 |
|
|
class Arm_exidx_cantunwind : public Output_section_data
|
1041 |
|
|
{
|
1042 |
|
|
public:
|
1043 |
|
|
Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
|
1044 |
|
|
: Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
|
1045 |
|
|
{ }
|
1046 |
|
|
|
1047 |
|
|
// Return the object containing the section pointed by this.
|
1048 |
|
|
Relobj*
|
1049 |
|
|
relobj() const
|
1050 |
|
|
{ return this->relobj_; }
|
1051 |
|
|
|
1052 |
|
|
// Return the section index of the section pointed by this.
|
1053 |
|
|
unsigned int
|
1054 |
|
|
shndx() const
|
1055 |
|
|
{ return this->shndx_; }
|
1056 |
|
|
|
1057 |
|
|
protected:
|
1058 |
|
|
void
|
1059 |
|
|
do_write(Output_file* of)
|
1060 |
|
|
{
|
1061 |
|
|
if (parameters->target().is_big_endian())
|
1062 |
|
|
this->do_fixed_endian_write<true>(of);
|
1063 |
|
|
else
|
1064 |
|
|
this->do_fixed_endian_write<false>(of);
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
// Write to a map file.
|
1068 |
|
|
void
|
1069 |
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
1070 |
|
|
{ mapfile->print_output_data(this, _("** ARM cantunwind")); }
|
1071 |
|
|
|
1072 |
|
|
private:
|
1073 |
|
|
// Implement do_write for a given endianness.
|
1074 |
|
|
template<bool big_endian>
|
1075 |
|
|
void inline
|
1076 |
|
|
do_fixed_endian_write(Output_file*);
|
1077 |
|
|
|
1078 |
|
|
// The object containing the section pointed by this.
|
1079 |
|
|
Relobj* relobj_;
|
1080 |
|
|
// The section index of the section pointed by this.
|
1081 |
|
|
unsigned int shndx_;
|
1082 |
|
|
};
|
1083 |
|
|
|
1084 |
|
|
// During EXIDX coverage fix-up, we compact an EXIDX section. The
|
1085 |
|
|
// Offset map is used to map input section offset within the EXIDX section
|
1086 |
|
|
// to the output offset from the start of this EXIDX section.
|
1087 |
|
|
|
1088 |
|
|
typedef std::map<section_offset_type, section_offset_type>
|
1089 |
|
|
Arm_exidx_section_offset_map;
|
1090 |
|
|
|
1091 |
|
|
// Arm_exidx_merged_section class. This represents an EXIDX input section
|
1092 |
|
|
// with some of its entries merged.
|
1093 |
|
|
|
1094 |
|
|
class Arm_exidx_merged_section : public Output_relaxed_input_section
|
1095 |
|
|
{
|
1096 |
|
|
public:
|
1097 |
|
|
// Constructor for Arm_exidx_merged_section.
|
1098 |
|
|
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
|
1099 |
|
|
// SECTION_OFFSET_MAP points to a section offset map describing how
|
1100 |
|
|
// parts of the input section are mapped to output. DELETED_BYTES is
|
1101 |
|
|
// the number of bytes deleted from the EXIDX input section.
|
1102 |
|
|
Arm_exidx_merged_section(
|
1103 |
|
|
const Arm_exidx_input_section& exidx_input_section,
|
1104 |
|
|
const Arm_exidx_section_offset_map& section_offset_map,
|
1105 |
|
|
uint32_t deleted_bytes);
|
1106 |
|
|
|
1107 |
|
|
// Build output contents.
|
1108 |
|
|
void
|
1109 |
|
|
build_contents(const unsigned char*, section_size_type);
|
1110 |
|
|
|
1111 |
|
|
// Return the original EXIDX input section.
|
1112 |
|
|
const Arm_exidx_input_section&
|
1113 |
|
|
exidx_input_section() const
|
1114 |
|
|
{ return this->exidx_input_section_; }
|
1115 |
|
|
|
1116 |
|
|
// Return the section offset map.
|
1117 |
|
|
const Arm_exidx_section_offset_map&
|
1118 |
|
|
section_offset_map() const
|
1119 |
|
|
{ return this->section_offset_map_; }
|
1120 |
|
|
|
1121 |
|
|
protected:
|
1122 |
|
|
// Write merged section into file OF.
|
1123 |
|
|
void
|
1124 |
|
|
do_write(Output_file* of);
|
1125 |
|
|
|
1126 |
|
|
bool
|
1127 |
|
|
do_output_offset(const Relobj*, unsigned int, section_offset_type,
|
1128 |
|
|
section_offset_type*) const;
|
1129 |
|
|
|
1130 |
|
|
private:
|
1131 |
|
|
// Original EXIDX input section.
|
1132 |
|
|
const Arm_exidx_input_section& exidx_input_section_;
|
1133 |
|
|
// Section offset map.
|
1134 |
|
|
const Arm_exidx_section_offset_map& section_offset_map_;
|
1135 |
|
|
// Merged section contents. We need to keep build the merged section
|
1136 |
|
|
// and save it here to avoid accessing the original EXIDX section when
|
1137 |
|
|
// we cannot lock the sections' object.
|
1138 |
|
|
unsigned char* section_contents_;
|
1139 |
|
|
};
|
1140 |
|
|
|
1141 |
|
|
// A class to wrap an ordinary input section containing executable code.
|
1142 |
|
|
|
1143 |
|
|
template<bool big_endian>
|
1144 |
|
|
class Arm_input_section : public Output_relaxed_input_section
|
1145 |
|
|
{
|
1146 |
|
|
public:
|
1147 |
|
|
Arm_input_section(Relobj* relobj, unsigned int shndx)
|
1148 |
|
|
: Output_relaxed_input_section(relobj, shndx, 1),
|
1149 |
|
|
original_addralign_(1), original_size_(0), stub_table_(NULL),
|
1150 |
|
|
original_contents_(NULL)
|
1151 |
|
|
{ }
|
1152 |
|
|
|
1153 |
|
|
~Arm_input_section()
|
1154 |
|
|
{ delete[] this->original_contents_; }
|
1155 |
|
|
|
1156 |
|
|
// Initialize.
|
1157 |
|
|
void
|
1158 |
|
|
init();
|
1159 |
|
|
|
1160 |
|
|
// Whether this is a stub table owner.
|
1161 |
|
|
bool
|
1162 |
|
|
is_stub_table_owner() const
|
1163 |
|
|
{ return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
|
1164 |
|
|
|
1165 |
|
|
// Return the stub table.
|
1166 |
|
|
Stub_table<big_endian>*
|
1167 |
|
|
stub_table() const
|
1168 |
|
|
{ return this->stub_table_; }
|
1169 |
|
|
|
1170 |
|
|
// Set the stub_table.
|
1171 |
|
|
void
|
1172 |
|
|
set_stub_table(Stub_table<big_endian>* stub_table)
|
1173 |
|
|
{ this->stub_table_ = stub_table; }
|
1174 |
|
|
|
1175 |
|
|
// Downcast a base pointer to an Arm_input_section pointer. This is
|
1176 |
|
|
// not type-safe but we only use Arm_input_section not the base class.
|
1177 |
|
|
static Arm_input_section<big_endian>*
|
1178 |
|
|
as_arm_input_section(Output_relaxed_input_section* poris)
|
1179 |
|
|
{ return static_cast<Arm_input_section<big_endian>*>(poris); }
|
1180 |
|
|
|
1181 |
|
|
// Return the original size of the section.
|
1182 |
|
|
uint32_t
|
1183 |
|
|
original_size() const
|
1184 |
|
|
{ return this->original_size_; }
|
1185 |
|
|
|
1186 |
|
|
protected:
|
1187 |
|
|
// Write data to output file.
|
1188 |
|
|
void
|
1189 |
|
|
do_write(Output_file*);
|
1190 |
|
|
|
1191 |
|
|
// Return required alignment of this.
|
1192 |
|
|
uint64_t
|
1193 |
|
|
do_addralign() const
|
1194 |
|
|
{
|
1195 |
|
|
if (this->is_stub_table_owner())
|
1196 |
|
|
return std::max(this->stub_table_->addralign(),
|
1197 |
|
|
static_cast<uint64_t>(this->original_addralign_));
|
1198 |
|
|
else
|
1199 |
|
|
return this->original_addralign_;
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
// Finalize data size.
|
1203 |
|
|
void
|
1204 |
|
|
set_final_data_size();
|
1205 |
|
|
|
1206 |
|
|
// Reset address and file offset.
|
1207 |
|
|
void
|
1208 |
|
|
do_reset_address_and_file_offset();
|
1209 |
|
|
|
1210 |
|
|
// Output offset.
|
1211 |
|
|
bool
|
1212 |
|
|
do_output_offset(const Relobj* object, unsigned int shndx,
|
1213 |
|
|
section_offset_type offset,
|
1214 |
|
|
section_offset_type* poutput) const
|
1215 |
|
|
{
|
1216 |
|
|
if ((object == this->relobj())
|
1217 |
|
|
&& (shndx == this->shndx())
|
1218 |
|
|
&& (offset >= 0)
|
1219 |
|
|
&& (offset <=
|
1220 |
|
|
convert_types<section_offset_type, uint32_t>(this->original_size_)))
|
1221 |
|
|
{
|
1222 |
|
|
*poutput = offset;
|
1223 |
|
|
return true;
|
1224 |
|
|
}
|
1225 |
|
|
else
|
1226 |
|
|
return false;
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
private:
|
1230 |
|
|
// Copying is not allowed.
|
1231 |
|
|
Arm_input_section(const Arm_input_section&);
|
1232 |
|
|
Arm_input_section& operator=(const Arm_input_section&);
|
1233 |
|
|
|
1234 |
|
|
// Address alignment of the original input section.
|
1235 |
|
|
uint32_t original_addralign_;
|
1236 |
|
|
// Section size of the original input section.
|
1237 |
|
|
uint32_t original_size_;
|
1238 |
|
|
// Stub table.
|
1239 |
|
|
Stub_table<big_endian>* stub_table_;
|
1240 |
|
|
// Original section contents. We have to make a copy here since the file
|
1241 |
|
|
// containing the original section may not be locked when we need to access
|
1242 |
|
|
// the contents.
|
1243 |
|
|
unsigned char* original_contents_;
|
1244 |
|
|
};
|
1245 |
|
|
|
1246 |
|
|
// Arm_exidx_fixup class. This is used to define a number of methods
|
1247 |
|
|
// and keep states for fixing up EXIDX coverage.
|
1248 |
|
|
|
1249 |
|
|
class Arm_exidx_fixup
|
1250 |
|
|
{
|
1251 |
|
|
public:
|
1252 |
|
|
Arm_exidx_fixup(Output_section* exidx_output_section,
|
1253 |
|
|
bool merge_exidx_entries = true)
|
1254 |
|
|
: exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
|
1255 |
|
|
last_inlined_entry_(0), last_input_section_(NULL),
|
1256 |
|
|
section_offset_map_(NULL), first_output_text_section_(NULL),
|
1257 |
|
|
merge_exidx_entries_(merge_exidx_entries)
|
1258 |
|
|
{ }
|
1259 |
|
|
|
1260 |
|
|
~Arm_exidx_fixup()
|
1261 |
|
|
{ delete this->section_offset_map_; }
|
1262 |
|
|
|
1263 |
|
|
// Process an EXIDX section for entry merging. SECTION_CONTENTS points
|
1264 |
|
|
// to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
|
1265 |
|
|
// number of bytes to be deleted in output. If parts of the input EXIDX
|
1266 |
|
|
// section are merged a heap allocated Arm_exidx_section_offset_map is store
|
1267 |
|
|
// in the located PSECTION_OFFSET_MAP. The caller owns the map and is
|
1268 |
|
|
// responsible for releasing it.
|
1269 |
|
|
template<bool big_endian>
|
1270 |
|
|
uint32_t
|
1271 |
|
|
process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
|
1272 |
|
|
const unsigned char* section_contents,
|
1273 |
|
|
section_size_type section_size,
|
1274 |
|
|
Arm_exidx_section_offset_map** psection_offset_map);
|
1275 |
|
|
|
1276 |
|
|
// Append an EXIDX_CANTUNWIND entry pointing at the end of the last
|
1277 |
|
|
// input section, if there is not one already.
|
1278 |
|
|
void
|
1279 |
|
|
add_exidx_cantunwind_as_needed();
|
1280 |
|
|
|
1281 |
|
|
// Return the output section for the text section which is linked to the
|
1282 |
|
|
// first exidx input in output.
|
1283 |
|
|
Output_section*
|
1284 |
|
|
first_output_text_section() const
|
1285 |
|
|
{ return this->first_output_text_section_; }
|
1286 |
|
|
|
1287 |
|
|
private:
|
1288 |
|
|
// Copying is not allowed.
|
1289 |
|
|
Arm_exidx_fixup(const Arm_exidx_fixup&);
|
1290 |
|
|
Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
|
1291 |
|
|
|
1292 |
|
|
// Type of EXIDX unwind entry.
|
1293 |
|
|
enum Unwind_type
|
1294 |
|
|
{
|
1295 |
|
|
// No type.
|
1296 |
|
|
UT_NONE,
|
1297 |
|
|
// EXIDX_CANTUNWIND.
|
1298 |
|
|
UT_EXIDX_CANTUNWIND,
|
1299 |
|
|
// Inlined entry.
|
1300 |
|
|
UT_INLINED_ENTRY,
|
1301 |
|
|
// Normal entry.
|
1302 |
|
|
UT_NORMAL_ENTRY,
|
1303 |
|
|
};
|
1304 |
|
|
|
1305 |
|
|
// Process an EXIDX entry. We only care about the second word of the
|
1306 |
|
|
// entry. Return true if the entry can be deleted.
|
1307 |
|
|
bool
|
1308 |
|
|
process_exidx_entry(uint32_t second_word);
|
1309 |
|
|
|
1310 |
|
|
// Update the current section offset map during EXIDX section fix-up.
|
1311 |
|
|
// If there is no map, create one. INPUT_OFFSET is the offset of a
|
1312 |
|
|
// reference point, DELETED_BYTES is the number of deleted by in the
|
1313 |
|
|
// section so far. If DELETE_ENTRY is true, the reference point and
|
1314 |
|
|
// all offsets after the previous reference point are discarded.
|
1315 |
|
|
void
|
1316 |
|
|
update_offset_map(section_offset_type input_offset,
|
1317 |
|
|
section_size_type deleted_bytes, bool delete_entry);
|
1318 |
|
|
|
1319 |
|
|
// EXIDX output section.
|
1320 |
|
|
Output_section* exidx_output_section_;
|
1321 |
|
|
// Unwind type of the last EXIDX entry processed.
|
1322 |
|
|
Unwind_type last_unwind_type_;
|
1323 |
|
|
// Last seen inlined EXIDX entry.
|
1324 |
|
|
uint32_t last_inlined_entry_;
|
1325 |
|
|
// Last processed EXIDX input section.
|
1326 |
|
|
const Arm_exidx_input_section* last_input_section_;
|
1327 |
|
|
// Section offset map created in process_exidx_section.
|
1328 |
|
|
Arm_exidx_section_offset_map* section_offset_map_;
|
1329 |
|
|
// Output section for the text section which is linked to the first exidx
|
1330 |
|
|
// input in output.
|
1331 |
|
|
Output_section* first_output_text_section_;
|
1332 |
|
|
|
1333 |
|
|
bool merge_exidx_entries_;
|
1334 |
|
|
};
|
1335 |
|
|
|
1336 |
|
|
// Arm output section class. This is defined mainly to add a number of
|
1337 |
|
|
// stub generation methods.
|
1338 |
|
|
|
1339 |
|
|
template<bool big_endian>
|
1340 |
|
|
class Arm_output_section : public Output_section
|
1341 |
|
|
{
|
1342 |
|
|
public:
|
1343 |
|
|
typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
|
1344 |
|
|
|
1345 |
|
|
// We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
|
1346 |
|
|
Arm_output_section(const char* name, elfcpp::Elf_Word type,
|
1347 |
|
|
elfcpp::Elf_Xword flags)
|
1348 |
|
|
: Output_section(name, type,
|
1349 |
|
|
(type == elfcpp::SHT_ARM_EXIDX
|
1350 |
|
|
? flags | elfcpp::SHF_LINK_ORDER
|
1351 |
|
|
: flags))
|
1352 |
|
|
{
|
1353 |
|
|
if (type == elfcpp::SHT_ARM_EXIDX)
|
1354 |
|
|
this->set_always_keeps_input_sections();
|
1355 |
|
|
}
|
1356 |
|
|
|
1357 |
|
|
~Arm_output_section()
|
1358 |
|
|
{ }
|
1359 |
|
|
|
1360 |
|
|
// Group input sections for stub generation.
|
1361 |
|
|
void
|
1362 |
|
|
group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
|
1363 |
|
|
|
1364 |
|
|
// Downcast a base pointer to an Arm_output_section pointer. This is
|
1365 |
|
|
// not type-safe but we only use Arm_output_section not the base class.
|
1366 |
|
|
static Arm_output_section<big_endian>*
|
1367 |
|
|
as_arm_output_section(Output_section* os)
|
1368 |
|
|
{ return static_cast<Arm_output_section<big_endian>*>(os); }
|
1369 |
|
|
|
1370 |
|
|
// Append all input text sections in this into LIST.
|
1371 |
|
|
void
|
1372 |
|
|
append_text_sections_to_list(Text_section_list* list);
|
1373 |
|
|
|
1374 |
|
|
// Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
|
1375 |
|
|
// is a list of text input sections sorted in ascending order of their
|
1376 |
|
|
// output addresses.
|
1377 |
|
|
void
|
1378 |
|
|
fix_exidx_coverage(Layout* layout,
|
1379 |
|
|
const Text_section_list& sorted_text_section,
|
1380 |
|
|
Symbol_table* symtab,
|
1381 |
|
|
bool merge_exidx_entries,
|
1382 |
|
|
const Task* task);
|
1383 |
|
|
|
1384 |
|
|
// Link an EXIDX section into its corresponding text section.
|
1385 |
|
|
void
|
1386 |
|
|
set_exidx_section_link();
|
1387 |
|
|
|
1388 |
|
|
private:
|
1389 |
|
|
// For convenience.
|
1390 |
|
|
typedef Output_section::Input_section Input_section;
|
1391 |
|
|
typedef Output_section::Input_section_list Input_section_list;
|
1392 |
|
|
|
1393 |
|
|
// Create a stub group.
|
1394 |
|
|
void create_stub_group(Input_section_list::const_iterator,
|
1395 |
|
|
Input_section_list::const_iterator,
|
1396 |
|
|
Input_section_list::const_iterator,
|
1397 |
|
|
Target_arm<big_endian>*,
|
1398 |
|
|
std::vector<Output_relaxed_input_section*>*,
|
1399 |
|
|
const Task* task);
|
1400 |
|
|
};
|
1401 |
|
|
|
1402 |
|
|
// Arm_exidx_input_section class. This represents an EXIDX input section.
|
1403 |
|
|
|
1404 |
|
|
class Arm_exidx_input_section
|
1405 |
|
|
{
|
1406 |
|
|
public:
|
1407 |
|
|
static const section_offset_type invalid_offset =
|
1408 |
|
|
static_cast<section_offset_type>(-1);
|
1409 |
|
|
|
1410 |
|
|
Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
|
1411 |
|
|
unsigned int link, uint32_t size,
|
1412 |
|
|
uint32_t addralign, uint32_t text_size)
|
1413 |
|
|
: relobj_(relobj), shndx_(shndx), link_(link), size_(size),
|
1414 |
|
|
addralign_(addralign), text_size_(text_size), has_errors_(false)
|
1415 |
|
|
{ }
|
1416 |
|
|
|
1417 |
|
|
~Arm_exidx_input_section()
|
1418 |
|
|
{ }
|
1419 |
|
|
|
1420 |
|
|
// Accessors: This is a read-only class.
|
1421 |
|
|
|
1422 |
|
|
// Return the object containing this EXIDX input section.
|
1423 |
|
|
Relobj*
|
1424 |
|
|
relobj() const
|
1425 |
|
|
{ return this->relobj_; }
|
1426 |
|
|
|
1427 |
|
|
// Return the section index of this EXIDX input section.
|
1428 |
|
|
unsigned int
|
1429 |
|
|
shndx() const
|
1430 |
|
|
{ return this->shndx_; }
|
1431 |
|
|
|
1432 |
|
|
// Return the section index of linked text section in the same object.
|
1433 |
|
|
unsigned int
|
1434 |
|
|
link() const
|
1435 |
|
|
{ return this->link_; }
|
1436 |
|
|
|
1437 |
|
|
// Return size of the EXIDX input section.
|
1438 |
|
|
uint32_t
|
1439 |
|
|
size() const
|
1440 |
|
|
{ return this->size_; }
|
1441 |
|
|
|
1442 |
|
|
// Return address alignment of EXIDX input section.
|
1443 |
|
|
uint32_t
|
1444 |
|
|
addralign() const
|
1445 |
|
|
{ return this->addralign_; }
|
1446 |
|
|
|
1447 |
|
|
// Return size of the associated text input section.
|
1448 |
|
|
uint32_t
|
1449 |
|
|
text_size() const
|
1450 |
|
|
{ return this->text_size_; }
|
1451 |
|
|
|
1452 |
|
|
// Whether there are any errors in the EXIDX input section.
|
1453 |
|
|
bool
|
1454 |
|
|
has_errors() const
|
1455 |
|
|
{ return this->has_errors_; }
|
1456 |
|
|
|
1457 |
|
|
// Set has-errors flag.
|
1458 |
|
|
void
|
1459 |
|
|
set_has_errors()
|
1460 |
|
|
{ this->has_errors_ = true; }
|
1461 |
|
|
|
1462 |
|
|
private:
|
1463 |
|
|
// Object containing this.
|
1464 |
|
|
Relobj* relobj_;
|
1465 |
|
|
// Section index of this.
|
1466 |
|
|
unsigned int shndx_;
|
1467 |
|
|
// text section linked to this in the same object.
|
1468 |
|
|
unsigned int link_;
|
1469 |
|
|
// Size of this. For ARM 32-bit is sufficient.
|
1470 |
|
|
uint32_t size_;
|
1471 |
|
|
// Address alignment of this. For ARM 32-bit is sufficient.
|
1472 |
|
|
uint32_t addralign_;
|
1473 |
|
|
// Size of associated text section.
|
1474 |
|
|
uint32_t text_size_;
|
1475 |
|
|
// Whether this has any errors.
|
1476 |
|
|
bool has_errors_;
|
1477 |
|
|
};
|
1478 |
|
|
|
1479 |
|
|
// Arm_relobj class.
|
1480 |
|
|
|
1481 |
|
|
template<bool big_endian>
|
1482 |
|
|
class Arm_relobj : public Sized_relobj_file<32, big_endian>
|
1483 |
|
|
{
|
1484 |
|
|
public:
|
1485 |
|
|
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
|
1486 |
|
|
|
1487 |
|
|
Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
|
1488 |
|
|
const typename elfcpp::Ehdr<32, big_endian>& ehdr)
|
1489 |
|
|
: Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
|
1490 |
|
|
stub_tables_(), local_symbol_is_thumb_function_(),
|
1491 |
|
|
attributes_section_data_(NULL), mapping_symbols_info_(),
|
1492 |
|
|
section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
|
1493 |
|
|
output_local_symbol_count_needs_update_(false),
|
1494 |
|
|
merge_flags_and_attributes_(true)
|
1495 |
|
|
{ }
|
1496 |
|
|
|
1497 |
|
|
~Arm_relobj()
|
1498 |
|
|
{ delete this->attributes_section_data_; }
|
1499 |
|
|
|
1500 |
|
|
// Return the stub table of the SHNDX-th section if there is one.
|
1501 |
|
|
Stub_table<big_endian>*
|
1502 |
|
|
stub_table(unsigned int shndx) const
|
1503 |
|
|
{
|
1504 |
|
|
gold_assert(shndx < this->stub_tables_.size());
|
1505 |
|
|
return this->stub_tables_[shndx];
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
// Set STUB_TABLE to be the stub_table of the SHNDX-th section.
|
1509 |
|
|
void
|
1510 |
|
|
set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
|
1511 |
|
|
{
|
1512 |
|
|
gold_assert(shndx < this->stub_tables_.size());
|
1513 |
|
|
this->stub_tables_[shndx] = stub_table;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
// Whether a local symbol is a THUMB function. R_SYM is the symbol table
|
1517 |
|
|
// index. This is only valid after do_count_local_symbol is called.
|
1518 |
|
|
bool
|
1519 |
|
|
local_symbol_is_thumb_function(unsigned int r_sym) const
|
1520 |
|
|
{
|
1521 |
|
|
gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
|
1522 |
|
|
return this->local_symbol_is_thumb_function_[r_sym];
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
// Scan all relocation sections for stub generation.
|
1526 |
|
|
void
|
1527 |
|
|
scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
|
1528 |
|
|
const Layout*);
|
1529 |
|
|
|
1530 |
|
|
// Convert regular input section with index SHNDX to a relaxed section.
|
1531 |
|
|
void
|
1532 |
|
|
convert_input_section_to_relaxed_section(unsigned shndx)
|
1533 |
|
|
{
|
1534 |
|
|
// The stubs have relocations and we need to process them after writing
|
1535 |
|
|
// out the stubs. So relocation now must follow section write.
|
1536 |
|
|
this->set_section_offset(shndx, -1ULL);
|
1537 |
|
|
this->set_relocs_must_follow_section_writes();
|
1538 |
|
|
}
|
1539 |
|
|
|
1540 |
|
|
// Downcast a base pointer to an Arm_relobj pointer. This is
|
1541 |
|
|
// not type-safe but we only use Arm_relobj not the base class.
|
1542 |
|
|
static Arm_relobj<big_endian>*
|
1543 |
|
|
as_arm_relobj(Relobj* relobj)
|
1544 |
|
|
{ return static_cast<Arm_relobj<big_endian>*>(relobj); }
|
1545 |
|
|
|
1546 |
|
|
// Processor-specific flags in ELF file header. This is valid only after
|
1547 |
|
|
// reading symbols.
|
1548 |
|
|
elfcpp::Elf_Word
|
1549 |
|
|
processor_specific_flags() const
|
1550 |
|
|
{ return this->processor_specific_flags_; }
|
1551 |
|
|
|
1552 |
|
|
// Attribute section data This is the contents of the .ARM.attribute section
|
1553 |
|
|
// if there is one.
|
1554 |
|
|
const Attributes_section_data*
|
1555 |
|
|
attributes_section_data() const
|
1556 |
|
|
{ return this->attributes_section_data_; }
|
1557 |
|
|
|
1558 |
|
|
// Mapping symbol location.
|
1559 |
|
|
typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
|
1560 |
|
|
|
1561 |
|
|
// Functor for STL container.
|
1562 |
|
|
struct Mapping_symbol_position_less
|
1563 |
|
|
{
|
1564 |
|
|
bool
|
1565 |
|
|
operator()(const Mapping_symbol_position& p1,
|
1566 |
|
|
const Mapping_symbol_position& p2) const
|
1567 |
|
|
{
|
1568 |
|
|
return (p1.first < p2.first
|
1569 |
|
|
|| (p1.first == p2.first && p1.second < p2.second));
|
1570 |
|
|
}
|
1571 |
|
|
};
|
1572 |
|
|
|
1573 |
|
|
// We only care about the first character of a mapping symbol, so
|
1574 |
|
|
// we only store that instead of the whole symbol name.
|
1575 |
|
|
typedef std::map<Mapping_symbol_position, char,
|
1576 |
|
|
Mapping_symbol_position_less> Mapping_symbols_info;
|
1577 |
|
|
|
1578 |
|
|
// Whether a section contains any Cortex-A8 workaround.
|
1579 |
|
|
bool
|
1580 |
|
|
section_has_cortex_a8_workaround(unsigned int shndx) const
|
1581 |
|
|
{
|
1582 |
|
|
return (this->section_has_cortex_a8_workaround_ != NULL
|
1583 |
|
|
&& (*this->section_has_cortex_a8_workaround_)[shndx]);
|
1584 |
|
|
}
|
1585 |
|
|
|
1586 |
|
|
// Mark a section that has Cortex-A8 workaround.
|
1587 |
|
|
void
|
1588 |
|
|
mark_section_for_cortex_a8_workaround(unsigned int shndx)
|
1589 |
|
|
{
|
1590 |
|
|
if (this->section_has_cortex_a8_workaround_ == NULL)
|
1591 |
|
|
this->section_has_cortex_a8_workaround_ =
|
1592 |
|
|
new std::vector<bool>(this->shnum(), false);
|
1593 |
|
|
(*this->section_has_cortex_a8_workaround_)[shndx] = true;
|
1594 |
|
|
}
|
1595 |
|
|
|
1596 |
|
|
// Return the EXIDX section of an text section with index SHNDX or NULL
|
1597 |
|
|
// if the text section has no associated EXIDX section.
|
1598 |
|
|
const Arm_exidx_input_section*
|
1599 |
|
|
exidx_input_section_by_link(unsigned int shndx) const
|
1600 |
|
|
{
|
1601 |
|
|
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
|
1602 |
|
|
return ((p != this->exidx_section_map_.end()
|
1603 |
|
|
&& p->second->link() == shndx)
|
1604 |
|
|
? p->second
|
1605 |
|
|
: NULL);
|
1606 |
|
|
}
|
1607 |
|
|
|
1608 |
|
|
// Return the EXIDX section with index SHNDX or NULL if there is none.
|
1609 |
|
|
const Arm_exidx_input_section*
|
1610 |
|
|
exidx_input_section_by_shndx(unsigned shndx) const
|
1611 |
|
|
{
|
1612 |
|
|
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
|
1613 |
|
|
return ((p != this->exidx_section_map_.end()
|
1614 |
|
|
&& p->second->shndx() == shndx)
|
1615 |
|
|
? p->second
|
1616 |
|
|
: NULL);
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
// Whether output local symbol count needs updating.
|
1620 |
|
|
bool
|
1621 |
|
|
output_local_symbol_count_needs_update() const
|
1622 |
|
|
{ return this->output_local_symbol_count_needs_update_; }
|
1623 |
|
|
|
1624 |
|
|
// Set output_local_symbol_count_needs_update flag to be true.
|
1625 |
|
|
void
|
1626 |
|
|
set_output_local_symbol_count_needs_update()
|
1627 |
|
|
{ this->output_local_symbol_count_needs_update_ = true; }
|
1628 |
|
|
|
1629 |
|
|
// Update output local symbol count at the end of relaxation.
|
1630 |
|
|
void
|
1631 |
|
|
update_output_local_symbol_count();
|
1632 |
|
|
|
1633 |
|
|
// Whether we want to merge processor-specific flags and attributes.
|
1634 |
|
|
bool
|
1635 |
|
|
merge_flags_and_attributes() const
|
1636 |
|
|
{ return this->merge_flags_and_attributes_; }
|
1637 |
|
|
|
1638 |
|
|
// Export list of EXIDX section indices.
|
1639 |
|
|
void
|
1640 |
|
|
get_exidx_shndx_list(std::vector<unsigned int>* list) const
|
1641 |
|
|
{
|
1642 |
|
|
list->clear();
|
1643 |
|
|
for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
|
1644 |
|
|
p != this->exidx_section_map_.end();
|
1645 |
|
|
++p)
|
1646 |
|
|
{
|
1647 |
|
|
if (p->second->shndx() == p->first)
|
1648 |
|
|
list->push_back(p->first);
|
1649 |
|
|
}
|
1650 |
|
|
// Sort list to make result independent of implementation of map.
|
1651 |
|
|
std::sort(list->begin(), list->end());
|
1652 |
|
|
}
|
1653 |
|
|
|
1654 |
|
|
protected:
|
1655 |
|
|
// Post constructor setup.
|
1656 |
|
|
void
|
1657 |
|
|
do_setup()
|
1658 |
|
|
{
|
1659 |
|
|
// Call parent's setup method.
|
1660 |
|
|
Sized_relobj_file<32, big_endian>::do_setup();
|
1661 |
|
|
|
1662 |
|
|
// Initialize look-up tables.
|
1663 |
|
|
Stub_table_list empty_stub_table_list(this->shnum(), NULL);
|
1664 |
|
|
this->stub_tables_.swap(empty_stub_table_list);
|
1665 |
|
|
}
|
1666 |
|
|
|
1667 |
|
|
// Count the local symbols.
|
1668 |
|
|
void
|
1669 |
|
|
do_count_local_symbols(Stringpool_template<char>*,
|
1670 |
|
|
Stringpool_template<char>*);
|
1671 |
|
|
|
1672 |
|
|
void
|
1673 |
|
|
do_relocate_sections(
|
1674 |
|
|
const Symbol_table* symtab, const Layout* layout,
|
1675 |
|
|
const unsigned char* pshdrs, Output_file* of,
|
1676 |
|
|
typename Sized_relobj_file<32, big_endian>::Views* pivews);
|
1677 |
|
|
|
1678 |
|
|
// Read the symbol information.
|
1679 |
|
|
void
|
1680 |
|
|
do_read_symbols(Read_symbols_data* sd);
|
1681 |
|
|
|
1682 |
|
|
// Process relocs for garbage collection.
|
1683 |
|
|
void
|
1684 |
|
|
do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
|
1685 |
|
|
|
1686 |
|
|
private:
|
1687 |
|
|
|
1688 |
|
|
// Whether a section needs to be scanned for relocation stubs.
|
1689 |
|
|
bool
|
1690 |
|
|
section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
|
1691 |
|
|
const Relobj::Output_sections&,
|
1692 |
|
|
const Symbol_table*, const unsigned char*);
|
1693 |
|
|
|
1694 |
|
|
// Whether a section is a scannable text section.
|
1695 |
|
|
bool
|
1696 |
|
|
section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
|
1697 |
|
|
const Output_section*, const Symbol_table*);
|
1698 |
|
|
|
1699 |
|
|
// Whether a section needs to be scanned for the Cortex-A8 erratum.
|
1700 |
|
|
bool
|
1701 |
|
|
section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
|
1702 |
|
|
unsigned int, Output_section*,
|
1703 |
|
|
const Symbol_table*);
|
1704 |
|
|
|
1705 |
|
|
// Scan a section for the Cortex-A8 erratum.
|
1706 |
|
|
void
|
1707 |
|
|
scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
|
1708 |
|
|
unsigned int, Output_section*,
|
1709 |
|
|
Target_arm<big_endian>*);
|
1710 |
|
|
|
1711 |
|
|
// Find the linked text section of an EXIDX section by looking at the
|
1712 |
|
|
// first relocation of the EXIDX section. PSHDR points to the section
|
1713 |
|
|
// headers of a relocation section and PSYMS points to the local symbols.
|
1714 |
|
|
// PSHNDX points to a location storing the text section index if found.
|
1715 |
|
|
// Return whether we can find the linked section.
|
1716 |
|
|
bool
|
1717 |
|
|
find_linked_text_section(const unsigned char* pshdr,
|
1718 |
|
|
const unsigned char* psyms, unsigned int* pshndx);
|
1719 |
|
|
|
1720 |
|
|
//
|
1721 |
|
|
// Make a new Arm_exidx_input_section object for EXIDX section with
|
1722 |
|
|
// index SHNDX and section header SHDR. TEXT_SHNDX is the section
|
1723 |
|
|
// index of the linked text section.
|
1724 |
|
|
void
|
1725 |
|
|
make_exidx_input_section(unsigned int shndx,
|
1726 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
1727 |
|
|
unsigned int text_shndx,
|
1728 |
|
|
const elfcpp::Shdr<32, big_endian>& text_shdr);
|
1729 |
|
|
|
1730 |
|
|
// Return the output address of either a plain input section or a
|
1731 |
|
|
// relaxed input section. SHNDX is the section index.
|
1732 |
|
|
Arm_address
|
1733 |
|
|
simple_input_section_output_address(unsigned int, Output_section*);
|
1734 |
|
|
|
1735 |
|
|
typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
|
1736 |
|
|
typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
|
1737 |
|
|
Exidx_section_map;
|
1738 |
|
|
|
1739 |
|
|
// List of stub tables.
|
1740 |
|
|
Stub_table_list stub_tables_;
|
1741 |
|
|
// Bit vector to tell if a local symbol is a thumb function or not.
|
1742 |
|
|
// This is only valid after do_count_local_symbol is called.
|
1743 |
|
|
std::vector<bool> local_symbol_is_thumb_function_;
|
1744 |
|
|
// processor-specific flags in ELF file header.
|
1745 |
|
|
elfcpp::Elf_Word processor_specific_flags_;
|
1746 |
|
|
// Object attributes if there is an .ARM.attributes section or NULL.
|
1747 |
|
|
Attributes_section_data* attributes_section_data_;
|
1748 |
|
|
// Mapping symbols information.
|
1749 |
|
|
Mapping_symbols_info mapping_symbols_info_;
|
1750 |
|
|
// Bitmap to indicate sections with Cortex-A8 workaround or NULL.
|
1751 |
|
|
std::vector<bool>* section_has_cortex_a8_workaround_;
|
1752 |
|
|
// Map a text section to its associated .ARM.exidx section, if there is one.
|
1753 |
|
|
Exidx_section_map exidx_section_map_;
|
1754 |
|
|
// Whether output local symbol count needs updating.
|
1755 |
|
|
bool output_local_symbol_count_needs_update_;
|
1756 |
|
|
// Whether we merge processor flags and attributes of this object to
|
1757 |
|
|
// output.
|
1758 |
|
|
bool merge_flags_and_attributes_;
|
1759 |
|
|
};
|
1760 |
|
|
|
1761 |
|
|
// Arm_dynobj class.
|
1762 |
|
|
|
1763 |
|
|
template<bool big_endian>
|
1764 |
|
|
class Arm_dynobj : public Sized_dynobj<32, big_endian>
|
1765 |
|
|
{
|
1766 |
|
|
public:
|
1767 |
|
|
Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
|
1768 |
|
|
const elfcpp::Ehdr<32, big_endian>& ehdr)
|
1769 |
|
|
: Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
|
1770 |
|
|
processor_specific_flags_(0), attributes_section_data_(NULL)
|
1771 |
|
|
{ }
|
1772 |
|
|
|
1773 |
|
|
~Arm_dynobj()
|
1774 |
|
|
{ delete this->attributes_section_data_; }
|
1775 |
|
|
|
1776 |
|
|
// Downcast a base pointer to an Arm_relobj pointer. This is
|
1777 |
|
|
// not type-safe but we only use Arm_relobj not the base class.
|
1778 |
|
|
static Arm_dynobj<big_endian>*
|
1779 |
|
|
as_arm_dynobj(Dynobj* dynobj)
|
1780 |
|
|
{ return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
|
1781 |
|
|
|
1782 |
|
|
// Processor-specific flags in ELF file header. This is valid only after
|
1783 |
|
|
// reading symbols.
|
1784 |
|
|
elfcpp::Elf_Word
|
1785 |
|
|
processor_specific_flags() const
|
1786 |
|
|
{ return this->processor_specific_flags_; }
|
1787 |
|
|
|
1788 |
|
|
// Attributes section data.
|
1789 |
|
|
const Attributes_section_data*
|
1790 |
|
|
attributes_section_data() const
|
1791 |
|
|
{ return this->attributes_section_data_; }
|
1792 |
|
|
|
1793 |
|
|
protected:
|
1794 |
|
|
// Read the symbol information.
|
1795 |
|
|
void
|
1796 |
|
|
do_read_symbols(Read_symbols_data* sd);
|
1797 |
|
|
|
1798 |
|
|
private:
|
1799 |
|
|
// processor-specific flags in ELF file header.
|
1800 |
|
|
elfcpp::Elf_Word processor_specific_flags_;
|
1801 |
|
|
// Object attributes if there is an .ARM.attributes section or NULL.
|
1802 |
|
|
Attributes_section_data* attributes_section_data_;
|
1803 |
|
|
};
|
1804 |
|
|
|
1805 |
|
|
// Functor to read reloc addends during stub generation.
|
1806 |
|
|
|
1807 |
|
|
template<int sh_type, bool big_endian>
|
1808 |
|
|
struct Stub_addend_reader
|
1809 |
|
|
{
|
1810 |
|
|
// Return the addend for a relocation of a particular type. Depending
|
1811 |
|
|
// on whether this is a REL or RELA relocation, read the addend from a
|
1812 |
|
|
// view or from a Reloc object.
|
1813 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword
|
1814 |
|
|
operator()(
|
1815 |
|
|
unsigned int /* r_type */,
|
1816 |
|
|
const unsigned char* /* view */,
|
1817 |
|
|
const typename Reloc_types<sh_type,
|
1818 |
|
|
32, big_endian>::Reloc& /* reloc */) const;
|
1819 |
|
|
};
|
1820 |
|
|
|
1821 |
|
|
// Specialized Stub_addend_reader for SHT_REL type relocation sections.
|
1822 |
|
|
|
1823 |
|
|
template<bool big_endian>
|
1824 |
|
|
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
|
1825 |
|
|
{
|
1826 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword
|
1827 |
|
|
operator()(
|
1828 |
|
|
unsigned int,
|
1829 |
|
|
const unsigned char*,
|
1830 |
|
|
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
|
1831 |
|
|
};
|
1832 |
|
|
|
1833 |
|
|
// Specialized Stub_addend_reader for RELA type relocation sections.
|
1834 |
|
|
// We currently do not handle RELA type relocation sections but it is trivial
|
1835 |
|
|
// to implement the addend reader. This is provided for completeness and to
|
1836 |
|
|
// make it easier to add support for RELA relocation sections in the future.
|
1837 |
|
|
|
1838 |
|
|
template<bool big_endian>
|
1839 |
|
|
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
|
1840 |
|
|
{
|
1841 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword
|
1842 |
|
|
operator()(
|
1843 |
|
|
unsigned int,
|
1844 |
|
|
const unsigned char*,
|
1845 |
|
|
const typename Reloc_types<elfcpp::SHT_RELA, 32,
|
1846 |
|
|
big_endian>::Reloc& reloc) const
|
1847 |
|
|
{ return reloc.get_r_addend(); }
|
1848 |
|
|
};
|
1849 |
|
|
|
1850 |
|
|
// Cortex_a8_reloc class. We keep record of relocation that may need
|
1851 |
|
|
// the Cortex-A8 erratum workaround.
|
1852 |
|
|
|
1853 |
|
|
class Cortex_a8_reloc
|
1854 |
|
|
{
|
1855 |
|
|
public:
|
1856 |
|
|
Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
|
1857 |
|
|
Arm_address destination)
|
1858 |
|
|
: reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
|
1859 |
|
|
{ }
|
1860 |
|
|
|
1861 |
|
|
~Cortex_a8_reloc()
|
1862 |
|
|
{ }
|
1863 |
|
|
|
1864 |
|
|
// Accessors: This is a read-only class.
|
1865 |
|
|
|
1866 |
|
|
// Return the relocation stub associated with this relocation if there is
|
1867 |
|
|
// one.
|
1868 |
|
|
const Reloc_stub*
|
1869 |
|
|
reloc_stub() const
|
1870 |
|
|
{ return this->reloc_stub_; }
|
1871 |
|
|
|
1872 |
|
|
// Return the relocation type.
|
1873 |
|
|
unsigned int
|
1874 |
|
|
r_type() const
|
1875 |
|
|
{ return this->r_type_; }
|
1876 |
|
|
|
1877 |
|
|
// Return the destination address of the relocation. LSB stores the THUMB
|
1878 |
|
|
// bit.
|
1879 |
|
|
Arm_address
|
1880 |
|
|
destination() const
|
1881 |
|
|
{ return this->destination_; }
|
1882 |
|
|
|
1883 |
|
|
private:
|
1884 |
|
|
// Associated relocation stub if there is one, or NULL.
|
1885 |
|
|
const Reloc_stub* reloc_stub_;
|
1886 |
|
|
// Relocation type.
|
1887 |
|
|
unsigned int r_type_;
|
1888 |
|
|
// Destination address of this relocation. LSB is used to distinguish
|
1889 |
|
|
// ARM/THUMB mode.
|
1890 |
|
|
Arm_address destination_;
|
1891 |
|
|
};
|
1892 |
|
|
|
1893 |
|
|
// Arm_output_data_got class. We derive this from Output_data_got to add
|
1894 |
|
|
// extra methods to handle TLS relocations in a static link.
|
1895 |
|
|
|
1896 |
|
|
template<bool big_endian>
|
1897 |
|
|
class Arm_output_data_got : public Output_data_got<32, big_endian>
|
1898 |
|
|
{
|
1899 |
|
|
public:
|
1900 |
|
|
Arm_output_data_got(Symbol_table* symtab, Layout* layout)
|
1901 |
|
|
: Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
|
1902 |
|
|
{ }
|
1903 |
|
|
|
1904 |
|
|
// Add a static entry for the GOT entry at OFFSET. GSYM is a global
|
1905 |
|
|
// symbol and R_TYPE is the code of a dynamic relocation that needs to be
|
1906 |
|
|
// applied in a static link.
|
1907 |
|
|
void
|
1908 |
|
|
add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
|
1909 |
|
|
{ this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
|
1910 |
|
|
|
1911 |
|
|
// Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
|
1912 |
|
|
// defining a local symbol with INDEX. R_TYPE is the code of a dynamic
|
1913 |
|
|
// relocation that needs to be applied in a static link.
|
1914 |
|
|
void
|
1915 |
|
|
add_static_reloc(unsigned int got_offset, unsigned int r_type,
|
1916 |
|
|
Sized_relobj_file<32, big_endian>* relobj,
|
1917 |
|
|
unsigned int index)
|
1918 |
|
|
{
|
1919 |
|
|
this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
|
1920 |
|
|
index));
|
1921 |
|
|
}
|
1922 |
|
|
|
1923 |
|
|
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
|
1924 |
|
|
// The first one is initialized to be 1, which is the module index for
|
1925 |
|
|
// the main executable and the second one 0. A reloc of the type
|
1926 |
|
|
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
|
1927 |
|
|
// be applied by gold. GSYM is a global symbol.
|
1928 |
|
|
void
|
1929 |
|
|
add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
|
1930 |
|
|
|
1931 |
|
|
// Same as the above but for a local symbol in OBJECT with INDEX.
|
1932 |
|
|
void
|
1933 |
|
|
add_tls_gd32_with_static_reloc(unsigned int got_type,
|
1934 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
1935 |
|
|
unsigned int index);
|
1936 |
|
|
|
1937 |
|
|
protected:
|
1938 |
|
|
// Write out the GOT table.
|
1939 |
|
|
void
|
1940 |
|
|
do_write(Output_file*);
|
1941 |
|
|
|
1942 |
|
|
private:
|
1943 |
|
|
// This class represent dynamic relocations that need to be applied by
|
1944 |
|
|
// gold because we are using TLS relocations in a static link.
|
1945 |
|
|
class Static_reloc
|
1946 |
|
|
{
|
1947 |
|
|
public:
|
1948 |
|
|
Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
|
1949 |
|
|
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
|
1950 |
|
|
{ this->u_.global.symbol = gsym; }
|
1951 |
|
|
|
1952 |
|
|
Static_reloc(unsigned int got_offset, unsigned int r_type,
|
1953 |
|
|
Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
|
1954 |
|
|
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
|
1955 |
|
|
{
|
1956 |
|
|
this->u_.local.relobj = relobj;
|
1957 |
|
|
this->u_.local.index = index;
|
1958 |
|
|
}
|
1959 |
|
|
|
1960 |
|
|
// Return the GOT offset.
|
1961 |
|
|
unsigned int
|
1962 |
|
|
got_offset() const
|
1963 |
|
|
{ return this->got_offset_; }
|
1964 |
|
|
|
1965 |
|
|
// Relocation type.
|
1966 |
|
|
unsigned int
|
1967 |
|
|
r_type() const
|
1968 |
|
|
{ return this->r_type_; }
|
1969 |
|
|
|
1970 |
|
|
// Whether the symbol is global or not.
|
1971 |
|
|
bool
|
1972 |
|
|
symbol_is_global() const
|
1973 |
|
|
{ return this->symbol_is_global_; }
|
1974 |
|
|
|
1975 |
|
|
// For a relocation against a global symbol, the global symbol.
|
1976 |
|
|
Symbol*
|
1977 |
|
|
symbol() const
|
1978 |
|
|
{
|
1979 |
|
|
gold_assert(this->symbol_is_global_);
|
1980 |
|
|
return this->u_.global.symbol;
|
1981 |
|
|
}
|
1982 |
|
|
|
1983 |
|
|
// For a relocation against a local symbol, the defining object.
|
1984 |
|
|
Sized_relobj_file<32, big_endian>*
|
1985 |
|
|
relobj() const
|
1986 |
|
|
{
|
1987 |
|
|
gold_assert(!this->symbol_is_global_);
|
1988 |
|
|
return this->u_.local.relobj;
|
1989 |
|
|
}
|
1990 |
|
|
|
1991 |
|
|
// For a relocation against a local symbol, the local symbol index.
|
1992 |
|
|
unsigned int
|
1993 |
|
|
index() const
|
1994 |
|
|
{
|
1995 |
|
|
gold_assert(!this->symbol_is_global_);
|
1996 |
|
|
return this->u_.local.index;
|
1997 |
|
|
}
|
1998 |
|
|
|
1999 |
|
|
private:
|
2000 |
|
|
// GOT offset of the entry to which this relocation is applied.
|
2001 |
|
|
unsigned int got_offset_;
|
2002 |
|
|
// Type of relocation.
|
2003 |
|
|
unsigned int r_type_;
|
2004 |
|
|
// Whether this relocation is against a global symbol.
|
2005 |
|
|
bool symbol_is_global_;
|
2006 |
|
|
// A global or local symbol.
|
2007 |
|
|
union
|
2008 |
|
|
{
|
2009 |
|
|
struct
|
2010 |
|
|
{
|
2011 |
|
|
// For a global symbol, the symbol itself.
|
2012 |
|
|
Symbol* symbol;
|
2013 |
|
|
} global;
|
2014 |
|
|
struct
|
2015 |
|
|
{
|
2016 |
|
|
// For a local symbol, the object defining object.
|
2017 |
|
|
Sized_relobj_file<32, big_endian>* relobj;
|
2018 |
|
|
// For a local symbol, the symbol index.
|
2019 |
|
|
unsigned int index;
|
2020 |
|
|
} local;
|
2021 |
|
|
} u_;
|
2022 |
|
|
};
|
2023 |
|
|
|
2024 |
|
|
// Symbol table of the output object.
|
2025 |
|
|
Symbol_table* symbol_table_;
|
2026 |
|
|
// Layout of the output object.
|
2027 |
|
|
Layout* layout_;
|
2028 |
|
|
// Static relocs to be applied to the GOT.
|
2029 |
|
|
std::vector<Static_reloc> static_relocs_;
|
2030 |
|
|
};
|
2031 |
|
|
|
2032 |
|
|
// The ARM target has many relocation types with odd-sizes or noncontiguous
|
2033 |
|
|
// bits. The default handling of relocatable relocation cannot process these
|
2034 |
|
|
// relocations. So we have to extend the default code.
|
2035 |
|
|
|
2036 |
|
|
template<bool big_endian, int sh_type, typename Classify_reloc>
|
2037 |
|
|
class Arm_scan_relocatable_relocs :
|
2038 |
|
|
public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
|
2039 |
|
|
{
|
2040 |
|
|
public:
|
2041 |
|
|
// Return the strategy to use for a local symbol which is a section
|
2042 |
|
|
// symbol, given the relocation type.
|
2043 |
|
|
inline Relocatable_relocs::Reloc_strategy
|
2044 |
|
|
local_section_strategy(unsigned int r_type, Relobj*)
|
2045 |
|
|
{
|
2046 |
|
|
if (sh_type == elfcpp::SHT_RELA)
|
2047 |
|
|
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
|
2048 |
|
|
else
|
2049 |
|
|
{
|
2050 |
|
|
if (r_type == elfcpp::R_ARM_TARGET1
|
2051 |
|
|
|| r_type == elfcpp::R_ARM_TARGET2)
|
2052 |
|
|
{
|
2053 |
|
|
const Target_arm<big_endian>* arm_target =
|
2054 |
|
|
Target_arm<big_endian>::default_target();
|
2055 |
|
|
r_type = arm_target->get_real_reloc_type(r_type);
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
switch(r_type)
|
2059 |
|
|
{
|
2060 |
|
|
// Relocations that write nothing. These exclude R_ARM_TARGET1
|
2061 |
|
|
// and R_ARM_TARGET2.
|
2062 |
|
|
case elfcpp::R_ARM_NONE:
|
2063 |
|
|
case elfcpp::R_ARM_V4BX:
|
2064 |
|
|
case elfcpp::R_ARM_TLS_GOTDESC:
|
2065 |
|
|
case elfcpp::R_ARM_TLS_CALL:
|
2066 |
|
|
case elfcpp::R_ARM_TLS_DESCSEQ:
|
2067 |
|
|
case elfcpp::R_ARM_THM_TLS_CALL:
|
2068 |
|
|
case elfcpp::R_ARM_GOTRELAX:
|
2069 |
|
|
case elfcpp::R_ARM_GNU_VTENTRY:
|
2070 |
|
|
case elfcpp::R_ARM_GNU_VTINHERIT:
|
2071 |
|
|
case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
|
2072 |
|
|
case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
|
2073 |
|
|
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
|
2074 |
|
|
// These should have been converted to something else above.
|
2075 |
|
|
case elfcpp::R_ARM_TARGET1:
|
2076 |
|
|
case elfcpp::R_ARM_TARGET2:
|
2077 |
|
|
gold_unreachable();
|
2078 |
|
|
// Relocations that write full 32 bits.
|
2079 |
|
|
case elfcpp::R_ARM_ABS32:
|
2080 |
|
|
case elfcpp::R_ARM_REL32:
|
2081 |
|
|
case elfcpp::R_ARM_SBREL32:
|
2082 |
|
|
case elfcpp::R_ARM_GOTOFF32:
|
2083 |
|
|
case elfcpp::R_ARM_BASE_PREL:
|
2084 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
2085 |
|
|
case elfcpp::R_ARM_BASE_ABS:
|
2086 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
2087 |
|
|
case elfcpp::R_ARM_REL32_NOI:
|
2088 |
|
|
case elfcpp::R_ARM_PLT32_ABS:
|
2089 |
|
|
case elfcpp::R_ARM_GOT_ABS:
|
2090 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
2091 |
|
|
case elfcpp::R_ARM_TLS_GD32:
|
2092 |
|
|
case elfcpp::R_ARM_TLS_LDM32:
|
2093 |
|
|
case elfcpp::R_ARM_TLS_LDO32:
|
2094 |
|
|
case elfcpp::R_ARM_TLS_IE32:
|
2095 |
|
|
case elfcpp::R_ARM_TLS_LE32:
|
2096 |
|
|
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
|
2097 |
|
|
default:
|
2098 |
|
|
// For all other static relocations, return RELOC_SPECIAL.
|
2099 |
|
|
return Relocatable_relocs::RELOC_SPECIAL;
|
2100 |
|
|
}
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
};
|
2104 |
|
|
|
2105 |
|
|
// Utilities for manipulating integers of up to 32-bits
|
2106 |
|
|
|
2107 |
|
|
namespace utils
|
2108 |
|
|
{
|
2109 |
|
|
// Sign extend an n-bit unsigned integer stored in an uint32_t into
|
2110 |
|
|
// an int32_t. NO_BITS must be between 1 to 32.
|
2111 |
|
|
template<int no_bits>
|
2112 |
|
|
static inline int32_t
|
2113 |
|
|
sign_extend(uint32_t bits)
|
2114 |
|
|
{
|
2115 |
|
|
gold_assert(no_bits >= 0 && no_bits <= 32);
|
2116 |
|
|
if (no_bits == 32)
|
2117 |
|
|
return static_cast<int32_t>(bits);
|
2118 |
|
|
uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
|
2119 |
|
|
bits &= mask;
|
2120 |
|
|
uint32_t top_bit = 1U << (no_bits - 1);
|
2121 |
|
|
int32_t as_signed = static_cast<int32_t>(bits);
|
2122 |
|
|
return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
// Detects overflow of an NO_BITS integer stored in a uint32_t.
|
2126 |
|
|
template<int no_bits>
|
2127 |
|
|
static inline bool
|
2128 |
|
|
has_overflow(uint32_t bits)
|
2129 |
|
|
{
|
2130 |
|
|
gold_assert(no_bits >= 0 && no_bits <= 32);
|
2131 |
|
|
if (no_bits == 32)
|
2132 |
|
|
return false;
|
2133 |
|
|
int32_t max = (1 << (no_bits - 1)) - 1;
|
2134 |
|
|
int32_t min = -(1 << (no_bits - 1));
|
2135 |
|
|
int32_t as_signed = static_cast<int32_t>(bits);
|
2136 |
|
|
return as_signed > max || as_signed < min;
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
// Detects overflow of an NO_BITS integer stored in a uint32_t when it
|
2140 |
|
|
// fits in the given number of bits as either a signed or unsigned value.
|
2141 |
|
|
// For example, has_signed_unsigned_overflow<8> would check
|
2142 |
|
|
// -128 <= bits <= 255
|
2143 |
|
|
template<int no_bits>
|
2144 |
|
|
static inline bool
|
2145 |
|
|
has_signed_unsigned_overflow(uint32_t bits)
|
2146 |
|
|
{
|
2147 |
|
|
gold_assert(no_bits >= 2 && no_bits <= 32);
|
2148 |
|
|
if (no_bits == 32)
|
2149 |
|
|
return false;
|
2150 |
|
|
int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
|
2151 |
|
|
int32_t min = -(1 << (no_bits - 1));
|
2152 |
|
|
int32_t as_signed = static_cast<int32_t>(bits);
|
2153 |
|
|
return as_signed > max || as_signed < min;
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
// Select bits from A and B using bits in MASK. For each n in [0..31],
|
2157 |
|
|
// the n-th bit in the result is chosen from the n-th bits of A and B.
|
2158 |
|
|
// A zero selects A and a one selects B.
|
2159 |
|
|
static inline uint32_t
|
2160 |
|
|
bit_select(uint32_t a, uint32_t b, uint32_t mask)
|
2161 |
|
|
{ return (a & ~mask) | (b & mask); }
|
2162 |
|
|
};
|
2163 |
|
|
|
2164 |
|
|
template<bool big_endian>
|
2165 |
|
|
class Target_arm : public Sized_target<32, big_endian>
|
2166 |
|
|
{
|
2167 |
|
|
public:
|
2168 |
|
|
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
|
2169 |
|
|
Reloc_section;
|
2170 |
|
|
|
2171 |
|
|
// When were are relocating a stub, we pass this as the relocation number.
|
2172 |
|
|
static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
|
2173 |
|
|
|
2174 |
|
|
Target_arm()
|
2175 |
|
|
: Sized_target<32, big_endian>(&arm_info),
|
2176 |
|
|
got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
|
2177 |
|
|
copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
|
2178 |
|
|
got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
|
2179 |
|
|
stub_tables_(), stub_factory_(Stub_factory::get_instance()),
|
2180 |
|
|
may_use_blx_(false), should_force_pic_veneer_(false),
|
2181 |
|
|
arm_input_section_map_(), attributes_section_data_(NULL),
|
2182 |
|
|
fix_cortex_a8_(false), cortex_a8_relocs_info_()
|
2183 |
|
|
{ }
|
2184 |
|
|
|
2185 |
|
|
// Whether we can use BLX.
|
2186 |
|
|
bool
|
2187 |
|
|
may_use_blx() const
|
2188 |
|
|
{ return this->may_use_blx_; }
|
2189 |
|
|
|
2190 |
|
|
// Set use-BLX flag.
|
2191 |
|
|
void
|
2192 |
|
|
set_may_use_blx(bool value)
|
2193 |
|
|
{ this->may_use_blx_ = value; }
|
2194 |
|
|
|
2195 |
|
|
// Whether we force PCI branch veneers.
|
2196 |
|
|
bool
|
2197 |
|
|
should_force_pic_veneer() const
|
2198 |
|
|
{ return this->should_force_pic_veneer_; }
|
2199 |
|
|
|
2200 |
|
|
// Set PIC veneer flag.
|
2201 |
|
|
void
|
2202 |
|
|
set_should_force_pic_veneer(bool value)
|
2203 |
|
|
{ this->should_force_pic_veneer_ = value; }
|
2204 |
|
|
|
2205 |
|
|
// Whether we use THUMB-2 instructions.
|
2206 |
|
|
bool
|
2207 |
|
|
using_thumb2() const
|
2208 |
|
|
{
|
2209 |
|
|
Object_attribute* attr =
|
2210 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
|
2211 |
|
|
int arch = attr->int_value();
|
2212 |
|
|
return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
|
2213 |
|
|
}
|
2214 |
|
|
|
2215 |
|
|
// Whether we use THUMB/THUMB-2 instructions only.
|
2216 |
|
|
bool
|
2217 |
|
|
using_thumb_only() const
|
2218 |
|
|
{
|
2219 |
|
|
Object_attribute* attr =
|
2220 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
|
2221 |
|
|
|
2222 |
|
|
if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
|
2223 |
|
|
|| attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
|
2224 |
|
|
return true;
|
2225 |
|
|
if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
|
2226 |
|
|
&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
|
2227 |
|
|
return false;
|
2228 |
|
|
attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
|
2229 |
|
|
return attr->int_value() == 'M';
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
// Whether we have an NOP instruction. If not, use mov r0, r0 instead.
|
2233 |
|
|
bool
|
2234 |
|
|
may_use_arm_nop() const
|
2235 |
|
|
{
|
2236 |
|
|
Object_attribute* attr =
|
2237 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
|
2238 |
|
|
int arch = attr->int_value();
|
2239 |
|
|
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|
2240 |
|
|
|| arch == elfcpp::TAG_CPU_ARCH_V6K
|
2241 |
|
|
|| arch == elfcpp::TAG_CPU_ARCH_V7
|
2242 |
|
|
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
// Whether we have THUMB-2 NOP.W instruction.
|
2246 |
|
|
bool
|
2247 |
|
|
may_use_thumb2_nop() const
|
2248 |
|
|
{
|
2249 |
|
|
Object_attribute* attr =
|
2250 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
|
2251 |
|
|
int arch = attr->int_value();
|
2252 |
|
|
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|
2253 |
|
|
|| arch == elfcpp::TAG_CPU_ARCH_V7
|
2254 |
|
|
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
// Process the relocations to determine unreferenced sections for
|
2258 |
|
|
// garbage collection.
|
2259 |
|
|
void
|
2260 |
|
|
gc_process_relocs(Symbol_table* symtab,
|
2261 |
|
|
Layout* layout,
|
2262 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2263 |
|
|
unsigned int data_shndx,
|
2264 |
|
|
unsigned int sh_type,
|
2265 |
|
|
const unsigned char* prelocs,
|
2266 |
|
|
size_t reloc_count,
|
2267 |
|
|
Output_section* output_section,
|
2268 |
|
|
bool needs_special_offset_handling,
|
2269 |
|
|
size_t local_symbol_count,
|
2270 |
|
|
const unsigned char* plocal_symbols);
|
2271 |
|
|
|
2272 |
|
|
// Scan the relocations to look for symbol adjustments.
|
2273 |
|
|
void
|
2274 |
|
|
scan_relocs(Symbol_table* symtab,
|
2275 |
|
|
Layout* layout,
|
2276 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2277 |
|
|
unsigned int data_shndx,
|
2278 |
|
|
unsigned int sh_type,
|
2279 |
|
|
const unsigned char* prelocs,
|
2280 |
|
|
size_t reloc_count,
|
2281 |
|
|
Output_section* output_section,
|
2282 |
|
|
bool needs_special_offset_handling,
|
2283 |
|
|
size_t local_symbol_count,
|
2284 |
|
|
const unsigned char* plocal_symbols);
|
2285 |
|
|
|
2286 |
|
|
// Finalize the sections.
|
2287 |
|
|
void
|
2288 |
|
|
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
|
2289 |
|
|
|
2290 |
|
|
// Return the value to use for a dynamic symbol which requires special
|
2291 |
|
|
// treatment.
|
2292 |
|
|
uint64_t
|
2293 |
|
|
do_dynsym_value(const Symbol*) const;
|
2294 |
|
|
|
2295 |
|
|
// Relocate a section.
|
2296 |
|
|
void
|
2297 |
|
|
relocate_section(const Relocate_info<32, big_endian>*,
|
2298 |
|
|
unsigned int sh_type,
|
2299 |
|
|
const unsigned char* prelocs,
|
2300 |
|
|
size_t reloc_count,
|
2301 |
|
|
Output_section* output_section,
|
2302 |
|
|
bool needs_special_offset_handling,
|
2303 |
|
|
unsigned char* view,
|
2304 |
|
|
Arm_address view_address,
|
2305 |
|
|
section_size_type view_size,
|
2306 |
|
|
const Reloc_symbol_changes*);
|
2307 |
|
|
|
2308 |
|
|
// Scan the relocs during a relocatable link.
|
2309 |
|
|
void
|
2310 |
|
|
scan_relocatable_relocs(Symbol_table* symtab,
|
2311 |
|
|
Layout* layout,
|
2312 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2313 |
|
|
unsigned int data_shndx,
|
2314 |
|
|
unsigned int sh_type,
|
2315 |
|
|
const unsigned char* prelocs,
|
2316 |
|
|
size_t reloc_count,
|
2317 |
|
|
Output_section* output_section,
|
2318 |
|
|
bool needs_special_offset_handling,
|
2319 |
|
|
size_t local_symbol_count,
|
2320 |
|
|
const unsigned char* plocal_symbols,
|
2321 |
|
|
Relocatable_relocs*);
|
2322 |
|
|
|
2323 |
|
|
// Relocate a section during a relocatable link.
|
2324 |
|
|
void
|
2325 |
|
|
relocate_for_relocatable(const Relocate_info<32, big_endian>*,
|
2326 |
|
|
unsigned int sh_type,
|
2327 |
|
|
const unsigned char* prelocs,
|
2328 |
|
|
size_t reloc_count,
|
2329 |
|
|
Output_section* output_section,
|
2330 |
|
|
off_t offset_in_output_section,
|
2331 |
|
|
const Relocatable_relocs*,
|
2332 |
|
|
unsigned char* view,
|
2333 |
|
|
Arm_address view_address,
|
2334 |
|
|
section_size_type view_size,
|
2335 |
|
|
unsigned char* reloc_view,
|
2336 |
|
|
section_size_type reloc_view_size);
|
2337 |
|
|
|
2338 |
|
|
// Perform target-specific processing in a relocatable link. This is
|
2339 |
|
|
// only used if we use the relocation strategy RELOC_SPECIAL.
|
2340 |
|
|
void
|
2341 |
|
|
relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
|
2342 |
|
|
unsigned int sh_type,
|
2343 |
|
|
const unsigned char* preloc_in,
|
2344 |
|
|
size_t relnum,
|
2345 |
|
|
Output_section* output_section,
|
2346 |
|
|
off_t offset_in_output_section,
|
2347 |
|
|
unsigned char* view,
|
2348 |
|
|
typename elfcpp::Elf_types<32>::Elf_Addr
|
2349 |
|
|
view_address,
|
2350 |
|
|
section_size_type view_size,
|
2351 |
|
|
unsigned char* preloc_out);
|
2352 |
|
|
|
2353 |
|
|
// Return whether SYM is defined by the ABI.
|
2354 |
|
|
bool
|
2355 |
|
|
do_is_defined_by_abi(Symbol* sym) const
|
2356 |
|
|
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
|
2357 |
|
|
|
2358 |
|
|
// Return whether there is a GOT section.
|
2359 |
|
|
bool
|
2360 |
|
|
has_got_section() const
|
2361 |
|
|
{ return this->got_ != NULL; }
|
2362 |
|
|
|
2363 |
|
|
// Return the size of the GOT section.
|
2364 |
|
|
section_size_type
|
2365 |
|
|
got_size() const
|
2366 |
|
|
{
|
2367 |
|
|
gold_assert(this->got_ != NULL);
|
2368 |
|
|
return this->got_->data_size();
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
// Return the number of entries in the GOT.
|
2372 |
|
|
unsigned int
|
2373 |
|
|
got_entry_count() const
|
2374 |
|
|
{
|
2375 |
|
|
if (!this->has_got_section())
|
2376 |
|
|
return 0;
|
2377 |
|
|
return this->got_size() / 4;
|
2378 |
|
|
}
|
2379 |
|
|
|
2380 |
|
|
// Return the number of entries in the PLT.
|
2381 |
|
|
unsigned int
|
2382 |
|
|
plt_entry_count() const;
|
2383 |
|
|
|
2384 |
|
|
// Return the offset of the first non-reserved PLT entry.
|
2385 |
|
|
unsigned int
|
2386 |
|
|
first_plt_entry_offset() const;
|
2387 |
|
|
|
2388 |
|
|
// Return the size of each PLT entry.
|
2389 |
|
|
unsigned int
|
2390 |
|
|
plt_entry_size() const;
|
2391 |
|
|
|
2392 |
|
|
// Map platform-specific reloc types
|
2393 |
|
|
static unsigned int
|
2394 |
|
|
get_real_reloc_type(unsigned int r_type);
|
2395 |
|
|
|
2396 |
|
|
//
|
2397 |
|
|
// Methods to support stub-generations.
|
2398 |
|
|
//
|
2399 |
|
|
|
2400 |
|
|
// Return the stub factory
|
2401 |
|
|
const Stub_factory&
|
2402 |
|
|
stub_factory() const
|
2403 |
|
|
{ return this->stub_factory_; }
|
2404 |
|
|
|
2405 |
|
|
// Make a new Arm_input_section object.
|
2406 |
|
|
Arm_input_section<big_endian>*
|
2407 |
|
|
new_arm_input_section(Relobj*, unsigned int);
|
2408 |
|
|
|
2409 |
|
|
// Find the Arm_input_section object corresponding to the SHNDX-th input
|
2410 |
|
|
// section of RELOBJ.
|
2411 |
|
|
Arm_input_section<big_endian>*
|
2412 |
|
|
find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
|
2413 |
|
|
|
2414 |
|
|
// Make a new Stub_table
|
2415 |
|
|
Stub_table<big_endian>*
|
2416 |
|
|
new_stub_table(Arm_input_section<big_endian>*);
|
2417 |
|
|
|
2418 |
|
|
// Scan a section for stub generation.
|
2419 |
|
|
void
|
2420 |
|
|
scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
|
2421 |
|
|
const unsigned char*, size_t, Output_section*,
|
2422 |
|
|
bool, const unsigned char*, Arm_address,
|
2423 |
|
|
section_size_type);
|
2424 |
|
|
|
2425 |
|
|
// Relocate a stub.
|
2426 |
|
|
void
|
2427 |
|
|
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
|
2428 |
|
|
Output_section*, unsigned char*, Arm_address,
|
2429 |
|
|
section_size_type);
|
2430 |
|
|
|
2431 |
|
|
// Get the default ARM target.
