OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [arm.cc] - Blame information for rev 45

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// arm.cc -- arm target support for gold.
2
 
3
// Copyright 2009, 2010 Free Software Foundation, Inc.
4
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5
// by Ian Lance Taylor <iant@google.com>.
6
// This file also contains borrowed and adapted code from
7
// bfd/elf32-arm.c.
8
 
9
// This file is part of gold.
10
 
11
// This program is free software; you can redistribute it and/or modify
12
// it under the terms of the GNU General Public License as published by
13
// the Free Software Foundation; either version 3 of the License, or
14
// (at your option) any later version.
15
 
16
// This program is distributed in the hope that it will be useful,
17
// but WITHOUT ANY WARRANTY; without even the implied warranty of
18
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
// GNU General Public License for more details.
20
 
21
// You should have received a copy of the GNU General Public License
22
// along with this program; if not, write to the Free Software
23
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24
// MA 02110-1301, USA.
25
 
26
#include "gold.h"
27
 
28
#include <cstring>
29
#include <limits>
30
#include <cstdio>
31
#include <string>
32
#include <algorithm>
33
#include <map>
34
#include <utility>
35
#include <set>
36
 
37
#include "elfcpp.h"
38
#include "parameters.h"
39
#include "reloc.h"
40
#include "arm.h"
41
#include "object.h"
42
#include "symtab.h"
43
#include "layout.h"
44
#include "output.h"
45
#include "copy-relocs.h"
46
#include "target.h"
47
#include "target-reloc.h"
48
#include "target-select.h"
49
#include "tls.h"
50
#include "defstd.h"
51
#include "gc.h"
52
#include "attributes.h"
53
#include "arm-reloc-property.h"
54
 
55
namespace
56
{
57
 
58
using namespace gold;
59
 
60
template<bool big_endian>
61
class Output_data_plt_arm;
62
 
63
template<bool big_endian>
64
class Stub_table;
65
 
66
template<bool big_endian>
67
class Arm_input_section;
68
 
69
class Arm_exidx_cantunwind;
70
 
71
class Arm_exidx_merged_section;
72
 
73
class Arm_exidx_fixup;
74
 
75
template<bool big_endian>
76
class Arm_output_section;
77
 
78
class Arm_exidx_input_section;
79
 
80
template<bool big_endian>
81
class Arm_relobj;
82
 
83
template<bool big_endian>
84
class Arm_relocate_functions;
85
 
86
template<bool big_endian>
87
class Arm_output_data_got;
88
 
89
template<bool big_endian>
90
class Target_arm;
91
 
92
// For convenience.
93
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
 
95
// Maximum branch offsets for ARM, THUMB and THUMB2.
96
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
 
103
// Thread Control Block size.
104
const size_t ARM_TCB_SIZE = 8;
105
 
106
// The arm target class.
107
//
108
// This is a very simple port of gold for ARM-EABI.  It is intended for
109
// supporting Android only for the time being.
110
// 
111
// TODOs:
112
// - Implement all static relocation types documented in arm-reloc.def.
113
// - Make PLTs more flexible for different architecture features like
114
//   Thumb-2 and BE8.
115
// There are probably a lot more.
116
 
117
// Ideally we would like to avoid using global variables but this is used
118
// very in many places and sometimes in loops.  If we use a function
119
// returning a static instance of Arm_reloc_property_table, it will be very
120
// slow in an threaded environment since the static instance needs to be
121
// locked.  The pointer is below initialized in the
122
// Target::do_select_as_default_target() hook so that we do not spend time
123
// building the table if we are not linking ARM objects.
124
//
125
// An alternative is to to process the information in arm-reloc.def in
126
// compilation time and generate a representation of it in PODs only.  That
127
// way we can avoid initialization when the linker starts.
128
 
129
Arm_reloc_property_table* arm_reloc_property_table = NULL;
130
 
131
// Instruction template class.  This class is similar to the insn_sequence
132
// struct in bfd/elf32-arm.c.
133
 
134
class Insn_template
135
{
136
 public:
137
  // Types of instruction templates.
138
  enum Type
139
    {
140
      THUMB16_TYPE = 1,
141
      // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
142
      // templates with class-specific semantics.  Currently this is used
143
      // only by the Cortex_a8_stub class for handling condition codes in
144
      // conditional branches.
145
      THUMB16_SPECIAL_TYPE,
146
      THUMB32_TYPE,
147
      ARM_TYPE,
148
      DATA_TYPE
149
    };
150
 
151
  // Factory methods to create instruction templates in different formats.
152
 
153
  static const Insn_template
154
  thumb16_insn(uint32_t data)
155
  { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
 
157
  // A Thumb conditional branch, in which the proper condition is inserted
158
  // when we build the stub.
159
  static const Insn_template
160
  thumb16_bcond_insn(uint32_t data)
161
  { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
162
 
163
  static const Insn_template
164
  thumb32_insn(uint32_t data)
165
  { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
 
167
  static const Insn_template
168
  thumb32_b_insn(uint32_t data, int reloc_addend)
169
  {
170
    return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171
                         reloc_addend);
172
  }
173
 
174
  static const Insn_template
175
  arm_insn(uint32_t data)
176
  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
 
178
  static const Insn_template
179
  arm_rel_insn(unsigned data, int reloc_addend)
180
  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
 
182
  static const Insn_template
183
  data_word(unsigned data, unsigned int r_type, int reloc_addend)
184
  { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
 
186
  // Accessors.  This class is used for read-only objects so no modifiers
187
  // are provided.
188
 
189
  uint32_t
190
  data() const
191
  { return this->data_; }
192
 
193
  // Return the instruction sequence type of this.
194
  Type
195
  type() const
196
  { return this->type_; }
197
 
198
  // Return the ARM relocation type of this.
199
  unsigned int
200
  r_type() const
201
  { return this->r_type_; }
202
 
203
  int32_t
204
  reloc_addend() const
205
  { return this->reloc_addend_; }
206
 
207
  // Return size of instruction template in bytes.
208
  size_t
209
  size() const;
210
 
211
  // Return byte-alignment of instruction template.
212
  unsigned
213
  alignment() const;
214
 
215
 private:
216
  // We make the constructor private to ensure that only the factory
217
  // methods are used.
218
  inline
219
  Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220
    : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
221
  { }
222
 
223
  // Instruction specific data.  This is used to store information like
224
  // some of the instruction bits.
225
  uint32_t data_;
226
  // Instruction template type.
227
  Type type_;
228
  // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229
  unsigned int r_type_;
230
  // Relocation addend.
231
  int32_t reloc_addend_;
232
};
233
 
234
// Macro for generating code to stub types. One entry per long/short
235
// branch stub
236
 
237
#define DEF_STUBS \
238
  DEF_STUB(long_branch_any_any) \
239
  DEF_STUB(long_branch_v4t_arm_thumb) \
240
  DEF_STUB(long_branch_thumb_only) \
241
  DEF_STUB(long_branch_v4t_thumb_thumb) \
242
  DEF_STUB(long_branch_v4t_thumb_arm) \
243
  DEF_STUB(short_branch_v4t_thumb_arm) \
244
  DEF_STUB(long_branch_any_arm_pic) \
245
  DEF_STUB(long_branch_any_thumb_pic) \
246
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249
  DEF_STUB(long_branch_thumb_only_pic) \
250
  DEF_STUB(a8_veneer_b_cond) \
251
  DEF_STUB(a8_veneer_b) \
252
  DEF_STUB(a8_veneer_bl) \
253
  DEF_STUB(a8_veneer_blx) \
254
  DEF_STUB(v4_veneer_bx)
255
 
256
// Stub types.
257
 
258
#define DEF_STUB(x) arm_stub_##x,
259
typedef enum
260
  {
261
    arm_stub_none,
262
    DEF_STUBS
263
 
264
    // First reloc stub type.
265
    arm_stub_reloc_first = arm_stub_long_branch_any_any,
266
    // Last  reloc stub type.
267
    arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
 
269
    // First Cortex-A8 stub type.
270
    arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271
    // Last Cortex-A8 stub type.
272
    arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
 
274
    // Last stub type.
275
    arm_stub_type_last = arm_stub_v4_veneer_bx
276
  } Stub_type;
277
#undef DEF_STUB
278
 
279
// Stub template class.  Templates are meant to be read-only objects.
280
// A stub template for a stub type contains all read-only attributes
281
// common to all stubs of the same type.
282
 
283
class Stub_template
284
{
285
 public:
286
  Stub_template(Stub_type, const Insn_template*, size_t);
287
 
288
  ~Stub_template()
289
  { }
290
 
291
  // Return stub type.
292
  Stub_type
293
  type() const
294
  { return this->type_; }
295
 
296
  // Return an array of instruction templates.
297
  const Insn_template*
298
  insns() const
299
  { return this->insns_; }
300
 
301
  // Return size of template in number of instructions.
302
  size_t
303
  insn_count() const
304
  { return this->insn_count_; }
305
 
306
  // Return size of template in bytes.
307
  size_t
308
  size() const
309
  { return this->size_; }
310
 
311
  // Return alignment of the stub template.
312
  unsigned
313
  alignment() const
314
  { return this->alignment_; }
315
 
316
  // Return whether entry point is in thumb mode.
317
  bool
318
  entry_in_thumb_mode() const
319
  { return this->entry_in_thumb_mode_; }
320
 
321
  // Return number of relocations in this template.
322
  size_t
323
  reloc_count() const
324
  { return this->relocs_.size(); }
325
 
326
  // Return index of the I-th instruction with relocation.
327
  size_t
328
  reloc_insn_index(size_t i) const
329
  {
330
    gold_assert(i < this->relocs_.size());
331
    return this->relocs_[i].first;
332
  }
333
 
334
  // Return the offset of the I-th instruction with relocation from the
335
  // beginning of the stub.
336
  section_size_type
337
  reloc_offset(size_t i) const
338
  {
339
    gold_assert(i < this->relocs_.size());
340
    return this->relocs_[i].second;
341
  }
342
 
343
 private:
344
  // This contains information about an instruction template with a relocation
345
  // and its offset from start of stub.
346
  typedef std::pair<size_t, section_size_type> Reloc;
347
 
348
  // A Stub_template may not be copied.  We want to share templates as much
349
  // as possible.
350
  Stub_template(const Stub_template&);
351
  Stub_template& operator=(const Stub_template&);
352
 
353
  // Stub type.
354
  Stub_type type_;
355
  // Points to an array of Insn_templates.
356
  const Insn_template* insns_;
357
  // Number of Insn_templates in insns_[].
358
  size_t insn_count_;
359
  // Size of templated instructions in bytes.
360
  size_t size_;
361
  // Alignment of templated instructions.
362
  unsigned alignment_;
363
  // Flag to indicate if entry is in thumb mode.
364
  bool entry_in_thumb_mode_;
365
  // A table of reloc instruction indices and offsets.  We can find these by
366
  // looking at the instruction templates but we pre-compute and then stash
367
  // them here for speed. 
368
  std::vector<Reloc> relocs_;
369
};
370
 
371
//
372
// A class for code stubs.  This is a base class for different type of
373
// stubs used in the ARM target.
374
//
375
 
376
class Stub
377
{
378
 private:
379
  static const section_offset_type invalid_offset =
380
    static_cast<section_offset_type>(-1);
381
 
382
 public:
383
  Stub(const Stub_template* stub_template)
384
    : stub_template_(stub_template), offset_(invalid_offset)
385
  { }
386
 
387
  virtual
388
   ~Stub()
389
  { }
390
 
391
  // Return the stub template.
392
  const Stub_template*
393
  stub_template() const
394
  { return this->stub_template_; }
395
 
396
  // Return offset of code stub from beginning of its containing stub table.
397
  section_offset_type
398
  offset() const
399
  {
400
    gold_assert(this->offset_ != invalid_offset);
401
    return this->offset_;
402
  }
403
 
404
  // Set offset of code stub from beginning of its containing stub table.
405
  void
406
  set_offset(section_offset_type offset)
407
  { this->offset_ = offset; }
408
 
409
  // Return the relocation target address of the i-th relocation in the
410
  // stub.  This must be defined in a child class.
411
  Arm_address
412
  reloc_target(size_t i)
413
  { return this->do_reloc_target(i); }
414
 
415
  // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
416
  void
417
  write(unsigned char* view, section_size_type view_size, bool big_endian)
418
  { this->do_write(view, view_size, big_endian); }
419
 
420
  // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421
  // for the i-th instruction.
422
  uint16_t
423
  thumb16_special(size_t i)
424
  { return this->do_thumb16_special(i); }
425
 
426
 protected:
427
  // This must be defined in the child class.
428
  virtual Arm_address
429
  do_reloc_target(size_t) = 0;
430
 
431
  // This may be overridden in the child class.
432
  virtual void
433
  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434
  {
435
    if (big_endian)
436
      this->do_fixed_endian_write<true>(view, view_size);
437
    else
438
      this->do_fixed_endian_write<false>(view, view_size);
439
  }
440
 
441
  // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442
  // instruction template.
443
  virtual uint16_t
444
  do_thumb16_special(size_t)
445
  { gold_unreachable(); }
446
 
447
 private:
448
  // A template to implement do_write.
449
  template<bool big_endian>
450
  void inline
451
  do_fixed_endian_write(unsigned char*, section_size_type);
452
 
453
  // Its template.
454
  const Stub_template* stub_template_;
455
  // Offset within the section of containing this stub.
456
  section_offset_type offset_;
457
};
458
 
459
// Reloc stub class.  These are stubs we use to fix up relocation because
460
// of limited branch ranges.
461
 
462
class Reloc_stub : public Stub
463
{
464
 public:
465
  static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466
  // We assume we never jump to this address.
467
  static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
 
469
  // Return destination address.
470
  Arm_address
471
  destination_address() const
472
  {
473
    gold_assert(this->destination_address_ != this->invalid_address);
474
    return this->destination_address_;
475
  }
476
 
477
  // Set destination address.
478
  void
479
  set_destination_address(Arm_address address)
480
  {
481
    gold_assert(address != this->invalid_address);
482
    this->destination_address_ = address;
483
  }
484
 