|
2432 |
|
|
static Target_arm<big_endian>*
|
2433 |
|
|
default_target()
|
2434 |
|
|
{
|
2435 |
|
|
gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
|
2436 |
|
|
&& parameters->target().is_big_endian() == big_endian);
|
2437 |
|
|
return static_cast<Target_arm<big_endian>*>(
|
2438 |
|
|
parameters->sized_target<32, big_endian>());
|
2439 |
|
|
}
|
2440 |
|
|
|
2441 |
|
|
// Whether NAME belongs to a mapping symbol.
|
2442 |
|
|
static bool
|
2443 |
|
|
is_mapping_symbol_name(const char* name)
|
2444 |
|
|
{
|
2445 |
|
|
return (name
|
2446 |
|
|
&& name[0] == '$'
|
2447 |
|
|
&& (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
|
2448 |
|
|
&& (name[2] == '\0' || name[2] == '.'));
|
2449 |
|
|
}
|
2450 |
|
|
|
2451 |
|
|
// Whether we work around the Cortex-A8 erratum.
|
2452 |
|
|
bool
|
2453 |
|
|
fix_cortex_a8() const
|
2454 |
|
|
{ return this->fix_cortex_a8_; }
|
2455 |
|
|
|
2456 |
|
|
// Whether we merge exidx entries in debuginfo.
|
2457 |
|
|
bool
|
2458 |
|
|
merge_exidx_entries() const
|
2459 |
|
|
{ return parameters->options().merge_exidx_entries(); }
|
2460 |
|
|
|
2461 |
|
|
// Whether we fix R_ARM_V4BX relocation.
|
2462 |
|
|
// 0 - do not fix
|
2463 |
|
|
// 1 - replace with MOV instruction (armv4 target)
|
2464 |
|
|
// 2 - make interworking veneer (>= armv4t targets only)
|
2465 |
|
|
General_options::Fix_v4bx
|
2466 |
|
|
fix_v4bx() const
|
2467 |
|
|
{ return parameters->options().fix_v4bx(); }
|
2468 |
|
|
|
2469 |
|
|
// Scan a span of THUMB code section for Cortex-A8 erratum.
|
2470 |
|
|
void
|
2471 |
|
|
scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
|
2472 |
|
|
section_size_type, section_size_type,
|
2473 |
|
|
const unsigned char*, Arm_address);
|
2474 |
|
|
|
2475 |
|
|
// Apply Cortex-A8 workaround to a branch.
|
2476 |
|
|
void
|
2477 |
|
|
apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
|
2478 |
|
|
unsigned char*, Arm_address);
|
2479 |
|
|
|
2480 |
|
|
protected:
|
2481 |
|
|
// Make an ELF object.
|
2482 |
|
|
Object*
|
2483 |
|
|
do_make_elf_object(const std::string&, Input_file*, off_t,
|
2484 |
|
|
const elfcpp::Ehdr<32, big_endian>& ehdr);
|
2485 |
|
|
|
2486 |
|
|
Object*
|
2487 |
|
|
do_make_elf_object(const std::string&, Input_file*, off_t,
|
2488 |
|
|
const elfcpp::Ehdr<32, !big_endian>&)
|
2489 |
|
|
{ gold_unreachable(); }
|
2490 |
|
|
|
2491 |
|
|
Object*
|
2492 |
|
|
do_make_elf_object(const std::string&, Input_file*, off_t,
|
2493 |
|
|
const elfcpp::Ehdr<64, false>&)
|
2494 |
|
|
{ gold_unreachable(); }
|
2495 |
|
|
|
2496 |
|
|
Object*
|
2497 |
|
|
do_make_elf_object(const std::string&, Input_file*, off_t,
|
2498 |
|
|
const elfcpp::Ehdr<64, true>&)
|
2499 |
|
|
{ gold_unreachable(); }
|
2500 |
|
|
|
2501 |
|
|
// Make an output section.
|
2502 |
|
|
Output_section*
|
2503 |
|
|
do_make_output_section(const char* name, elfcpp::Elf_Word type,
|
2504 |
|
|
elfcpp::Elf_Xword flags)
|
2505 |
|
|
{ return new Arm_output_section<big_endian>(name, type, flags); }
|
2506 |
|
|
|
2507 |
|
|
void
|
2508 |
|
|
do_adjust_elf_header(unsigned char* view, int len) const;
|
2509 |
|
|
|
2510 |
|
|
// We only need to generate stubs, and hence perform relaxation if we are
|
2511 |
|
|
// not doing relocatable linking.
|
2512 |
|
|
bool
|
2513 |
|
|
do_may_relax() const
|
2514 |
|
|
{ return !parameters->options().relocatable(); }
|
2515 |
|
|
|
2516 |
|
|
bool
|
2517 |
|
|
do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
|
2518 |
|
|
|
2519 |
|
|
// Determine whether an object attribute tag takes an integer, a
|
2520 |
|
|
// string or both.
|
2521 |
|
|
int
|
2522 |
|
|
do_attribute_arg_type(int tag) const;
|
2523 |
|
|
|
2524 |
|
|
// Reorder tags during output.
|
2525 |
|
|
int
|
2526 |
|
|
do_attributes_order(int num) const;
|
2527 |
|
|
|
2528 |
|
|
// This is called when the target is selected as the default.
|
2529 |
|
|
void
|
2530 |
|
|
do_select_as_default_target()
|
2531 |
|
|
{
|
2532 |
|
|
// No locking is required since there should only be one default target.
|
2533 |
|
|
// We cannot have both the big-endian and little-endian ARM targets
|
2534 |
|
|
// as the default.
|
2535 |
|
|
gold_assert(arm_reloc_property_table == NULL);
|
2536 |
|
|
arm_reloc_property_table = new Arm_reloc_property_table();
|
2537 |
|
|
}
|
2538 |
|
|
|
2539 |
159 |
khays |
// Virtual function which is set to return true by a target if
|
2540 |
|
|
// it can use relocation types to determine if a function's
|
2541 |
|
|
// pointer is taken.
|
2542 |
|
|
virtual bool
|
2543 |
|
|
do_can_check_for_function_pointers() const
|
2544 |
|
|
{ return true; }
|
2545 |
|
|
|
2546 |
|
|
// Whether a section called SECTION_NAME may have function pointers to
|
2547 |
|
|
// sections not eligible for safe ICF folding.
|
2548 |
|
|
virtual bool
|
2549 |
|
|
do_section_may_have_icf_unsafe_pointers(const char* section_name) const
|
2550 |
|
|
{
|
2551 |
|
|
return (!is_prefix_of(".ARM.exidx", section_name)
|
2552 |
|
|
&& !is_prefix_of(".ARM.extab", section_name)
|
2553 |
|
|
&& Target::do_section_may_have_icf_unsafe_pointers(section_name));
|
2554 |
|
|
}
|
2555 |
|
|
|
2556 |
27 |
khays |
private:
|
2557 |
|
|
// The class which scans relocations.
|
2558 |
|
|
class Scan
|
2559 |
|
|
{
|
2560 |
|
|
public:
|
2561 |
|
|
Scan()
|
2562 |
|
|
: issued_non_pic_error_(false)
|
2563 |
|
|
{ }
|
2564 |
|
|
|
2565 |
|
|
static inline int
|
2566 |
|
|
get_reference_flags(unsigned int r_type);
|
2567 |
|
|
|
2568 |
|
|
inline void
|
2569 |
|
|
local(Symbol_table* symtab, Layout* layout, Target_arm* target,
|
2570 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2571 |
|
|
unsigned int data_shndx,
|
2572 |
|
|
Output_section* output_section,
|
2573 |
|
|
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
|
2574 |
|
|
const elfcpp::Sym<32, big_endian>& lsym);
|
2575 |
|
|
|
2576 |
|
|
inline void
|
2577 |
|
|
global(Symbol_table* symtab, Layout* layout, Target_arm* target,
|
2578 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2579 |
|
|
unsigned int data_shndx,
|
2580 |
|
|
Output_section* output_section,
|
2581 |
|
|
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
|
2582 |
|
|
Symbol* gsym);
|
2583 |
|
|
|
2584 |
|
|
inline bool
|
2585 |
|
|
local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
|
2586 |
|
|
Sized_relobj_file<32, big_endian>* ,
|
2587 |
|
|
unsigned int ,
|
2588 |
|
|
Output_section* ,
|
2589 |
|
|
const elfcpp::Rel<32, big_endian>& ,
|
2590 |
|
|
unsigned int ,
|
2591 |
|
|
const elfcpp::Sym<32, big_endian>&);
|
2592 |
|
|
|
2593 |
|
|
inline bool
|
2594 |
|
|
global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
|
2595 |
|
|
Sized_relobj_file<32, big_endian>* ,
|
2596 |
|
|
unsigned int ,
|
2597 |
|
|
Output_section* ,
|
2598 |
|
|
const elfcpp::Rel<32, big_endian>& ,
|
2599 |
|
|
unsigned int , Symbol*);
|
2600 |
|
|
|
2601 |
|
|
private:
|
2602 |
|
|
static void
|
2603 |
|
|
unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
|
2604 |
|
|
unsigned int r_type);
|
2605 |
|
|
|
2606 |
|
|
static void
|
2607 |
|
|
unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
|
2608 |
|
|
unsigned int r_type, Symbol*);
|
2609 |
|
|
|
2610 |
|
|
void
|
2611 |
|
|
check_non_pic(Relobj*, unsigned int r_type);
|
2612 |
|
|
|
2613 |
|
|
// Almost identical to Symbol::needs_plt_entry except that it also
|
2614 |
|
|
// handles STT_ARM_TFUNC.
|
2615 |
|
|
static bool
|
2616 |
|
|
symbol_needs_plt_entry(const Symbol* sym)
|
2617 |
|
|
{
|
2618 |
|
|
// An undefined symbol from an executable does not need a PLT entry.
|
2619 |
|
|
if (sym->is_undefined() && !parameters->options().shared())
|
2620 |
|
|
return false;
|
2621 |
|
|
|
2622 |
|
|
return (!parameters->doing_static_link()
|
2623 |
|
|
&& (sym->type() == elfcpp::STT_FUNC
|
2624 |
|
|
|| sym->type() == elfcpp::STT_ARM_TFUNC)
|
2625 |
|
|
&& (sym->is_from_dynobj()
|
2626 |
|
|
|| sym->is_undefined()
|
2627 |
|
|
|| sym->is_preemptible()));
|
2628 |
|
|
}
|
2629 |
|
|
|
2630 |
|
|
inline bool
|
2631 |
|
|
possible_function_pointer_reloc(unsigned int r_type);
|
2632 |
|
|
|
2633 |
|
|
// Whether we have issued an error about a non-PIC compilation.
|
2634 |
|
|
bool issued_non_pic_error_;
|
2635 |
|
|
};
|
2636 |
|
|
|
2637 |
|
|
// The class which implements relocation.
|
2638 |
|
|
class Relocate
|
2639 |
|
|
{
|
2640 |
|
|
public:
|
2641 |
|
|
Relocate()
|
2642 |
|
|
{ }
|
2643 |
|
|
|
2644 |
|
|
~Relocate()
|
2645 |
|
|
{ }
|
2646 |
|
|
|
2647 |
|
|
// Return whether the static relocation needs to be applied.
|
2648 |
|
|
inline bool
|
2649 |
|
|
should_apply_static_reloc(const Sized_symbol<32>* gsym,
|
2650 |
|
|
unsigned int r_type,
|
2651 |
|
|
bool is_32bit,
|
2652 |
|
|
Output_section* output_section);
|
2653 |
|
|
|
2654 |
|
|
// Do a relocation. Return false if the caller should not issue
|
2655 |
|
|
// any warnings about this relocation.
|
2656 |
|
|
inline bool
|
2657 |
|
|
relocate(const Relocate_info<32, big_endian>*, Target_arm*,
|
2658 |
|
|
Output_section*, size_t relnum,
|
2659 |
|
|
const elfcpp::Rel<32, big_endian>&,
|
2660 |
|
|
unsigned int r_type, const Sized_symbol<32>*,
|
2661 |
|
|
const Symbol_value<32>*,
|
2662 |
|
|
unsigned char*, Arm_address,
|
2663 |
|
|
section_size_type);
|
2664 |
|
|
|
2665 |
|
|
// Return whether we want to pass flag NON_PIC_REF for this
|
2666 |
|
|
// reloc. This means the relocation type accesses a symbol not via
|
2667 |
|
|
// GOT or PLT.
|
2668 |
|
|
static inline bool
|
2669 |
|
|
reloc_is_non_pic(unsigned int r_type)
|
2670 |
|
|
{
|
2671 |
|
|
switch (r_type)
|
2672 |
|
|
{
|
2673 |
|
|
// These relocation types reference GOT or PLT entries explicitly.
|
2674 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
2675 |
|
|
case elfcpp::R_ARM_GOT_ABS:
|
2676 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
2677 |
|
|
case elfcpp::R_ARM_GOT_BREL12:
|
2678 |
|
|
case elfcpp::R_ARM_PLT32_ABS:
|
2679 |
|
|
case elfcpp::R_ARM_TLS_GD32:
|
2680 |
|
|
case elfcpp::R_ARM_TLS_LDM32:
|
2681 |
|
|
case elfcpp::R_ARM_TLS_IE32:
|
2682 |
|
|
case elfcpp::R_ARM_TLS_IE12GP:
|
2683 |
|
|
|
2684 |
|
|
// These relocate types may use PLT entries.
|
2685 |
|
|
case elfcpp::R_ARM_CALL:
|
2686 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
2687 |
|
|
case elfcpp::R_ARM_JUMP24:
|
2688 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
2689 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
2690 |
|
|
case elfcpp::R_ARM_PLT32:
|
2691 |
|
|
case elfcpp::R_ARM_THM_XPC22:
|
2692 |
|
|
case elfcpp::R_ARM_PREL31:
|
2693 |
|
|
case elfcpp::R_ARM_SBREL31:
|
2694 |
|
|
return false;
|
2695 |
|
|
|
2696 |
|
|
default:
|
2697 |
|
|
return true;
|
2698 |
|
|
}
|
2699 |
|
|
}
|
2700 |
|
|
|
2701 |
|
|
private:
|
2702 |
|
|
// Do a TLS relocation.
|
2703 |
|
|
inline typename Arm_relocate_functions<big_endian>::Status
|
2704 |
|
|
relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
|
2705 |
|
|
size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
|
2706 |
|
|
const Sized_symbol<32>*, const Symbol_value<32>*,
|
2707 |
|
|
unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
|
2708 |
|
|
section_size_type);
|
2709 |
|
|
|
2710 |
|
|
};
|
2711 |
|
|
|
2712 |
|
|
// A class which returns the size required for a relocation type,
|
2713 |
|
|
// used while scanning relocs during a relocatable link.
|
2714 |
|
|
class Relocatable_size_for_reloc
|
2715 |
|
|
{
|
2716 |
|
|
public:
|
2717 |
|
|
unsigned int
|
2718 |
|
|
get_size_for_reloc(unsigned int, Relobj*);
|
2719 |
|
|
};
|
2720 |
|
|
|
2721 |
|
|
// Adjust TLS relocation type based on the options and whether this
|
2722 |
|
|
// is a local symbol.
|
2723 |
|
|
static tls::Tls_optimization
|
2724 |
|
|
optimize_tls_reloc(bool is_final, int r_type);
|
2725 |
|
|
|
2726 |
|
|
// Get the GOT section, creating it if necessary.
|
2727 |
|
|
Arm_output_data_got<big_endian>*
|
2728 |
|
|
got_section(Symbol_table*, Layout*);
|
2729 |
|
|
|
2730 |
|
|
// Get the GOT PLT section.
|
2731 |
|
|
Output_data_space*
|
2732 |
|
|
got_plt_section() const
|
2733 |
|
|
{
|
2734 |
|
|
gold_assert(this->got_plt_ != NULL);
|
2735 |
|
|
return this->got_plt_;
|
2736 |
|
|
}
|
2737 |
|
|
|
2738 |
|
|
// Create a PLT entry for a global symbol.
|
2739 |
|
|
void
|
2740 |
|
|
make_plt_entry(Symbol_table*, Layout*, Symbol*);
|
2741 |
|
|
|
2742 |
|
|
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
|
2743 |
|
|
void
|
2744 |
|
|
define_tls_base_symbol(Symbol_table*, Layout*);
|
2745 |
|
|
|
2746 |
|
|
// Create a GOT entry for the TLS module index.
|
2747 |
|
|
unsigned int
|
2748 |
|
|
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
|
2749 |
|
|
Sized_relobj_file<32, big_endian>* object);
|
2750 |
|
|
|
2751 |
|
|
// Get the PLT section.
|
2752 |
|
|
const Output_data_plt_arm<big_endian>*
|
2753 |
|
|
plt_section() const
|
2754 |
|
|
{
|
2755 |
|
|
gold_assert(this->plt_ != NULL);
|
2756 |
|
|
return this->plt_;
|
2757 |
|
|
}
|
2758 |
|
|
|
2759 |
|
|
// Get the dynamic reloc section, creating it if necessary.
|
2760 |
|
|
Reloc_section*
|
2761 |
|
|
rel_dyn_section(Layout*);
|
2762 |
|
|
|
2763 |
|
|
// Get the section to use for TLS_DESC relocations.
|
2764 |
|
|
Reloc_section*
|
2765 |
|
|
rel_tls_desc_section(Layout*) const;
|
2766 |
|
|
|
2767 |
|
|
// Return true if the symbol may need a COPY relocation.
|
2768 |
|
|
// References from an executable object to non-function symbols
|
2769 |
|
|
// defined in a dynamic object may need a COPY relocation.
|
2770 |
|
|
bool
|
2771 |
|
|
may_need_copy_reloc(Symbol* gsym)
|
2772 |
|
|
{
|
2773 |
|
|
return (gsym->type() != elfcpp::STT_ARM_TFUNC
|
2774 |
|
|
&& gsym->may_need_copy_reloc());
|
2775 |
|
|
}
|
2776 |
|
|
|
2777 |
|
|
// Add a potential copy relocation.
|
2778 |
|
|
void
|
2779 |
|
|
copy_reloc(Symbol_table* symtab, Layout* layout,
|
2780 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
2781 |
|
|
unsigned int shndx, Output_section* output_section,
|
2782 |
|
|
Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
|
2783 |
|
|
{
|
2784 |
|
|
this->copy_relocs_.copy_reloc(symtab, layout,
|
2785 |
|
|
symtab->get_sized_symbol<32>(sym),
|
2786 |
|
|
object, shndx, output_section, reloc,
|
2787 |
|
|
this->rel_dyn_section(layout));
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
// Whether two EABI versions are compatible.
|
2791 |
|
|
static bool
|
2792 |
|
|
are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
|
2793 |
|
|
|
2794 |
|
|
// Merge processor-specific flags from input object and those in the ELF
|
2795 |
|
|
// header of the output.
|
2796 |
|
|
void
|
2797 |
|
|
merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
|
2798 |
|
|
|
2799 |
|
|
// Get the secondary compatible architecture.
|
2800 |
|
|
static int
|
2801 |
|
|
get_secondary_compatible_arch(const Attributes_section_data*);
|
2802 |
|
|
|
2803 |
|
|
// Set the secondary compatible architecture.
|
2804 |
|
|
static void
|
2805 |
|
|
set_secondary_compatible_arch(Attributes_section_data*, int);
|
2806 |
|
|
|
2807 |
|
|
static int
|
2808 |
|
|
tag_cpu_arch_combine(const char*, int, int*, int, int);
|
2809 |
|
|
|
2810 |
|
|
// Helper to print AEABI enum tag value.
|
2811 |
|
|
static std::string
|
2812 |
|
|
aeabi_enum_name(unsigned int);
|
2813 |
|
|
|
2814 |
|
|
// Return string value for TAG_CPU_name.
|
2815 |
|
|
static std::string
|
2816 |
|
|
tag_cpu_name_value(unsigned int);
|
2817 |
|
|
|
2818 |
|
|
// Merge object attributes from input object and those in the output.
|
2819 |
|
|
void
|
2820 |
|
|
merge_object_attributes(const char*, const Attributes_section_data*);
|
2821 |
|
|
|
2822 |
|
|
// Helper to get an AEABI object attribute
|
2823 |
|
|
Object_attribute*
|
2824 |
|
|
get_aeabi_object_attribute(int tag) const
|
2825 |
|
|
{
|
2826 |
|
|
Attributes_section_data* pasd = this->attributes_section_data_;
|
2827 |
|
|
gold_assert(pasd != NULL);
|
2828 |
|
|
Object_attribute* attr =
|
2829 |
|
|
pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
|
2830 |
|
|
gold_assert(attr != NULL);
|
2831 |
|
|
return attr;
|
2832 |
|
|
}
|
2833 |
|
|
|
2834 |
|
|
//
|
2835 |
|
|
// Methods to support stub-generations.
|
2836 |
|
|
//
|
2837 |
|
|
|
2838 |
|
|
// Group input sections for stub generation.
|
2839 |
|
|
void
|
2840 |
|
|
group_sections(Layout*, section_size_type, bool, const Task*);
|
2841 |
|
|
|
2842 |
|
|
// Scan a relocation for stub generation.
|
2843 |
|
|
void
|
2844 |
|
|
scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
|
2845 |
|
|
const Sized_symbol<32>*, unsigned int,
|
2846 |
|
|
const Symbol_value<32>*,
|
2847 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
|
2848 |
|
|
|
2849 |
|
|
// Scan a relocation section for stub.
|
2850 |
|
|
template<int sh_type>
|
2851 |
|
|
void
|
2852 |
|
|
scan_reloc_section_for_stubs(
|
2853 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
2854 |
|
|
const unsigned char* prelocs,
|
2855 |
|
|
size_t reloc_count,
|
2856 |
|
|
Output_section* output_section,
|
2857 |
|
|
bool needs_special_offset_handling,
|
2858 |
|
|
const unsigned char* view,
|
2859 |
|
|
elfcpp::Elf_types<32>::Elf_Addr view_address,
|
2860 |
|
|
section_size_type);
|
2861 |
|
|
|
2862 |
|
|
// Fix .ARM.exidx section coverage.
|
2863 |
|
|
void
|
2864 |
|
|
fix_exidx_coverage(Layout*, const Input_objects*,
|
2865 |
|
|
Arm_output_section<big_endian>*, Symbol_table*,
|
2866 |
|
|
const Task*);
|
2867 |
|
|
|
2868 |
|
|
// Functors for STL set.
|
2869 |
|
|
struct output_section_address_less_than
|
2870 |
|
|
{
|
2871 |
|
|
bool
|
2872 |
|
|
operator()(const Output_section* s1, const Output_section* s2) const
|
2873 |
|
|
{ return s1->address() < s2->address(); }
|
2874 |
|
|
};
|
2875 |
|
|
|
2876 |
|
|
// Information about this specific target which we pass to the
|
2877 |
|
|
// general Target structure.
|
2878 |
|
|
static const Target::Target_info arm_info;
|
2879 |
|
|
|
2880 |
|
|
// The types of GOT entries needed for this platform.
|
2881 |
|
|
// These values are exposed to the ABI in an incremental link.
|
2882 |
|
|
// Do not renumber existing values without changing the version
|
2883 |
|
|
// number of the .gnu_incremental_inputs section.
|
2884 |
|
|
enum Got_type
|
2885 |
|
|
{
|
2886 |
|
|
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
|
2887 |
|
|
GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
|
2888 |
|
|
GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
|
2889 |
|
|
GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
|
2890 |
|
|
GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
|
2891 |
|
|
};
|
2892 |
|
|
|
2893 |
|
|
typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
|
2894 |
|
|
|
2895 |
|
|
// Map input section to Arm_input_section.
|
2896 |
|
|
typedef Unordered_map<Section_id,
|
2897 |
|
|
Arm_input_section<big_endian>*,
|
2898 |
|
|
Section_id_hash>
|
2899 |
|
|
Arm_input_section_map;
|
2900 |
|
|
|
2901 |
|
|
// Map output addresses to relocs for Cortex-A8 erratum.
|
2902 |
|
|
typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
|
2903 |
|
|
Cortex_a8_relocs_info;
|
2904 |
|
|
|
2905 |
|
|
// The GOT section.
|
2906 |
|
|
Arm_output_data_got<big_endian>* got_;
|
2907 |
|
|
// The PLT section.
|
2908 |
|
|
Output_data_plt_arm<big_endian>* plt_;
|
2909 |
|
|
// The GOT PLT section.
|
2910 |
|
|
Output_data_space* got_plt_;
|
2911 |
|
|
// The dynamic reloc section.
|
2912 |
|
|
Reloc_section* rel_dyn_;
|
2913 |
|
|
// Relocs saved to avoid a COPY reloc.
|
2914 |
|
|
Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
|
2915 |
|
|
// Space for variables copied with a COPY reloc.
|
2916 |
|
|
Output_data_space* dynbss_;
|
2917 |
|
|
// Offset of the GOT entry for the TLS module index.
|
2918 |
|
|
unsigned int got_mod_index_offset_;
|
2919 |
|
|
// True if the _TLS_MODULE_BASE_ symbol has been defined.
|
2920 |
|
|
bool tls_base_symbol_defined_;
|
2921 |
|
|
// Vector of Stub_tables created.
|
2922 |
|
|
Stub_table_list stub_tables_;
|
2923 |
|
|
// Stub factory.
|
2924 |
|
|
const Stub_factory &stub_factory_;
|
2925 |
|
|
// Whether we can use BLX.
|
2926 |
|
|
bool may_use_blx_;
|
2927 |
|
|
// Whether we force PIC branch veneers.
|
2928 |
|
|
bool should_force_pic_veneer_;
|
2929 |
|
|
// Map for locating Arm_input_sections.
|
2930 |
|
|
Arm_input_section_map arm_input_section_map_;
|
2931 |
|
|
// Attributes section data in output.
|
2932 |
|
|
Attributes_section_data* attributes_section_data_;
|
2933 |
|
|
// Whether we want to fix code for Cortex-A8 erratum.
|
2934 |
|
|
bool fix_cortex_a8_;
|
2935 |
|
|
// Map addresses to relocs for Cortex-A8 erratum.
|
2936 |
|
|
Cortex_a8_relocs_info cortex_a8_relocs_info_;
|
2937 |
|
|
};
|
2938 |
|
|
|
2939 |
|
|
template<bool big_endian>
|
2940 |
|
|
const Target::Target_info Target_arm<big_endian>::arm_info =
|
2941 |
|
|
{
|
2942 |
|
|
32, // size
|
2943 |
|
|
big_endian, // is_big_endian
|
2944 |
|
|
elfcpp::EM_ARM, // machine_code
|
2945 |
|
|
false, // has_make_symbol
|
2946 |
|
|
false, // has_resolve
|
2947 |
|
|
false, // has_code_fill
|
2948 |
|
|
true, // is_default_stack_executable
|
2949 |
159 |
khays |
false, // can_icf_inline_merge_sections
|
2950 |
27 |
khays |
'\0', // wrap_char
|
2951 |
|
|
"/usr/lib/libc.so.1", // dynamic_linker
|
2952 |
|
|
0x8000, // default_text_segment_address
|
2953 |
|
|
0x1000, // abi_pagesize (overridable by -z max-page-size)
|
2954 |
|
|
0x1000, // common_pagesize (overridable by -z common-page-size)
|
2955 |
|
|
elfcpp::SHN_UNDEF, // small_common_shndx
|
2956 |
|
|
elfcpp::SHN_UNDEF, // large_common_shndx
|
2957 |
|
|
0, // small_common_section_flags
|
2958 |
|
|
0, // large_common_section_flags
|
2959 |
|
|
".ARM.attributes", // attributes_section
|
2960 |
|
|
"aeabi" // attributes_vendor
|
2961 |
|
|
};
|
2962 |
|
|
|
2963 |
|
|
// Arm relocate functions class
|
2964 |
|
|
//
|
2965 |
|
|
|
2966 |
|
|
template<bool big_endian>
|
2967 |
|
|
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
|
2968 |
|
|
{
|
2969 |
|
|
public:
|
2970 |
|
|
typedef enum
|
2971 |
|
|
{
|
2972 |
|
|
STATUS_OKAY, // No error during relocation.
|
2973 |
|
|
STATUS_OVERFLOW, // Relocation overflow.
|
2974 |
|
|
STATUS_BAD_RELOC // Relocation cannot be applied.
|
2975 |
|
|
} Status;
|
2976 |
|
|
|
2977 |
|
|
private:
|
2978 |
|
|
typedef Relocate_functions<32, big_endian> Base;
|
2979 |
|
|
typedef Arm_relocate_functions<big_endian> This;
|
2980 |
|
|
|
2981 |
|
|
// Encoding of imm16 argument for movt and movw ARM instructions
|
2982 |
|
|
// from ARM ARM:
|
2983 |
|
|
//
|
2984 |
|
|
// imm16 := imm4 | imm12
|
2985 |
|
|
//
|
2986 |
|
|
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
|
2987 |
|
|
// +-------+---------------+-------+-------+-----------------------+
|
2988 |
|
|
// | | |imm4 | |imm12 |
|
2989 |
|
|
// +-------+---------------+-------+-------+-----------------------+
|
2990 |
|
|
|
2991 |
|
|
// Extract the relocation addend from VAL based on the ARM
|
2992 |
|
|
// instruction encoding described above.
|
2993 |
|
|
static inline typename elfcpp::Swap<32, big_endian>::Valtype
|
2994 |
|
|
extract_arm_movw_movt_addend(
|
2995 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype val)
|
2996 |
|
|
{
|
2997 |
|
|
// According to the Elf ABI for ARM Architecture the immediate
|
2998 |
|
|
// field is sign-extended to form the addend.
|
2999 |
|
|
return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
|
3000 |
|
|
}
|
3001 |
|
|
|
3002 |
|
|
// Insert X into VAL based on the ARM instruction encoding described
|
3003 |
|
|
// above.
|
3004 |
|
|
static inline typename elfcpp::Swap<32, big_endian>::Valtype
|
3005 |
|
|
insert_val_arm_movw_movt(
|
3006 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype val,
|
3007 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype x)
|
3008 |
|
|
{
|
3009 |
|
|
val &= 0xfff0f000;
|
3010 |
|
|
val |= x & 0x0fff;
|
3011 |
|
|
val |= (x & 0xf000) << 4;
|
3012 |
|
|
return val;
|
3013 |
|
|
}
|
3014 |
|
|
|
3015 |
|
|
// Encoding of imm16 argument for movt and movw Thumb2 instructions
|
3016 |
|
|
// from ARM ARM:
|
3017 |
|
|
//
|
3018 |
|
|
// imm16 := imm4 | i | imm3 | imm8
|
3019 |
|
|
//
|
3020 |
|
|
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
|
3021 |
|
|
// +---------+-+-----------+-------++-+-----+-------+---------------+
|
3022 |
|
|
// | |i| |imm4 || |imm3 | |imm8 |
|
3023 |
|
|
// +---------+-+-----------+-------++-+-----+-------+---------------+
|
3024 |
|
|
|
3025 |
|
|
// Extract the relocation addend from VAL based on the Thumb2
|
3026 |
|
|
// instruction encoding described above.
|
3027 |
|
|
static inline typename elfcpp::Swap<32, big_endian>::Valtype
|
3028 |
|
|
extract_thumb_movw_movt_addend(
|
3029 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype val)
|
3030 |
|
|
{
|
3031 |
|
|
// According to the Elf ABI for ARM Architecture the immediate
|
3032 |
|
|
// field is sign-extended to form the addend.
|
3033 |
|
|
return utils::sign_extend<16>(((val >> 4) & 0xf000)
|
3034 |
|
|
| ((val >> 15) & 0x0800)
|
3035 |
|
|
| ((val >> 4) & 0x0700)
|
3036 |
|
|
| (val & 0x00ff));
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
// Insert X into VAL based on the Thumb2 instruction encoding
|
3040 |
|
|
// described above.
|
3041 |
|
|
static inline typename elfcpp::Swap<32, big_endian>::Valtype
|
3042 |
|
|
insert_val_thumb_movw_movt(
|
3043 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype val,
|
3044 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype x)
|
3045 |
|
|
{
|
3046 |
|
|
val &= 0xfbf08f00;
|
3047 |
|
|
val |= (x & 0xf000) << 4;
|
3048 |
|
|
val |= (x & 0x0800) << 15;
|
3049 |
|
|
val |= (x & 0x0700) << 4;
|
3050 |
|
|
val |= (x & 0x00ff);
|
3051 |
|
|
return val;
|
3052 |
|
|
}
|
3053 |
|
|
|
3054 |
|
|
// Calculate the smallest constant Kn for the specified residual.
|
3055 |
|
|
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
|
3056 |
|
|
static uint32_t
|
3057 |
|
|
calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
|
3058 |
|
|
{
|
3059 |
|
|
int32_t msb;
|
3060 |
|
|
|
3061 |
|
|
if (residual == 0)
|
3062 |
|
|
return 0;
|
3063 |
|
|
// Determine the most significant bit in the residual and
|
3064 |
|
|
// align the resulting value to a 2-bit boundary.
|
3065 |
|
|
for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
|
3066 |
|
|
;
|
3067 |
|
|
// The desired shift is now (msb - 6), or zero, whichever
|
3068 |
|
|
// is the greater.
|
3069 |
|
|
return (((msb - 6) < 0) ? 0 : (msb - 6));
|
3070 |
|
|
}
|
3071 |
|
|
|
3072 |
|
|
// Calculate the final residual for the specified group index.
|
3073 |
|
|
// If the passed group index is less than zero, the method will return
|
3074 |
|
|
// the value of the specified residual without any change.
|
3075 |
|
|
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
|
3076 |
|
|
static typename elfcpp::Swap<32, big_endian>::Valtype
|
3077 |
|
|
calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
|
3078 |
|
|
const int group)
|
3079 |
|
|
{
|
3080 |
|
|
for (int n = 0; n <= group; n++)
|
3081 |
|
|
{
|
3082 |
|
|
// Calculate which part of the value to mask.
|
3083 |
|
|
uint32_t shift = calc_grp_kn(residual);
|
3084 |
|
|
// Calculate the residual for the next time around.
|
3085 |
|
|
residual &= ~(residual & (0xff << shift));
|
3086 |
|
|
}
|
3087 |
|
|
|
3088 |
|
|
return residual;
|
3089 |
|
|
}
|
3090 |
|
|
|
3091 |
|
|
// Calculate the value of Gn for the specified group index.
|
3092 |
|
|
// We return it in the form of an encoded constant-and-rotation.
|
3093 |
|
|
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
|
3094 |
|
|
static typename elfcpp::Swap<32, big_endian>::Valtype
|
3095 |
|
|
calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
|
3096 |
|
|
const int group)
|
3097 |
|
|
{
|
3098 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
|
3099 |
|
|
uint32_t shift = 0;
|
3100 |
|
|
|
3101 |
|
|
for (int n = 0; n <= group; n++)
|
3102 |
|
|
{
|
3103 |
|
|
// Calculate which part of the value to mask.
|
3104 |
|
|
shift = calc_grp_kn(residual);
|
3105 |
|
|
// Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
|
3106 |
|
|
gn = residual & (0xff << shift);
|
3107 |
|
|
// Calculate the residual for the next time around.
|
3108 |
|
|
residual &= ~gn;
|
3109 |
|
|
}
|
3110 |
|
|
// Return Gn in the form of an encoded constant-and-rotation.
|
3111 |
|
|
return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
|
3112 |
|
|
}
|
3113 |
|
|
|
3114 |
|
|
public:
|
3115 |
|
|
// Handle ARM long branches.
|
3116 |
|
|
static typename This::Status
|
3117 |
|
|
arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
|
3118 |
|
|
unsigned char*, const Sized_symbol<32>*,
|
3119 |
|
|
const Arm_relobj<big_endian>*, unsigned int,
|
3120 |
|
|
const Symbol_value<32>*, Arm_address, Arm_address, bool);
|
3121 |
|
|
|
3122 |
|
|
// Handle THUMB long branches.
|
3123 |
|
|
static typename This::Status
|
3124 |
|
|
thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
|
3125 |
|
|
unsigned char*, const Sized_symbol<32>*,
|
3126 |
|
|
const Arm_relobj<big_endian>*, unsigned int,
|
3127 |
|
|
const Symbol_value<32>*, Arm_address, Arm_address, bool);
|
3128 |
|
|
|
3129 |
|
|
|
3130 |
|
|
// Return the branch offset of a 32-bit THUMB branch.
|
3131 |
|
|
static inline int32_t
|
3132 |
|
|
thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
|
3133 |
|
|
{
|
3134 |
|
|
// We use the Thumb-2 encoding (backwards compatible with Thumb-1)
|
3135 |
|
|
// involving the J1 and J2 bits.
|
3136 |
|
|
uint32_t s = (upper_insn & (1U << 10)) >> 10;
|
3137 |
|
|
uint32_t upper = upper_insn & 0x3ffU;
|
3138 |
|
|
uint32_t lower = lower_insn & 0x7ffU;
|
3139 |
|
|
uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
|
3140 |
|
|
uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
|
3141 |
|
|
uint32_t i1 = j1 ^ s ? 0 : 1;
|
3142 |
|
|
uint32_t i2 = j2 ^ s ? 0 : 1;
|
3143 |
|
|
|
3144 |
|
|
return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
|
3145 |
|
|
| (upper << 12) | (lower << 1));
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
// Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
|
3149 |
|
|
// UPPER_INSN is the original upper instruction of the branch. Caller is
|
3150 |
|
|
// responsible for overflow checking and BLX offset adjustment.
|
3151 |
|
|
static inline uint16_t
|
3152 |
|
|
thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
|
3153 |
|
|
{
|
3154 |
|
|
uint32_t s = offset < 0 ? 1 : 0;
|
3155 |
|
|
uint32_t bits = static_cast<uint32_t>(offset);
|
3156 |
|
|
return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
|
3157 |
|
|
}
|
3158 |
|
|
|
3159 |
|
|
// Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
|
3160 |
|
|
// LOWER_INSN is the original lower instruction of the branch. Caller is
|
3161 |
|
|
// responsible for overflow checking and BLX offset adjustment.
|
3162 |
|
|
static inline uint16_t
|
3163 |
|
|
thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
|
3164 |
|
|
{
|
3165 |
|
|
uint32_t s = offset < 0 ? 1 : 0;
|
3166 |
|
|
uint32_t bits = static_cast<uint32_t>(offset);
|
3167 |
|
|
return ((lower_insn & ~0x2fffU)
|
3168 |
|
|
| ((((bits >> 23) & 1) ^ !s) << 13)
|
3169 |
|
|
| ((((bits >> 22) & 1) ^ !s) << 11)
|
3170 |
|
|
| ((bits >> 1) & 0x7ffU));
|
3171 |
|
|
}
|
3172 |
|
|
|
3173 |
|
|
// Return the branch offset of a 32-bit THUMB conditional branch.
|
3174 |
|
|
static inline int32_t
|
3175 |
|
|
thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
|
3176 |
|
|
{
|
3177 |
|
|
uint32_t s = (upper_insn & 0x0400U) >> 10;
|
3178 |
|
|
uint32_t j1 = (lower_insn & 0x2000U) >> 13;
|
3179 |
|
|
uint32_t j2 = (lower_insn & 0x0800U) >> 11;
|
3180 |
|
|
uint32_t lower = (lower_insn & 0x07ffU);
|
3181 |
|
|
uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
|
3182 |
|
|
|
3183 |
|
|
return utils::sign_extend<21>((upper << 12) | (lower << 1));
|
3184 |
|
|
}
|
3185 |
|
|
|
3186 |
|
|
// Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
|
3187 |
|
|
// instruction. UPPER_INSN is the original upper instruction of the branch.
|
3188 |
|
|
// Caller is responsible for overflow checking.
|
3189 |
|
|
static inline uint16_t
|
3190 |
|
|
thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
|
3191 |
|
|
{
|
3192 |
|
|
uint32_t s = offset < 0 ? 1 : 0;
|
3193 |
|
|
uint32_t bits = static_cast<uint32_t>(offset);
|
3194 |
|
|
return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
|
3195 |
|
|
}
|
3196 |
|
|
|
3197 |
|
|
// Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
|
3198 |
|
|
// instruction. LOWER_INSN is the original lower instruction of the branch.
|
3199 |
|
|
// The caller is responsible for overflow checking.
|
3200 |
|
|
static inline uint16_t
|
3201 |
|
|
thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
|
3202 |
|
|
{
|
3203 |
|
|
uint32_t bits = static_cast<uint32_t>(offset);
|
3204 |
|
|
uint32_t j2 = (bits & 0x00080000U) >> 19;
|
3205 |
|
|
uint32_t j1 = (bits & 0x00040000U) >> 18;
|
3206 |
|
|
uint32_t lo = (bits & 0x00000ffeU) >> 1;
|
3207 |
|
|
|
3208 |
|
|
return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
|
3209 |
|
|
}
|
3210 |
|
|
|
3211 |
|
|
// R_ARM_ABS8: S + A
|
3212 |
|
|
static inline typename This::Status
|
3213 |
|
|
abs8(unsigned char* view,
|
3214 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3215 |
|
|
const Symbol_value<32>* psymval)
|
3216 |
|
|
{
|
3217 |
|
|
typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
|
3218 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3219 |
|
|
Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
|
3220 |
159 |
khays |
int32_t addend = utils::sign_extend<8>(val);
|
3221 |
|
|
Arm_address x = psymval->value(object, addend);
|
3222 |
27 |
khays |
val = utils::bit_select(val, x, 0xffU);
|
3223 |
|
|
elfcpp::Swap<8, big_endian>::writeval(wv, val);
|
3224 |
|
|
|
3225 |
|
|
// R_ARM_ABS8 permits signed or unsigned results.
|
3226 |
|
|
int signed_x = static_cast<int32_t>(x);
|
3227 |
|
|
return ((signed_x < -128 || signed_x > 255)
|
3228 |
|
|
? This::STATUS_OVERFLOW
|
3229 |
|
|
: This::STATUS_OKAY);
|
3230 |
|
|
}
|
3231 |
|
|
|
3232 |
|
|
// R_ARM_THM_ABS5: S + A
|
3233 |
|
|
static inline typename This::Status
|
3234 |
|
|
thm_abs5(unsigned char* view,
|
3235 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3236 |
|
|
const Symbol_value<32>* psymval)
|
3237 |
|
|
{
|
3238 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3239 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3240 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3241 |
|
|
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
|
3242 |
|
|
Reltype addend = (val & 0x7e0U) >> 6;
|
3243 |
|
|
Reltype x = psymval->value(object, addend);
|
3244 |
|
|
val = utils::bit_select(val, x << 6, 0x7e0U);
|
3245 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, val);
|
3246 |
|
|
|
3247 |
|
|
// R_ARM_ABS16 permits signed or unsigned results.
|
3248 |
|
|
int signed_x = static_cast<int32_t>(x);
|
3249 |
|
|
return ((signed_x < -32768 || signed_x > 65535)
|
3250 |
|
|
? This::STATUS_OVERFLOW
|
3251 |
|
|
: This::STATUS_OKAY);
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
// R_ARM_ABS12: S + A
|
3255 |
|
|
static inline typename This::Status
|
3256 |
|
|
abs12(unsigned char* view,
|
3257 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3258 |
|
|
const Symbol_value<32>* psymval)
|
3259 |
|
|
{
|
3260 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3261 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3262 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3263 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
3264 |
|
|
Reltype addend = val & 0x0fffU;
|
3265 |
|
|
Reltype x = psymval->value(object, addend);
|
3266 |
|
|
val = utils::bit_select(val, x, 0x0fffU);
|
3267 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3268 |
|
|
return (utils::has_overflow<12>(x)
|
3269 |
|
|
? This::STATUS_OVERFLOW
|
3270 |
|
|
: This::STATUS_OKAY);
|
3271 |
|
|
}
|
3272 |
|
|
|
3273 |
|
|
// R_ARM_ABS16: S + A
|
3274 |
|
|
static inline typename This::Status
|
3275 |
|
|
abs16(unsigned char* view,
|
3276 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3277 |
|
|
const Symbol_value<32>* psymval)
|
3278 |
|
|
{
|
3279 |
159 |
khays |
typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
|
3280 |
27 |
khays |
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3281 |
159 |
khays |
Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
|
3282 |
|
|
int32_t addend = utils::sign_extend<16>(val);
|
3283 |
|
|
Arm_address x = psymval->value(object, addend);
|
3284 |
27 |
khays |
val = utils::bit_select(val, x, 0xffffU);
|
3285 |
159 |
khays |
elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
|
3286 |
|
|
|
3287 |
|
|
// R_ARM_ABS16 permits signed or unsigned results.
|
3288 |
|
|
int signed_x = static_cast<int32_t>(x);
|
3289 |
|
|
return ((signed_x < -32768 || signed_x > 65536)
|
3290 |
27 |
khays |
? This::STATUS_OVERFLOW
|
3291 |
|
|
: This::STATUS_OKAY);
|
3292 |
|
|
}
|
3293 |
|
|
|
3294 |
|
|
// R_ARM_ABS32: (S + A) | T
|
3295 |
|
|
static inline typename This::Status
|
3296 |
|
|
abs32(unsigned char* view,
|
3297 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3298 |
|
|
const Symbol_value<32>* psymval,
|
3299 |
|
|
Arm_address thumb_bit)
|
3300 |
|
|
{
|
3301 |
159 |
khays |
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
|
3302 |
|
|
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
|
3303 |
27 |
khays |
Valtype x = psymval->value(object, addend) | thumb_bit;
|
3304 |
159 |
khays |
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
|
3305 |
27 |
khays |
return This::STATUS_OKAY;
|
3306 |
|
|
}
|
3307 |
|
|
|
3308 |
|
|
// R_ARM_REL32: (S + A) | T - P
|
3309 |
|
|
static inline typename This::Status
|
3310 |
|
|
rel32(unsigned char* view,
|
3311 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3312 |
|
|
const Symbol_value<32>* psymval,
|
3313 |
|
|
Arm_address address,
|
3314 |
|
|
Arm_address thumb_bit)
|
3315 |
|
|
{
|
3316 |
159 |
khays |
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
|
3317 |
|
|
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
|
3318 |
27 |
khays |
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
|
3319 |
159 |
khays |
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
|
3320 |
27 |
khays |
return This::STATUS_OKAY;
|
3321 |
|
|
}
|
3322 |
|
|
|
3323 |
|
|
// R_ARM_THM_JUMP24: (S + A) | T - P
|
3324 |
|
|
static typename This::Status
|
3325 |
|
|
thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
|
3326 |
|
|
const Symbol_value<32>* psymval, Arm_address address,
|
3327 |
|
|
Arm_address thumb_bit);
|
3328 |
|
|
|
3329 |
|
|
// R_ARM_THM_JUMP6: S + A – P
|
3330 |
|
|
static inline typename This::Status
|
3331 |
|
|
thm_jump6(unsigned char* view,
|
3332 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3333 |
|
|
const Symbol_value<32>* psymval,
|
3334 |
|
|
Arm_address address)
|
3335 |
|
|
{
|
3336 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3337 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
|
3338 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3339 |
|
|
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
|
3340 |
|
|
// bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
|
3341 |
|
|
Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
|
3342 |
|
|
Reltype x = (psymval->value(object, addend) - address);
|
3343 |
|
|
val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
|
3344 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, val);
|
3345 |
|
|
// CZB does only forward jumps.
|
3346 |
|
|
return ((x > 0x007e)
|
3347 |
|
|
? This::STATUS_OVERFLOW
|
3348 |
|
|
: This::STATUS_OKAY);
|
3349 |
|
|
}
|
3350 |
|
|
|
3351 |
|
|
// R_ARM_THM_JUMP8: S + A – P
|
3352 |
|
|
static inline typename This::Status
|
3353 |
|
|
thm_jump8(unsigned char* view,
|
3354 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3355 |
|
|
const Symbol_value<32>* psymval,
|
3356 |
|
|
Arm_address address)
|
3357 |
|
|
{
|
3358 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3359 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3360 |
|
|
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
|
3361 |
159 |
khays |
int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
|
3362 |
|
|
int32_t x = (psymval->value(object, addend) - address);
|
3363 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
|
3364 |
|
|
| ((x & 0x01fe) >> 1)));
|
3365 |
|
|
// We do a 9-bit overflow check because x is right-shifted by 1 bit.
|
3366 |
|
|
return (utils::has_overflow<9>(x)
|
3367 |
27 |
khays |
? This::STATUS_OVERFLOW
|
3368 |
|
|
: This::STATUS_OKAY);
|
3369 |
|
|
}
|
3370 |
|
|
|
3371 |
|
|
// R_ARM_THM_JUMP11: S + A – P
|
3372 |
|
|
static inline typename This::Status
|
3373 |
|
|
thm_jump11(unsigned char* view,
|
3374 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3375 |
|
|
const Symbol_value<32>* psymval,
|
3376 |
|
|
Arm_address address)
|
3377 |
|
|
{
|
3378 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3379 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3380 |
|
|
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
|
3381 |
159 |
khays |
int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
|
3382 |
|
|
int32_t x = (psymval->value(object, addend) - address);
|
3383 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
|
3384 |
|
|
| ((x & 0x0ffe) >> 1)));
|
3385 |
|
|
// We do a 12-bit overflow check because x is right-shifted by 1 bit.
|
3386 |
|
|
return (utils::has_overflow<12>(x)
|
3387 |
27 |
khays |
? This::STATUS_OVERFLOW
|
3388 |
|
|
: This::STATUS_OKAY);
|
3389 |
|
|
}
|
3390 |
|
|
|
3391 |
|
|
// R_ARM_BASE_PREL: B(S) + A - P
|
3392 |
|
|
static inline typename This::Status
|
3393 |
|
|
base_prel(unsigned char* view,
|
3394 |
|
|
Arm_address origin,
|
3395 |
|
|
Arm_address address)
|
3396 |
|
|
{
|
3397 |
|
|
Base::rel32(view, origin - address);
|
3398 |
|
|
return STATUS_OKAY;
|
3399 |
|
|
}
|
3400 |
|
|
|
3401 |
|
|
// R_ARM_BASE_ABS: B(S) + A
|
3402 |
|
|
static inline typename This::Status
|
3403 |
|
|
base_abs(unsigned char* view,
|
3404 |
|
|
Arm_address origin)
|
3405 |
|
|
{
|
3406 |
|
|
Base::rel32(view, origin);
|
3407 |
|
|
return STATUS_OKAY;
|
3408 |
|
|
}
|
3409 |
|
|
|
3410 |
|
|
// R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
|
3411 |
|
|
static inline typename This::Status
|
3412 |
|
|
got_brel(unsigned char* view,
|
3413 |
|
|
typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
|
3414 |
|
|
{
|
3415 |
|
|
Base::rel32(view, got_offset);
|
3416 |
|
|
return This::STATUS_OKAY;
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
// R_ARM_GOT_PREL: GOT(S) + A - P
|
3420 |
|
|
static inline typename This::Status
|
3421 |
|
|
got_prel(unsigned char* view,
|
3422 |
|
|
Arm_address got_entry,
|
3423 |
|
|
Arm_address address)
|
3424 |
|
|
{
|
3425 |
|
|
Base::rel32(view, got_entry - address);
|
3426 |
|
|
return This::STATUS_OKAY;
|
3427 |
|
|
}
|
3428 |
|
|
|
3429 |
|
|
// R_ARM_PREL: (S + A) | T - P
|
3430 |
|
|
static inline typename This::Status
|
3431 |
|
|
prel31(unsigned char* view,
|
3432 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3433 |
|
|
const Symbol_value<32>* psymval,
|
3434 |
|
|
Arm_address address,
|
3435 |
|
|
Arm_address thumb_bit)
|
3436 |
|
|
{
|
3437 |
159 |
khays |
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
|
3438 |
|
|
Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
|
3439 |
27 |
khays |
Valtype addend = utils::sign_extend<31>(val);
|
3440 |
|
|
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
|
3441 |
|
|
val = utils::bit_select(val, x, 0x7fffffffU);
|
3442 |
159 |
khays |
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
|
3443 |
27 |
khays |
return (utils::has_overflow<31>(x) ?
|
3444 |
|
|
This::STATUS_OVERFLOW : This::STATUS_OKAY);
|
3445 |
|
|
}
|
3446 |
|
|
|
3447 |
|
|
// R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
|
3448 |
|
|
// R_ARM_MOVW_PREL_NC: (S + A) | T - P
|
3449 |
|
|
// R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
|
3450 |
|
|
// R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
|
3451 |
|
|
static inline typename This::Status
|
3452 |
|
|
movw(unsigned char* view,
|
3453 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3454 |
|
|
const Symbol_value<32>* psymval,
|
3455 |
|
|
Arm_address relative_address_base,
|
3456 |
|
|
Arm_address thumb_bit,
|
3457 |
|
|
bool check_overflow)
|
3458 |
|
|
{
|
3459 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3460 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3461 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
3462 |
|
|
Valtype addend = This::extract_arm_movw_movt_addend(val);
|
3463 |
|
|
Valtype x = ((psymval->value(object, addend) | thumb_bit)
|
3464 |
|
|
- relative_address_base);
|
3465 |
|
|
val = This::insert_val_arm_movw_movt(val, x);
|
3466 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3467 |
|
|
return ((check_overflow && utils::has_overflow<16>(x))
|
3468 |
|
|
? This::STATUS_OVERFLOW
|
3469 |
|
|
: This::STATUS_OKAY);
|
3470 |
|
|
}
|
3471 |
|
|
|
3472 |
|
|
// R_ARM_MOVT_ABS: S + A (relative address base is 0)
|
3473 |
|
|
// R_ARM_MOVT_PREL: S + A - P
|
3474 |
|
|
// R_ARM_MOVT_BREL: S + A - B(S)
|
3475 |
|
|
static inline typename This::Status
|
3476 |
|
|
movt(unsigned char* view,
|
3477 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3478 |
|
|
const Symbol_value<32>* psymval,
|
3479 |
|
|
Arm_address relative_address_base)
|
3480 |
|
|
{
|
3481 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3482 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3483 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
3484 |
|
|
Valtype addend = This::extract_arm_movw_movt_addend(val);
|
3485 |
|
|
Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
|
3486 |
|
|
val = This::insert_val_arm_movw_movt(val, x);
|
3487 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3488 |
|
|
// FIXME: IHI0044D says that we should check for overflow.
|
3489 |
|
|
return This::STATUS_OKAY;
|
3490 |
|
|
}
|
3491 |
|
|
|
3492 |
|
|
// R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
|
3493 |
|
|
// R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
|
3494 |
|
|
// R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
|
3495 |
|
|
// R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
|
3496 |
|
|
static inline typename This::Status
|
3497 |
|
|
thm_movw(unsigned char* view,
|
3498 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3499 |
|
|
const Symbol_value<32>* psymval,
|
3500 |
|
|
Arm_address relative_address_base,
|
3501 |
|
|
Arm_address thumb_bit,
|
3502 |
|
|
bool check_overflow)
|
3503 |
|
|
{
|
3504 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3505 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3506 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3507 |
|
|
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
|
3508 |
|
|
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
3509 |
|
|
Reltype addend = This::extract_thumb_movw_movt_addend(val);
|
3510 |
|
|
Reltype x =
|
3511 |
|
|
(psymval->value(object, addend) | thumb_bit) - relative_address_base;
|
3512 |
|
|
val = This::insert_val_thumb_movw_movt(val, x);
|
3513 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
|
3514 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
|
3515 |
|
|
return ((check_overflow && utils::has_overflow<16>(x))
|
3516 |
|
|
? This::STATUS_OVERFLOW
|
3517 |
|
|
: This::STATUS_OKAY);
|
3518 |
|
|
}
|
3519 |
|
|
|
3520 |
|
|
// R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
|
3521 |
|
|
// R_ARM_THM_MOVT_PREL: S + A - P
|
3522 |
|
|
// R_ARM_THM_MOVT_BREL: S + A - B(S)
|
3523 |
|
|
static inline typename This::Status
|
3524 |
|
|
thm_movt(unsigned char* view,
|
3525 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3526 |
|
|
const Symbol_value<32>* psymval,
|
3527 |
|
|
Arm_address relative_address_base)
|
3528 |
|
|
{
|
3529 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3530 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3531 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3532 |
|
|
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
|
3533 |
|
|
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
3534 |
|
|
Reltype addend = This::extract_thumb_movw_movt_addend(val);
|
3535 |
|
|
Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
|
3536 |
|
|
val = This::insert_val_thumb_movw_movt(val, x);
|
3537 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
|
3538 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
|
3539 |
|
|
return This::STATUS_OKAY;
|
3540 |
|
|
}
|
3541 |
|
|
|
3542 |
|
|
// R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
|
3543 |
|
|
static inline typename This::Status
|
3544 |
|
|
thm_alu11(unsigned char* view,
|
3545 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3546 |
|
|
const Symbol_value<32>* psymval,
|
3547 |
|
|
Arm_address address,
|
3548 |
|
|
Arm_address thumb_bit)
|
3549 |
|
|
{
|
3550 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3551 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3552 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3553 |
|
|
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
|
3554 |
|
|
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
3555 |
|
|
|
3556 |
|
|
// f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
|
3557 |
|
|
// -----------------------------------------------------------------------
|
3558 |
|
|
// ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
|
3559 |
|
|
// ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
|
3560 |
|
|
// ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
|
3561 |
|
|
// SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
|
3562 |
|
|
// SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
|
3563 |
|
|
// ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
|
3564 |
|
|
|
3565 |
|
|
// Determine a sign for the addend.
|
3566 |
|
|
const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
|
3567 |
|
|
|| (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
|
3568 |
|
|
// Thumb2 addend encoding:
|
3569 |
|
|
// imm12 := i | imm3 | imm8
|
3570 |
|
|
int32_t addend = (insn & 0xff)
|
3571 |
|
|
| ((insn & 0x00007000) >> 4)
|
3572 |
|
|
| ((insn & 0x04000000) >> 15);
|
3573 |
|
|
// Apply a sign to the added.
|
3574 |
|
|
addend *= sign;
|
3575 |
|
|
|
3576 |
|
|
int32_t x = (psymval->value(object, addend) | thumb_bit)
|
3577 |
|
|
- (address & 0xfffffffc);
|
3578 |
|
|
Reltype val = abs(x);
|
3579 |
|
|
// Mask out the value and a distinct part of the ADD/SUB opcode
|
3580 |
|
|
// (bits 7:5 of opword).
|
3581 |
|
|
insn = (insn & 0xfb0f8f00)
|
3582 |
|
|
| (val & 0xff)
|
3583 |
|
|
| ((val & 0x700) << 4)
|
3584 |
|
|
| ((val & 0x800) << 15);
|
3585 |
|
|
// Set the opcode according to whether the value to go in the
|
3586 |
|
|
// place is negative.
|
3587 |
|
|
if (x < 0)
|
3588 |
|
|
insn |= 0x00a00000;
|
3589 |
|
|
|
3590 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
|
3591 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
|
3592 |
|
|
return ((val > 0xfff) ?
|
3593 |
|
|
This::STATUS_OVERFLOW : This::STATUS_OKAY);
|
3594 |
|
|
}
|
3595 |
|
|
|
3596 |
|
|
// R_ARM_THM_PC8: S + A - Pa (Thumb)
|
3597 |
|
|
static inline typename This::Status
|
3598 |
|
|
thm_pc8(unsigned char* view,
|
3599 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3600 |
|
|
const Symbol_value<32>* psymval,
|
3601 |
|
|
Arm_address address)
|
3602 |
|
|
{
|
3603 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3604 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
|
3605 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3606 |
|
|
Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
3607 |
|
|
Reltype addend = ((insn & 0x00ff) << 2);
|
3608 |
|
|
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
|
3609 |
|
|
Reltype val = abs(x);
|
3610 |
|
|
insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
|
3611 |
|
|
|
3612 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, insn);
|
3613 |
|
|
return ((val > 0x03fc)
|
3614 |
|
|
? This::STATUS_OVERFLOW
|
3615 |
|
|
: This::STATUS_OKAY);
|
3616 |
|
|
}
|
3617 |
|
|
|
3618 |
|
|
// R_ARM_THM_PC12: S + A - Pa (Thumb32)
|
3619 |
|
|
static inline typename This::Status
|
3620 |
|
|
thm_pc12(unsigned char* view,
|
3621 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3622 |
|
|
const Symbol_value<32>* psymval,
|
3623 |
|
|
Arm_address address)
|
3624 |
|
|
{
|
3625 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
3626 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
|
3627 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3628 |
|
|
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
|
3629 |
|
|
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
3630 |
|
|
// Determine a sign for the addend (positive if the U bit is 1).
|
3631 |
|
|
const int sign = (insn & 0x00800000) ? 1 : -1;
|
3632 |
|
|
int32_t addend = (insn & 0xfff);
|
3633 |
|
|
// Apply a sign to the added.
|
3634 |
|
|
addend *= sign;
|
3635 |
|
|
|
3636 |
|
|
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
|
3637 |
|
|
Reltype val = abs(x);
|
3638 |
|
|
// Mask out and apply the value and the U bit.
|
3639 |
|
|
insn = (insn & 0xff7ff000) | (val & 0xfff);
|
3640 |
|
|
// Set the U bit according to whether the value to go in the
|
3641 |
|
|
// place is positive.
|
3642 |
|
|
if (x >= 0)
|
3643 |
|
|
insn |= 0x00800000;
|
3644 |
|
|
|
3645 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
|
3646 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
|
3647 |
|
|
return ((val > 0xfff) ?
|
3648 |
|
|
This::STATUS_OVERFLOW : This::STATUS_OKAY);
|
3649 |
|
|
}
|
3650 |
|
|
|
3651 |
|
|
// R_ARM_V4BX
|
3652 |
|
|
static inline typename This::Status
|
3653 |
|
|
v4bx(const Relocate_info<32, big_endian>* relinfo,
|
3654 |
|
|
unsigned char* view,
|
3655 |
|
|
const Arm_relobj<big_endian>* object,
|
3656 |
|
|
const Arm_address address,
|
3657 |
|
|
const bool is_interworking)
|
3658 |
|
|
{
|
3659 |
|
|
|
3660 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3661 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3662 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
3663 |
|
|
|
3664 |
|
|
// Ensure that we have a BX instruction.
|
3665 |
|
|
gold_assert((val & 0x0ffffff0) == 0x012fff10);
|
3666 |
|
|
const uint32_t reg = (val & 0xf);
|
3667 |
|
|
if (is_interworking && reg != 0xf)
|
3668 |
|
|
{
|
3669 |
|
|
Stub_table<big_endian>* stub_table =
|
3670 |
|
|
object->stub_table(relinfo->data_shndx);
|
3671 |
|
|
gold_assert(stub_table != NULL);
|
3672 |
|
|
|
3673 |
|
|
Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
|
3674 |
|
|
gold_assert(stub != NULL);
|
3675 |
|
|
|
3676 |
|
|
int32_t veneer_address =
|
3677 |
|
|
stub_table->address() + stub->offset() - 8 - address;
|
3678 |
|
|
gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
|
3679 |
|
|
&& (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
|
3680 |
|
|
// Replace with a branch to veneer (B <addr>)
|
3681 |
|
|
val = (val & 0xf0000000) | 0x0a000000
|
3682 |
|
|
| ((veneer_address >> 2) & 0x00ffffff);
|
3683 |
|
|
}
|
3684 |
|
|
else
|
3685 |
|
|
{
|
3686 |
|
|
// Preserve Rm (lowest four bits) and the condition code
|
3687 |
|
|
// (highest four bits). Other bits encode MOV PC,Rm.
|
3688 |
|
|
val = (val & 0xf000000f) | 0x01a0f000;
|
3689 |
|
|
}
|
3690 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3691 |
|
|
return This::STATUS_OKAY;
|
3692 |
|
|
}
|
3693 |
|
|
|
3694 |
|
|
// R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
|
3695 |
|
|
// R_ARM_ALU_PC_G0: ((S + A) | T) - P
|
3696 |
|
|
// R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
|
3697 |
|
|
// R_ARM_ALU_PC_G1: ((S + A) | T) - P
|
3698 |
|
|
// R_ARM_ALU_PC_G2: ((S + A) | T) - P
|
3699 |
|
|
// R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
|
3700 |
|
|
// R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
|
3701 |
|
|
// R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
|
3702 |
|
|
// R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
|
3703 |
|
|
// R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
|
3704 |
|
|
static inline typename This::Status
|
3705 |
|
|
arm_grp_alu(unsigned char* view,
|
3706 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3707 |
|
|
const Symbol_value<32>* psymval,
|
3708 |
|
|
const int group,
|
3709 |
|
|
Arm_address address,
|
3710 |
|
|
Arm_address thumb_bit,
|
3711 |
|
|
bool check_overflow)
|
3712 |
|
|
{
|
3713 |
|
|
gold_assert(group >= 0 && group < 3);
|
3714 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3715 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3716 |
|
|
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
|
3717 |
|
|
|
3718 |
|
|
// ALU group relocations are allowed only for the ADD/SUB instructions.
|
3719 |
|
|
// (0x00800000 - ADD, 0x00400000 - SUB)
|
3720 |
|
|
const Valtype opcode = insn & 0x01e00000;
|
3721 |
|
|
if (opcode != 0x00800000 && opcode != 0x00400000)
|
3722 |
|
|
return This::STATUS_BAD_RELOC;
|
3723 |
|
|
|
3724 |
|
|
// Determine a sign for the addend.
|
3725 |
|
|
const int sign = (opcode == 0x00800000) ? 1 : -1;
|
3726 |
|
|
// shifter = rotate_imm * 2
|
3727 |
|
|
const uint32_t shifter = (insn & 0xf00) >> 7;
|
3728 |
|
|
// Initial addend value.
|
3729 |
|
|
int32_t addend = insn & 0xff;
|
3730 |
|
|
// Rotate addend right by shifter.
|
3731 |
|
|
addend = (addend >> shifter) | (addend << (32 - shifter));
|
3732 |
|
|
// Apply a sign to the added.
|
3733 |
|
|
addend *= sign;
|
3734 |
|
|
|
3735 |
|
|
int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
|
3736 |
|
|
Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
|
3737 |
|
|
// Check for overflow if required
|
3738 |
|
|
if (check_overflow
|
3739 |
|
|
&& (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
|
3740 |
|
|
return This::STATUS_OVERFLOW;
|
3741 |
|
|
|
3742 |
|
|
// Mask out the value and the ADD/SUB part of the opcode; take care
|
3743 |
|
|
// not to destroy the S bit.
|
3744 |
|
|
insn &= 0xff1ff000;
|
3745 |
|
|
// Set the opcode according to whether the value to go in the
|
3746 |
|
|
// place is negative.
|
3747 |
|
|
insn |= ((x < 0) ? 0x00400000 : 0x00800000);
|
3748 |
|
|
// Encode the offset (encoded Gn).
|
3749 |
|
|
insn |= gn;
|
3750 |
|
|
|
3751 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
|
3752 |
|
|
return This::STATUS_OKAY;
|
3753 |
|
|
}
|
3754 |
|
|
|
3755 |
|
|
// R_ARM_LDR_PC_G0: S + A - P
|
3756 |
|
|
// R_ARM_LDR_PC_G1: S + A - P
|
3757 |
|
|
// R_ARM_LDR_PC_G2: S + A - P
|
3758 |
|
|
// R_ARM_LDR_SB_G0: S + A - B(S)
|
3759 |
|
|
// R_ARM_LDR_SB_G1: S + A - B(S)
|
3760 |
|
|
// R_ARM_LDR_SB_G2: S + A - B(S)
|
3761 |
|
|
static inline typename This::Status
|
3762 |
|
|
arm_grp_ldr(unsigned char* view,
|
3763 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3764 |
|
|
const Symbol_value<32>* psymval,
|
3765 |
|
|
const int group,
|
3766 |
|
|
Arm_address address)
|
3767 |
|
|
{
|
3768 |
|
|
gold_assert(group >= 0 && group < 3);
|
3769 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3770 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3771 |
|
|
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
|
3772 |
|
|
|
3773 |
|
|
const int sign = (insn & 0x00800000) ? 1 : -1;
|
3774 |
|
|
int32_t addend = (insn & 0xfff) * sign;
|
3775 |
|
|
int32_t x = (psymval->value(object, addend) - address);
|
3776 |
|
|
// Calculate the relevant G(n-1) value to obtain this stage residual.
|
3777 |
|
|
Valtype residual =
|
3778 |
|
|
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
|
3779 |
|
|
if (residual >= 0x1000)
|
3780 |
|
|
return This::STATUS_OVERFLOW;
|
3781 |
|
|
|
3782 |
|
|
// Mask out the value and U bit.
|
3783 |
|
|
insn &= 0xff7ff000;
|
3784 |
|
|
// Set the U bit for non-negative values.
|
3785 |
|
|
if (x >= 0)
|
3786 |
|
|
insn |= 0x00800000;
|
3787 |
|
|
insn |= residual;
|
3788 |
|
|
|
3789 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
|
3790 |
|
|
return This::STATUS_OKAY;
|
3791 |
|
|
}
|
3792 |
|
|
|
3793 |
|
|
// R_ARM_LDRS_PC_G0: S + A - P
|
3794 |
|
|
// R_ARM_LDRS_PC_G1: S + A - P
|
3795 |
|
|
// R_ARM_LDRS_PC_G2: S + A - P
|
3796 |
|
|
// R_ARM_LDRS_SB_G0: S + A - B(S)
|
3797 |
|
|
// R_ARM_LDRS_SB_G1: S + A - B(S)
|
3798 |
|
|
// R_ARM_LDRS_SB_G2: S + A - B(S)
|
3799 |
|
|
static inline typename This::Status
|
3800 |
|
|
arm_grp_ldrs(unsigned char* view,
|
3801 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3802 |
|
|
const Symbol_value<32>* psymval,
|
3803 |
|
|
const int group,
|
3804 |
|
|
Arm_address address)
|
3805 |
|
|
{
|
3806 |
|
|
gold_assert(group >= 0 && group < 3);
|
3807 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3808 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3809 |
|
|
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
|
3810 |
|
|
|
3811 |
|
|
const int sign = (insn & 0x00800000) ? 1 : -1;
|
3812 |
|
|
int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
|
3813 |
|
|
int32_t x = (psymval->value(object, addend) - address);
|
3814 |
|
|
// Calculate the relevant G(n-1) value to obtain this stage residual.
|
3815 |
|
|
Valtype residual =
|
3816 |
|
|
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
|
3817 |
|
|
if (residual >= 0x100)
|
3818 |
|
|
return This::STATUS_OVERFLOW;
|
3819 |
|
|
|
3820 |
|
|
// Mask out the value and U bit.
|
3821 |
|
|
insn &= 0xff7ff0f0;
|
3822 |
|
|
// Set the U bit for non-negative values.