485
  // Reset destination address.
486
  void
487
  reset_destination_address()
488
  { this->destination_address_ = this->invalid_address; }
489
 
490
  // Determine stub type for a branch of a relocation of R_TYPE going
491
  // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
492
  // the branch target is a thumb instruction.  TARGET is used for look
493
  // up ARM-specific linker settings.
494
  static Stub_type
495
  stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496
                      Arm_address branch_target, bool target_is_thumb);
497
 
498
  // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
499
  // and an addend.  Since we treat global and local symbol differently, we
500
  // use a Symbol object for a global symbol and a object-index pair for
501
  // a local symbol.
502
  class Key
503
  {
504
   public:
505
    // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506
    // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
507
    // and R_SYM must not be invalid_index.
508
    Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509
        unsigned int r_sym, int32_t addend)
510
      : stub_type_(stub_type), addend_(addend)
511
    {
512
      if (symbol != NULL)
513
        {
514
          this->r_sym_ = Reloc_stub::invalid_index;
515
          this->u_.symbol = symbol;
516
        }
517
      else
518
        {
519
          gold_assert(relobj != NULL && r_sym != invalid_index);
520
          this->r_sym_ = r_sym;
521
          this->u_.relobj = relobj;
522
        }
523
    }
524
 
525
    ~Key()
526
    { }
527
 
528
    // Accessors: Keys are meant to be read-only object so no modifiers are
529
    // provided.
530
 
531
    // Return stub type.
532
    Stub_type
533
    stub_type() const
534
    { return this->stub_type_; }
535
 
536
    // Return the local symbol index or invalid_index.
537
    unsigned int
538
    r_sym() const
539
    { return this->r_sym_; }
540
 
541
    // Return the symbol if there is one.
542
    const Symbol*
543
    symbol() const
544
    { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
 
546
    // Return the relobj if there is one.
547
    const Relobj*
548
    relobj() const
549
    { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
 
551
    // Whether this equals to another key k.
552
    bool
553
    eq(const Key& k) const
554
    {
555
      return ((this->stub_type_ == k.stub_type_)
556
              && (this->r_sym_ == k.r_sym_)
557
              && ((this->r_sym_ != Reloc_stub::invalid_index)
558
                  ? (this->u_.relobj == k.u_.relobj)
559
                  : (this->u_.symbol == k.u_.symbol))
560
              && (this->addend_ == k.addend_));
561
    }
562
 
563
    // Return a hash value.
564
    size_t
565
    hash_value() const
566
    {
567
      return (this->stub_type_
568
              ^ this->r_sym_
569
              ^ gold::string_hash<char>(
570
                    (this->r_sym_ != Reloc_stub::invalid_index)
571
                    ? this->u_.relobj->name().c_str()
572
                    : this->u_.symbol->name())
573
              ^ this->addend_);
574
    }
575
 
576
    // Functors for STL associative containers.
577
    struct hash
578
    {
579
      size_t
580
      operator()(const Key& k) const
581
      { return k.hash_value(); }
582
    };
583
 
584
    struct equal_to
585
    {
586
      bool
587
      operator()(const Key& k1, const Key& k2) const
588
      { return k1.eq(k2); }
589
    };
590
 
591
    // Name of key.  This is mainly for debugging.
592
    std::string
593
    name() const;
594
 
595
   private:
596
    // Stub type.
597
    Stub_type stub_type_;
598
    // If this is a local symbol, this is the index in the defining object.
599
    // Otherwise, it is invalid_index for a global symbol.
600
    unsigned int r_sym_;
601
    // If r_sym_ is an invalid index, this points to a global symbol.
602
    // Otherwise, it points to a relobj.  We used the unsized and target
603
    // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
604
    // Arm_relobj, in order to avoid making the stub class a template
605
    // as most of the stub machinery is endianness-neutral.  However, it
606
    // may require a bit of casting done by users of this class.
607
    union
608
    {
609
      const Symbol* symbol;
610
      const Relobj* relobj;
611
    } u_;
612
    // Addend associated with a reloc.
613
    int32_t addend_;
614
  };
615
 
616
 protected:
617
  // Reloc_stubs are created via a stub factory.  So these are protected.
618
  Reloc_stub(const Stub_template* stub_template)
619
    : Stub(stub_template), destination_address_(invalid_address)
620
  { }
621
 
622
  ~Reloc_stub()
623
  { }
624
 
625
  friend class Stub_factory;
626
 
627
  // Return the relocation target address of the i-th relocation in the
628
  // stub.
629
  Arm_address
630
  do_reloc_target(size_t i)
631
  {
632
    // All reloc stub have only one relocation.
633
    gold_assert(i == 0);
634
    return this->destination_address_;
635
  }
636
 
637
 private:
638
  // Address of destination.
639
  Arm_address destination_address_;
640
};
641
 
642
// Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
643
// THUMB branch that meets the following conditions:
644
// 
645
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646
//    branch address is 0xffe.
647
// 2. The branch target address is in the same page as the first word of the
648
//    branch.
649
// 3. The branch follows a 32-bit instruction which is not a branch.
650
//
651
// To do the fix up, we need to store the address of the branch instruction
652
// and its target at least.  We also need to store the original branch
653
// instruction bits for the condition code in a conditional branch.  The
654
// condition code is used in a special instruction template.  We also want
655
// to identify input sections needing Cortex-A8 workaround quickly.  We store
656
// extra information about object and section index of the code section
657
// containing a branch being fixed up.  The information is used to mark
658
// the code section when we finalize the Cortex-A8 stubs.
659
//
660
 
661
class Cortex_a8_stub : public Stub
662
{
663
 public:
664
  ~Cortex_a8_stub()
665
  { }
666
 
667
  // Return the object of the code section containing the branch being fixed
668
  // up.
669
  Relobj*
670
  relobj() const
671
  { return this->relobj_; }
672
 
673
  // Return the section index of the code section containing the branch being
674
  // fixed up.
675
  unsigned int
676
  shndx() const
677
  { return this->shndx_; }
678
 
679
  // Return the source address of stub.  This is the address of the original
680
  // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
681
  // instruction.
682
  Arm_address
683
  source_address() const
684
  { return this->source_address_; }
685
 
686
  // Return the destination address of the stub.  This is the branch taken
687
  // address of the original branch instruction.  LSB is 1 if it is a THUMB
688
  // instruction address.
689
  Arm_address
690
  destination_address() const
691
  { return this->destination_address_; }
692
 
693
  // Return the instruction being fixed up.
694
  uint32_t
695
  original_insn() const
696
  { return this->original_insn_; }
697
 
698
 protected:
699
  // Cortex_a8_stubs are created via a stub factory.  So these are protected.
700
  Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701
                 unsigned int shndx, Arm_address source_address,
702
                 Arm_address destination_address, uint32_t original_insn)
703
    : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704
      source_address_(source_address | 1U),
705
      destination_address_(destination_address),
706
      original_insn_(original_insn)
707
  { }
708
 
709
  friend class Stub_factory;
710
 
711
  // Return the relocation target address of the i-th relocation in the
712
  // stub.
713
  Arm_address
714
  do_reloc_target(size_t i)
715
  {
716
    if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717
      {
718
        // The conditional branch veneer has two relocations.
719
        gold_assert(i < 2);
720
        return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721
      }
722
    else
723
      {
724
        // All other Cortex-A8 stubs have only one relocation.
725
        gold_assert(i == 0);
726
        return this->destination_address_;
727
      }
728
  }
729
 
730
  // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731
  uint16_t
732
  do_thumb16_special(size_t);
733
 
734
 private:
735
  // Object of the code section containing the branch being fixed up.
736
  Relobj* relobj_;
737
  // Section index of the code section containing the branch begin fixed up.
738
  unsigned int shndx_;
739
  // Source address of original branch.
740
  Arm_address source_address_;
741
  // Destination address of the original branch.
742
  Arm_address destination_address_;
743
  // Original branch instruction.  This is needed for copying the condition
744
  // code from a condition branch to its stub.
745
  uint32_t original_insn_;
746
};
747
 
748
// ARMv4 BX Rx branch relocation stub class.
749
class Arm_v4bx_stub : public Stub
750
{
751
 public:
752
  ~Arm_v4bx_stub()
753
  { }
754
 
755
  // Return the associated register.
756
  uint32_t
757
  reg() const
758
  { return this->reg_; }
759
 
760
 protected:
761
  // Arm V4BX stubs are created via a stub factory.  So these are protected.
762
  Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763
    : Stub(stub_template), reg_(reg)
764
  { }
765
 
766
  friend class Stub_factory;
767
 
768
  // Return the relocation target address of the i-th relocation in the
769
  // stub.
770
  Arm_address
771
  do_reloc_target(size_t)
772
  { gold_unreachable(); }
773
 
774
  // This may be overridden in the child class.
775
  virtual void
776
  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777
  {
778
    if (big_endian)
779
      this->do_fixed_endian_v4bx_write<true>(view, view_size);
780
    else
781
      this->do_fixed_endian_v4bx_write<false>(view, view_size);
782
  }
783
 
784
 private:
785
  // A template to implement do_write.
786
  template<bool big_endian>
787
  void inline
788
  do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789
  {
790
    const Insn_template* insns = this->stub_template()->insns();
791
    elfcpp::Swap<32, big_endian>::writeval(view,
792
                                           (insns[0].data()
793
                                           + (this->reg_ << 16)));
794
    view += insns[0].size();
795
    elfcpp::Swap<32, big_endian>::writeval(view,
796
                                           (insns[1].data() + this->reg_));
797
    view += insns[1].size();
798
    elfcpp::Swap<32, big_endian>::writeval(view,
799
                                           (insns[2].data() + this->reg_));
800
  }
801
 
802
  // A register index (r0-r14), which is associated with the stub.
803
  uint32_t reg_;
804
};
805
 
806
// Stub factory class.
807
 
808
class Stub_factory
809
{
810
 public:
811
  // Return the unique instance of this class.
812
  static const Stub_factory&
813
  get_instance()
814
  {
815
    static Stub_factory singleton;
816
    return singleton;
817
  }
818
 
819
  // Make a relocation stub.
820
  Reloc_stub*
821
  make_reloc_stub(Stub_type stub_type) const
822
  {
823
    gold_assert(stub_type >= arm_stub_reloc_first
824
                && stub_type <= arm_stub_reloc_last);
825
    return new Reloc_stub(this->stub_templates_[stub_type]);
826
  }
827
 
828
  // Make a Cortex-A8 stub.
829
  Cortex_a8_stub*
830
  make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831
                      Arm_address source, Arm_address destination,
832
                      uint32_t original_insn) const
833
  {
834
    gold_assert(stub_type >= arm_stub_cortex_a8_first
835
                && stub_type <= arm_stub_cortex_a8_last);
836
    return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837
                              source, destination, original_insn);
838
  }
839
 
840
  // Make an ARM V4BX relocation stub.
841
  // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842
  Arm_v4bx_stub*
843
  make_arm_v4bx_stub(uint32_t reg) const
844
  {
845
    gold_assert(reg < 0xf);
846
    return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847
                             reg);
848
  }
849
 
850
 private:
851
  // Constructor and destructor are protected since we only return a single
852
  // instance created in Stub_factory::get_instance().
853
 
854
  Stub_factory();
855
 
856
  // A Stub_factory may not be copied since it is a singleton.
857
  Stub_factory(const Stub_factory&);
858
  Stub_factory& operator=(Stub_factory&);
859
 
860
  // Stub templates.  These are initialized in the constructor.
861
  const Stub_template* stub_templates_[arm_stub_type_last+1];
862
};
863
 
864
// A class to hold stubs for the ARM target.
865
 
866
template<bool big_endian>
867
class Stub_table : public Output_data
868
{
869
 public:
870
  Stub_table(Arm_input_section<big_endian>* owner)
871
    : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872
      reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873
      prev_data_size_(0), prev_addralign_(1)
874
  { }
875
 
876
  ~Stub_table()
877
  { }
878
 
879
  // Owner of this stub table.
880
  Arm_input_section<big_endian>*
881
  owner() const
882
  { return this->owner_; }
883
 
884
  // Whether this stub table is empty.
885
  bool
886
  empty() const
887
  {
888
    return (this->reloc_stubs_.empty()
889
            && this->cortex_a8_stubs_.empty()
890
            && this->arm_v4bx_stubs_.empty());
891
  }
892
 
893
  // Return the current data size.
894
  off_t
895
  current_data_size() const
896
  { return this->current_data_size_for_child(); }
897
 
898
  // Add a STUB using KEY.  The caller is responsible for avoiding addition
899
  // if a STUB with the same key has already been added.
900
  void
901
  add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902
  {
903
    const Stub_template* stub_template = stub->stub_template();
904
    gold_assert(stub_template->type() == key.stub_type());
905
    this->reloc_stubs_[key] = stub;
906
 
907
    // Assign stub offset early.  We can do this because we never remove
908
    // reloc stubs and they are in the beginning of the stub table.
909
    uint64_t align = stub_template->alignment();
910
    this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911
    stub->set_offset(this->reloc_stubs_size_);
912
    this->reloc_stubs_size_ += stub_template->size();
913
    this->reloc_stubs_addralign_ =
914
      std::max(this->reloc_stubs_addralign_, align);
915
  }
916
 
917
  // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918
  // The caller is responsible for avoiding addition if a STUB with the same
919
  // address has already been added.
920
  void
921
  add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922
  {
923
    std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924
    this->cortex_a8_stubs_.insert(value);
925
  }
926
 
927
  // Add an ARM V4BX relocation stub. A register index will be retrieved
928
  // from the stub.
929
  void
930
  add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931
  {
932
    gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933
    this->arm_v4bx_stubs_[stub->reg()] = stub;
934
  }
935
 
936
  // Remove all Cortex-A8 stubs.
937
  void
938
  remove_all_cortex_a8_stubs();
939
 
940
  // Look up a relocation stub using KEY.  Return NULL if there is none.
941
  Reloc_stub*
942
  find_reloc_stub(const Reloc_stub::Key& key) const
943
  {
944
    typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945
    return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946
  }
947
 
948
  // Look up an arm v4bx relocation stub using the register index.
949
  // Return NULL if there is none.
950
  Arm_v4bx_stub*
951
  find_arm_v4bx_stub(const uint32_t reg) const
952
  {
953
    gold_assert(reg < 0xf);
954
    return this->arm_v4bx_stubs_[reg];
955
  }
956
 
957
  // Relocate stubs in this stub table.
958
  void
959
  relocate_stubs(const Relocate_info<32, big_endian>*,
960
                 Target_arm<big_endian>*, Output_section*,
961
                 unsigned char*, Arm_address, section_size_type);
962
 
963
  // Update data size and alignment at the end of a relaxation pass.  Return
964
  // true if either data size or alignment is different from that of the
965
  // previous relaxation pass.
966
  bool
967
  update_data_size_and_addralign();
968
 
969
  // Finalize stubs.  Set the offsets of all stubs and mark input sections
970
  // needing the Cortex-A8 workaround.
971
  void
972
  finalize_stubs();
973
 
974
  // Apply Cortex-A8 workaround to an address range.
975
  void
976
  apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977
                                              unsigned char*, Arm_address,
978
                                              section_size_type);
979
 
980
 protected:
981
  // Write out section contents.
982
  void
983
  do_write(Output_file*);
984
 
985
  // Return the required alignment.
986
  uint64_t
987
  do_addralign() const
988
  { return this->prev_addralign_; }
989
 
990
  // Reset address and file offset.
991
  void
992
  do_reset_address_and_file_offset()
993
  { this->set_current_data_size_for_child(this->prev_data_size_); }
994
 
995
  // Set final data size.
996
  void
997
  set_final_data_size()
998
  { this->set_data_size(this->current_data_size()); }
999
 
1000
 private:
1001
  // Relocate one stub.
1002
  void
1003
  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004
                Target_arm<big_endian>*, Output_section*,
1005
                unsigned char*, Arm_address, section_size_type);
1006
 
1007
  // Unordered map of relocation stubs.
1008
  typedef
1009
    Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010
                  Reloc_stub::Key::equal_to>
1011
    Reloc_stub_map;
1012
 
1013
  // List of Cortex-A8 stubs ordered by addresses of branches being
1014
  // fixed up in output.
1015
  typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
1016
  // List of Arm V4BX relocation stubs ordered by associated registers.
1017
  typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
1018
 
1019
  // Owner of this stub table.
1020
  Arm_input_section<big_endian>* owner_;
1021
  // The relocation stubs.
1022
  Reloc_stub_map reloc_stubs_;
1023
  // Size of reloc stubs.
1024
  off_t reloc_stubs_size_;
1025
  // Maximum address alignment of reloc stubs.
1026
  uint64_t reloc_stubs_addralign_;
1027
  // The cortex_a8_stubs.
1028
  Cortex_a8_stub_list cortex_a8_stubs_;
1029
  // The Arm V4BX relocation stubs.
1030
  Arm_v4bx_stub_list arm_v4bx_stubs_;
1031
  // data size of this in the previous pass.
1032
  off_t prev_data_size_;
1033
  // address alignment of this in the previous pass.
1034
  uint64_t prev_addralign_;
1035
};
1036
 
1037
// Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
1038
// we add to the end of an EXIDX input section that goes into the output.
1039
 
1040
class Arm_exidx_cantunwind : public Output_section_data
1041
{
1042
 public:
1043
  Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044
    : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045
  { }
1046
 
1047
  // Return the object containing the section pointed by this.
1048
  Relobj*
1049
  relobj() const
1050
  { return this->relobj_; }
1051
 
1052
  // Return the section index of the section pointed by this.
1053
  unsigned int
1054
  shndx() const
1055
  { return this->shndx_; }
1056
 
1057
 protected:
1058
  void
1059
  do_write(Output_file* of)
1060
  {
1061
    if (parameters->target().is_big_endian())
1062
      this->do_fixed_endian_write<true>(of);
1063
    else
1064
      this->do_fixed_endian_write<false>(of);
1065
  }
1066
 
1067
  // Write to a map file.
1068
  void
1069
  do_print_to_mapfile(Mapfile* mapfile) const
1070
  { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
 
1072
 private:
1073
  // Implement do_write for a given endianness.
1074
  template<bool big_endian>
1075
  void inline
1076
  do_fixed_endian_write(Output_file*);
1077
 
1078
  // The object containing the section pointed by this.
1079
  Relobj* relobj_;
1080
  // The section index of the section pointed by this.
1081
  unsigned int shndx_;
1082
};
1083
 
1084
// During EXIDX coverage fix-up, we compact an EXIDX section.  The
1085
// Offset map is used to map input section offset within the EXIDX section
1086
// to the output offset from the start of this EXIDX section. 
1087
 
1088
typedef std::map<section_offset_type, section_offset_type>
1089
        Arm_exidx_section_offset_map;
1090
 
1091
// Arm_exidx_merged_section class.  This represents an EXIDX input section
1092
// with some of its entries merged.
1093
 
1094
class Arm_exidx_merged_section : public Output_relaxed_input_section
1095
{
1096
 public:
1097
  // Constructor for Arm_exidx_merged_section.
1098
  // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099
  // SECTION_OFFSET_MAP points to a section offset map describing how
1100
  // parts of the input section are mapped to output.  DELETED_BYTES is
1101
  // the number of bytes deleted from the EXIDX input section.
1102
  Arm_exidx_merged_section(
1103
      const Arm_exidx_input_section& exidx_input_section,
1104
      const Arm_exidx_section_offset_map& section_offset_map,
1105
      uint32_t deleted_bytes);
1106
 
1107
  // Build output contents.
1108
  void
1109
  build_contents(const unsigned char*, section_size_type);
1110
 
1111
  // Return the original EXIDX input section.
1112
  const Arm_exidx_input_section&
1113
  exidx_input_section() const
1114
  { return this->exidx_input_section_; }
1115
 
1116
  // Return the section offset map.
1117
  const Arm_exidx_section_offset_map&
1118
  section_offset_map() const
1119
  { return this->section_offset_map_; }
1120
 
1121
 protected:
1122
  // Write merged section into file OF.
1123
  void
1124
  do_write(Output_file* of);
1125
 
1126
  bool
1127
  do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128
                  section_offset_type*) const;
1129
 
1130
 private:
1131
  // Original EXIDX input section.
1132
  const Arm_exidx_input_section& exidx_input_section_;
1133
  // Section offset map.
1134
  const Arm_exidx_section_offset_map& section_offset_map_;
1135
  // Merged section contents.  We need to keep build the merged section 
1136
  // and save it here to avoid accessing the original EXIDX section when
1137
  // we cannot lock the sections' object.
1138
  unsigned char* section_contents_;
1139
};
1140
 
1141
// A class to wrap an ordinary input section containing executable code.
1142
 
1143
template<bool big_endian>
1144
class Arm_input_section : public Output_relaxed_input_section
1145
{
1146
 public:
1147
  Arm_input_section(Relobj* relobj, unsigned int shndx)
1148
    : Output_relaxed_input_section(relobj, shndx, 1),
1149
      original_addralign_(1), original_size_(0), stub_table_(NULL),
1150
      original_contents_(NULL)
1151
  { }
1152
 
1153
  ~Arm_input_section()
1154
  { delete[] this->original_contents_; }
1155
 
1156
  // Initialize.
1157
  void
1158
  init();
1159
 
1160
  // Whether this is a stub table owner.
1161
  bool
1162
  is_stub_table_owner() const
1163
  { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
 
1165
  // Return the stub table.
1166
  Stub_table<big_endian>*
1167
  stub_table() const
1168
  { return this->stub_table_; }
1169
 
1170
  // Set the stub_table.
1171
  void
1172
  set_stub_table(Stub_table<big_endian>* stub_table)
1173
  { this->stub_table_ = stub_table; }
1174
 
1175
  // Downcast a base pointer to an Arm_input_section pointer.  This is
1176
  // not type-safe but we only use Arm_input_section not the base class.
1177
  static Arm_input_section<big_endian>*
1178
  as_arm_input_section(Output_relaxed_input_section* poris)
1179
  { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
 
1181
  // Return the original size of the section.
1182
  uint32_t
1183
  original_size() const
1184
  { return this->original_size_; }
1185
 
1186
 protected:
1187
  // Write data to output file.
1188
  void
1189
  do_write(Output_file*);
1190
 
1191
  // Return required alignment of this.
1192
  uint64_t
1193
  do_addralign() const
1194
  {
1195
    if (this->is_stub_table_owner())
1196
      return std::max(this->stub_table_->addralign(),
1197
                      static_cast<uint64_t>(this->original_addralign_));
1198
    else
1199
      return this->original_addralign_;
1200
  }
1201
 
1202
  // Finalize data size.
1203
  void
1204
  set_final_data_size();
1205
 
1206
  // Reset address and file offset.
1207
  void
1208
  do_reset_address_and_file_offset();
1209
 
1210
  // Output offset.
1211
  bool
1212
  do_output_offset(const Relobj* object, unsigned int shndx,
1213
                   section_offset_type offset,
1214
                   section_offset_type* poutput) const
1215
  {
1216
    if ((object == this->relobj())
1217
        && (shndx == this->shndx())
1218
        && (offset >= 0)
1219
        && (offset <=
1220
            convert_types<section_offset_type, uint32_t>(this->original_size_)))
1221
      {
1222
        *poutput = offset;
1223
        return true;
1224
      }
1225
    else
1226
      return false;
1227
  }
1228
 
1229
 private:
1230
  // Copying is not allowed.
1231
  Arm_input_section(const Arm_input_section&);
1232
  Arm_input_section& operator=(const Arm_input_section&);
1233
 
1234
  // Address alignment of the original input section.
1235
  uint32_t original_addralign_;
1236
  // Section size of the original input section.
1237
  uint32_t original_size_;
1238
  // Stub table.
1239
  Stub_table<big_endian>* stub_table_;
1240
  // Original section contents.  We have to make a copy here since the file
1241
  // containing the original section may not be locked when we need to access
1242
  // the contents.
1243
  unsigned char* original_contents_;
1244
};
1245
 
1246
// Arm_exidx_fixup class.  This is used to define a number of methods
1247
// and keep states for fixing up EXIDX coverage.
1248
 
1249
class Arm_exidx_fixup
1250
{
1251
 public:
1252
  Arm_exidx_fixup(Output_section* exidx_output_section,
1253
                  bool merge_exidx_entries = true)
1254
    : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255
      last_inlined_entry_(0), last_input_section_(NULL),
1256
      section_offset_map_(NULL), first_output_text_section_(NULL),
1257
      merge_exidx_entries_(merge_exidx_entries)
1258
  { }
1259
 
1260
  ~Arm_exidx_fixup()
1261
  { delete this->section_offset_map_; }
1262
 
1263
  // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
1264
  // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265
  // number of bytes to be deleted in output.  If parts of the input EXIDX
1266
  // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267
  // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
1268
  // responsible for releasing it.
1269
  template<bool big_endian>
1270
  uint32_t
1271
  process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1272
                        const unsigned char* section_contents,
1273
                        section_size_type section_size,
1274
                        Arm_exidx_section_offset_map** psection_offset_map);
1275
 
1276
  // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277
  // input section, if there is not one already.
1278
  void
1279
  add_exidx_cantunwind_as_needed();
1280
 
1281
  // Return the output section for the text section which is linked to the
1282
  // first exidx input in output.
1283
  Output_section*
1284
  first_output_text_section() const
1285
  { return this->first_output_text_section_; }
1286
 
1287
 private:
1288
  // Copying is not allowed.
1289
  Arm_exidx_fixup(const Arm_exidx_fixup&);
1290
  Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
 
1292
  // Type of EXIDX unwind entry.
1293
  enum Unwind_type
1294
  {
1295
    // No type.
1296
    UT_NONE,
1297
    // EXIDX_CANTUNWIND.
1298
    UT_EXIDX_CANTUNWIND,
1299
    // Inlined entry.
1300
    UT_INLINED_ENTRY,
1301
    // Normal entry.
1302
    UT_NORMAL_ENTRY,
1303
  };
1304
 
1305
  // Process an EXIDX entry.  We only care about the second word of the
1306
  // entry.  Return true if the entry can be deleted.
1307
  bool
1308
  process_exidx_entry(uint32_t second_word);
1309
 
1310
  // Update the current section offset map during EXIDX section fix-up.
1311
  // If there is no map, create one.  INPUT_OFFSET is the offset of a
1312
  // reference point, DELETED_BYTES is the number of deleted by in the
1313
  // section so far.  If DELETE_ENTRY is true, the reference point and
1314
  // all offsets after the previous reference point are discarded.
1315
  void
1316
  update_offset_map(section_offset_type input_offset,
1317
                    section_size_type deleted_bytes, bool delete_entry);
1318
 
1319
  // EXIDX output section.
1320
  Output_section* exidx_output_section_;
1321
  // Unwind type of the last EXIDX entry processed.
1322
  Unwind_type last_unwind_type_;
1323
  // Last seen inlined EXIDX entry.
1324
  uint32_t last_inlined_entry_;
1325
  // Last processed EXIDX input section.
1326
  const Arm_exidx_input_section* last_input_section_;
1327
  // Section offset map created in process_exidx_section.
1328
  Arm_exidx_section_offset_map* section_offset_map_;
1329
  // Output section for the text section which is linked to the first exidx
1330
  // input in output.
1331
  Output_section* first_output_text_section_;
1332
 
1333
  bool merge_exidx_entries_;
1334
};
1335
 
1336
// Arm output section class.  This is defined mainly to add a number of
1337
// stub generation methods.
1338
 
1339
template<bool big_endian>
1340
class Arm_output_section : public Output_section
1341
{
1342
 public:
1343
  typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
 