|
3823 |
|
|
if (x >= 0)
|
3824 |
|
|
insn |= 0x00800000;
|
3825 |
|
|
insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
|
3826 |
|
|
|
3827 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
|
3828 |
|
|
return This::STATUS_OKAY;
|
3829 |
|
|
}
|
3830 |
|
|
|
3831 |
|
|
// R_ARM_LDC_PC_G0: S + A - P
|
3832 |
|
|
// R_ARM_LDC_PC_G1: S + A - P
|
3833 |
|
|
// R_ARM_LDC_PC_G2: S + A - P
|
3834 |
|
|
// R_ARM_LDC_SB_G0: S + A - B(S)
|
3835 |
|
|
// R_ARM_LDC_SB_G1: S + A - B(S)
|
3836 |
|
|
// R_ARM_LDC_SB_G2: S + A - B(S)
|
3837 |
|
|
static inline typename This::Status
|
3838 |
|
|
arm_grp_ldc(unsigned char* view,
|
3839 |
|
|
const Sized_relobj_file<32, big_endian>* object,
|
3840 |
|
|
const Symbol_value<32>* psymval,
|
3841 |
|
|
const int group,
|
3842 |
|
|
Arm_address address)
|
3843 |
|
|
{
|
3844 |
|
|
gold_assert(group >= 0 && group < 3);
|
3845 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3846 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3847 |
|
|
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
|
3848 |
|
|
|
3849 |
|
|
const int sign = (insn & 0x00800000) ? 1 : -1;
|
3850 |
|
|
int32_t addend = ((insn & 0xff) << 2) * sign;
|
3851 |
|
|
int32_t x = (psymval->value(object, addend) - address);
|
3852 |
|
|
// Calculate the relevant G(n-1) value to obtain this stage residual.
|
3853 |
|
|
Valtype residual =
|
3854 |
|
|
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
|
3855 |
|
|
if ((residual & 0x3) != 0 || residual >= 0x400)
|
3856 |
|
|
return This::STATUS_OVERFLOW;
|
3857 |
|
|
|
3858 |
|
|
// Mask out the value and U bit.
|
3859 |
|
|
insn &= 0xff7fff00;
|
3860 |
|
|
// Set the U bit for non-negative values.
|
3861 |
|
|
if (x >= 0)
|
3862 |
|
|
insn |= 0x00800000;
|
3863 |
|
|
insn |= (residual >> 2);
|
3864 |
|
|
|
3865 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
|
3866 |
|
|
return This::STATUS_OKAY;
|
3867 |
|
|
}
|
3868 |
|
|
};
|
3869 |
|
|
|
3870 |
|
|
// Relocate ARM long branches. This handles relocation types
|
3871 |
|
|
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
|
3872 |
|
|
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
|
3873 |
|
|
// undefined and we do not use PLT in this relocation. In such a case,
|
3874 |
|
|
// the branch is converted into an NOP.
|
3875 |
|
|
|
3876 |
|
|
template<bool big_endian>
|
3877 |
|
|
typename Arm_relocate_functions<big_endian>::Status
|
3878 |
|
|
Arm_relocate_functions<big_endian>::arm_branch_common(
|
3879 |
|
|
unsigned int r_type,
|
3880 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
3881 |
|
|
unsigned char* view,
|
3882 |
|
|
const Sized_symbol<32>* gsym,
|
3883 |
|
|
const Arm_relobj<big_endian>* object,
|
3884 |
|
|
unsigned int r_sym,
|
3885 |
|
|
const Symbol_value<32>* psymval,
|
3886 |
|
|
Arm_address address,
|
3887 |
|
|
Arm_address thumb_bit,
|
3888 |
|
|
bool is_weakly_undefined_without_plt)
|
3889 |
|
|
{
|
3890 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
3891 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
3892 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
3893 |
|
|
|
3894 |
|
|
bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
|
3895 |
|
|
&& ((val & 0x0f000000UL) == 0x0a000000UL);
|
3896 |
|
|
bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
|
3897 |
|
|
bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
|
3898 |
|
|
&& ((val & 0x0f000000UL) == 0x0b000000UL);
|
3899 |
|
|
bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
|
3900 |
|
|
bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
|
3901 |
|
|
|
3902 |
|
|
// Check that the instruction is valid.
|
3903 |
|
|
if (r_type == elfcpp::R_ARM_CALL)
|
3904 |
|
|
{
|
3905 |
|
|
if (!insn_is_uncond_bl && !insn_is_blx)
|
3906 |
|
|
return This::STATUS_BAD_RELOC;
|
3907 |
|
|
}
|
3908 |
|
|
else if (r_type == elfcpp::R_ARM_JUMP24)
|
3909 |
|
|
{
|
3910 |
|
|
if (!insn_is_b && !insn_is_cond_bl)
|
3911 |
|
|
return This::STATUS_BAD_RELOC;
|
3912 |
|
|
}
|
3913 |
|
|
else if (r_type == elfcpp::R_ARM_PLT32)
|
3914 |
|
|
{
|
3915 |
|
|
if (!insn_is_any_branch)
|
3916 |
|
|
return This::STATUS_BAD_RELOC;
|
3917 |
|
|
}
|
3918 |
|
|
else if (r_type == elfcpp::R_ARM_XPC25)
|
3919 |
|
|
{
|
3920 |
|
|
// FIXME: AAELF document IH0044C does not say much about it other
|
3921 |
|
|
// than it being obsolete.
|
3922 |
|
|
if (!insn_is_any_branch)
|
3923 |
|
|
return This::STATUS_BAD_RELOC;
|
3924 |
|
|
}
|
3925 |
|
|
else
|
3926 |
|
|
gold_unreachable();
|
3927 |
|
|
|
3928 |
|
|
// A branch to an undefined weak symbol is turned into a jump to
|
3929 |
|
|
// the next instruction unless a PLT entry will be created.
|
3930 |
|
|
// Do the same for local undefined symbols.
|
3931 |
|
|
// The jump to the next instruction is optimized as a NOP depending
|
3932 |
|
|
// on the architecture.
|
3933 |
|
|
const Target_arm<big_endian>* arm_target =
|
3934 |
|
|
Target_arm<big_endian>::default_target();
|
3935 |
|
|
if (is_weakly_undefined_without_plt)
|
3936 |
|
|
{
|
3937 |
|
|
gold_assert(!parameters->options().relocatable());
|
3938 |
|
|
Valtype cond = val & 0xf0000000U;
|
3939 |
|
|
if (arm_target->may_use_arm_nop())
|
3940 |
|
|
val = cond | 0x0320f000;
|
3941 |
|
|
else
|
3942 |
|
|
val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
|
3943 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3944 |
|
|
return This::STATUS_OKAY;
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
Valtype addend = utils::sign_extend<26>(val << 2);
|
3948 |
|
|
Valtype branch_target = psymval->value(object, addend);
|
3949 |
|
|
int32_t branch_offset = branch_target - address;
|
3950 |
|
|
|
3951 |
|
|
// We need a stub if the branch offset is too large or if we need
|
3952 |
|
|
// to switch mode.
|
3953 |
|
|
bool may_use_blx = arm_target->may_use_blx();
|
3954 |
|
|
Reloc_stub* stub = NULL;
|
3955 |
|
|
|
3956 |
|
|
if (!parameters->options().relocatable()
|
3957 |
|
|
&& (utils::has_overflow<26>(branch_offset)
|
3958 |
|
|
|| ((thumb_bit != 0)
|
3959 |
|
|
&& !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
|
3960 |
|
|
{
|
3961 |
|
|
Valtype unadjusted_branch_target = psymval->value(object, 0);
|
3962 |
|
|
|
3963 |
|
|
Stub_type stub_type =
|
3964 |
|
|
Reloc_stub::stub_type_for_reloc(r_type, address,
|
3965 |
|
|
unadjusted_branch_target,
|
3966 |
|
|
(thumb_bit != 0));
|
3967 |
|
|
if (stub_type != arm_stub_none)
|
3968 |
|
|
{
|
3969 |
|
|
Stub_table<big_endian>* stub_table =
|
3970 |
|
|
object->stub_table(relinfo->data_shndx);
|
3971 |
|
|
gold_assert(stub_table != NULL);
|
3972 |
|
|
|
3973 |
|
|
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
|
3974 |
|
|
stub = stub_table->find_reloc_stub(stub_key);
|
3975 |
|
|
gold_assert(stub != NULL);
|
3976 |
|
|
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
|
3977 |
|
|
branch_target = stub_table->address() + stub->offset() + addend;
|
3978 |
|
|
branch_offset = branch_target - address;
|
3979 |
|
|
gold_assert(!utils::has_overflow<26>(branch_offset));
|
3980 |
|
|
}
|
3981 |
|
|
}
|
3982 |
|
|
|
3983 |
|
|
// At this point, if we still need to switch mode, the instruction
|
3984 |
|
|
// must either be a BLX or a BL that can be converted to a BLX.
|
3985 |
|
|
if (thumb_bit != 0)
|
3986 |
|
|
{
|
3987 |
|
|
// Turn BL to BLX.
|
3988 |
|
|
gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
|
3989 |
|
|
val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
|
3990 |
|
|
}
|
3991 |
|
|
|
3992 |
|
|
val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
|
3993 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, val);
|
3994 |
|
|
return (utils::has_overflow<26>(branch_offset)
|
3995 |
|
|
? This::STATUS_OVERFLOW : This::STATUS_OKAY);
|
3996 |
|
|
}
|
3997 |
|
|
|
3998 |
|
|
// Relocate THUMB long branches. This handles relocation types
|
3999 |
|
|
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
|
4000 |
|
|
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
|
4001 |
|
|
// undefined and we do not use PLT in this relocation. In such a case,
|
4002 |
|
|
// the branch is converted into an NOP.
|
4003 |
|
|
|
4004 |
|
|
template<bool big_endian>
|
4005 |
|
|
typename Arm_relocate_functions<big_endian>::Status
|
4006 |
|
|
Arm_relocate_functions<big_endian>::thumb_branch_common(
|
4007 |
|
|
unsigned int r_type,
|
4008 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
4009 |
|
|
unsigned char* view,
|
4010 |
|
|
const Sized_symbol<32>* gsym,
|
4011 |
|
|
const Arm_relobj<big_endian>* object,
|
4012 |
|
|
unsigned int r_sym,
|
4013 |
|
|
const Symbol_value<32>* psymval,
|
4014 |
|
|
Arm_address address,
|
4015 |
|
|
Arm_address thumb_bit,
|
4016 |
|
|
bool is_weakly_undefined_without_plt)
|
4017 |
|
|
{
|
4018 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
4019 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
4020 |
|
|
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
4021 |
|
|
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
4022 |
|
|
|
4023 |
|
|
// FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
|
4024 |
|
|
// into account.
|
4025 |
|
|
bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
|
4026 |
|
|
bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
|
4027 |
|
|
|
4028 |
|
|
// Check that the instruction is valid.
|
4029 |
|
|
if (r_type == elfcpp::R_ARM_THM_CALL)
|
4030 |
|
|
{
|
4031 |
|
|
if (!is_bl_insn && !is_blx_insn)
|
4032 |
|
|
return This::STATUS_BAD_RELOC;
|
4033 |
|
|
}
|
4034 |
|
|
else if (r_type == elfcpp::R_ARM_THM_JUMP24)
|
4035 |
|
|
{
|
4036 |
|
|
// This cannot be a BLX.
|
4037 |
|
|
if (!is_bl_insn)
|
4038 |
|
|
return This::STATUS_BAD_RELOC;
|
4039 |
|
|
}
|
4040 |
|
|
else if (r_type == elfcpp::R_ARM_THM_XPC22)
|
4041 |
|
|
{
|
4042 |
|
|
// Check for Thumb to Thumb call.
|
4043 |
|
|
if (!is_blx_insn)
|
4044 |
|
|
return This::STATUS_BAD_RELOC;
|
4045 |
|
|
if (thumb_bit != 0)
|
4046 |
|
|
{
|
4047 |
|
|
gold_warning(_("%s: Thumb BLX instruction targets "
|
4048 |
|
|
"thumb function '%s'."),
|
4049 |
|
|
object->name().c_str(),
|
4050 |
|
|
(gsym ? gsym->name() : "(local)"));
|
4051 |
|
|
// Convert BLX to BL.
|
4052 |
|
|
lower_insn |= 0x1000U;
|
4053 |
|
|
}
|
4054 |
|
|
}
|
4055 |
|
|
else
|
4056 |
|
|
gold_unreachable();
|
4057 |
|
|
|
4058 |
|
|
// A branch to an undefined weak symbol is turned into a jump to
|
4059 |
|
|
// the next instruction unless a PLT entry will be created.
|
4060 |
|
|
// The jump to the next instruction is optimized as a NOP.W for
|
4061 |
|
|
// Thumb-2 enabled architectures.
|
4062 |
|
|
const Target_arm<big_endian>* arm_target =
|
4063 |
|
|
Target_arm<big_endian>::default_target();
|
4064 |
|
|
if (is_weakly_undefined_without_plt)
|
4065 |
|
|
{
|
4066 |
|
|
gold_assert(!parameters->options().relocatable());
|
4067 |
|
|
if (arm_target->may_use_thumb2_nop())
|
4068 |
|
|
{
|
4069 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
|
4070 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
|
4071 |
|
|
}
|
4072 |
|
|
else
|
4073 |
|
|
{
|
4074 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
|
4075 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
|
4076 |
|
|
}
|
4077 |
|
|
return This::STATUS_OKAY;
|
4078 |
|
|
}
|
4079 |
|
|
|
4080 |
|
|
int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
|
4081 |
|
|
Arm_address branch_target = psymval->value(object, addend);
|
4082 |
|
|
|
4083 |
|
|
// For BLX, bit 1 of target address comes from bit 1 of base address.
|
4084 |
|
|
bool may_use_blx = arm_target->may_use_blx();
|
4085 |
|
|
if (thumb_bit == 0 && may_use_blx)
|
4086 |
|
|
branch_target = utils::bit_select(branch_target, address, 0x2);
|
4087 |
|
|
|
4088 |
|
|
int32_t branch_offset = branch_target - address;
|
4089 |
|
|
|
4090 |
|
|
// We need a stub if the branch offset is too large or if we need
|
4091 |
|
|
// to switch mode.
|
4092 |
|
|
bool thumb2 = arm_target->using_thumb2();
|
4093 |
|
|
if (!parameters->options().relocatable()
|
4094 |
|
|
&& ((!thumb2 && utils::has_overflow<23>(branch_offset))
|
4095 |
|
|
|| (thumb2 && utils::has_overflow<25>(branch_offset))
|
4096 |
|
|
|| ((thumb_bit == 0)
|
4097 |
|
|
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|
4098 |
|
|
|| r_type == elfcpp::R_ARM_THM_JUMP24))))
|
4099 |
|
|
{
|
4100 |
|
|
Arm_address unadjusted_branch_target = psymval->value(object, 0);
|
4101 |
|
|
|
4102 |
|
|
Stub_type stub_type =
|
4103 |
|
|
Reloc_stub::stub_type_for_reloc(r_type, address,
|
4104 |
|
|
unadjusted_branch_target,
|
4105 |
|
|
(thumb_bit != 0));
|
4106 |
|
|
|
4107 |
|
|
if (stub_type != arm_stub_none)
|
4108 |
|
|
{
|
4109 |
|
|
Stub_table<big_endian>* stub_table =
|
4110 |
|
|
object->stub_table(relinfo->data_shndx);
|
4111 |
|
|
gold_assert(stub_table != NULL);
|
4112 |
|
|
|
4113 |
|
|
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
|
4114 |
|
|
Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
|
4115 |
|
|
gold_assert(stub != NULL);
|
4116 |
|
|
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
|
4117 |
|
|
branch_target = stub_table->address() + stub->offset() + addend;
|
4118 |
|
|
if (thumb_bit == 0 && may_use_blx)
|
4119 |
|
|
branch_target = utils::bit_select(branch_target, address, 0x2);
|
4120 |
|
|
branch_offset = branch_target - address;
|
4121 |
|
|
}
|
4122 |
|
|
}
|
4123 |
|
|
|
4124 |
|
|
// At this point, if we still need to switch mode, the instruction
|
4125 |
|
|
// must either be a BLX or a BL that can be converted to a BLX.
|
4126 |
|
|
if (thumb_bit == 0)
|
4127 |
|
|
{
|
4128 |
|
|
gold_assert(may_use_blx
|
4129 |
|
|
&& (r_type == elfcpp::R_ARM_THM_CALL
|
4130 |
|
|
|| r_type == elfcpp::R_ARM_THM_XPC22));
|
4131 |
|
|
// Make sure this is a BLX.
|
4132 |
|
|
lower_insn &= ~0x1000U;
|
4133 |
|
|
}
|
4134 |
|
|
else
|
4135 |
|
|
{
|
4136 |
|
|
// Make sure this is a BL.
|
4137 |
|
|
lower_insn |= 0x1000U;
|
4138 |
|
|
}
|
4139 |
|
|
|
4140 |
|
|
// For a BLX instruction, make sure that the relocation is rounded up
|
4141 |
|
|
// to a word boundary. This follows the semantics of the instruction
|
4142 |
|
|
// which specifies that bit 1 of the target address will come from bit
|
4143 |
|
|
// 1 of the base address.
|
4144 |
|
|
if ((lower_insn & 0x5000U) == 0x4000U)
|
4145 |
|
|
gold_assert((branch_offset & 3) == 0);
|
4146 |
|
|
|
4147 |
|
|
// Put BRANCH_OFFSET back into the insn. Assumes two's complement.
|
4148 |
|
|
// We use the Thumb-2 encoding, which is safe even if dealing with
|
4149 |
|
|
// a Thumb-1 instruction by virtue of our overflow check above. */
|
4150 |
|
|
upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
|
4151 |
|
|
lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
|
4152 |
|
|
|
4153 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
|
4154 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
|
4155 |
|
|
|
4156 |
|
|
gold_assert(!utils::has_overflow<25>(branch_offset));
|
4157 |
|
|
|
4158 |
|
|
return ((thumb2
|
4159 |
|
|
? utils::has_overflow<25>(branch_offset)
|
4160 |
|
|
: utils::has_overflow<23>(branch_offset))
|
4161 |
|
|
? This::STATUS_OVERFLOW
|
4162 |
|
|
: This::STATUS_OKAY);
|
4163 |
|
|
}
|
4164 |
|
|
|
4165 |
|
|
// Relocate THUMB-2 long conditional branches.
|
4166 |
|
|
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
|
4167 |
|
|
// undefined and we do not use PLT in this relocation. In such a case,
|
4168 |
|
|
// the branch is converted into an NOP.
|
4169 |
|
|
|
4170 |
|
|
template<bool big_endian>
|
4171 |
|
|
typename Arm_relocate_functions<big_endian>::Status
|
4172 |
|
|
Arm_relocate_functions<big_endian>::thm_jump19(
|
4173 |
|
|
unsigned char* view,
|
4174 |
|
|
const Arm_relobj<big_endian>* object,
|
4175 |
|
|
const Symbol_value<32>* psymval,
|
4176 |
|
|
Arm_address address,
|
4177 |
|
|
Arm_address thumb_bit)
|
4178 |
|
|
{
|
4179 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
4180 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(view);
|
4181 |
|
|
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
4182 |
|
|
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
4183 |
|
|
int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
|
4184 |
|
|
|
4185 |
|
|
Arm_address branch_target = psymval->value(object, addend);
|
4186 |
|
|
int32_t branch_offset = branch_target - address;
|
4187 |
|
|
|
4188 |
|
|
// ??? Should handle interworking? GCC might someday try to
|
4189 |
|
|
// use this for tail calls.
|
4190 |
|
|
// FIXME: We do support thumb entry to PLT yet.
|
4191 |
|
|
if (thumb_bit == 0)
|
4192 |
|
|
{
|
4193 |
|
|
gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
|
4194 |
|
|
return This::STATUS_BAD_RELOC;
|
4195 |
|
|
}
|
4196 |
|
|
|
4197 |
|
|
// Put RELOCATION back into the insn.
|
4198 |
|
|
upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
|
4199 |
|
|
lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
|
4200 |
|
|
|
4201 |
|
|
// Put the relocated value back in the object file:
|
4202 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
|
4203 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
|
4204 |
|
|
|
4205 |
|
|
return (utils::has_overflow<21>(branch_offset)
|
4206 |
|
|
? This::STATUS_OVERFLOW
|
4207 |
|
|
: This::STATUS_OKAY);
|
4208 |
|
|
}
|
4209 |
|
|
|
4210 |
|
|
// Get the GOT section, creating it if necessary.
|
4211 |
|
|
|
4212 |
|
|
template<bool big_endian>
|
4213 |
|
|
Arm_output_data_got<big_endian>*
|
4214 |
|
|
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
|
4215 |
|
|
{
|
4216 |
|
|
if (this->got_ == NULL)
|
4217 |
|
|
{
|
4218 |
|
|
gold_assert(symtab != NULL && layout != NULL);
|
4219 |
|
|
|
4220 |
|
|
this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
|
4221 |
|
|
|
4222 |
|
|
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
|
4223 |
|
|
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
|
4224 |
|
|
this->got_, ORDER_DATA, false);
|
4225 |
|
|
|
4226 |
|
|
// The old GNU linker creates a .got.plt section. We just
|
4227 |
|
|
// create another set of data in the .got section. Note that we
|
4228 |
|
|
// always create a PLT if we create a GOT, although the PLT
|
4229 |
|
|
// might be empty.
|
4230 |
|
|
this->got_plt_ = new Output_data_space(4, "** GOT PLT");
|
4231 |
|
|
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
|
4232 |
|
|
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
|
4233 |
|
|
this->got_plt_, ORDER_DATA, false);
|
4234 |
|
|
|
4235 |
|
|
// The first three entries are reserved.
|
4236 |
|
|
this->got_plt_->set_current_data_size(3 * 4);
|
4237 |
|
|
|
4238 |
|
|
// Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
|
4239 |
|
|
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
|
4240 |
|
|
Symbol_table::PREDEFINED,
|
4241 |
|
|
this->got_plt_,
|
4242 |
|
|
0, 0, elfcpp::STT_OBJECT,
|
4243 |
|
|
elfcpp::STB_LOCAL,
|
4244 |
|
|
elfcpp::STV_HIDDEN, 0,
|
4245 |
|
|
false, false);
|
4246 |
|
|
}
|
4247 |
|
|
return this->got_;
|
4248 |
|
|
}
|
4249 |
|
|
|
4250 |
|
|
// Get the dynamic reloc section, creating it if necessary.
|
4251 |
|
|
|
4252 |
|
|
template<bool big_endian>
|
4253 |
|
|
typename Target_arm<big_endian>::Reloc_section*
|
4254 |
|
|
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
|
4255 |
|
|
{
|
4256 |
|
|
if (this->rel_dyn_ == NULL)
|
4257 |
|
|
{
|
4258 |
|
|
gold_assert(layout != NULL);
|
4259 |
|
|
this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
|
4260 |
|
|
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
|
4261 |
|
|
elfcpp::SHF_ALLOC, this->rel_dyn_,
|
4262 |
|
|
ORDER_DYNAMIC_RELOCS, false);
|
4263 |
|
|
}
|
4264 |
|
|
return this->rel_dyn_;
|
4265 |
|
|
}
|
4266 |
|
|
|
4267 |
|
|
// Insn_template methods.
|
4268 |
|
|
|
4269 |
|
|
// Return byte size of an instruction template.
|
4270 |
|
|
|
4271 |
|
|
size_t
|
4272 |
|
|
Insn_template::size() const
|
4273 |
|
|
{
|
4274 |
|
|
switch (this->type())
|
4275 |
|
|
{
|
4276 |
|
|
case THUMB16_TYPE:
|
4277 |
|
|
case THUMB16_SPECIAL_TYPE:
|
4278 |
|
|
return 2;
|
4279 |
|
|
case ARM_TYPE:
|
4280 |
|
|
case THUMB32_TYPE:
|
4281 |
|
|
case DATA_TYPE:
|
4282 |
|
|
return 4;
|
4283 |
|
|
default:
|
4284 |
|
|
gold_unreachable();
|
4285 |
|
|
}
|
4286 |
|
|
}
|
4287 |
|
|
|
4288 |
|
|
// Return alignment of an instruction template.
|
4289 |
|
|
|
4290 |
|
|
unsigned
|
4291 |
|
|
Insn_template::alignment() const
|
4292 |
|
|
{
|
4293 |
|
|
switch (this->type())
|
4294 |
|
|
{
|
4295 |
|
|
case THUMB16_TYPE:
|
4296 |
|
|
case THUMB16_SPECIAL_TYPE:
|
4297 |
|
|
case THUMB32_TYPE:
|
4298 |
|
|
return 2;
|
4299 |
|
|
case ARM_TYPE:
|
4300 |
|
|
case DATA_TYPE:
|
4301 |
|
|
return 4;
|
4302 |
|
|
default:
|
4303 |
|
|
gold_unreachable();
|
4304 |
|
|
}
|
4305 |
|
|
}
|
4306 |
|
|
|
4307 |
|
|
// Stub_template methods.
|
4308 |
|
|
|
4309 |
|
|
Stub_template::Stub_template(
|
4310 |
|
|
Stub_type type, const Insn_template* insns,
|
4311 |
|
|
size_t insn_count)
|
4312 |
|
|
: type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
|
4313 |
|
|
entry_in_thumb_mode_(false), relocs_()
|
4314 |
|
|
{
|
4315 |
|
|
off_t offset = 0;
|
4316 |
|
|
|
4317 |
|
|
// Compute byte size and alignment of stub template.
|
4318 |
|
|
for (size_t i = 0; i < insn_count; i++)
|
4319 |
|
|
{
|
4320 |
|
|
unsigned insn_alignment = insns[i].alignment();
|
4321 |
|
|
size_t insn_size = insns[i].size();
|
4322 |
|
|
gold_assert((offset & (insn_alignment - 1)) == 0);
|
4323 |
|
|
this->alignment_ = std::max(this->alignment_, insn_alignment);
|
4324 |
|
|
switch (insns[i].type())
|
4325 |
|
|
{
|
4326 |
|
|
case Insn_template::THUMB16_TYPE:
|
4327 |
|
|
case Insn_template::THUMB16_SPECIAL_TYPE:
|
4328 |
|
|
if (i == 0)
|
4329 |
|
|
this->entry_in_thumb_mode_ = true;
|
4330 |
|
|
break;
|
4331 |
|
|
|
4332 |
|
|
case Insn_template::THUMB32_TYPE:
|
4333 |
|
|
if (insns[i].r_type() != elfcpp::R_ARM_NONE)
|
4334 |
|
|
this->relocs_.push_back(Reloc(i, offset));
|
4335 |
|
|
if (i == 0)
|
4336 |
|
|
this->entry_in_thumb_mode_ = true;
|
4337 |
|
|
break;
|
4338 |
|
|
|
4339 |
|
|
case Insn_template::ARM_TYPE:
|
4340 |
|
|
// Handle cases where the target is encoded within the
|
4341 |
|
|
// instruction.
|
4342 |
|
|
if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
|
4343 |
|
|
this->relocs_.push_back(Reloc(i, offset));
|
4344 |
|
|
break;
|
4345 |
|
|
|
4346 |
|
|
case Insn_template::DATA_TYPE:
|
4347 |
|
|
// Entry point cannot be data.
|
4348 |
|
|
gold_assert(i != 0);
|
4349 |
|
|
this->relocs_.push_back(Reloc(i, offset));
|
4350 |
|
|
break;
|
4351 |
|
|
|
4352 |
|
|
default:
|
4353 |
|
|
gold_unreachable();
|
4354 |
|
|
}
|
4355 |
|
|
offset += insn_size;
|
4356 |
|
|
}
|
4357 |
|
|
this->size_ = offset;
|
4358 |
|
|
}
|
4359 |
|
|
|
4360 |
|
|
// Stub methods.
|
4361 |
|
|
|
4362 |
|
|
// Template to implement do_write for a specific target endianness.
|
4363 |
|
|
|
4364 |
|
|
template<bool big_endian>
|
4365 |
|
|
void inline
|
4366 |
|
|
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
|
4367 |
|
|
{
|
4368 |
|
|
const Stub_template* stub_template = this->stub_template();
|
4369 |
|
|
const Insn_template* insns = stub_template->insns();
|
4370 |
|
|
|
4371 |
|
|
// FIXME: We do not handle BE8 encoding yet.
|
4372 |
|
|
unsigned char* pov = view;
|
4373 |
|
|
for (size_t i = 0; i < stub_template->insn_count(); i++)
|
4374 |
|
|
{
|
4375 |
|
|
switch (insns[i].type())
|
4376 |
|
|
{
|
4377 |
|
|
case Insn_template::THUMB16_TYPE:
|
4378 |
|
|
elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
|
4379 |
|
|
break;
|
4380 |
|
|
case Insn_template::THUMB16_SPECIAL_TYPE:
|
4381 |
|
|
elfcpp::Swap<16, big_endian>::writeval(
|
4382 |
|
|
pov,
|
4383 |
|
|
this->thumb16_special(i));
|
4384 |
|
|
break;
|
4385 |
|
|
case Insn_template::THUMB32_TYPE:
|
4386 |
|
|
{
|
4387 |
|
|
uint32_t hi = (insns[i].data() >> 16) & 0xffff;
|
4388 |
|
|
uint32_t lo = insns[i].data() & 0xffff;
|
4389 |
|
|
elfcpp::Swap<16, big_endian>::writeval(pov, hi);
|
4390 |
|
|
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
|
4391 |
|
|
}
|
4392 |
|
|
break;
|
4393 |
|
|
case Insn_template::ARM_TYPE:
|
4394 |
|
|
case Insn_template::DATA_TYPE:
|
4395 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
|
4396 |
|
|
break;
|
4397 |
|
|
default:
|
4398 |
|
|
gold_unreachable();
|
4399 |
|
|
}
|
4400 |
|
|
pov += insns[i].size();
|
4401 |
|
|
}
|
4402 |
|
|
gold_assert(static_cast<section_size_type>(pov - view) == view_size);
|
4403 |
|
|
}
|
4404 |
|
|
|
4405 |
|
|
// Reloc_stub::Key methods.
|
4406 |
|
|
|
4407 |
|
|
// Dump a Key as a string for debugging.
|
4408 |
|
|
|
4409 |
|
|
std::string
|
4410 |
|
|
Reloc_stub::Key::name() const
|
4411 |
|
|
{
|
4412 |
|
|
if (this->r_sym_ == invalid_index)
|
4413 |
|
|
{
|
4414 |
|
|
// Global symbol key name
|
4415 |
|
|
// <stub-type>:<symbol name>:<addend>.
|
4416 |
|
|
const std::string sym_name = this->u_.symbol->name();
|
4417 |
|
|
// We need to print two hex number and two colons. So just add 100 bytes
|
4418 |
|
|
// to the symbol name size.
|
4419 |
|
|
size_t len = sym_name.size() + 100;
|
4420 |
|
|
char* buffer = new char[len];
|
4421 |
|
|
int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
|
4422 |
|
|
sym_name.c_str(), this->addend_);
|
4423 |
|
|
gold_assert(c > 0 && c < static_cast<int>(len));
|
4424 |
|
|
delete[] buffer;
|
4425 |
|
|
return std::string(buffer);
|
4426 |
|
|
}
|
4427 |
|
|
else
|
4428 |
|
|
{
|
4429 |
|
|
// local symbol key name
|
4430 |
|
|
// <stub-type>:<object>:<r_sym>:<addend>.
|
4431 |
|
|
const size_t len = 200;
|
4432 |
|
|
char buffer[len];
|
4433 |
|
|
int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
|
4434 |
|
|
this->u_.relobj, this->r_sym_, this->addend_);
|
4435 |
|
|
gold_assert(c > 0 && c < static_cast<int>(len));
|
4436 |
|
|
return std::string(buffer);
|
4437 |
|
|
}
|
4438 |
|
|
}
|
4439 |
|
|
|
4440 |
|
|
// Reloc_stub methods.
|
4441 |
|
|
|
4442 |
|
|
// Determine the type of stub needed, if any, for a relocation of R_TYPE at
|
4443 |
|
|
// LOCATION to DESTINATION.
|
4444 |
|
|
// This code is based on the arm_type_of_stub function in
|
4445 |
|
|
// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
|
4446 |
|
|
// class simple.
|
4447 |
|
|
|
4448 |
|
|
Stub_type
|
4449 |
|
|
Reloc_stub::stub_type_for_reloc(
|
4450 |
|
|
unsigned int r_type,
|
4451 |
|
|
Arm_address location,
|
4452 |
|
|
Arm_address destination,
|
4453 |
|
|
bool target_is_thumb)
|
4454 |
|
|
{
|
4455 |
|
|
Stub_type stub_type = arm_stub_none;
|
4456 |
|
|
|
4457 |
|
|
// This is a bit ugly but we want to avoid using a templated class for
|
4458 |
|
|
// big and little endianities.
|
4459 |
|
|
bool may_use_blx;
|
4460 |
|
|
bool should_force_pic_veneer;
|
4461 |
|
|
bool thumb2;
|
4462 |
|
|
bool thumb_only;
|
4463 |
|
|
if (parameters->target().is_big_endian())
|
4464 |
|
|
{
|
4465 |
|
|
const Target_arm<true>* big_endian_target =
|
4466 |
|
|
Target_arm<true>::default_target();
|
4467 |
|
|
may_use_blx = big_endian_target->may_use_blx();
|
4468 |
|
|
should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
|
4469 |
|
|
thumb2 = big_endian_target->using_thumb2();
|
4470 |
|
|
thumb_only = big_endian_target->using_thumb_only();
|
4471 |
|
|
}
|
4472 |
|
|
else
|
4473 |
|
|
{
|
4474 |
|
|
const Target_arm<false>* little_endian_target =
|
4475 |
|
|
Target_arm<false>::default_target();
|
4476 |
|
|
may_use_blx = little_endian_target->may_use_blx();
|
4477 |
|
|
should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
|
4478 |
|
|
thumb2 = little_endian_target->using_thumb2();
|
4479 |
|
|
thumb_only = little_endian_target->using_thumb_only();
|
4480 |
|
|
}
|
4481 |
|
|
|
4482 |
|
|
int64_t branch_offset;
|
4483 |
|
|
if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
|
4484 |
|
|
{
|
4485 |
|
|
// For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
|
4486 |
|
|
// base address (instruction address + 4).
|
4487 |
|
|
if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
|
4488 |
|
|
destination = utils::bit_select(destination, location, 0x2);
|
4489 |
|
|
branch_offset = static_cast<int64_t>(destination) - location;
|
4490 |
|
|
|
4491 |
|
|
// Handle cases where:
|
4492 |
|
|
// - this call goes too far (different Thumb/Thumb2 max
|
4493 |
|
|
// distance)
|
4494 |
|
|
// - it's a Thumb->Arm call and blx is not available, or it's a
|
4495 |
|
|
// Thumb->Arm branch (not bl). A stub is needed in this case.
|
4496 |
|
|
if ((!thumb2
|
4497 |
|
|
&& (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
|
4498 |
|
|
|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
|
4499 |
|
|
|| (thumb2
|
4500 |
|
|
&& (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
|
4501 |
|
|
|| (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
|
4502 |
|
|
|| ((!target_is_thumb)
|
4503 |
|
|
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|
4504 |
|
|
|| (r_type == elfcpp::R_ARM_THM_JUMP24))))
|
4505 |
|
|
{
|
4506 |
|
|
if (target_is_thumb)
|
4507 |
|
|
{
|
4508 |
|
|
// Thumb to thumb.
|
4509 |
|
|
if (!thumb_only)
|
4510 |
|
|
{
|
4511 |
|
|
stub_type = (parameters->options().shared()
|
4512 |
|
|
|| should_force_pic_veneer)
|
4513 |
|
|
// PIC stubs.
|
4514 |
|
|
? ((may_use_blx
|
4515 |
|
|
&& (r_type == elfcpp::R_ARM_THM_CALL))
|
4516 |
|
|
// V5T and above. Stub starts with ARM code, so
|
4517 |
|
|
// we must be able to switch mode before
|
4518 |
|
|
// reaching it, which is only possible for 'bl'
|
4519 |
|
|
// (ie R_ARM_THM_CALL relocation).
|
4520 |
|
|
? arm_stub_long_branch_any_thumb_pic
|
4521 |
|
|
// On V4T, use Thumb code only.
|
4522 |
|
|
: arm_stub_long_branch_v4t_thumb_thumb_pic)
|
4523 |
|
|
|
4524 |
|
|
// non-PIC stubs.
|
4525 |
|
|
: ((may_use_blx
|
4526 |
|
|
&& (r_type == elfcpp::R_ARM_THM_CALL))
|
4527 |
|
|
? arm_stub_long_branch_any_any // V5T and above.
|
4528 |
|
|
: arm_stub_long_branch_v4t_thumb_thumb); // V4T.
|
4529 |
|
|
}
|
4530 |
|
|
else
|
4531 |
|
|
{
|
4532 |
|
|
stub_type = (parameters->options().shared()
|
4533 |
|
|
|| should_force_pic_veneer)
|
4534 |
|
|
? arm_stub_long_branch_thumb_only_pic // PIC stub.
|
4535 |
|
|
: arm_stub_long_branch_thumb_only; // non-PIC stub.
|
4536 |
|
|
}
|
4537 |
|
|
}
|
4538 |
|
|
else
|
4539 |
|
|
{
|
4540 |
|
|
// Thumb to arm.
|
4541 |
|
|
|
4542 |
|
|
// FIXME: We should check that the input section is from an
|
4543 |
|
|
// object that has interwork enabled.
|
4544 |
|
|
|
4545 |
|
|
stub_type = (parameters->options().shared()
|
4546 |
|
|
|| should_force_pic_veneer)
|
4547 |
|
|
// PIC stubs.
|
4548 |
|
|
? ((may_use_blx
|
4549 |
|
|
&& (r_type == elfcpp::R_ARM_THM_CALL))
|
4550 |
|
|
? arm_stub_long_branch_any_arm_pic // V5T and above.
|
4551 |
|
|
: arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
|
4552 |
|
|
|
4553 |
|
|
// non-PIC stubs.
|
4554 |
|
|
: ((may_use_blx
|
4555 |
|
|
&& (r_type == elfcpp::R_ARM_THM_CALL))
|
4556 |
|
|
? arm_stub_long_branch_any_any // V5T and above.
|
4557 |
|
|
: arm_stub_long_branch_v4t_thumb_arm); // V4T.
|
4558 |
|
|
|
4559 |
|
|
// Handle v4t short branches.
|
4560 |
|
|
if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
|
4561 |
|
|
&& (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
|
4562 |
|
|
&& (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
|
4563 |
|
|
stub_type = arm_stub_short_branch_v4t_thumb_arm;
|
4564 |
|
|
}
|
4565 |
|
|
}
|
4566 |
|
|
}
|
4567 |
|
|
else if (r_type == elfcpp::R_ARM_CALL
|
4568 |
|
|
|| r_type == elfcpp::R_ARM_JUMP24
|
4569 |
|
|
|| r_type == elfcpp::R_ARM_PLT32)
|
4570 |
|
|
{
|
4571 |
|
|
branch_offset = static_cast<int64_t>(destination) - location;
|
4572 |
|
|
if (target_is_thumb)
|
4573 |
|
|
{
|
4574 |
|
|
// Arm to thumb.
|
4575 |
|
|
|
4576 |
|
|
// FIXME: We should check that the input section is from an
|
4577 |
|
|
// object that has interwork enabled.
|
4578 |
|
|
|
4579 |
|
|
// We have an extra 2-bytes reach because of
|
4580 |
|
|
// the mode change (bit 24 (H) of BLX encoding).
|
4581 |
|
|
if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
|
4582 |
|
|
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
|
4583 |
|
|
|| ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
|
4584 |
|
|
|| (r_type == elfcpp::R_ARM_JUMP24)
|
4585 |
|
|
|| (r_type == elfcpp::R_ARM_PLT32))
|
4586 |
|
|
{
|
4587 |
|
|
stub_type = (parameters->options().shared()
|
4588 |
|
|
|| should_force_pic_veneer)
|
4589 |
|
|
// PIC stubs.
|
4590 |
|
|
? (may_use_blx
|
4591 |
|
|
? arm_stub_long_branch_any_thumb_pic// V5T and above.
|
4592 |
|
|
: arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
|
4593 |
|
|
|
4594 |
|
|
// non-PIC stubs.
|
4595 |
|
|
: (may_use_blx
|
4596 |
|
|
? arm_stub_long_branch_any_any // V5T and above.
|
4597 |
|
|
: arm_stub_long_branch_v4t_arm_thumb); // V4T.
|
4598 |
|
|
}
|
4599 |
|
|
}
|
4600 |
|
|
else
|
4601 |
|
|
{
|
4602 |
|
|
// Arm to arm.
|
4603 |
|
|
if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
|
4604 |
|
|
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
|
4605 |
|
|
{
|
4606 |
|
|
stub_type = (parameters->options().shared()
|
4607 |
|
|
|| should_force_pic_veneer)
|
4608 |
|
|
? arm_stub_long_branch_any_arm_pic // PIC stubs.
|
4609 |
|
|
: arm_stub_long_branch_any_any; /// non-PIC.
|
4610 |
|
|
}
|
4611 |
|
|
}
|
4612 |
|
|
}
|
4613 |
|
|
|
4614 |
|
|
return stub_type;
|
4615 |
|
|
}
|
4616 |
|
|
|
4617 |
|
|
// Cortex_a8_stub methods.
|
4618 |
|
|
|
4619 |
|
|
// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
|
4620 |
|
|
// I is the position of the instruction template in the stub template.
|
4621 |
|
|
|
4622 |
|
|
uint16_t
|
4623 |
|
|
Cortex_a8_stub::do_thumb16_special(size_t i)
|
4624 |
|
|
{
|
4625 |
|
|
// The only use of this is to copy condition code from a conditional
|
4626 |
|
|
// branch being worked around to the corresponding conditional branch in
|
4627 |
|
|
// to the stub.
|
4628 |
|
|
gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
|
4629 |
|
|
&& i == 0);
|
4630 |
|
|
uint16_t data = this->stub_template()->insns()[i].data();
|
4631 |
|
|
gold_assert((data & 0xff00U) == 0xd000U);
|
4632 |
|
|
data |= ((this->original_insn_ >> 22) & 0xf) << 8;
|
4633 |
|
|
return data;
|
4634 |
|
|
}
|
4635 |
|
|
|
4636 |
|
|
// Stub_factory methods.
|
4637 |
|
|
|
4638 |
|
|
Stub_factory::Stub_factory()
|
4639 |
|
|
{
|
4640 |
|
|
// The instruction template sequences are declared as static
|
4641 |
|
|
// objects and initialized first time the constructor runs.
|
4642 |
|
|
|
4643 |
|
|
// Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
|
4644 |
|
|
// to reach the stub if necessary.
|
4645 |
|
|
static const Insn_template elf32_arm_stub_long_branch_any_any[] =
|
4646 |
|
|
{
|
4647 |
|
|
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
|
4648 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
|
4649 |
|
|
// dcd R_ARM_ABS32(X)
|
4650 |
|
|
};
|
4651 |
|
|
|
4652 |
|
|
// V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
|
4653 |
|
|
// available.
|
4654 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
|
4655 |
|
|
{
|
4656 |
|
|
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
|
4657 |
|
|
Insn_template::arm_insn(0xe12fff1c), // bx ip
|
4658 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
|
4659 |
|
|
// dcd R_ARM_ABS32(X)
|
4660 |
|
|
};
|
4661 |
|
|
|
4662 |
|
|
// Thumb -> Thumb long branch stub. Used on M-profile architectures.
|
4663 |
|
|
static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
|
4664 |
|
|
{
|
4665 |
|
|
Insn_template::thumb16_insn(0xb401), // push {r0}
|
4666 |
|
|
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
|
4667 |
|
|
Insn_template::thumb16_insn(0x4684), // mov ip, r0
|
4668 |
|
|
Insn_template::thumb16_insn(0xbc01), // pop {r0}
|
4669 |
|
|
Insn_template::thumb16_insn(0x4760), // bx ip
|
4670 |
|
|
Insn_template::thumb16_insn(0xbf00), // nop
|
4671 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
|
4672 |
|
|
// dcd R_ARM_ABS32(X)
|
4673 |
|
|
};
|
4674 |
|
|
|
4675 |
|
|
// V4T Thumb -> Thumb long branch stub. Using the stack is not
|
4676 |
|
|
// allowed.
|
4677 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
|
4678 |
|
|
{
|
4679 |
|
|
Insn_template::thumb16_insn(0x4778), // bx pc
|
4680 |
|
|
Insn_template::thumb16_insn(0x46c0), // nop
|
4681 |
|
|
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
|
4682 |
|
|
Insn_template::arm_insn(0xe12fff1c), // bx ip
|
4683 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
|
4684 |
|
|
// dcd R_ARM_ABS32(X)
|
4685 |
|
|
};
|
4686 |
|
|
|
4687 |
|
|
// V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
|
4688 |
|
|
// available.
|
4689 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
|
4690 |
|
|
{
|
4691 |
|
|
Insn_template::thumb16_insn(0x4778), // bx pc
|
4692 |
|
|
Insn_template::thumb16_insn(0x46c0), // nop
|
4693 |
|
|
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
|
4694 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
|
4695 |
|
|
// dcd R_ARM_ABS32(X)
|
4696 |
|
|
};
|
4697 |
|
|
|
4698 |
|
|
// V4T Thumb -> ARM short branch stub. Shorter variant of the above
|
4699 |
|
|
// one, when the destination is close enough.
|
4700 |
|
|
static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
|
4701 |
|
|
{
|
4702 |
|
|
Insn_template::thumb16_insn(0x4778), // bx pc
|
4703 |
|
|
Insn_template::thumb16_insn(0x46c0), // nop
|
4704 |
|
|
Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
|
4705 |
|
|
};
|
4706 |
|
|
|
4707 |
|
|
// ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
|
4708 |
|
|
// blx to reach the stub if necessary.
|
4709 |
|
|
static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
|
4710 |
|
|
{
|
4711 |
|
|
Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
|
4712 |
|
|
Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
|
4713 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
|
4714 |
|
|
// dcd R_ARM_REL32(X-4)
|
4715 |
|
|
};
|
4716 |
|
|
|
4717 |
|
|
// ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
|
4718 |
|
|
// blx to reach the stub if necessary. We can not add into pc;
|
4719 |
|
|
// it is not guaranteed to mode switch (different in ARMv6 and
|
4720 |
|
|
// ARMv7).
|
4721 |
|
|
static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
|
4722 |
|
|
{
|
4723 |
|
|
Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
|
4724 |
|
|
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
|
4725 |
|
|
Insn_template::arm_insn(0xe12fff1c), // bx ip
|
4726 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
|
4727 |
|
|
// dcd R_ARM_REL32(X)
|
4728 |
|
|
};
|
4729 |
|
|
|
4730 |
|
|
// V4T ARM -> ARM long branch stub, PIC.
|
4731 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
|
4732 |
|
|
{
|
4733 |
|
|
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
|
4734 |
|
|
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
|
4735 |
|
|
Insn_template::arm_insn(0xe12fff1c), // bx ip
|
4736 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
|
4737 |
|
|
// dcd R_ARM_REL32(X)
|
4738 |
|
|
};
|
4739 |
|
|
|
4740 |
|
|
// V4T Thumb -> ARM long branch stub, PIC.
|
4741 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
|
4742 |
|
|
{
|
4743 |
|
|
Insn_template::thumb16_insn(0x4778), // bx pc
|
4744 |
|
|
Insn_template::thumb16_insn(0x46c0), // nop
|
4745 |
|
|
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
|
4746 |
|
|
Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
|
4747 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
|
4748 |
|
|
// dcd R_ARM_REL32(X)
|
4749 |
|
|
};
|
4750 |
|
|
|
4751 |
|
|
// Thumb -> Thumb long branch stub, PIC. Used on M-profile
|
4752 |
|
|
// architectures.
|
4753 |
|
|
static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
|
4754 |
|
|
{
|
4755 |
|
|
Insn_template::thumb16_insn(0xb401), // push {r0}
|
4756 |
|
|
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
|
4757 |
|
|
Insn_template::thumb16_insn(0x46fc), // mov ip, pc
|
4758 |
|
|
Insn_template::thumb16_insn(0x4484), // add ip, r0
|
4759 |
|
|
Insn_template::thumb16_insn(0xbc01), // pop {r0}
|
4760 |
|
|
Insn_template::thumb16_insn(0x4760), // bx ip
|
4761 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
|
4762 |
|
|
// dcd R_ARM_REL32(X)
|
4763 |
|
|
};
|
4764 |
|
|
|
4765 |
|
|
// V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
|
4766 |
|
|
// allowed.
|
4767 |
|
|
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
|
4768 |
|
|
{
|
4769 |
|
|
Insn_template::thumb16_insn(0x4778), // bx pc
|
4770 |
|
|
Insn_template::thumb16_insn(0x46c0), // nop
|
4771 |
|
|
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
|
4772 |
|
|
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
|
4773 |
|
|
Insn_template::arm_insn(0xe12fff1c), // bx ip
|
4774 |
|
|
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
|
4775 |
|
|
// dcd R_ARM_REL32(X)
|
4776 |
|
|
};
|
4777 |
|
|
|
4778 |
|
|
// Cortex-A8 erratum-workaround stubs.
|
4779 |
|
|
|
4780 |
|
|
// Stub used for conditional branches (which may be beyond +/-1MB away,
|
4781 |
|
|
// so we can't use a conditional branch to reach this stub).
|
4782 |
|
|
|
4783 |
|
|
// original code:
|
4784 |
|
|
//
|
4785 |
|
|
// b<cond> X
|
4786 |
|
|
// after:
|
4787 |
|
|
//
|
4788 |
|
|
static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
|
4789 |
|
|
{
|
4790 |
|
|
Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
|
4791 |
|
|
Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
|
4792 |
|
|
Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
|
4793 |
|
|
// b.w X
|
4794 |
|
|
};
|
4795 |
|
|
|
4796 |
|
|
// Stub used for b.w and bl.w instructions.
|
4797 |
|
|
|
4798 |
|
|
static const Insn_template elf32_arm_stub_a8_veneer_b[] =
|
4799 |
|
|
{
|
4800 |
|
|
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
|
4801 |
|
|
};
|
4802 |
|
|
|
4803 |
|
|
static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
|
4804 |
|
|
{
|
4805 |
|
|
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
|
4806 |
|
|
};
|
4807 |
|
|
|
4808 |
|
|
// Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
|
4809 |
|
|
// instruction (which switches to ARM mode) to point to this stub. Jump to
|
4810 |
|
|
// the real destination using an ARM-mode branch.
|
4811 |
|
|
static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
|
4812 |
|
|
{
|
4813 |
|
|
Insn_template::arm_rel_insn(0xea000000, -8) // b dest
|
4814 |
|
|
};
|
4815 |
|
|
|
4816 |
|
|
// Stub used to provide an interworking for R_ARM_V4BX relocation
|
4817 |
|
|
// (bx r[n] instruction).
|
4818 |
|
|
static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
|
4819 |
|
|
{
|
4820 |
|
|
Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
|
4821 |
|
|
Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
|
4822 |
|
|
Insn_template::arm_insn(0xe12fff10) // bx r<n>
|
4823 |
|
|
};
|
4824 |
|
|
|
4825 |
|
|
// Fill in the stub template look-up table. Stub templates are constructed
|
4826 |
|
|
// per instance of Stub_factory for fast look-up without locking
|
4827 |
|
|
// in a thread-enabled environment.
|
4828 |
|
|
|
4829 |
|
|
this->stub_templates_[arm_stub_none] =
|
4830 |
|
|
new Stub_template(arm_stub_none, NULL, 0);
|
4831 |
|
|
|
4832 |
|
|
#define DEF_STUB(x) \
|
4833 |
|
|
do \
|
4834 |
|
|
{ \
|
4835 |
|
|
size_t array_size \
|
4836 |
|
|
= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
|
4837 |
|
|
Stub_type type = arm_stub_##x; \
|
4838 |
|
|
this->stub_templates_[type] = \
|
4839 |
|
|
new Stub_template(type, elf32_arm_stub_##x, array_size); \
|
4840 |
|
|
} \
|
4841 |
|
|
while (0);
|
4842 |
|
|
|
4843 |
|
|
DEF_STUBS
|
4844 |
|
|
#undef DEF_STUB
|
4845 |
|
|
}
|
4846 |
|
|
|
4847 |
|
|
// Stub_table methods.
|
4848 |
|
|
|
4849 |
|
|
// Remove all Cortex-A8 stub.
|
4850 |
|
|
|
4851 |
|
|
template<bool big_endian>
|
4852 |
|
|
void
|
4853 |
|
|
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
|
4854 |
|
|
{
|
4855 |
|
|
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
|
4856 |
|
|
p != this->cortex_a8_stubs_.end();
|
4857 |
|
|
++p)
|
4858 |
|
|
delete p->second;
|
4859 |
|
|
this->cortex_a8_stubs_.clear();
|
4860 |
|
|
}
|
4861 |
|
|
|
4862 |
|
|
// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
|
4863 |
|
|
|
4864 |
|
|
template<bool big_endian>
|
4865 |
|
|
void
|
4866 |
|
|
Stub_table<big_endian>::relocate_stub(
|
4867 |
|
|
Stub* stub,
|
4868 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
4869 |
|
|
Target_arm<big_endian>* arm_target,
|
4870 |
|
|
Output_section* output_section,
|
4871 |
|
|
unsigned char* view,
|
4872 |
|
|
Arm_address address,
|
4873 |
|
|
section_size_type view_size)
|
4874 |
|
|
{
|
4875 |
|
|
const Stub_template* stub_template = stub->stub_template();
|
4876 |
|
|
if (stub_template->reloc_count() != 0)
|
4877 |
|
|
{
|
4878 |
|
|
// Adjust view to cover the stub only.
|
4879 |
|
|
section_size_type offset = stub->offset();
|
4880 |
|
|
section_size_type stub_size = stub_template->size();
|
4881 |
|
|
gold_assert(offset + stub_size <= view_size);
|
4882 |
|
|
|
4883 |
|
|
arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
|
4884 |
|
|
address + offset, stub_size);
|
4885 |
|
|
}
|
4886 |
|
|
}
|
4887 |
|
|
|
4888 |
|
|
// Relocate all stubs in this stub table.
|
4889 |
|
|
|
4890 |
|
|
template<bool big_endian>
|
4891 |
|
|
void
|
4892 |
|
|
Stub_table<big_endian>::relocate_stubs(
|
4893 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
4894 |
|
|
Target_arm<big_endian>* arm_target,
|
4895 |
|
|
Output_section* output_section,
|
4896 |
|
|
unsigned char* view,
|
4897 |
|
|
Arm_address address,
|
4898 |
|
|
section_size_type view_size)
|
4899 |
|
|
{
|
4900 |
|
|
// If we are passed a view bigger than the stub table's. we need to
|
4901 |
|
|
// adjust the view.
|
4902 |
|
|
gold_assert(address == this->address()
|
4903 |
|
|
&& (view_size
|
4904 |
|
|
== static_cast<section_size_type>(this->data_size())));
|
4905 |
|
|
|
4906 |
|
|
// Relocate all relocation stubs.
|
4907 |
|
|
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
|
4908 |
|
|
p != this->reloc_stubs_.end();
|
4909 |
|
|
++p)
|
4910 |
|
|
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
|
4911 |
|
|
address, view_size);
|
4912 |
|
|
|
4913 |
|
|
// Relocate all Cortex-A8 stubs.
|
4914 |
|
|
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
|
4915 |
|
|
p != this->cortex_a8_stubs_.end();
|
4916 |
|
|
++p)
|
4917 |
|
|
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
|
4918 |
|
|
address, view_size);
|
4919 |
|
|
|
4920 |
|
|
// Relocate all ARM V4BX stubs.
|
4921 |
|
|
for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
|
4922 |
|
|
p != this->arm_v4bx_stubs_.end();
|
4923 |
|
|
++p)
|
4924 |
|
|
{
|
4925 |
|
|
if (*p != NULL)
|
4926 |
|
|
this->relocate_stub(*p, relinfo, arm_target, output_section, view,
|
4927 |
|
|
address, view_size);
|
4928 |
|
|
}
|
4929 |
|
|
}
|
4930 |
|
|
|
4931 |
|
|
// Write out the stubs to file.
|
4932 |
|
|
|
4933 |
|
|
template<bool big_endian>
|
4934 |
|
|
void
|
4935 |
|
|
Stub_table<big_endian>::do_write(Output_file* of)
|
4936 |
|
|
{
|
4937 |
|
|
off_t offset = this->offset();
|
4938 |
|
|
const section_size_type oview_size =
|
4939 |
|
|
convert_to_section_size_type(this->data_size());
|
4940 |
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
4941 |
|
|
|
4942 |
|
|
// Write relocation stubs.
|
4943 |
|
|
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
|
4944 |
|
|
p != this->reloc_stubs_.end();
|
4945 |
|
|
++p)
|
4946 |
|
|
{
|
4947 |
|
|
Reloc_stub* stub = p->second;
|
4948 |
|
|
Arm_address address = this->address() + stub->offset();
|
4949 |
|
|
gold_assert(address
|
4950 |
|
|
== align_address(address,
|
4951 |
|
|
stub->stub_template()->alignment()));
|
4952 |
|
|
stub->write(oview + stub->offset(), stub->stub_template()->size(),
|
4953 |
|
|
big_endian);
|
4954 |
|
|
}
|
4955 |
|
|
|
4956 |
|
|
// Write Cortex-A8 stubs.
|
4957 |
|
|
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
|
4958 |
|
|
p != this->cortex_a8_stubs_.end();
|
4959 |
|
|
++p)
|
4960 |
|
|
{
|
4961 |
|
|
Cortex_a8_stub* stub = p->second;
|
4962 |
|
|
Arm_address address = this->address() + stub->offset();
|
4963 |
|
|
gold_assert(address
|
4964 |
|
|
== align_address(address,
|
4965 |
|
|
stub->stub_template()->alignment()));
|
4966 |
|
|
stub->write(oview + stub->offset(), stub->stub_template()->size(),
|
4967 |
|
|
big_endian);
|
4968 |
|
|
}
|
4969 |
|
|
|
4970 |
|
|
// Write ARM V4BX relocation stubs.
|
4971 |
|
|
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
|
4972 |
|
|
p != this->arm_v4bx_stubs_.end();
|
4973 |
|
|
++p)
|
4974 |
|
|
{
|
4975 |
|
|
if (*p == NULL)
|
4976 |
|
|
continue;
|
4977 |
|
|
|
4978 |
|
|
Arm_address address = this->address() + (*p)->offset();
|
4979 |
|
|
gold_assert(address
|
4980 |
|
|
== align_address(address,
|
4981 |
|
|
(*p)->stub_template()->alignment()));
|
4982 |
|
|
(*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
|
4983 |
|
|
big_endian);
|
4984 |
|
|
}
|
4985 |
|
|
|
4986 |
|
|
of->write_output_view(this->offset(), oview_size, oview);
|
4987 |
|
|
}
|
4988 |
|
|
|
4989 |
|
|
// Update the data size and address alignment of the stub table at the end
|
4990 |
|
|
// of a relaxation pass. Return true if either the data size or the
|
4991 |
|
|
// alignment changed in this relaxation pass.
|
4992 |
|
|
|
4993 |
|
|
template<bool big_endian>
|
4994 |
|
|
bool
|
4995 |
|
|
Stub_table<big_endian>::update_data_size_and_addralign()
|
4996 |
|
|
{
|
4997 |
|
|
// Go over all stubs in table to compute data size and address alignment.
|
4998 |
|
|
off_t size = this->reloc_stubs_size_;
|
4999 |
|
|
unsigned addralign = this->reloc_stubs_addralign_;
|
5000 |
|
|
|
5001 |
|
|
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
|
5002 |
|
|
p != this->cortex_a8_stubs_.end();
|
5003 |
|
|
++p)
|
5004 |
|
|
{
|
5005 |
|
|
const Stub_template* stub_template = p->second->stub_template();
|
5006 |
|
|
addralign = std::max(addralign, stub_template->alignment());
|
5007 |
|
|
size = (align_address(size, stub_template->alignment())
|
5008 |
|
|
+ stub_template->size());
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
|
5012 |
|
|
p != this->arm_v4bx_stubs_.end();
|
5013 |
|
|
++p)
|
5014 |
|
|
{
|
5015 |
|
|
if (*p == NULL)
|
5016 |
|
|
continue;
|
5017 |
|
|
|
5018 |
|
|
const Stub_template* stub_template = (*p)->stub_template();
|
5019 |
|
|
addralign = std::max(addralign, stub_template->alignment());
|
5020 |
|
|
size = (align_address(size, stub_template->alignment())
|
5021 |
|
|
+ stub_template->size());
|
5022 |
|
|
}
|
5023 |
|
|
|
5024 |
|
|
// Check if either data size or alignment changed in this pass.
|
5025 |
|
|
// Update prev_data_size_ and prev_addralign_. These will be used
|
5026 |
|
|
// as the current data size and address alignment for the next pass.
|
5027 |
|
|
bool changed = size != this->prev_data_size_;
|
5028 |
|
|
this->prev_data_size_ = size;
|
5029 |
|
|
|
5030 |
|
|
if (addralign != this->prev_addralign_)
|
5031 |
|
|
changed = true;
|
5032 |
|
|
this->prev_addralign_ = addralign;
|
5033 |
|
|
|
5034 |
|
|
return changed;
|
5035 |
|
|
}
|
5036 |
|
|
|
5037 |
|
|
// Finalize the stubs. This sets the offsets of the stubs within the stub
|
5038 |
|
|
// table. It also marks all input sections needing Cortex-A8 workaround.
|
5039 |
|
|
|
5040 |
|
|
template<bool big_endian>
|
5041 |
|
|
void
|
5042 |
|
|
Stub_table<big_endian>::finalize_stubs()
|
5043 |
|
|
{
|
5044 |
|
|
off_t off = this->reloc_stubs_size_;
|
5045 |
|
|
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
|
5046 |
|
|
p != this->cortex_a8_stubs_.end();
|
5047 |
|
|
++p)
|
5048 |
|
|
{
|
5049 |
|
|
Cortex_a8_stub* stub = p->second;
|
5050 |
|
|
const Stub_template* stub_template = stub->stub_template();
|
5051 |
|
|
uint64_t stub_addralign = stub_template->alignment();
|
5052 |
|
|
off = align_address(off, stub_addralign);
|
5053 |
|
|
stub->set_offset(off);
|
5054 |
|
|
off += stub_template->size();
|
5055 |
|
|
|
5056 |
|
|
// Mark input section so that we can determine later if a code section
|
5057 |
|
|
// needs the Cortex-A8 workaround quickly.
|
5058 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5059 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
|
5060 |
|
|
arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
|
5061 |
|
|
}
|
5062 |
|
|
|
5063 |
|
|
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
|
5064 |
|
|
p != this->arm_v4bx_stubs_.end();
|
5065 |
|
|
++p)
|
5066 |
|
|
{
|
5067 |
|
|
if (*p == NULL)
|
5068 |
|
|
continue;
|
5069 |
|
|
|
5070 |
|
|
const Stub_template* stub_template = (*p)->stub_template();
|
5071 |
|
|
uint64_t stub_addralign = stub_template->alignment();
|
5072 |
|
|
off = align_address(off, stub_addralign);
|
5073 |
|
|
(*p)->set_offset(off);
|
5074 |
|
|
off += stub_template->size();
|
5075 |
|
|
}
|
5076 |
|
|
|
5077 |
|
|
gold_assert(off <= this->prev_data_size_);
|
5078 |
|
|
}
|
5079 |
|
|
|
5080 |
|
|
// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
|
5081 |
|
|
// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
|
5082 |
|
|
// of the address range seen by the linker.
|
5083 |
|
|
|
5084 |
|
|
template<bool big_endian>
|
5085 |
|
|
void
|
5086 |
|
|
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
|
5087 |
|
|
Target_arm<big_endian>* arm_target,
|
5088 |
|
|
unsigned char* view,
|
5089 |
|
|
Arm_address view_address,
|
5090 |
|
|
section_size_type view_size)
|
5091 |
|
|
{
|
5092 |
|
|
// Cortex-A8 stubs are sorted by addresses of branches being fixed up.
|
5093 |
|
|
for (Cortex_a8_stub_list::const_iterator p =
|
5094 |
|
|
this->cortex_a8_stubs_.lower_bound(view_address);
|
5095 |
|
|
((p != this->cortex_a8_stubs_.end())
|
5096 |
|
|
&& (p->first < (view_address + view_size)));
|
5097 |
|
|
++p)
|
5098 |
|
|
{
|
5099 |
|
|
// We do not store the THUMB bit in the LSB of either the branch address
|
5100 |
|
|
// or the stub offset. There is no need to strip the LSB.
|
5101 |
|
|
Arm_address branch_address = p->first;
|
5102 |
|
|
const Cortex_a8_stub* stub = p->second;
|
5103 |
|
|
Arm_address stub_address = this->address() + stub->offset();
|
5104 |
|
|
|
5105 |
|
|
// Offset of the branch instruction relative to this view.
|
5106 |
|
|
section_size_type offset =
|
5107 |
|
|
convert_to_section_size_type(branch_address - view_address);
|
5108 |
|
|
gold_assert((offset + 4) <= view_size);
|
5109 |
|
|
|
5110 |
|
|
arm_target->apply_cortex_a8_workaround(stub, stub_address,
|
5111 |
|
|
view + offset, branch_address);
|
5112 |
|
|
}
|
5113 |
|
|
}
|
5114 |
|
|
|
5115 |
|
|
// Arm_input_section methods.
|
5116 |
|
|
|
5117 |
|
|
// Initialize an Arm_input_section.
|
5118 |
|
|
|
5119 |
|
|
template<bool big_endian>
|
5120 |
|
|
void
|
5121 |
|
|
Arm_input_section<big_endian>::init()
|
5122 |
|
|
{
|
5123 |
|
|
Relobj* relobj = this->relobj();
|
5124 |
|
|
unsigned int shndx = this->shndx();
|
5125 |
|
|
|
5126 |
|
|
// We have to cache original size, alignment and contents to avoid locking
|
5127 |
|
|
// the original file.
|
5128 |
|
|
this->original_addralign_ =
|
5129 |
|
|
convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
|
5130 |
|
|
|
5131 |
|
|
// This is not efficient but we expect only a small number of relaxed
|
5132 |
|
|
// input sections for stubs.
|
5133 |
|
|
section_size_type section_size;
|
5134 |
|
|
const unsigned char* section_contents =
|
5135 |
|
|
relobj->section_contents(shndx, §ion_size, false);
|
5136 |
|
|
this->original_size_ =
|
5137 |
|
|
convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
|
5138 |
|
|
|
5139 |
|
|
gold_assert(this->original_contents_ == NULL);
|
5140 |
|
|
this->original_contents_ = new unsigned char[section_size];
|
5141 |
|
|
memcpy(this->original_contents_, section_contents, section_size);
|
5142 |
|
|
|
5143 |
|
|
// We want to make this look like the original input section after
|
5144 |
|
|
// output sections are finalized.
|
5145 |
|
|
Output_section* os = relobj->output_section(shndx);
|
5146 |
|
|
off_t offset = relobj->output_section_offset(shndx);
|
5147 |
|
|
gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
|
5148 |
|
|
this->set_address(os->address() + offset);
|
5149 |
|
|
this->set_file_offset(os->offset() + offset);
|
5150 |
|
|
|
5151 |
|
|
this->set_current_data_size(this->original_size_);
|
5152 |
|
|
this->finalize_data_size();
|
5153 |
|
|
}
|
5154 |
|
|
|
5155 |
|
|
template<bool big_endian>
|
5156 |
|
|
void
|
5157 |
|
|
Arm_input_section<big_endian>::do_write(Output_file* of)
|
5158 |
|
|
{
|
5159 |
|
|
// We have to write out the original section content.
|
5160 |
|
|
gold_assert(this->original_contents_ != NULL);
|
5161 |
|
|
of->write(this->offset(), this->original_contents_,
|
5162 |
|
|
this->original_size_);
|
5163 |
|
|
|
5164 |
|
|
// If this owns a stub table and it is not empty, write it.
|
5165 |
|
|
if (this->is_stub_table_owner() && !this->stub_table_->empty())
|
5166 |
|
|
this->stub_table_->write(of);
|
5167 |
|
|
}
|
5168 |
|
|
|
5169 |
|
|
// Finalize data size.
|
5170 |
|
|
|
5171 |
|
|
template<bool big_endian>
|
5172 |
|
|
void
|
5173 |
|
|
Arm_input_section<big_endian>::set_final_data_size()
|
5174 |
|
|
{
|
5175 |
|
|
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
|
5176 |
|
|
|
5177 |
|
|
if (this->is_stub_table_owner())
|
5178 |
|
|
{
|
5179 |
|
|
this->stub_table_->finalize_data_size();
|
5180 |
|
|
off = align_address(off, this->stub_table_->addralign());
|
5181 |
|
|
off += this->stub_table_->data_size();
|
5182 |
|
|
}
|
5183 |
|
|
this->set_data_size(off);
|
5184 |
|
|
}
|
5185 |
|
|
|
5186 |
|
|
// Reset address and file offset.
|
5187 |
|
|
|
5188 |
|
|
template<bool big_endian>
|
5189 |
|
|
void
|
5190 |
|
|
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
|
5191 |
|
|
{
|
5192 |
|
|
// Size of the original input section contents.
|
5193 |
|
|
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
|
5194 |
|
|
|
5195 |
|
|
// If this is a stub table owner, account for the stub table size.
|
5196 |
|
|
if (this->is_stub_table_owner())
|
5197 |
|
|
{
|
5198 |
|
|
Stub_table<big_endian>* stub_table = this->stub_table_;
|
5199 |
|
|
|
5200 |
|
|
// Reset the stub table's address and file offset. The
|
5201 |
|
|
// current data size for child will be updated after that.
|
5202 |
|
|
stub_table_->reset_address_and_file_offset();
|
5203 |
|
|
off = align_address(off, stub_table_->addralign());
|
5204 |
|
|
off += stub_table->current_data_size();
|
5205 |
|
|
}
|
5206 |
|
|
|
5207 |
|
|
this->set_current_data_size(off);
|
5208 |
|
|
}
|
5209 |
|
|
|
5210 |
|
|
// Arm_exidx_cantunwind methods.
|
5211 |
|
|
|
5212 |
|
|
// Write this to Output file OF for a fixed endianness.
|
5213 |
|
|
|
5214 |
|
|
template<bool big_endian>
|
5215 |
|
|
void
|
5216 |
|
|
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
|
5217 |
|
|
{
|
5218 |
|
|
off_t offset = this->offset();
|
5219 |
|
|
const section_size_type oview_size = 8;
|
5220 |
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
5221 |
|
|
|
5222 |
159 |
khays |
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
|
5223 |
27 |
khays |
|
5224 |
|
|
Output_section* os = this->relobj_->output_section(this->shndx_);
|
5225 |
|
|
gold_assert(os != NULL);
|
5226 |
|
|
|
5227 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5228 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
|
5229 |
|
|
Arm_address output_offset =
|
5230 |
|
|
arm_relobj->get_output_section_offset(this->shndx_);
|
5231 |
|
|
Arm_address section_start;
|
5232 |
|
|
section_size_type section_size;
|
5233 |
|
|
|
5234 |
|
|
// Find out the end of the text section referred by this.