1345
  // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
1346
  Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347
                     elfcpp::Elf_Xword flags)
1348
    : Output_section(name, type,
1349
                     (type == elfcpp::SHT_ARM_EXIDX
1350
                      ? flags | elfcpp::SHF_LINK_ORDER
1351
                      : flags))
1352
  {
1353
    if (type == elfcpp::SHT_ARM_EXIDX)
1354
      this->set_always_keeps_input_sections();
1355
  }
1356
 
1357
  ~Arm_output_section()
1358
  { }
1359
 
1360
  // Group input sections for stub generation.
1361
  void
1362
  group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
1363
 
1364
  // Downcast a base pointer to an Arm_output_section pointer.  This is
1365
  // not type-safe but we only use Arm_output_section not the base class.
1366
  static Arm_output_section<big_endian>*
1367
  as_arm_output_section(Output_section* os)
1368
  { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
 
1370
  // Append all input text sections in this into LIST.
1371
  void
1372
  append_text_sections_to_list(Text_section_list* list);
1373
 
1374
  // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
1375
  // is a list of text input sections sorted in ascending order of their
1376
  // output addresses.
1377
  void
1378
  fix_exidx_coverage(Layout* layout,
1379
                     const Text_section_list& sorted_text_section,
1380
                     Symbol_table* symtab,
1381
                     bool merge_exidx_entries,
1382
                     const Task* task);
1383
 
1384
  // Link an EXIDX section into its corresponding text section.
1385
  void
1386
  set_exidx_section_link();
1387
 
1388
 private:
1389
  // For convenience.
1390
  typedef Output_section::Input_section Input_section;
1391
  typedef Output_section::Input_section_list Input_section_list;
1392
 
1393
  // Create a stub group.
1394
  void create_stub_group(Input_section_list::const_iterator,
1395
                         Input_section_list::const_iterator,
1396
                         Input_section_list::const_iterator,
1397
                         Target_arm<big_endian>*,
1398
                         std::vector<Output_relaxed_input_section*>*,
1399
                         const Task* task);
1400
};
1401
 
1402
// Arm_exidx_input_section class.  This represents an EXIDX input section.
1403
 
1404
class Arm_exidx_input_section
1405
{
1406
 public:
1407
  static const section_offset_type invalid_offset =
1408
    static_cast<section_offset_type>(-1);
1409
 
1410
  Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1411
                          unsigned int link, uint32_t size,
1412
                          uint32_t addralign, uint32_t text_size)
1413
    : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1414
      addralign_(addralign), text_size_(text_size), has_errors_(false)
1415
  { }
1416
 
1417
  ~Arm_exidx_input_section()
1418
  { }
1419
 
1420
  // Accessors:  This is a read-only class.
1421
 
1422
  // Return the object containing this EXIDX input section.
1423
  Relobj*
1424
  relobj() const
1425
  { return this->relobj_; }
1426
 
1427
  // Return the section index of this EXIDX input section.
1428
  unsigned int
1429
  shndx() const
1430
  { return this->shndx_; }
1431
 
1432
  // Return the section index of linked text section in the same object.
1433
  unsigned int
1434
  link() const
1435
  { return this->link_; }
1436
 
1437
  // Return size of the EXIDX input section.
1438
  uint32_t
1439
  size() const
1440
  { return this->size_; }
1441
 
1442
  // Return address alignment of EXIDX input section.
1443
  uint32_t
1444
  addralign() const
1445
  { return this->addralign_; }
1446
 
1447
  // Return size of the associated text input section.
1448
  uint32_t
1449
  text_size() const
1450
  { return this->text_size_; }
1451
 
1452
  // Whether there are any errors in the EXIDX input section.
1453
  bool
1454
  has_errors() const
1455
  { return this->has_errors_; }
1456
 
1457
  // Set has-errors flag.
1458
  void
1459
  set_has_errors()
1460
  { this->has_errors_ = true; }
1461
 
1462
 private:
1463
  // Object containing this.
1464
  Relobj* relobj_;
1465
  // Section index of this.
1466
  unsigned int shndx_;
1467
  // text section linked to this in the same object.
1468
  unsigned int link_;
1469
  // Size of this.  For ARM 32-bit is sufficient.
1470
  uint32_t size_;
1471
  // Address alignment of this.  For ARM 32-bit is sufficient.
1472
  uint32_t addralign_;
1473
  // Size of associated text section.
1474
  uint32_t text_size_;
1475
  // Whether this has any errors.
1476
  bool has_errors_;
1477
};
1478
 
1479
// Arm_relobj class.
1480
 
1481
template<bool big_endian>
1482
class Arm_relobj : public Sized_relobj_file<32, big_endian>
1483
{
1484
 public:
1485
  static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
 
1487
  Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
1488
             const typename elfcpp::Ehdr<32, big_endian>& ehdr)
1489
    : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
1490
      stub_tables_(), local_symbol_is_thumb_function_(),
1491
      attributes_section_data_(NULL), mapping_symbols_info_(),
1492
      section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
1493
      output_local_symbol_count_needs_update_(false),
1494
      merge_flags_and_attributes_(true)
1495
  { }
1496
 
1497
  ~Arm_relobj()
1498
  { delete this->attributes_section_data_; }
1499
 
1500
  // Return the stub table of the SHNDX-th section if there is one.
1501
  Stub_table<big_endian>*
1502
  stub_table(unsigned int shndx) const
1503
  {
1504
    gold_assert(shndx < this->stub_tables_.size());
1505
    return this->stub_tables_[shndx];
1506
  }
1507
 
1508
  // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509
  void
1510
  set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
1511
  {
1512
    gold_assert(shndx < this->stub_tables_.size());
1513
    this->stub_tables_[shndx] = stub_table;
1514
  }
1515
 
1516
  // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
1517
  // index.  This is only valid after do_count_local_symbol is called.
1518
  bool
1519
  local_symbol_is_thumb_function(unsigned int r_sym) const
1520
  {
1521
    gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522
    return this->local_symbol_is_thumb_function_[r_sym];
1523
  }
1524
 
1525
  // Scan all relocation sections for stub generation.
1526
  void
1527
  scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528
                          const Layout*);
1529
 
1530
  // Convert regular input section with index SHNDX to a relaxed section.
1531
  void
1532
  convert_input_section_to_relaxed_section(unsigned shndx)
1533
  {
1534
    // The stubs have relocations and we need to process them after writing
1535
    // out the stubs.  So relocation now must follow section write.
1536
    this->set_section_offset(shndx, -1ULL);
1537
    this->set_relocs_must_follow_section_writes();
1538
  }
1539
 
1540
  // Downcast a base pointer to an Arm_relobj pointer.  This is
1541
  // not type-safe but we only use Arm_relobj not the base class.
1542
  static Arm_relobj<big_endian>*
1543
  as_arm_relobj(Relobj* relobj)
1544
  { return static_cast<Arm_relobj<big_endian>*>(relobj); }
1545
 
1546
  // Processor-specific flags in ELF file header.  This is valid only after
1547
  // reading symbols.
1548
  elfcpp::Elf_Word
1549
  processor_specific_flags() const
1550
  { return this->processor_specific_flags_; }
1551
 
1552
  // Attribute section data  This is the contents of the .ARM.attribute section
1553
  // if there is one.
1554
  const Attributes_section_data*
1555
  attributes_section_data() const
1556
  { return this->attributes_section_data_; }
1557
 
1558
  // Mapping symbol location.
1559
  typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
 
1561
  // Functor for STL container.
1562
  struct Mapping_symbol_position_less
1563
  {
1564
    bool
1565
    operator()(const Mapping_symbol_position& p1,
1566
               const Mapping_symbol_position& p2) const
1567
    {
1568
      return (p1.first < p2.first
1569
              || (p1.first == p2.first && p1.second < p2.second));
1570
    }
1571
  };
1572
 
1573
  // We only care about the first character of a mapping symbol, so
1574
  // we only store that instead of the whole symbol name.
1575
  typedef std::map<Mapping_symbol_position, char,
1576
                   Mapping_symbol_position_less> Mapping_symbols_info;
1577
 
1578
  // Whether a section contains any Cortex-A8 workaround.
1579
  bool
1580
  section_has_cortex_a8_workaround(unsigned int shndx) const
1581
  {
1582
    return (this->section_has_cortex_a8_workaround_ != NULL
1583
            && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584
  }
1585
 
1586
  // Mark a section that has Cortex-A8 workaround.
1587
  void
1588
  mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589
  {
1590
    if (this->section_has_cortex_a8_workaround_ == NULL)
1591
      this->section_has_cortex_a8_workaround_ =
1592
        new std::vector<bool>(this->shnum(), false);
1593
    (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594
  }
1595
 
1596
  // Return the EXIDX section of an text section with index SHNDX or NULL
1597
  // if the text section has no associated EXIDX section.
1598
  const Arm_exidx_input_section*
1599
  exidx_input_section_by_link(unsigned int shndx) const
1600
  {
1601
    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602
    return ((p != this->exidx_section_map_.end()
1603
             && p->second->link() == shndx)
1604
            ? p->second
1605
            : NULL);
1606
  }
1607
 
1608
  // Return the EXIDX section with index SHNDX or NULL if there is none.
1609
  const Arm_exidx_input_section*
1610
  exidx_input_section_by_shndx(unsigned shndx) const
1611
  {
1612
    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613
    return ((p != this->exidx_section_map_.end()
1614
             && p->second->shndx() == shndx)
1615
            ? p->second
1616
            : NULL);
1617
  }
1618
 
1619
  // Whether output local symbol count needs updating.
1620
  bool
1621
  output_local_symbol_count_needs_update() const
1622
  { return this->output_local_symbol_count_needs_update_; }
1623
 
1624
  // Set output_local_symbol_count_needs_update flag to be true.
1625
  void
1626
  set_output_local_symbol_count_needs_update()
1627
  { this->output_local_symbol_count_needs_update_ = true; }
1628
 
1629
  // Update output local symbol count at the end of relaxation.
1630
  void
1631
  update_output_local_symbol_count();
1632
 
1633
  // Whether we want to merge processor-specific flags and attributes.
1634
  bool
1635
  merge_flags_and_attributes() const
1636
  { return this->merge_flags_and_attributes_; }
1637
 
1638
  // Export list of EXIDX section indices.
1639
  void
1640
  get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641
  {
1642
    list->clear();
1643
    for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644
         p != this->exidx_section_map_.end();
1645
         ++p)
1646
      {
1647
        if (p->second->shndx() == p->first)
1648
          list->push_back(p->first);
1649
      }
1650
    // Sort list to make result independent of implementation of map. 
1651
    std::sort(list->begin(), list->end());
1652
  }
1653
 
1654
 protected:
1655
  // Post constructor setup.
1656
  void
1657
  do_setup()
1658
  {
1659
    // Call parent's setup method.
1660
    Sized_relobj_file<32, big_endian>::do_setup();
1661
 
1662
    // Initialize look-up tables.
1663
    Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664
    this->stub_tables_.swap(empty_stub_table_list);
1665
  }
1666
 
1667
  // Count the local symbols.
1668
  void
1669
  do_count_local_symbols(Stringpool_template<char>*,
1670
                         Stringpool_template<char>*);
1671
 
1672
  void
1673
  do_relocate_sections(
1674
      const Symbol_table* symtab, const Layout* layout,
1675
      const unsigned char* pshdrs, Output_file* of,
1676
      typename Sized_relobj_file<32, big_endian>::Views* pivews);
1677
 
1678
  // Read the symbol information.
1679
  void
1680
  do_read_symbols(Read_symbols_data* sd);
1681
 
1682
  // Process relocs for garbage collection.
1683
  void
1684
  do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
 
1686
 private:
1687
 
1688
  // Whether a section needs to be scanned for relocation stubs.
1689
  bool
1690
  section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691
                                    const Relobj::Output_sections&,
1692
                                    const Symbol_table*, const unsigned char*);
1693
 
1694
  // Whether a section is a scannable text section.
1695
  bool
1696
  section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1697
                       const Output_section*, const Symbol_table*);
1698
 
1699
  // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700
  bool
1701
  section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702
                                        unsigned int, Output_section*,
1703
                                        const Symbol_table*);
1704
 
1705
  // Scan a section for the Cortex-A8 erratum.
1706
  void
1707
  scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708
                                     unsigned int, Output_section*,
1709
                                     Target_arm<big_endian>*);
1710
 
1711
  // Find the linked text section of an EXIDX section by looking at the
1712
  // first relocation of the EXIDX section.  PSHDR points to the section
1713
  // headers of a relocation section and PSYMS points to the local symbols.
1714
  // PSHNDX points to a location storing the text section index if found.
1715
  // Return whether we can find the linked section.
1716
  bool
1717
  find_linked_text_section(const unsigned char* pshdr,
1718
                           const unsigned char* psyms, unsigned int* pshndx);
1719
 
1720
  //
1721
  // Make a new Arm_exidx_input_section object for EXIDX section with
1722
  // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
1723
  // index of the linked text section.
1724
  void
1725
  make_exidx_input_section(unsigned int shndx,
1726
                           const elfcpp::Shdr<32, big_endian>& shdr,
1727
                           unsigned int text_shndx,
1728
                           const elfcpp::Shdr<32, big_endian>& text_shdr);
1729
 
1730
  // Return the output address of either a plain input section or a
1731
  // relaxed input section.  SHNDX is the section index.
1732
  Arm_address
1733
  simple_input_section_output_address(unsigned int, Output_section*);
1734
 
1735
  typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
1736
  typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737
    Exidx_section_map;
1738
 
1739
  // List of stub tables.
1740
  Stub_table_list stub_tables_;
1741
  // Bit vector to tell if a local symbol is a thumb function or not.
1742
  // This is only valid after do_count_local_symbol is called.
1743
  std::vector<bool> local_symbol_is_thumb_function_;
1744
  // processor-specific flags in ELF file header.
1745
  elfcpp::Elf_Word processor_specific_flags_;
1746
  // Object attributes if there is an .ARM.attributes section or NULL.
1747
  Attributes_section_data* attributes_section_data_;
1748
  // Mapping symbols information.
1749
  Mapping_symbols_info mapping_symbols_info_;
1750
  // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751
  std::vector<bool>* section_has_cortex_a8_workaround_;
1752
  // Map a text section to its associated .ARM.exidx section, if there is one.
1753
  Exidx_section_map exidx_section_map_;
1754
  // Whether output local symbol count needs updating.
1755
  bool output_local_symbol_count_needs_update_;
1756
  // Whether we merge processor flags and attributes of this object to
1757
  // output.
1758
  bool merge_flags_and_attributes_;
1759
};
1760
 