|
5235 |
|
|
if (output_offset != Arm_relobj<big_endian>::invalid_address)
|
5236 |
|
|
{
|
5237 |
|
|
section_start = os->address() + output_offset;
|
5238 |
|
|
const Arm_exidx_input_section* exidx_input_section =
|
5239 |
|
|
arm_relobj->exidx_input_section_by_link(this->shndx_);
|
5240 |
|
|
gold_assert(exidx_input_section != NULL);
|
5241 |
|
|
section_size =
|
5242 |
|
|
convert_to_section_size_type(exidx_input_section->text_size());
|
5243 |
|
|
}
|
5244 |
|
|
else
|
5245 |
|
|
{
|
5246 |
|
|
// Currently this only happens for a relaxed section.
|
5247 |
|
|
const Output_relaxed_input_section* poris =
|
5248 |
|
|
os->find_relaxed_input_section(this->relobj_, this->shndx_);
|
5249 |
|
|
gold_assert(poris != NULL);
|
5250 |
|
|
section_start = poris->address();
|
5251 |
|
|
section_size = convert_to_section_size_type(poris->data_size());
|
5252 |
|
|
}
|
5253 |
|
|
|
5254 |
|
|
// We always append this to the end of an EXIDX section.
|
5255 |
|
|
Arm_address output_address = section_start + section_size;
|
5256 |
|
|
|
5257 |
|
|
// Write out the entry. The first word either points to the beginning
|
5258 |
|
|
// or after the end of a text section. The second word is the special
|
5259 |
|
|
// EXIDX_CANTUNWIND value.
|
5260 |
|
|
uint32_t prel31_offset = output_address - this->address();
|
5261 |
|
|
if (utils::has_overflow<31>(offset))
|
5262 |
|
|
gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
|
5263 |
159 |
khays |
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
|
5264 |
|
|
prel31_offset & 0x7fffffffU);
|
5265 |
|
|
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
|
5266 |
|
|
elfcpp::EXIDX_CANTUNWIND);
|
5267 |
27 |
khays |
|
5268 |
|
|
of->write_output_view(this->offset(), oview_size, oview);
|
5269 |
|
|
}
|
5270 |
|
|
|
5271 |
|
|
// Arm_exidx_merged_section methods.
|
5272 |
|
|
|
5273 |
|
|
// Constructor for Arm_exidx_merged_section.
|
5274 |
|
|
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
|
5275 |
|
|
// SECTION_OFFSET_MAP points to a section offset map describing how
|
5276 |
|
|
// parts of the input section are mapped to output. DELETED_BYTES is
|
5277 |
|
|
// the number of bytes deleted from the EXIDX input section.
|
5278 |
|
|
|
5279 |
|
|
Arm_exidx_merged_section::Arm_exidx_merged_section(
|
5280 |
|
|
const Arm_exidx_input_section& exidx_input_section,
|
5281 |
|
|
const Arm_exidx_section_offset_map& section_offset_map,
|
5282 |
|
|
uint32_t deleted_bytes)
|
5283 |
|
|
: Output_relaxed_input_section(exidx_input_section.relobj(),
|
5284 |
|
|
exidx_input_section.shndx(),
|
5285 |
|
|
exidx_input_section.addralign()),
|
5286 |
|
|
exidx_input_section_(exidx_input_section),
|
5287 |
|
|
section_offset_map_(section_offset_map)
|
5288 |
|
|
{
|
5289 |
|
|
// If we retain or discard the whole EXIDX input section, we would
|
5290 |
|
|
// not be here.
|
5291 |
|
|
gold_assert(deleted_bytes != 0
|
5292 |
|
|
&& deleted_bytes != this->exidx_input_section_.size());
|
5293 |
|
|
|
5294 |
|
|
// Fix size here so that we do not need to implement set_final_data_size.
|
5295 |
|
|
uint32_t size = exidx_input_section.size() - deleted_bytes;
|
5296 |
|
|
this->set_data_size(size);
|
5297 |
|
|
this->fix_data_size();
|
5298 |
|
|
|
5299 |
|
|
// Allocate buffer for section contents and build contents.
|
5300 |
|
|
this->section_contents_ = new unsigned char[size];
|
5301 |
|
|
}
|
5302 |
|
|
|
5303 |
|
|
// Build the contents of a merged EXIDX output section.
|
5304 |
|
|
|
5305 |
|
|
void
|
5306 |
|
|
Arm_exidx_merged_section::build_contents(
|
5307 |
|
|
const unsigned char* original_contents,
|
5308 |
|
|
section_size_type original_size)
|
5309 |
|
|
{
|
5310 |
|
|
// Go over spans of input offsets and write only those that are not
|
5311 |
|
|
// discarded.
|
5312 |
|
|
section_offset_type in_start = 0;
|
5313 |
|
|
section_offset_type out_start = 0;
|
5314 |
|
|
section_offset_type in_max =
|
5315 |
|
|
convert_types<section_offset_type>(original_size);
|
5316 |
|
|
section_offset_type out_max =
|
5317 |
|
|
convert_types<section_offset_type>(this->data_size());
|
5318 |
|
|
for (Arm_exidx_section_offset_map::const_iterator p =
|
5319 |
|
|
this->section_offset_map_.begin();
|
5320 |
|
|
p != this->section_offset_map_.end();
|
5321 |
|
|
++p)
|
5322 |
|
|
{
|
5323 |
|
|
section_offset_type in_end = p->first;
|
5324 |
|
|
gold_assert(in_end >= in_start);
|
5325 |
|
|
section_offset_type out_end = p->second;
|
5326 |
|
|
size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
|
5327 |
|
|
if (out_end != -1)
|
5328 |
|
|
{
|
5329 |
|
|
size_t out_chunk_size =
|
5330 |
|
|
convert_types<size_t>(out_end - out_start + 1);
|
5331 |
|
|
|
5332 |
|
|
gold_assert(out_chunk_size == in_chunk_size
|
5333 |
|
|
&& in_end < in_max && out_end < out_max);
|
5334 |
|
|
|
5335 |
|
|
memcpy(this->section_contents_ + out_start,
|
5336 |
|
|
original_contents + in_start,
|
5337 |
|
|
out_chunk_size);
|
5338 |
|
|
out_start += out_chunk_size;
|
5339 |
|
|
}
|
5340 |
|
|
in_start += in_chunk_size;
|
5341 |
|
|
}
|
5342 |
|
|
}
|
5343 |
|
|
|
5344 |
|
|
// Given an input OBJECT, an input section index SHNDX within that
|
5345 |
|
|
// object, and an OFFSET relative to the start of that input
|
5346 |
|
|
// section, return whether or not the corresponding offset within
|
5347 |
|
|
// the output section is known. If this function returns true, it
|
5348 |
|
|
// sets *POUTPUT to the output offset. The value -1 indicates that
|
5349 |
|
|
// this input offset is being discarded.
|
5350 |
|
|
|
5351 |
|
|
bool
|
5352 |
|
|
Arm_exidx_merged_section::do_output_offset(
|
5353 |
|
|
const Relobj* relobj,
|
5354 |
|
|
unsigned int shndx,
|
5355 |
|
|
section_offset_type offset,
|
5356 |
|
|
section_offset_type* poutput) const
|
5357 |
|
|
{
|
5358 |
|
|
// We only handle offsets for the original EXIDX input section.
|
5359 |
|
|
if (relobj != this->exidx_input_section_.relobj()
|
5360 |
|
|
|| shndx != this->exidx_input_section_.shndx())
|
5361 |
|
|
return false;
|
5362 |
|
|
|
5363 |
|
|
section_offset_type section_size =
|
5364 |
|
|
convert_types<section_offset_type>(this->exidx_input_section_.size());
|
5365 |
|
|
if (offset < 0 || offset >= section_size)
|
5366 |
|
|
// Input offset is out of valid range.
|
5367 |
|
|
*poutput = -1;
|
5368 |
|
|
else
|
5369 |
|
|
{
|
5370 |
|
|
// We need to look up the section offset map to determine the output
|
5371 |
|
|
// offset. Find the reference point in map that is first offset
|
5372 |
|
|
// bigger than or equal to this offset.
|
5373 |
|
|
Arm_exidx_section_offset_map::const_iterator p =
|
5374 |
|
|
this->section_offset_map_.lower_bound(offset);
|
5375 |
|
|
|
5376 |
|
|
// The section offset maps are build such that this should not happen if
|
5377 |
|
|
// input offset is in the valid range.
|
5378 |
|
|
gold_assert(p != this->section_offset_map_.end());
|
5379 |
|
|
|
5380 |
|
|
// We need to check if this is dropped.
|
5381 |
|
|
section_offset_type ref = p->first;
|
5382 |
|
|
section_offset_type mapped_ref = p->second;
|
5383 |
|
|
|
5384 |
|
|
if (mapped_ref != Arm_exidx_input_section::invalid_offset)
|
5385 |
|
|
// Offset is present in output.
|
5386 |
|
|
*poutput = mapped_ref + (offset - ref);
|
5387 |
|
|
else
|
5388 |
|
|
// Offset is discarded owing to EXIDX entry merging.
|
5389 |
|
|
*poutput = -1;
|
5390 |
|
|
}
|
5391 |
|
|
|
5392 |
|
|
return true;
|
5393 |
|
|
}
|
5394 |
|
|
|
5395 |
|
|
// Write this to output file OF.
|
5396 |
|
|
|
5397 |
|
|
void
|
5398 |
|
|
Arm_exidx_merged_section::do_write(Output_file* of)
|
5399 |
|
|
{
|
5400 |
|
|
off_t offset = this->offset();
|
5401 |
|
|
const section_size_type oview_size = this->data_size();
|
5402 |
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
5403 |
|
|
|
5404 |
|
|
Output_section* os = this->relobj()->output_section(this->shndx());
|
5405 |
|
|
gold_assert(os != NULL);
|
5406 |
|
|
|
5407 |
|
|
memcpy(oview, this->section_contents_, oview_size);
|
5408 |
|
|
of->write_output_view(this->offset(), oview_size, oview);
|
5409 |
|
|
}
|
5410 |
|
|
|
5411 |
|
|
// Arm_exidx_fixup methods.
|
5412 |
|
|
|
5413 |
|
|
// Append an EXIDX_CANTUNWIND in the current output section if the last entry
|
5414 |
|
|
// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
|
5415 |
|
|
// points to the end of the last seen EXIDX section.
|
5416 |
|
|
|
5417 |
|
|
void
|
5418 |
|
|
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
|
5419 |
|
|
{
|
5420 |
|
|
if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
|
5421 |
|
|
&& this->last_input_section_ != NULL)
|
5422 |
|
|
{
|
5423 |
|
|
Relobj* relobj = this->last_input_section_->relobj();
|
5424 |
|
|
unsigned int text_shndx = this->last_input_section_->link();
|
5425 |
|
|
Arm_exidx_cantunwind* cantunwind =
|
5426 |
|
|
new Arm_exidx_cantunwind(relobj, text_shndx);
|
5427 |
|
|
this->exidx_output_section_->add_output_section_data(cantunwind);
|
5428 |
|
|
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
|
5429 |
|
|
}
|
5430 |
|
|
}
|
5431 |
|
|
|
5432 |
|
|
// Process an EXIDX section entry in input. Return whether this entry
|
5433 |
|
|
// can be deleted in the output. SECOND_WORD in the second word of the
|
5434 |
|
|
// EXIDX entry.
|
5435 |
|
|
|
5436 |
|
|
bool
|
5437 |
|
|
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
|
5438 |
|
|
{
|
5439 |
|
|
bool delete_entry;
|
5440 |
|
|
if (second_word == elfcpp::EXIDX_CANTUNWIND)
|
5441 |
|
|
{
|
5442 |
|
|
// Merge if previous entry is also an EXIDX_CANTUNWIND.
|
5443 |
|
|
delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
|
5444 |
|
|
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
|
5445 |
|
|
}
|
5446 |
|
|
else if ((second_word & 0x80000000) != 0)
|
5447 |
|
|
{
|
5448 |
|
|
// Inlined unwinding data. Merge if equal to previous.
|
5449 |
|
|
delete_entry = (merge_exidx_entries_
|
5450 |
|
|
&& this->last_unwind_type_ == UT_INLINED_ENTRY
|
5451 |
|
|
&& this->last_inlined_entry_ == second_word);
|
5452 |
|
|
this->last_unwind_type_ = UT_INLINED_ENTRY;
|
5453 |
|
|
this->last_inlined_entry_ = second_word;
|
5454 |
|
|
}
|
5455 |
|
|
else
|
5456 |
|
|
{
|
5457 |
|
|
// Normal table entry. In theory we could merge these too,
|
5458 |
|
|
// but duplicate entries are likely to be much less common.
|
5459 |
|
|
delete_entry = false;
|
5460 |
|
|
this->last_unwind_type_ = UT_NORMAL_ENTRY;
|
5461 |
|
|
}
|
5462 |
|
|
return delete_entry;
|
5463 |
|
|
}
|
5464 |
|
|
|
5465 |
|
|
// Update the current section offset map during EXIDX section fix-up.
|
5466 |
|
|
// If there is no map, create one. INPUT_OFFSET is the offset of a
|
5467 |
|
|
// reference point, DELETED_BYTES is the number of deleted by in the
|
5468 |
|
|
// section so far. If DELETE_ENTRY is true, the reference point and
|
5469 |
|
|
// all offsets after the previous reference point are discarded.
|
5470 |
|
|
|
5471 |
|
|
void
|
5472 |
|
|
Arm_exidx_fixup::update_offset_map(
|
5473 |
|
|
section_offset_type input_offset,
|
5474 |
|
|
section_size_type deleted_bytes,
|
5475 |
|
|
bool delete_entry)
|
5476 |
|
|
{
|
5477 |
|
|
if (this->section_offset_map_ == NULL)
|
5478 |
|
|
this->section_offset_map_ = new Arm_exidx_section_offset_map();
|
5479 |
|
|
section_offset_type output_offset;
|
5480 |
|
|
if (delete_entry)
|
5481 |
|
|
output_offset = Arm_exidx_input_section::invalid_offset;
|
5482 |
|
|
else
|
5483 |
|
|
output_offset = input_offset - deleted_bytes;
|
5484 |
|
|
(*this->section_offset_map_)[input_offset] = output_offset;
|
5485 |
|
|
}
|
5486 |
|
|
|
5487 |
|
|
// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
|
5488 |
|
|
// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
|
5489 |
|
|
// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
|
5490 |
|
|
// If some entries are merged, also store a pointer to a newly created
|
5491 |
|
|
// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
|
5492 |
|
|
// owns the map and is responsible for releasing it after use.
|
5493 |
|
|
|
5494 |
|
|
template<bool big_endian>
|
5495 |
|
|
uint32_t
|
5496 |
|
|
Arm_exidx_fixup::process_exidx_section(
|
5497 |
|
|
const Arm_exidx_input_section* exidx_input_section,
|
5498 |
|
|
const unsigned char* section_contents,
|
5499 |
|
|
section_size_type section_size,
|
5500 |
|
|
Arm_exidx_section_offset_map** psection_offset_map)
|
5501 |
|
|
{
|
5502 |
|
|
Relobj* relobj = exidx_input_section->relobj();
|
5503 |
|
|
unsigned shndx = exidx_input_section->shndx();
|
5504 |
|
|
|
5505 |
|
|
if ((section_size % 8) != 0)
|
5506 |
|
|
{
|
5507 |
|
|
// Something is wrong with this section. Better not touch it.
|
5508 |
|
|
gold_error(_("uneven .ARM.exidx section size in %s section %u"),
|
5509 |
|
|
relobj->name().c_str(), shndx);
|
5510 |
|
|
this->last_input_section_ = exidx_input_section;
|
5511 |
|
|
this->last_unwind_type_ = UT_NONE;
|
5512 |
|
|
return 0;
|
5513 |
|
|
}
|
5514 |
|
|
|
5515 |
|
|
uint32_t deleted_bytes = 0;
|
5516 |
|
|
bool prev_delete_entry = false;
|
5517 |
|
|
gold_assert(this->section_offset_map_ == NULL);
|
5518 |
|
|
|
5519 |
|
|
for (section_size_type i = 0; i < section_size; i += 8)
|
5520 |
|
|
{
|
5521 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
5522 |
|
|
const Valtype* wv =
|
5523 |
|
|
reinterpret_cast<const Valtype*>(section_contents + i + 4);
|
5524 |
|
|
uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
|
5525 |
|
|
|
5526 |
|
|
bool delete_entry = this->process_exidx_entry(second_word);
|
5527 |
|
|
|
5528 |
|
|
// Entry deletion causes changes in output offsets. We use a std::map
|
5529 |
|
|
// to record these. And entry (x, y) means input offset x
|
5530 |
|
|
// is mapped to output offset y. If y is invalid_offset, then x is
|
5531 |
|
|
// dropped in the output. Because of the way std::map::lower_bound
|
5532 |
|
|
// works, we record the last offset in a region w.r.t to keeping or
|
5533 |
|
|
// dropping. If there is no entry (x0, y0) for an input offset x0,
|
5534 |
|
|
// the output offset y0 of it is determined by the output offset y1 of
|
5535 |
|
|
// the smallest input offset x1 > x0 that there is an (x1, y1) entry
|
5536 |
|
|
// in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
|
5537 |
|
|
// y0 is also -1.
|
5538 |
|
|
if (delete_entry != prev_delete_entry && i != 0)
|
5539 |
|
|
this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
|
5540 |
|
|
|
5541 |
|
|
// Update total deleted bytes for this entry.
|
5542 |
|
|
if (delete_entry)
|
5543 |
|
|
deleted_bytes += 8;
|
5544 |
|
|
|
5545 |
|
|
prev_delete_entry = delete_entry;
|
5546 |
|
|
}
|
5547 |
|
|
|
5548 |
|
|
// If section offset map is not NULL, make an entry for the end of
|
5549 |
|
|
// section.
|
5550 |
|
|
if (this->section_offset_map_ != NULL)
|
5551 |
|
|
update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
|
5552 |
|
|
|
5553 |
|
|
*psection_offset_map = this->section_offset_map_;
|
5554 |
|
|
this->section_offset_map_ = NULL;
|
5555 |
|
|
this->last_input_section_ = exidx_input_section;
|
5556 |
|
|
|
5557 |
|
|
// Set the first output text section so that we can link the EXIDX output
|
5558 |
|
|
// section to it. Ignore any EXIDX input section that is completely merged.
|
5559 |
|
|
if (this->first_output_text_section_ == NULL
|
5560 |
|
|
&& deleted_bytes != section_size)
|
5561 |
|
|
{
|
5562 |
|
|
unsigned int link = exidx_input_section->link();
|
5563 |
|
|
Output_section* os = relobj->output_section(link);
|
5564 |
|
|
gold_assert(os != NULL);
|
5565 |
|
|
this->first_output_text_section_ = os;
|
5566 |
|
|
}
|
5567 |
|
|
|
5568 |
|
|
return deleted_bytes;
|
5569 |
|
|
}
|
5570 |
|
|
|
5571 |
|
|
// Arm_output_section methods.
|
5572 |
|
|
|
5573 |
|
|
// Create a stub group for input sections from BEGIN to END. OWNER
|
5574 |
|
|
// points to the input section to be the owner a new stub table.
|
5575 |
|
|
|
5576 |
|
|
template<bool big_endian>
|
5577 |
|
|
void
|
5578 |
|
|
Arm_output_section<big_endian>::create_stub_group(
|
5579 |
|
|
Input_section_list::const_iterator begin,
|
5580 |
|
|
Input_section_list::const_iterator end,
|
5581 |
|
|
Input_section_list::const_iterator owner,
|
5582 |
|
|
Target_arm<big_endian>* target,
|
5583 |
|
|
std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
|
5584 |
|
|
const Task* task)
|
5585 |
|
|
{
|
5586 |
|
|
// We use a different kind of relaxed section in an EXIDX section.
|
5587 |
|
|
// The static casting from Output_relaxed_input_section to
|
5588 |
|
|
// Arm_input_section is invalid in an EXIDX section. We are okay
|
5589 |
|
|
// because we should not be calling this for an EXIDX section.
|
5590 |
|
|
gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
|
5591 |
|
|
|
5592 |
|
|
// Currently we convert ordinary input sections into relaxed sections only
|
5593 |
|
|
// at this point but we may want to support creating relaxed input section
|
5594 |
|
|
// very early. So we check here to see if owner is already a relaxed
|
5595 |
|
|
// section.
|
5596 |
|
|
|
5597 |
|
|
Arm_input_section<big_endian>* arm_input_section;
|
5598 |
|
|
if (owner->is_relaxed_input_section())
|
5599 |
|
|
{
|
5600 |
|
|
arm_input_section =
|
5601 |
|
|
Arm_input_section<big_endian>::as_arm_input_section(
|
5602 |
|
|
owner->relaxed_input_section());
|
5603 |
|
|
}
|
5604 |
|
|
else
|
5605 |
|
|
{
|
5606 |
|
|
gold_assert(owner->is_input_section());
|
5607 |
|
|
// Create a new relaxed input section. We need to lock the original
|
5608 |
|
|
// file.
|
5609 |
|
|
Task_lock_obj<Object> tl(task, owner->relobj());
|
5610 |
|
|
arm_input_section =
|
5611 |
|
|
target->new_arm_input_section(owner->relobj(), owner->shndx());
|
5612 |
|
|
new_relaxed_sections->push_back(arm_input_section);
|
5613 |
|
|
}
|
5614 |
|
|
|
5615 |
|
|
// Create a stub table.
|
5616 |
|
|
Stub_table<big_endian>* stub_table =
|
5617 |
|
|
target->new_stub_table(arm_input_section);
|
5618 |
|
|
|
5619 |
|
|
arm_input_section->set_stub_table(stub_table);
|
5620 |
|
|
|
5621 |
|
|
Input_section_list::const_iterator p = begin;
|
5622 |
|
|
Input_section_list::const_iterator prev_p;
|
5623 |
|
|
|
5624 |
|
|
// Look for input sections or relaxed input sections in [begin ... end].
|
5625 |
|
|
do
|
5626 |
|
|
{
|
5627 |
|
|
if (p->is_input_section() || p->is_relaxed_input_section())
|
5628 |
|
|
{
|
5629 |
|
|
// The stub table information for input sections live
|
5630 |
|
|
// in their objects.
|
5631 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5632 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
|
5633 |
|
|
arm_relobj->set_stub_table(p->shndx(), stub_table);
|
5634 |
|
|
}
|
5635 |
|
|
prev_p = p++;
|
5636 |
|
|
}
|
5637 |
|
|
while (prev_p != end);
|
5638 |
|
|
}
|
5639 |
|
|
|
5640 |
|
|
// Group input sections for stub generation. GROUP_SIZE is roughly the limit
|
5641 |
|
|
// of stub groups. We grow a stub group by adding input section until the
|
5642 |
|
|
// size is just below GROUP_SIZE. The last input section will be converted
|
5643 |
|
|
// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
|
5644 |
|
|
// input section after the stub table, effectively double the group size.
|
5645 |
|
|
//
|
5646 |
|
|
// This is similar to the group_sections() function in elf32-arm.c but is
|
5647 |
|
|
// implemented differently.
|
5648 |
|
|
|
5649 |
|
|
template<bool big_endian>
|
5650 |
|
|
void
|
5651 |
|
|
Arm_output_section<big_endian>::group_sections(
|
5652 |
|
|
section_size_type group_size,
|
5653 |
|
|
bool stubs_always_after_branch,
|
5654 |
|
|
Target_arm<big_endian>* target,
|
5655 |
|
|
const Task* task)
|
5656 |
|
|
{
|
5657 |
|
|
// We only care about sections containing code.
|
5658 |
|
|
if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
|
5659 |
|
|
return;
|
5660 |
|
|
|
5661 |
|
|
// States for grouping.
|
5662 |
|
|
typedef enum
|
5663 |
|
|
{
|
5664 |
|
|
// No group is being built.
|
5665 |
|
|
NO_GROUP,
|
5666 |
|
|
// A group is being built but the stub table is not found yet.
|
5667 |
|
|
// We keep group a stub group until the size is just under GROUP_SIZE.
|
5668 |
|
|
// The last input section in the group will be used as the stub table.
|
5669 |
|
|
FINDING_STUB_SECTION,
|
5670 |
|
|
// A group is being built and we have already found a stub table.
|
5671 |
|
|
// We enter this state to grow a stub group by adding input section
|
5672 |
|
|
// after the stub table. This effectively doubles the group size.
|
5673 |
|
|
HAS_STUB_SECTION
|
5674 |
|
|
} State;
|
5675 |
|
|
|
5676 |
|
|
// Any newly created relaxed sections are stored here.
|
5677 |
|
|
std::vector<Output_relaxed_input_section*> new_relaxed_sections;
|
5678 |
|
|
|
5679 |
|
|
State state = NO_GROUP;
|
5680 |
|
|
section_size_type off = 0;
|
5681 |
|
|
section_size_type group_begin_offset = 0;
|
5682 |
|
|
section_size_type group_end_offset = 0;
|
5683 |
|
|
section_size_type stub_table_end_offset = 0;
|
5684 |
|
|
Input_section_list::const_iterator group_begin =
|
5685 |
|
|
this->input_sections().end();
|
5686 |
|
|
Input_section_list::const_iterator stub_table =
|
5687 |
|
|
this->input_sections().end();
|
5688 |
|
|
Input_section_list::const_iterator group_end = this->input_sections().end();
|
5689 |
|
|
for (Input_section_list::const_iterator p = this->input_sections().begin();
|
5690 |
|
|
p != this->input_sections().end();
|
5691 |
|
|
++p)
|
5692 |
|
|
{
|
5693 |
|
|
section_size_type section_begin_offset =
|
5694 |
|
|
align_address(off, p->addralign());
|
5695 |
|
|
section_size_type section_end_offset =
|
5696 |
|
|
section_begin_offset + p->data_size();
|
5697 |
|
|
|
5698 |
|
|
// Check to see if we should group the previously seen sections.
|
5699 |
|
|
switch (state)
|
5700 |
|
|
{
|
5701 |
|
|
case NO_GROUP:
|
5702 |
|
|
break;
|
5703 |
|
|
|
5704 |
|
|
case FINDING_STUB_SECTION:
|
5705 |
|
|
// Adding this section makes the group larger than GROUP_SIZE.
|
5706 |
|
|
if (section_end_offset - group_begin_offset >= group_size)
|
5707 |
|
|
{
|
5708 |
|
|
if (stubs_always_after_branch)
|
5709 |
|
|
{
|
5710 |
|
|
gold_assert(group_end != this->input_sections().end());
|
5711 |
|
|
this->create_stub_group(group_begin, group_end, group_end,
|
5712 |
|
|
target, &new_relaxed_sections,
|
5713 |
|
|
task);
|
5714 |
|
|
state = NO_GROUP;
|
5715 |
|
|
}
|
5716 |
|
|
else
|
5717 |
|
|
{
|
5718 |
|
|
// But wait, there's more! Input sections up to
|
5719 |
|
|
// stub_group_size bytes after the stub table can be
|
5720 |
|
|
// handled by it too.
|
5721 |
|
|
state = HAS_STUB_SECTION;
|
5722 |
|
|
stub_table = group_end;
|
5723 |
|
|
stub_table_end_offset = group_end_offset;
|
5724 |
|
|
}
|
5725 |
|
|
}
|
5726 |
|
|
break;
|
5727 |
|
|
|
5728 |
|
|
case HAS_STUB_SECTION:
|
5729 |
|
|
// Adding this section makes the post stub-section group larger
|
5730 |
|
|
// than GROUP_SIZE.
|
5731 |
|
|
if (section_end_offset - stub_table_end_offset >= group_size)
|
5732 |
|
|
{
|
5733 |
|
|
gold_assert(group_end != this->input_sections().end());
|
5734 |
|
|
this->create_stub_group(group_begin, group_end, stub_table,
|
5735 |
|
|
target, &new_relaxed_sections, task);
|
5736 |
|
|
state = NO_GROUP;
|
5737 |
|
|
}
|
5738 |
|
|
break;
|
5739 |
|
|
|
5740 |
|
|
default:
|
5741 |
|
|
gold_unreachable();
|
5742 |
|
|
}
|
5743 |
|
|
|
5744 |
|
|
// If we see an input section and currently there is no group, start
|
5745 |
|
|
// a new one. Skip any empty sections. We look at the data size
|
5746 |
|
|
// instead of calling p->relobj()->section_size() to avoid locking.
|
5747 |
|
|
if ((p->is_input_section() || p->is_relaxed_input_section())
|
5748 |
|
|
&& (p->data_size() != 0))
|
5749 |
|
|
{
|
5750 |
|
|
if (state == NO_GROUP)
|
5751 |
|
|
{
|
5752 |
|
|
state = FINDING_STUB_SECTION;
|
5753 |
|
|
group_begin = p;
|
5754 |
|
|
group_begin_offset = section_begin_offset;
|
5755 |
|
|
}
|
5756 |
|
|
|
5757 |
|
|
// Keep track of the last input section seen.
|
5758 |
|
|
group_end = p;
|
5759 |
|
|
group_end_offset = section_end_offset;
|
5760 |
|
|
}
|
5761 |
|
|
|
5762 |
|
|
off = section_end_offset;
|
5763 |
|
|
}
|
5764 |
|
|
|
5765 |
|
|
// Create a stub group for any ungrouped sections.
|
5766 |
|
|
if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
|
5767 |
|
|
{
|
5768 |
|
|
gold_assert(group_end != this->input_sections().end());
|
5769 |
|
|
this->create_stub_group(group_begin, group_end,
|
5770 |
|
|
(state == FINDING_STUB_SECTION
|
5771 |
|
|
? group_end
|
5772 |
|
|
: stub_table),
|
5773 |
|
|
target, &new_relaxed_sections, task);
|
5774 |
|
|
}
|
5775 |
|
|
|
5776 |
|
|
// Convert input section into relaxed input section in a batch.
|
5777 |
|
|
if (!new_relaxed_sections.empty())
|
5778 |
|
|
this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
|
5779 |
|
|
|
5780 |
|
|
// Update the section offsets
|
5781 |
|
|
for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
|
5782 |
|
|
{
|
5783 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5784 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(
|
5785 |
|
|
new_relaxed_sections[i]->relobj());
|
5786 |
|
|
unsigned int shndx = new_relaxed_sections[i]->shndx();
|
5787 |
|
|
// Tell Arm_relobj that this input section is converted.
|
5788 |
|
|
arm_relobj->convert_input_section_to_relaxed_section(shndx);
|
5789 |
|
|
}
|
5790 |
|
|
}
|
5791 |
|
|
|
5792 |
|
|
// Append non empty text sections in this to LIST in ascending
|
5793 |
|
|
// order of their position in this.
|
5794 |
|
|
|
5795 |
|
|
template<bool big_endian>
|
5796 |
|
|
void
|
5797 |
|
|
Arm_output_section<big_endian>::append_text_sections_to_list(
|
5798 |
|
|
Text_section_list* list)
|
5799 |
|
|
{
|
5800 |
|
|
gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
|
5801 |
|
|
|
5802 |
|
|
for (Input_section_list::const_iterator p = this->input_sections().begin();
|
5803 |
|
|
p != this->input_sections().end();
|
5804 |
|
|
++p)
|
5805 |
|
|
{
|
5806 |
|
|
// We only care about plain or relaxed input sections. We also
|
5807 |
|
|
// ignore any merged sections.
|
5808 |
159 |
khays |
if (p->is_input_section() || p->is_relaxed_input_section())
|
5809 |
27 |
khays |
list->push_back(Text_section_list::value_type(p->relobj(),
|
5810 |
|
|
p->shndx()));
|
5811 |
|
|
}
|
5812 |
|
|
}
|
5813 |
|
|
|
5814 |
|
|
template<bool big_endian>
|
5815 |
|
|
void
|
5816 |
|
|
Arm_output_section<big_endian>::fix_exidx_coverage(
|
5817 |
|
|
Layout* layout,
|
5818 |
|
|
const Text_section_list& sorted_text_sections,
|
5819 |
|
|
Symbol_table* symtab,
|
5820 |
|
|
bool merge_exidx_entries,
|
5821 |
|
|
const Task* task)
|
5822 |
|
|
{
|
5823 |
|
|
// We should only do this for the EXIDX output section.
|
5824 |
|
|
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
|
5825 |
|
|
|
5826 |
|
|
// We don't want the relaxation loop to undo these changes, so we discard
|
5827 |
|
|
// the current saved states and take another one after the fix-up.
|
5828 |
|
|
this->discard_states();
|
5829 |
|
|
|
5830 |
|
|
// Remove all input sections.
|
5831 |
|
|
uint64_t address = this->address();
|
5832 |
|
|
typedef std::list<Output_section::Input_section> Input_section_list;
|
5833 |
|
|
Input_section_list input_sections;
|
5834 |
|
|
this->reset_address_and_file_offset();
|
5835 |
|
|
this->get_input_sections(address, std::string(""), &input_sections);
|
5836 |
|
|
|
5837 |
|
|
if (!this->input_sections().empty())
|
5838 |
|
|
gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
|
5839 |
|
|
|
5840 |
|
|
// Go through all the known input sections and record them.
|
5841 |
|
|
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
|
5842 |
|
|
typedef Unordered_map<Section_id, const Output_section::Input_section*,
|
5843 |
|
|
Section_id_hash> Text_to_exidx_map;
|
5844 |
|
|
Text_to_exidx_map text_to_exidx_map;
|
5845 |
|
|
for (Input_section_list::const_iterator p = input_sections.begin();
|
5846 |
|
|
p != input_sections.end();
|
5847 |
|
|
++p)
|
5848 |
|
|
{
|
5849 |
|
|
// This should never happen. At this point, we should only see
|
5850 |
|
|
// plain EXIDX input sections.
|
5851 |
|
|
gold_assert(!p->is_relaxed_input_section());
|
5852 |
|
|
text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
|
5853 |
|
|
}
|
5854 |
|
|
|
5855 |
|
|
Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
|
5856 |
|
|
|
5857 |
|
|
// Go over the sorted text sections.
|
5858 |
|
|
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
|
5859 |
|
|
Section_id_set processed_input_sections;
|
5860 |
|
|
for (Text_section_list::const_iterator p = sorted_text_sections.begin();
|
5861 |
|
|
p != sorted_text_sections.end();
|
5862 |
|
|
++p)
|
5863 |
|
|
{
|
5864 |
|
|
Relobj* relobj = p->first;
|
5865 |
|
|
unsigned int shndx = p->second;
|
5866 |
|
|
|
5867 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5868 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(relobj);
|
5869 |
|
|
const Arm_exidx_input_section* exidx_input_section =
|
5870 |
|
|
arm_relobj->exidx_input_section_by_link(shndx);
|
5871 |
|
|
|
5872 |
|
|
// If this text section has no EXIDX section or if the EXIDX section
|
5873 |
|
|
// has errors, force an EXIDX_CANTUNWIND entry pointing to the end
|
5874 |
|
|
// of the last seen EXIDX section.
|
5875 |
|
|
if (exidx_input_section == NULL || exidx_input_section->has_errors())
|
5876 |
|
|
{
|
5877 |
|
|
exidx_fixup.add_exidx_cantunwind_as_needed();
|
5878 |
|
|
continue;
|
5879 |
|
|
}
|
5880 |
|
|
|
5881 |
|
|
Relobj* exidx_relobj = exidx_input_section->relobj();
|
5882 |
|
|
unsigned int exidx_shndx = exidx_input_section->shndx();
|
5883 |
|
|
Section_id sid(exidx_relobj, exidx_shndx);
|
5884 |
|
|
Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
|
5885 |
|
|
if (iter == text_to_exidx_map.end())
|
5886 |
|
|
{
|
5887 |
|
|
// This is odd. We have not seen this EXIDX input section before.
|
5888 |
|
|
// We cannot do fix-up. If we saw a SECTIONS clause in a script,
|
5889 |
|
|
// issue a warning instead. We assume the user knows what he
|
5890 |
|
|
// or she is doing. Otherwise, this is an error.
|
5891 |
|
|
if (layout->script_options()->saw_sections_clause())
|
5892 |
|
|
gold_warning(_("unwinding may not work because EXIDX input section"
|
5893 |
|
|
" %u of %s is not in EXIDX output section"),
|
5894 |
|
|
exidx_shndx, exidx_relobj->name().c_str());
|
5895 |
|
|
else
|
5896 |
|
|
gold_error(_("unwinding may not work because EXIDX input section"
|
5897 |
|
|
" %u of %s is not in EXIDX output section"),
|
5898 |
|
|
exidx_shndx, exidx_relobj->name().c_str());
|
5899 |
|
|
|
5900 |
|
|
exidx_fixup.add_exidx_cantunwind_as_needed();
|
5901 |
|
|
continue;
|
5902 |
|
|
}
|
5903 |
|
|
|
5904 |
|
|
// We need to access the contents of the EXIDX section, lock the
|
5905 |
|
|
// object here.
|
5906 |
|
|
Task_lock_obj<Object> tl(task, exidx_relobj);
|
5907 |
|
|
section_size_type exidx_size;
|
5908 |
|
|
const unsigned char* exidx_contents =
|
5909 |
|
|
exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
|
5910 |
|
|
|
5911 |
|
|
// Fix up coverage and append input section to output data list.
|
5912 |
|
|
Arm_exidx_section_offset_map* section_offset_map = NULL;
|
5913 |
|
|
uint32_t deleted_bytes =
|
5914 |
|
|
exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
|
5915 |
|
|
exidx_contents,
|
5916 |
|
|
exidx_size,
|
5917 |
|
|
§ion_offset_map);
|
5918 |
|
|
|
5919 |
|
|
if (deleted_bytes == exidx_input_section->size())
|
5920 |
|
|
{
|
5921 |
|
|
// The whole EXIDX section got merged. Remove it from output.
|
5922 |
|
|
gold_assert(section_offset_map == NULL);
|
5923 |
|
|
exidx_relobj->set_output_section(exidx_shndx, NULL);
|
5924 |
|
|
|
5925 |
|
|
// All local symbols defined in this input section will be dropped.
|
5926 |
|
|
// We need to adjust output local symbol count.
|
5927 |
|
|
arm_relobj->set_output_local_symbol_count_needs_update();
|
5928 |
|
|
}
|
5929 |
|
|
else if (deleted_bytes > 0)
|
5930 |
|
|
{
|
5931 |
|
|
// Some entries are merged. We need to convert this EXIDX input
|
5932 |
|
|
// section into a relaxed section.
|
5933 |
|
|
gold_assert(section_offset_map != NULL);
|
5934 |
|
|
|
5935 |
|
|
Arm_exidx_merged_section* merged_section =
|
5936 |
|
|
new Arm_exidx_merged_section(*exidx_input_section,
|
5937 |
|
|
*section_offset_map, deleted_bytes);
|
5938 |
|
|
merged_section->build_contents(exidx_contents, exidx_size);
|
5939 |
|
|
|
5940 |
|
|
const std::string secname = exidx_relobj->section_name(exidx_shndx);
|
5941 |
|
|
this->add_relaxed_input_section(layout, merged_section, secname);
|
5942 |
|
|
arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
|
5943 |
|
|
|
5944 |
|
|
// All local symbols defined in discarded portions of this input
|
5945 |
|
|
// section will be dropped. We need to adjust output local symbol
|
5946 |
|
|
// count.
|
5947 |
|
|
arm_relobj->set_output_local_symbol_count_needs_update();
|
5948 |
|
|
}
|
5949 |
|
|
else
|
5950 |
|
|
{
|
5951 |
|
|
// Just add back the EXIDX input section.
|
5952 |
|
|
gold_assert(section_offset_map == NULL);
|
5953 |
|
|
const Output_section::Input_section* pis = iter->second;
|
5954 |
|
|
gold_assert(pis->is_input_section());
|
5955 |
|
|
this->add_script_input_section(*pis);
|
5956 |
|
|
}
|
5957 |
|
|
|
5958 |
|
|
processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
|
5959 |
|
|
}
|
5960 |
|
|
|
5961 |
|
|
// Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
|
5962 |
|
|
exidx_fixup.add_exidx_cantunwind_as_needed();
|
5963 |
|
|
|
5964 |
|
|
// Remove any known EXIDX input sections that are not processed.
|
5965 |
|
|
for (Input_section_list::const_iterator p = input_sections.begin();
|
5966 |
|
|
p != input_sections.end();
|
5967 |
|
|
++p)
|
5968 |
|
|
{
|
5969 |
|
|
if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
|
5970 |
|
|
== processed_input_sections.end())
|
5971 |
|
|
{
|
5972 |
|
|
// We discard a known EXIDX section because its linked
|
5973 |
|
|
// text section has been folded by ICF. We also discard an
|
5974 |
|
|
// EXIDX section with error, the output does not matter in this
|
5975 |
|
|
// case. We do this to avoid triggering asserts.
|
5976 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
5977 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
|
5978 |
|
|
const Arm_exidx_input_section* exidx_input_section =
|
5979 |
|
|
arm_relobj->exidx_input_section_by_shndx(p->shndx());
|
5980 |
|
|
gold_assert(exidx_input_section != NULL);
|
5981 |
|
|
if (!exidx_input_section->has_errors())
|
5982 |
|
|
{
|
5983 |
|
|
unsigned int text_shndx = exidx_input_section->link();
|
5984 |
|
|
gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
|
5985 |
|
|
}
|
5986 |
|
|
|
5987 |
|
|
// Remove this from link. We also need to recount the
|
5988 |
|
|
// local symbols.
|
5989 |
|
|
p->relobj()->set_output_section(p->shndx(), NULL);
|
5990 |
|
|
arm_relobj->set_output_local_symbol_count_needs_update();
|
5991 |
|
|
}
|
5992 |
|
|
}
|
5993 |
|
|
|
5994 |
|
|
// Link exidx output section to the first seen output section and
|
5995 |
|
|
// set correct entry size.
|
5996 |
|
|
this->set_link_section(exidx_fixup.first_output_text_section());
|
5997 |
|
|
this->set_entsize(8);
|
5998 |
|
|
|
5999 |
|
|
// Make changes permanent.
|
6000 |
|
|
this->save_states();
|
6001 |
|
|
this->set_section_offsets_need_adjustment();
|
6002 |
|
|
}
|
6003 |
|
|
|
6004 |
|
|
// Link EXIDX output sections to text output sections.
|
6005 |
|
|
|
6006 |
|
|
template<bool big_endian>
|
6007 |
|
|
void
|
6008 |
|
|
Arm_output_section<big_endian>::set_exidx_section_link()
|
6009 |
|
|
{
|
6010 |
|
|
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
|
6011 |
|
|
if (!this->input_sections().empty())
|
6012 |
|
|
{
|
6013 |
|
|
Input_section_list::const_iterator p = this->input_sections().begin();
|
6014 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
6015 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
|
6016 |
|
|
unsigned exidx_shndx = p->shndx();
|
6017 |
|
|
const Arm_exidx_input_section* exidx_input_section =
|
6018 |
|
|
arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
|
6019 |
|
|
gold_assert(exidx_input_section != NULL);
|
6020 |
|
|
unsigned int text_shndx = exidx_input_section->link();
|
6021 |
|
|
Output_section* os = arm_relobj->output_section(text_shndx);
|
6022 |
|
|
this->set_link_section(os);
|
6023 |
|
|
}
|
6024 |
|
|
}
|
6025 |
|
|
|
6026 |
|
|
// Arm_relobj methods.
|
6027 |
|
|
|
6028 |
|
|
// Determine if an input section is scannable for stub processing. SHDR is
|
6029 |
|
|
// the header of the section and SHNDX is the section index. OS is the output
|
6030 |
|
|
// section for the input section and SYMTAB is the global symbol table used to
|
6031 |
|
|
// look up ICF information.
|
6032 |
|
|
|
6033 |
|
|
template<bool big_endian>
|
6034 |
|
|
bool
|
6035 |
|
|
Arm_relobj<big_endian>::section_is_scannable(
|
6036 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
6037 |
|
|
unsigned int shndx,
|
6038 |
|
|
const Output_section* os,
|
6039 |
|
|
const Symbol_table* symtab)
|
6040 |
|
|
{
|
6041 |
|
|
// Skip any empty sections, unallocated sections or sections whose
|
6042 |
|
|
// type are not SHT_PROGBITS.
|
6043 |
|
|
if (shdr.get_sh_size() == 0
|
6044 |
|
|
|| (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
|
6045 |
|
|
|| shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
|
6046 |
|
|
return false;
|
6047 |
|
|
|
6048 |
|
|
// Skip any discarded or ICF'ed sections.
|
6049 |
|
|
if (os == NULL || symtab->is_section_folded(this, shndx))
|
6050 |
|
|
return false;
|
6051 |
|
|
|
6052 |
|
|
// If this requires special offset handling, check to see if it is
|
6053 |
|
|
// a relaxed section. If this is not, then it is a merged section that
|
6054 |
|
|
// we cannot handle.
|
6055 |
|
|
if (this->is_output_section_offset_invalid(shndx))
|
6056 |
|
|
{
|
6057 |
|
|
const Output_relaxed_input_section* poris =
|
6058 |
|
|
os->find_relaxed_input_section(this, shndx);
|
6059 |
|
|
if (poris == NULL)
|
6060 |
|
|
return false;
|
6061 |
|
|
}
|
6062 |
|
|
|
6063 |
|
|
return true;
|
6064 |
|
|
}
|
6065 |
|
|
|
6066 |
|
|
// Determine if we want to scan the SHNDX-th section for relocation stubs.
|
6067 |
|
|
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
|
6068 |
|
|
|
6069 |
|
|
template<bool big_endian>
|
6070 |
|
|
bool
|
6071 |
|
|
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
|
6072 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
6073 |
|
|
const Relobj::Output_sections& out_sections,
|
6074 |
|
|
const Symbol_table* symtab,
|
6075 |
|
|
const unsigned char* pshdrs)
|
6076 |
|
|
{
|
6077 |
|
|
unsigned int sh_type = shdr.get_sh_type();
|
6078 |
|
|
if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
|
6079 |
|
|
return false;
|
6080 |
|
|
|
6081 |
|
|
// Ignore empty section.
|
6082 |
|
|
off_t sh_size = shdr.get_sh_size();
|
6083 |
|
|
if (sh_size == 0)
|
6084 |
|
|
return false;
|
6085 |
|
|
|
6086 |
|
|
// Ignore reloc section with unexpected symbol table. The
|
6087 |
|
|
// error will be reported in the final link.
|
6088 |
|
|
if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
|
6089 |
|
|
return false;
|
6090 |
|
|
|
6091 |
|
|
unsigned int reloc_size;
|
6092 |
|
|
if (sh_type == elfcpp::SHT_REL)
|
6093 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
|
6094 |
|
|
else
|
6095 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
|
6096 |
|
|
|
6097 |
|
|
// Ignore reloc section with unexpected entsize or uneven size.
|
6098 |
|
|
// The error will be reported in the final link.
|
6099 |
|
|
if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
|
6100 |
|
|
return false;
|
6101 |
|
|
|
6102 |
|
|
// Ignore reloc section with bad info. This error will be
|
6103 |
|
|
// reported in the final link.
|
6104 |
|
|
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
|
6105 |
|
|
if (index >= this->shnum())
|
6106 |
|
|
return false;
|
6107 |
|
|
|
6108 |
|
|
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
6109 |
|
|
const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
|
6110 |
|
|
return this->section_is_scannable(text_shdr, index,
|
6111 |
|
|
out_sections[index], symtab);
|
6112 |
|
|
}
|
6113 |
|
|
|
6114 |
|
|
// Return the output address of either a plain input section or a relaxed
|
6115 |
|
|
// input section. SHNDX is the section index. We define and use this
|
6116 |
|
|
// instead of calling Output_section::output_address because that is slow
|
6117 |
|
|
// for large output.
|
6118 |
|
|
|
6119 |
|
|
template<bool big_endian>
|
6120 |
|
|
Arm_address
|
6121 |
|
|
Arm_relobj<big_endian>::simple_input_section_output_address(
|
6122 |
|
|
unsigned int shndx,
|
6123 |
|
|
Output_section* os)
|
6124 |
|
|
{
|
6125 |
|
|
if (this->is_output_section_offset_invalid(shndx))
|
6126 |
|
|
{
|
6127 |
|
|
const Output_relaxed_input_section* poris =
|
6128 |
|
|
os->find_relaxed_input_section(this, shndx);
|
6129 |
|
|
// We do not handle merged sections here.
|
6130 |
|
|
gold_assert(poris != NULL);
|
6131 |
|
|
return poris->address();
|
6132 |
|
|
}
|
6133 |
|
|
else
|
6134 |
|
|
return os->address() + this->get_output_section_offset(shndx);
|
6135 |
|
|
}
|
6136 |
|
|
|
6137 |
|
|
// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
|
6138 |
|
|
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
|
6139 |
|
|
|
6140 |
|
|
template<bool big_endian>
|
6141 |
|
|
bool
|
6142 |
|
|
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
|
6143 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
6144 |
|
|
unsigned int shndx,
|
6145 |
|
|
Output_section* os,
|
6146 |
|
|
const Symbol_table* symtab)
|
6147 |
|
|
{
|
6148 |
|
|
if (!this->section_is_scannable(shdr, shndx, os, symtab))
|
6149 |
|
|
return false;
|
6150 |
|
|
|
6151 |
|
|
// If the section does not cross any 4K-boundaries, it does not need to
|
6152 |
|
|
// be scanned.
|
6153 |
|
|
Arm_address address = this->simple_input_section_output_address(shndx, os);
|
6154 |
|
|
if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
|
6155 |
|
|
return false;
|
6156 |
|
|
|
6157 |
|
|
return true;
|
6158 |
|
|
}
|
6159 |
|
|
|
6160 |
|
|
// Scan a section for Cortex-A8 workaround.
|
6161 |
|
|
|
6162 |
|
|
template<bool big_endian>
|
6163 |
|
|
void
|
6164 |
|
|
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
|
6165 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
6166 |
|
|
unsigned int shndx,
|
6167 |
|
|
Output_section* os,
|
6168 |
|
|
Target_arm<big_endian>* arm_target)
|
6169 |
|
|
{
|
6170 |
|
|
// Look for the first mapping symbol in this section. It should be
|
6171 |
|
|
// at (shndx, 0).
|
6172 |
|
|
Mapping_symbol_position section_start(shndx, 0);
|
6173 |
|
|
typename Mapping_symbols_info::const_iterator p =
|
6174 |
|
|
this->mapping_symbols_info_.lower_bound(section_start);
|
6175 |
|
|
|
6176 |
|
|
// There are no mapping symbols for this section. Treat it as a data-only
|
6177 |
|
|
// section. Issue a warning if section is marked as containing
|
6178 |
|
|
// instructions.
|
6179 |
|
|
if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
|
6180 |
|
|
{
|
6181 |
|
|
if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
|
6182 |
|
|
gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
|
6183 |
|
|
"erratum because it has no mapping symbols."),
|
6184 |
|
|
shndx, this->name().c_str());
|
6185 |
|
|
return;
|
6186 |
|
|
}
|
6187 |
|
|
|
6188 |
|
|
Arm_address output_address =
|
6189 |
|
|
this->simple_input_section_output_address(shndx, os);
|
6190 |
|
|
|
6191 |
|
|
// Get the section contents.
|
6192 |
|
|
section_size_type input_view_size = 0;
|
6193 |
|
|
const unsigned char* input_view =
|
6194 |
|
|
this->section_contents(shndx, &input_view_size, false);
|
6195 |
|
|
|
6196 |
|
|
// We need to go through the mapping symbols to determine what to
|
6197 |
|
|
// scan. There are two reasons. First, we should look at THUMB code and
|
6198 |
|
|
// THUMB code only. Second, we only want to look at the 4K-page boundary
|
6199 |
|
|
// to speed up the scanning.
|
6200 |
|
|
|
6201 |
|
|
while (p != this->mapping_symbols_info_.end()
|
6202 |
|
|
&& p->first.first == shndx)
|
6203 |
|
|
{
|
6204 |
|
|
typename Mapping_symbols_info::const_iterator next =
|
6205 |
|
|
this->mapping_symbols_info_.upper_bound(p->first);
|
6206 |
|
|
|
6207 |
|
|
// Only scan part of a section with THUMB code.
|
6208 |
|
|
if (p->second == 't')
|
6209 |
|
|
{
|
6210 |
|
|
// Determine the end of this range.
|
6211 |
|
|
section_size_type span_start =
|
6212 |
|
|
convert_to_section_size_type(p->first.second);
|
6213 |
|
|
section_size_type span_end;
|
6214 |
|
|
if (next != this->mapping_symbols_info_.end()
|
6215 |
|
|
&& next->first.first == shndx)
|
6216 |
|
|
span_end = convert_to_section_size_type(next->first.second);
|
6217 |
|
|
else
|
6218 |
|
|
span_end = convert_to_section_size_type(shdr.get_sh_size());
|
6219 |
|
|
|
6220 |
|
|
if (((span_start + output_address) & ~0xfffUL)
|
6221 |
|
|
!= ((span_end + output_address - 1) & ~0xfffUL))
|
6222 |
|
|
{
|
6223 |
|
|
arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
|
6224 |
|
|
span_start, span_end,
|
6225 |
|
|
input_view,
|
6226 |
|
|
output_address);
|
6227 |
|
|
}
|
6228 |
|
|
}
|
6229 |
|
|
|
6230 |
|
|
p = next;
|
6231 |
|
|
}
|
6232 |
|
|
}
|
6233 |
|
|
|
6234 |
|
|
// Scan relocations for stub generation.
|
6235 |
|
|
|
6236 |
|
|
template<bool big_endian>
|
6237 |
|
|
void
|
6238 |
|
|
Arm_relobj<big_endian>::scan_sections_for_stubs(
|
6239 |
|
|
Target_arm<big_endian>* arm_target,
|
6240 |
|
|
const Symbol_table* symtab,
|
6241 |
|
|
const Layout* layout)
|
6242 |
|
|
{
|
6243 |
|
|
unsigned int shnum = this->shnum();
|
6244 |
|
|
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
6245 |
|
|
|
6246 |
|
|
// Read the section headers.
|
6247 |
|
|
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
|
6248 |
|
|
shnum * shdr_size,
|
6249 |
|
|
true, true);
|
6250 |
|
|
|
6251 |
|
|
// To speed up processing, we set up hash tables for fast lookup of
|
6252 |
|
|
// input offsets to output addresses.
|
6253 |
|
|
this->initialize_input_to_output_maps();
|
6254 |
|
|
|
6255 |
|
|
const Relobj::Output_sections& out_sections(this->output_sections());
|
6256 |
|
|
|
6257 |
|
|
Relocate_info<32, big_endian> relinfo;
|
6258 |
|
|
relinfo.symtab = symtab;
|
6259 |
|
|
relinfo.layout = layout;
|
6260 |
|
|
relinfo.object = this;
|
6261 |
|
|
|
6262 |
|
|
// Do relocation stubs scanning.
|
6263 |
|
|
const unsigned char* p = pshdrs + shdr_size;
|
6264 |
|
|
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
|
6265 |
|
|
{
|
6266 |
|
|
const elfcpp::Shdr<32, big_endian> shdr(p);
|
6267 |
|
|
if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
|
6268 |
|
|
pshdrs))
|
6269 |
|
|
{
|
6270 |
|
|
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
|
6271 |
|
|
Arm_address output_offset = this->get_output_section_offset(index);
|
6272 |
|
|
Arm_address output_address;
|
6273 |
|
|
if (output_offset != invalid_address)
|
6274 |
|
|
output_address = out_sections[index]->address() + output_offset;
|
6275 |
|
|
else
|
6276 |
|
|
{
|
6277 |
|
|
// Currently this only happens for a relaxed section.
|
6278 |
|
|
const Output_relaxed_input_section* poris =
|
6279 |
|
|
out_sections[index]->find_relaxed_input_section(this, index);
|
6280 |
|
|
gold_assert(poris != NULL);
|
6281 |
|
|
output_address = poris->address();
|
6282 |
|
|
}
|
6283 |
|
|
|
6284 |
|
|
// Get the relocations.
|
6285 |
|
|
const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
|
6286 |
|
|
shdr.get_sh_size(),
|
6287 |
|
|
true, false);
|
6288 |
|
|
|
6289 |
|
|
// Get the section contents. This does work for the case in which
|
6290 |
|
|
// we modify the contents of an input section. We need to pass the
|
6291 |
|
|
// output view under such circumstances.
|
6292 |
|
|
section_size_type input_view_size = 0;
|
6293 |
|
|
const unsigned char* input_view =
|
6294 |
|
|
this->section_contents(index, &input_view_size, false);
|
6295 |
|
|
|
6296 |
|
|
relinfo.reloc_shndx = i;
|
6297 |
|
|
relinfo.data_shndx = index;
|
6298 |
|
|
unsigned int sh_type = shdr.get_sh_type();
|
6299 |
|
|
unsigned int reloc_size;
|
6300 |
|
|
if (sh_type == elfcpp::SHT_REL)
|
6301 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
|
6302 |
|
|
else
|
6303 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
|
6304 |
|
|
|
6305 |
|
|
Output_section* os = out_sections[index];
|
6306 |
|
|
arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
|
6307 |
|
|
shdr.get_sh_size() / reloc_size,
|
6308 |
|
|
os,
|
6309 |
|
|
output_offset == invalid_address,
|
6310 |
|
|
input_view, output_address,
|
6311 |
|
|
input_view_size);
|
6312 |
|
|
}
|
6313 |
|
|
}
|
6314 |
|
|
|
6315 |
|
|
// Do Cortex-A8 erratum stubs scanning. This has to be done for a section
|
6316 |
|
|
// after its relocation section, if there is one, is processed for
|
6317 |
|
|
// relocation stubs. Merging this loop with the one above would have been
|
6318 |
|
|
// complicated since we would have had to make sure that relocation stub
|
6319 |
|
|
// scanning is done first.
|
6320 |
|
|
if (arm_target->fix_cortex_a8())
|
6321 |
|
|
{
|
6322 |
|
|
const unsigned char* p = pshdrs + shdr_size;
|
6323 |
|
|
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
|
6324 |
|
|
{
|
6325 |
|
|
const elfcpp::Shdr<32, big_endian> shdr(p);
|
6326 |
|
|
if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
|
6327 |
|
|
out_sections[i],
|
6328 |
|
|
symtab))
|
6329 |
|
|
this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
|
6330 |
|
|
arm_target);
|
6331 |
|
|
}
|
6332 |
|
|
}
|
6333 |
|
|
|
6334 |
|
|
// After we've done the relocations, we release the hash tables,
|
6335 |
|
|
// since we no longer need them.
|
6336 |
|
|
this->free_input_to_output_maps();
|
6337 |
|
|
}
|
6338 |
|
|
|
6339 |
|
|
// Count the local symbols. The ARM backend needs to know if a symbol
|
6340 |
|
|
// is a THUMB function or not. For global symbols, it is easy because
|
6341 |
|
|
// the Symbol object keeps the ELF symbol type. For local symbol it is
|
6342 |
|
|
// harder because we cannot access this information. So we override the
|
6343 |
|
|
// do_count_local_symbol in parent and scan local symbols to mark
|
6344 |
|
|
// THUMB functions. This is not the most efficient way but I do not want to
|
6345 |
|
|
// slow down other ports by calling a per symbol target hook inside
|
6346 |
|
|
// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
|
6347 |
|
|
|
6348 |
|
|
template<bool big_endian>
|
6349 |
|
|
void
|
6350 |
|
|
Arm_relobj<big_endian>::do_count_local_symbols(
|
6351 |
|
|
Stringpool_template<char>* pool,
|
6352 |
|
|
Stringpool_template<char>* dynpool)
|
6353 |
|
|
{
|
6354 |
|
|
// We need to fix-up the values of any local symbols whose type are
|
6355 |
|
|
// STT_ARM_TFUNC.
|
6356 |
|
|
|
6357 |
|
|
// Ask parent to count the local symbols.
|
6358 |
|
|
Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
|
6359 |
|
|
const unsigned int loccount = this->local_symbol_count();
|
6360 |
|
|
if (loccount == 0)
|
6361 |
|
|
return;
|
6362 |
|
|
|
6363 |
|
|
// Initialize the thumb function bit-vector.
|
6364 |
|
|
std::vector<bool> empty_vector(loccount, false);
|
6365 |
|
|
this->local_symbol_is_thumb_function_.swap(empty_vector);
|
6366 |
|
|
|
6367 |
|
|
// Read the symbol table section header.
|
6368 |
|
|
const unsigned int symtab_shndx = this->symtab_shndx();
|
6369 |
|
|
elfcpp::Shdr<32, big_endian>
|
6370 |
|
|
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
|
6371 |
|
|
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
|
6372 |
|
|
|
6373 |
|
|
// Read the local symbols.
|
6374 |
|
|
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
|
6375 |
|
|
gold_assert(loccount == symtabshdr.get_sh_info());
|
6376 |
|
|
off_t locsize = loccount * sym_size;
|
6377 |
|
|
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
|
6378 |
|
|
locsize, true, true);
|
6379 |
|
|
|
6380 |
|
|
// For mapping symbol processing, we need to read the symbol names.
|
6381 |
|
|
unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
|
6382 |
|
|
if (strtab_shndx >= this->shnum())
|
6383 |
|
|
{
|
6384 |
|
|
this->error(_("invalid symbol table name index: %u"), strtab_shndx);
|
6385 |
|
|
return;
|
6386 |
|
|
}
|
6387 |
|
|
|
6388 |
|
|
elfcpp::Shdr<32, big_endian>
|
6389 |
|
|
strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
|
6390 |
|
|
if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
|
6391 |
|
|
{
|
6392 |
|
|
this->error(_("symbol table name section has wrong type: %u"),
|
6393 |
|
|
static_cast<unsigned int>(strtabshdr.get_sh_type()));
|
6394 |
|
|
return;
|
6395 |
|
|
}
|
6396 |
|
|
const char* pnames =
|
6397 |
|
|
reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
|
6398 |
|
|
strtabshdr.get_sh_size(),
|
6399 |
|
|
false, false));
|
6400 |
|
|
|
6401 |
|
|
// Loop over the local symbols and mark any local symbols pointing
|
6402 |
|
|
// to THUMB functions.
|
6403 |
|
|
|
6404 |
|
|
// Skip the first dummy symbol.
|
6405 |
|
|
psyms += sym_size;
|
6406 |
|
|
typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
|
6407 |
|
|
this->local_values();
|
6408 |
|
|
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
|
6409 |
|
|
{
|
6410 |
|
|
elfcpp::Sym<32, big_endian> sym(psyms);
|
6411 |
|
|
elfcpp::STT st_type = sym.get_st_type();
|
6412 |
|
|
Symbol_value<32>& lv((*plocal_values)[i]);
|
6413 |
|
|
Arm_address input_value = lv.input_value();
|
6414 |
|
|
|
6415 |
|
|
// Check to see if this is a mapping symbol.
|
6416 |
|
|
const char* sym_name = pnames + sym.get_st_name();
|
6417 |
|
|
if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
|
6418 |
|
|
{
|
6419 |
|
|
bool is_ordinary;
|
6420 |
|
|
unsigned int input_shndx =
|
6421 |
|
|
this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
|
6422 |
|
|
gold_assert(is_ordinary);
|
6423 |
|
|
|
6424 |
|
|
// Strip of LSB in case this is a THUMB symbol.
|
6425 |
|
|
Mapping_symbol_position msp(input_shndx, input_value & ~1U);
|
6426 |
|
|
this->mapping_symbols_info_[msp] = sym_name[1];
|
6427 |
|
|
}
|
6428 |
|
|
|
6429 |
|
|
if (st_type == elfcpp::STT_ARM_TFUNC
|
6430 |
|
|
|| (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
|
6431 |
|
|
{
|
6432 |
|
|
// This is a THUMB function. Mark this and canonicalize the
|
6433 |
|
|
// symbol value by setting LSB.
|
6434 |
|
|
this->local_symbol_is_thumb_function_[i] = true;
|
6435 |
|
|
if ((input_value & 1) == 0)
|
6436 |
|
|
lv.set_input_value(input_value | 1);
|
6437 |
|
|
}
|
6438 |
|
|
}
|
6439 |
|
|
}
|
6440 |
|
|
|
6441 |
|
|
// Relocate sections.
|
6442 |
|
|
template<bool big_endian>
|
6443 |
|
|
void
|
6444 |
|
|
Arm_relobj<big_endian>::do_relocate_sections(
|
6445 |
|
|
const Symbol_table* symtab,
|
6446 |
|
|
const Layout* layout,
|
6447 |
|
|
const unsigned char* pshdrs,
|
6448 |
|
|
Output_file* of,
|
6449 |
|
|
typename Sized_relobj_file<32, big_endian>::Views* pviews)
|
6450 |
|
|
{
|
6451 |
|
|
// Call parent to relocate sections.
|
6452 |
|
|
Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
|
6453 |
|
|
pshdrs, of, pviews);
|
6454 |
|
|
|
6455 |
|
|
// We do not generate stubs if doing a relocatable link.
|
6456 |
|
|
if (parameters->options().relocatable())
|
6457 |
|
|
return;
|
6458 |
|
|
|
6459 |
|
|
// Relocate stub tables.
|
6460 |
|
|
unsigned int shnum = this->shnum();
|
6461 |
|
|
|
6462 |
|
|
Target_arm<big_endian>* arm_target =
|
6463 |
|
|
Target_arm<big_endian>::default_target();
|
6464 |
|
|
|
6465 |
|
|
Relocate_info<32, big_endian> relinfo;
|
6466 |
|
|
relinfo.symtab = symtab;
|
6467 |
|
|
relinfo.layout = layout;
|
6468 |
|
|
relinfo.object = this;
|
6469 |
|
|
|
6470 |
|
|
for (unsigned int i = 1; i < shnum; ++i)
|
6471 |
|
|
{
|
6472 |
|
|
Arm_input_section<big_endian>* arm_input_section =
|
6473 |
|
|
arm_target->find_arm_input_section(this, i);
|
6474 |
|
|
|
6475 |
|
|
if (arm_input_section != NULL
|
6476 |
|
|
&& arm_input_section->is_stub_table_owner()
|
6477 |
|
|
&& !arm_input_section->stub_table()->empty())
|
6478 |
|
|
{
|
6479 |
|
|
// We cannot discard a section if it owns a stub table.
|
6480 |
|
|
Output_section* os = this->output_section(i);
|
6481 |
|
|
gold_assert(os != NULL);
|
6482 |
|
|
|
6483 |
|
|
relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
|
6484 |
|
|
relinfo.reloc_shdr = NULL;
|
6485 |
|
|
relinfo.data_shndx = i;
|
6486 |
|
|
relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
|
6487 |
|
|
|
6488 |
|
|
gold_assert((*pviews)[i].view != NULL);
|
6489 |
|
|
|
6490 |
|
|
// We are passed the output section view. Adjust it to cover the
|
6491 |
|
|
// stub table only.
|
6492 |
|
|
Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
|
6493 |
|
|
gold_assert((stub_table->address() >= (*pviews)[i].address)
|
6494 |
|
|
&& ((stub_table->address() + stub_table->data_size())
|
6495 |
|
|
<= (*pviews)[i].address + (*pviews)[i].view_size));
|
6496 |
|
|
|
6497 |
|
|
off_t offset = stub_table->address() - (*pviews)[i].address;
|
6498 |
|
|
unsigned char* view = (*pviews)[i].view + offset;
|
6499 |
|
|
Arm_address address = stub_table->address();
|
6500 |
|
|
section_size_type view_size = stub_table->data_size();
|
6501 |
|
|
|
6502 |
|
|
stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
|
6503 |
|
|
view_size);
|
6504 |
|
|
}
|
6505 |
|
|
|
6506 |
|
|
// Apply Cortex A8 workaround if applicable.
|
6507 |
|
|
if (this->section_has_cortex_a8_workaround(i))
|
6508 |
|
|
{
|
6509 |
|
|
unsigned char* view = (*pviews)[i].view;
|
6510 |
|
|
Arm_address view_address = (*pviews)[i].address;
|
6511 |
|
|
section_size_type view_size = (*pviews)[i].view_size;
|
6512 |
|
|
Stub_table<big_endian>* stub_table = this->stub_tables_[i];
|
6513 |
|
|
|
6514 |
|
|
// Adjust view to cover section.
|
6515 |
|
|
Output_section* os = this->output_section(i);
|
6516 |
|
|
gold_assert(os != NULL);
|
6517 |
|
|
Arm_address section_address =
|
6518 |
|
|
this->simple_input_section_output_address(i, os);
|
6519 |
|
|
uint64_t section_size = this->section_size(i);
|
6520 |
|
|
|
6521 |
|
|
gold_assert(section_address >= view_address
|
6522 |
|
|
&& ((section_address + section_size)
|
6523 |
|
|
<= (view_address + view_size)));
|
6524 |
|
|
|
6525 |
|
|
unsigned char* section_view = view + (section_address - view_address);
|
6526 |
|
|
|
6527 |
|
|
// Apply the Cortex-A8 workaround to the output address range
|
6528 |
|
|
// corresponding to this input section.
|
6529 |
|
|
stub_table->apply_cortex_a8_workaround_to_address_range(
|
6530 |
|
|
arm_target,
|
6531 |
|
|
section_view,
|
6532 |
|
|
section_address,
|
6533 |
|
|
section_size);
|
6534 |
|
|
}
|
6535 |
|
|
}
|
6536 |
|
|
}
|
6537 |
|
|
|
6538 |
|
|
// Find the linked text section of an EXIDX section by looking at the first
|
6539 |
|
|
// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
|
6540 |
|
|
// must be linked to its associated code section via the sh_link field of
|
6541 |
|
|
// its section header. However, some tools are broken and the link is not
|
6542 |
|
|
// always set. LD just drops such an EXIDX section silently, causing the
|
6543 |
|
|
// associated code not unwindabled. Here we try a little bit harder to
|
6544 |
|
|
// discover the linked code section.
|
6545 |
|
|
//
|
6546 |
|
|
// PSHDR points to the section header of a relocation section of an EXIDX
|
6547 |
|
|
// section. If we can find a linked text section, return true and
|
6548 |
|
|
// store the text section index in the location PSHNDX. Otherwise
|
6549 |
|
|
// return false.
|
6550 |
|
|
|
6551 |
|
|
template<bool big_endian>
|
6552 |
|
|
bool
|
6553 |
|
|
Arm_relobj<big_endian>::find_linked_text_section(
|
6554 |
|
|
const unsigned char* pshdr,
|
6555 |
|
|
const unsigned char* psyms,
|
6556 |
|
|
unsigned int* pshndx)
|
6557 |
|
|
{
|
6558 |
|
|
elfcpp::Shdr<32, big_endian> shdr(pshdr);
|
6559 |
|
|
|
6560 |
|
|
// If there is no relocation, we cannot find the linked text section.
|
6561 |
|
|
size_t reloc_size;
|
6562 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_REL)
|
6563 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
|
6564 |
|
|
else
|
6565 |
|
|
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
|
6566 |
|
|
size_t reloc_count = shdr.get_sh_size() / reloc_size;
|
6567 |
|
|
|
6568 |
|
|
// Get the relocations.
|
6569 |
|
|
const unsigned char* prelocs =
|
6570 |
|
|
this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
|
6571 |
|
|
|
6572 |
|
|
// Find the REL31 relocation for the first word of the first EXIDX entry.
|
6573 |
|
|
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
|
6574 |
|
|
{
|
6575 |
|
|
Arm_address r_offset;
|
6576 |
|
|
typename elfcpp::Elf_types<32>::Elf_WXword r_info;
|
6577 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_REL)
|
6578 |
|
|
{
|
6579 |
|
|
typename elfcpp::Rel<32, big_endian> reloc(prelocs);
|
6580 |
|
|
r_info = reloc.get_r_info();
|
6581 |
|
|
r_offset = reloc.get_r_offset();
|
6582 |
|
|
}
|
6583 |
|
|
else
|
6584 |
|
|
{
|
6585 |
|
|
typename elfcpp::Rela<32, big_endian> reloc(prelocs);
|
6586 |
|
|
r_info = reloc.get_r_info();
|
6587 |
|
|
r_offset = reloc.get_r_offset();
|
6588 |
|
|
}
|
6589 |
|
|
|
6590 |
|
|
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
|
6591 |
|
|
if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
|
6592 |
|
|
continue;
|
6593 |
|
|
|
6594 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
|
6595 |
|
|
if (r_sym == 0
|
6596 |
|
|
|| r_sym >= this->local_symbol_count()
|
6597 |
|
|
|| r_offset != 0)
|
6598 |
|
|
continue;
|
6599 |
|
|
|
6600 |
|
|
// This is the relocation for the first word of the first EXIDX entry.
|
6601 |
|
|
// We expect to see a local section symbol.
|
6602 |
|
|
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
|
6603 |
|
|
elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
|
6604 |
|
|
if (sym.get_st_type() == elfcpp::STT_SECTION)
|
6605 |
|
|
{
|
6606 |
|
|
bool is_ordinary;
|
6607 |
|
|
*pshndx =
|
6608 |
|
|
this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
|
6609 |
|
|
gold_assert(is_ordinary);
|
6610 |
|
|
return true;
|
6611 |
|
|
}
|
6612 |
|
|
else
|
6613 |
|
|
return false;
|
6614 |
|
|
}
|
6615 |
|
|
|
6616 |
|
|
return false;
|
6617 |
|
|
}
|
6618 |
|
|
|
6619 |
|
|
// Make an EXIDX input section object for an EXIDX section whose index is
|
6620 |
|
|
// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
|
6621 |
|
|
// is the section index of the linked text section.
|
6622 |
|
|
|
6623 |
|
|
template<bool big_endian>
|
6624 |
|
|
void
|
6625 |
|
|
Arm_relobj<big_endian>::make_exidx_input_section(
|
6626 |
|
|
unsigned int shndx,
|
6627 |
|
|
const elfcpp::Shdr<32, big_endian>& shdr,
|
6628 |
|
|
unsigned int text_shndx,
|
6629 |
|
|
const elfcpp::Shdr<32, big_endian>& text_shdr)
|
6630 |
|
|
{
|
6631 |
|
|
// Create an Arm_exidx_input_section object for this EXIDX section.
|
6632 |
|
|
Arm_exidx_input_section* exidx_input_section =
|
6633 |
|
|
new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
|
6634 |
|
|
shdr.get_sh_addralign(),
|
6635 |
|
|
text_shdr.get_sh_size());
|
6636 |
|
|
|
6637 |
|
|
gold_assert(this->exidx_section_map_[shndx] == NULL);
|
6638 |
|
|
this->exidx_section_map_[shndx] = exidx_input_section;
|
6639 |
|
|
|
6640 |
|
|
if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
|
6641 |
|
|
{
|
6642 |
|
|
gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
|
6643 |
|
|
this->section_name(shndx).c_str(), shndx, text_shndx,
|
6644 |
|
|
this->name().c_str());
|
6645 |
|
|
exidx_input_section->set_has_errors();
|
6646 |
|
|
}
|
6647 |
|
|
else if (this->exidx_section_map_[text_shndx] != NULL)
|
6648 |
|
|
{
|
6649 |
|
|
unsigned other_exidx_shndx =
|
6650 |
|
|
this->exidx_section_map_[text_shndx]->shndx();
|
6651 |
|
|
gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
|
6652 |
|
|
"%s(%u) in %s"),
|
6653 |
|
|
this->section_name(shndx).c_str(), shndx,
|
6654 |
|
|
this->section_name(other_exidx_shndx).c_str(),
|
6655 |
|
|
other_exidx_shndx, this->section_name(text_shndx).c_str(),
|
6656 |
|
|
text_shndx, this->name().c_str());
|
6657 |
|
|
exidx_input_section->set_has_errors();
|
6658 |
|
|
}
|
6659 |
|
|
else
|
6660 |
|
|
this->exidx_section_map_[text_shndx] = exidx_input_section;
|
6661 |
|
|
|
6662 |
|
|
// Check section flags of text section.
|
6663 |
|
|
if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
|
6664 |
|
|
{
|
6665 |
|
|
gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
|
6666 |
|
|
" in %s"),
|
6667 |
|
|
this->section_name(shndx).c_str(), shndx,
|
6668 |
|
|
this->section_name(text_shndx).c_str(), text_shndx,
|
6669 |
|
|
this->name().c_str());
|
6670 |
|
|
exidx_input_section->set_has_errors();
|
6671 |
|
|
}
|
6672 |
|
|
else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
|
6673 |
|
|
// I would like to make this an error but currently ld just ignores
|
6674 |
|
|
// this.
|
6675 |
|
|
gold_warning(_("EXIDX section %s(%u) links to non-executable section "
|
6676 |
|
|
"%s(%u) in %s"),
|
6677 |
|
|
this->section_name(shndx).c_str(), shndx,
|
6678 |
|
|
this->section_name(text_shndx).c_str(), text_shndx,
|
6679 |
|
|
this->name().c_str());
|
6680 |
|
|
}
|
6681 |
|
|
|
6682 |
|
|
// Read the symbol information.
|
6683 |
|
|
|
6684 |
|
|
template<bool big_endian>
|
6685 |
|
|
void
|
6686 |
|
|
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
|
6687 |
|
|
{
|
6688 |
|
|
// Call parent class to read symbol information.
|
6689 |
|
|
Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
|
6690 |
|
|
|
6691 |
|
|
// If this input file is a binary file, it has no processor
|
6692 |
|
|
// specific flags and attributes section.
|
6693 |
|
|
Input_file::Format format = this->input_file()->format();
|
6694 |
|
|
if (format != Input_file::FORMAT_ELF)
|
6695 |
|
|
{
|
6696 |
|
|
gold_assert(format == Input_file::FORMAT_BINARY);
|
6697 |
|
|
this->merge_flags_and_attributes_ = false;
|
6698 |
|
|
return;
|
6699 |
|
|
}
|
6700 |
|
|
|
6701 |
|
|
// Read processor-specific flags in ELF file header.
|
6702 |
|
|
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
|
6703 |
|
|
elfcpp::Elf_sizes<32>::ehdr_size,
|
6704 |
|
|
true, false);
|
6705 |
|
|
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
|
6706 |
|
|
this->processor_specific_flags_ = ehdr.get_e_flags();
|
6707 |
|
|
|
6708 |
|
|
// Go over the section headers and look for .ARM.attributes and .ARM.exidx
|
6709 |
|
|
// sections.
|
6710 |
|
|
std::vector<unsigned int> deferred_exidx_sections;
|
6711 |
|
|
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
6712 |
|
|
const unsigned char* pshdrs = sd->section_headers->data();
|
6713 |
|
|
const unsigned char* ps = pshdrs + shdr_size;
|
6714 |
|
|
bool must_merge_flags_and_attributes = false;
|
6715 |
|
|
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
|
6716 |
|
|
{
|
6717 |
|
|
elfcpp::Shdr<32, big_endian> shdr(ps);
|
6718 |
|
|
|
6719 |
|
|
// Sometimes an object has no contents except the section name string
|
6720 |
|
|
// table and an empty symbol table with the undefined symbol. We
|
6721 |
|
|
// don't want to merge processor-specific flags from such an object.
|
6722 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
|
6723 |
|
|
{
|
6724 |
|
|
// Symbol table is not empty.
|
6725 |
|
|
const elfcpp::Elf_types<32>::Elf_WXword sym_size =
|
6726 |
|
|
elfcpp::Elf_sizes<32>::sym_size;
|
6727 |
|
|
if (shdr.get_sh_size() > sym_size)
|
6728 |
|
|
must_merge_flags_and_attributes = true;
|
6729 |
|
|
}
|
6730 |
|
|
else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
|
6731 |
|
|
// If this is neither an empty symbol table nor a string table,
|
6732 |
|
|
// be conservative.
|
6733 |
|
|
must_merge_flags_and_attributes = true;
|
6734 |
|
|
|
6735 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
|
6736 |
|
|
{
|
6737 |
|
|
gold_assert(this->attributes_section_data_ == NULL);
|
6738 |
|
|
section_offset_type section_offset = shdr.get_sh_offset();
|
6739 |
|
|
section_size_type section_size =
|
6740 |
|
|
convert_to_section_size_type(shdr.get_sh_size());
|
6741 |
|
|
const unsigned char* view =
|
6742 |
|
|
this->get_view(section_offset, section_size, true, false);
|
6743 |
|
|
this->attributes_section_data_ =
|
6744 |
|
|
new Attributes_section_data(view, section_size);
|
6745 |
|
|
}
|
6746 |
|
|
else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
|
6747 |
|
|
{
|
6748 |
|
|
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
|
6749 |
|
|
if (text_shndx == elfcpp::SHN_UNDEF)
|
6750 |
|
|
deferred_exidx_sections.push_back(i);
|
6751 |
|
|
else
|
6752 |
|
|
{
|
6753 |
|
|
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
|
6754 |
|
|
+ text_shndx * shdr_size);
|
6755 |
|
|
this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
|
6756 |
|
|
}
|
6757 |
|
|
// EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
|
6758 |
|
|
if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
|
6759 |
|
|
gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
|
6760 |
|
|
this->section_name(i).c_str(), this->name().c_str());
|
6761 |
|
|
}
|
6762 |
|
|
}
|
6763 |
|
|
|
6764 |
|
|
// This is rare.
|
6765 |
|
|
if (!must_merge_flags_and_attributes)
|
6766 |
|
|
{
|
6767 |
|
|
gold_assert(deferred_exidx_sections.empty());
|
6768 |
|
|
this->merge_flags_and_attributes_ = false;
|
6769 |
|
|
return;
|
6770 |
|
|
}
|
6771 |
|
|
|
6772 |
|
|
// Some tools are broken and they do not set the link of EXIDX sections.
|
6773 |
|
|
// We look at the first relocation to figure out the linked sections.
|
6774 |
|
|
if (!deferred_exidx_sections.empty())
|
6775 |
|
|
{
|
6776 |
|
|
// We need to go over the section headers again to find the mapping
|
6777 |
|
|
// from sections being relocated to their relocation sections. This is
|
6778 |
|
|
// a bit inefficient as we could do that in the loop above. However,
|
6779 |
|
|
// we do not expect any deferred EXIDX sections normally. So we do not
|
6780 |
|
|
// want to slow down the most common path.
|
6781 |
|
|
typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
|
6782 |
|
|
Reloc_map reloc_map;
|
6783 |
|
|
ps = pshdrs + shdr_size;
|
6784 |
|
|
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
|
6785 |
|
|
{
|
6786 |
|
|
elfcpp::Shdr<32, big_endian> shdr(ps);
|
6787 |
|
|
elfcpp::Elf_Word sh_type = shdr.get_sh_type();
|
6788 |
|
|
if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
|
6789 |
|
|
{
|
6790 |
|
|
unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
|
6791 |
|
|
if (info_shndx >= this->shnum())
|
6792 |
|
|
gold_error(_("relocation section %u has invalid info %u"),
|
6793 |
|
|
i, info_shndx);
|
6794 |
|
|
Reloc_map::value_type value(info_shndx, i);
|
6795 |
|
|
std::pair<Reloc_map::iterator, bool> result =
|
6796 |
|
|
reloc_map.insert(value);
|
6797 |
|
|
if (!result.second)
|
6798 |
|
|
gold_error(_("section %u has multiple relocation sections "
|
6799 |
|
|
"%u and %u"),
|
6800 |
|
|
info_shndx, i, reloc_map[info_shndx]);
|
6801 |
|
|
}
|
6802 |
|
|
}
|
6803 |
|
|
|
6804 |
|
|
// Read the symbol table section header.
|
6805 |
|
|
const unsigned int symtab_shndx = this->symtab_shndx();
|
6806 |
|
|
elfcpp::Shdr<32, big_endian>
|
6807 |
|
|
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
|
6808 |
|
|
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
|
6809 |
|
|
|
6810 |
|
|
// Read the local symbols.
|
6811 |
|
|
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
|
6812 |
|
|
const unsigned int loccount = this->local_symbol_count();
|
6813 |
|
|
gold_assert(loccount == symtabshdr.get_sh_info());
|
6814 |
|
|
off_t locsize = loccount * sym_size;
|
6815 |
|
|
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
|
6816 |
|
|
locsize, true, true);
|
6817 |
|
|
|
6818 |
|
|
// Process the deferred EXIDX sections.
|
6819 |
|
|
for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
|
6820 |
|
|
{
|
6821 |
|
|
unsigned int shndx = deferred_exidx_sections[i];
|
6822 |
|
|
elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
|
6823 |
|
|
unsigned int text_shndx = elfcpp::SHN_UNDEF;
|
6824 |
|
|
Reloc_map::const_iterator it = reloc_map.find(shndx);
|
6825 |
|
|
if (it != reloc_map.end())
|
6826 |
|
|
find_linked_text_section(pshdrs + it->second * shdr_size,
|
6827 |
|
|
psyms, &text_shndx);
|
6828 |
|
|
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
|
6829 |
|
|
+ text_shndx * shdr_size);
|
6830 |
|
|
this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
|
6831 |
|
|
}
|
6832 |
|
|
}
|
6833 |
|
|
}
|
6834 |
|
|
|
6835 |
|
|
// Process relocations for garbage collection. The ARM target uses .ARM.exidx
|
6836 |
|
|
// sections for unwinding. These sections are referenced implicitly by
|
6837 |
|
|
// text sections linked in the section headers. If we ignore these implicit
|
6838 |
|
|
// references, the .ARM.exidx sections and any .ARM.extab sections they use
|
6839 |
|
|
// will be garbage-collected incorrectly. Hence we override the same function
|
6840 |
|
|
// in the base class to handle these implicit references.
|
6841 |
|
|
|
6842 |
|
|
template<bool big_endian>
|
6843 |
|
|
void
|
6844 |
|
|
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
|
6845 |
|
|
Layout* layout,
|
6846 |
|
|
Read_relocs_data* rd)
|
6847 |
|
|
{
|
6848 |
|
|
// First, call base class method to process relocations in this object.
|
6849 |
|
|
Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
|
6850 |
|
|
|
6851 |
|
|
// If --gc-sections is not specified, there is nothing more to do.
|
6852 |
|
|
// This happens when --icf is used but --gc-sections is not.
|
6853 |
|
|
if (!parameters->options().gc_sections())
|
6854 |
|
|
return;
|
6855 |
|
|
|
6856 |
|
|
unsigned int shnum = this->shnum();
|
6857 |
|
|
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
6858 |
|
|
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
|
6859 |
|
|
shnum * shdr_size,
|
6860 |
|
|
true, true);
|
6861 |
|
|
|
6862 |
|
|
// Scan section headers for sections of type SHT_ARM_EXIDX. Add references
|
6863 |
|
|
// to these from the linked text sections.
|
6864 |
|
|
const unsigned char* ps = pshdrs + shdr_size;
|
6865 |
|
|
for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
|
6866 |
|
|
{
|
6867 |
|
|
elfcpp::Shdr<32, big_endian> shdr(ps);
|
6868 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
|
6869 |
|
|
{
|
6870 |
|
|
// Found an .ARM.exidx section, add it to the set of reachable
|
6871 |
|
|
// sections from its linked text section.
|
6872 |
|
|
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
|
6873 |
|
|
symtab->gc()->add_reference(this, text_shndx, this, i);
|
6874 |
|
|
}
|
6875 |
|
|
}
|
6876 |
|
|
}
|
6877 |
|
|
|
6878 |
|
|
// Update output local symbol count. Owing to EXIDX entry merging, some local
|
6879 |
|
|
// symbols will be removed in output. Adjust output local symbol count
|
6880 |
|
|
// accordingly. We can only changed the static output local symbol count. It
|
6881 |
|
|
// is too late to change the dynamic symbols.
|
6882 |
|
|
|
6883 |
|
|
template<bool big_endian>
|
6884 |
|
|
void
|
6885 |
|
|
Arm_relobj<big_endian>::update_output_local_symbol_count()
|
6886 |
|
|
{
|
6887 |
|
|
// Caller should check that this needs updating. We want caller checking
|
6888 |
|
|
// because output_local_symbol_count_needs_update() is most likely inlined.
|
6889 |
|
|
gold_assert(this->output_local_symbol_count_needs_update_);
|
6890 |
|
|
|
6891 |
|
|
gold_assert(this->symtab_shndx() != -1U);
|
6892 |
|
|
if (this->symtab_shndx() == 0)
|
6893 |
|
|
{
|
6894 |
|
|
// This object has no symbols. Weird but legal.
|
6895 |
|
|
return;
|
6896 |
|
|
}
|
6897 |
|
|
|
6898 |
|
|
// Read the symbol table section header.
|
6899 |
|
|
const unsigned int symtab_shndx = this->symtab_shndx();
|
6900 |
|
|
elfcpp::Shdr<32, big_endian>
|
6901 |
|
|
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
|
6902 |
|
|
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
|
6903 |
|
|
|
6904 |
|
|
// Read the local symbols.
|
6905 |
|
|
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
|
6906 |
|
|
const unsigned int loccount = this->local_symbol_count();
|
6907 |
|
|
gold_assert(loccount == symtabshdr.get_sh_info());
|
6908 |
|
|
off_t locsize = loccount * sym_size;
|
6909 |
|
|
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
|
6910 |
|
|
locsize, true, true);
|
6911 |
|
|
|
6912 |
|
|
// Loop over the local symbols.
|
6913 |
|
|
|
6914 |
|
|
typedef typename Sized_relobj_file<32, big_endian>::Output_sections
|
6915 |
|
|
Output_sections;
|
6916 |
|
|
const Output_sections& out_sections(this->output_sections());
|
6917 |
|
|
unsigned int shnum = this->shnum();
|
6918 |
|
|
unsigned int count = 0;
|
6919 |
|
|
// Skip the first, dummy, symbol.
|
6920 |
|
|
psyms += sym_size;
|
6921 |
|
|
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
|
6922 |
|
|
{
|
6923 |
|
|
elfcpp::Sym<32, big_endian> sym(psyms);
|
6924 |
|
|
|
6925 |
|
|
Symbol_value<32>& lv((*this->local_values())[i]);
|
6926 |
|
|
|
6927 |
|
|
// This local symbol was already discarded by do_count_local_symbols.
|
6928 |
|
|
if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
|
6929 |
|
|
continue;
|
6930 |
|
|
|
6931 |
|
|
bool is_ordinary;
|
6932 |
|
|
unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
|
6933 |
|
|
&is_ordinary);
|
6934 |
|
|
|
6935 |
|
|
if (shndx < shnum)
|
6936 |
|
|
{
|
6937 |
|
|
Output_section* os = out_sections[shndx];
|
6938 |
|
|
|
6939 |
|
|
// This local symbol no longer has an output section. Discard it.
|
6940 |
|
|
if (os == NULL)
|
6941 |
|
|
{
|
6942 |
|
|
lv.set_no_output_symtab_entry();
|
6943 |
|
|
continue;
|
6944 |
|
|
}
|
6945 |
|
|
|
6946 |
|
|
// Currently we only discard parts of EXIDX input sections.
|
6947 |
|
|
// We explicitly check for a merged EXIDX input section to avoid
|
6948 |
|
|
// calling Output_section_data::output_offset unless necessary.
|
6949 |
|
|
if ((this->get_output_section_offset(shndx) == invalid_address)
|
6950 |
|
|
&& (this->exidx_input_section_by_shndx(shndx) != NULL))
|
6951 |
|
|
{
|
6952 |
|
|
section_offset_type output_offset =
|
6953 |
|
|
os->output_offset(this, shndx, lv.input_value());
|
6954 |
|
|
if (output_offset == -1)
|
6955 |
|
|
{
|
6956 |
|
|
// This symbol is defined in a part of an EXIDX input section
|
6957 |
|
|
// that is discarded due to entry merging.
|
6958 |
|
|
lv.set_no_output_symtab_entry();
|
6959 |
|
|
continue;
|
6960 |
|
|
}
|
6961 |
|
|
}
|
6962 |
|
|
}
|
6963 |
|
|
|
6964 |
|
|
++count;
|
6965 |
|
|
}
|
6966 |
|
|
|
6967 |
|
|
this->set_output_local_symbol_count(count);
|
6968 |
|
|
this->output_local_symbol_count_needs_update_ = false;
|
6969 |
|
|
}
|
6970 |
|
|
|
6971 |
|
|
// Arm_dynobj methods.
|
6972 |
|
|
|
6973 |
|
|
// Read the symbol information.
|
6974 |
|
|
|
6975 |
|
|
template<bool big_endian>
|
6976 |
|
|
void
|
6977 |
|
|
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
|
6978 |
|
|
{
|
6979 |
|
|
// Call parent class to read symbol information.
|
6980 |
|
|
Sized_dynobj<32, big_endian>::do_read_symbols(sd);
|
6981 |
|
|
|
6982 |
|
|
// Read processor-specific flags in ELF file header.
|
6983 |
|
|
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
|
6984 |
|
|
elfcpp::Elf_sizes<32>::ehdr_size,
|
6985 |
|
|
true, false);
|
6986 |
|
|
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
|
6987 |
|
|
this->processor_specific_flags_ = ehdr.get_e_flags();
|
6988 |
|
|
|
6989 |
|
|
// Read the attributes section if there is one.
|
6990 |
|
|
// We read from the end because gas seems to put it near the end of
|
6991 |
|
|
// the section headers.
|
6992 |
|
|
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
6993 |
|
|
const unsigned char* ps =
|
6994 |
|
|
sd->section_headers->data() + shdr_size * (this->shnum() - 1);
|
6995 |
|
|
for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
|
6996 |
|
|
{
|
6997 |
|
|
elfcpp::Shdr<32, big_endian> shdr(ps);
|
6998 |
|
|
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
|
6999 |
|
|
{
|
7000 |
|
|
section_offset_type section_offset = shdr.get_sh_offset();
|
7001 |
|
|
section_size_type section_size =
|
7002 |
|
|
convert_to_section_size_type(shdr.get_sh_size());
|
7003 |
|
|
const unsigned char* view =
|
7004 |
|
|
this->get_view(section_offset, section_size, true, false);
|
7005 |
|
|
this->attributes_section_data_ =
|
7006 |
|
|
new Attributes_section_data(view, section_size);
|
7007 |
|
|
break;
|
7008 |
|
|
}
|
7009 |
|
|
}
|
7010 |
|
|
}
|
7011 |
|
|
|
7012 |
|
|
// Stub_addend_reader methods.
|
7013 |
|
|
|
7014 |
|
|
// Read the addend of a REL relocation of type R_TYPE at VIEW.
|
7015 |
|
|
|
7016 |
|
|
template<bool big_endian>
|
7017 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword
|
7018 |
|
|
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
|
7019 |
|
|
unsigned int r_type,
|
7020 |
|
|
const unsigned char* view,
|
7021 |
|
|
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
|
7022 |
|
|
{
|
7023 |
|
|
typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
|
7024 |
|
|
|
7025 |
|
|
switch (r_type)
|
7026 |
|
|
{
|
7027 |
|
|
case elfcpp::R_ARM_CALL:
|
7028 |
|
|
case elfcpp::R_ARM_JUMP24:
|
7029 |
|
|
case elfcpp::R_ARM_PLT32:
|
7030 |
|
|
{
|
7031 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
7032 |
|
|
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
|
7033 |
|
|
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
|
7034 |
|
|
return utils::sign_extend<26>(val << 2);
|
7035 |
|
|
}
|
7036 |
|
|
|
7037 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
7038 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
7039 |
|
|
case elfcpp::R_ARM_THM_XPC22:
|
7040 |
|
|
{
|
7041 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
7042 |
|
|
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
|
7043 |
|
|
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
7044 |
|
|
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
7045 |
|
|
return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
|
7046 |
|
|
}
|
7047 |
|
|
|
7048 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
7049 |
|
|
{
|
7050 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
7051 |
|
|
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
|
7052 |
|
|
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
7053 |
|
|
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
7054 |
|
|
return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
|
7055 |
|
|
}
|
7056 |
|
|
|
7057 |
|
|
default:
|
7058 |
|
|
gold_unreachable();
|
7059 |
|
|
}
|
7060 |
|
|
}
|
7061 |
|
|
|
7062 |
|
|
// Arm_output_data_got methods.
|
7063 |
|
|
|
7064 |
|
|
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
|
7065 |
|
|
// The first one is initialized to be 1, which is the module index for
|
7066 |
|
|
// the main executable and the second one 0. A reloc of the type
|
7067 |
|
|
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
|
7068 |
|
|
// be applied by gold. GSYM is a global symbol.
|
7069 |
|
|
//
|
7070 |
|
|
template<bool big_endian>
|
7071 |
|
|
void
|
7072 |
|
|
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
|
7073 |
|
|
unsigned int got_type,
|
7074 |
|
|
Symbol* gsym)
|
7075 |
|
|
{
|
7076 |
|
|
if (gsym->has_got_offset(got_type))
|
7077 |
|
|
return;
|
7078 |
|
|
|
7079 |
|
|
// We are doing a static link. Just mark it as belong to module 1,
|
7080 |
|
|
// the executable.
|
7081 |
|
|
unsigned int got_offset = this->add_constant(1);
|
7082 |
|
|
gsym->set_got_offset(got_type, got_offset);
|
7083 |
|
|
got_offset = this->add_constant(0);
|
7084 |
|
|
this->static_relocs_.push_back(Static_reloc(got_offset,
|
7085 |
|
|
elfcpp::R_ARM_TLS_DTPOFF32,
|
7086 |
|
|
gsym));
|
7087 |
|
|
}
|
7088 |
|
|
|
7089 |
|
|
// Same as the above but for a local symbol.
|
7090 |
|
|
|
7091 |
|
|
template<bool big_endian>
|
7092 |
|
|
void
|
7093 |
|
|
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
|
7094 |
|
|
unsigned int got_type,
|
7095 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
7096 |
|
|
unsigned int index)
|
7097 |
|
|
{
|
7098 |
|
|
if (object->local_has_got_offset(index, got_type))
|
7099 |
|
|
return;
|
7100 |
|
|
|
7101 |
|
|
// We are doing a static link. Just mark it as belong to module 1,
|
7102 |
|
|
// the executable.
|
7103 |
|
|
unsigned int got_offset = this->add_constant(1);
|
7104 |
|
|
object->set_local_got_offset(index, got_type, got_offset);
|
7105 |
|
|
got_offset = this->add_constant(0);
|
7106 |
|
|
this->static_relocs_.push_back(Static_reloc(got_offset,
|
7107 |
|
|
elfcpp::R_ARM_TLS_DTPOFF32,
|
7108 |
|
|
object, index));
|
7109 |
|
|
}
|
7110 |
|
|
|
7111 |
|
|
template<bool big_endian>
|
7112 |
|
|
void
|
7113 |
|
|
Arm_output_data_got<big_endian>::do_write(Output_file* of)
|
7114 |
|
|
{
|
7115 |
|
|
// Call parent to write out GOT.
|
7116 |
|
|
Output_data_got<32, big_endian>::do_write(of);
|
7117 |
|
|
|
7118 |
|
|
// We are done if there is no fix up.
|
7119 |
|
|
if (this->static_relocs_.empty())
|
7120 |
|
|
return;
|
7121 |
|
|
|
7122 |
|
|
gold_assert(parameters->doing_static_link());
|
7123 |
|
|
|
7124 |
|
|
const off_t offset = this->offset();
|
7125 |
|
|
const section_size_type oview_size =
|
7126 |
|
|
convert_to_section_size_type(this->data_size());
|
7127 |
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
7128 |
|
|
|
7129 |
|
|
Output_segment* tls_segment = this->layout_->tls_segment();
|
7130 |
|
|
gold_assert(tls_segment != NULL);
|
7131 |
|
|
|
7132 |
|
|
// The thread pointer $tp points to the TCB, which is followed by the
|
7133 |
|
|
// TLS. So we need to adjust $tp relative addressing by this amount.
|
7134 |
|
|
Arm_address aligned_tcb_size =
|
7135 |
|
|
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
|
7136 |
|
|
|
7137 |
|
|
for (size_t i = 0; i < this->static_relocs_.size(); ++i)
|
7138 |
|
|
{
|
7139 |
|
|
Static_reloc& reloc(this->static_relocs_[i]);
|
7140 |
|
|
|
7141 |
|
|
Arm_address value;
|
7142 |
|
|
if (!reloc.symbol_is_global())
|
7143 |
|
|
{
|
7144 |
|
|
Sized_relobj_file<32, big_endian>* object = reloc.relobj();
|
7145 |
|
|
const Symbol_value<32>* psymval =
|
7146 |
|
|
reloc.relobj()->local_symbol(reloc.index());
|
7147 |
|
|
|
7148 |
|
|
// We are doing static linking. Issue an error and skip this
|
7149 |
|
|
// relocation if the symbol is undefined or in a discarded_section.
|
7150 |
|
|
bool is_ordinary;
|
7151 |
|
|
unsigned int shndx = psymval->input_shndx(&is_ordinary);
|
7152 |
|
|
if ((shndx == elfcpp::SHN_UNDEF)
|
7153 |
|
|
|| (is_ordinary
|
7154 |
|
|
&& shndx != elfcpp::SHN_UNDEF
|
7155 |
|
|
&& !object->is_section_included(shndx)
|
7156 |
|
|
&& !this->symbol_table_->is_section_folded(object, shndx)))
|
7157 |
|
|
{
|
7158 |
|
|
gold_error(_("undefined or discarded local symbol %u from "
|
7159 |
|
|
" object %s in GOT"),
|
7160 |
|
|
reloc.index(), reloc.relobj()->name().c_str());
|
7161 |
|
|
continue;
|
7162 |
|
|
}
|
7163 |
|
|
|
7164 |
|
|
value = psymval->value(object, 0);
|
7165 |
|
|
}
|
7166 |
|
|
else
|
7167 |
|
|
{
|
7168 |
|
|
const Symbol* gsym = reloc.symbol();
|
7169 |
|
|
gold_assert(gsym != NULL);
|
7170 |
|
|
if (gsym->is_forwarder())
|
7171 |
|
|
gsym = this->symbol_table_->resolve_forwards(gsym);
|
7172 |
|
|
|
7173 |
|
|
// We are doing static linking. Issue an error and skip this
|
7174 |
|
|
// relocation if the symbol is undefined or in a discarded_section
|
7175 |
|
|
// unless it is a weakly_undefined symbol.
|
7176 |
|
|
if ((gsym->is_defined_in_discarded_section()
|
7177 |
|
|
|| gsym->is_undefined())
|
7178 |
|
|
&& !gsym->is_weak_undefined())
|
7179 |
|
|
{
|
7180 |
|
|
gold_error(_("undefined or discarded symbol %s in GOT"),
|
7181 |
|
|
gsym->name());
|
7182 |
|
|
continue;
|
7183 |
|
|
}
|
7184 |
|
|
|
7185 |
|
|
if (!gsym->is_weak_undefined())
|
7186 |
|
|
{
|
7187 |
|
|
const Sized_symbol<32>* sym =
|
7188 |
|
|
static_cast<const Sized_symbol<32>*>(gsym);
|
7189 |
|
|
value = sym->value();
|
7190 |
|
|
}
|
7191 |
|
|
else
|
7192 |
|
|
value = 0;
|
7193 |
|
|
}
|
7194 |
|
|
|
7195 |
|
|
unsigned got_offset = reloc.got_offset();
|
7196 |
|
|
gold_assert(got_offset < oview_size);
|
7197 |
|
|
|
7198 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
7199 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
|
7200 |
|
|
Valtype x;
|
7201 |
|
|
switch (reloc.r_type())
|
7202 |
|
|
{
|
7203 |
|
|
case elfcpp::R_ARM_TLS_DTPOFF32:
|
7204 |
|
|
x = value;
|
7205 |
|
|
break;
|
7206 |
|
|
case elfcpp::R_ARM_TLS_TPOFF32:
|
7207 |
|
|
x = value + aligned_tcb_size;
|
7208 |
|
|
break;
|
7209 |
|
|
default:
|
7210 |
|
|
gold_unreachable();
|
7211 |
|
|
}
|
7212 |
|
|
elfcpp::Swap<32, big_endian>::writeval(wv, x);
|
7213 |
|
|
}
|
7214 |
|
|
|
7215 |
|
|
of->write_output_view(offset, oview_size, oview);
|
7216 |
|
|
}
|
7217 |
|
|
|
7218 |
|
|
// A class to handle the PLT data.
|
7219 |
|
|
|
7220 |
|
|
template<bool big_endian>
|
7221 |
|
|
class Output_data_plt_arm : public Output_section_data
|
7222 |
|
|
{
|
7223 |
|
|
public:
|
7224 |
|
|
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
|
7225 |
|
|
Reloc_section;
|
7226 |
|
|
|
7227 |
|
|
Output_data_plt_arm(Layout*, Output_data_space*);
|
7228 |
|
|
|
7229 |
|
|
// Add an entry to the PLT.
|
7230 |
|
|
void
|
7231 |
|
|
add_entry(Symbol* gsym);
|
7232 |
|
|
|
7233 |
|
|
// Return the .rel.plt section data.
|
7234 |
|
|
const Reloc_section*
|
7235 |
|
|
rel_plt() const
|
7236 |
|
|
{ return this->rel_; }
|
7237 |
|
|
|
7238 |
|
|
// Return the number of PLT entries.
|
7239 |
|
|
unsigned int
|
7240 |
|
|
entry_count() const
|
7241 |
|
|
{ return this->count_; }
|
7242 |
|
|
|
7243 |
|
|
// Return the offset of the first non-reserved PLT entry.
|
7244 |
|
|
static unsigned int
|
7245 |
|
|
first_plt_entry_offset()
|
7246 |
|
|
{ return sizeof(first_plt_entry); }
|
7247 |
|
|
|
7248 |
|
|
// Return the size of a PLT entry.
|
7249 |
|
|
static unsigned int
|
7250 |
|
|
get_plt_entry_size()
|
7251 |
|
|
{ return sizeof(plt_entry); }
|
7252 |
|
|
|
7253 |
|
|
protected:
|
7254 |
|
|
void
|
7255 |
|
|
do_adjust_output_section(Output_section* os);
|
7256 |
|
|
|
7257 |
|
|
// Write to a map file.
|
7258 |
|
|
void
|
7259 |
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
7260 |
|
|
{ mapfile->print_output_data(this, _("** PLT")); }
|
7261 |
|
|
|
7262 |
|
|
private:
|
7263 |
|
|
// Template for the first PLT entry.
|
7264 |
|
|
static const uint32_t first_plt_entry[5];
|
7265 |
|
|
|
7266 |
|
|
// Template for subsequent PLT entries.
|
7267 |
|
|
static const uint32_t plt_entry[3];
|
7268 |
|
|
|
7269 |
|
|
// Set the final size.
|
7270 |
|
|
void
|
7271 |
|
|
set_final_data_size()
|
7272 |
|
|
{
|
7273 |
|
|
this->set_data_size(sizeof(first_plt_entry)
|
7274 |
|
|
+ this->count_ * sizeof(plt_entry));
|
7275 |
|
|
}
|
7276 |
|
|
|
7277 |
|
|
// Write out the PLT data.
|
7278 |
|
|
void
|
7279 |
|
|
do_write(Output_file*);
|
7280 |
|
|
|
7281 |
|
|
// The reloc section.
|
7282 |
|
|
Reloc_section* rel_;
|
7283 |
|
|
// The .got.plt section.
|
7284 |
|
|
Output_data_space* got_plt_;
|
7285 |
|
|
// The number of PLT entries.
|
7286 |
|
|
unsigned int count_;
|
7287 |
|
|
};
|
7288 |
|
|
|
7289 |
|
|
// Create the PLT section. The ordinary .got section is an argument,
|
7290 |
|
|
// since we need to refer to the start. We also create our own .got
|
7291 |
|
|
// section just for PLT entries.
|
7292 |
|
|
|
7293 |
|
|
template<bool big_endian>
|
7294 |
|
|
Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
|
7295 |
|
|
Output_data_space* got_plt)
|
7296 |
|
|
: Output_section_data(4), got_plt_(got_plt), count_(0)
|
7297 |
|
|
{
|
7298 |
|
|
this->rel_ = new Reloc_section(false);
|
7299 |
|
|
layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
|
7300 |
|
|
elfcpp::SHF_ALLOC, this->rel_,
|
7301 |
|
|
ORDER_DYNAMIC_PLT_RELOCS, false);
|
7302 |
|
|
}
|
7303 |
|
|
|
7304 |
|
|
template<bool big_endian>
|
7305 |
|
|
void
|
7306 |
|
|
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
|
7307 |
|
|
{
|
7308 |
|
|
os->set_entsize(0);
|
7309 |
|
|
}
|
7310 |
|
|
|
7311 |
|
|
// Add an entry to the PLT.
|
7312 |
|
|
|
7313 |
|
|
template<bool big_endian>
|
7314 |
|
|
void
|
7315 |
|
|
Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
|
7316 |
|
|
{
|
7317 |
|
|
gold_assert(!gsym->has_plt_offset());
|
7318 |
|
|
|
7319 |
|
|
// Note that when setting the PLT offset we skip the initial
|
7320 |
|
|
// reserved PLT entry.
|
7321 |
|
|
gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
|
7322 |
|
|
+ sizeof(first_plt_entry));
|
7323 |
|
|
|
7324 |
|
|
++this->count_;
|
7325 |
|
|
|
7326 |
|
|
section_offset_type got_offset = this->got_plt_->current_data_size();
|
7327 |
|
|
|
7328 |
|
|
// Every PLT entry needs a GOT entry which points back to the PLT
|
7329 |
|
|
// entry (this will be changed by the dynamic linker, normally
|
7330 |
|
|
// lazily when the function is called).
|
7331 |
|
|
this->got_plt_->set_current_data_size(got_offset + 4);
|
7332 |
|
|
|
7333 |
|
|
// Every PLT entry needs a reloc.
|
7334 |
|
|
gsym->set_needs_dynsym_entry();
|
7335 |
|
|
this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
|
7336 |
|
|
got_offset);
|
7337 |
|
|
|
7338 |
|
|
// Note that we don't need to save the symbol. The contents of the
|
7339 |
|
|
// PLT are independent of which symbols are used. The symbols only
|
7340 |
|
|
// appear in the relocations.
|
7341 |
|
|
}
|
7342 |
|
|
|
7343 |
|
|
// ARM PLTs.
|
7344 |
|
|
// FIXME: This is not very flexible. Right now this has only been tested
|
7345 |
|
|
// on armv5te. If we are to support additional architecture features like
|
7346 |
|
|
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
|
7347 |
|
|
|
7348 |
|
|
// The first entry in the PLT.
|
7349 |
|
|
template<bool big_endian>
|
7350 |
|
|
const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
|
7351 |
|
|
{
|
7352 |
|
|
0xe52de004, // str lr, [sp, #-4]!
|
7353 |
|
|
0xe59fe004, // ldr lr, [pc, #4]
|
7354 |
|
|
0xe08fe00e, // add lr, pc, lr
|
7355 |
|
|
0xe5bef008, // ldr pc, [lr, #8]!
|
7356 |
|
|
0x00000000, // &GOT[0] - .
|
7357 |
|
|
};
|
7358 |
|
|
|
7359 |
|
|
// Subsequent entries in the PLT.
|
7360 |
|
|
|
7361 |
|
|
template<bool big_endian>
|
7362 |
|
|
const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
|
7363 |
|
|
{
|
7364 |
|
|
0xe28fc600, // add ip, pc, #0xNN00000
|
7365 |
|
|
0xe28cca00, // add ip, ip, #0xNN000
|
7366 |
|
|
0xe5bcf000, // ldr pc, [ip, #0xNNN]!
|
7367 |
|
|
};
|
7368 |
|
|
|
7369 |
|
|
// Write out the PLT. This uses the hand-coded instructions above,
|
7370 |
|
|
// and adjusts them as needed. This is all specified by the arm ELF
|
7371 |
|
|
// Processor Supplement.
|
7372 |
|
|
|
7373 |
|
|
template<bool big_endian>
|
7374 |
|
|
void
|
7375 |
|
|
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
|
7376 |
|
|
{
|
7377 |
|
|
const off_t offset = this->offset();
|
7378 |
|
|
const section_size_type oview_size =
|
7379 |
|
|
convert_to_section_size_type(this->data_size());
|
7380 |
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
7381 |
|
|
|
7382 |
|
|
const off_t got_file_offset = this->got_plt_->offset();
|
7383 |
|
|
const section_size_type got_size =
|
7384 |
|
|
convert_to_section_size_type(this->got_plt_->data_size());
|
7385 |
|
|
unsigned char* const got_view = of->get_output_view(got_file_offset,
|
7386 |
|
|
got_size);
|
7387 |
|
|
unsigned char* pov = oview;
|
7388 |
|
|
|
7389 |
|
|
Arm_address plt_address = this->address();
|
7390 |
|
|
Arm_address got_address = this->got_plt_->address();
|
7391 |
|
|
|
7392 |
|
|
// Write first PLT entry. All but the last word are constants.
|
7393 |
|
|
const size_t num_first_plt_words = (sizeof(first_plt_entry)
|
7394 |
|
|
/ sizeof(plt_entry[0]));
|
7395 |
|
|
for (size_t i = 0; i < num_first_plt_words - 1; i++)
|
7396 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
|
7397 |
|
|
// Last word in first PLT entry is &GOT[0] - .
|
7398 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov + 16,
|
7399 |
|
|
got_address - (plt_address + 16));
|
7400 |
|
|
pov += sizeof(first_plt_entry);
|
7401 |
|
|
|
7402 |
|
|
unsigned char* got_pov = got_view;
|
7403 |
|
|
|
7404 |
|
|
memset(got_pov, 0, 12);
|
7405 |
|
|
got_pov += 12;
|
7406 |
|
|
|
7407 |
|
|
const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
|
7408 |
|
|
unsigned int plt_offset = sizeof(first_plt_entry);
|
7409 |
|
|
unsigned int plt_rel_offset = 0;
|
7410 |
|
|
unsigned int got_offset = 12;
|
7411 |
|
|
const unsigned int count = this->count_;
|
7412 |
|
|
for (unsigned int i = 0;
|
7413 |
|
|
i < count;
|
7414 |
|
|
++i,
|
7415 |
|
|
pov += sizeof(plt_entry),
|
7416 |
|
|
got_pov += 4,
|
7417 |
|
|
plt_offset += sizeof(plt_entry),
|
7418 |
|
|
plt_rel_offset += rel_size,
|
7419 |
|
|
got_offset += 4)
|
7420 |
|
|
{
|
7421 |
|
|
// Set and adjust the PLT entry itself.
|
7422 |
|
|
int32_t offset = ((got_address + got_offset)
|
7423 |
|
|
- (plt_address + plt_offset + 8));
|
7424 |
|
|
|
7425 |
|
|
gold_assert(offset >= 0 && offset < 0x0fffffff);
|
7426 |
|
|
uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
|
7427 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
|
7428 |
|
|
uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
|
7429 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
|
7430 |
|
|
uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
|
7431 |
|
|
elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
|
7432 |
|
|
|
7433 |
|
|
// Set the entry in the GOT.
|
7434 |
|
|
elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
|
7435 |
|
|
}
|
7436 |
|
|
|
7437 |
|
|
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
|
7438 |
|
|
gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
|
7439 |
|
|
|
7440 |
|
|
of->write_output_view(offset, oview_size, oview);
|
7441 |
|
|
of->write_output_view(got_file_offset, got_size, got_view);
|
7442 |
|
|
}
|
7443 |
|
|
|
7444 |
|
|
// Create a PLT entry for a global symbol.
|
7445 |
|
|
|
7446 |
|
|
template<bool big_endian>
|
7447 |
|
|
void
|
7448 |
|
|
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
|
7449 |
|
|
Symbol* gsym)
|
7450 |
|
|
{
|
7451 |
|
|
if (gsym->has_plt_offset())
|
7452 |
|
|
return;
|
7453 |
|
|
|
7454 |
|
|
if (this->plt_ == NULL)
|
7455 |
|
|
{
|
7456 |
|
|
// Create the GOT sections first.
|
7457 |
|
|
this->got_section(symtab, layout);
|
7458 |
|
|
|
7459 |
|
|
this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
|
7460 |
|
|
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
|
7461 |
|
|
(elfcpp::SHF_ALLOC
|
7462 |
|
|
| elfcpp::SHF_EXECINSTR),
|
7463 |
|
|
this->plt_, ORDER_PLT, false);
|
7464 |
|
|
}
|
7465 |
|
|
this->plt_->add_entry(gsym);
|
7466 |
|
|
}
|
7467 |
|
|
|
7468 |
|
|
// Return the number of entries in the PLT.
|
7469 |
|
|
|
7470 |
|
|
template<bool big_endian>
|
7471 |
|
|
unsigned int
|
7472 |
|
|
Target_arm<big_endian>::plt_entry_count() const
|
7473 |
|
|
{
|
7474 |
|
|
if (this->plt_ == NULL)
|
7475 |
|
|
return 0;
|
7476 |
|
|
return this->plt_->entry_count();
|
7477 |
|
|
}
|
7478 |
|
|
|
7479 |
|
|
// Return the offset of the first non-reserved PLT entry.
|
7480 |
|
|
|
7481 |
|
|
template<bool big_endian>
|
7482 |
|
|
unsigned int
|
7483 |
|
|
Target_arm<big_endian>::first_plt_entry_offset() const
|
7484 |
|
|
{
|
7485 |
|
|
return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
|
7486 |
|
|
}
|
7487 |
|
|
|
7488 |
|
|
// Return the size of each PLT entry.
|
7489 |
|
|
|
7490 |
|
|
template<bool big_endian>
|
7491 |
|
|
unsigned int
|
7492 |
|
|
Target_arm<big_endian>::plt_entry_size() const
|
7493 |
|
|
{
|
7494 |
|
|
return Output_data_plt_arm<big_endian>::get_plt_entry_size();
|
7495 |
|
|
}
|
7496 |
|
|
|
7497 |
|
|
// Get the section to use for TLS_DESC relocations.
|
7498 |
|
|
|
7499 |
|
|
template<bool big_endian>
|
7500 |
|
|
typename Target_arm<big_endian>::Reloc_section*
|
7501 |
|
|
Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
|
7502 |
|
|
{
|
7503 |
|
|
return this->plt_section()->rel_tls_desc(layout);
|
7504 |
|
|
}
|
7505 |
|
|
|
7506 |
|
|
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
|
7507 |
|
|
|
7508 |
|
|
template<bool big_endian>
|
7509 |
|
|
void
|
7510 |
|
|
Target_arm<big_endian>::define_tls_base_symbol(
|
7511 |
|
|
Symbol_table* symtab,
|
7512 |
|
|
Layout* layout)
|
7513 |
|
|
{
|
7514 |
|
|
if (this->tls_base_symbol_defined_)
|
7515 |
|
|
return;
|
7516 |
|
|
|
7517 |
|
|
Output_segment* tls_segment = layout->tls_segment();
|
7518 |
|
|
if (tls_segment != NULL)
|
7519 |
|
|
{
|
7520 |
|
|
bool is_exec = parameters->options().output_is_executable();
|
7521 |
|
|
symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
|
7522 |
|
|
Symbol_table::PREDEFINED,
|
7523 |
|
|
tls_segment, 0, 0,
|
7524 |
|
|
elfcpp::STT_TLS,
|
7525 |
|
|
elfcpp::STB_LOCAL,
|
7526 |
|
|
elfcpp::STV_HIDDEN, 0,
|
7527 |
|
|
(is_exec
|
7528 |
|
|
? Symbol::SEGMENT_END
|
7529 |
|
|
: Symbol::SEGMENT_START),
|
7530 |
|
|
true);
|
7531 |
|
|
}
|
7532 |
|
|
this->tls_base_symbol_defined_ = true;
|
7533 |
|
|
}
|
7534 |
|
|
|
7535 |
|
|
// Create a GOT entry for the TLS module index.
|
7536 |
|
|
|
7537 |
|
|
template<bool big_endian>
|
7538 |
|
|
unsigned int
|
7539 |
|
|
Target_arm<big_endian>::got_mod_index_entry(
|
7540 |
|
|
Symbol_table* symtab,
|
7541 |
|
|
Layout* layout,
|
7542 |
|
|
Sized_relobj_file<32, big_endian>* object)
|
7543 |
|
|
{
|
7544 |
|
|
if (this->got_mod_index_offset_ == -1U)
|
7545 |
|
|
{
|
7546 |
|
|
gold_assert(symtab != NULL && layout != NULL && object != NULL);
|
7547 |
|
|
Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
|
7548 |
|
|
unsigned int got_offset;
|
7549 |
|
|
if (!parameters->doing_static_link())
|
7550 |
|
|
{
|
7551 |
|
|
got_offset = got->add_constant(0);
|
7552 |
|
|
Reloc_section* rel_dyn = this->rel_dyn_section(layout);
|
7553 |
|
|
rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
|
7554 |
|
|
got_offset);
|
7555 |
|
|
}
|
7556 |
|
|
else
|
7557 |
|
|
{
|
7558 |
|
|
// We are doing a static link. Just mark it as belong to module 1,
|
7559 |
|
|
// the executable.
|
7560 |
|
|
got_offset = got->add_constant(1);
|
7561 |
|
|
}
|
7562 |
|
|
|
7563 |
|
|
got->add_constant(0);
|
7564 |
|
|
this->got_mod_index_offset_ = got_offset;
|
7565 |
|
|
}
|
7566 |
|
|
return this->got_mod_index_offset_;
|
7567 |
|
|
}
|
7568 |
|
|
|
7569 |
|
|
// Optimize the TLS relocation type based on what we know about the
|
7570 |
|
|
// symbol. IS_FINAL is true if the final address of this symbol is
|
7571 |
|
|
// known at link time.
|
7572 |
|
|
|
7573 |
|
|
template<bool big_endian>
|
7574 |
|
|
tls::Tls_optimization
|
7575 |
|
|
Target_arm<big_endian>::optimize_tls_reloc(bool, int)
|
7576 |
|
|
{
|
7577 |
|
|
// FIXME: Currently we do not do any TLS optimization.
|
7578 |
|
|
return tls::TLSOPT_NONE;
|
7579 |
|
|
}
|
7580 |
|
|
|
7581 |
|
|
// Get the Reference_flags for a particular relocation.
|
7582 |
|
|
|
7583 |
|
|
template<bool big_endian>
|
7584 |
|
|
int
|
7585 |
|
|
Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
|
7586 |
|
|
{
|
7587 |
|
|
switch (r_type)
|
7588 |
|
|
{
|
7589 |
|
|
case elfcpp::R_ARM_NONE:
|
7590 |
|
|
case elfcpp::R_ARM_V4BX:
|
7591 |
|
|
case elfcpp::R_ARM_GNU_VTENTRY:
|
7592 |
|
|
case elfcpp::R_ARM_GNU_VTINHERIT:
|
7593 |
|
|
// No symbol reference.
|
7594 |
|
|
return 0;
|
7595 |
|
|
|
7596 |
|
|
case elfcpp::R_ARM_ABS32:
|
7597 |
|
|
case elfcpp::R_ARM_ABS16:
|
7598 |
|
|
case elfcpp::R_ARM_ABS12:
|
7599 |
|
|
case elfcpp::R_ARM_THM_ABS5:
|
7600 |
|
|
case elfcpp::R_ARM_ABS8:
|
7601 |
|
|
case elfcpp::R_ARM_BASE_ABS:
|
7602 |
|
|
case elfcpp::R_ARM_MOVW_ABS_NC:
|
7603 |
|
|
case elfcpp::R_ARM_MOVT_ABS:
|
7604 |
|
|
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
|
7605 |
|
|
case elfcpp::R_ARM_THM_MOVT_ABS:
|
7606 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
7607 |
|
|
return Symbol::ABSOLUTE_REF;
|
7608 |
|
|
|
7609 |
|
|
case elfcpp::R_ARM_REL32:
|
7610 |
|
|
case elfcpp::R_ARM_LDR_PC_G0:
|
7611 |
|
|
case elfcpp::R_ARM_SBREL32:
|
7612 |
|
|
case elfcpp::R_ARM_THM_PC8:
|
7613 |
|
|
case elfcpp::R_ARM_BASE_PREL:
|
7614 |
|
|
case elfcpp::R_ARM_MOVW_PREL_NC:
|
7615 |
|
|
case elfcpp::R_ARM_MOVT_PREL:
|
7616 |
|
|
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
|
7617 |
|
|
case elfcpp::R_ARM_THM_MOVT_PREL:
|
7618 |
|
|
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
|
7619 |
|
|
case elfcpp::R_ARM_THM_PC12:
|
7620 |
|
|
case elfcpp::R_ARM_REL32_NOI:
|
7621 |
|
|
case elfcpp::R_ARM_ALU_PC_G0_NC:
|
7622 |
|
|
case elfcpp::R_ARM_ALU_PC_G0:
|
7623 |
|
|
case elfcpp::R_ARM_ALU_PC_G1_NC:
|
7624 |
|
|
case elfcpp::R_ARM_ALU_PC_G1:
|
7625 |
|
|
case elfcpp::R_ARM_ALU_PC_G2:
|
7626 |
|
|
case elfcpp::R_ARM_LDR_PC_G1:
|
7627 |
|
|
case elfcpp::R_ARM_LDR_PC_G2:
|
7628 |
|
|
case elfcpp::R_ARM_LDRS_PC_G0:
|
7629 |
|
|
case elfcpp::R_ARM_LDRS_PC_G1:
|
7630 |
|
|
case elfcpp::R_ARM_LDRS_PC_G2:
|
7631 |
|
|
case elfcpp::R_ARM_LDC_PC_G0:
|
7632 |
|
|
case elfcpp::R_ARM_LDC_PC_G1:
|
7633 |
|
|
case elfcpp::R_ARM_LDC_PC_G2:
|
7634 |
|
|
case elfcpp::R_ARM_ALU_SB_G0_NC:
|
7635 |
|
|
case elfcpp::R_ARM_ALU_SB_G0:
|
7636 |
|
|
case elfcpp::R_ARM_ALU_SB_G1_NC:
|
7637 |
|
|
case elfcpp::R_ARM_ALU_SB_G1:
|
7638 |
|
|
case elfcpp::R_ARM_ALU_SB_G2:
|
7639 |
|
|
case elfcpp::R_ARM_LDR_SB_G0:
|
7640 |
|
|
case elfcpp::R_ARM_LDR_SB_G1:
|
7641 |
|
|
case elfcpp::R_ARM_LDR_SB_G2:
|
7642 |
|
|
case elfcpp::R_ARM_LDRS_SB_G0:
|
7643 |
|
|
case elfcpp::R_ARM_LDRS_SB_G1:
|
7644 |
|
|
case elfcpp::R_ARM_LDRS_SB_G2:
|
7645 |
|
|
case elfcpp::R_ARM_LDC_SB_G0:
|
7646 |
|
|
case elfcpp::R_ARM_LDC_SB_G1:
|
7647 |
|
|
case elfcpp::R_ARM_LDC_SB_G2:
|
7648 |
|
|
case elfcpp::R_ARM_MOVW_BREL_NC:
|
7649 |
|
|
case elfcpp::R_ARM_MOVT_BREL:
|
7650 |
|
|
case elfcpp::R_ARM_MOVW_BREL:
|
7651 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
|
7652 |
|
|
case elfcpp::R_ARM_THM_MOVT_BREL:
|
7653 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL:
|
7654 |
|
|
case elfcpp::R_ARM_GOTOFF32:
|
7655 |
|
|
case elfcpp::R_ARM_GOTOFF12:
|
7656 |
|
|
case elfcpp::R_ARM_SBREL31:
|
7657 |
|
|
return Symbol::RELATIVE_REF;
|
7658 |
|
|
|
7659 |
|
|
case elfcpp::R_ARM_PLT32:
|
7660 |
|
|
case elfcpp::R_ARM_CALL:
|
7661 |
|
|
case elfcpp::R_ARM_JUMP24:
|
7662 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
7663 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
7664 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
7665 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
7666 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
7667 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
7668 |
|
|
// R_ARM_PREL31 is not used to relocate call/jump instructions but
|
7669 |
|
|
// in unwind tables. It may point to functions via PLTs.
|
7670 |
|
|
// So we treat it like call/jump relocations above.
|
7671 |
|
|
case elfcpp::R_ARM_PREL31:
|
7672 |
|
|
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
|
7673 |
|
|
|
7674 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
7675 |
|
|
case elfcpp::R_ARM_GOT_ABS:
|
7676 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
7677 |
|
|
// Absolute in GOT.
|
7678 |
|
|
return Symbol::ABSOLUTE_REF;
|
7679 |
|
|
|
7680 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
7681 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
7682 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
7683 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
7684 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
7685 |
|
|
return Symbol::TLS_REF;
|
7686 |
|
|
|
7687 |
|
|
case elfcpp::R_ARM_TARGET1:
|
7688 |
|
|
case elfcpp::R_ARM_TARGET2:
|
7689 |
|
|
case elfcpp::R_ARM_COPY:
|
7690 |
|
|
case elfcpp::R_ARM_GLOB_DAT:
|
7691 |
|
|
case elfcpp::R_ARM_JUMP_SLOT:
|
7692 |
|
|
case elfcpp::R_ARM_RELATIVE:
|
7693 |
|
|
case elfcpp::R_ARM_PC24:
|
7694 |
|
|
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
|
7695 |
|
|
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
|
7696 |
|
|
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
|
7697 |
|
|
default:
|
7698 |
|
|
// Not expected. We will give an error later.
|
7699 |
|
|
return 0;
|
7700 |
|
|
}
|
7701 |
|
|
}
|
7702 |
|
|
|
7703 |
|
|
// Report an unsupported relocation against a local symbol.
|
7704 |
|
|
|
7705 |
|
|
template<bool big_endian>
|
7706 |
|
|
void
|
7707 |
|
|
Target_arm<big_endian>::Scan::unsupported_reloc_local(
|
7708 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
7709 |
|
|
unsigned int r_type)
|
7710 |
|
|
{
|
7711 |
|
|
gold_error(_("%s: unsupported reloc %u against local symbol"),
|
7712 |
|
|
object->name().c_str(), r_type);
|
7713 |
|
|
}
|
7714 |
|
|
|
7715 |
|
|
// We are about to emit a dynamic relocation of type R_TYPE. If the
|
7716 |
|
|
// dynamic linker does not support it, issue an error. The GNU linker
|
7717 |
|
|
// only issues a non-PIC error for an allocated read-only section.
|
7718 |
|
|
// Here we know the section is allocated, but we don't know that it is
|
7719 |
|
|
// read-only. But we check for all the relocation types which the
|
7720 |
|
|
// glibc dynamic linker supports, so it seems appropriate to issue an
|
7721 |
|
|
// error even if the section is not read-only.
|
7722 |
|
|
|
7723 |
|
|
template<bool big_endian>
|
7724 |
|
|
void
|
7725 |
|
|
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
|
7726 |
|
|
unsigned int r_type)
|
7727 |
|
|
{
|
7728 |
|
|
switch (r_type)
|
7729 |
|
|
{
|
7730 |
|
|
// These are the relocation types supported by glibc for ARM.
|
7731 |
|
|
case elfcpp::R_ARM_RELATIVE:
|
7732 |
|
|
case elfcpp::R_ARM_COPY:
|
7733 |
|
|
case elfcpp::R_ARM_GLOB_DAT:
|
7734 |
|
|
case elfcpp::R_ARM_JUMP_SLOT:
|
7735 |
|
|
case elfcpp::R_ARM_ABS32:
|
7736 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
7737 |
|
|
case elfcpp::R_ARM_PC24:
|
7738 |
|
|
// FIXME: The following 3 types are not supported by Android's dynamic
|
7739 |
|
|
// linker.
|
7740 |
|
|
case elfcpp::R_ARM_TLS_DTPMOD32:
|
7741 |
|
|
case elfcpp::R_ARM_TLS_DTPOFF32:
|
7742 |
|
|
case elfcpp::R_ARM_TLS_TPOFF32:
|
7743 |
|
|
return;
|
7744 |
|
|
|
7745 |
|
|
default:
|
7746 |
|
|
{
|
7747 |
|
|
// This prevents us from issuing more than one error per reloc
|
7748 |
|
|
// section. But we can still wind up issuing more than one
|
7749 |
|
|
// error per object file.
|
7750 |
|
|
if (this->issued_non_pic_error_)
|
7751 |
|
|
return;
|
7752 |
|
|
const Arm_reloc_property* reloc_property =
|
7753 |
|
|
arm_reloc_property_table->get_reloc_property(r_type);
|
7754 |
|
|
gold_assert(reloc_property != NULL);
|
7755 |
|
|
object->error(_("requires unsupported dynamic reloc %s; "
|
7756 |
|
|
"recompile with -fPIC"),
|
7757 |
|
|
reloc_property->name().c_str());
|
7758 |
|
|
this->issued_non_pic_error_ = true;
|
7759 |
|
|
return;
|
7760 |
|
|
}
|
7761 |
|
|
|
7762 |
|
|
case elfcpp::R_ARM_NONE:
|
7763 |
|
|
gold_unreachable();
|
7764 |
|
|
}
|
7765 |
|
|
}
|
7766 |
|
|
|
7767 |
|
|
// Scan a relocation for a local symbol.
|
7768 |
|
|
// FIXME: This only handles a subset of relocation types used by Android
|
7769 |
|
|
// on ARM v5te devices.
|
7770 |
|
|
|
7771 |
|
|
template<bool big_endian>
|
7772 |
|
|
inline void
|
7773 |
|
|
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
|
7774 |
|
|
Layout* layout,
|
7775 |
|
|
Target_arm* target,
|
7776 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
7777 |
|
|
unsigned int data_shndx,
|
7778 |
|
|
Output_section* output_section,
|
7779 |
|
|
const elfcpp::Rel<32, big_endian>& reloc,
|
7780 |
|
|
unsigned int r_type,
|
7781 |
|
|
const elfcpp::Sym<32, big_endian>& lsym)
|
7782 |
|
|
{
|
7783 |
|
|
r_type = get_real_reloc_type(r_type);
|
7784 |
|
|
switch (r_type)
|
7785 |
|
|
{
|
7786 |
|
|
case elfcpp::R_ARM_NONE:
|
7787 |
|
|
case elfcpp::R_ARM_V4BX:
|
7788 |
|
|
case elfcpp::R_ARM_GNU_VTENTRY:
|
7789 |
|
|
case elfcpp::R_ARM_GNU_VTINHERIT:
|
7790 |
|
|
break;
|
7791 |
|
|
|
7792 |
|
|
case elfcpp::R_ARM_ABS32:
|
7793 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
7794 |
|
|
// If building a shared library (or a position-independent
|
7795 |
|
|
// executable), we need to create a dynamic relocation for
|
7796 |
|
|
// this location. The relocation applied at link time will
|
7797 |
|
|
// apply the link-time value, so we flag the location with
|
7798 |
|
|
// an R_ARM_RELATIVE relocation so the dynamic loader can
|
7799 |
|
|
// relocate it easily.
|
7800 |
|
|
if (parameters->options().output_is_position_independent())
|
7801 |
|
|
{
|
7802 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
7803 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
7804 |
|
|
// If we are to add more other reloc types than R_ARM_ABS32,
|
7805 |
|
|
// we need to add check_non_pic(object, r_type) here.
|
7806 |
|
|
rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
|
7807 |
|
|
output_section, data_shndx,
|
7808 |
|
|
reloc.get_r_offset());
|
7809 |
|
|
}
|
7810 |
|
|
break;
|
7811 |
|
|
|
7812 |
|
|
case elfcpp::R_ARM_ABS16:
|
7813 |
|
|
case elfcpp::R_ARM_ABS12:
|
7814 |
|
|
case elfcpp::R_ARM_THM_ABS5:
|
7815 |
|
|
case elfcpp::R_ARM_ABS8:
|
7816 |
|
|
case elfcpp::R_ARM_BASE_ABS:
|
7817 |
|
|
case elfcpp::R_ARM_MOVW_ABS_NC:
|
7818 |
|
|
case elfcpp::R_ARM_MOVT_ABS:
|
7819 |
|
|
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
|
7820 |
|
|
case elfcpp::R_ARM_THM_MOVT_ABS:
|
7821 |
|
|
// If building a shared library (or a position-independent
|
7822 |
|
|
// executable), we need to create a dynamic relocation for
|
7823 |
|
|
// this location. Because the addend needs to remain in the
|
7824 |
|
|
// data section, we need to be careful not to apply this
|
7825 |
|
|
// relocation statically.
|
7826 |
|
|
if (parameters->options().output_is_position_independent())
|
7827 |
|
|
{
|
7828 |
|
|
check_non_pic(object, r_type);
|
7829 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
7830 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
7831 |
|
|
if (lsym.get_st_type() != elfcpp::STT_SECTION)
|
7832 |
|
|
rel_dyn->add_local(object, r_sym, r_type, output_section,
|
7833 |
|
|
data_shndx, reloc.get_r_offset());
|
7834 |
|
|
else
|
7835 |
|
|
{
|
7836 |
|
|
gold_assert(lsym.get_st_value() == 0);
|
7837 |
|
|
unsigned int shndx = lsym.get_st_shndx();
|
7838 |
|
|
bool is_ordinary;
|
7839 |
|
|
shndx = object->adjust_sym_shndx(r_sym, shndx,
|
7840 |
|
|
&is_ordinary);
|
7841 |
|
|
if (!is_ordinary)
|
7842 |
|
|
object->error(_("section symbol %u has bad shndx %u"),
|
7843 |
|
|
r_sym, shndx);
|
7844 |
|
|
else
|
7845 |
|
|
rel_dyn->add_local_section(object, shndx,
|
7846 |
|
|
r_type, output_section,
|
7847 |
|
|
data_shndx, reloc.get_r_offset());
|
7848 |
|
|
}
|
7849 |
|
|
}
|
7850 |
|
|
break;
|
7851 |
|
|
|
7852 |
|
|
case elfcpp::R_ARM_REL32:
|
7853 |
|
|
case elfcpp::R_ARM_LDR_PC_G0:
|
7854 |
|
|
case elfcpp::R_ARM_SBREL32:
|
7855 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
7856 |
|
|
case elfcpp::R_ARM_THM_PC8:
|
7857 |
|
|
case elfcpp::R_ARM_BASE_PREL:
|
7858 |
|
|
case elfcpp::R_ARM_PLT32:
|
7859 |
|
|
case elfcpp::R_ARM_CALL:
|
7860 |
|
|
case elfcpp::R_ARM_JUMP24:
|
7861 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
7862 |
|
|
case elfcpp::R_ARM_SBREL31:
|
7863 |
|
|
case elfcpp::R_ARM_PREL31:
|
7864 |
|
|
case elfcpp::R_ARM_MOVW_PREL_NC:
|
7865 |
|
|
case elfcpp::R_ARM_MOVT_PREL:
|
7866 |
|
|
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
|
7867 |
|
|
case elfcpp::R_ARM_THM_MOVT_PREL:
|
7868 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
7869 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
7870 |
|
|
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
|
7871 |
|
|
case elfcpp::R_ARM_THM_PC12:
|
7872 |
|
|
case elfcpp::R_ARM_REL32_NOI:
|
7873 |
|
|
case elfcpp::R_ARM_ALU_PC_G0_NC:
|
7874 |
|
|
case elfcpp::R_ARM_ALU_PC_G0:
|
7875 |
|
|
case elfcpp::R_ARM_ALU_PC_G1_NC:
|
7876 |
|
|
case elfcpp::R_ARM_ALU_PC_G1:
|
7877 |
|
|
case elfcpp::R_ARM_ALU_PC_G2:
|
7878 |
|
|
case elfcpp::R_ARM_LDR_PC_G1:
|
7879 |
|
|
case elfcpp::R_ARM_LDR_PC_G2:
|
7880 |
|
|
case elfcpp::R_ARM_LDRS_PC_G0:
|
7881 |
|
|
case elfcpp::R_ARM_LDRS_PC_G1:
|
7882 |
|
|
case elfcpp::R_ARM_LDRS_PC_G2:
|
7883 |
|
|
case elfcpp::R_ARM_LDC_PC_G0:
|
7884 |
|
|
case elfcpp::R_ARM_LDC_PC_G1:
|
7885 |
|
|
case elfcpp::R_ARM_LDC_PC_G2:
|
7886 |
|
|
case elfcpp::R_ARM_ALU_SB_G0_NC:
|
7887 |
|
|
case elfcpp::R_ARM_ALU_SB_G0:
|
7888 |
|
|
case elfcpp::R_ARM_ALU_SB_G1_NC:
|
7889 |
|
|
case elfcpp::R_ARM_ALU_SB_G1:
|
7890 |
|
|
case elfcpp::R_ARM_ALU_SB_G2:
|
7891 |
|
|
case elfcpp::R_ARM_LDR_SB_G0:
|
7892 |
|
|
case elfcpp::R_ARM_LDR_SB_G1:
|
7893 |
|
|
case elfcpp::R_ARM_LDR_SB_G2:
|
7894 |
|
|
case elfcpp::R_ARM_LDRS_SB_G0:
|
7895 |
|
|
case elfcpp::R_ARM_LDRS_SB_G1:
|
7896 |
|
|
case elfcpp::R_ARM_LDRS_SB_G2:
|
7897 |
|
|
case elfcpp::R_ARM_LDC_SB_G0:
|
7898 |
|
|
case elfcpp::R_ARM_LDC_SB_G1:
|
7899 |
|
|
case elfcpp::R_ARM_LDC_SB_G2:
|
7900 |
|
|
case elfcpp::R_ARM_MOVW_BREL_NC:
|
7901 |
|
|
case elfcpp::R_ARM_MOVT_BREL:
|
7902 |
|
|
case elfcpp::R_ARM_MOVW_BREL:
|
7903 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
|
7904 |
|
|
case elfcpp::R_ARM_THM_MOVT_BREL:
|
7905 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL:
|
7906 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
7907 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
7908 |
|
|
// We don't need to do anything for a relative addressing relocation
|
7909 |
|
|
// against a local symbol if it does not reference the GOT.