1761
// Arm_dynobj class.
1762
 
1763
template<bool big_endian>
1764
class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765
{
1766
 public:
1767
  Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
1768
             const elfcpp::Ehdr<32, big_endian>& ehdr)
1769
    : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770
      processor_specific_flags_(0), attributes_section_data_(NULL)
1771
  { }
1772
 
1773
  ~Arm_dynobj()
1774
  { delete this->attributes_section_data_; }
1775
 
1776
  // Downcast a base pointer to an Arm_relobj pointer.  This is
1777
  // not type-safe but we only use Arm_relobj not the base class.
1778
  static Arm_dynobj<big_endian>*
1779
  as_arm_dynobj(Dynobj* dynobj)
1780
  { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
 
1782
  // Processor-specific flags in ELF file header.  This is valid only after
1783
  // reading symbols.
1784
  elfcpp::Elf_Word
1785
  processor_specific_flags() const
1786
  { return this->processor_specific_flags_; }
1787
 
1788
  // Attributes section data.
1789
  const Attributes_section_data*
1790
  attributes_section_data() const
1791
  { return this->attributes_section_data_; }
1792
 
1793
 protected:
1794
  // Read the symbol information.
1795
  void
1796
  do_read_symbols(Read_symbols_data* sd);
1797
 
1798
 private:
1799
  // processor-specific flags in ELF file header.
1800
  elfcpp::Elf_Word processor_specific_flags_;
1801
  // Object attributes if there is an .ARM.attributes section or NULL.
1802
  Attributes_section_data* attributes_section_data_;
1803
};
1804
 
1805
// Functor to read reloc addends during stub generation.
1806
 
1807
template<int sh_type, bool big_endian>
1808
struct Stub_addend_reader
1809
{
1810
  // Return the addend for a relocation of a particular type.  Depending
1811
  // on whether this is a REL or RELA relocation, read the addend from a
1812
  // view or from a Reloc object.
1813
  elfcpp::Elf_types<32>::Elf_Swxword
1814
  operator()(
1815
    unsigned int /* r_type */,
1816
    const unsigned char* /* view */,
1817
    const typename Reloc_types<sh_type,
1818
                               32, big_endian>::Reloc& /* reloc */) const;
1819
};
1820
 
1821
// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
 
1823
template<bool big_endian>
1824
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825
{
1826
  elfcpp::Elf_types<32>::Elf_Swxword
1827
  operator()(
1828
    unsigned int,
1829
    const unsigned char*,
1830
    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831
};
1832
 
1833
// Specialized Stub_addend_reader for RELA type relocation sections.
1834
// We currently do not handle RELA type relocation sections but it is trivial
1835
// to implement the addend reader.  This is provided for completeness and to
1836
// make it easier to add support for RELA relocation sections in the future.
1837
 
1838
template<bool big_endian>
1839
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840
{
1841
  elfcpp::Elf_types<32>::Elf_Swxword
1842
  operator()(
1843
    unsigned int,
1844
    const unsigned char*,
1845
    const typename Reloc_types<elfcpp::SHT_RELA, 32,
1846
                               big_endian>::Reloc& reloc) const
1847
  { return reloc.get_r_addend(); }
1848
};
1849
 
1850
// Cortex_a8_reloc class.  We keep record of relocation that may need
1851
// the Cortex-A8 erratum workaround.
1852
 
1853
class Cortex_a8_reloc
1854
{
1855
 public:
1856
  Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857
                  Arm_address destination)
1858
    : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859
  { }
1860
 
1861
  ~Cortex_a8_reloc()
1862
  { }
1863
 
1864
  // Accessors:  This is a read-only class.
1865
 
1866
  // Return the relocation stub associated with this relocation if there is
1867
  // one.
1868
  const Reloc_stub*
1869
  reloc_stub() const
1870
  { return this->reloc_stub_; }
1871
 
1872
  // Return the relocation type.
1873
  unsigned int
1874
  r_type() const
1875
  { return this->r_type_; }
1876
 
1877
  // Return the destination address of the relocation.  LSB stores the THUMB
1878
  // bit.
1879
  Arm_address
1880
  destination() const
1881
  { return this->destination_; }
1882
 
1883
 private:
1884
  // Associated relocation stub if there is one, or NULL.
1885
  const Reloc_stub* reloc_stub_;
1886
  // Relocation type.
1887
  unsigned int r_type_;
1888
  // Destination address of this relocation.  LSB is used to distinguish
1889
  // ARM/THUMB mode.
1890
  Arm_address destination_;
1891
};
1892
 
1893
// Arm_output_data_got class.  We derive this from Output_data_got to add
1894
// extra methods to handle TLS relocations in a static link.
1895
 
1896
template<bool big_endian>
1897
class Arm_output_data_got : public Output_data_got<32, big_endian>
1898
{
1899
 public:
1900
  Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901
    : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902
  { }
1903
 
1904
  // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
1905
  // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906
  // applied in a static link.
1907
  void
1908
  add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909
  { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
 
1911
  // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
1912
  // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
1913
  // relocation that needs to be applied in a static link.
1914
  void
1915
  add_static_reloc(unsigned int got_offset, unsigned int r_type,
1916
                   Sized_relobj_file<32, big_endian>* relobj,
1917
                   unsigned int index)
1918
  {
1919
    this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920
                                                index));
1921
  }
1922
 
1923
  // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
1924
  // The first one is initialized to be 1, which is the module index for
1925
  // the main executable and the second one 0.  A reloc of the type
1926
  // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927
  // be applied by gold.  GSYM is a global symbol.
1928
  void
1929
  add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
 
1931
  // Same as the above but for a local symbol in OBJECT with INDEX.
1932
  void
1933
  add_tls_gd32_with_static_reloc(unsigned int got_type,
1934
                                 Sized_relobj_file<32, big_endian>* object,
1935
                                 unsigned int index);
1936
 
1937
 protected:
1938
  // Write out the GOT table.
1939
  void
1940
  do_write(Output_file*);
1941
 
1942
 private:
1943
  // This class represent dynamic relocations that need to be applied by
1944
  // gold because we are using TLS relocations in a static link.
1945
  class Static_reloc
1946
  {
1947
   public:
1948
    Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949
      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950
    { this->u_.global.symbol = gsym; }
1951
 
1952
    Static_reloc(unsigned int got_offset, unsigned int r_type,
1953
          Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
1954
      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955
    {
1956
      this->u_.local.relobj = relobj;
1957
      this->u_.local.index = index;
1958
    }
1959
 
1960
    // Return the GOT offset.
1961
    unsigned int
1962
    got_offset() const
1963
    { return this->got_offset_; }
1964
 
1965
    // Relocation type.
1966
    unsigned int
1967
    r_type() const
1968
    { return this->r_type_; }
1969
 
1970
    // Whether the symbol is global or not.
1971
    bool
1972
    symbol_is_global() const
1973
    { return this->symbol_is_global_; }
1974
 
1975
    // For a relocation against a global symbol, the global symbol.
1976
    Symbol*
1977
    symbol() const
1978
    {
1979
      gold_assert(this->symbol_is_global_);
1980
      return this->u_.global.symbol;
1981
    }
1982
 
1983
    // For a relocation against a local symbol, the defining object.
1984
    Sized_relobj_file<32, big_endian>*
1985
    relobj() const
1986
    {
1987
      gold_assert(!this->symbol_is_global_);
1988
      return this->u_.local.relobj;
1989
    }
1990
 
1991
    // For a relocation against a local symbol, the local symbol index.
1992
    unsigned int
1993
    index() const
1994
    {
1995
      gold_assert(!this->symbol_is_global_);
1996
      return this->u_.local.index;
1997
    }
1998
 
1999
   private:
2000
    // GOT offset of the entry to which this relocation is applied.
2001
    unsigned int got_offset_;
2002
    // Type of relocation.
2003
    unsigned int r_type_;
2004
    // Whether this relocation is against a global symbol.
2005
    bool symbol_is_global_;
2006
    // A global or local symbol.
2007
    union
2008
    {
2009
      struct
2010
      {
2011
        // For a global symbol, the symbol itself.
2012
        Symbol* symbol;
2013
      } global;
2014
      struct
2015
      {
2016
        // For a local symbol, the object defining object.
2017
        Sized_relobj_file<32, big_endian>* relobj;
2018
        // For a local symbol, the symbol index.
2019
        unsigned int index;
2020
      } local;
2021
    } u_;
2022
  };
2023
 
2024
  // Symbol table of the output object.
2025
  Symbol_table* symbol_table_;
2026
  // Layout of the output object.
2027
  Layout* layout_;
2028
  // Static relocs to be applied to the GOT.
2029
  std::vector<Static_reloc> static_relocs_;
2030
};
2031
 
2032
// The ARM target has many relocation types with odd-sizes or noncontiguous
2033
// bits.  The default handling of relocatable relocation cannot process these
2034
// relocations.  So we have to extend the default code.
2035
 
2036
template<bool big_endian, int sh_type, typename Classify_reloc>
2037
class Arm_scan_relocatable_relocs :
2038
  public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039
{
2040
 public:
2041
  // Return the strategy to use for a local symbol which is a section
2042
  // symbol, given the relocation type.
2043
  inline Relocatable_relocs::Reloc_strategy
2044
  local_section_strategy(unsigned int r_type, Relobj*)
2045
  {
2046
    if (sh_type == elfcpp::SHT_RELA)
2047
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048
    else
2049
      {
2050
        if (r_type == elfcpp::R_ARM_TARGET1
2051
            || r_type == elfcpp::R_ARM_TARGET2)
2052
          {
2053
            const Target_arm<big_endian>* arm_target =
2054
              Target_arm<big_endian>::default_target();
2055
            r_type = arm_target->get_real_reloc_type(r_type);
2056
          }
2057
 
2058
        switch(r_type)
2059
          {
2060
          // Relocations that write nothing.  These exclude R_ARM_TARGET1
2061
          // and R_ARM_TARGET2.
2062
          case elfcpp::R_ARM_NONE:
2063
          case elfcpp::R_ARM_V4BX:
2064
          case elfcpp::R_ARM_TLS_GOTDESC:
2065
          case elfcpp::R_ARM_TLS_CALL:
2066
          case elfcpp::R_ARM_TLS_DESCSEQ:
2067
          case elfcpp::R_ARM_THM_TLS_CALL:
2068
          case elfcpp::R_ARM_GOTRELAX:
2069
          case elfcpp::R_ARM_GNU_VTENTRY:
2070
          case elfcpp::R_ARM_GNU_VTINHERIT:
2071
          case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072
          case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074
          // These should have been converted to something else above.
2075
          case elfcpp::R_ARM_TARGET1:
2076
          case elfcpp::R_ARM_TARGET2:
2077
            gold_unreachable();
2078
          // Relocations that write full 32 bits.
2079
          case elfcpp::R_ARM_ABS32:
2080
          case elfcpp::R_ARM_REL32:
2081
          case elfcpp::R_ARM_SBREL32:
2082
          case elfcpp::R_ARM_GOTOFF32:
2083
          case elfcpp::R_ARM_BASE_PREL:
2084
          case elfcpp::R_ARM_GOT_BREL:
2085
          case elfcpp::R_ARM_BASE_ABS:
2086
          case elfcpp::R_ARM_ABS32_NOI:
2087
          case elfcpp::R_ARM_REL32_NOI:
2088
          case elfcpp::R_ARM_PLT32_ABS:
2089
          case elfcpp::R_ARM_GOT_ABS:
2090
          case elfcpp::R_ARM_GOT_PREL:
2091
          case elfcpp::R_ARM_TLS_GD32:
2092
          case elfcpp::R_ARM_TLS_LDM32:
2093
          case elfcpp::R_ARM_TLS_LDO32:
2094
          case elfcpp::R_ARM_TLS_IE32:
2095
          case elfcpp::R_ARM_TLS_LE32:
2096
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097
          default:
2098
            // For all other static relocations, return RELOC_SPECIAL.
2099
            return Relocatable_relocs::RELOC_SPECIAL;
2100
          }
2101
      }
2102
  }
2103
};
2104
 
2105
// Utilities for manipulating integers of up to 32-bits
2106
 
2107
namespace utils
2108
{
2109
  // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110
  // an int32_t.  NO_BITS must be between 1 to 32.
2111
  template<int no_bits>
2112
  static inline int32_t
2113
  sign_extend(uint32_t bits)
2114
  {
2115
    gold_assert(no_bits >= 0 && no_bits <= 32);
2116
    if (no_bits == 32)
2117
      return static_cast<int32_t>(bits);
2118
    uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119
    bits &= mask;
2120
    uint32_t top_bit = 1U << (no_bits - 1);
2121
    int32_t as_signed = static_cast<int32_t>(bits);
2122
    return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123
  }
2124
 
2125
  // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126
  template<int no_bits>
2127
  static inline bool
2128
  has_overflow(uint32_t bits)
2129
  {
2130
    gold_assert(no_bits >= 0 && no_bits <= 32);
2131
    if (no_bits == 32)
2132
      return false;
2133
    int32_t max = (1 << (no_bits - 1)) - 1;
2134
    int32_t min = -(1 << (no_bits - 1));
2135
    int32_t as_signed = static_cast<int32_t>(bits);
2136
    return as_signed > max || as_signed < min;
2137
  }
2138
 
2139
  // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140
  // fits in the given number of bits as either a signed or unsigned value.
2141
  // For example, has_signed_unsigned_overflow<8> would check
2142
  // -128 <= bits <= 255
2143
  template<int no_bits>
2144
  static inline bool
2145
  has_signed_unsigned_overflow(uint32_t bits)
2146
  {
2147
    gold_assert(no_bits >= 2 && no_bits <= 32);
2148
    if (no_bits == 32)
2149
      return false;
2150
    int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151
    int32_t min = -(1 << (no_bits - 1));
2152
    int32_t as_signed = static_cast<int32_t>(bits);
2153
    return as_signed > max || as_signed < min;
2154
  }
2155
 