|
7910 |
|
|
break;
|
7911 |
|
|
|
7912 |
|
|
case elfcpp::R_ARM_GOTOFF32:
|
7913 |
|
|
case elfcpp::R_ARM_GOTOFF12:
|
7914 |
|
|
// We need a GOT section:
|
7915 |
|
|
target->got_section(symtab, layout);
|
7916 |
|
|
break;
|
7917 |
|
|
|
7918 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
7919 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
7920 |
|
|
{
|
7921 |
|
|
// The symbol requires a GOT entry.
|
7922 |
|
|
Arm_output_data_got<big_endian>* got =
|
7923 |
|
|
target->got_section(symtab, layout);
|
7924 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
7925 |
|
|
if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
|
7926 |
|
|
{
|
7927 |
|
|
// If we are generating a shared object, we need to add a
|
7928 |
|
|
// dynamic RELATIVE relocation for this symbol's GOT entry.
|
7929 |
|
|
if (parameters->options().output_is_position_independent())
|
7930 |
|
|
{
|
7931 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
7932 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
7933 |
|
|
rel_dyn->add_local_relative(
|
7934 |
|
|
object, r_sym, elfcpp::R_ARM_RELATIVE, got,
|
7935 |
|
|
object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
|
7936 |
|
|
}
|
7937 |
|
|
}
|
7938 |
|
|
}
|
7939 |
|
|
break;
|
7940 |
|
|
|
7941 |
|
|
case elfcpp::R_ARM_TARGET1:
|
7942 |
|
|
case elfcpp::R_ARM_TARGET2:
|
7943 |
|
|
// This should have been mapped to another type already.
|
7944 |
|
|
// Fall through.
|
7945 |
|
|
case elfcpp::R_ARM_COPY:
|
7946 |
|
|
case elfcpp::R_ARM_GLOB_DAT:
|
7947 |
|
|
case elfcpp::R_ARM_JUMP_SLOT:
|
7948 |
|
|
case elfcpp::R_ARM_RELATIVE:
|
7949 |
|
|
// These are relocations which should only be seen by the
|
7950 |
|
|
// dynamic linker, and should never be seen here.
|
7951 |
|
|
gold_error(_("%s: unexpected reloc %u in object file"),
|
7952 |
|
|
object->name().c_str(), r_type);
|
7953 |
|
|
break;
|
7954 |
|
|
|
7955 |
|
|
|
7956 |
|
|
// These are initial TLS relocs, which are expected when
|
7957 |
|
|
// linking.
|
7958 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
7959 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
7960 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
7961 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
7962 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
7963 |
|
|
{
|
7964 |
|
|
bool output_is_shared = parameters->options().shared();
|
7965 |
|
|
const tls::Tls_optimization optimized_type
|
7966 |
|
|
= Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
|
7967 |
|
|
r_type);
|
7968 |
|
|
switch (r_type)
|
7969 |
|
|
{
|
7970 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
7971 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
7972 |
|
|
{
|
7973 |
|
|
// Create a pair of GOT entries for the module index and
|
7974 |
|
|
// dtv-relative offset.
|
7975 |
|
|
Arm_output_data_got<big_endian>* got
|
7976 |
|
|
= target->got_section(symtab, layout);
|
7977 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
7978 |
|
|
unsigned int shndx = lsym.get_st_shndx();
|
7979 |
|
|
bool is_ordinary;
|
7980 |
|
|
shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
|
7981 |
|
|
if (!is_ordinary)
|
7982 |
|
|
{
|
7983 |
|
|
object->error(_("local symbol %u has bad shndx %u"),
|
7984 |
|
|
r_sym, shndx);
|
7985 |
|
|
break;
|
7986 |
|
|
}
|
7987 |
|
|
|
7988 |
|
|
if (!parameters->doing_static_link())
|
7989 |
|
|
got->add_local_pair_with_rel(object, r_sym, shndx,
|
7990 |
|
|
GOT_TYPE_TLS_PAIR,
|
7991 |
|
|
target->rel_dyn_section(layout),
|
7992 |
|
|
elfcpp::R_ARM_TLS_DTPMOD32, 0);
|
7993 |
|
|
else
|
7994 |
|
|
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
|
7995 |
|
|
object, r_sym);
|
7996 |
|
|
}
|
7997 |
|
|
else
|
7998 |
|
|
// FIXME: TLS optimization not supported yet.
|
7999 |
|
|
gold_unreachable();
|
8000 |
|
|
break;
|
8001 |
|
|
|
8002 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
8003 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
8004 |
|
|
{
|
8005 |
|
|
// Create a GOT entry for the module index.
|
8006 |
|
|
target->got_mod_index_entry(symtab, layout, object);
|
8007 |
|
|
}
|
8008 |
|
|
else
|
8009 |
|
|
// FIXME: TLS optimization not supported yet.
|
8010 |
|
|
gold_unreachable();
|
8011 |
|
|
break;
|
8012 |
|
|
|
8013 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
8014 |
|
|
break;
|
8015 |
|
|
|
8016 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
8017 |
|
|
layout->set_has_static_tls();
|
8018 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
8019 |
|
|
{
|
8020 |
|
|
// Create a GOT entry for the tp-relative offset.
|
8021 |
|
|
Arm_output_data_got<big_endian>* got
|
8022 |
|
|
= target->got_section(symtab, layout);
|
8023 |
|
|
unsigned int r_sym =
|
8024 |
|
|
elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
8025 |
|
|
if (!parameters->doing_static_link())
|
8026 |
|
|
got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
|
8027 |
|
|
target->rel_dyn_section(layout),
|
8028 |
|
|
elfcpp::R_ARM_TLS_TPOFF32);
|
8029 |
|
|
else if (!object->local_has_got_offset(r_sym,
|
8030 |
|
|
GOT_TYPE_TLS_OFFSET))
|
8031 |
|
|
{
|
8032 |
|
|
got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
|
8033 |
|
|
unsigned int got_offset =
|
8034 |
|
|
object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
|
8035 |
|
|
got->add_static_reloc(got_offset,
|
8036 |
|
|
elfcpp::R_ARM_TLS_TPOFF32, object,
|
8037 |
|
|
r_sym);
|
8038 |
|
|
}
|
8039 |
|
|
}
|
8040 |
|
|
else
|
8041 |
|
|
// FIXME: TLS optimization not supported yet.
|
8042 |
|
|
gold_unreachable();
|
8043 |
|
|
break;
|
8044 |
|
|
|
8045 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
8046 |
|
|
layout->set_has_static_tls();
|
8047 |
|
|
if (output_is_shared)
|
8048 |
|
|
{
|
8049 |
|
|
// We need to create a dynamic relocation.
|
8050 |
|
|
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
|
8051 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
|
8052 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8053 |
|
|
rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
|
8054 |
|
|
output_section, data_shndx,
|
8055 |
|
|
reloc.get_r_offset());
|
8056 |
|
|
}
|
8057 |
|
|
break;
|
8058 |
|
|
|
8059 |
|
|
default:
|
8060 |
|
|
gold_unreachable();
|
8061 |
|
|
}
|
8062 |
|
|
}
|
8063 |
|
|
break;
|
8064 |
|
|
|
8065 |
|
|
case elfcpp::R_ARM_PC24:
|
8066 |
|
|
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
|
8067 |
|
|
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
|
8068 |
|
|
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
|
8069 |
|
|
default:
|
8070 |
|
|
unsupported_reloc_local(object, r_type);
|
8071 |
|
|
break;
|
8072 |
|
|
}
|
8073 |
|
|
}
|
8074 |
|
|
|
8075 |
|
|
// Report an unsupported relocation against a global symbol.
|
8076 |
|
|
|
8077 |
|
|
template<bool big_endian>
|
8078 |
|
|
void
|
8079 |
|
|
Target_arm<big_endian>::Scan::unsupported_reloc_global(
|
8080 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
8081 |
|
|
unsigned int r_type,
|
8082 |
|
|
Symbol* gsym)
|
8083 |
|
|
{
|
8084 |
|
|
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
|
8085 |
|
|
object->name().c_str(), r_type, gsym->demangled_name().c_str());
|
8086 |
|
|
}
|
8087 |
|
|
|
8088 |
|
|
template<bool big_endian>
|
8089 |
|
|
inline bool
|
8090 |
|
|
Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
|
8091 |
|
|
unsigned int r_type)
|
8092 |
|
|
{
|
8093 |
|
|
switch (r_type)
|
8094 |
|
|
{
|
8095 |
|
|
case elfcpp::R_ARM_PC24:
|
8096 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
8097 |
|
|
case elfcpp::R_ARM_PLT32:
|
8098 |
|
|
case elfcpp::R_ARM_CALL:
|
8099 |
|
|
case elfcpp::R_ARM_JUMP24:
|
8100 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
8101 |
|
|
case elfcpp::R_ARM_SBREL31:
|
8102 |
|
|
case elfcpp::R_ARM_PREL31:
|
8103 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
8104 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
8105 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
8106 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
8107 |
|
|
// All the relocations above are branches except SBREL31 and PREL31.
|
8108 |
|
|
return false;
|
8109 |
|
|
|
8110 |
|
|
default:
|
8111 |
|
|
// Be conservative and assume this is a function pointer.
|
8112 |
|
|
return true;
|
8113 |
|
|
}
|
8114 |
|
|
}
|
8115 |
|
|
|
8116 |
|
|
template<bool big_endian>
|
8117 |
|
|
inline bool
|
8118 |
|
|
Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
|
8119 |
|
|
Symbol_table*,
|
8120 |
|
|
Layout*,
|
8121 |
|
|
Target_arm<big_endian>* target,
|
8122 |
|
|
Sized_relobj_file<32, big_endian>*,
|
8123 |
|
|
unsigned int,
|
8124 |
|
|
Output_section*,
|
8125 |
|
|
const elfcpp::Rel<32, big_endian>&,
|
8126 |
|
|
unsigned int r_type,
|
8127 |
|
|
const elfcpp::Sym<32, big_endian>&)
|
8128 |
|
|
{
|
8129 |
|
|
r_type = target->get_real_reloc_type(r_type);
|
8130 |
|
|
return possible_function_pointer_reloc(r_type);
|
8131 |
|
|
}
|
8132 |
|
|
|
8133 |
|
|
template<bool big_endian>
|
8134 |
|
|
inline bool
|
8135 |
|
|
Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
|
8136 |
|
|
Symbol_table*,
|
8137 |
|
|
Layout*,
|
8138 |
|
|
Target_arm<big_endian>* target,
|
8139 |
|
|
Sized_relobj_file<32, big_endian>*,
|
8140 |
|
|
unsigned int,
|
8141 |
|
|
Output_section*,
|
8142 |
|
|
const elfcpp::Rel<32, big_endian>&,
|
8143 |
|
|
unsigned int r_type,
|
8144 |
|
|
Symbol* gsym)
|
8145 |
|
|
{
|
8146 |
|
|
// GOT is not a function.
|
8147 |
|
|
if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
|
8148 |
|
|
return false;
|
8149 |
|
|
|
8150 |
|
|
r_type = target->get_real_reloc_type(r_type);
|
8151 |
|
|
return possible_function_pointer_reloc(r_type);
|
8152 |
|
|
}
|
8153 |
|
|
|
8154 |
|
|
// Scan a relocation for a global symbol.
|
8155 |
|
|
|
8156 |
|
|
template<bool big_endian>
|
8157 |
|
|
inline void
|
8158 |
|
|
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
|
8159 |
|
|
Layout* layout,
|
8160 |
|
|
Target_arm* target,
|
8161 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
8162 |
|
|
unsigned int data_shndx,
|
8163 |
|
|
Output_section* output_section,
|
8164 |
|
|
const elfcpp::Rel<32, big_endian>& reloc,
|
8165 |
|
|
unsigned int r_type,
|
8166 |
|
|
Symbol* gsym)
|
8167 |
|
|
{
|
8168 |
|
|
// A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
|
8169 |
|
|
// section. We check here to avoid creating a dynamic reloc against
|
8170 |
|
|
// _GLOBAL_OFFSET_TABLE_.
|
8171 |
|
|
if (!target->has_got_section()
|
8172 |
|
|
&& strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
|
8173 |
|
|
target->got_section(symtab, layout);
|
8174 |
|
|
|
8175 |
|
|
r_type = get_real_reloc_type(r_type);
|
8176 |
|
|
switch (r_type)
|
8177 |
|
|
{
|
8178 |
|
|
case elfcpp::R_ARM_NONE:
|
8179 |
|
|
case elfcpp::R_ARM_V4BX:
|
8180 |
|
|
case elfcpp::R_ARM_GNU_VTENTRY:
|
8181 |
|
|
case elfcpp::R_ARM_GNU_VTINHERIT:
|
8182 |
|
|
break;
|
8183 |
|
|
|
8184 |
|
|
case elfcpp::R_ARM_ABS32:
|
8185 |
|
|
case elfcpp::R_ARM_ABS16:
|
8186 |
|
|
case elfcpp::R_ARM_ABS12:
|
8187 |
|
|
case elfcpp::R_ARM_THM_ABS5:
|
8188 |
|
|
case elfcpp::R_ARM_ABS8:
|
8189 |
|
|
case elfcpp::R_ARM_BASE_ABS:
|
8190 |
|
|
case elfcpp::R_ARM_MOVW_ABS_NC:
|
8191 |
|
|
case elfcpp::R_ARM_MOVT_ABS:
|
8192 |
|
|
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
|
8193 |
|
|
case elfcpp::R_ARM_THM_MOVT_ABS:
|
8194 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
8195 |
|
|
// Absolute addressing relocations.
|
8196 |
|
|
{
|
8197 |
|
|
// Make a PLT entry if necessary.
|
8198 |
|
|
if (this->symbol_needs_plt_entry(gsym))
|
8199 |
|
|
{
|
8200 |
|
|
target->make_plt_entry(symtab, layout, gsym);
|
8201 |
|
|
// Since this is not a PC-relative relocation, we may be
|
8202 |
|
|
// taking the address of a function. In that case we need to
|
8203 |
|
|
// set the entry in the dynamic symbol table to the address of
|
8204 |
|
|
// the PLT entry.
|
8205 |
|
|
if (gsym->is_from_dynobj() && !parameters->options().shared())
|
8206 |
|
|
gsym->set_needs_dynsym_value();
|
8207 |
|
|
}
|
8208 |
|
|
// Make a dynamic relocation if necessary.
|
8209 |
|
|
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
|
8210 |
|
|
{
|
8211 |
|
|
if (gsym->may_need_copy_reloc())
|
8212 |
|
|
{
|
8213 |
|
|
target->copy_reloc(symtab, layout, object,
|
8214 |
|
|
data_shndx, output_section, gsym, reloc);
|
8215 |
|
|
}
|
8216 |
|
|
else if ((r_type == elfcpp::R_ARM_ABS32
|
8217 |
|
|
|| r_type == elfcpp::R_ARM_ABS32_NOI)
|
8218 |
|
|
&& gsym->can_use_relative_reloc(false))
|
8219 |
|
|
{
|
8220 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8221 |
|
|
rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
|
8222 |
|
|
output_section, object,
|
8223 |
|
|
data_shndx, reloc.get_r_offset());
|
8224 |
|
|
}
|
8225 |
|
|
else
|
8226 |
|
|
{
|
8227 |
|
|
check_non_pic(object, r_type);
|
8228 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8229 |
|
|
rel_dyn->add_global(gsym, r_type, output_section, object,
|
8230 |
|
|
data_shndx, reloc.get_r_offset());
|
8231 |
|
|
}
|
8232 |
|
|
}
|
8233 |
|
|
}
|
8234 |
|
|
break;
|
8235 |
|
|
|
8236 |
|
|
case elfcpp::R_ARM_GOTOFF32:
|
8237 |
|
|
case elfcpp::R_ARM_GOTOFF12:
|
8238 |
|
|
// We need a GOT section.
|
8239 |
|
|
target->got_section(symtab, layout);
|
8240 |
|
|
break;
|
8241 |
|
|
|
8242 |
|
|
case elfcpp::R_ARM_REL32:
|
8243 |
|
|
case elfcpp::R_ARM_LDR_PC_G0:
|
8244 |
|
|
case elfcpp::R_ARM_SBREL32:
|
8245 |
|
|
case elfcpp::R_ARM_THM_PC8:
|
8246 |
|
|
case elfcpp::R_ARM_BASE_PREL:
|
8247 |
|
|
case elfcpp::R_ARM_MOVW_PREL_NC:
|
8248 |
|
|
case elfcpp::R_ARM_MOVT_PREL:
|
8249 |
|
|
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
|
8250 |
|
|
case elfcpp::R_ARM_THM_MOVT_PREL:
|
8251 |
|
|
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
|
8252 |
|
|
case elfcpp::R_ARM_THM_PC12:
|
8253 |
|
|
case elfcpp::R_ARM_REL32_NOI:
|
8254 |
|
|
case elfcpp::R_ARM_ALU_PC_G0_NC:
|
8255 |
|
|
case elfcpp::R_ARM_ALU_PC_G0:
|
8256 |
|
|
case elfcpp::R_ARM_ALU_PC_G1_NC:
|
8257 |
|
|
case elfcpp::R_ARM_ALU_PC_G1:
|
8258 |
|
|
case elfcpp::R_ARM_ALU_PC_G2:
|
8259 |
|
|
case elfcpp::R_ARM_LDR_PC_G1:
|
8260 |
|
|
case elfcpp::R_ARM_LDR_PC_G2:
|
8261 |
|
|
case elfcpp::R_ARM_LDRS_PC_G0:
|
8262 |
|
|
case elfcpp::R_ARM_LDRS_PC_G1:
|
8263 |
|
|
case elfcpp::R_ARM_LDRS_PC_G2:
|
8264 |
|
|
case elfcpp::R_ARM_LDC_PC_G0:
|
8265 |
|
|
case elfcpp::R_ARM_LDC_PC_G1:
|
8266 |
|
|
case elfcpp::R_ARM_LDC_PC_G2:
|
8267 |
|
|
case elfcpp::R_ARM_ALU_SB_G0_NC:
|
8268 |
|
|
case elfcpp::R_ARM_ALU_SB_G0:
|
8269 |
|
|
case elfcpp::R_ARM_ALU_SB_G1_NC:
|
8270 |
|
|
case elfcpp::R_ARM_ALU_SB_G1:
|
8271 |
|
|
case elfcpp::R_ARM_ALU_SB_G2:
|
8272 |
|
|
case elfcpp::R_ARM_LDR_SB_G0:
|
8273 |
|
|
case elfcpp::R_ARM_LDR_SB_G1:
|
8274 |
|
|
case elfcpp::R_ARM_LDR_SB_G2:
|
8275 |
|
|
case elfcpp::R_ARM_LDRS_SB_G0:
|
8276 |
|
|
case elfcpp::R_ARM_LDRS_SB_G1:
|
8277 |
|
|
case elfcpp::R_ARM_LDRS_SB_G2:
|
8278 |
|
|
case elfcpp::R_ARM_LDC_SB_G0:
|
8279 |
|
|
case elfcpp::R_ARM_LDC_SB_G1:
|
8280 |
|
|
case elfcpp::R_ARM_LDC_SB_G2:
|
8281 |
|
|
case elfcpp::R_ARM_MOVW_BREL_NC:
|
8282 |
|
|
case elfcpp::R_ARM_MOVT_BREL:
|
8283 |
|
|
case elfcpp::R_ARM_MOVW_BREL:
|
8284 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
|
8285 |
|
|
case elfcpp::R_ARM_THM_MOVT_BREL:
|
8286 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL:
|
8287 |
|
|
// Relative addressing relocations.
|
8288 |
|
|
{
|
8289 |
|
|
// Make a dynamic relocation if necessary.
|
8290 |
|
|
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
|
8291 |
|
|
{
|
8292 |
|
|
if (target->may_need_copy_reloc(gsym))
|
8293 |
|
|
{
|
8294 |
|
|
target->copy_reloc(symtab, layout, object,
|
8295 |
|
|
data_shndx, output_section, gsym, reloc);
|
8296 |
|
|
}
|
8297 |
|
|
else
|
8298 |
|
|
{
|
8299 |
|
|
check_non_pic(object, r_type);
|
8300 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8301 |
|
|
rel_dyn->add_global(gsym, r_type, output_section, object,
|
8302 |
|
|
data_shndx, reloc.get_r_offset());
|
8303 |
|
|
}
|
8304 |
|
|
}
|
8305 |
|
|
}
|
8306 |
|
|
break;
|
8307 |
|
|
|
8308 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
8309 |
|
|
case elfcpp::R_ARM_PLT32:
|
8310 |
|
|
case elfcpp::R_ARM_CALL:
|
8311 |
|
|
case elfcpp::R_ARM_JUMP24:
|
8312 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
8313 |
|
|
case elfcpp::R_ARM_SBREL31:
|
8314 |
|
|
case elfcpp::R_ARM_PREL31:
|
8315 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
8316 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
8317 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
8318 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
8319 |
|
|
// All the relocation above are branches except for the PREL31 ones.
|
8320 |
|
|
// A PREL31 relocation can point to a personality function in a shared
|
8321 |
|
|
// library. In that case we want to use a PLT because we want to
|
8322 |
|
|
// call the personality routine and the dynamic linkers we care about
|
8323 |
|
|
// do not support dynamic PREL31 relocations. An REL31 relocation may
|
8324 |
|
|
// point to a function whose unwinding behaviour is being described but
|
8325 |
|
|
// we will not mistakenly generate a PLT for that because we should use
|
8326 |
|
|
// a local section symbol.
|
8327 |
|
|
|
8328 |
|
|
// If the symbol is fully resolved, this is just a relative
|
8329 |
|
|
// local reloc. Otherwise we need a PLT entry.
|
8330 |
|
|
if (gsym->final_value_is_known())
|
8331 |
|
|
break;
|
8332 |
|
|
// If building a shared library, we can also skip the PLT entry
|
8333 |
|
|
// if the symbol is defined in the output file and is protected
|
8334 |
|
|
// or hidden.
|
8335 |
|
|
if (gsym->is_defined()
|
8336 |
|
|
&& !gsym->is_from_dynobj()
|
8337 |
|
|
&& !gsym->is_preemptible())
|
8338 |
|
|
break;
|
8339 |
|
|
target->make_plt_entry(symtab, layout, gsym);
|
8340 |
|
|
break;
|
8341 |
|
|
|
8342 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
8343 |
|
|
case elfcpp::R_ARM_GOT_ABS:
|
8344 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
8345 |
|
|
{
|
8346 |
|
|
// The symbol requires a GOT entry.
|
8347 |
|
|
Arm_output_data_got<big_endian>* got =
|
8348 |
|
|
target->got_section(symtab, layout);
|
8349 |
|
|
if (gsym->final_value_is_known())
|
8350 |
|
|
got->add_global(gsym, GOT_TYPE_STANDARD);
|
8351 |
|
|
else
|
8352 |
|
|
{
|
8353 |
|
|
// If this symbol is not fully resolved, we need to add a
|
8354 |
|
|
// GOT entry with a dynamic relocation.
|
8355 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8356 |
|
|
if (gsym->is_from_dynobj()
|
8357 |
|
|
|| gsym->is_undefined()
|
8358 |
|
|
|| gsym->is_preemptible())
|
8359 |
|
|
got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
|
8360 |
|
|
rel_dyn, elfcpp::R_ARM_GLOB_DAT);
|
8361 |
|
|
else
|
8362 |
|
|
{
|
8363 |
|
|
if (got->add_global(gsym, GOT_TYPE_STANDARD))
|
8364 |
|
|
rel_dyn->add_global_relative(
|
8365 |
|
|
gsym, elfcpp::R_ARM_RELATIVE, got,
|
8366 |
|
|
gsym->got_offset(GOT_TYPE_STANDARD));
|
8367 |
|
|
}
|
8368 |
|
|
}
|
8369 |
|
|
}
|
8370 |
|
|
break;
|
8371 |
|
|
|
8372 |
|
|
case elfcpp::R_ARM_TARGET1:
|
8373 |
|
|
case elfcpp::R_ARM_TARGET2:
|
8374 |
|
|
// These should have been mapped to other types already.
|
8375 |
|
|
// Fall through.
|
8376 |
|
|
case elfcpp::R_ARM_COPY:
|
8377 |
|
|
case elfcpp::R_ARM_GLOB_DAT:
|
8378 |
|
|
case elfcpp::R_ARM_JUMP_SLOT:
|
8379 |
|
|
case elfcpp::R_ARM_RELATIVE:
|
8380 |
|
|
// These are relocations which should only be seen by the
|
8381 |
|
|
// dynamic linker, and should never be seen here.
|
8382 |
|
|
gold_error(_("%s: unexpected reloc %u in object file"),
|
8383 |
|
|
object->name().c_str(), r_type);
|
8384 |
|
|
break;
|
8385 |
|
|
|
8386 |
|
|
// These are initial tls relocs, which are expected when
|
8387 |
|
|
// linking.
|
8388 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
8389 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
8390 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
8391 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
8392 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
8393 |
|
|
{
|
8394 |
|
|
const bool is_final = gsym->final_value_is_known();
|
8395 |
|
|
const tls::Tls_optimization optimized_type
|
8396 |
|
|
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
|
8397 |
|
|
switch (r_type)
|
8398 |
|
|
{
|
8399 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
8400 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
8401 |
|
|
{
|
8402 |
|
|
// Create a pair of GOT entries for the module index and
|
8403 |
|
|
// dtv-relative offset.
|
8404 |
|
|
Arm_output_data_got<big_endian>* got
|
8405 |
|
|
= target->got_section(symtab, layout);
|
8406 |
|
|
if (!parameters->doing_static_link())
|
8407 |
|
|
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
|
8408 |
|
|
target->rel_dyn_section(layout),
|
8409 |
|
|
elfcpp::R_ARM_TLS_DTPMOD32,
|
8410 |
|
|
elfcpp::R_ARM_TLS_DTPOFF32);
|
8411 |
|
|
else
|
8412 |
|
|
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
|
8413 |
|
|
}
|
8414 |
|
|
else
|
8415 |
|
|
// FIXME: TLS optimization not supported yet.
|
8416 |
|
|
gold_unreachable();
|
8417 |
|
|
break;
|
8418 |
|
|
|
8419 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
8420 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
8421 |
|
|
{
|
8422 |
|
|
// Create a GOT entry for the module index.
|
8423 |
|
|
target->got_mod_index_entry(symtab, layout, object);
|
8424 |
|
|
}
|
8425 |
|
|
else
|
8426 |
|
|
// FIXME: TLS optimization not supported yet.
|
8427 |
|
|
gold_unreachable();
|
8428 |
|
|
break;
|
8429 |
|
|
|
8430 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
8431 |
|
|
break;
|
8432 |
|
|
|
8433 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
8434 |
|
|
layout->set_has_static_tls();
|
8435 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
8436 |
|
|
{
|
8437 |
|
|
// Create a GOT entry for the tp-relative offset.
|
8438 |
|
|
Arm_output_data_got<big_endian>* got
|
8439 |
|
|
= target->got_section(symtab, layout);
|
8440 |
|
|
if (!parameters->doing_static_link())
|
8441 |
|
|
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
|
8442 |
|
|
target->rel_dyn_section(layout),
|
8443 |
|
|
elfcpp::R_ARM_TLS_TPOFF32);
|
8444 |
|
|
else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
|
8445 |
|
|
{
|
8446 |
|
|
got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
|
8447 |
|
|
unsigned int got_offset =
|
8448 |
|
|
gsym->got_offset(GOT_TYPE_TLS_OFFSET);
|
8449 |
|
|
got->add_static_reloc(got_offset,
|
8450 |
|
|
elfcpp::R_ARM_TLS_TPOFF32, gsym);
|
8451 |
|
|
}
|
8452 |
|
|
}
|
8453 |
|
|
else
|
8454 |
|
|
// FIXME: TLS optimization not supported yet.
|
8455 |
|
|
gold_unreachable();
|
8456 |
|
|
break;
|
8457 |
|
|
|
8458 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
8459 |
|
|
layout->set_has_static_tls();
|
8460 |
|
|
if (parameters->options().shared())
|
8461 |
|
|
{
|
8462 |
|
|
// We need to create a dynamic relocation.
|
8463 |
|
|
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
|
8464 |
|
|
rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
|
8465 |
|
|
output_section, object,
|
8466 |
|
|
data_shndx, reloc.get_r_offset());
|
8467 |
|
|
}
|
8468 |
|
|
break;
|
8469 |
|
|
|
8470 |
|
|
default:
|
8471 |
|
|
gold_unreachable();
|
8472 |
|
|
}
|
8473 |
|
|
}
|
8474 |
|
|
break;
|
8475 |
|
|
|
8476 |
|
|
case elfcpp::R_ARM_PC24:
|
8477 |
|
|
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
|
8478 |
|
|
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
|
8479 |
|
|
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
|
8480 |
|
|
default:
|
8481 |
|
|
unsupported_reloc_global(object, r_type, gsym);
|
8482 |
|
|
break;
|
8483 |
|
|
}
|
8484 |
|
|
}
|
8485 |
|
|
|
8486 |
|
|
// Process relocations for gc.
|
8487 |
|
|
|
8488 |
|
|
template<bool big_endian>
|
8489 |
|
|
void
|
8490 |
|
|
Target_arm<big_endian>::gc_process_relocs(
|
8491 |
|
|
Symbol_table* symtab,
|
8492 |
|
|
Layout* layout,
|
8493 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
8494 |
|
|
unsigned int data_shndx,
|
8495 |
|
|
unsigned int,
|
8496 |
|
|
const unsigned char* prelocs,
|
8497 |
|
|
size_t reloc_count,
|
8498 |
|
|
Output_section* output_section,
|
8499 |
|
|
bool needs_special_offset_handling,
|
8500 |
|
|
size_t local_symbol_count,
|
8501 |
|
|
const unsigned char* plocal_symbols)
|
8502 |
|
|
{
|
8503 |
|
|
typedef Target_arm<big_endian> Arm;
|
8504 |
|
|
typedef typename Target_arm<big_endian>::Scan Scan;
|
8505 |
|
|
|
8506 |
|
|
gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
|
8507 |
|
|
typename Target_arm::Relocatable_size_for_reloc>(
|
8508 |
|
|
symtab,
|
8509 |
|
|
layout,
|
8510 |
|
|
this,
|
8511 |
|
|
object,
|
8512 |
|
|
data_shndx,
|
8513 |
|
|
prelocs,
|
8514 |
|
|
reloc_count,
|
8515 |
|
|
output_section,
|
8516 |
|
|
needs_special_offset_handling,
|
8517 |
|
|
local_symbol_count,
|
8518 |
|
|
plocal_symbols);
|
8519 |
|
|
}
|
8520 |
|
|
|
8521 |
|
|
// Scan relocations for a section.
|
8522 |
|
|
|
8523 |
|
|
template<bool big_endian>
|
8524 |
|
|
void
|
8525 |
|
|
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
|
8526 |
|
|
Layout* layout,
|
8527 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
8528 |
|
|
unsigned int data_shndx,
|
8529 |
|
|
unsigned int sh_type,
|
8530 |
|
|
const unsigned char* prelocs,
|
8531 |
|
|
size_t reloc_count,
|
8532 |
|
|
Output_section* output_section,
|
8533 |
|
|
bool needs_special_offset_handling,
|
8534 |
|
|
size_t local_symbol_count,
|
8535 |
|
|
const unsigned char* plocal_symbols)
|
8536 |
|
|
{
|
8537 |
|
|
typedef typename Target_arm<big_endian>::Scan Scan;
|
8538 |
|
|
if (sh_type == elfcpp::SHT_RELA)
|
8539 |
|
|
{
|
8540 |
|
|
gold_error(_("%s: unsupported RELA reloc section"),
|
8541 |
|
|
object->name().c_str());
|
8542 |
|
|
return;
|
8543 |
|
|
}
|
8544 |
|
|
|
8545 |
|
|
gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
|
8546 |
|
|
symtab,
|
8547 |
|
|
layout,
|
8548 |
|
|
this,
|
8549 |
|
|
object,
|
8550 |
|
|
data_shndx,
|
8551 |
|
|
prelocs,
|
8552 |
|
|
reloc_count,
|
8553 |
|
|
output_section,
|
8554 |
|
|
needs_special_offset_handling,
|
8555 |
|
|
local_symbol_count,
|
8556 |
|
|
plocal_symbols);
|
8557 |
|
|
}
|
8558 |
|
|
|
8559 |
|
|
// Finalize the sections.
|
8560 |
|
|
|
8561 |
|
|
template<bool big_endian>
|
8562 |
|
|
void
|
8563 |
|
|
Target_arm<big_endian>::do_finalize_sections(
|
8564 |
|
|
Layout* layout,
|
8565 |
|
|
const Input_objects* input_objects,
|
8566 |
|
|
Symbol_table* symtab)
|
8567 |
|
|
{
|
8568 |
|
|
bool merged_any_attributes = false;
|
8569 |
|
|
// Merge processor-specific flags.
|
8570 |
|
|
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
|
8571 |
|
|
p != input_objects->relobj_end();
|
8572 |
|
|
++p)
|
8573 |
|
|
{
|
8574 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
8575 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(*p);
|
8576 |
|
|
if (arm_relobj->merge_flags_and_attributes())
|
8577 |
|
|
{
|
8578 |
|
|
this->merge_processor_specific_flags(
|
8579 |
|
|
arm_relobj->name(),
|
8580 |
|
|
arm_relobj->processor_specific_flags());
|
8581 |
|
|
this->merge_object_attributes(arm_relobj->name().c_str(),
|
8582 |
|
|
arm_relobj->attributes_section_data());
|
8583 |
|
|
merged_any_attributes = true;
|
8584 |
|
|
}
|
8585 |
|
|
}
|
8586 |
|
|
|
8587 |
|
|
for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
|
8588 |
|
|
p != input_objects->dynobj_end();
|
8589 |
|
|
++p)
|
8590 |
|
|
{
|
8591 |
|
|
Arm_dynobj<big_endian>* arm_dynobj =
|
8592 |
|
|
Arm_dynobj<big_endian>::as_arm_dynobj(*p);
|
8593 |
|
|
this->merge_processor_specific_flags(
|
8594 |
|
|
arm_dynobj->name(),
|
8595 |
|
|
arm_dynobj->processor_specific_flags());
|
8596 |
|
|
this->merge_object_attributes(arm_dynobj->name().c_str(),
|
8597 |
|
|
arm_dynobj->attributes_section_data());
|
8598 |
|
|
merged_any_attributes = true;
|
8599 |
|
|
}
|
8600 |
|
|
|
8601 |
|
|
// Create an empty uninitialized attribute section if we still don't have it
|
8602 |
|
|
// at this moment. This happens if there is no attributes sections in all
|
8603 |
|
|
// inputs.
|
8604 |
|
|
if (this->attributes_section_data_ == NULL)
|
8605 |
|
|
this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
|
8606 |
|
|
|
8607 |
|
|
// Check BLX use.
|
8608 |
|
|
const Object_attribute* cpu_arch_attr =
|
8609 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
|
8610 |
|
|
if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
|
8611 |
|
|
this->set_may_use_blx(true);
|
8612 |
|
|
|
8613 |
|
|
// Check if we need to use Cortex-A8 workaround.
|
8614 |
|
|
if (parameters->options().user_set_fix_cortex_a8())
|
8615 |
|
|
this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
|
8616 |
|
|
else
|
8617 |
|
|
{
|
8618 |
|
|
// If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
|
8619 |
|
|
// Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
|
8620 |
|
|
// profile.
|
8621 |
|
|
const Object_attribute* cpu_arch_profile_attr =
|
8622 |
|
|
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
|
8623 |
|
|
this->fix_cortex_a8_ =
|
8624 |
|
|
(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
|
8625 |
|
|
&& (cpu_arch_profile_attr->int_value() == 'A'
|
8626 |
|
|
|| cpu_arch_profile_attr->int_value() == 0));
|
8627 |
|
|
}
|
8628 |
|
|
|
8629 |
|
|
// Check if we can use V4BX interworking.
|
8630 |
|
|
// The V4BX interworking stub contains BX instruction,
|
8631 |
|
|
// which is not specified for some profiles.
|
8632 |
|
|
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
|
8633 |
|
|
&& !this->may_use_blx())
|
8634 |
|
|
gold_error(_("unable to provide V4BX reloc interworking fix up; "
|
8635 |
|
|
"the target profile does not support BX instruction"));
|
8636 |
|
|
|
8637 |
|
|
// Fill in some more dynamic tags.
|
8638 |
|
|
const Reloc_section* rel_plt = (this->plt_ == NULL
|
8639 |
|
|
? NULL
|
8640 |
|
|
: this->plt_->rel_plt());
|
8641 |
|
|
layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
|
8642 |
|
|
this->rel_dyn_, true, false);
|
8643 |
|
|
|
8644 |
|
|
// Emit any relocs we saved in an attempt to avoid generating COPY
|
8645 |
|
|
// relocs.
|
8646 |
|
|
if (this->copy_relocs_.any_saved_relocs())
|
8647 |
|
|
this->copy_relocs_.emit(this->rel_dyn_section(layout));
|
8648 |
|
|
|
8649 |
|
|
// Handle the .ARM.exidx section.
|
8650 |
|
|
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
|
8651 |
|
|
|
8652 |
|
|
if (!parameters->options().relocatable())
|
8653 |
|
|
{
|
8654 |
|
|
if (exidx_section != NULL
|
8655 |
|
|
&& exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
|
8656 |
|
|
{
|
8657 |
|
|
// Create __exidx_start and __exidx_end symbols.
|
8658 |
|
|
symtab->define_in_output_data("__exidx_start", NULL,
|
8659 |
|
|
Symbol_table::PREDEFINED,
|
8660 |
|
|
exidx_section, 0, 0, elfcpp::STT_OBJECT,
|
8661 |
|
|
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
|
8662 |
|
|
0, false, true);
|
8663 |
|
|
symtab->define_in_output_data("__exidx_end", NULL,
|
8664 |
|
|
Symbol_table::PREDEFINED,
|
8665 |
|
|
exidx_section, 0, 0, elfcpp::STT_OBJECT,
|
8666 |
|
|
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
|
8667 |
|
|
0, true, true);
|
8668 |
|
|
|
8669 |
|
|
// For the ARM target, we need to add a PT_ARM_EXIDX segment for
|
8670 |
|
|
// the .ARM.exidx section.
|
8671 |
|
|
if (!layout->script_options()->saw_phdrs_clause())
|
8672 |
|
|
{
|
8673 |
|
|
gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
|
8674 |
|
|
0)
|
8675 |
|
|
== NULL);
|
8676 |
|
|
Output_segment* exidx_segment =
|
8677 |
|
|
layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
|
8678 |
|
|
exidx_segment->add_output_section_to_nonload(exidx_section,
|
8679 |
|
|
elfcpp::PF_R);
|
8680 |
|
|
}
|
8681 |
|
|
}
|
8682 |
|
|
else
|
8683 |
|
|
{
|
8684 |
|
|
symtab->define_as_constant("__exidx_start", NULL,
|
8685 |
|
|
Symbol_table::PREDEFINED,
|
8686 |
|
|
0, 0, elfcpp::STT_OBJECT,
|
8687 |
|
|
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
|
8688 |
|
|
true, false);
|
8689 |
|
|
symtab->define_as_constant("__exidx_end", NULL,
|
8690 |
|
|
Symbol_table::PREDEFINED,
|
8691 |
|
|
0, 0, elfcpp::STT_OBJECT,
|
8692 |
|
|
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
|
8693 |
|
|
true, false);
|
8694 |
|
|
}
|
8695 |
|
|
}
|
8696 |
|
|
|
8697 |
|
|
// Create an .ARM.attributes section if we have merged any attributes
|
8698 |
|
|
// from inputs.
|
8699 |
|
|
if (merged_any_attributes)
|
8700 |
|
|
{
|
8701 |
|
|
Output_attributes_section_data* attributes_section =
|
8702 |
|
|
new Output_attributes_section_data(*this->attributes_section_data_);
|
8703 |
|
|
layout->add_output_section_data(".ARM.attributes",
|
8704 |
|
|
elfcpp::SHT_ARM_ATTRIBUTES, 0,
|
8705 |
|
|
attributes_section, ORDER_INVALID,
|
8706 |
|
|
false);
|
8707 |
|
|
}
|
8708 |
|
|
|
8709 |
|
|
// Fix up links in section EXIDX headers.
|
8710 |
|
|
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
|
8711 |
|
|
p != layout->section_list().end();
|
8712 |
|
|
++p)
|
8713 |
|
|
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
|
8714 |
|
|
{
|
8715 |
|
|
Arm_output_section<big_endian>* os =
|
8716 |
|
|
Arm_output_section<big_endian>::as_arm_output_section(*p);
|
8717 |
|
|
os->set_exidx_section_link();
|
8718 |
|
|
}
|
8719 |
|
|
}
|
8720 |
|
|
|
8721 |
|
|
// Return whether a direct absolute static relocation needs to be applied.
|
8722 |
|
|
// In cases where Scan::local() or Scan::global() has created
|
8723 |
|
|
// a dynamic relocation other than R_ARM_RELATIVE, the addend
|
8724 |
|
|
// of the relocation is carried in the data, and we must not
|
8725 |
|
|
// apply the static relocation.
|
8726 |
|
|
|
8727 |
|
|
template<bool big_endian>
|
8728 |
|
|
inline bool
|
8729 |
|
|
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
|
8730 |
|
|
const Sized_symbol<32>* gsym,
|
8731 |
|
|
unsigned int r_type,
|
8732 |
|
|
bool is_32bit,
|
8733 |
|
|
Output_section* output_section)
|
8734 |
|
|
{
|
8735 |
|
|
// If the output section is not allocated, then we didn't call
|
8736 |
|
|
// scan_relocs, we didn't create a dynamic reloc, and we must apply
|
8737 |
|
|
// the reloc here.
|
8738 |
|
|
if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
|
8739 |
|
|
return true;
|
8740 |
|
|
|
8741 |
|
|
int ref_flags = Scan::get_reference_flags(r_type);
|
8742 |
|
|
|
8743 |
|
|
// For local symbols, we will have created a non-RELATIVE dynamic
|
8744 |
|
|
// relocation only if (a) the output is position independent,
|
8745 |
|
|
// (b) the relocation is absolute (not pc- or segment-relative), and
|
8746 |
|
|
// (c) the relocation is not 32 bits wide.
|
8747 |
|
|
if (gsym == NULL)
|
8748 |
|
|
return !(parameters->options().output_is_position_independent()
|
8749 |
|
|
&& (ref_flags & Symbol::ABSOLUTE_REF)
|
8750 |
|
|
&& !is_32bit);
|
8751 |
|
|
|
8752 |
|
|
// For global symbols, we use the same helper routines used in the
|
8753 |
|
|
// scan pass. If we did not create a dynamic relocation, or if we
|
8754 |
|
|
// created a RELATIVE dynamic relocation, we should apply the static
|
8755 |
|
|
// relocation.
|
8756 |
|
|
bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
|
8757 |
|
|
bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
|
8758 |
|
|
&& gsym->can_use_relative_reloc(ref_flags
|
8759 |
|
|
& Symbol::FUNCTION_CALL);
|
8760 |
|
|
return !has_dyn || is_rel;
|
8761 |
|
|
}
|
8762 |
|
|
|
8763 |
|
|
// Perform a relocation.
|
8764 |
|
|
|
8765 |
|
|
template<bool big_endian>
|
8766 |
|
|
inline bool
|
8767 |
|
|
Target_arm<big_endian>::Relocate::relocate(
|
8768 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
8769 |
|
|
Target_arm* target,
|
8770 |
|
|
Output_section* output_section,
|
8771 |
|
|
size_t relnum,
|
8772 |
|
|
const elfcpp::Rel<32, big_endian>& rel,
|
8773 |
|
|
unsigned int r_type,
|
8774 |
|
|
const Sized_symbol<32>* gsym,
|
8775 |
|
|
const Symbol_value<32>* psymval,
|
8776 |
|
|
unsigned char* view,
|
8777 |
|
|
Arm_address address,
|
8778 |
|
|
section_size_type view_size)
|
8779 |
|
|
{
|
8780 |
|
|
typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
|
8781 |
|
|
|
8782 |
|
|
r_type = get_real_reloc_type(r_type);
|
8783 |
|
|
const Arm_reloc_property* reloc_property =
|
8784 |
|
|
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
|
8785 |
|
|
if (reloc_property == NULL)
|
8786 |
|
|
{
|
8787 |
|
|
std::string reloc_name =
|
8788 |
|
|
arm_reloc_property_table->reloc_name_in_error_message(r_type);
|
8789 |
|
|
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
|
8790 |
|
|
_("cannot relocate %s in object file"),
|
8791 |
|
|
reloc_name.c_str());
|
8792 |
|
|
return true;
|
8793 |
|
|
}
|
8794 |
|
|
|
8795 |
|
|
const Arm_relobj<big_endian>* object =
|
8796 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
|
8797 |
|
|
|
8798 |
|
|
// If the final branch target of a relocation is THUMB instruction, this
|
8799 |
|
|
// is 1. Otherwise it is 0.
|
8800 |
|
|
Arm_address thumb_bit = 0;
|
8801 |
|
|
Symbol_value<32> symval;
|
8802 |
|
|
bool is_weakly_undefined_without_plt = false;
|
8803 |
|
|
bool have_got_offset = false;
|
8804 |
|
|
unsigned int got_offset = 0;
|
8805 |
|
|
|
8806 |
|
|
// If the relocation uses the GOT entry of a symbol instead of the symbol
|
8807 |
|
|
// itself, we don't care about whether the symbol is defined or what kind
|
8808 |
|
|
// of symbol it is.
|
8809 |
|
|
if (reloc_property->uses_got_entry())
|
8810 |
|
|
{
|
8811 |
|
|
// Get the GOT offset.
|
8812 |
|
|
// The GOT pointer points to the end of the GOT section.
|
8813 |
|
|
// We need to subtract the size of the GOT section to get
|
8814 |
|
|
// the actual offset to use in the relocation.
|
8815 |
|
|
// TODO: We should move GOT offset computing code in TLS relocations
|
8816 |
|
|
// to here.
|
8817 |
|
|
switch (r_type)
|
8818 |
|
|
{
|
8819 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
8820 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
8821 |
|
|
if (gsym != NULL)
|
8822 |
|
|
{
|
8823 |
|
|
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
|
8824 |
|
|
got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
|
8825 |
|
|
- target->got_size());
|
8826 |
|
|
}
|
8827 |
|
|
else
|
8828 |
|
|
{
|
8829 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
|
8830 |
|
|
gold_assert(object->local_has_got_offset(r_sym,
|
8831 |
|
|
GOT_TYPE_STANDARD));
|
8832 |
|
|
got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
|
8833 |
|
|
- target->got_size());
|
8834 |
|
|
}
|
8835 |
|
|
have_got_offset = true;
|
8836 |
|
|
break;
|
8837 |
|
|
|
8838 |
|
|
default:
|
8839 |
|
|
break;
|
8840 |
|
|
}
|
8841 |
|
|
}
|
8842 |
|
|
else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
|
8843 |
|
|
{
|
8844 |
|
|
if (gsym != NULL)
|
8845 |
|
|
{
|
8846 |
|
|
// This is a global symbol. Determine if we use PLT and if the
|
8847 |
|
|
// final target is THUMB.
|
8848 |
|
|
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
|
8849 |
|
|
{
|
8850 |
|
|
// This uses a PLT, change the symbol value.
|
8851 |
|
|
symval.set_output_value(target->plt_section()->address()
|
8852 |
|
|
+ gsym->plt_offset());
|
8853 |
|
|
psymval = &symval;
|
8854 |
|
|
}
|
8855 |
|
|
else if (gsym->is_weak_undefined())
|
8856 |
|
|
{
|
8857 |
|
|
// This is a weakly undefined symbol and we do not use PLT
|
8858 |
|
|
// for this relocation. A branch targeting this symbol will
|
8859 |
|
|
// be converted into an NOP.
|
8860 |
|
|
is_weakly_undefined_without_plt = true;
|
8861 |
|
|
}
|
8862 |
|
|
else if (gsym->is_undefined() && reloc_property->uses_symbol())
|
8863 |
|
|
{
|
8864 |
|
|
// This relocation uses the symbol value but the symbol is
|
8865 |
|
|
// undefined. Exit early and have the caller reporting an
|
8866 |
|
|
// error.
|
8867 |
|
|
return true;
|
8868 |
|
|
}
|
8869 |
|
|
else
|
8870 |
|
|
{
|
8871 |
|
|
// Set thumb bit if symbol:
|
8872 |
|
|
// -Has type STT_ARM_TFUNC or
|
8873 |
|
|
// -Has type STT_FUNC, is defined and with LSB in value set.
|
8874 |
|
|
thumb_bit =
|
8875 |
|
|
(((gsym->type() == elfcpp::STT_ARM_TFUNC)
|
8876 |
|
|
|| (gsym->type() == elfcpp::STT_FUNC
|
8877 |
|
|
&& !gsym->is_undefined()
|
8878 |
|
|
&& ((psymval->value(object, 0) & 1) != 0)))
|
8879 |
|
|
? 1
|
8880 |
|
|
: 0);
|
8881 |
|
|
}
|
8882 |
|
|
}
|
8883 |
|
|
else
|
8884 |
|
|
{
|
8885 |
|
|
// This is a local symbol. Determine if the final target is THUMB.
|
8886 |
|
|
// We saved this information when all the local symbols were read.
|
8887 |
|
|
elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
|
8888 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
|
8889 |
|
|
thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
|
8890 |
|
|
}
|
8891 |
|
|
}
|
8892 |
|
|
else
|
8893 |
|
|
{
|
8894 |
|
|
// This is a fake relocation synthesized for a stub. It does not have
|
8895 |
|
|
// a real symbol. We just look at the LSB of the symbol value to
|
8896 |
|
|
// determine if the target is THUMB or not.
|
8897 |
|
|
thumb_bit = ((psymval->value(object, 0) & 1) != 0);
|
8898 |
|
|
}
|
8899 |
|
|
|
8900 |
|
|
// Strip LSB if this points to a THUMB target.
|
8901 |
|
|
if (thumb_bit != 0
|
8902 |
|
|
&& reloc_property->uses_thumb_bit()
|
8903 |
|
|
&& ((psymval->value(object, 0) & 1) != 0))
|
8904 |
|
|
{
|
8905 |
|
|
Arm_address stripped_value =
|
8906 |
|
|
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
|
8907 |
|
|
symval.set_output_value(stripped_value);
|
8908 |
|
|
psymval = &symval;
|
8909 |
|
|
}
|
8910 |
|
|
|
8911 |
|
|
// To look up relocation stubs, we need to pass the symbol table index of
|
8912 |
|
|
// a local symbol.
|
8913 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
|
8914 |
|
|
|
8915 |
|
|
// Get the addressing origin of the output segment defining the
|
8916 |
|
|
// symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
|
8917 |
|
|
Arm_address sym_origin = 0;
|
8918 |
|
|
if (reloc_property->uses_symbol_base())
|
8919 |
|
|
{
|
8920 |
|
|
if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
|
8921 |
|
|
// R_ARM_BASE_ABS with the NULL symbol will give the
|
8922 |
|
|
// absolute address of the GOT origin (GOT_ORG) (see ARM IHI
|
8923 |
|
|
// 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
|
8924 |
|
|
sym_origin = target->got_plt_section()->address();
|
8925 |
|
|
else if (gsym == NULL)
|
8926 |
|
|
sym_origin = 0;
|
8927 |
|
|
else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
|
8928 |
|
|
sym_origin = gsym->output_segment()->vaddr();
|
8929 |
|
|
else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
|
8930 |
|
|
sym_origin = gsym->output_data()->address();
|
8931 |
|
|
|
8932 |
|
|
// TODO: Assumes the segment base to be zero for the global symbols
|
8933 |
|
|
// till the proper support for the segment-base-relative addressing
|
8934 |
|
|
// will be implemented. This is consistent with GNU ld.
|
8935 |
|
|
}
|
8936 |
|
|
|
8937 |
|
|
// For relative addressing relocation, find out the relative address base.
|
8938 |
|
|
Arm_address relative_address_base = 0;
|
8939 |
|
|
switch(reloc_property->relative_address_base())
|
8940 |
|
|
{
|
8941 |
|
|
case Arm_reloc_property::RAB_NONE:
|
8942 |
|
|
// Relocations with relative address bases RAB_TLS and RAB_tp are
|
8943 |
|
|
// handled by relocate_tls. So we do not need to do anything here.
|
8944 |
|
|
case Arm_reloc_property::RAB_TLS:
|
8945 |
|
|
case Arm_reloc_property::RAB_tp:
|
8946 |
|
|
break;
|
8947 |
|
|
case Arm_reloc_property::RAB_B_S:
|
8948 |
|
|
relative_address_base = sym_origin;
|
8949 |
|
|
break;
|
8950 |
|
|
case Arm_reloc_property::RAB_GOT_ORG:
|
8951 |
|
|
relative_address_base = target->got_plt_section()->address();
|
8952 |
|
|
break;
|
8953 |
|
|
case Arm_reloc_property::RAB_P:
|
8954 |
|
|
relative_address_base = address;
|
8955 |
|
|
break;
|
8956 |
|
|
case Arm_reloc_property::RAB_Pa:
|
8957 |
|
|
relative_address_base = address & 0xfffffffcU;
|
8958 |
|
|
break;
|
8959 |
|
|
default:
|
8960 |
|
|
gold_unreachable();
|
8961 |
|
|
}
|
8962 |
|
|
|
8963 |
|
|
typename Arm_relocate_functions::Status reloc_status =
|
8964 |
|
|
Arm_relocate_functions::STATUS_OKAY;
|
8965 |
|
|
bool check_overflow = reloc_property->checks_overflow();
|
8966 |
|
|
switch (r_type)
|
8967 |
|
|
{
|
8968 |
|
|
case elfcpp::R_ARM_NONE:
|
8969 |
|
|
break;
|
8970 |
|
|
|
8971 |
|
|
case elfcpp::R_ARM_ABS8:
|
8972 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
8973 |
|
|
reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
|
8974 |
|
|
break;
|
8975 |
|
|
|
8976 |
|
|
case elfcpp::R_ARM_ABS12:
|
8977 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
8978 |
|
|
reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
|
8979 |
|
|
break;
|
8980 |
|
|
|
8981 |
|
|
case elfcpp::R_ARM_ABS16:
|
8982 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
8983 |
|
|
reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
|
8984 |
|
|
break;
|
8985 |
|
|
|
8986 |
|
|
case elfcpp::R_ARM_ABS32:
|
8987 |
|
|
if (should_apply_static_reloc(gsym, r_type, true, output_section))
|
8988 |
|
|
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
|
8989 |
|
|
thumb_bit);
|
8990 |
|
|
break;
|
8991 |
|
|
|
8992 |
|
|
case elfcpp::R_ARM_ABS32_NOI:
|
8993 |
|
|
if (should_apply_static_reloc(gsym, r_type, true, output_section))
|
8994 |
|
|
// No thumb bit for this relocation: (S + A)
|
8995 |
|
|
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
|
8996 |
|
|
0);
|
8997 |
|
|
break;
|
8998 |
|
|
|
8999 |
|
|
case elfcpp::R_ARM_MOVW_ABS_NC:
|
9000 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9001 |
|
|
reloc_status = Arm_relocate_functions::movw(view, object, psymval,
|
9002 |
|
|
0, thumb_bit,
|
9003 |
|
|
check_overflow);
|
9004 |
|
|
break;
|
9005 |
|
|
|
9006 |
|
|
case elfcpp::R_ARM_MOVT_ABS:
|
9007 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9008 |
|
|
reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
|
9009 |
|
|
break;
|
9010 |
|
|
|
9011 |
|
|
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
|
9012 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9013 |
|
|
reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
|
9014 |
|
|
0, thumb_bit, false);
|
9015 |
|
|
break;
|
9016 |
|
|
|
9017 |
|
|
case elfcpp::R_ARM_THM_MOVT_ABS:
|
9018 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9019 |
|
|
reloc_status = Arm_relocate_functions::thm_movt(view, object,
|
9020 |
|
|
psymval, 0);
|
9021 |
|
|
break;
|
9022 |
|
|
|
9023 |
|
|
case elfcpp::R_ARM_MOVW_PREL_NC:
|
9024 |
|
|
case elfcpp::R_ARM_MOVW_BREL_NC:
|
9025 |
|
|
case elfcpp::R_ARM_MOVW_BREL:
|
9026 |
|
|
reloc_status =
|
9027 |
|
|
Arm_relocate_functions::movw(view, object, psymval,
|
9028 |
|
|
relative_address_base, thumb_bit,
|
9029 |
|
|
check_overflow);
|
9030 |
|
|
break;
|
9031 |
|
|
|
9032 |
|
|
case elfcpp::R_ARM_MOVT_PREL:
|
9033 |
|
|
case elfcpp::R_ARM_MOVT_BREL:
|
9034 |
|
|
reloc_status =
|
9035 |
|
|
Arm_relocate_functions::movt(view, object, psymval,
|
9036 |
|
|
relative_address_base);
|
9037 |
|
|
break;
|
9038 |
|
|
|
9039 |
|
|
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
|
9040 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
|
9041 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL:
|
9042 |
|
|
reloc_status =
|
9043 |
|
|
Arm_relocate_functions::thm_movw(view, object, psymval,
|
9044 |
|
|
relative_address_base,
|
9045 |
|
|
thumb_bit, check_overflow);
|
9046 |
|
|
break;
|
9047 |
|
|
|
9048 |
|
|
case elfcpp::R_ARM_THM_MOVT_PREL:
|
9049 |
|
|
case elfcpp::R_ARM_THM_MOVT_BREL:
|
9050 |
|
|
reloc_status =
|
9051 |
|
|
Arm_relocate_functions::thm_movt(view, object, psymval,
|
9052 |
|
|
relative_address_base);
|
9053 |
|
|
break;
|
9054 |
|
|
|
9055 |
|
|
case elfcpp::R_ARM_REL32:
|
9056 |
|
|
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
|
9057 |
|
|
address, thumb_bit);
|
9058 |
|
|
break;
|
9059 |
|
|
|
9060 |
|
|
case elfcpp::R_ARM_THM_ABS5:
|
9061 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9062 |
|
|
reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
|
9063 |
|
|
break;
|
9064 |
|
|
|
9065 |
|
|
// Thumb long branches.
|
9066 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
9067 |
|
|
case elfcpp::R_ARM_THM_XPC22:
|
9068 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
9069 |
|
|
reloc_status =
|
9070 |
|
|
Arm_relocate_functions::thumb_branch_common(
|
9071 |
|
|
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
|
9072 |
|
|
thumb_bit, is_weakly_undefined_without_plt);
|
9073 |
|
|
break;
|
9074 |
|
|
|
9075 |
|
|
case elfcpp::R_ARM_GOTOFF32:
|
9076 |
|
|
{
|
9077 |
|
|
Arm_address got_origin;
|
9078 |
|
|
got_origin = target->got_plt_section()->address();
|
9079 |
|
|
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
|
9080 |
|
|
got_origin, thumb_bit);
|
9081 |
|
|
}
|
9082 |
|
|
break;
|
9083 |
|
|
|
9084 |
|
|
case elfcpp::R_ARM_BASE_PREL:
|
9085 |
|
|
gold_assert(gsym != NULL);
|
9086 |
|
|
reloc_status =
|
9087 |
|
|
Arm_relocate_functions::base_prel(view, sym_origin, address);
|
9088 |
|
|
break;
|
9089 |
|
|
|
9090 |
|
|
case elfcpp::R_ARM_BASE_ABS:
|
9091 |
|
|
if (should_apply_static_reloc(gsym, r_type, false, output_section))
|
9092 |
|
|
reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
|
9093 |
|
|
break;
|
9094 |
|
|
|
9095 |
|
|
case elfcpp::R_ARM_GOT_BREL:
|
9096 |
|
|
gold_assert(have_got_offset);
|
9097 |
|
|
reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
|
9098 |
|
|
break;
|
9099 |
|
|
|
9100 |
|
|
case elfcpp::R_ARM_GOT_PREL:
|
9101 |
|
|
gold_assert(have_got_offset);
|
9102 |
|
|
// Get the address origin for GOT PLT, which is allocated right
|
9103 |
|
|
// after the GOT section, to calculate an absolute address of
|
9104 |
|
|
// the symbol GOT entry (got_origin + got_offset).
|
9105 |
|
|
Arm_address got_origin;
|
9106 |
|
|
got_origin = target->got_plt_section()->address();
|
9107 |
|
|
reloc_status = Arm_relocate_functions::got_prel(view,
|
9108 |
|
|
got_origin + got_offset,
|
9109 |
|
|
address);
|
9110 |
|
|
break;
|
9111 |
|
|
|
9112 |
|
|
case elfcpp::R_ARM_PLT32:
|
9113 |
|
|
case elfcpp::R_ARM_CALL:
|
9114 |
|
|
case elfcpp::R_ARM_JUMP24:
|
9115 |
|
|
case elfcpp::R_ARM_XPC25:
|
9116 |
|
|
gold_assert(gsym == NULL
|
9117 |
|
|
|| gsym->has_plt_offset()
|
9118 |
|
|
|| gsym->final_value_is_known()
|
9119 |
|
|
|| (gsym->is_defined()
|
9120 |
|
|
&& !gsym->is_from_dynobj()
|
9121 |
|
|
&& !gsym->is_preemptible()));
|
9122 |
|
|
reloc_status =
|
9123 |
|
|
Arm_relocate_functions::arm_branch_common(
|
9124 |
|
|
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
|
9125 |
|
|
thumb_bit, is_weakly_undefined_without_plt);
|
9126 |
|
|
break;
|
9127 |
|
|
|
9128 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
9129 |
|
|
reloc_status =
|
9130 |
|
|
Arm_relocate_functions::thm_jump19(view, object, psymval, address,
|
9131 |
|
|
thumb_bit);
|
9132 |
|
|
break;
|
9133 |
|
|
|
9134 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
9135 |
|
|
reloc_status =
|
9136 |
|
|
Arm_relocate_functions::thm_jump6(view, object, psymval, address);
|
9137 |
|
|
break;
|
9138 |
|
|
|
9139 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
9140 |
|
|
reloc_status =
|
9141 |
|
|
Arm_relocate_functions::thm_jump8(view, object, psymval, address);
|
9142 |
|
|
break;
|
9143 |
|
|
|
9144 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
9145 |
|
|
reloc_status =
|
9146 |
|
|
Arm_relocate_functions::thm_jump11(view, object, psymval, address);
|
9147 |
|
|
break;
|
9148 |
|
|
|
9149 |
|
|
case elfcpp::R_ARM_PREL31:
|
9150 |
|
|
reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
|
9151 |
|
|
address, thumb_bit);
|
9152 |
|
|
break;
|
9153 |
|
|
|
9154 |
|
|
case elfcpp::R_ARM_V4BX:
|
9155 |
|
|
if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
|
9156 |
|
|
{
|
9157 |
|
|
const bool is_v4bx_interworking =
|
9158 |
|
|
(target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
|
9159 |
|
|
reloc_status =
|
9160 |
|
|
Arm_relocate_functions::v4bx(relinfo, view, object, address,
|
9161 |
|
|
is_v4bx_interworking);
|
9162 |
|
|
}
|
9163 |
|
|
break;
|
9164 |
|
|
|
9165 |
|
|
case elfcpp::R_ARM_THM_PC8:
|
9166 |
|
|
reloc_status =
|
9167 |
|
|
Arm_relocate_functions::thm_pc8(view, object, psymval, address);
|
9168 |
|
|
break;
|
9169 |
|
|
|
9170 |
|
|
case elfcpp::R_ARM_THM_PC12:
|
9171 |
|
|
reloc_status =
|
9172 |
|
|
Arm_relocate_functions::thm_pc12(view, object, psymval, address);
|
9173 |
|
|
break;
|
9174 |
|
|
|
9175 |
|
|
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
|
9176 |
|
|
reloc_status =
|
9177 |
|
|
Arm_relocate_functions::thm_alu11(view, object, psymval, address,
|
9178 |
|
|
thumb_bit);
|
9179 |
|
|
break;
|
9180 |
|
|
|
9181 |
|
|
case elfcpp::R_ARM_ALU_PC_G0_NC:
|
9182 |
|
|
case elfcpp::R_ARM_ALU_PC_G0:
|
9183 |
|
|
case elfcpp::R_ARM_ALU_PC_G1_NC:
|
9184 |
|
|
case elfcpp::R_ARM_ALU_PC_G1:
|
9185 |
|
|
case elfcpp::R_ARM_ALU_PC_G2:
|
9186 |
|
|
case elfcpp::R_ARM_ALU_SB_G0_NC:
|
9187 |
|
|
case elfcpp::R_ARM_ALU_SB_G0:
|
9188 |
|
|
case elfcpp::R_ARM_ALU_SB_G1_NC:
|
9189 |
|
|
case elfcpp::R_ARM_ALU_SB_G1:
|
9190 |
|
|
case elfcpp::R_ARM_ALU_SB_G2:
|
9191 |
|
|
reloc_status =
|
9192 |
|
|
Arm_relocate_functions::arm_grp_alu(view, object, psymval,
|
9193 |
|
|
reloc_property->group_index(),
|
9194 |
|
|
relative_address_base,
|
9195 |
|
|
thumb_bit, check_overflow);
|
9196 |
|
|
break;
|
9197 |
|
|
|
9198 |
|
|
case elfcpp::R_ARM_LDR_PC_G0:
|
9199 |
|
|
case elfcpp::R_ARM_LDR_PC_G1:
|
9200 |
|
|
case elfcpp::R_ARM_LDR_PC_G2:
|
9201 |
|
|
case elfcpp::R_ARM_LDR_SB_G0:
|
9202 |
|
|
case elfcpp::R_ARM_LDR_SB_G1:
|
9203 |
|
|
case elfcpp::R_ARM_LDR_SB_G2:
|
9204 |
|
|
reloc_status =
|
9205 |
|
|
Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
|
9206 |
|
|
reloc_property->group_index(),
|
9207 |
|
|
relative_address_base);
|
9208 |
|
|
break;
|
9209 |
|
|
|
9210 |
|
|
case elfcpp::R_ARM_LDRS_PC_G0:
|
9211 |
|
|
case elfcpp::R_ARM_LDRS_PC_G1:
|
9212 |
|
|
case elfcpp::R_ARM_LDRS_PC_G2:
|
9213 |
|
|
case elfcpp::R_ARM_LDRS_SB_G0:
|
9214 |
|
|
case elfcpp::R_ARM_LDRS_SB_G1:
|
9215 |
|
|
case elfcpp::R_ARM_LDRS_SB_G2:
|
9216 |
|
|
reloc_status =
|
9217 |
|
|
Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
|
9218 |
|
|
reloc_property->group_index(),
|
9219 |
|
|
relative_address_base);
|
9220 |
|
|
break;
|
9221 |
|
|
|
9222 |
|
|
case elfcpp::R_ARM_LDC_PC_G0:
|
9223 |
|
|
case elfcpp::R_ARM_LDC_PC_G1:
|
9224 |
|
|
case elfcpp::R_ARM_LDC_PC_G2:
|
9225 |
|
|
case elfcpp::R_ARM_LDC_SB_G0:
|
9226 |
|
|
case elfcpp::R_ARM_LDC_SB_G1:
|
9227 |
|
|
case elfcpp::R_ARM_LDC_SB_G2:
|
9228 |
|
|
reloc_status =
|
9229 |
|
|
Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
|
9230 |
|
|
reloc_property->group_index(),
|
9231 |
|
|
relative_address_base);
|
9232 |
|
|
break;
|
9233 |
|
|
|
9234 |
|
|
// These are initial tls relocs, which are expected when
|
9235 |
|
|
// linking.
|
9236 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
9237 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
9238 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
9239 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
9240 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
9241 |
|
|
reloc_status =
|
9242 |
|
|
this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
|
9243 |
|
|
view, address, view_size);
|
9244 |
|
|
break;
|
9245 |
|
|
|
9246 |
|
|
// The known and unknown unsupported and/or deprecated relocations.
|
9247 |
|
|
case elfcpp::R_ARM_PC24:
|
9248 |
|
|
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
|
9249 |
|
|
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
|
9250 |
|
|
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
|
9251 |
|
|
default:
|
9252 |
|
|
// Just silently leave the method. We should get an appropriate error
|
9253 |
|
|
// message in the scan methods.
|
9254 |
|
|
break;
|
9255 |
|
|
}
|
9256 |
|
|
|
9257 |
|
|
// Report any errors.
|
9258 |
|
|
switch (reloc_status)
|
9259 |
|
|
{
|
9260 |
|
|
case Arm_relocate_functions::STATUS_OKAY:
|
9261 |
|
|
break;
|
9262 |
|
|
case Arm_relocate_functions::STATUS_OVERFLOW:
|
9263 |
|
|
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
|
9264 |
|
|
_("relocation overflow in %s"),
|
9265 |
|
|
reloc_property->name().c_str());
|
9266 |
|
|
break;
|
9267 |
|
|
case Arm_relocate_functions::STATUS_BAD_RELOC:
|
9268 |
|
|
gold_error_at_location(
|
9269 |
|
|
relinfo,
|
9270 |
|
|
relnum,
|
9271 |
|
|
rel.get_r_offset(),
|
9272 |
|
|
_("unexpected opcode while processing relocation %s"),
|
9273 |
|
|
reloc_property->name().c_str());
|
9274 |
|
|
break;
|
9275 |
|
|
default:
|
9276 |
|
|
gold_unreachable();
|
9277 |
|
|
}
|
9278 |
|
|
|
9279 |
|
|
return true;
|
9280 |
|
|
}
|
9281 |
|
|
|
9282 |
|
|
// Perform a TLS relocation.