2156
  // Select bits from A and B using bits in MASK.  For each n in [0..31],
2157
  // the n-th bit in the result is chosen from the n-th bits of A and B.
2158
  // A zero selects A and a one selects B.
2159
  static inline uint32_t
2160
  bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161
  { return (a & ~mask) | (b & mask); }
2162
};
2163
 
2164
template<bool big_endian>
2165
class Target_arm : public Sized_target<32, big_endian>
2166
{
2167
 public:
2168
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169
    Reloc_section;
2170
 
2171
  // When were are relocating a stub, we pass this as the relocation number.
2172
  static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
 
2174
  Target_arm()
2175
    : Sized_target<32, big_endian>(&arm_info),
2176
      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2177
      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178
      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179
      stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2180
      may_use_blx_(false), should_force_pic_veneer_(false),
2181
      arm_input_section_map_(), attributes_section_data_(NULL),
2182
      fix_cortex_a8_(false), cortex_a8_relocs_info_()
2183
  { }
2184
 
2185
  // Virtual function which is set to return true by a target if
2186
  // it can use relocation types to determine if a function's
2187
  // pointer is taken.
2188
  virtual bool
2189
  can_check_for_function_pointers() const
2190
  { return true; }
2191
 
2192
  // Whether a section called SECTION_NAME may have function pointers to
2193
  // sections not eligible for safe ICF folding.
2194
  virtual bool
2195
  section_may_have_icf_unsafe_pointers(const char* section_name) const
2196
  {
2197
    return (!is_prefix_of(".ARM.exidx", section_name)
2198
            && !is_prefix_of(".ARM.extab", section_name)
2199
            && Target::section_may_have_icf_unsafe_pointers(section_name));
2200
  }
2201
 
2202
  // Whether we can use BLX.
2203
  bool
2204
  may_use_blx() const
2205
  { return this->may_use_blx_; }
2206
 
2207
  // Set use-BLX flag.
2208
  void
2209
  set_may_use_blx(bool value)
2210
  { this->may_use_blx_ = value; }
2211
 
2212
  // Whether we force PCI branch veneers.
2213
  bool
2214
  should_force_pic_veneer() const
2215
  { return this->should_force_pic_veneer_; }
2216
 
2217
  // Set PIC veneer flag.
2218
  void
2219
  set_should_force_pic_veneer(bool value)
2220
  { this->should_force_pic_veneer_ = value; }
2221
 
2222
  // Whether we use THUMB-2 instructions.
2223
  bool
2224
  using_thumb2() const
2225
  {
2226
    Object_attribute* attr =
2227
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228
    int arch = attr->int_value();
2229
    return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
2230
  }
2231
 
2232
  // Whether we use THUMB/THUMB-2 instructions only.
2233
  bool
2234
  using_thumb_only() const
2235
  {
2236
    Object_attribute* attr =
2237
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2238
 
2239
    if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2240
        || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2241
      return true;
2242
    if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2243
        && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2244
      return false;
2245
    attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2246
    return attr->int_value() == 'M';
2247
  }
2248
 
2249
  // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
2250
  bool
2251
  may_use_arm_nop() const
2252
  {
2253
    Object_attribute* attr =
2254
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2255
    int arch = attr->int_value();
2256
    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2257
            || arch == elfcpp::TAG_CPU_ARCH_V6K
2258
            || arch == elfcpp::TAG_CPU_ARCH_V7
2259
            || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2260
  }
2261
 
2262
  // Whether we have THUMB-2 NOP.W instruction.
2263
  bool
2264
  may_use_thumb2_nop() const
2265
  {
2266
    Object_attribute* attr =
2267
      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2268
    int arch = attr->int_value();
2269
    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2270
            || arch == elfcpp::TAG_CPU_ARCH_V7
2271
            || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2272
  }
2273
 
2274
  // Process the relocations to determine unreferenced sections for 
2275
  // garbage collection.
2276
  void
2277
  gc_process_relocs(Symbol_table* symtab,
2278
                    Layout* layout,
2279
                    Sized_relobj_file<32, big_endian>* object,
2280
                    unsigned int data_shndx,
2281
                    unsigned int sh_type,
2282
                    const unsigned char* prelocs,
2283
                    size_t reloc_count,
2284
                    Output_section* output_section,
2285
                    bool needs_special_offset_handling,
2286
                    size_t local_symbol_count,
2287
                    const unsigned char* plocal_symbols);
2288
 
2289
  // Scan the relocations to look for symbol adjustments.
2290
  void
2291
  scan_relocs(Symbol_table* symtab,
2292
              Layout* layout,
2293
              Sized_relobj_file<32, big_endian>* object,
2294
              unsigned int data_shndx,
2295
              unsigned int sh_type,
2296
              const unsigned char* prelocs,
2297
              size_t reloc_count,
2298
              Output_section* output_section,
2299
              bool needs_special_offset_handling,
2300
              size_t local_symbol_count,
2301
              const unsigned char* plocal_symbols);
2302
 
2303
  // Finalize the sections.
2304
  void
2305
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2306
 
2307
  // Return the value to use for a dynamic symbol which requires special
2308
  // treatment.
2309
  uint64_t
2310
  do_dynsym_value(const Symbol*) const;
2311
 
2312
  // Relocate a section.
2313
  void
2314
  relocate_section(const Relocate_info<32, big_endian>*,
2315
                   unsigned int sh_type,
2316
                   const unsigned char* prelocs,
2317
                   size_t reloc_count,
2318
                   Output_section* output_section,
2319
                   bool needs_special_offset_handling,
2320
                   unsigned char* view,
2321
                   Arm_address view_address,
2322
                   section_size_type view_size,
2323
                   const Reloc_symbol_changes*);
2324
 
2325
  // Scan the relocs during a relocatable link.
2326
  void
2327
  scan_relocatable_relocs(Symbol_table* symtab,
2328
                          Layout* layout,
2329
                          Sized_relobj_file<32, big_endian>* object,
2330
                          unsigned int data_shndx,
2331
                          unsigned int sh_type,
2332
                          const unsigned char* prelocs,
2333
                          size_t reloc_count,
2334
                          Output_section* output_section,
2335
                          bool needs_special_offset_handling,
2336
                          size_t local_symbol_count,
2337
                          const unsigned char* plocal_symbols,
2338
                          Relocatable_relocs*);
2339
 
2340
  // Relocate a section during a relocatable link.
2341
  void
2342
  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2343
                           unsigned int sh_type,
2344
                           const unsigned char* prelocs,
2345
                           size_t reloc_count,
2346
                           Output_section* output_section,
2347
                           off_t offset_in_output_section,
2348
                           const Relocatable_relocs*,
2349
                           unsigned char* view,
2350
                           Arm_address view_address,
2351
                           section_size_type view_size,
2352
                           unsigned char* reloc_view,
2353
                           section_size_type reloc_view_size);
2354
 
2355
  // Perform target-specific processing in a relocatable link.  This is
2356
  // only used if we use the relocation strategy RELOC_SPECIAL.
2357
  void
2358
  relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2359
                               unsigned int sh_type,
2360
                               const unsigned char* preloc_in,
2361
                               size_t relnum,
2362
                               Output_section* output_section,
2363
                               off_t offset_in_output_section,
2364
                               unsigned char* view,
2365
                               typename elfcpp::Elf_types<32>::Elf_Addr
2366
                                 view_address,
2367
                               section_size_type view_size,
2368
                               unsigned char* preloc_out);
2369
 
2370
  // Return whether SYM is defined by the ABI.
2371
  bool
2372
  do_is_defined_by_abi(Symbol* sym) const
2373
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2374
 
2375
  // Return whether there is a GOT section.
2376
  bool
2377
  has_got_section() const
2378
  { return this->got_ != NULL; }
2379
 
2380
  // Return the size of the GOT section.
2381
  section_size_type
2382
  got_size() const
2383
  {
2384
    gold_assert(this->got_ != NULL);
2385
    return this->got_->data_size();
2386
  }
2387
 
2388
  // Return the number of entries in the GOT.
2389
  unsigned int
2390
  got_entry_count() const
2391
  {
2392
    if (!this->has_got_section())
2393
      return 0;
2394
    return this->got_size() / 4;
2395
  }
2396
 
2397
  // Return the number of entries in the PLT.
2398
  unsigned int
2399
  plt_entry_count() const;
2400
 
2401
  // Return the offset of the first non-reserved PLT entry.
2402
  unsigned int
2403
  first_plt_entry_offset() const;
2404
 
2405
  // Return the size of each PLT entry.
2406
  unsigned int
2407
  plt_entry_size() const;
2408
 
2409
  // Map platform-specific reloc types
2410
  static unsigned int
2411
  get_real_reloc_type(unsigned int r_type);
2412
 
2413
  //
2414
  // Methods to support stub-generations.
2415
  //
2416
 
2417
  // Return the stub factory
2418
  const Stub_factory&
2419
  stub_factory() const
2420
  { return this->stub_factory_; }
2421
 
2422
  // Make a new Arm_input_section object.
2423
  Arm_input_section<big_endian>*
2424
  new_arm_input_section(Relobj*, unsigned int);
2425
 
2426
  // Find the Arm_input_section object corresponding to the SHNDX-th input
2427
  // section of RELOBJ.
2428
  Arm_input_section<big_endian>*
2429
  find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
2430
 
2431
  // Make a new Stub_table
2432
  Stub_table<big_endian>*
2433
  new_stub_table(Arm_input_section<big_endian>*);
2434
 
2435
  // Scan a section for stub generation.
2436
  void
2437
  scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2438
                         const unsigned char*, size_t, Output_section*,
2439
                         bool, const unsigned char*, Arm_address,
2440
                         section_size_type);
2441
 
2442
  // Relocate a stub. 
2443
  void
2444
  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
2445
                Output_section*, unsigned char*, Arm_address,
2446
                section_size_type);
2447
 
2448
  // Get the default ARM target.
2449
  static Target_arm<big_endian>*
2450
  default_target()
2451
  {
2452
    gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2453
                && parameters->target().is_big_endian() == big_endian);
2454
    return static_cast<Target_arm<big_endian>*>(
2455
             parameters->sized_target<32, big_endian>());
2456
  }
2457
 
2458
  // Whether NAME belongs to a mapping symbol.
2459
  static bool
2460
  is_mapping_symbol_name(const char* name)
2461
  {
2462
    return (name
2463
            && name[0] == '$'
2464
            && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2465
            && (name[2] == '\0' || name[2] == '.'));
2466
  }
2467
 
2468
  // Whether we work around the Cortex-A8 erratum.
2469
  bool
2470
  fix_cortex_a8() const
2471
  { return this->fix_cortex_a8_; }
2472
 
2473
  // Whether we merge exidx entries in debuginfo.
2474
  bool
2475
  merge_exidx_entries() const
2476
  { return parameters->options().merge_exidx_entries(); }
2477
 
2478
  // Whether we fix R_ARM_V4BX relocation.
2479
  // 0 - do not fix
2480
  // 1 - replace with MOV instruction (armv4 target)
2481
  // 2 - make interworking veneer (>= armv4t targets only)
2482
  General_options::Fix_v4bx
2483
  fix_v4bx() const
2484
  { return parameters->options().fix_v4bx(); }
2485
 
2486
  // Scan a span of THUMB code section for Cortex-A8 erratum.
2487
  void
2488
  scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2489
                                  section_size_type, section_size_type,
2490
                                  const unsigned char*, Arm_address);
2491
 
2492
  // Apply Cortex-A8 workaround to a branch.
2493
  void
2494
  apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2495
                             unsigned char*, Arm_address);
2496
 
2497
 protected:
2498
  // Make an ELF object.
2499
  Object*
2500
  do_make_elf_object(const std::string&, Input_file*, off_t,
2501
                     const elfcpp::Ehdr<32, big_endian>& ehdr);
2502
 
2503
  Object*
2504
  do_make_elf_object(const std::string&, Input_file*, off_t,
2505
                     const elfcpp::Ehdr<32, !big_endian>&)
2506
  { gold_unreachable(); }
2507
 
2508
  Object*
2509
  do_make_elf_object(const std::string&, Input_file*, off_t,
2510
                      const elfcpp::Ehdr<64, false>&)
2511
  { gold_unreachable(); }
2512
 
2513
  Object*
2514
  do_make_elf_object(const std::string&, Input_file*, off_t,
2515
                     const elfcpp::Ehdr<64, true>&)
2516
  { gold_unreachable(); }
2517
 
2518
  // Make an output section.
2519
  Output_section*
2520
  do_make_output_section(const char* name, elfcpp::Elf_Word type,
2521
                         elfcpp::Elf_Xword flags)
2522
  { return new Arm_output_section<big_endian>(name, type, flags); }
2523
 
2524
  void
2525
  do_adjust_elf_header(unsigned char* view, int len) const;
2526
 
2527
  // We only need to generate stubs, and hence perform relaxation if we are
2528
  // not doing relocatable linking.
2529
  bool
2530
  do_may_relax() const
2531
  { return !parameters->options().relocatable(); }
2532
 
2533
  bool
2534
  do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2535
 
2536
  // Determine whether an object attribute tag takes an integer, a
2537
  // string or both.
2538
  int
2539
  do_attribute_arg_type(int tag) const;
2540
 
2541
  // Reorder tags during output.
2542
  int
2543
  do_attributes_order(int num) const;
2544
 
2545
  // This is called when the target is selected as the default.
2546
  void
2547
  do_select_as_default_target()
2548
  {
2549
    // No locking is required since there should only be one default target.
2550
    // We cannot have both the big-endian and little-endian ARM targets
2551
    // as the default.
2552
    gold_assert(arm_reloc_property_table == NULL);
2553
    arm_reloc_property_table = new Arm_reloc_property_table();
2554
  }
2555
 