|
9283 |
|
|
|
9284 |
|
|
template<bool big_endian>
|
9285 |
|
|
inline typename Arm_relocate_functions<big_endian>::Status
|
9286 |
|
|
Target_arm<big_endian>::Relocate::relocate_tls(
|
9287 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
9288 |
|
|
Target_arm<big_endian>* target,
|
9289 |
|
|
size_t relnum,
|
9290 |
|
|
const elfcpp::Rel<32, big_endian>& rel,
|
9291 |
|
|
unsigned int r_type,
|
9292 |
|
|
const Sized_symbol<32>* gsym,
|
9293 |
|
|
const Symbol_value<32>* psymval,
|
9294 |
|
|
unsigned char* view,
|
9295 |
|
|
elfcpp::Elf_types<32>::Elf_Addr address,
|
9296 |
|
|
section_size_type /*view_size*/ )
|
9297 |
|
|
{
|
9298 |
|
|
typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
|
9299 |
|
|
typedef Relocate_functions<32, big_endian> RelocFuncs;
|
9300 |
|
|
Output_segment* tls_segment = relinfo->layout->tls_segment();
|
9301 |
|
|
|
9302 |
|
|
const Sized_relobj_file<32, big_endian>* object = relinfo->object;
|
9303 |
|
|
|
9304 |
|
|
elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
|
9305 |
|
|
|
9306 |
|
|
const bool is_final = (gsym == NULL
|
9307 |
|
|
? !parameters->options().shared()
|
9308 |
|
|
: gsym->final_value_is_known());
|
9309 |
|
|
const tls::Tls_optimization optimized_type
|
9310 |
|
|
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
|
9311 |
|
|
switch (r_type)
|
9312 |
|
|
{
|
9313 |
|
|
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
|
9314 |
|
|
{
|
9315 |
|
|
unsigned int got_type = GOT_TYPE_TLS_PAIR;
|
9316 |
|
|
unsigned int got_offset;
|
9317 |
|
|
if (gsym != NULL)
|
9318 |
|
|
{
|
9319 |
|
|
gold_assert(gsym->has_got_offset(got_type));
|
9320 |
|
|
got_offset = gsym->got_offset(got_type) - target->got_size();
|
9321 |
|
|
}
|
9322 |
|
|
else
|
9323 |
|
|
{
|
9324 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
|
9325 |
|
|
gold_assert(object->local_has_got_offset(r_sym, got_type));
|
9326 |
|
|
got_offset = (object->local_got_offset(r_sym, got_type)
|
9327 |
|
|
- target->got_size());
|
9328 |
|
|
}
|
9329 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
9330 |
|
|
{
|
9331 |
|
|
Arm_address got_entry =
|
9332 |
|
|
target->got_plt_section()->address() + got_offset;
|
9333 |
|
|
|
9334 |
|
|
// Relocate the field with the PC relative offset of the pair of
|
9335 |
|
|
// GOT entries.
|
9336 |
|
|
RelocFuncs::pcrel32(view, got_entry, address);
|
9337 |
|
|
return ArmRelocFuncs::STATUS_OKAY;
|
9338 |
|
|
}
|
9339 |
|
|
}
|
9340 |
|
|
break;
|
9341 |
|
|
|
9342 |
|
|
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
|
9343 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
9344 |
|
|
{
|
9345 |
|
|
// Relocate the field with the offset of the GOT entry for
|
9346 |
|
|
// the module index.
|
9347 |
|
|
unsigned int got_offset;
|
9348 |
|
|
got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
|
9349 |
|
|
- target->got_size());
|
9350 |
|
|
Arm_address got_entry =
|
9351 |
|
|
target->got_plt_section()->address() + got_offset;
|
9352 |
|
|
|
9353 |
|
|
// Relocate the field with the PC relative offset of the pair of
|
9354 |
|
|
// GOT entries.
|
9355 |
|
|
RelocFuncs::pcrel32(view, got_entry, address);
|
9356 |
|
|
return ArmRelocFuncs::STATUS_OKAY;
|
9357 |
|
|
}
|
9358 |
|
|
break;
|
9359 |
|
|
|
9360 |
|
|
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
|
9361 |
|
|
RelocFuncs::rel32(view, value);
|
9362 |
|
|
return ArmRelocFuncs::STATUS_OKAY;
|
9363 |
|
|
|
9364 |
|
|
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
|
9365 |
|
|
if (optimized_type == tls::TLSOPT_NONE)
|
9366 |
|
|
{
|
9367 |
|
|
// Relocate the field with the offset of the GOT entry for
|
9368 |
|
|
// the tp-relative offset of the symbol.
|
9369 |
|
|
unsigned int got_type = GOT_TYPE_TLS_OFFSET;
|
9370 |
|
|
unsigned int got_offset;
|
9371 |
|
|
if (gsym != NULL)
|
9372 |
|
|
{
|
9373 |
|
|
gold_assert(gsym->has_got_offset(got_type));
|
9374 |
|
|
got_offset = gsym->got_offset(got_type);
|
9375 |
|
|
}
|
9376 |
|
|
else
|
9377 |
|
|
{
|
9378 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
|
9379 |
|
|
gold_assert(object->local_has_got_offset(r_sym, got_type));
|
9380 |
|
|
got_offset = object->local_got_offset(r_sym, got_type);
|
9381 |
|
|
}
|
9382 |
|
|
|
9383 |
|
|
// All GOT offsets are relative to the end of the GOT.
|
9384 |
|
|
got_offset -= target->got_size();
|
9385 |
|
|
|
9386 |
|
|
Arm_address got_entry =
|
9387 |
|
|
target->got_plt_section()->address() + got_offset;
|
9388 |
|
|
|
9389 |
|
|
// Relocate the field with the PC relative offset of the GOT entry.
|
9390 |
|
|
RelocFuncs::pcrel32(view, got_entry, address);
|
9391 |
|
|
return ArmRelocFuncs::STATUS_OKAY;
|
9392 |
|
|
}
|
9393 |
|
|
break;
|
9394 |
|
|
|
9395 |
|
|
case elfcpp::R_ARM_TLS_LE32: // Local-exec
|
9396 |
|
|
// If we're creating a shared library, a dynamic relocation will
|
9397 |
|
|
// have been created for this location, so do not apply it now.
|
9398 |
|
|
if (!parameters->options().shared())
|
9399 |
|
|
{
|
9400 |
|
|
gold_assert(tls_segment != NULL);
|
9401 |
|
|
|
9402 |
|
|
// $tp points to the TCB, which is followed by the TLS, so we
|
9403 |
|
|
// need to add TCB size to the offset.
|
9404 |
|
|
Arm_address aligned_tcb_size =
|
9405 |
|
|
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
|
9406 |
|
|
RelocFuncs::rel32(view, value + aligned_tcb_size);
|
9407 |
|
|
|
9408 |
|
|
}
|
9409 |
|
|
return ArmRelocFuncs::STATUS_OKAY;
|
9410 |
|
|
|
9411 |
|
|
default:
|
9412 |
|
|
gold_unreachable();
|
9413 |
|
|
}
|
9414 |
|
|
|
9415 |
|
|
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
|
9416 |
|
|
_("unsupported reloc %u"),
|
9417 |
|
|
r_type);
|
9418 |
|
|
return ArmRelocFuncs::STATUS_BAD_RELOC;
|
9419 |
|
|
}
|
9420 |
|
|
|
9421 |
|
|
// Relocate section data.
|
9422 |
|
|
|
9423 |
|
|
template<bool big_endian>
|
9424 |
|
|
void
|
9425 |
|
|
Target_arm<big_endian>::relocate_section(
|
9426 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
9427 |
|
|
unsigned int sh_type,
|
9428 |
|
|
const unsigned char* prelocs,
|
9429 |
|
|
size_t reloc_count,
|
9430 |
|
|
Output_section* output_section,
|
9431 |
|
|
bool needs_special_offset_handling,
|
9432 |
|
|
unsigned char* view,
|
9433 |
|
|
Arm_address address,
|
9434 |
|
|
section_size_type view_size,
|
9435 |
|
|
const Reloc_symbol_changes* reloc_symbol_changes)
|
9436 |
|
|
{
|
9437 |
|
|
typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
|
9438 |
|
|
gold_assert(sh_type == elfcpp::SHT_REL);
|
9439 |
|
|
|
9440 |
|
|
// See if we are relocating a relaxed input section. If so, the view
|
9441 |
|
|
// covers the whole output section and we need to adjust accordingly.
|
9442 |
|
|
if (needs_special_offset_handling)
|
9443 |
|
|
{
|
9444 |
|
|
const Output_relaxed_input_section* poris =
|
9445 |
|
|
output_section->find_relaxed_input_section(relinfo->object,
|
9446 |
|
|
relinfo->data_shndx);
|
9447 |
|
|
if (poris != NULL)
|
9448 |
|
|
{
|
9449 |
|
|
Arm_address section_address = poris->address();
|
9450 |
|
|
section_size_type section_size = poris->data_size();
|
9451 |
|
|
|
9452 |
|
|
gold_assert((section_address >= address)
|
9453 |
|
|
&& ((section_address + section_size)
|
9454 |
|
|
<= (address + view_size)));
|
9455 |
|
|
|
9456 |
|
|
off_t offset = section_address - address;
|
9457 |
|
|
view += offset;
|
9458 |
|
|
address += offset;
|
9459 |
|
|
view_size = section_size;
|
9460 |
|
|
}
|
9461 |
|
|
}
|
9462 |
|
|
|
9463 |
|
|
gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
|
9464 |
|
|
Arm_relocate>(
|
9465 |
|
|
relinfo,
|
9466 |
|
|
this,
|
9467 |
|
|
prelocs,
|
9468 |
|
|
reloc_count,
|
9469 |
|
|
output_section,
|
9470 |
|
|
needs_special_offset_handling,
|
9471 |
|
|
view,
|
9472 |
|
|
address,
|
9473 |
|
|
view_size,
|
9474 |
|
|
reloc_symbol_changes);
|
9475 |
|
|
}
|
9476 |
|
|
|
9477 |
|
|
// Return the size of a relocation while scanning during a relocatable
|
9478 |
|
|
// link.
|
9479 |
|
|
|
9480 |
|
|
template<bool big_endian>
|
9481 |
|
|
unsigned int
|
9482 |
|
|
Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
|
9483 |
|
|
unsigned int r_type,
|
9484 |
|
|
Relobj* object)
|
9485 |
|
|
{
|
9486 |
|
|
r_type = get_real_reloc_type(r_type);
|
9487 |
|
|
const Arm_reloc_property* arp =
|
9488 |
|
|
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
|
9489 |
|
|
if (arp != NULL)
|
9490 |
|
|
return arp->size();
|
9491 |
|
|
else
|
9492 |
|
|
{
|
9493 |
|
|
std::string reloc_name =
|
9494 |
|
|
arm_reloc_property_table->reloc_name_in_error_message(r_type);
|
9495 |
|
|
gold_error(_("%s: unexpected %s in object file"),
|
9496 |
|
|
object->name().c_str(), reloc_name.c_str());
|
9497 |
|
|
return 0;
|
9498 |
|
|
}
|
9499 |
|
|
}
|
9500 |
|
|
|
9501 |
|
|
// Scan the relocs during a relocatable link.
|
9502 |
|
|
|
9503 |
|
|
template<bool big_endian>
|
9504 |
|
|
void
|
9505 |
|
|
Target_arm<big_endian>::scan_relocatable_relocs(
|
9506 |
|
|
Symbol_table* symtab,
|
9507 |
|
|
Layout* layout,
|
9508 |
|
|
Sized_relobj_file<32, big_endian>* object,
|
9509 |
|
|
unsigned int data_shndx,
|
9510 |
|
|
unsigned int sh_type,
|
9511 |
|
|
const unsigned char* prelocs,
|
9512 |
|
|
size_t reloc_count,
|
9513 |
|
|
Output_section* output_section,
|
9514 |
|
|
bool needs_special_offset_handling,
|
9515 |
|
|
size_t local_symbol_count,
|
9516 |
|
|
const unsigned char* plocal_symbols,
|
9517 |
|
|
Relocatable_relocs* rr)
|
9518 |
|
|
{
|
9519 |
|
|
gold_assert(sh_type == elfcpp::SHT_REL);
|
9520 |
|
|
|
9521 |
|
|
typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
|
9522 |
|
|
Relocatable_size_for_reloc> Scan_relocatable_relocs;
|
9523 |
|
|
|
9524 |
|
|
gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
|
9525 |
|
|
Scan_relocatable_relocs>(
|
9526 |
|
|
symtab,
|
9527 |
|
|
layout,
|
9528 |
|
|
object,
|
9529 |
|
|
data_shndx,
|
9530 |
|
|
prelocs,
|
9531 |
|
|
reloc_count,
|
9532 |
|
|
output_section,
|
9533 |
|
|
needs_special_offset_handling,
|
9534 |
|
|
local_symbol_count,
|
9535 |
|
|
plocal_symbols,
|
9536 |
|
|
rr);
|
9537 |
|
|
}
|
9538 |
|
|
|
9539 |
|
|
// Relocate a section during a relocatable link.
|
9540 |
|
|
|
9541 |
|
|
template<bool big_endian>
|
9542 |
|
|
void
|
9543 |
|
|
Target_arm<big_endian>::relocate_for_relocatable(
|
9544 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
9545 |
|
|
unsigned int sh_type,
|
9546 |
|
|
const unsigned char* prelocs,
|
9547 |
|
|
size_t reloc_count,
|
9548 |
|
|
Output_section* output_section,
|
9549 |
|
|
off_t offset_in_output_section,
|
9550 |
|
|
const Relocatable_relocs* rr,
|
9551 |
|
|
unsigned char* view,
|
9552 |
|
|
Arm_address view_address,
|
9553 |
|
|
section_size_type view_size,
|
9554 |
|
|
unsigned char* reloc_view,
|
9555 |
|
|
section_size_type reloc_view_size)
|
9556 |
|
|
{
|
9557 |
|
|
gold_assert(sh_type == elfcpp::SHT_REL);
|
9558 |
|
|
|
9559 |
|
|
gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
|
9560 |
|
|
relinfo,
|
9561 |
|
|
prelocs,
|
9562 |
|
|
reloc_count,
|
9563 |
|
|
output_section,
|
9564 |
|
|
offset_in_output_section,
|
9565 |
|
|
rr,
|
9566 |
|
|
view,
|
9567 |
|
|
view_address,
|
9568 |
|
|
view_size,
|
9569 |
|
|
reloc_view,
|
9570 |
|
|
reloc_view_size);
|
9571 |
|
|
}
|
9572 |
|
|
|
9573 |
|
|
// Perform target-specific processing in a relocatable link. This is
|
9574 |
|
|
// only used if we use the relocation strategy RELOC_SPECIAL.
|
9575 |
|
|
|
9576 |
|
|
template<bool big_endian>
|
9577 |
|
|
void
|
9578 |
|
|
Target_arm<big_endian>::relocate_special_relocatable(
|
9579 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
9580 |
|
|
unsigned int sh_type,
|
9581 |
|
|
const unsigned char* preloc_in,
|
9582 |
|
|
size_t relnum,
|
9583 |
|
|
Output_section* output_section,
|
9584 |
|
|
off_t offset_in_output_section,
|
9585 |
|
|
unsigned char* view,
|
9586 |
|
|
elfcpp::Elf_types<32>::Elf_Addr view_address,
|
9587 |
|
|
section_size_type,
|
9588 |
|
|
unsigned char* preloc_out)
|
9589 |
|
|
{
|
9590 |
|
|
// We can only handle REL type relocation sections.
|
9591 |
|
|
gold_assert(sh_type == elfcpp::SHT_REL);
|
9592 |
|
|
|
9593 |
|
|
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
|
9594 |
|
|
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
|
9595 |
|
|
Reltype_write;
|
9596 |
|
|
const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
|
9597 |
|
|
|
9598 |
|
|
const Arm_relobj<big_endian>* object =
|
9599 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
|
9600 |
|
|
const unsigned int local_count = object->local_symbol_count();
|
9601 |
|
|
|
9602 |
|
|
Reltype reloc(preloc_in);
|
9603 |
|
|
Reltype_write reloc_write(preloc_out);
|
9604 |
|
|
|
9605 |
|
|
elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
|
9606 |
|
|
const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
|
9607 |
|
|
const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
|
9608 |
|
|
|
9609 |
|
|
const Arm_reloc_property* arp =
|
9610 |
|
|
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
|
9611 |
|
|
gold_assert(arp != NULL);
|
9612 |
|
|
|
9613 |
|
|
// Get the new symbol index.
|
9614 |
|
|
// We only use RELOC_SPECIAL strategy in local relocations.
|
9615 |
|
|
gold_assert(r_sym < local_count);
|
9616 |
|
|
|
9617 |
|
|
// We are adjusting a section symbol. We need to find
|
9618 |
|
|
// the symbol table index of the section symbol for
|
9619 |
|
|
// the output section corresponding to input section
|
9620 |
|
|
// in which this symbol is defined.
|
9621 |
|
|
bool is_ordinary;
|
9622 |
|
|
unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
|
9623 |
|
|
gold_assert(is_ordinary);
|
9624 |
|
|
Output_section* os = object->output_section(shndx);
|
9625 |
|
|
gold_assert(os != NULL);
|
9626 |
|
|
gold_assert(os->needs_symtab_index());
|
9627 |
|
|
unsigned int new_symndx = os->symtab_index();
|
9628 |
|
|
|
9629 |
|
|
// Get the new offset--the location in the output section where
|
9630 |
|
|
// this relocation should be applied.
|
9631 |
|
|
|
9632 |
|
|
Arm_address offset = reloc.get_r_offset();
|
9633 |
|
|
Arm_address new_offset;
|
9634 |
|
|
if (offset_in_output_section != invalid_address)
|
9635 |
|
|
new_offset = offset + offset_in_output_section;
|
9636 |
|
|
else
|
9637 |
|
|
{
|
9638 |
|
|
section_offset_type sot_offset =
|
9639 |
|
|
convert_types<section_offset_type, Arm_address>(offset);
|
9640 |
|
|
section_offset_type new_sot_offset =
|
9641 |
|
|
output_section->output_offset(object, relinfo->data_shndx,
|
9642 |
|
|
sot_offset);
|
9643 |
|
|
gold_assert(new_sot_offset != -1);
|
9644 |
|
|
new_offset = new_sot_offset;
|
9645 |
|
|
}
|
9646 |
|
|
|
9647 |
|
|
// In an object file, r_offset is an offset within the section.
|
9648 |
|
|
// In an executable or dynamic object, generated by
|
9649 |
|
|
// --emit-relocs, r_offset is an absolute address.
|
9650 |
|
|
if (!parameters->options().relocatable())
|
9651 |
|
|
{
|
9652 |
|
|
new_offset += view_address;
|
9653 |
|
|
if (offset_in_output_section != invalid_address)
|
9654 |
|
|
new_offset -= offset_in_output_section;
|
9655 |
|
|
}
|
9656 |
|
|
|
9657 |
|
|
reloc_write.put_r_offset(new_offset);
|
9658 |
|
|
reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
|
9659 |
|
|
|
9660 |
|
|
// Handle the reloc addend.
|
9661 |
|
|
// The relocation uses a section symbol in the input file.
|
9662 |
|
|
// We are adjusting it to use a section symbol in the output
|
9663 |
|
|
// file. The input section symbol refers to some address in
|
9664 |
|
|
// the input section. We need the relocation in the output
|
9665 |
|
|
// file to refer to that same address. This adjustment to
|
9666 |
|
|
// the addend is the same calculation we use for a simple
|
9667 |
|
|
// absolute relocation for the input section symbol.
|
9668 |
|
|
|
9669 |
|
|
const Symbol_value<32>* psymval = object->local_symbol(r_sym);
|
9670 |
|
|
|
9671 |
|
|
// Handle THUMB bit.
|
9672 |
|
|
Symbol_value<32> symval;
|
9673 |
|
|
Arm_address thumb_bit =
|
9674 |
|
|
object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
|
9675 |
|
|
if (thumb_bit != 0
|
9676 |
|
|
&& arp->uses_thumb_bit()
|
9677 |
|
|
&& ((psymval->value(object, 0) & 1) != 0))
|
9678 |
|
|
{
|
9679 |
|
|
Arm_address stripped_value =
|
9680 |
|
|
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
|
9681 |
|
|
symval.set_output_value(stripped_value);
|
9682 |
|
|
psymval = &symval;
|
9683 |
|
|
}
|
9684 |
|
|
|
9685 |
|
|
unsigned char* paddend = view + offset;
|
9686 |
|
|
typename Arm_relocate_functions<big_endian>::Status reloc_status =
|
9687 |
|
|
Arm_relocate_functions<big_endian>::STATUS_OKAY;
|
9688 |
|
|
switch (r_type)
|
9689 |
|
|
{
|
9690 |
|
|
case elfcpp::R_ARM_ABS8:
|
9691 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
|
9692 |
|
|
psymval);
|
9693 |
|
|
break;
|
9694 |
|
|
|
9695 |
|
|
case elfcpp::R_ARM_ABS12:
|
9696 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
|
9697 |
|
|
psymval);
|
9698 |
|
|
break;
|
9699 |
|
|
|
9700 |
|
|
case elfcpp::R_ARM_ABS16:
|
9701 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
|
9702 |
|
|
psymval);
|
9703 |
|
|
break;
|
9704 |
|
|
|
9705 |
|
|
case elfcpp::R_ARM_THM_ABS5:
|
9706 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
|
9707 |
|
|
object,
|
9708 |
|
|
psymval);
|
9709 |
|
|
break;
|
9710 |
|
|
|
9711 |
|
|
case elfcpp::R_ARM_MOVW_ABS_NC:
|
9712 |
|
|
case elfcpp::R_ARM_MOVW_PREL_NC:
|
9713 |
|
|
case elfcpp::R_ARM_MOVW_BREL_NC:
|
9714 |
|
|
case elfcpp::R_ARM_MOVW_BREL:
|
9715 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::movw(
|
9716 |
|
|
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
|
9717 |
|
|
break;
|
9718 |
|
|
|
9719 |
|
|
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
|
9720 |
|
|
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
|
9721 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
|
9722 |
|
|
case elfcpp::R_ARM_THM_MOVW_BREL:
|
9723 |
|
|
reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
|
9724 |
|
|
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
|
9725 |
|
|
break;
|
9726 |
|
|
|
9727 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
9728 |
|
|
case elfcpp::R_ARM_THM_XPC22:
|
9729 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
9730 |
|
|
reloc_status =
|
9731 |
|
|
Arm_relocate_functions<big_endian>::thumb_branch_common(
|
9732 |
|
|
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
|
9733 |
|
|
false);
|
9734 |
|
|
break;
|
9735 |
|
|
|
9736 |
|
|
case elfcpp::R_ARM_PLT32:
|
9737 |
|
|
case elfcpp::R_ARM_CALL:
|
9738 |
|
|
case elfcpp::R_ARM_JUMP24:
|
9739 |
|
|
case elfcpp::R_ARM_XPC25:
|
9740 |
|
|
reloc_status =
|
9741 |
|
|
Arm_relocate_functions<big_endian>::arm_branch_common(
|
9742 |
|
|
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
|
9743 |
|
|
false);
|
9744 |
|
|
break;
|
9745 |
|
|
|
9746 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
9747 |
|
|
reloc_status =
|
9748 |
|
|
Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
|
9749 |
|
|
psymval, 0, thumb_bit);
|
9750 |
|
|
break;
|
9751 |
|
|
|
9752 |
|
|
case elfcpp::R_ARM_THM_JUMP6:
|
9753 |
|
|
reloc_status =
|
9754 |
|
|
Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
|
9755 |
|
|
0);
|
9756 |
|
|
break;
|
9757 |
|
|
|
9758 |
|
|
case elfcpp::R_ARM_THM_JUMP8:
|
9759 |
|
|
reloc_status =
|
9760 |
|
|
Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
|
9761 |
|
|
0);
|
9762 |
|
|
break;
|
9763 |
|
|
|
9764 |
|
|
case elfcpp::R_ARM_THM_JUMP11:
|
9765 |
|
|
reloc_status =
|
9766 |
|
|
Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
|
9767 |
|
|
0);
|
9768 |
|
|
break;
|
9769 |
|
|
|
9770 |
|
|
case elfcpp::R_ARM_PREL31:
|
9771 |
|
|
reloc_status =
|
9772 |
|
|
Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
|
9773 |
|
|
thumb_bit);
|
9774 |
|
|
break;
|
9775 |
|
|
|
9776 |
|
|
case elfcpp::R_ARM_THM_PC8:
|
9777 |
|
|
reloc_status =
|
9778 |
|
|
Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
|
9779 |
|
|
0);
|
9780 |
|
|
break;
|
9781 |
|
|
|
9782 |
|
|
case elfcpp::R_ARM_THM_PC12:
|
9783 |
|
|
reloc_status =
|
9784 |
|
|
Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
|
9785 |
|
|
0);
|
9786 |
|
|
break;
|
9787 |
|
|
|
9788 |
|
|
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
|
9789 |
|
|
reloc_status =
|
9790 |
|
|
Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
|
9791 |
|
|
0, thumb_bit);
|
9792 |
|
|
break;
|
9793 |
|
|
|
9794 |
|
|
// These relocation truncate relocation results so we cannot handle them
|
9795 |
|
|
// in a relocatable link.
|
9796 |
|
|
case elfcpp::R_ARM_MOVT_ABS:
|
9797 |
|
|
case elfcpp::R_ARM_THM_MOVT_ABS:
|
9798 |
|
|
case elfcpp::R_ARM_MOVT_PREL:
|
9799 |
|
|
case elfcpp::R_ARM_MOVT_BREL:
|
9800 |
|
|
case elfcpp::R_ARM_THM_MOVT_PREL:
|
9801 |
|
|
case elfcpp::R_ARM_THM_MOVT_BREL:
|
9802 |
|
|
case elfcpp::R_ARM_ALU_PC_G0_NC:
|
9803 |
|
|
case elfcpp::R_ARM_ALU_PC_G0:
|
9804 |
|
|
case elfcpp::R_ARM_ALU_PC_G1_NC:
|
9805 |
|
|
case elfcpp::R_ARM_ALU_PC_G1:
|
9806 |
|
|
case elfcpp::R_ARM_ALU_PC_G2:
|
9807 |
|
|
case elfcpp::R_ARM_ALU_SB_G0_NC:
|
9808 |
|
|
case elfcpp::R_ARM_ALU_SB_G0:
|
9809 |
|
|
case elfcpp::R_ARM_ALU_SB_G1_NC:
|
9810 |
|
|
case elfcpp::R_ARM_ALU_SB_G1:
|
9811 |
|
|
case elfcpp::R_ARM_ALU_SB_G2:
|
9812 |
|
|
case elfcpp::R_ARM_LDR_PC_G0:
|
9813 |
|
|
case elfcpp::R_ARM_LDR_PC_G1:
|
9814 |
|
|
case elfcpp::R_ARM_LDR_PC_G2:
|
9815 |
|
|
case elfcpp::R_ARM_LDR_SB_G0:
|
9816 |
|
|
case elfcpp::R_ARM_LDR_SB_G1:
|
9817 |
|
|
case elfcpp::R_ARM_LDR_SB_G2:
|
9818 |
|
|
case elfcpp::R_ARM_LDRS_PC_G0:
|
9819 |
|
|
case elfcpp::R_ARM_LDRS_PC_G1:
|
9820 |
|
|
case elfcpp::R_ARM_LDRS_PC_G2:
|
9821 |
|
|
case elfcpp::R_ARM_LDRS_SB_G0:
|
9822 |
|
|
case elfcpp::R_ARM_LDRS_SB_G1:
|
9823 |
|
|
case elfcpp::R_ARM_LDRS_SB_G2:
|
9824 |
|
|
case elfcpp::R_ARM_LDC_PC_G0:
|
9825 |
|
|
case elfcpp::R_ARM_LDC_PC_G1:
|
9826 |
|
|
case elfcpp::R_ARM_LDC_PC_G2:
|
9827 |
|
|
case elfcpp::R_ARM_LDC_SB_G0:
|
9828 |
|
|
case elfcpp::R_ARM_LDC_SB_G1:
|
9829 |
|
|
case elfcpp::R_ARM_LDC_SB_G2:
|
9830 |
|
|
gold_error(_("cannot handle %s in a relocatable link"),
|
9831 |
|
|
arp->name().c_str());
|
9832 |
|
|
break;
|
9833 |
|
|
|
9834 |
|
|
default:
|
9835 |
|
|
gold_unreachable();
|
9836 |
|
|
}
|
9837 |
|
|
|
9838 |
|
|
// Report any errors.
|
9839 |
|
|
switch (reloc_status)
|
9840 |
|
|
{
|
9841 |
|
|
case Arm_relocate_functions<big_endian>::STATUS_OKAY:
|
9842 |
|
|
break;
|
9843 |
|
|
case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
|
9844 |
|
|
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
|
9845 |
|
|
_("relocation overflow in %s"),
|
9846 |
|
|
arp->name().c_str());
|
9847 |
|
|
break;
|
9848 |
|
|
case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
|
9849 |
|
|
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
|
9850 |
|
|
_("unexpected opcode while processing relocation %s"),
|
9851 |
|
|
arp->name().c_str());
|
9852 |
|
|
break;
|
9853 |
|
|
default:
|
9854 |
|
|
gold_unreachable();
|
9855 |
|
|
}
|
9856 |
|
|
}
|
9857 |
|
|
|
9858 |
|
|
// Return the value to use for a dynamic symbol which requires special
|
9859 |
|
|
// treatment. This is how we support equality comparisons of function
|
9860 |
|
|
// pointers across shared library boundaries, as described in the
|
9861 |
|
|
// processor specific ABI supplement.
|
9862 |
|
|
|
9863 |
|
|
template<bool big_endian>
|
9864 |
|
|
uint64_t
|
9865 |
|
|
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
|
9866 |
|
|
{
|
9867 |
|
|
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
|
9868 |
|
|
return this->plt_section()->address() + gsym->plt_offset();
|
9869 |
|
|
}
|
9870 |
|
|
|
9871 |
|
|
// Map platform-specific relocs to real relocs
|
9872 |
|
|
//
|
9873 |
|
|
template<bool big_endian>
|
9874 |
|
|
unsigned int
|
9875 |
|
|
Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
|
9876 |
|
|
{
|
9877 |
|
|
switch (r_type)
|
9878 |
|
|
{
|
9879 |
|
|
case elfcpp::R_ARM_TARGET1:
|
9880 |
|
|
// This is either R_ARM_ABS32 or R_ARM_REL32;
|
9881 |
|
|
return elfcpp::R_ARM_ABS32;
|
9882 |
|
|
|
9883 |
|
|
case elfcpp::R_ARM_TARGET2:
|
9884 |
|
|
// This can be any reloc type but usually is R_ARM_GOT_PREL
|
9885 |
|
|
return elfcpp::R_ARM_GOT_PREL;
|
9886 |
|
|
|
9887 |
|
|
default:
|
9888 |
|
|
return r_type;
|
9889 |
|
|
}
|
9890 |
|
|
}
|
9891 |
|
|
|
9892 |
|
|
// Whether if two EABI versions V1 and V2 are compatible.
|
9893 |
|
|
|
9894 |
|
|
template<bool big_endian>
|
9895 |
|
|
bool
|
9896 |
|
|
Target_arm<big_endian>::are_eabi_versions_compatible(
|
9897 |
|
|
elfcpp::Elf_Word v1,
|
9898 |
|
|
elfcpp::Elf_Word v2)
|
9899 |
|
|
{
|
9900 |
|
|
// v4 and v5 are the same spec before and after it was released,
|
9901 |
|
|
// so allow mixing them.
|
9902 |
|
|
if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
|
9903 |
|
|
|| (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
|
9904 |
|
|
|| (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
|
9905 |
|
|
return true;
|
9906 |
|
|
|
9907 |
|
|
return v1 == v2;
|
9908 |
|
|
}
|
9909 |
|
|
|
9910 |
|
|
// Combine FLAGS from an input object called NAME and the processor-specific
|
9911 |
|
|
// flags in the ELF header of the output. Much of this is adapted from the
|
9912 |
|
|
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
|
9913 |
|
|
// in bfd/elf32-arm.c.
|
9914 |
|
|
|
9915 |
|
|
template<bool big_endian>
|
9916 |
|
|
void
|
9917 |
|
|
Target_arm<big_endian>::merge_processor_specific_flags(
|
9918 |
|
|
const std::string& name,
|
9919 |
|
|
elfcpp::Elf_Word flags)
|
9920 |
|
|
{
|
9921 |
|
|
if (this->are_processor_specific_flags_set())
|
9922 |
|
|
{
|
9923 |
|
|
elfcpp::Elf_Word out_flags = this->processor_specific_flags();
|
9924 |
|
|
|
9925 |
|
|
// Nothing to merge if flags equal to those in output.
|
9926 |
|
|
if (flags == out_flags)
|
9927 |
|
|
return;
|
9928 |
|
|
|
9929 |
|
|
// Complain about various flag mismatches.
|
9930 |
|
|
elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
|
9931 |
|
|
elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
|
9932 |
|
|
if (!this->are_eabi_versions_compatible(version1, version2)
|
9933 |
|
|
&& parameters->options().warn_mismatch())
|
9934 |
|
|
gold_error(_("Source object %s has EABI version %d but output has "
|
9935 |
|
|
"EABI version %d."),
|
9936 |
|
|
name.c_str(),
|
9937 |
|
|
(flags & elfcpp::EF_ARM_EABIMASK) >> 24,
|
9938 |
|
|
(out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
|
9939 |
|
|
}
|
9940 |
|
|
else
|
9941 |
|
|
{
|
9942 |
|
|
// If the input is the default architecture and had the default
|
9943 |
|
|
// flags then do not bother setting the flags for the output
|
9944 |
|
|
// architecture, instead allow future merges to do this. If no
|
9945 |
|
|
// future merges ever set these flags then they will retain their
|
9946 |
|
|
// uninitialised values, which surprise surprise, correspond
|
9947 |
|
|
// to the default values.
|
9948 |
|
|
if (flags == 0)
|
9949 |
|
|
return;
|
9950 |
|
|
|
9951 |
|
|
// This is the first time, just copy the flags.
|
9952 |
|
|
// We only copy the EABI version for now.
|
9953 |
|
|
this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
|
9954 |
|
|
}
|
9955 |
|
|
}
|
9956 |
|
|
|
9957 |
|
|
// Adjust ELF file header.
|
9958 |
|
|
template<bool big_endian>
|
9959 |
|
|
void
|
9960 |
|
|
Target_arm<big_endian>::do_adjust_elf_header(
|
9961 |
|
|
unsigned char* view,
|
9962 |
|
|
int len) const
|
9963 |
|
|
{
|
9964 |
|
|
gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
|
9965 |
|
|
|
9966 |
|
|
elfcpp::Ehdr<32, big_endian> ehdr(view);
|
9967 |
|
|
unsigned char e_ident[elfcpp::EI_NIDENT];
|
9968 |
|
|
memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
|
9969 |
|
|
|
9970 |
|
|
if (elfcpp::arm_eabi_version(this->processor_specific_flags())
|
9971 |
|
|
== elfcpp::EF_ARM_EABI_UNKNOWN)
|
9972 |
|
|
e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
|
9973 |
|
|
else
|
9974 |
|
|
e_ident[elfcpp::EI_OSABI] = 0;
|
9975 |
|
|
e_ident[elfcpp::EI_ABIVERSION] = 0;
|
9976 |
|
|
|
9977 |
|
|
// FIXME: Do EF_ARM_BE8 adjustment.
|
9978 |
|
|
|
9979 |
|
|
elfcpp::Ehdr_write<32, big_endian> oehdr(view);
|
9980 |
|
|
oehdr.put_e_ident(e_ident);
|
9981 |
|
|
}
|
9982 |
|
|
|
9983 |
|
|
// do_make_elf_object to override the same function in the base class.
|
9984 |
|
|
// We need to use a target-specific sub-class of
|
9985 |
|
|
// Sized_relobj_file<32, big_endian> to store ARM specific information.
|
9986 |
|
|
// Hence we need to have our own ELF object creation.
|
9987 |
|
|
|
9988 |
|
|
template<bool big_endian>
|
9989 |
|
|
Object*
|
9990 |
|
|
Target_arm<big_endian>::do_make_elf_object(
|
9991 |
|
|
const std::string& name,
|
9992 |
|
|
Input_file* input_file,
|
9993 |
|
|
off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
|
9994 |
|
|
{
|
9995 |
|
|
int et = ehdr.get_e_type();
|
9996 |
|
|
if (et == elfcpp::ET_REL)
|
9997 |
|
|
{
|
9998 |
|
|
Arm_relobj<big_endian>* obj =
|
9999 |
|
|
new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
|
10000 |
|
|
obj->setup();
|
10001 |
|
|
return obj;
|
10002 |
|
|
}
|
10003 |
|
|
else if (et == elfcpp::ET_DYN)
|
10004 |
|
|
{
|
10005 |
|
|
Sized_dynobj<32, big_endian>* obj =
|
10006 |
|
|
new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
|
10007 |
|
|
obj->setup();
|
10008 |
|
|
return obj;
|
10009 |
|
|
}
|
10010 |
|
|
else
|
10011 |
|
|
{
|
10012 |
|
|
gold_error(_("%s: unsupported ELF file type %d"),
|
10013 |
|
|
name.c_str(), et);
|
10014 |
|
|
return NULL;
|
10015 |
|
|
}
|
10016 |
|
|
}
|
10017 |
|
|
|
10018 |
|
|
// Read the architecture from the Tag_also_compatible_with attribute, if any.
|
10019 |
|
|
// Returns -1 if no architecture could be read.
|
10020 |
|
|
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
|
10021 |
|
|
|
10022 |
|
|
template<bool big_endian>
|
10023 |
|
|
int
|
10024 |
|
|
Target_arm<big_endian>::get_secondary_compatible_arch(
|
10025 |
|
|
const Attributes_section_data* pasd)
|
10026 |
|
|
{
|
10027 |
|
|
const Object_attribute* known_attributes =
|
10028 |
|
|
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
|
10029 |
|
|
|
10030 |
|
|
// Note: the tag and its argument below are uleb128 values, though
|
10031 |
|
|
// currently-defined values fit in one byte for each.
|
10032 |
|
|
const std::string& sv =
|
10033 |
|
|
known_attributes[elfcpp::Tag_also_compatible_with].string_value();
|
10034 |
|
|
if (sv.size() == 2
|
10035 |
|
|
&& sv.data()[0] == elfcpp::Tag_CPU_arch
|
10036 |
|
|
&& (sv.data()[1] & 128) != 128)
|
10037 |
|
|
return sv.data()[1];
|
10038 |
|
|
|
10039 |
|
|
// This tag is "safely ignorable", so don't complain if it looks funny.
|
10040 |
|
|
return -1;
|
10041 |
|
|
}
|
10042 |
|
|
|
10043 |
|
|
// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
|
10044 |
|
|
// The tag is removed if ARCH is -1.
|
10045 |
|
|
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
|
10046 |
|
|
|
10047 |
|
|
template<bool big_endian>
|
10048 |
|
|
void
|
10049 |
|
|
Target_arm<big_endian>::set_secondary_compatible_arch(
|
10050 |
|
|
Attributes_section_data* pasd,
|
10051 |
|
|
int arch)
|
10052 |
|
|
{
|
10053 |
|
|
Object_attribute* known_attributes =
|
10054 |
|
|
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
|
10055 |
|
|
|
10056 |
|
|
if (arch == -1)
|
10057 |
|
|
{
|
10058 |
|
|
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
|
10059 |
|
|
return;
|
10060 |
|
|
}
|
10061 |
|
|
|
10062 |
|
|
// Note: the tag and its argument below are uleb128 values, though
|
10063 |
|
|
// currently-defined values fit in one byte for each.
|
10064 |
|
|
char sv[3];
|
10065 |
|
|
sv[0] = elfcpp::Tag_CPU_arch;
|
10066 |
|
|
gold_assert(arch != 0);
|
10067 |
|
|
sv[1] = arch;
|
10068 |
|
|
sv[2] = '\0';
|
10069 |
|
|
|
10070 |
|
|
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
|
10071 |
|
|
}
|
10072 |
|
|
|
10073 |
|
|
// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
|
10074 |
|
|
// into account.
|
10075 |
|
|
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
|
10076 |
|
|
|
10077 |
|
|
template<bool big_endian>
|
10078 |
|
|
int
|
10079 |
|
|
Target_arm<big_endian>::tag_cpu_arch_combine(
|
10080 |
|
|
const char* name,
|
10081 |
|
|
int oldtag,
|
10082 |
|
|
int* secondary_compat_out,
|
10083 |
|
|
int newtag,
|
10084 |
|
|
int secondary_compat)
|
10085 |
|
|
{
|
10086 |
|
|
#define T(X) elfcpp::TAG_CPU_ARCH_##X
|
10087 |
|
|
static const int v6t2[] =
|
10088 |
|
|
{
|
10089 |
|
|
T(V6T2), // PRE_V4.
|
10090 |
|
|
T(V6T2), // V4.
|
10091 |
|
|
T(V6T2), // V4T.
|
10092 |
|
|
T(V6T2), // V5T.
|
10093 |
|
|
T(V6T2), // V5TE.
|
10094 |
|
|
T(V6T2), // V5TEJ.
|
10095 |
|
|
T(V6T2), // V6.
|
10096 |
|
|
T(V7), // V6KZ.
|
10097 |
|
|
T(V6T2) // V6T2.
|
10098 |
|
|
};
|
10099 |
|
|
static const int v6k[] =
|
10100 |
|
|
{
|
10101 |
|
|
T(V6K), // PRE_V4.
|
10102 |
|
|
T(V6K), // V4.
|
10103 |
|
|
T(V6K), // V4T.
|
10104 |
|
|
T(V6K), // V5T.
|
10105 |
|
|
T(V6K), // V5TE.
|
10106 |
|
|
T(V6K), // V5TEJ.
|
10107 |
|
|
T(V6K), // V6.
|
10108 |
|
|
T(V6KZ), // V6KZ.
|
10109 |
|
|
T(V7), // V6T2.
|
10110 |
|
|
T(V6K) // V6K.
|
10111 |
|
|
};
|
10112 |
|
|
static const int v7[] =
|
10113 |
|
|
{
|
10114 |
|
|
T(V7), // PRE_V4.
|
10115 |
|
|
T(V7), // V4.
|
10116 |
|
|
T(V7), // V4T.
|
10117 |
|
|
T(V7), // V5T.
|
10118 |
|
|
T(V7), // V5TE.
|
10119 |
|
|
T(V7), // V5TEJ.
|
10120 |
|
|
T(V7), // V6.
|
10121 |
|
|
T(V7), // V6KZ.
|
10122 |
|
|
T(V7), // V6T2.
|
10123 |
|
|
T(V7), // V6K.
|
10124 |
|
|
T(V7) // V7.
|
10125 |
|
|
};
|
10126 |
|
|
static const int v6_m[] =
|
10127 |
|
|
{
|
10128 |
|
|
-1, // PRE_V4.
|
10129 |
|
|
-1, // V4.
|
10130 |
|
|
T(V6K), // V4T.
|
10131 |
|
|
T(V6K), // V5T.
|
10132 |
|
|
T(V6K), // V5TE.
|
10133 |
|
|
T(V6K), // V5TEJ.
|
10134 |
|
|
T(V6K), // V6.
|
10135 |
|
|
T(V6KZ), // V6KZ.
|
10136 |
|
|
T(V7), // V6T2.
|
10137 |
|
|
T(V6K), // V6K.
|
10138 |
|
|
T(V7), // V7.
|
10139 |
|
|
T(V6_M) // V6_M.
|
10140 |
|
|
};
|
10141 |
|
|
static const int v6s_m[] =
|
10142 |
|
|
{
|
10143 |
|
|
-1, // PRE_V4.
|
10144 |
|
|
-1, // V4.
|
10145 |
|
|
T(V6K), // V4T.
|
10146 |
|
|
T(V6K), // V5T.
|
10147 |
|
|
T(V6K), // V5TE.
|
10148 |
|
|
T(V6K), // V5TEJ.
|
10149 |
|
|
T(V6K), // V6.
|
10150 |
|
|
T(V6KZ), // V6KZ.
|
10151 |
|
|
T(V7), // V6T2.
|
10152 |
|
|
T(V6K), // V6K.
|
10153 |
|
|
T(V7), // V7.
|
10154 |
|
|
T(V6S_M), // V6_M.
|
10155 |
|
|
T(V6S_M) // V6S_M.
|
10156 |
|
|
};
|
10157 |
|
|
static const int v7e_m[] =
|
10158 |
|
|
{
|
10159 |
|
|
-1, // PRE_V4.
|
10160 |
|
|
-1, // V4.
|
10161 |
|
|
T(V7E_M), // V4T.
|
10162 |
|
|
T(V7E_M), // V5T.
|
10163 |
|
|
T(V7E_M), // V5TE.
|
10164 |
|
|
T(V7E_M), // V5TEJ.
|
10165 |
|
|
T(V7E_M), // V6.
|
10166 |
|
|
T(V7E_M), // V6KZ.
|
10167 |
|
|
T(V7E_M), // V6T2.
|
10168 |
|
|
T(V7E_M), // V6K.
|
10169 |
|
|
T(V7E_M), // V7.
|
10170 |
|
|
T(V7E_M), // V6_M.
|
10171 |
|
|
T(V7E_M), // V6S_M.
|
10172 |
|
|
T(V7E_M) // V7E_M.
|
10173 |
|
|
};
|
10174 |
|
|
static const int v4t_plus_v6_m[] =
|
10175 |
|
|
{
|
10176 |
|
|
-1, // PRE_V4.
|
10177 |
|
|
-1, // V4.
|
10178 |
|
|
T(V4T), // V4T.
|
10179 |
|
|
T(V5T), // V5T.
|
10180 |
|
|
T(V5TE), // V5TE.
|
10181 |
|
|
T(V5TEJ), // V5TEJ.
|
10182 |
|
|
T(V6), // V6.
|
10183 |
|
|
T(V6KZ), // V6KZ.
|
10184 |
|
|
T(V6T2), // V6T2.
|
10185 |
|
|
T(V6K), // V6K.
|
10186 |
|
|
T(V7), // V7.
|
10187 |
|
|
T(V6_M), // V6_M.
|
10188 |
|
|
T(V6S_M), // V6S_M.
|
10189 |
|
|
T(V7E_M), // V7E_M.
|
10190 |
|
|
T(V4T_PLUS_V6_M) // V4T plus V6_M.
|
10191 |
|
|
};
|
10192 |
|
|
static const int* comb[] =
|
10193 |
|
|
{
|
10194 |
|
|
v6t2,
|
10195 |
|
|
v6k,
|
10196 |
|
|
v7,
|
10197 |
|
|
v6_m,
|
10198 |
|
|
v6s_m,
|
10199 |
|
|
v7e_m,
|
10200 |
|
|
// Pseudo-architecture.
|
10201 |
|
|
v4t_plus_v6_m
|
10202 |
|
|
};
|
10203 |
|
|
|
10204 |
|
|
// Check we've not got a higher architecture than we know about.
|
10205 |
|
|
|
10206 |
|
|
if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
|
10207 |
|
|
{
|
10208 |
|
|
gold_error(_("%s: unknown CPU architecture"), name);
|
10209 |
|
|
return -1;
|
10210 |
|
|
}
|
10211 |
|
|
|
10212 |
|
|
// Override old tag if we have a Tag_also_compatible_with on the output.
|
10213 |
|
|
|
10214 |
|
|
if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
|
10215 |
|
|
|| (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
|
10216 |
|
|
oldtag = T(V4T_PLUS_V6_M);
|
10217 |
|
|
|
10218 |
|
|
// And override the new tag if we have a Tag_also_compatible_with on the
|
10219 |
|
|
// input.
|
10220 |
|
|
|
10221 |
|
|
if ((newtag == T(V6_M) && secondary_compat == T(V4T))
|
10222 |
|
|
|| (newtag == T(V4T) && secondary_compat == T(V6_M)))
|
10223 |
|
|
newtag = T(V4T_PLUS_V6_M);
|
10224 |
|
|
|
10225 |
|
|
// Architectures before V6KZ add features monotonically.
|
10226 |
|
|
int tagh = std::max(oldtag, newtag);
|
10227 |
|
|
if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
|
10228 |
|
|
return tagh;
|
10229 |
|
|
|
10230 |
|
|
int tagl = std::min(oldtag, newtag);
|
10231 |
|
|
int result = comb[tagh - T(V6T2)][tagl];
|
10232 |
|
|
|
10233 |
|
|
// Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
|
10234 |
|
|
// as the canonical version.
|
10235 |
|
|
if (result == T(V4T_PLUS_V6_M))
|
10236 |
|
|
{
|
10237 |
|
|
result = T(V4T);
|
10238 |
|
|
*secondary_compat_out = T(V6_M);
|
10239 |
|
|
}
|
10240 |
|
|
else
|
10241 |
|
|
*secondary_compat_out = -1;
|
10242 |
|
|
|
10243 |
|
|
if (result == -1)
|
10244 |
|
|
{
|
10245 |
|
|
gold_error(_("%s: conflicting CPU architectures %d/%d"),
|
10246 |
|
|
name, oldtag, newtag);
|
10247 |
|
|
return -1;
|
10248 |
|
|
}
|
10249 |
|
|
|
10250 |
|
|
return result;
|
10251 |
|
|
#undef T
|
10252 |
|
|
}
|
10253 |
|
|
|
10254 |
|
|
// Helper to print AEABI enum tag value.
|
10255 |
|
|
|
10256 |
|
|
template<bool big_endian>
|
10257 |
|
|
std::string
|
10258 |
|
|
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
|
10259 |
|
|
{
|
10260 |
|
|
static const char* aeabi_enum_names[] =
|
10261 |
|
|
{ "", "variable-size", "32-bit", "" };
|
10262 |
|
|
const size_t aeabi_enum_names_size =
|
10263 |
|
|
sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
|
10264 |
|
|
|
10265 |
|
|
if (value < aeabi_enum_names_size)
|
10266 |
|
|
return std::string(aeabi_enum_names[value]);
|
10267 |
|
|
else
|
10268 |
|
|
{
|
10269 |
|
|
char buffer[100];
|
10270 |
|
|
sprintf(buffer, "<unknown value %u>", value);
|
10271 |
|
|
return std::string(buffer);
|
10272 |
|
|
}
|
10273 |
|
|
}
|
10274 |
|
|
|
10275 |
|
|
// Return the string value to store in TAG_CPU_name.
|
10276 |
|
|
|
10277 |
|
|
template<bool big_endian>
|
10278 |
|
|
std::string
|
10279 |
|
|
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
|
10280 |
|
|
{
|
10281 |
|
|
static const char* name_table[] = {
|
10282 |
|
|
// These aren't real CPU names, but we can't guess
|
10283 |
|
|
// that from the architecture version alone.
|
10284 |
|
|
"Pre v4",
|
10285 |
|
|
"ARM v4",
|
10286 |
|
|
"ARM v4T",
|
10287 |
|
|
"ARM v5T",
|
10288 |
|
|
"ARM v5TE",
|
10289 |
|
|
"ARM v5TEJ",
|
10290 |
|
|
"ARM v6",
|
10291 |
|
|
"ARM v6KZ",
|
10292 |
|
|
"ARM v6T2",
|
10293 |
|
|
"ARM v6K",
|
10294 |
|
|
"ARM v7",
|
10295 |
|
|
"ARM v6-M",
|
10296 |
|
|
"ARM v6S-M",
|
10297 |
|
|
"ARM v7E-M"
|
10298 |
|
|
};
|
10299 |
|
|
const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
|
10300 |
|
|
|
10301 |
|
|
if (value < name_table_size)
|
10302 |
|
|
return std::string(name_table[value]);
|
10303 |
|
|
else
|
10304 |
|
|
{
|
10305 |
|
|
char buffer[100];
|
10306 |
|
|
sprintf(buffer, "<unknown CPU value %u>", value);
|
10307 |
|
|
return std::string(buffer);
|
10308 |
|
|
}
|
10309 |
|
|
}
|
10310 |
|
|
|
10311 |
|
|
// Merge object attributes from input file called NAME with those of the
|
10312 |
|
|
// output. The input object attributes are in the object pointed by PASD.
|
10313 |
|
|
|
10314 |
|
|
template<bool big_endian>
|
10315 |
|
|
void
|
10316 |
|
|
Target_arm<big_endian>::merge_object_attributes(
|
10317 |
|
|
const char* name,
|
10318 |
|
|
const Attributes_section_data* pasd)
|
10319 |
|
|
{
|
10320 |
|
|
// Return if there is no attributes section data.
|
10321 |
|
|
if (pasd == NULL)
|
10322 |
|
|
return;
|
10323 |
|
|
|
10324 |
|
|
// If output has no object attributes, just copy.
|
10325 |
|
|
const int vendor = Object_attribute::OBJ_ATTR_PROC;
|
10326 |
|
|
if (this->attributes_section_data_ == NULL)
|
10327 |
|
|
{
|
10328 |
|
|
this->attributes_section_data_ = new Attributes_section_data(*pasd);
|
10329 |
|
|
Object_attribute* out_attr =
|
10330 |
|
|
this->attributes_section_data_->known_attributes(vendor);
|
10331 |
|
|
|
10332 |
|
|
// We do not output objects with Tag_MPextension_use_legacy - we move
|
10333 |
|
|
// the attribute's value to Tag_MPextension_use. */
|
10334 |
|
|
if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
|
10335 |
|
|
{
|
10336 |
|
|
if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
|
10337 |
|
|
&& out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
|
10338 |
|
|
!= out_attr[elfcpp::Tag_MPextension_use].int_value())
|
10339 |
|
|
{
|
10340 |
|
|
gold_error(_("%s has both the current and legacy "
|
10341 |
|
|
"Tag_MPextension_use attributes"),
|
10342 |
|
|
name);
|
10343 |
|
|
}
|
10344 |
|
|
|
10345 |
|
|
out_attr[elfcpp::Tag_MPextension_use] =
|
10346 |
|
|
out_attr[elfcpp::Tag_MPextension_use_legacy];
|
10347 |
|
|
out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
|
10348 |
|
|
out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
|
10349 |
|
|
}
|
10350 |
|
|
|
10351 |
|
|
return;
|
10352 |
|
|
}
|
10353 |
|
|
|
10354 |
|
|
const Object_attribute* in_attr = pasd->known_attributes(vendor);
|
10355 |
|
|
Object_attribute* out_attr =
|
10356 |
|
|
this->attributes_section_data_->known_attributes(vendor);
|
10357 |
|
|
|
10358 |
|
|
// This needs to happen before Tag_ABI_FP_number_model is merged. */
|
10359 |
|
|
if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
|
10360 |
|
|
!= out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
|
10361 |
|
|
{
|
10362 |
|
|
// Ignore mismatches if the object doesn't use floating point. */
|
10363 |
|
|
if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
|
10364 |
|
|
out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
|
10365 |
|
|
in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
|
10366 |
|
|
else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
|
10367 |
|
|
&& parameters->options().warn_mismatch())
|
10368 |
|
|
gold_error(_("%s uses VFP register arguments, output does not"),
|
10369 |
|
|
name);
|
10370 |
|
|
}
|
10371 |
|
|
|
10372 |
|
|
for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
|
10373 |
|
|
{
|
10374 |
|
|
// Merge this attribute with existing attributes.
|
10375 |
|
|
switch (i)
|
10376 |
|
|
{
|
10377 |
|
|
case elfcpp::Tag_CPU_raw_name:
|
10378 |
|
|
case elfcpp::Tag_CPU_name:
|
10379 |
|
|
// These are merged after Tag_CPU_arch.
|
10380 |
|
|
break;
|
10381 |
|
|
|
10382 |
|
|
case elfcpp::Tag_ABI_optimization_goals:
|
10383 |
|
|
case elfcpp::Tag_ABI_FP_optimization_goals:
|
10384 |
|
|
// Use the first value seen.
|
10385 |
|
|
break;
|
10386 |
|
|
|
10387 |
|
|
case elfcpp::Tag_CPU_arch:
|
10388 |
|
|
{
|
10389 |
|
|
unsigned int saved_out_attr = out_attr->int_value();
|
10390 |
|
|
// Merge Tag_CPU_arch and Tag_also_compatible_with.
|
10391 |
|
|
int secondary_compat =
|
10392 |
|
|
this->get_secondary_compatible_arch(pasd);
|
10393 |
|
|
int secondary_compat_out =
|
10394 |
|
|
this->get_secondary_compatible_arch(
|
10395 |
|
|
this->attributes_section_data_);
|
10396 |
|
|
out_attr[i].set_int_value(
|
10397 |
|
|
tag_cpu_arch_combine(name, out_attr[i].int_value(),
|
10398 |
|
|
&secondary_compat_out,
|
10399 |
|
|
in_attr[i].int_value(),
|
10400 |
|
|
secondary_compat));
|
10401 |
|
|
this->set_secondary_compatible_arch(this->attributes_section_data_,
|
10402 |
|
|
secondary_compat_out);
|
10403 |
|
|
|
10404 |
|
|
// Merge Tag_CPU_name and Tag_CPU_raw_name.
|
10405 |
|
|
if (out_attr[i].int_value() == saved_out_attr)
|
10406 |
|
|
; // Leave the names alone.
|
10407 |
|
|
else if (out_attr[i].int_value() == in_attr[i].int_value())
|
10408 |
|
|
{
|
10409 |
|
|
// The output architecture has been changed to match the
|
10410 |
|
|
// input architecture. Use the input names.
|
10411 |
|
|
out_attr[elfcpp::Tag_CPU_name].set_string_value(
|
10412 |
|
|
in_attr[elfcpp::Tag_CPU_name].string_value());
|
10413 |
|
|
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
|
10414 |
|
|
in_attr[elfcpp::Tag_CPU_raw_name].string_value());
|
10415 |
|
|
}
|
10416 |
|
|
else
|
10417 |
|
|
{
|
10418 |
|
|
out_attr[elfcpp::Tag_CPU_name].set_string_value("");
|
10419 |
|
|
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
|
10420 |
|
|
}
|
10421 |
|
|
|
10422 |
|
|
// If we still don't have a value for Tag_CPU_name,
|
10423 |
|
|
// make one up now. Tag_CPU_raw_name remains blank.
|
10424 |
|
|
if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
|
10425 |
|
|
{
|
10426 |
|
|
const std::string cpu_name =
|
10427 |
|
|
this->tag_cpu_name_value(out_attr[i].int_value());
|
10428 |
|
|
// FIXME: If we see an unknown CPU, this will be set
|
10429 |
|
|
// to "<unknown CPU n>", where n is the attribute value.
|
10430 |
|
|
// This is different from BFD, which leaves the name alone.
|
10431 |
|
|
out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
|
10432 |
|
|
}
|
10433 |
|
|
}
|
10434 |
|
|
break;
|
10435 |
|
|
|
10436 |
|
|
case elfcpp::Tag_ARM_ISA_use:
|
10437 |
|
|
case elfcpp::Tag_THUMB_ISA_use:
|
10438 |
|
|
case elfcpp::Tag_WMMX_arch:
|
10439 |
|
|
case elfcpp::Tag_Advanced_SIMD_arch:
|
10440 |
|
|
// ??? Do Advanced_SIMD (NEON) and WMMX conflict?
|
10441 |
|
|
case elfcpp::Tag_ABI_FP_rounding:
|
10442 |
|
|
case elfcpp::Tag_ABI_FP_exceptions:
|
10443 |
|
|
case elfcpp::Tag_ABI_FP_user_exceptions:
|
10444 |
|
|
case elfcpp::Tag_ABI_FP_number_model:
|
10445 |
|
|
case elfcpp::Tag_VFP_HP_extension:
|
10446 |
|
|
case elfcpp::Tag_CPU_unaligned_access:
|
10447 |
|
|
case elfcpp::Tag_T2EE_use:
|
10448 |
|
|
case elfcpp::Tag_Virtualization_use:
|
10449 |
|
|
case elfcpp::Tag_MPextension_use:
|
10450 |
|
|
// Use the largest value specified.
|
10451 |
|
|
if (in_attr[i].int_value() > out_attr[i].int_value())
|
10452 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10453 |
|
|
break;
|
10454 |
|
|
|
10455 |
|
|
case elfcpp::Tag_ABI_align8_preserved:
|
10456 |
|
|
case elfcpp::Tag_ABI_PCS_RO_data:
|
10457 |
|
|
// Use the smallest value specified.
|
10458 |
|
|
if (in_attr[i].int_value() < out_attr[i].int_value())
|
10459 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10460 |
|
|
break;
|
10461 |
|
|
|
10462 |
|
|
case elfcpp::Tag_ABI_align8_needed:
|
10463 |
|
|
if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
|
10464 |
|
|
&& (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
|
10465 |
|
|
|| (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
|
10466 |
|
|
== 0)))
|
10467 |
|
|
{
|
10468 |
|
|
// This error message should be enabled once all non-conforming
|
10469 |
|
|
// binaries in the toolchain have had the attributes set
|
10470 |
|
|
// properly.
|
10471 |
|
|
// gold_error(_("output 8-byte data alignment conflicts with %s"),
|
10472 |
|
|
// name);
|
10473 |
|
|
}
|
10474 |
|
|
// Fall through.
|
10475 |
|
|
case elfcpp::Tag_ABI_FP_denormal:
|
10476 |
|
|
case elfcpp::Tag_ABI_PCS_GOT_use:
|
10477 |
|
|
{
|
10478 |
|
|
// These tags have 0 = don't care, 1 = strong requirement,
|
10479 |
|
|
// 2 = weak requirement.
|
10480 |
|
|
static const int order_021[3] = {0, 2, 1};
|
10481 |
|
|
|
10482 |
|
|
// Use the "greatest" from the sequence 0, 2, 1, or the largest
|
10483 |
|
|
// value if greater than 2 (for future-proofing).
|
10484 |
|
|
if ((in_attr[i].int_value() > 2
|
10485 |
|
|
&& in_attr[i].int_value() > out_attr[i].int_value())
|
10486 |
|
|
|| (in_attr[i].int_value() <= 2
|
10487 |
|
|
&& out_attr[i].int_value() <= 2
|
10488 |
|
|
&& (order_021[in_attr[i].int_value()]
|
10489 |
|
|
> order_021[out_attr[i].int_value()])))
|
10490 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10491 |
|
|
}
|
10492 |
|
|
break;
|
10493 |
|
|
|
10494 |
|
|
case elfcpp::Tag_CPU_arch_profile:
|
10495 |
|
|
if (out_attr[i].int_value() != in_attr[i].int_value())
|
10496 |
|
|
{
|
10497 |
|
|
// 0 will merge with anything.
|
10498 |
|
|
// 'A' and 'S' merge to 'A'.
|
10499 |
|
|
// 'R' and 'S' merge to 'R'.
|
10500 |
|
|
// 'M' and 'A|R|S' is an error.
|
10501 |
|
|
if (out_attr[i].int_value() == 0
|
10502 |
|
|
|| (out_attr[i].int_value() == 'S'
|
10503 |
|
|
&& (in_attr[i].int_value() == 'A'
|
10504 |
|
|
|| in_attr[i].int_value() == 'R')))
|
10505 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10506 |
|
|
else if (in_attr[i].int_value() == 0
|
10507 |
|
|
|| (in_attr[i].int_value() == 'S'
|
10508 |
|
|
&& (out_attr[i].int_value() == 'A'
|
10509 |
|
|
|| out_attr[i].int_value() == 'R')))
|
10510 |
|
|
; // Do nothing.
|
10511 |
|
|
else if (parameters->options().warn_mismatch())
|
10512 |
|
|
{
|
10513 |
|
|
gold_error
|
10514 |
|
|
(_("conflicting architecture profiles %c/%c"),
|
10515 |
|
|
in_attr[i].int_value() ? in_attr[i].int_value() : '0',
|
10516 |
|
|
out_attr[i].int_value() ? out_attr[i].int_value() : '0');
|
10517 |
|
|
}
|
10518 |
|
|
}
|
10519 |
|
|
break;
|
10520 |
|
|
case elfcpp::Tag_VFP_arch:
|
10521 |
|
|
{
|
10522 |
|
|
static const struct
|
10523 |
|
|
{
|
10524 |
|
|
int ver;
|
10525 |
|
|
int regs;
|
10526 |
|
|
} vfp_versions[7] =
|
10527 |
|
|
{
|
10528 |
|
|
{0, 0},
|
10529 |
|
|
{1, 16},
|
10530 |
|
|
{2, 16},
|
10531 |
|
|
{3, 32},
|
10532 |
|
|
{3, 16},
|
10533 |
|
|
{4, 32},
|
10534 |
|
|
{4, 16}
|
10535 |
|
|
};
|
10536 |
|
|
|
10537 |
|
|
// Values greater than 6 aren't defined, so just pick the
|
10538 |
|
|
// biggest.
|
10539 |
|
|
if (in_attr[i].int_value() > 6
|
10540 |
|
|
&& in_attr[i].int_value() > out_attr[i].int_value())
|
10541 |
|
|
{
|
10542 |
|
|
*out_attr = *in_attr;
|
10543 |
|
|
break;
|
10544 |
|
|
}
|
10545 |
|
|
// The output uses the superset of input features
|
10546 |
|
|
// (ISA version) and registers.
|
10547 |
|
|
int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
|
10548 |
|
|
vfp_versions[out_attr[i].int_value()].ver);
|
10549 |
|
|
int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
|
10550 |
|
|
vfp_versions[out_attr[i].int_value()].regs);
|
10551 |
|
|
// This assumes all possible supersets are also a valid
|
10552 |
|
|
// options.
|
10553 |
|
|
int newval;
|
10554 |
|
|
for (newval = 6; newval > 0; newval--)
|
10555 |
|
|
{
|
10556 |
|
|
if (regs == vfp_versions[newval].regs
|
10557 |
|
|
&& ver == vfp_versions[newval].ver)
|
10558 |
|
|
break;
|
10559 |
|
|
}
|
10560 |
|
|
out_attr[i].set_int_value(newval);
|
10561 |
|
|
}
|
10562 |
|
|
break;
|
10563 |
|
|
case elfcpp::Tag_PCS_config:
|
10564 |
|
|
if (out_attr[i].int_value() == 0)
|
10565 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10566 |
|
|
else if (in_attr[i].int_value() != 0
|
10567 |
|
|
&& out_attr[i].int_value() != 0
|
10568 |
|
|
&& parameters->options().warn_mismatch())
|
10569 |
|
|
{
|
10570 |
|
|
// It's sometimes ok to mix different configs, so this is only
|
10571 |
|
|
// a warning.
|
10572 |
|
|
gold_warning(_("%s: conflicting platform configuration"), name);
|
10573 |
|
|
}
|
10574 |
|
|
break;
|
10575 |
|
|
case elfcpp::Tag_ABI_PCS_R9_use:
|
10576 |
|
|
if (in_attr[i].int_value() != out_attr[i].int_value()
|
10577 |
|
|
&& out_attr[i].int_value() != elfcpp::AEABI_R9_unused
|
10578 |
|
|
&& in_attr[i].int_value() != elfcpp::AEABI_R9_unused
|
10579 |
|
|
&& parameters->options().warn_mismatch())
|
10580 |
|
|
{
|
10581 |
|
|
gold_error(_("%s: conflicting use of R9"), name);
|
10582 |
|
|
}
|
10583 |
|
|
if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
|
10584 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10585 |
|
|
break;
|
10586 |
|
|
case elfcpp::Tag_ABI_PCS_RW_data:
|
10587 |
|
|
if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
|
10588 |
|
|
&& (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
|
10589 |
|
|
!= elfcpp::AEABI_R9_SB)
|
10590 |
|
|
&& (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
|
10591 |
|
|
!= elfcpp::AEABI_R9_unused)
|
10592 |
|
|
&& parameters->options().warn_mismatch())
|
10593 |
|
|
{
|
10594 |
|
|
gold_error(_("%s: SB relative addressing conflicts with use "
|
10595 |
|
|
"of R9"),
|
10596 |
|
|
name);
|
10597 |
|
|
}
|
10598 |
|
|
// Use the smallest value specified.
|
10599 |
|
|
if (in_attr[i].int_value() < out_attr[i].int_value())
|
10600 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10601 |
|
|
break;
|
10602 |
|
|
case elfcpp::Tag_ABI_PCS_wchar_t:
|
10603 |
|
|
if (out_attr[i].int_value()
|
10604 |
|
|
&& in_attr[i].int_value()
|
10605 |
|
|
&& out_attr[i].int_value() != in_attr[i].int_value()
|
10606 |
|
|
&& parameters->options().warn_mismatch()
|
10607 |
|
|
&& parameters->options().wchar_size_warning())
|
10608 |
|
|
{
|
10609 |
|
|
gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
|
10610 |
|
|
"use %u-byte wchar_t; use of wchar_t values "
|
10611 |
|
|
"across objects may fail"),
|
10612 |
|
|
name, in_attr[i].int_value(),
|
10613 |
|
|
out_attr[i].int_value());
|
10614 |
|
|
}
|
10615 |
|
|
else if (in_attr[i].int_value() && !out_attr[i].int_value())
|
10616 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10617 |
|
|
break;
|
10618 |
|
|
case elfcpp::Tag_ABI_enum_size:
|
10619 |
|
|
if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
|
10620 |
|
|
{
|
10621 |
|
|
if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
|
10622 |
|
|
|| out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
|
10623 |
|
|
{
|
10624 |
|
|
// The existing object is compatible with anything.
|
10625 |
|
|
// Use whatever requirements the new object has.
|
10626 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10627 |
|
|
}
|
10628 |
|
|
else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
|
10629 |
|
|
&& out_attr[i].int_value() != in_attr[i].int_value()
|
10630 |
|
|
&& parameters->options().warn_mismatch()
|
10631 |
|
|
&& parameters->options().enum_size_warning())
|
10632 |
|
|
{
|
10633 |
|
|
unsigned int in_value = in_attr[i].int_value();
|
10634 |
|
|
unsigned int out_value = out_attr[i].int_value();
|
10635 |
|
|
gold_warning(_("%s uses %s enums yet the output is to use "
|
10636 |
|
|
"%s enums; use of enum values across objects "
|
10637 |
|
|
"may fail"),
|
10638 |
|
|
name,
|
10639 |
|
|
this->aeabi_enum_name(in_value).c_str(),
|
10640 |
|
|
this->aeabi_enum_name(out_value).c_str());
|
10641 |
|
|
}
|
10642 |
|
|
}
|
10643 |
|
|
break;
|
10644 |
|
|
case elfcpp::Tag_ABI_VFP_args:
|
10645 |
|
|
// Already done.
|
10646 |
|
|
break;
|
10647 |
|
|
case elfcpp::Tag_ABI_WMMX_args:
|
10648 |
|
|
if (in_attr[i].int_value() != out_attr[i].int_value()
|
10649 |
|
|
&& parameters->options().warn_mismatch())
|
10650 |
|
|
{
|
10651 |
|
|
gold_error(_("%s uses iWMMXt register arguments, output does "
|
10652 |
|
|
"not"),
|
10653 |
|
|
name);
|
10654 |
|
|
}
|
10655 |
|
|
break;
|
10656 |
|
|
case Object_attribute::Tag_compatibility:
|
10657 |
|
|
// Merged in target-independent code.
|
10658 |
|
|
break;
|
10659 |
|
|
case elfcpp::Tag_ABI_HardFP_use:
|
10660 |
|
|
// 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
|
10661 |
|
|
if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
|
10662 |
|
|
|| (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
|
10663 |
|
|
out_attr[i].set_int_value(3);
|
10664 |
|
|
else if (in_attr[i].int_value() > out_attr[i].int_value())
|
10665 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10666 |
|
|
break;
|
10667 |
|
|
case elfcpp::Tag_ABI_FP_16bit_format:
|
10668 |
|
|
if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
|
10669 |
|
|
{
|
10670 |
|
|
if (in_attr[i].int_value() != out_attr[i].int_value()
|
10671 |
|
|
&& parameters->options().warn_mismatch())
|
10672 |
|
|
gold_error(_("fp16 format mismatch between %s and output"),
|
10673 |
|
|
name);
|
10674 |
|
|
}
|
10675 |
|
|
if (in_attr[i].int_value() != 0)
|
10676 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10677 |
|
|
break;
|
10678 |
|
|
|
10679 |
|
|
case elfcpp::Tag_DIV_use:
|
10680 |
|
|
// This tag is set to zero if we can use UDIV and SDIV in Thumb
|
10681 |
|
|
// mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
|
10682 |
|
|
// SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
|
10683 |
|
|
// CPU. We will merge as follows: If the input attribute's value
|
10684 |
|
|
// is one then the output attribute's value remains unchanged. If
|
10685 |
|
|
// the input attribute's value is zero or two then if the output
|
10686 |
|
|
// attribute's value is one the output value is set to the input
|
10687 |
|
|
// value, otherwise the output value must be the same as the
|
10688 |
|
|
// inputs. */
|
10689 |
|
|
if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
|
10690 |
|
|
{
|
10691 |
|
|
if (in_attr[i].int_value() != out_attr[i].int_value())
|
10692 |
|
|
{
|
10693 |
|
|
gold_error(_("DIV usage mismatch between %s and output"),
|
10694 |
|
|
name);
|
10695 |
|
|
}
|
10696 |
|
|
}
|
10697 |
|
|
|
10698 |
|
|
if (in_attr[i].int_value() != 1)
|
10699 |
|
|
out_attr[i].set_int_value(in_attr[i].int_value());
|
10700 |
|
|
|
10701 |
|
|
break;
|
10702 |
|
|
|
10703 |
|
|
case elfcpp::Tag_MPextension_use_legacy:
|
10704 |
|
|
// We don't output objects with Tag_MPextension_use_legacy - we
|
10705 |
|
|
// move the value to Tag_MPextension_use.
|
10706 |
|
|
if (in_attr[i].int_value() != 0
|
10707 |
|
|
&& in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
|
10708 |
|
|
{
|
10709 |
|
|
if (in_attr[elfcpp::Tag_MPextension_use].int_value()
|
10710 |
|
|
!= in_attr[i].int_value())
|
10711 |
|
|
{
|
10712 |
|
|
gold_error(_("%s has has both the current and legacy "
|
10713 |
|
|
"Tag_MPextension_use attributes"),
|
10714 |
|
|
name);
|
10715 |
|
|
}
|
10716 |
|
|
}
|
10717 |
|
|
|
10718 |
|
|
if (in_attr[i].int_value()
|
10719 |
|
|
> out_attr[elfcpp::Tag_MPextension_use].int_value())
|
10720 |
|
|
out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
|
10721 |
|
|
|
10722 |
|
|
break;
|
10723 |
|
|
|
10724 |
|
|
case elfcpp::Tag_nodefaults:
|
10725 |
|
|
// This tag is set if it exists, but the value is unused (and is
|
10726 |
|
|
// typically zero). We don't actually need to do anything here -
|
10727 |
|
|
// the merge happens automatically when the type flags are merged
|
10728 |
|
|
// below.
|
10729 |
|
|
break;
|
10730 |
|
|
case elfcpp::Tag_also_compatible_with:
|
10731 |
|
|
// Already done in Tag_CPU_arch.
|
10732 |
|
|
break;
|
10733 |
|
|
case elfcpp::Tag_conformance:
|
10734 |
|
|
// Keep the attribute if it matches. Throw it away otherwise.
|
10735 |
|
|
// No attribute means no claim to conform.
|
10736 |
|
|
if (in_attr[i].string_value() != out_attr[i].string_value())
|
10737 |
|
|
out_attr[i].set_string_value("");
|
10738 |
|
|
break;
|
10739 |
|
|
|
10740 |
|
|
default:
|
10741 |
|
|
{
|
10742 |
|
|
const char* err_object = NULL;
|
10743 |
|
|
|
10744 |
|
|
// The "known_obj_attributes" table does contain some undefined
|
10745 |
|
|
// attributes. Ensure that there are unused.
|
10746 |
|
|
if (out_attr[i].int_value() != 0
|
10747 |
|
|
|| out_attr[i].string_value() != "")
|
10748 |
|
|
err_object = "output";
|
10749 |
|
|
else if (in_attr[i].int_value() != 0
|
10750 |
|
|
|| in_attr[i].string_value() != "")
|
10751 |
|
|
err_object = name;
|
10752 |
|
|
|
10753 |
|
|
if (err_object != NULL
|
10754 |
|
|
&& parameters->options().warn_mismatch())
|
10755 |
|
|
{
|
10756 |
|
|
// Attribute numbers >=64 (mod 128) can be safely ignored.
|
10757 |
|
|
if ((i & 127) < 64)
|
10758 |
|
|
gold_error(_("%s: unknown mandatory EABI object attribute "
|
10759 |
|
|
"%d"),
|
10760 |
|
|
err_object, i);
|
10761 |
|
|
else
|
10762 |
|
|
gold_warning(_("%s: unknown EABI object attribute %d"),
|
10763 |
|
|
err_object, i);
|
10764 |
|
|
}
|
10765 |
|
|
|
10766 |
|
|
// Only pass on attributes that match in both inputs.
|
10767 |
|
|
if (!in_attr[i].matches(out_attr[i]))
|
10768 |
|
|
{
|
10769 |
|
|
out_attr[i].set_int_value(0);
|
10770 |
|
|
out_attr[i].set_string_value("");
|
10771 |
|
|
}
|
10772 |
|
|
}
|
10773 |
|
|
}
|
10774 |
|
|
|
10775 |
|
|
// If out_attr was copied from in_attr then it won't have a type yet.
|
10776 |
|
|
if (in_attr[i].type() && !out_attr[i].type())
|
10777 |
|
|
out_attr[i].set_type(in_attr[i].type());
|
10778 |
|
|
}
|
10779 |
|
|
|
10780 |
|
|
// Merge Tag_compatibility attributes and any common GNU ones.
|
10781 |
|
|
this->attributes_section_data_->merge(name, pasd);
|
10782 |
|
|
|
10783 |
|
|
// Check for any attributes not known on ARM.
|
10784 |
|
|
typedef Vendor_object_attributes::Other_attributes Other_attributes;
|
10785 |
|
|
const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
|
10786 |
|
|
Other_attributes::const_iterator in_iter = in_other_attributes->begin();
|
10787 |
|
|
Other_attributes* out_other_attributes =
|
10788 |
|
|
this->attributes_section_data_->other_attributes(vendor);
|
10789 |
|
|
Other_attributes::iterator out_iter = out_other_attributes->begin();
|
10790 |
|
|
|
10791 |
|
|
while (in_iter != in_other_attributes->end()
|
10792 |
|
|
|| out_iter != out_other_attributes->end())
|
10793 |
|
|
{
|
10794 |
|
|
const char* err_object = NULL;
|
10795 |
|
|
int err_tag = 0;
|
10796 |
|
|
|
10797 |
|
|
// The tags for each list are in numerical order.
|
10798 |
|
|
// If the tags are equal, then merge.
|
10799 |
|
|
if (out_iter != out_other_attributes->end()
|
10800 |
|
|
&& (in_iter == in_other_attributes->end()
|
10801 |
|
|
|| in_iter->first > out_iter->first))
|
10802 |
|
|
{
|
10803 |
|
|
// This attribute only exists in output. We can't merge, and we
|
10804 |
|
|
// don't know what the tag means, so delete it.
|
10805 |
|
|
err_object = "output";
|
10806 |
|
|
err_tag = out_iter->first;
|
10807 |
|
|
int saved_tag = out_iter->first;
|
10808 |
|
|
delete out_iter->second;
|
10809 |
|
|
out_other_attributes->erase(out_iter);
|
10810 |
|
|
out_iter = out_other_attributes->upper_bound(saved_tag);
|
10811 |
|
|
}
|
10812 |
|
|
else if (in_iter != in_other_attributes->end()
|
10813 |
|
|
&& (out_iter != out_other_attributes->end()
|
10814 |
|
|
|| in_iter->first < out_iter->first))
|
10815 |
|
|
{
|
10816 |
|
|
// This attribute only exists in input. We can't merge, and we
|
10817 |
|
|
// don't know what the tag means, so ignore it.
|
10818 |
|
|
err_object = name;
|
10819 |
|
|
err_tag = in_iter->first;
|
10820 |
|
|
++in_iter;
|
10821 |
|
|
}
|
10822 |
|
|
else // The tags are equal.
|
10823 |
|
|
{
|
10824 |
|
|
// As present, all attributes in the list are unknown, and
|
10825 |
|
|
// therefore can't be merged meaningfully.
|
10826 |
|
|
err_object = "output";
|
10827 |
|
|
err_tag = out_iter->first;
|
10828 |
|
|
|
10829 |
|
|
// Only pass on attributes that match in both inputs.
|
10830 |
|
|
if (!in_iter->second->matches(*(out_iter->second)))
|
10831 |
|
|
{
|
10832 |
|
|
// No match. Delete the attribute.
|
10833 |
|
|
int saved_tag = out_iter->first;
|
10834 |
|
|
delete out_iter->second;
|
10835 |
|
|
out_other_attributes->erase(out_iter);
|
10836 |
|
|
out_iter = out_other_attributes->upper_bound(saved_tag);
|
10837 |
|
|
}
|
10838 |
|
|
else
|
10839 |
|
|
{
|
10840 |
|
|
// Matched. Keep the attribute and move to the next.
|
10841 |
|
|
++out_iter;
|
10842 |
|
|
++in_iter;
|
10843 |
|
|
}
|
10844 |
|
|
}
|
10845 |
|
|
|
10846 |
|
|
if (err_object && parameters->options().warn_mismatch())
|
10847 |
|
|
{
|
10848 |
|
|
// Attribute numbers >=64 (mod 128) can be safely ignored. */
|
10849 |
|
|
if ((err_tag & 127) < 64)
|
10850 |
|
|
{
|
10851 |
|
|
gold_error(_("%s: unknown mandatory EABI object attribute %d"),
|
10852 |
|
|
err_object, err_tag);
|
10853 |
|
|
}
|
10854 |
|
|
else
|
10855 |
|
|
{
|
10856 |
|
|
gold_warning(_("%s: unknown EABI object attribute %d"),
|
10857 |
|
|
err_object, err_tag);
|
10858 |
|
|
}
|
10859 |
|
|
}
|
10860 |
|
|
}
|
10861 |
|
|
}
|
10862 |
|
|
|
10863 |
|
|
// Stub-generation methods for Target_arm.
|
10864 |
|
|
|
10865 |
|
|
// Make a new Arm_input_section object.
|
10866 |
|
|
|
10867 |
|
|
template<bool big_endian>
|
10868 |
|
|
Arm_input_section<big_endian>*
|
10869 |
|
|
Target_arm<big_endian>::new_arm_input_section(
|
10870 |
|
|
Relobj* relobj,
|
10871 |
|
|
unsigned int shndx)
|
10872 |
|
|
{
|
10873 |
|
|
Section_id sid(relobj, shndx);
|
10874 |
|
|
|
10875 |
|
|
Arm_input_section<big_endian>* arm_input_section =
|
10876 |
|
|
new Arm_input_section<big_endian>(relobj, shndx);
|
10877 |
|
|
arm_input_section->init();
|
10878 |
|
|
|
10879 |
|
|
// Register new Arm_input_section in map for look-up.
|
10880 |
|
|
std::pair<typename Arm_input_section_map::iterator, bool> ins =
|
10881 |
|
|
this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
|
10882 |
|
|
|
10883 |
|
|
// Make sure that it we have not created another Arm_input_section
|
10884 |
|
|
// for this input section already.
|
10885 |
|
|
gold_assert(ins.second);
|
10886 |
|
|
|
10887 |
|
|
return arm_input_section;
|
10888 |
|
|
}
|
10889 |
|
|
|
10890 |
|
|
// Find the Arm_input_section object corresponding to the SHNDX-th input
|
10891 |
|
|
// section of RELOBJ.
|
10892 |
|
|
|
10893 |
|
|
template<bool big_endian>
|
10894 |
|
|
Arm_input_section<big_endian>*
|
10895 |
|
|
Target_arm<big_endian>::find_arm_input_section(
|
10896 |
|
|
Relobj* relobj,
|
10897 |
|
|
unsigned int shndx) const
|
10898 |
|
|
{
|
10899 |
|
|
Section_id sid(relobj, shndx);
|
10900 |
|
|
typename Arm_input_section_map::const_iterator p =
|
10901 |
|
|
this->arm_input_section_map_.find(sid);
|
10902 |
|
|
return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
|
10903 |
|
|
}
|
10904 |
|
|
|
10905 |
|
|
// Make a new stub table.
|
10906 |
|
|
|
10907 |
|
|
template<bool big_endian>
|
10908 |
|
|
Stub_table<big_endian>*
|
10909 |
|
|
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
|
10910 |
|
|
{
|
10911 |
|
|
Stub_table<big_endian>* stub_table =
|
10912 |
|
|
new Stub_table<big_endian>(owner);
|
10913 |
|
|
this->stub_tables_.push_back(stub_table);
|
10914 |
|
|
|
10915 |
|
|
stub_table->set_address(owner->address() + owner->data_size());
|
10916 |
|
|
stub_table->set_file_offset(owner->offset() + owner->data_size());
|
10917 |
|
|
stub_table->finalize_data_size();
|
10918 |
|
|
|
10919 |
|
|
return stub_table;
|
10920 |
|
|
}
|
10921 |
|
|
|
10922 |
|
|
// Scan a relocation for stub generation.
|
10923 |
|
|
|
10924 |
|
|
template<bool big_endian>
|
10925 |
|
|
void
|
10926 |
|
|
Target_arm<big_endian>::scan_reloc_for_stub(
|
10927 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
10928 |
|
|
unsigned int r_type,
|
10929 |
|
|
const Sized_symbol<32>* gsym,
|
10930 |
|
|
unsigned int r_sym,
|
10931 |
|
|
const Symbol_value<32>* psymval,
|
10932 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword addend,
|
10933 |
|
|
Arm_address address)
|
10934 |
|
|
{
|
10935 |
|
|
typedef typename Target_arm<big_endian>::Relocate Relocate;
|
10936 |
|
|
|
10937 |
|
|
const Arm_relobj<big_endian>* arm_relobj =
|
10938 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
|
10939 |
|
|
|
10940 |
|
|
bool target_is_thumb;
|
10941 |
|
|
Symbol_value<32> symval;
|
10942 |
|
|
if (gsym != NULL)
|
10943 |
|
|
{
|
10944 |
|
|
// This is a global symbol. Determine if we use PLT and if the
|
10945 |
|
|
// final target is THUMB.
|
10946 |
|
|
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
|
10947 |
|
|
{
|
10948 |
|
|
// This uses a PLT, change the symbol value.
|
10949 |
|
|
symval.set_output_value(this->plt_section()->address()
|
10950 |
|
|
+ gsym->plt_offset());
|
10951 |
|
|
psymval = &symval;
|
10952 |
|
|
target_is_thumb = false;
|
10953 |
|
|
}
|
10954 |
|
|
else if (gsym->is_undefined())
|
10955 |
|
|
// There is no need to generate a stub symbol is undefined.
|
10956 |
|
|
return;
|
10957 |
|
|
else
|
10958 |
|
|
{
|
10959 |
|
|
target_is_thumb =
|
10960 |
|
|
((gsym->type() == elfcpp::STT_ARM_TFUNC)
|
10961 |
|
|
|| (gsym->type() == elfcpp::STT_FUNC
|
10962 |
|
|
&& !gsym->is_undefined()
|
10963 |
|
|
&& ((psymval->value(arm_relobj, 0) & 1) != 0)));
|
10964 |
|
|
}
|
10965 |
|
|
}
|
10966 |
|
|
else
|
10967 |
|
|
{
|
10968 |
|
|
// This is a local symbol. Determine if the final target is THUMB.
|
10969 |
|
|
target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
|
10970 |
|
|
}
|
10971 |
|
|
|
10972 |
|
|
// Strip LSB if this points to a THUMB target.
|
10973 |
|
|
const Arm_reloc_property* reloc_property =
|
10974 |
|
|
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
|
10975 |
|
|
gold_assert(reloc_property != NULL);
|
10976 |
|
|
if (target_is_thumb
|
10977 |
|
|
&& reloc_property->uses_thumb_bit()
|
10978 |
|
|
&& ((psymval->value(arm_relobj, 0) & 1) != 0))
|
10979 |
|
|
{
|
10980 |
|
|
Arm_address stripped_value =
|
10981 |
|
|
psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
|
10982 |
|
|
symval.set_output_value(stripped_value);
|
10983 |
|
|
psymval = &symval;
|
10984 |
|
|
}
|
10985 |
|
|
|
10986 |
|
|
// Get the symbol value.
|
10987 |
|
|
Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
|
10988 |
|
|
|
10989 |
|
|
// Owing to pipelining, the PC relative branches below actually skip
|
10990 |
|
|
// two instructions when the branch offset is 0.
|
10991 |
|
|
Arm_address destination;
|
10992 |
|
|
switch (r_type)
|
10993 |
|
|
{
|
10994 |
|
|
case elfcpp::R_ARM_CALL:
|
10995 |
|
|
case elfcpp::R_ARM_JUMP24:
|
10996 |
|
|
case elfcpp::R_ARM_PLT32:
|
10997 |
|
|
// ARM branches.
|
10998 |
|
|
destination = value + addend + 8;
|
10999 |
|
|
break;
|
11000 |
|
|
case elfcpp::R_ARM_THM_CALL:
|
11001 |
|
|
case elfcpp::R_ARM_THM_XPC22:
|
11002 |
|
|
case elfcpp::R_ARM_THM_JUMP24:
|
11003 |
|
|
case elfcpp::R_ARM_THM_JUMP19:
|
11004 |
|
|
// THUMB branches.
|
11005 |
|
|
destination = value + addend + 4;
|
11006 |
|
|
break;
|
11007 |
|
|
default:
|
11008 |
|
|
gold_unreachable();
|
11009 |
|
|
}
|
11010 |
|
|
|
11011 |
|
|
Reloc_stub* stub = NULL;
|
11012 |
|
|
Stub_type stub_type =
|
11013 |
|
|
Reloc_stub::stub_type_for_reloc(r_type, address, destination,
|
11014 |
|
|
target_is_thumb);
|
11015 |
|
|
if (stub_type != arm_stub_none)
|
11016 |
|
|
{
|
11017 |
|
|
// Try looking up an existing stub from a stub table.
|
11018 |
|
|
Stub_table<big_endian>* stub_table =
|
11019 |
|
|
arm_relobj->stub_table(relinfo->data_shndx);
|
11020 |
|
|
gold_assert(stub_table != NULL);
|
11021 |
|
|
|
11022 |
|
|
// Locate stub by destination.
|
11023 |
|
|
Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
|
11024 |
|
|
|
11025 |
|
|
// Create a stub if there is not one already
|
11026 |
|
|
stub = stub_table->find_reloc_stub(stub_key);
|
11027 |
|
|
if (stub == NULL)
|
11028 |
|
|
{
|
11029 |
|
|
// create a new stub and add it to stub table.
|
11030 |
|
|
stub = this->stub_factory().make_reloc_stub(stub_type);
|
11031 |
|
|
stub_table->add_reloc_stub(stub, stub_key);
|
11032 |
|
|
}
|
11033 |
|
|
|
11034 |
|
|
// Record the destination address.
|
11035 |
|
|
stub->set_destination_address(destination
|
11036 |
|
|
| (target_is_thumb ? 1 : 0));
|
11037 |
|
|
}
|
11038 |
|
|
|
11039 |
|
|
// For Cortex-A8, we need to record a relocation at 4K page boundary.
|
11040 |
|
|
if (this->fix_cortex_a8_
|
11041 |
|
|
&& (r_type == elfcpp::R_ARM_THM_JUMP24
|
11042 |
|
|
|| r_type == elfcpp::R_ARM_THM_JUMP19
|
11043 |
|
|
|| r_type == elfcpp::R_ARM_THM_CALL
|
11044 |
|
|
|| r_type == elfcpp::R_ARM_THM_XPC22)
|
11045 |
|
|
&& (address & 0xfffU) == 0xffeU)
|
11046 |
|
|
{
|
11047 |
|
|
// Found a candidate. Note we haven't checked the destination is
|
11048 |
|
|
// within 4K here: if we do so (and don't create a record) we can't
|
11049 |
|
|
// tell that a branch should have been relocated when scanning later.
|
11050 |
|
|
this->cortex_a8_relocs_info_[address] =
|
11051 |
|
|
new Cortex_a8_reloc(stub, r_type,
|
11052 |
|
|
destination | (target_is_thumb ? 1 : 0));
|
11053 |
|
|
}
|
11054 |
|
|
}
|
11055 |
|
|
|
11056 |
|
|
// This function scans a relocation sections for stub generation.
|
11057 |
|
|
// The template parameter Relocate must be a class type which provides
|
11058 |
|
|
// a single function, relocate(), which implements the machine
|
11059 |
|
|
// specific part of a relocation.
|
11060 |
|
|
|
11061 |
|
|
// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
|
11062 |
|
|
// SHT_REL or SHT_RELA.
|
11063 |
|
|
|
11064 |
|
|
// PRELOCS points to the relocation data. RELOC_COUNT is the number
|
11065 |
|
|
// of relocs. OUTPUT_SECTION is the output section.
|
11066 |
|
|
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
|
11067 |
|
|
// mapped to output offsets.
|
11068 |
|
|
|
11069 |
|
|
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
|
11070 |
|
|
// VIEW_SIZE is the size. These refer to the input section, unless
|
11071 |
|
|
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
|
11072 |
|
|
// the output section.
|
11073 |
|
|
|
11074 |
|
|
template<bool big_endian>
|
11075 |
|
|
template<int sh_type>
|
11076 |
|
|
void inline
|
11077 |
|
|
Target_arm<big_endian>::scan_reloc_section_for_stubs(
|
11078 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
11079 |
|
|
const unsigned char* prelocs,
|
11080 |
|
|
size_t reloc_count,
|
11081 |
|
|
Output_section* output_section,
|
11082 |
|
|
bool needs_special_offset_handling,
|
11083 |
|
|
const unsigned char* view,
|
11084 |
|
|
elfcpp::Elf_types<32>::Elf_Addr view_address,
|
11085 |
|
|
section_size_type)
|
11086 |
|
|
{
|
11087 |
|
|
typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
|
11088 |
|
|
const int reloc_size =
|
11089 |
|
|
Reloc_types<sh_type, 32, big_endian>::reloc_size;
|
11090 |
|
|
|
11091 |
|
|
Arm_relobj<big_endian>* arm_object =
|
11092 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
|
11093 |
|
|
unsigned int local_count = arm_object->local_symbol_count();
|
11094 |
|
|
|
11095 |
|
|
Comdat_behavior comdat_behavior = CB_UNDETERMINED;
|
11096 |
|
|
|
11097 |
|
|
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
|
11098 |
|
|
{
|
11099 |
|
|
Reltype reloc(prelocs);
|
11100 |
|
|
|
11101 |
|
|
typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
|
11102 |
|
|
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
|
11103 |
|
|
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
|
11104 |
|
|
|
11105 |
|
|
r_type = this->get_real_reloc_type(r_type);
|
11106 |
|
|
|
11107 |
|
|
// Only a few relocation types need stubs.
|
11108 |
|
|
if ((r_type != elfcpp::R_ARM_CALL)
|
11109 |
|
|
&& (r_type != elfcpp::R_ARM_JUMP24)
|
11110 |
|
|
&& (r_type != elfcpp::R_ARM_PLT32)
|
11111 |
|
|
&& (r_type != elfcpp::R_ARM_THM_CALL)
|
11112 |
|
|
&& (r_type != elfcpp::R_ARM_THM_XPC22)
|
11113 |
|
|
&& (r_type != elfcpp::R_ARM_THM_JUMP24)
|
11114 |
|
|
&& (r_type != elfcpp::R_ARM_THM_JUMP19)
|
11115 |
|
|
&& (r_type != elfcpp::R_ARM_V4BX))
|
11116 |
|
|
continue;
|
11117 |
|
|
|
11118 |
|
|
section_offset_type offset =
|
11119 |
|
|
convert_to_section_size_type(reloc.get_r_offset());
|
11120 |
|
|
|
11121 |
|
|
if (needs_special_offset_handling)
|
11122 |
|
|
{
|
11123 |
|
|
offset = output_section->output_offset(relinfo->object,
|
11124 |
|
|
relinfo->data_shndx,
|
11125 |
|
|
offset);
|
11126 |
|
|
if (offset == -1)
|
11127 |
|
|
continue;
|
11128 |
|
|
}
|
11129 |
|
|
|
11130 |
|
|
// Create a v4bx stub if --fix-v4bx-interworking is used.
|
11131 |
|
|
if (r_type == elfcpp::R_ARM_V4BX)
|
11132 |
|
|
{
|
11133 |
|
|
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
|
11134 |
|
|
{
|
11135 |
|
|
// Get the BX instruction.
|
11136 |
|
|
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
|
11137 |
|
|
const Valtype* wv =
|
11138 |
|
|
reinterpret_cast<const Valtype*>(view + offset);
|
11139 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword insn =
|
11140 |
|
|
elfcpp::Swap<32, big_endian>::readval(wv);
|
11141 |
|
|
const uint32_t reg = (insn & 0xf);
|
11142 |
|
|
|
11143 |
|
|
if (reg < 0xf)
|
11144 |
|
|
{
|
11145 |
|
|
// Try looking up an existing stub from a stub table.
|
11146 |
|
|
Stub_table<big_endian>* stub_table =
|
11147 |
|
|
arm_object->stub_table(relinfo->data_shndx);
|
11148 |
|
|
gold_assert(stub_table != NULL);
|
11149 |
|
|
|
11150 |
|
|
if (stub_table->find_arm_v4bx_stub(reg) == NULL)
|
11151 |
|
|
{
|
11152 |
|
|
// create a new stub and add it to stub table.
|
11153 |
|
|
Arm_v4bx_stub* stub =
|
11154 |
|
|
this->stub_factory().make_arm_v4bx_stub(reg);
|
11155 |
|
|
gold_assert(stub != NULL);
|
11156 |
|
|
stub_table->add_arm_v4bx_stub(stub);
|
11157 |
|
|
}
|
11158 |
|
|
}
|
11159 |
|
|
}
|
11160 |
|
|
continue;
|
11161 |
|
|
}
|
11162 |
|
|
|
11163 |
|
|
// Get the addend.
|
11164 |
|
|
Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
|
11165 |
|
|
elfcpp::Elf_types<32>::Elf_Swxword addend =
|
11166 |
|
|
stub_addend_reader(r_type, view + offset, reloc);
|
11167 |
|
|
|
11168 |
|
|
const Sized_symbol<32>* sym;
|
11169 |
|
|
|
11170 |
|
|
Symbol_value<32> symval;
|
11171 |
|
|
const Symbol_value<32> *psymval;
|
11172 |
|
|
bool is_defined_in_discarded_section;
|
11173 |
|
|
unsigned int shndx;
|
11174 |
|
|
if (r_sym < local_count)
|
11175 |
|
|
{
|
11176 |
|
|
sym = NULL;
|
11177 |
|
|
psymval = arm_object->local_symbol(r_sym);
|
11178 |
|
|
|
11179 |
|
|
// If the local symbol belongs to a section we are discarding,
|
11180 |
|
|
// and that section is a debug section, try to find the
|
11181 |
|
|
// corresponding kept section and map this symbol to its
|
11182 |
|
|
// counterpart in the kept section. The symbol must not
|
11183 |
|
|
// correspond to a section we are folding.
|
11184 |
|
|
bool is_ordinary;
|
11185 |
|
|
shndx = psymval->input_shndx(&is_ordinary);
|
11186 |
|
|
is_defined_in_discarded_section =
|
11187 |
|
|
(is_ordinary
|
11188 |
|
|
&& shndx != elfcpp::SHN_UNDEF
|
11189 |
|
|
&& !arm_object->is_section_included(shndx)
|
11190 |
|
|
&& !relinfo->symtab->is_section_folded(arm_object, shndx));
|
11191 |
|
|
|
11192 |
|
|
// We need to compute the would-be final value of this local
|
11193 |
|
|
// symbol.
|
11194 |
|
|
if (!is_defined_in_discarded_section)
|
11195 |
|
|
{
|
11196 |
|
|
typedef Sized_relobj_file<32, big_endian> ObjType;
|
11197 |
|
|
typename ObjType::Compute_final_local_value_status status =
|
11198 |
|
|
arm_object->compute_final_local_value(r_sym, psymval, &symval,
|
11199 |
|
|
relinfo->symtab);
|
11200 |
|
|
if (status == ObjType::CFLV_OK)
|
11201 |
|
|
{
|
11202 |
|
|
// Currently we cannot handle a branch to a target in
|
11203 |
|
|
// a merged section. If this is the case, issue an error
|
11204 |
|
|
// and also free the merge symbol value.
|
11205 |
|
|
if (!symval.has_output_value())
|
11206 |
|
|
{
|
11207 |
|
|
const std::string& section_name =
|
11208 |
|
|
arm_object->section_name(shndx);
|
11209 |
|
|
arm_object->error(_("cannot handle branch to local %u "
|
11210 |
|
|
"in a merged section %s"),
|
11211 |
|
|
r_sym, section_name.c_str());
|
11212 |
|
|
}
|
11213 |
|
|
psymval = &symval;
|
11214 |
|
|
}
|
11215 |
|
|
else
|
11216 |
|
|
{
|
11217 |
|
|
// We cannot determine the final value.
|
11218 |
|
|
continue;
|
11219 |
|
|
}
|
11220 |
|
|
}
|
11221 |
|
|
}
|
11222 |
|
|
else
|
11223 |
|
|
{
|
11224 |
|
|
const Symbol* gsym;
|
11225 |
|
|
gsym = arm_object->global_symbol(r_sym);
|
11226 |
|
|
gold_assert(gsym != NULL);
|
11227 |
|
|
if (gsym->is_forwarder())
|
11228 |
|
|
gsym = relinfo->symtab->resolve_forwards(gsym);
|
11229 |
|
|
|
11230 |
|
|
sym = static_cast<const Sized_symbol<32>*>(gsym);
|
11231 |
|
|
if (sym->has_symtab_index() && sym->symtab_index() != -1U)
|
11232 |
|
|
symval.set_output_symtab_index(sym->symtab_index());
|
11233 |
|
|
else
|
11234 |
|
|
symval.set_no_output_symtab_entry();
|
11235 |
|
|
|
11236 |
|
|
// We need to compute the would-be final value of this global
|
11237 |
|
|
// symbol.
|
11238 |
|
|
const Symbol_table* symtab = relinfo->symtab;
|
11239 |
|
|
const Sized_symbol<32>* sized_symbol =
|
11240 |
|
|
symtab->get_sized_symbol<32>(gsym);
|
11241 |
|
|
Symbol_table::Compute_final_value_status status;
|
11242 |
|
|
Arm_address value =
|
11243 |
|
|
symtab->compute_final_value<32>(sized_symbol, &status);
|
11244 |
|
|
|
11245 |
|
|
// Skip this if the symbol has not output section.
|
11246 |
|
|
if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
|
11247 |
|
|
continue;
|
11248 |
|
|
symval.set_output_value(value);
|
11249 |
|
|
|
11250 |
|
|
if (gsym->type() == elfcpp::STT_TLS)
|
11251 |
|
|
symval.set_is_tls_symbol();
|
11252 |
|
|
else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
|
11253 |
|
|
symval.set_is_ifunc_symbol();
|
11254 |
|
|
psymval = &symval;
|
11255 |
|
|
|
11256 |
|
|
is_defined_in_discarded_section =
|
11257 |
|
|
(gsym->is_defined_in_discarded_section()
|
11258 |
|
|
&& gsym->is_undefined());
|
11259 |
|
|
shndx = 0;
|
11260 |
|
|
}
|
11261 |
|
|
|
11262 |
|
|
Symbol_value<32> symval2;
|
11263 |
|
|
if (is_defined_in_discarded_section)
|
11264 |
|
|
{
|
11265 |
|
|
if (comdat_behavior == CB_UNDETERMINED)
|
11266 |
|
|
{
|
11267 |
|
|
std::string name = arm_object->section_name(relinfo->data_shndx);
|
11268 |
|
|
comdat_behavior = get_comdat_behavior(name.c_str());
|
11269 |
|
|
}
|
11270 |
|
|
if (comdat_behavior == CB_PRETEND)
|
11271 |
|
|
{
|
11272 |
|
|
// FIXME: This case does not work for global symbols.
|
11273 |
|
|
// We have no place to store the original section index.
|
11274 |
|
|
// Fortunately this does not matter for comdat sections,
|
11275 |
|
|
// only for sections explicitly discarded by a linker
|
11276 |
|
|
// script.
|
11277 |
|
|
bool found;
|
11278 |
|
|
typename elfcpp::Elf_types<32>::Elf_Addr value =
|
11279 |
|
|
arm_object->map_to_kept_section(shndx, &found);
|
11280 |
|
|
if (found)
|
11281 |
|
|
symval2.set_output_value(value + psymval->input_value());
|
11282 |
|
|
else
|
11283 |
|
|
symval2.set_output_value(0);
|
11284 |
|
|
}
|
11285 |
|
|
else
|
11286 |
|
|
{
|
11287 |
|
|
if (comdat_behavior == CB_WARNING)
|
11288 |
|
|
gold_warning_at_location(relinfo, i, offset,
|
11289 |
|
|
_("relocation refers to discarded "
|
11290 |
|
|
"section"));
|
11291 |
|
|
symval2.set_output_value(0);
|
11292 |
|
|
}
|
11293 |
|
|
symval2.set_no_output_symtab_entry();
|
11294 |
|
|
psymval = &symval2;
|
11295 |
|
|
}
|
11296 |
|
|
|
11297 |
|
|
// If symbol is a section symbol, we don't know the actual type of
|
11298 |
|
|
// destination. Give up.
|
11299 |
|
|
if (psymval->is_section_symbol())
|
11300 |
|
|
continue;
|
11301 |
|
|
|
11302 |
|
|
this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
|
11303 |
|
|
addend, view_address + offset);
|
11304 |
|
|
}
|
11305 |
|
|
}
|
11306 |
|
|
|
11307 |
|
|
// Scan an input section for stub generation.
|
11308 |
|
|
|
11309 |
|
|
template<bool big_endian>
|
11310 |
|
|
void
|
11311 |
|
|
Target_arm<big_endian>::scan_section_for_stubs(
|
11312 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
11313 |
|
|
unsigned int sh_type,
|
11314 |
|
|
const unsigned char* prelocs,
|
11315 |
|
|
size_t reloc_count,
|
11316 |
|
|
Output_section* output_section,
|
11317 |
|
|
bool needs_special_offset_handling,
|
11318 |
|
|
const unsigned char* view,
|
11319 |
|
|
Arm_address view_address,
|
11320 |
|
|
section_size_type view_size)
|
11321 |
|
|
{
|
11322 |
|
|
if (sh_type == elfcpp::SHT_REL)
|
11323 |
|
|
this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
|
11324 |
|
|
relinfo,
|
11325 |
|
|
prelocs,
|
11326 |
|
|
reloc_count,
|
11327 |
|
|
output_section,
|
11328 |
|
|
needs_special_offset_handling,
|
11329 |
|
|
view,
|
11330 |
|
|
view_address,
|
11331 |
|
|
view_size);
|
11332 |
|
|
else if (sh_type == elfcpp::SHT_RELA)
|
11333 |
|
|
// We do not support RELA type relocations yet. This is provided for
|
11334 |
|
|
// completeness.
|
11335 |
|
|
this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
|
11336 |
|
|
relinfo,
|
11337 |
|
|
prelocs,
|
11338 |
|
|
reloc_count,
|
11339 |
|
|
output_section,
|
11340 |
|
|
needs_special_offset_handling,
|
11341 |
|
|
view,
|
11342 |
|
|
view_address,
|
11343 |
|
|
view_size);
|
11344 |
|
|
else
|
11345 |
|
|
gold_unreachable();
|
11346 |
|
|
}
|
11347 |
|
|
|
11348 |
|
|
// Group input sections for stub generation.
|
11349 |
|
|
//
|
11350 |
|
|
// We group input sections in an output section so that the total size,
|
11351 |
|
|
// including any padding space due to alignment is smaller than GROUP_SIZE
|
11352 |
|
|
// unless the only input section in group is bigger than GROUP_SIZE already.
|
11353 |
|
|
// Then an ARM stub table is created to follow the last input section
|
11354 |
|
|
// in group. For each group an ARM stub table is created an is placed
|
11355 |
|
|
// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
|
11356 |
|
|
// extend the group after the stub table.
|
11357 |
|
|
|
11358 |
|
|
template<bool big_endian>
|
11359 |
|
|
void
|
11360 |
|
|
Target_arm<big_endian>::group_sections(
|
11361 |
|
|
Layout* layout,
|
11362 |
|
|
section_size_type group_size,
|
11363 |
|
|
bool stubs_always_after_branch,
|
11364 |
|
|
const Task* task)
|
11365 |
|
|
{
|
11366 |
|
|
// Group input sections and insert stub table
|
11367 |
|
|
Layout::Section_list section_list;
|
11368 |
|
|
layout->get_allocated_sections(§ion_list);
|
11369 |
|
|
for (Layout::Section_list::const_iterator p = section_list.begin();
|
11370 |
|
|
p != section_list.end();
|
11371 |
|
|
++p)
|
11372 |
|
|
{
|
11373 |
|
|
Arm_output_section<big_endian>* output_section =
|
11374 |
|
|
Arm_output_section<big_endian>::as_arm_output_section(*p);
|
11375 |
|
|
output_section->group_sections(group_size, stubs_always_after_branch,
|
11376 |
|
|
this, task);
|
11377 |
|
|
}
|
11378 |
|
|
}
|
11379 |
|
|
|
11380 |
|
|
// Relaxation hook. This is where we do stub generation.
|
11381 |
|
|
|
11382 |
|
|
template<bool big_endian>
|
11383 |
|
|
bool
|
11384 |
|
|
Target_arm<big_endian>::do_relax(
|
11385 |
|
|
int pass,
|
11386 |
|
|
const Input_objects* input_objects,
|
11387 |
|
|
Symbol_table* symtab,
|
11388 |
|
|
Layout* layout,
|
11389 |
|
|
const Task* task)
|
11390 |
|
|
{
|
11391 |
|
|
// No need to generate stubs if this is a relocatable link.
|
11392 |
|
|
gold_assert(!parameters->options().relocatable());
|
11393 |
|
|
|
11394 |
|
|
// If this is the first pass, we need to group input sections into
|
11395 |
|
|
// stub groups.
|
11396 |
|
|
bool done_exidx_fixup = false;
|
11397 |
|
|
typedef typename Stub_table_list::iterator Stub_table_iterator;
|
11398 |
|
|
if (pass == 1)
|
11399 |
|
|
{
|
11400 |
|
|
// Determine the stub group size. The group size is the absolute
|
11401 |
|
|
// value of the parameter --stub-group-size. If --stub-group-size
|
11402 |
|
|
// is passed a negative value, we restrict stubs to be always after
|
11403 |
|
|
// the stubbed branches.
|
11404 |
|
|
int32_t stub_group_size_param =
|
11405 |
|
|
parameters->options().stub_group_size();
|
11406 |
|
|
bool stubs_always_after_branch = stub_group_size_param < 0;
|
11407 |
|
|
section_size_type stub_group_size = abs(stub_group_size_param);
|
11408 |
|
|
|
11409 |
|
|
if (stub_group_size == 1)
|
11410 |
|
|
{
|
11411 |
|
|
// Default value.
|
11412 |
|
|
// Thumb branch range is +-4MB has to be used as the default
|
11413 |
|
|
// maximum size (a given section can contain both ARM and Thumb
|
11414 |
|
|
// code, so the worst case has to be taken into account). If we are
|
11415 |
|
|
// fixing cortex-a8 errata, the branch range has to be even smaller,
|
11416 |
|
|
// since wide conditional branch has a range of +-1MB only.
|
11417 |
|
|
//
|
11418 |
|
|
// This value is 48K less than that, which allows for 4096
|
11419 |
|
|
// 12-byte stubs. If we exceed that, then we will fail to link.
|
11420 |
|
|
// The user will have to relink with an explicit group size
|
11421 |
|
|
// option.
|
11422 |
|
|
stub_group_size = 4145152;
|
11423 |
|
|
}
|
11424 |
|
|
|
11425 |
|
|
// The Cortex-A8 erratum fix depends on stubs not being in the same 4K
|
11426 |
|
|
// page as the first half of a 32-bit branch straddling two 4K pages.
|
11427 |
|
|
// This is a crude way of enforcing that. In addition, long conditional
|
11428 |
|
|
// branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
|
11429 |
|
|
// erratum, limit the group size to (1M - 12k) to avoid unreachable
|
11430 |
|
|
// cortex-A8 stubs from long conditional branches.
|
11431 |
|
|
if (this->fix_cortex_a8_)
|
11432 |
|
|
{
|
11433 |
|
|
stubs_always_after_branch = true;
|
11434 |
|
|
const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
|
11435 |
|
|
stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
|
11436 |
|
|
}
|
11437 |
|
|
|
11438 |
|
|
group_sections(layout, stub_group_size, stubs_always_after_branch, task);
|
11439 |
|
|
|
11440 |
|
|
// Also fix .ARM.exidx section coverage.
|
11441 |
|
|
Arm_output_section<big_endian>* exidx_output_section = NULL;
|
11442 |
|
|
for (Layout::Section_list::const_iterator p =
|
11443 |
|
|
layout->section_list().begin();
|
11444 |
|
|
p != layout->section_list().end();
|
11445 |
|
|
++p)
|
11446 |
|
|
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
|
11447 |
|
|
{
|
11448 |
|
|
if (exidx_output_section == NULL)
|
11449 |
|
|
exidx_output_section =
|
11450 |
|
|
Arm_output_section<big_endian>::as_arm_output_section(*p);
|
11451 |
|
|
else
|
11452 |
|
|
// We cannot handle this now.
|
11453 |
|
|
gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
|
11454 |
|
|
"non-relocatable link"),
|
11455 |
|
|
exidx_output_section->name(),
|
11456 |
|
|
(*p)->name());
|
11457 |
|
|
}
|
11458 |
|
|
|
11459 |
|
|
if (exidx_output_section != NULL)
|
11460 |
|
|
{
|
11461 |
|
|
this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
|
11462 |
|
|
symtab, task);
|
11463 |
|
|
done_exidx_fixup = true;
|
11464 |
|
|
}
|
11465 |
|
|
}
|
11466 |
|
|
else
|
11467 |
|
|
{
|
11468 |
|
|
// If this is not the first pass, addresses and file offsets have
|
11469 |
|
|
// been reset at this point, set them here.
|
11470 |
|
|
for (Stub_table_iterator sp = this->stub_tables_.begin();
|
11471 |
|
|
sp != this->stub_tables_.end();
|
11472 |
|
|
++sp)
|
11473 |
|
|
{
|
11474 |
|
|
Arm_input_section<big_endian>* owner = (*sp)->owner();
|
11475 |
|
|
off_t off = align_address(owner->original_size(),
|
11476 |
|
|
(*sp)->addralign());
|
11477 |
|
|
(*sp)->set_address_and_file_offset(owner->address() + off,
|
11478 |
|
|
owner->offset() + off);
|
11479 |
|
|
}
|
11480 |
|
|
}
|
11481 |
|
|
|
11482 |
|
|
// The Cortex-A8 stubs are sensitive to layout of code sections. At the
|
11483 |
|
|
// beginning of each relaxation pass, just blow away all the stubs.
|
11484 |
|
|
// Alternatively, we could selectively remove only the stubs and reloc
|
11485 |
|
|
// information for code sections that have moved since the last pass.
|
11486 |
|
|
// That would require more book-keeping.
|
11487 |
|
|
if (this->fix_cortex_a8_)
|
11488 |
|
|
{
|
11489 |
|
|
// Clear all Cortex-A8 reloc information.
|
11490 |
|
|
for (typename Cortex_a8_relocs_info::const_iterator p =
|
11491 |
|
|
this->cortex_a8_relocs_info_.begin();
|
11492 |
|
|
p != this->cortex_a8_relocs_info_.end();
|
11493 |
|
|
++p)
|
11494 |
|
|
delete p->second;
|
11495 |
|
|
this->cortex_a8_relocs_info_.clear();
|
11496 |
|
|
|
11497 |
|
|
// Remove all Cortex-A8 stubs.
|
11498 |
|
|
for (Stub_table_iterator sp = this->stub_tables_.begin();
|
11499 |
|
|
sp != this->stub_tables_.end();
|
11500 |
|
|
++sp)
|
11501 |
|
|
(*sp)->remove_all_cortex_a8_stubs();
|
11502 |
|
|
}
|
11503 |
|
|
|
11504 |
|
|
// Scan relocs for relocation stubs
|
11505 |
|
|
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
|
11506 |
|
|
op != input_objects->relobj_end();
|
11507 |
|
|
++op)
|
11508 |
|
|
{
|
11509 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
11510 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(*op);
|
11511 |
|
|
// Lock the object so we can read from it. This is only called
|
11512 |
|
|
// single-threaded from Layout::finalize, so it is OK to lock.
|
11513 |
|
|
Task_lock_obj<Object> tl(task, arm_relobj);
|
11514 |
|
|
arm_relobj->scan_sections_for_stubs(this, symtab, layout);
|
11515 |
|
|
}
|
11516 |
|
|
|
11517 |
|
|
// Check all stub tables to see if any of them have their data sizes
|
11518 |
|
|
// or addresses alignments changed. These are the only things that
|
11519 |
|
|
// matter.
|
11520 |
|
|
bool any_stub_table_changed = false;
|
11521 |
|
|
Unordered_set<const Output_section*> sections_needing_adjustment;
|
11522 |
|
|
for (Stub_table_iterator sp = this->stub_tables_.begin();
|
11523 |
|
|
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
|
11524 |
|
|
++sp)
|
11525 |
|
|
{
|
11526 |
|
|
if ((*sp)->update_data_size_and_addralign())
|
11527 |
|
|
{
|
11528 |
|
|
// Update data size of stub table owner.
|
11529 |
|
|
Arm_input_section<big_endian>* owner = (*sp)->owner();
|
11530 |
|
|
uint64_t address = owner->address();
|
11531 |
|
|
off_t offset = owner->offset();
|
11532 |
|
|
owner->reset_address_and_file_offset();
|
11533 |
|
|
owner->set_address_and_file_offset(address, offset);
|
11534 |
|
|
|
11535 |
|
|
sections_needing_adjustment.insert(owner->output_section());
|
11536 |
|
|
any_stub_table_changed = true;
|
11537 |
|
|
}
|
11538 |
|
|
}
|
11539 |
|
|
|
11540 |
|
|
// Output_section_data::output_section() returns a const pointer but we
|
11541 |
|
|
// need to update output sections, so we record all output sections needing
|
11542 |
|
|
// update above and scan the sections here to find out what sections need
|
11543 |
|
|
// to be updated.
|
11544 |
|
|
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
|
11545 |
|
|
p != layout->section_list().end();
|
11546 |
|
|
++p)
|
11547 |
|
|
{
|
11548 |
|
|
if (sections_needing_adjustment.find(*p)
|
11549 |
|
|
!= sections_needing_adjustment.end())
|
11550 |
|
|
(*p)->set_section_offsets_need_adjustment();
|
11551 |
|
|
}
|
11552 |
|
|
|
11553 |
|
|
// Stop relaxation if no EXIDX fix-up and no stub table change.
|
11554 |
|
|
bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
|
11555 |
|
|
|
11556 |
|
|
// Finalize the stubs in the last relaxation pass.
|
11557 |
|
|
if (!continue_relaxation)
|
11558 |
|
|
{
|
11559 |
|
|
for (Stub_table_iterator sp = this->stub_tables_.begin();
|
11560 |
|
|
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
|
11561 |
|
|
++sp)
|
11562 |
|
|
(*sp)->finalize_stubs();
|
11563 |
|
|
|
11564 |
|
|
// Update output local symbol counts of objects if necessary.
|
11565 |
|
|
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
|
11566 |
|
|
op != input_objects->relobj_end();
|
11567 |
|
|
++op)
|
11568 |
|
|
{
|
11569 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
11570 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(*op);
|
11571 |
|
|
|
11572 |
|
|
// Update output local symbol counts. We need to discard local
|
11573 |
|
|
// symbols defined in parts of input sections that are discarded by
|
11574 |
|
|
// relaxation.
|
11575 |
|
|
if (arm_relobj->output_local_symbol_count_needs_update())
|
11576 |
|
|
{
|
11577 |
|
|
// We need to lock the object's file to update it.
|
11578 |
|
|
Task_lock_obj<Object> tl(task, arm_relobj);
|
11579 |
|
|
arm_relobj->update_output_local_symbol_count();
|
11580 |
|
|
}
|
11581 |
|
|
}
|
11582 |
|
|
}
|
11583 |
|
|
|
11584 |
|
|
return continue_relaxation;
|
11585 |
|
|
}
|
11586 |
|
|
|
11587 |
|
|
// Relocate a stub.
|
11588 |
|
|
|
11589 |
|
|
template<bool big_endian>
|
11590 |
|
|
void
|
11591 |
|
|
Target_arm<big_endian>::relocate_stub(
|
11592 |
|
|
Stub* stub,
|
11593 |
|
|
const Relocate_info<32, big_endian>* relinfo,
|
11594 |
|
|
Output_section* output_section,
|
11595 |
|
|
unsigned char* view,
|
11596 |
|
|
Arm_address address,
|
11597 |
|
|
section_size_type view_size)
|
11598 |
|
|
{
|
11599 |
|
|
Relocate relocate;
|
11600 |
|
|
const Stub_template* stub_template = stub->stub_template();
|
11601 |
|
|
for (size_t i = 0; i < stub_template->reloc_count(); i++)
|
11602 |
|
|
{
|
11603 |
|
|
size_t reloc_insn_index = stub_template->reloc_insn_index(i);
|
11604 |
|
|
const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
|
11605 |
|
|
|
11606 |
|
|
unsigned int r_type = insn->r_type();
|
11607 |
|
|
section_size_type reloc_offset = stub_template->reloc_offset(i);
|
11608 |
|
|
section_size_type reloc_size = insn->size();
|
11609 |
|
|
gold_assert(reloc_offset + reloc_size <= view_size);
|
11610 |
|
|
|
11611 |
|
|
// This is the address of the stub destination.
|
11612 |
|
|
Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
|
11613 |
|
|
Symbol_value<32> symval;
|
11614 |
|
|
symval.set_output_value(target);
|
11615 |
|
|
|
11616 |
|
|
// Synthesize a fake reloc just in case. We don't have a symbol so
|
11617 |
|
|
// we use 0.
|
11618 |
|
|
unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
|
11619 |
|
|
memset(reloc_buffer, 0, sizeof(reloc_buffer));
|
11620 |
|
|
elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
|
11621 |
|
|
reloc_write.put_r_offset(reloc_offset);
|
11622 |
|
|
reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
|
11623 |
|
|
elfcpp::Rel<32, big_endian> rel(reloc_buffer);
|
11624 |
|
|
|
11625 |
|
|
relocate.relocate(relinfo, this, output_section,
|
11626 |
|
|
this->fake_relnum_for_stubs, rel, r_type,
|
11627 |
|
|
NULL, &symval, view + reloc_offset,
|
11628 |
|
|
address + reloc_offset, reloc_size);
|
11629 |
|
|
}
|
11630 |
|
|
}
|
11631 |
|
|
|
11632 |
|
|
// Determine whether an object attribute tag takes an integer, a
|
11633 |
|
|
// string or both.
|
11634 |
|
|
|
11635 |
|
|
template<bool big_endian>
|
11636 |
|
|
int
|
11637 |
|
|
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
|
11638 |
|
|
{
|
11639 |
|
|
if (tag == Object_attribute::Tag_compatibility)
|
11640 |
|
|
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
|
11641 |
|
|
| Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
|
11642 |
|
|
else if (tag == elfcpp::Tag_nodefaults)
|
11643 |
|
|
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
|
11644 |
|
|
| Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
|
11645 |
|
|
else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
|
11646 |
|
|
return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
|
11647 |
|
|
else if (tag < 32)
|
11648 |
|
|
return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
|
11649 |
|
|
else
|
11650 |
|
|
return ((tag & 1) != 0
|
11651 |
|
|
? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
|
11652 |
|
|
: Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
|
11653 |
|
|
}
|
11654 |
|
|
|
11655 |
|
|
// Reorder attributes.
|
11656 |
|
|
//
|
11657 |
|
|
// The ABI defines that Tag_conformance should be emitted first, and that
|
11658 |
|
|
// Tag_nodefaults should be second (if either is defined). This sets those
|
11659 |
|
|
// two positions, and bumps up the position of all the remaining tags to
|
11660 |
|
|
// compensate.
|
11661 |
|
|
|
11662 |
|
|
template<bool big_endian>
|
11663 |
|
|
int
|
11664 |
|
|
Target_arm<big_endian>::do_attributes_order(int num) const
|
11665 |
|
|
{
|
11666 |
|
|
// Reorder the known object attributes in output. We want to move
|
11667 |
|
|
// Tag_conformance to position 4 and Tag_conformance to position 5
|
11668 |
|
|
// and shift everything between 4 .. Tag_conformance - 1 to make room.
|
11669 |
|
|
if (num == 4)
|
11670 |
|
|
return elfcpp::Tag_conformance;
|
11671 |
|
|
if (num == 5)
|
11672 |
|
|
return elfcpp::Tag_nodefaults;
|
11673 |
|
|
if ((num - 2) < elfcpp::Tag_nodefaults)
|
11674 |
|
|
return num - 2;
|
11675 |
|
|
if ((num - 1) < elfcpp::Tag_conformance)
|
11676 |
|
|
return num - 1;
|
11677 |
|
|
return num;
|
11678 |
|
|
}
|
11679 |
|
|
|
11680 |
|
|
// Scan a span of THUMB code for Cortex-A8 erratum.
|
11681 |
|
|
|
11682 |
|
|
template<bool big_endian>
|
11683 |
|
|
void
|
11684 |
|
|
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
|
11685 |
|
|
Arm_relobj<big_endian>* arm_relobj,
|
11686 |
|
|
unsigned int shndx,
|
11687 |
|
|
section_size_type span_start,
|
11688 |
|
|
section_size_type span_end,
|
11689 |
|
|
const unsigned char* view,
|
11690 |
|
|
Arm_address address)
|
11691 |
|
|
{
|
11692 |
|
|
// Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
|
11693 |
|
|
//
|
11694 |
|
|
// The opcode is BLX.W, BL.W, B.W, Bcc.W
|
11695 |
|
|
// The branch target is in the same 4KB region as the
|
11696 |
|
|
// first half of the branch.
|
11697 |
|
|
// The instruction before the branch is a 32-bit
|
11698 |
|
|
// length non-branch instruction.
|
11699 |
|
|
section_size_type i = span_start;
|
11700 |
|
|
bool last_was_32bit = false;
|
11701 |
|
|
bool last_was_branch = false;
|
11702 |
|
|
while (i < span_end)
|
11703 |
|
|
{
|
11704 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
11705 |
|
|
const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
|
11706 |
|
|
uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
11707 |
|
|
bool is_blx = false, is_b = false;
|
11708 |
|
|
bool is_bl = false, is_bcc = false;
|
11709 |
|
|
|
11710 |
|
|
bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
|
11711 |
|
|
if (insn_32bit)
|
11712 |
|
|
{
|
11713 |
|
|
// Load the rest of the insn (in manual-friendly order).
|
11714 |
|
|
insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
11715 |
|
|
|
11716 |
|
|
// Encoding T4: B<c>.W.
|
11717 |
|
|
is_b = (insn & 0xf800d000U) == 0xf0009000U;
|
11718 |
|
|
// Encoding T1: BL<c>.W.
|
11719 |
|
|
is_bl = (insn & 0xf800d000U) == 0xf000d000U;
|
11720 |
|
|
// Encoding T2: BLX<c>.W.
|
11721 |
|
|
is_blx = (insn & 0xf800d000U) == 0xf000c000U;
|
11722 |
|
|
// Encoding T3: B<c>.W (not permitted in IT block).
|
11723 |
|
|
is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
|
11724 |
|
|
&& (insn & 0x07f00000U) != 0x03800000U);
|
11725 |
|
|
}
|
11726 |
|
|
|
11727 |
|
|
bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
|
11728 |
|
|
|
11729 |
|
|
// If this instruction is a 32-bit THUMB branch that crosses a 4K
|
11730 |
|
|
// page boundary and it follows 32-bit non-branch instruction,
|
11731 |
|
|
// we need to work around.
|
11732 |
|
|
if (is_32bit_branch
|
11733 |
|
|
&& ((address + i) & 0xfffU) == 0xffeU
|
11734 |
|
|
&& last_was_32bit
|
11735 |
|
|
&& !last_was_branch)
|
11736 |
|
|
{
|
11737 |
|
|
// Check to see if there is a relocation stub for this branch.
|
11738 |
|
|
bool force_target_arm = false;
|
11739 |
|
|
bool force_target_thumb = false;
|
11740 |
|
|
const Cortex_a8_reloc* cortex_a8_reloc = NULL;
|
11741 |
|
|
Cortex_a8_relocs_info::const_iterator p =
|
11742 |
|
|
this->cortex_a8_relocs_info_.find(address + i);
|
11743 |
|
|
|
11744 |
|
|
if (p != this->cortex_a8_relocs_info_.end())
|
11745 |
|
|
{
|
11746 |
|
|
cortex_a8_reloc = p->second;
|
11747 |
|
|
bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
|
11748 |
|
|
|
11749 |
|
|
if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
|
11750 |
|
|
&& !target_is_thumb)
|
11751 |
|
|
force_target_arm = true;
|
11752 |
|
|
else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
|
11753 |
|
|
&& target_is_thumb)
|
11754 |
|
|
force_target_thumb = true;
|
11755 |
|
|
}
|
11756 |
|
|
|
11757 |
|
|
off_t offset;
|
11758 |
|
|
Stub_type stub_type = arm_stub_none;
|
11759 |
|
|
|
11760 |
|
|
// Check if we have an offending branch instruction.
|
11761 |
|
|
uint16_t upper_insn = (insn >> 16) & 0xffffU;
|
11762 |
|
|
uint16_t lower_insn = insn & 0xffffU;
|
11763 |
|
|
typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
|
11764 |
|
|
|
11765 |
|
|
if (cortex_a8_reloc != NULL
|
11766 |
|
|
&& cortex_a8_reloc->reloc_stub() != NULL)
|
11767 |
|
|
// We've already made a stub for this instruction, e.g.
|
11768 |
|
|
// it's a long branch or a Thumb->ARM stub. Assume that
|
11769 |
|
|
// stub will suffice to work around the A8 erratum (see
|
11770 |
|
|
// setting of always_after_branch above).
|
11771 |
|
|
;
|
11772 |
|
|
else if (is_bcc)
|
11773 |
|
|
{
|
11774 |
|
|
offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
|
11775 |
|
|
lower_insn);
|
11776 |
|
|
stub_type = arm_stub_a8_veneer_b_cond;
|
11777 |
|
|
}
|
11778 |
|
|
else if (is_b || is_bl || is_blx)
|
11779 |
|
|
{
|
11780 |
|
|
offset = RelocFuncs::thumb32_branch_offset(upper_insn,
|
11781 |
|
|
lower_insn);
|
11782 |
|
|
if (is_blx)
|
11783 |
|
|
offset &= ~3;
|
11784 |
|
|
|
11785 |
|
|
stub_type = (is_blx
|
11786 |
|
|
? arm_stub_a8_veneer_blx
|
11787 |
|
|
: (is_bl
|
11788 |
|
|
? arm_stub_a8_veneer_bl
|
11789 |
|
|
: arm_stub_a8_veneer_b));
|
11790 |
|
|
}
|
11791 |
|
|
|
11792 |
|
|
if (stub_type != arm_stub_none)
|
11793 |
|
|
{
|
11794 |
|
|
Arm_address pc_for_insn = address + i + 4;
|
11795 |
|
|
|
11796 |
|
|
// The original instruction is a BL, but the target is
|
11797 |
|
|
// an ARM instruction. If we were not making a stub,
|
11798 |
|
|
// the BL would have been converted to a BLX. Use the
|
11799 |
|
|
// BLX stub instead in that case.
|
11800 |
|
|
if (this->may_use_blx() && force_target_arm
|
11801 |
|
|
&& stub_type == arm_stub_a8_veneer_bl)
|
11802 |
|
|
{
|
11803 |
|
|
stub_type = arm_stub_a8_veneer_blx;
|
11804 |
|
|
is_blx = true;
|
11805 |
|
|
is_bl = false;
|
11806 |
|
|
}
|
11807 |
|
|
// Conversely, if the original instruction was
|
11808 |
|
|
// BLX but the target is Thumb mode, use the BL stub.
|
11809 |
|
|
else if (force_target_thumb
|
11810 |
|
|
&& stub_type == arm_stub_a8_veneer_blx)
|
11811 |
|
|
{
|
11812 |
|
|
stub_type = arm_stub_a8_veneer_bl;
|
11813 |
|
|
is_blx = false;
|
11814 |
|
|
is_bl = true;
|
11815 |
|
|
}
|
11816 |
|
|
|
11817 |
|
|
if (is_blx)
|
11818 |
|
|
pc_for_insn &= ~3;
|
11819 |
|
|
|
11820 |
|
|
// If we found a relocation, use the proper destination,
|
11821 |
|
|
// not the offset in the (unrelocated) instruction.
|
11822 |
|
|
// Note this is always done if we switched the stub type above.
|
11823 |
|
|
if (cortex_a8_reloc != NULL)
|
11824 |
|
|
offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
|
11825 |
|
|
|
11826 |
|
|
Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
|
11827 |
|
|
|
11828 |
|
|
// Add a new stub if destination address in in the same page.
|
11829 |
|
|
if (((address + i) & ~0xfffU) == (target & ~0xfffU))
|
11830 |
|
|
{
|
11831 |
|
|
Cortex_a8_stub* stub =
|
11832 |
|
|
this->stub_factory_.make_cortex_a8_stub(stub_type,
|
11833 |
|
|
arm_relobj, shndx,
|
11834 |
|
|
address + i,
|
11835 |
|
|
target, insn);
|
11836 |
|
|
Stub_table<big_endian>* stub_table =
|
11837 |
|
|
arm_relobj->stub_table(shndx);
|
11838 |
|
|
gold_assert(stub_table != NULL);
|
11839 |
|
|
stub_table->add_cortex_a8_stub(address + i, stub);
|
11840 |
|
|
}
|
11841 |
|
|
}
|
11842 |
|
|
}
|
11843 |
|
|
|
11844 |
|
|
i += insn_32bit ? 4 : 2;
|
11845 |
|
|
last_was_32bit = insn_32bit;
|
11846 |
|
|
last_was_branch = is_32bit_branch;
|
11847 |
|
|
}
|
11848 |
|
|
}
|
11849 |
|
|
|
11850 |
|
|
// Apply the Cortex-A8 workaround.
|
11851 |
|
|
|
11852 |
|
|
template<bool big_endian>
|
11853 |
|
|
void
|
11854 |
|
|
Target_arm<big_endian>::apply_cortex_a8_workaround(
|
11855 |
|
|
const Cortex_a8_stub* stub,
|
11856 |
|
|
Arm_address stub_address,
|
11857 |
|
|
unsigned char* insn_view,
|
11858 |
|
|
Arm_address insn_address)
|
11859 |
|
|
{
|
11860 |
|
|
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
|
11861 |
|
|
Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
|
11862 |
|
|
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
|
11863 |
|
|
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
|
11864 |
|
|
off_t branch_offset = stub_address - (insn_address + 4);
|
11865 |
|
|
|
11866 |
|
|
typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
|
11867 |
|
|
switch (stub->stub_template()->type())
|
11868 |
|
|
{
|
11869 |
|
|
case arm_stub_a8_veneer_b_cond:
|
11870 |
|
|
// For a conditional branch, we re-write it to be an unconditional
|
11871 |
|
|
// branch to the stub. We use the THUMB-2 encoding here.
|
11872 |
|
|
upper_insn = 0xf000U;
|
11873 |
|
|
lower_insn = 0xb800U;
|
11874 |
|
|
// Fall through
|
11875 |
|
|
case arm_stub_a8_veneer_b:
|
11876 |
|
|
case arm_stub_a8_veneer_bl:
|
11877 |
|
|
case arm_stub_a8_veneer_blx:
|
11878 |
|
|
if ((lower_insn & 0x5000U) == 0x4000U)
|
11879 |
|
|
// For a BLX instruction, make sure that the relocation is
|
11880 |
|
|
// rounded up to a word boundary. This follows the semantics of
|
11881 |
|
|
// the instruction which specifies that bit 1 of the target
|
11882 |
|
|
// address will come from bit 1 of the base address.
|
11883 |
|
|
branch_offset = (branch_offset + 2) & ~3;
|
11884 |
|
|
|
11885 |
|
|
// Put BRANCH_OFFSET back into the insn.
|
11886 |
|
|
gold_assert(!utils::has_overflow<25>(branch_offset));
|
11887 |
|
|
upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
|
11888 |
|
|
lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
|
11889 |
|
|
break;
|
11890 |
|
|
|
11891 |
|
|
default:
|
11892 |
|
|
gold_unreachable();
|
11893 |
|
|
}
|
11894 |
|
|
|
11895 |
|
|
// Put the relocated value back in the object file:
|
11896 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
|
11897 |
|
|
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
|
11898 |
|
|
}
|
11899 |
|
|
|
11900 |
|
|
template<bool big_endian>
|
11901 |
|
|
class Target_selector_arm : public Target_selector
|
11902 |
|
|
{
|
11903 |
|
|
public:
|
11904 |
|
|
Target_selector_arm()
|
11905 |
|
|
: Target_selector(elfcpp::EM_ARM, 32, big_endian,
|
11906 |
159 |
khays |
(big_endian ? "elf32-bigarm" : "elf32-littlearm"),
|
11907 |
|
|
(big_endian ? "armelfb" : "armelf"))
|
11908 |
27 |
khays |
{ }
|
11909 |
|
|
|
11910 |
|
|
Target*
|
11911 |
|
|
do_instantiate_target()
|
11912 |
|
|
{ return new Target_arm<big_endian>(); }
|
11913 |
|
|
};
|
11914 |
|
|
|
11915 |
|
|
// Fix .ARM.exidx section coverage.
|
11916 |
|
|
|
11917 |
|
|
template<bool big_endian>
|
11918 |
|
|
void
|
11919 |
|
|
Target_arm<big_endian>::fix_exidx_coverage(
|
11920 |
|
|
Layout* layout,
|
11921 |
|
|
const Input_objects* input_objects,
|
11922 |
|
|
Arm_output_section<big_endian>* exidx_section,
|
11923 |
|
|
Symbol_table* symtab,
|
11924 |
|
|
const Task* task)
|
11925 |
|
|
{
|
11926 |
|
|
// We need to look at all the input sections in output in ascending
|
11927 |
|
|
// order of of output address. We do that by building a sorted list
|
11928 |
|
|
// of output sections by addresses. Then we looks at the output sections
|
11929 |
|
|
// in order. The input sections in an output section are already sorted
|
11930 |
|
|
// by addresses within the output section.
|
11931 |
|
|
|
11932 |
|
|
typedef std::set<Output_section*, output_section_address_less_than>
|
11933 |
|
|
Sorted_output_section_list;
|
11934 |
|
|
Sorted_output_section_list sorted_output_sections;
|
11935 |
|
|
|
11936 |
|
|
// Find out all the output sections of input sections pointed by
|
11937 |
|
|
// EXIDX input sections.
|
11938 |
|
|
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
|
11939 |
|
|
p != input_objects->relobj_end();
|
11940 |
|
|
++p)
|
11941 |
|
|
{
|
11942 |
|
|
Arm_relobj<big_endian>* arm_relobj =
|
11943 |
|
|
Arm_relobj<big_endian>::as_arm_relobj(*p);
|
11944 |
|
|
std::vector<unsigned int> shndx_list;
|
11945 |
|
|
arm_relobj->get_exidx_shndx_list(&shndx_list);
|
11946 |
|
|
for (size_t i = 0; i < shndx_list.size(); ++i)
|
11947 |
|
|
{
|
11948 |
|
|
const Arm_exidx_input_section* exidx_input_section =
|
11949 |
|
|
arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
|
11950 |
|
|
gold_assert(exidx_input_section != NULL);
|
11951 |
|
|
if (!exidx_input_section->has_errors())
|
11952 |
|
|
{
|
11953 |
|
|
unsigned int text_shndx = exidx_input_section->link();
|
11954 |
|
|
Output_section* os = arm_relobj->output_section(text_shndx);
|
11955 |
|
|
if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
|
11956 |
|
|
sorted_output_sections.insert(os);
|
11957 |
|
|
}
|
11958 |
|
|
}
|
11959 |
|
|
}
|
11960 |
|
|
|
11961 |
|
|
// Go over the output sections in ascending order of output addresses.
|
11962 |
|
|
typedef typename Arm_output_section<big_endian>::Text_section_list
|
11963 |
|
|
Text_section_list;
|
11964 |
|
|
Text_section_list sorted_text_sections;
|
11965 |
|
|
for (typename Sorted_output_section_list::iterator p =
|
11966 |
|
|
sorted_output_sections.begin();
|
11967 |
|
|
p != sorted_output_sections.end();
|
11968 |
|
|
++p)
|
11969 |
|
|
{
|
11970 |
|
|
Arm_output_section<big_endian>* arm_output_section =
|
11971 |
|
|
Arm_output_section<big_endian>::as_arm_output_section(*p);
|
11972 |
|
|
arm_output_section->append_text_sections_to_list(&sorted_text_sections);
|
11973 |
|
|
}
|
11974 |
|
|
|
11975 |
|
|
exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
|
11976 |
|
|
merge_exidx_entries(), task);
|
11977 |
|
|
}
|
11978 |
|
|
|
11979 |
|
|
Target_selector_arm<false> target_selector_arm;
|
11980 |
|
|
Target_selector_arm<true> target_selector_armbe;
|
11981 |
|
|
|
11982 |
|
|
} // End anonymous namespace.
|