2556
 private:
2557
  // The class which scans relocations.
2558
  class Scan
2559
  {
2560
   public:
2561
    Scan()
2562
      : issued_non_pic_error_(false)
2563
    { }
2564
 
2565
    static inline int
2566
    get_reference_flags(unsigned int r_type);
2567
 
2568
    inline void
2569
    local(Symbol_table* symtab, Layout* layout, Target_arm* target,
2570
          Sized_relobj_file<32, big_endian>* object,
2571
          unsigned int data_shndx,
2572
          Output_section* output_section,
2573
          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2574
          const elfcpp::Sym<32, big_endian>& lsym);
2575
 
2576
    inline void
2577
    global(Symbol_table* symtab, Layout* layout, Target_arm* target,
2578
           Sized_relobj_file<32, big_endian>* object,
2579
           unsigned int data_shndx,
2580
           Output_section* output_section,
2581
           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2582
           Symbol* gsym);
2583
 
2584
    inline bool
2585
    local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2586
                                        Sized_relobj_file<32, big_endian>* ,
2587
                                        unsigned int ,
2588
                                        Output_section* ,
2589
                                        const elfcpp::Rel<32, big_endian>& ,
2590
                                        unsigned int ,
2591
                                        const elfcpp::Sym<32, big_endian>&);
2592
 
2593
    inline bool
2594
    global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2595
                                         Sized_relobj_file<32, big_endian>* ,
2596
                                         unsigned int ,
2597
                                         Output_section* ,
2598
                                         const elfcpp::Rel<32, big_endian>& ,
2599
                                         unsigned int , Symbol*);
2600
 
2601
   private:
2602
    static void
2603
    unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
2604
                            unsigned int r_type);
2605
 
2606
    static void
2607
    unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
2608
                             unsigned int r_type, Symbol*);
2609
 
2610
    void
2611
    check_non_pic(Relobj*, unsigned int r_type);
2612
 
2613
    // Almost identical to Symbol::needs_plt_entry except that it also
2614
    // handles STT_ARM_TFUNC.
2615
    static bool
2616
    symbol_needs_plt_entry(const Symbol* sym)
2617
    {
2618
      // An undefined symbol from an executable does not need a PLT entry.
2619
      if (sym->is_undefined() && !parameters->options().shared())
2620
        return false;
2621
 
2622
      return (!parameters->doing_static_link()
2623
              && (sym->type() == elfcpp::STT_FUNC
2624
                  || sym->type() == elfcpp::STT_ARM_TFUNC)
2625
              && (sym->is_from_dynobj()
2626
                  || sym->is_undefined()
2627
                  || sym->is_preemptible()));
2628
    }
2629
 
2630
    inline bool
2631
    possible_function_pointer_reloc(unsigned int r_type);
2632
 
2633
    // Whether we have issued an error about a non-PIC compilation.
2634
    bool issued_non_pic_error_;
2635
  };
2636
 
2637
  // The class which implements relocation.
2638
  class Relocate
2639
  {
2640
   public:
2641
    Relocate()
2642
    { }
2643
 
2644
    ~Relocate()
2645
    { }
2646
 
2647
    // Return whether the static relocation needs to be applied.
2648
    inline bool
2649
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
2650
                              unsigned int r_type,
2651
                              bool is_32bit,
2652
                              Output_section* output_section);
2653
 
2654
    // Do a relocation.  Return false if the caller should not issue
2655
    // any warnings about this relocation.
2656
    inline bool
2657
    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2658
             Output_section*,  size_t relnum,
2659
             const elfcpp::Rel<32, big_endian>&,
2660
             unsigned int r_type, const Sized_symbol<32>*,
2661
             const Symbol_value<32>*,
2662
             unsigned char*, Arm_address,
2663
             section_size_type);
2664
 
2665
    // Return whether we want to pass flag NON_PIC_REF for this
2666
    // reloc.  This means the relocation type accesses a symbol not via
2667
    // GOT or PLT.
2668
    static inline bool
2669
    reloc_is_non_pic(unsigned int r_type)
2670
    {
2671
      switch (r_type)
2672
        {
2673
        // These relocation types reference GOT or PLT entries explicitly.
2674
        case elfcpp::R_ARM_GOT_BREL:
2675
        case elfcpp::R_ARM_GOT_ABS:
2676
        case elfcpp::R_ARM_GOT_PREL:
2677
        case elfcpp::R_ARM_GOT_BREL12:
2678
        case elfcpp::R_ARM_PLT32_ABS:
2679
        case elfcpp::R_ARM_TLS_GD32:
2680
        case elfcpp::R_ARM_TLS_LDM32:
2681
        case elfcpp::R_ARM_TLS_IE32:
2682
        case elfcpp::R_ARM_TLS_IE12GP:
2683
 
2684
        // These relocate types may use PLT entries.
2685
        case elfcpp::R_ARM_CALL:
2686
        case elfcpp::R_ARM_THM_CALL:
2687
        case elfcpp::R_ARM_JUMP24:
2688
        case elfcpp::R_ARM_THM_JUMP24:
2689
        case elfcpp::R_ARM_THM_JUMP19:
2690
        case elfcpp::R_ARM_PLT32:
2691
        case elfcpp::R_ARM_THM_XPC22:
2692
        case elfcpp::R_ARM_PREL31:
2693
        case elfcpp::R_ARM_SBREL31:
2694
          return false;
2695
 
2696
        default:
2697
          return true;
2698
        }
2699
    }
2700
 
2701
   private:
2702
    // Do a TLS relocation.
2703
    inline typename Arm_relocate_functions<big_endian>::Status
2704
    relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2705
                 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2706
                 const Sized_symbol<32>*, const Symbol_value<32>*,
2707
                 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2708
                 section_size_type);
2709
 
2710
  };
2711
 
2712
  // A class which returns the size required for a relocation type,
2713
  // used while scanning relocs during a relocatable link.
2714
  class Relocatable_size_for_reloc
2715
  {
2716
   public:
2717
    unsigned int
2718
    get_size_for_reloc(unsigned int, Relobj*);
2719
  };
2720
 
2721
  // Adjust TLS relocation type based on the options and whether this
2722
  // is a local symbol.
2723
  static tls::Tls_optimization
2724
  optimize_tls_reloc(bool is_final, int r_type);
2725
 
2726
  // Get the GOT section, creating it if necessary.
2727
  Arm_output_data_got<big_endian>*
2728
  got_section(Symbol_table*, Layout*);
2729
 
2730
  // Get the GOT PLT section.
2731
  Output_data_space*
2732
  got_plt_section() const
2733
  {
2734
    gold_assert(this->got_plt_ != NULL);
2735
    return this->got_plt_;
2736
  }
2737
 
2738
  // Create a PLT entry for a global symbol.
2739
  void
2740
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
2741
 
2742
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2743
  void
2744
  define_tls_base_symbol(Symbol_table*, Layout*);
2745
 
2746
  // Create a GOT entry for the TLS module index.
2747
  unsigned int
2748
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2749
                      Sized_relobj_file<32, big_endian>* object);
2750
 
2751
  // Get the PLT section.
2752
  const Output_data_plt_arm<big_endian>*
2753
  plt_section() const
2754
  {
2755
    gold_assert(this->plt_ != NULL);
2756
    return this->plt_;
2757
  }
2758
 
2759
  // Get the dynamic reloc section, creating it if necessary.
2760
  Reloc_section*
2761
  rel_dyn_section(Layout*);
2762
 
2763
  // Get the section to use for TLS_DESC relocations.
2764
  Reloc_section*
2765
  rel_tls_desc_section(Layout*) const;
2766
 
2767
  // Return true if the symbol may need a COPY relocation.
2768
  // References from an executable object to non-function symbols
2769
  // defined in a dynamic object may need a COPY relocation.
2770
  bool
2771
  may_need_copy_reloc(Symbol* gsym)
2772
  {
2773
    return (gsym->type() != elfcpp::STT_ARM_TFUNC
2774
            && gsym->may_need_copy_reloc());
2775
  }
2776
 
2777
  // Add a potential copy relocation.
2778
  void
2779
  copy_reloc(Symbol_table* symtab, Layout* layout,
2780
             Sized_relobj_file<32, big_endian>* object,
2781
             unsigned int shndx, Output_section* output_section,
2782
             Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2783
  {
2784
    this->copy_relocs_.copy_reloc(symtab, layout,
2785
                                  symtab->get_sized_symbol<32>(sym),
2786
                                  object, shndx, output_section, reloc,
2787
                                  this->rel_dyn_section(layout));
2788
  }
2789
 
2790
  // Whether two EABI versions are compatible.
2791
  static bool
2792
  are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2793
 
2794
  // Merge processor-specific flags from input object and those in the ELF
2795
  // header of the output.
2796
  void
2797
  merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2798
 
2799
  // Get the secondary compatible architecture.
2800
  static int
2801
  get_secondary_compatible_arch(const Attributes_section_data*);
2802
 
2803
  // Set the secondary compatible architecture.
2804
  static void
2805
  set_secondary_compatible_arch(Attributes_section_data*, int);
2806
 
2807
  static int
2808
  tag_cpu_arch_combine(const char*, int, int*, int, int);
2809
 
2810
  // Helper to print AEABI enum tag value.
2811
  static std::string
2812
  aeabi_enum_name(unsigned int);
2813
 
2814
  // Return string value for TAG_CPU_name.
2815
  static std::string
2816
  tag_cpu_name_value(unsigned int);
2817
 
2818
  // Merge object attributes from input object and those in the output.
2819
  void
2820
  merge_object_attributes(const char*, const Attributes_section_data*);
2821
 
2822
  // Helper to get an AEABI object attribute
2823
  Object_attribute*
2824
  get_aeabi_object_attribute(int tag) const
2825
  {
2826
    Attributes_section_data* pasd = this->attributes_section_data_;
2827
    gold_assert(pasd != NULL);
2828
    Object_attribute* attr =
2829
      pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2830
    gold_assert(attr != NULL);
2831
    return attr;
2832
  }
2833
 
2834
  //
2835
  // Methods to support stub-generations.
2836
  //
2837
 
2838
  // Group input sections for stub generation.
2839
  void
2840
  group_sections(Layout*, section_size_type, bool, const Task*);
2841
 
2842
  // Scan a relocation for stub generation.
2843
  void
2844
  scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2845
                      const Sized_symbol<32>*, unsigned int,
2846
                      const Symbol_value<32>*,
2847
                      elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
2848
 
2849
  // Scan a relocation section for stub.
2850
  template<int sh_type>
2851
  void
2852
  scan_reloc_section_for_stubs(
2853
      const Relocate_info<32, big_endian>* relinfo,
2854
      const unsigned char* prelocs,
2855
      size_t reloc_count,
2856
      Output_section* output_section,
2857
      bool needs_special_offset_handling,
2858
      const unsigned char* view,
2859
      elfcpp::Elf_types<32>::Elf_Addr view_address,
2860
      section_size_type);
2861
 
2862
  // Fix .ARM.exidx section coverage.
2863
  void
2864
  fix_exidx_coverage(Layout*, const Input_objects*,
2865
                     Arm_output_section<big_endian>*, Symbol_table*,
2866
                     const Task*);
2867
 
2868
  // Functors for STL set.
2869
  struct output_section_address_less_than
2870
  {
2871
    bool
2872
    operator()(const Output_section* s1, const Output_section* s2) const
2873
    { return s1->address() < s2->address(); }
2874
  };
2875
 
2876
  // Information about this specific target which we pass to the
2877
  // general Target structure.
2878
  static const Target::Target_info arm_info;
2879
 
2880
  // The types of GOT entries needed for this platform.
2881
  // These values are exposed to the ABI in an incremental link.
2882
  // Do not renumber existing values without changing the version
2883
  // number of the .gnu_incremental_inputs section.
2884
  enum Got_type
2885
  {
2886
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2887
    GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
2888
    GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
2889
    GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
2890
    GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
2891
  };
2892
 
2893
  typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2894
 
2895
  // Map input section to Arm_input_section.
2896
  typedef Unordered_map<Section_id,
2897
                        Arm_input_section<big_endian>*,
2898
                        Section_id_hash>
2899
          Arm_input_section_map;
2900
 
2901
  // Map output addresses to relocs for Cortex-A8 erratum.
2902
  typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2903
          Cortex_a8_relocs_info;
2904
 
2905
  // The GOT section.
2906
  Arm_output_data_got<big_endian>* got_;
2907
  // The PLT section.
2908
  Output_data_plt_arm<big_endian>* plt_;
2909
  // The GOT PLT section.
2910
  Output_data_space* got_plt_;
2911
  // The dynamic reloc section.
2912
  Reloc_section* rel_dyn_;
2913
  // Relocs saved to avoid a COPY reloc.
2914
  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2915
  // Space for variables copied with a COPY reloc.
2916
  Output_data_space* dynbss_;
2917
  // Offset of the GOT entry for the TLS module index.
2918
  unsigned int got_mod_index_offset_;
2919
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
2920
  bool tls_base_symbol_defined_;
2921
  // Vector of Stub_tables created.
2922
  Stub_table_list stub_tables_;
2923
  // Stub factory.
2924
  const Stub_factory &stub_factory_;
2925
  // Whether we can use BLX.
2926
  bool may_use_blx_;
2927
  // Whether we force PIC branch veneers.
2928
  bool should_force_pic_veneer_;
2929
  // Map for locating Arm_input_sections.
2930
  Arm_input_section_map arm_input_section_map_;
2931
  // Attributes section data in output.
2932
  Attributes_section_data* attributes_section_data_;
2933
  // Whether we want to fix code for Cortex-A8 erratum.
2934
  bool fix_cortex_a8_;
2935
  // Map addresses to relocs for Cortex-A8 erratum.
2936
  Cortex_a8_relocs_info cortex_a8_relocs_info_;
2937
};
2938
 
2939
template<bool big_endian>
2940
const Target::Target_info Target_arm<big_endian>::arm_info =
2941
{
2942
  32,                   // size
2943
  big_endian,           // is_big_endian
2944
  elfcpp::EM_ARM,       // machine_code
2945
  false,                // has_make_symbol
2946
  false,                // has_resolve
2947
  false,                // has_code_fill
2948
  true,                 // is_default_stack_executable
2949
  '\0',                 // wrap_char
2950
  "/usr/lib/libc.so.1", // dynamic_linker
2951
  0x8000,               // default_text_segment_address
2952
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
2953
  0x1000,               // common_pagesize (overridable by -z common-page-size)
2954
  elfcpp::SHN_UNDEF,    // small_common_shndx
2955
  elfcpp::SHN_UNDEF,    // large_common_shndx
2956
  0,                     // small_common_section_flags
2957
  0,                     // large_common_section_flags
2958
  ".ARM.attributes",    // attributes_section
2959
  "aeabi"               // attributes_vendor
2960
};
2961
 
2962
// Arm relocate functions class
2963
//
2964
 
2965
template<bool big_endian>
2966
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2967
{
2968
 public:
2969
  typedef enum
2970
  {
2971
    STATUS_OKAY,        // No error during relocation.
2972
    STATUS_OVERFLOW,    // Relocation overflow.
2973
    STATUS_BAD_RELOC    // Relocation cannot be applied.
2974
  } Status;
2975
 
2976
 private:
2977
  typedef Relocate_functions<32, big_endian> Base;
2978
  typedef Arm_relocate_functions<big_endian> This;
2979
 
2980
  // Encoding of imm16 argument for movt and movw ARM instructions
2981
  // from ARM ARM:
2982
  //     
2983
  //     imm16 := imm4 | imm12
2984
  //
2985
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
2986
  // +-------+---------------+-------+-------+-----------------------+
2987
  // |       |               |imm4   |       |imm12                  |
2988
  // +-------+---------------+-------+-------+-----------------------+
2989
 
2990
  // Extract the relocation addend from VAL based on the ARM
2991
  // instruction encoding described above.
2992
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
2993
  extract_arm_movw_movt_addend(
2994
      typename elfcpp::Swap<32, big_endian>::Valtype val)
2995
  {
2996
    // According to the Elf ABI for ARM Architecture the immediate
2997
    // field is sign-extended to form the addend.
2998
    return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2999
  }
3000
 
3001
  // Insert X into VAL based on the ARM instruction encoding described
3002
  // above.
3003
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
3004
  insert_val_arm_movw_movt(
3005
      typename elfcpp::Swap<32, big_endian>::Valtype val,
3006
      typename elfcpp::Swap<32, big_endian>::Valtype x)
3007
  {
3008
    val &= 0xfff0f000;
3009
    val |= x & 0x0fff;
3010
    val |= (x & 0xf000) << 4;
3011
    return val;
3012
  }
3013
 
3014
  // Encoding of imm16 argument for movt and movw Thumb2 instructions
3015
  // from ARM ARM:
3016
  //     
3017
  //     imm16 := imm4 | i | imm3 | imm8
3018
  //
3019
  //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
3020
  // +---------+-+-----------+-------++-+-----+-------+---------------+
3021
  // |         |i|           |imm4   || |imm3 |       |imm8           |
3022
  // +---------+-+-----------+-------++-+-----+-------+---------------+
3023
 
3024
  // Extract the relocation addend from VAL based on the Thumb2
3025
  // instruction encoding described above.
3026
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
3027
  extract_thumb_movw_movt_addend(
3028
      typename elfcpp::Swap<32, big_endian>::Valtype val)
3029
  {
3030
    // According to the Elf ABI for ARM Architecture the immediate
3031
    // field is sign-extended to form the addend.
3032
    return utils::sign_extend<16>(((val >> 4) & 0xf000)
3033
                                  | ((val >> 15) & 0x0800)
3034
                                  | ((val >> 4) & 0x0700)
3035
                                  | (val & 0x00ff));
3036
  }
3037
 
3038
  // Insert X into VAL based on the Thumb2 instruction encoding
3039
  // described above.
3040
  static inline typename elfcpp::Swap<32, big_endian>::Valtype
3041
  insert_val_thumb_movw_movt(
3042
      typename elfcpp::Swap<32, big_endian>::Valtype val,
3043
      typename elfcpp::Swap<32, big_endian>::Valtype x)
3044
  {
3045
    val &= 0xfbf08f00;
3046
    val |= (x & 0xf000) << 4;
3047
    val |= (x & 0x0800) << 15;
3048
    val |= (x & 0x0700) << 4;
3049
    val |= (x & 0x00ff);
3050
    return val;
3051
  }
3052
 
3053
  // Calculate the smallest constant Kn for the specified residual.
3054
  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3055
  static uint32_t
3056
  calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3057
  {
3058
    int32_t msb;
3059
 
3060
    if (residual == 0)
3061
      return 0;
3062
    // Determine the most significant bit in the residual and
3063
    // align the resulting value to a 2-bit boundary.
3064
    for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3065
      ;
3066
    // The desired shift is now (msb - 6), or zero, whichever
3067
    // is the greater.
3068
    return (((msb - 6) < 0) ? 0 : (msb - 6));
3069
  }
3070
 
3071
  // Calculate the final residual for the specified group index.
3072
  // If the passed group index is less than zero, the method will return
3073
  // the value of the specified residual without any change.
3074
  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3075
  static typename elfcpp::Swap<32, big_endian>::Valtype
3076
  calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3077
                    const int group)
3078
  {
3079
    for (int n = 0; n <= group; n++)
3080
      {
3081
        // Calculate which part of the value to mask.
3082
        uint32_t shift = calc_grp_kn(residual);
3083
        // Calculate the residual for the next time around.
3084
        residual &= ~(residual & (0xff << shift));
3085
      }
3086
 
3087
    return residual;
3088
  }
3089
 
3090
  // Calculate the value of Gn for the specified group index.
3091
  // We return it in the form of an encoded constant-and-rotation.
3092
  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3093
  static typename elfcpp::Swap<32, big_endian>::Valtype
3094
  calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3095
              const int group)
3096
  {
3097
    typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3098
    uint32_t shift = 0;
3099
 
3100
    for (int n = 0; n <= group; n++)
3101
      {
3102
        // Calculate which part of the value to mask.
3103
        shift = calc_grp_kn(residual);
3104
        // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3105
        gn = residual & (0xff << shift);
3106
        // Calculate the residual for the next time around.
3107
        residual &= ~gn;
3108
      }
3109
    // Return Gn in the form of an encoded constant-and-rotation.
3110
    return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3111
  }
3112
 
3113
 public:
3114
  // Handle ARM long branches.
3115
  static typename This::Status
3116
  arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3117
                    unsigned char*, const Sized_symbol<32>*,
3118
                    const Arm_relobj<big_endian>*, unsigned int,
3119
                    const Symbol_value<32>*, Arm_address, Arm_address, bool);
3120
 
3121
  // Handle THUMB long branches.
3122
  static typename This::Status
3123
  thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3124
                      unsigned char*, const Sized_symbol<32>*,
3125
                      const Arm_relobj<big_endian>*, unsigned int,
3126
                      const Symbol_value<32>*, Arm_address, Arm_address, bool);
3127
 
3128
 
3129
  // Return the branch offset of a 32-bit THUMB branch.
3130
  static inline int32_t
3131
  thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3132
  {
3133
    // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3134
    // involving the J1 and J2 bits.
3135
    uint32_t s = (upper_insn & (1U << 10)) >> 10;
3136
    uint32_t upper = upper_insn & 0x3ffU;
3137
    uint32_t lower = lower_insn & 0x7ffU;
3138
    uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3139
    uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3140
    uint32_t i1 = j1 ^ s ? 0 : 1;
3141
    uint32_t i2 = j2 ^ s ? 0 : 1;
3142
 
3143
    return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3144
                                  | (upper << 12) | (lower << 1));
3145
  }
3146
 
3147
  // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3148
  // UPPER_INSN is the original upper instruction of the branch.  Caller is
3149
  // responsible for overflow checking and BLX offset adjustment.
3150
  static inline uint16_t
3151
  thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3152
  {
3153
    uint32_t s = offset < 0 ? 1 : 0;
3154
    uint32_t bits = static_cast<uint32_t>(offset);
3155
    return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3156
  }
3157
 
3158
  // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3159
  // LOWER_INSN is the original lower instruction of the branch.  Caller is
3160
  // responsible for overflow checking and BLX offset adjustment.
3161
  static inline uint16_t
3162
  thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3163
  {
3164
    uint32_t s = offset < 0 ? 1 : 0;
3165
    uint32_t bits = static_cast<uint32_t>(offset);
3166
    return ((lower_insn & ~0x2fffU)
3167
            | ((((bits >> 23) & 1) ^ !s) << 13)
3168
            | ((((bits >> 22) & 1) ^ !s) << 11)
3169
            | ((bits >> 1) & 0x7ffU));
3170
  }
3171
 
3172
  // Return the branch offset of a 32-bit THUMB conditional branch.
3173
  static inline int32_t
3174
  thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3175
  {
3176
    uint32_t s = (upper_insn & 0x0400U) >> 10;
3177
    uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3178
    uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3179
    uint32_t lower = (lower_insn & 0x07ffU);
3180
    uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3181
 
3182
    return utils::sign_extend<21>((upper << 12) | (lower << 1));
3183
  }
3184
 
3185
  // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3186
  // instruction.  UPPER_INSN is the original upper instruction of the branch.
3187
  // Caller is responsible for overflow checking.
3188
  static inline uint16_t
3189
  thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3190
  {
3191
    uint32_t s = offset < 0 ? 1 : 0;
3192
    uint32_t bits = static_cast<uint32_t>(offset);
3193
    return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3194
  }
3195
 
3196
  // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3197
  // instruction.  LOWER_INSN is the original lower instruction of the branch.
3198
  // The caller is responsible for overflow checking.
3199
  static inline uint16_t
3200
  thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3201
  {
3202
    uint32_t bits = static_cast<uint32_t>(offset);
3203
    uint32_t j2 = (bits & 0x00080000U) >> 19;
3204
    uint32_t j1 = (bits & 0x00040000U) >> 18;
3205
    uint32_t lo = (bits & 0x00000ffeU) >> 1;
3206
 
3207
    return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3208
  }
3209
 
3210
  // R_ARM_ABS8: S + A
3211
  static inline typename This::Status
3212
  abs8(unsigned char* view,
3213
       const Sized_relobj_file<32, big_endian>* object,
3214
       const Symbol_value<32>* psymval)
3215
  {
3216
    typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3217
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3219
    Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3220
    Reltype addend = utils::sign_extend<8>(val);
3221
    Reltype x = psymval->value(object, addend);
3222
    val = utils::bit_select(val, x, 0xffU);
3223
    elfcpp::Swap<8, big_endian>::writeval(wv, val);
3224
 
3225
    // R_ARM_ABS8 permits signed or unsigned results.
3226
    int signed_x = static_cast<int32_t>(x);
3227
    return ((signed_x < -128 || signed_x > 255)
3228
            ? This::STATUS_OVERFLOW
3229
            : This::STATUS_OKAY);
3230
  }
3231
 
3232
  // R_ARM_THM_ABS5: S + A
3233
  static inline typename This::Status
3234
  thm_abs5(unsigned char* view,
3235
       const Sized_relobj_file<32, big_endian>* object,
3236
       const Symbol_value<32>* psymval)
3237
  {
3238
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3239
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3240
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3241
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3242
    Reltype addend = (val & 0x7e0U) >> 6;
3243
    Reltype x = psymval->value(object, addend);
3244
    val = utils::bit_select(val, x << 6, 0x7e0U);
3245
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
3246
 
3247
    // R_ARM_ABS16 permits signed or unsigned results.
3248
    int signed_x = static_cast<int32_t>(x);
3249
    return ((signed_x < -32768 || signed_x > 65535)
3250
            ? This::STATUS_OVERFLOW
3251
            : This::STATUS_OKAY);
3252
  }
3253
 
3254
  // R_ARM_ABS12: S + A
3255
  static inline typename This::Status
3256
  abs12(unsigned char* view,
3257
        const Sized_relobj_file<32, big_endian>* object,
3258
        const Symbol_value<32>* psymval)
3259
  {
3260
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3261
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3262
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3263
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3264
    Reltype addend = val & 0x0fffU;
3265
    Reltype x = psymval->value(object, addend);
3266
    val = utils::bit_select(val, x, 0x0fffU);
3267
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
3268
    return (utils::has_overflow<12>(x)
3269
            ? This::STATUS_OVERFLOW
3270
            : This::STATUS_OKAY);
3271
  }
3272
 
3273
  // R_ARM_ABS16: S + A
3274
  static inline typename This::Status
3275
  abs16(unsigned char* view,
3276
        const Sized_relobj_file<32, big_endian>* object,
3277
        const Symbol_value<32>* psymval)
3278
  {
3279
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3280
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3281
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3282
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3283
    Reltype addend = utils::sign_extend<16>(val);
3284
    Reltype x = psymval->value(object, addend);
3285
    val = utils::bit_select(val, x, 0xffffU);
3286
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
3287
    return (utils::has_signed_unsigned_overflow<16>(x)
3288
            ? This::STATUS_OVERFLOW
3289
            : This::STATUS_OKAY);
3290
  }
3291
 
3292
  // R_ARM_ABS32: (S + A) | T
3293
  static inline typename This::Status
3294
  abs32(unsigned char* view,
3295
        const Sized_relobj_file<32, big_endian>* object,
3296
        const Symbol_value<32>* psymval,
3297
        Arm_address thumb_bit)
3298
  {
3299
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3301
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3302
    Valtype x = psymval->value(object, addend) | thumb_bit;
3303
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
3304
    return This::STATUS_OKAY;
3305
  }
3306
 
3307
  // R_ARM_REL32: (S + A) | T - P
3308
  static inline typename This::Status
3309
  rel32(unsigned char* view,
3310
        const Sized_relobj_file<32, big_endian>* object,
3311
        const Symbol_value<32>* psymval,
3312
        Arm_address address,
3313
        Arm_address thumb_bit)
3314
  {
3315
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3316
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3317
    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
3318
    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3319
    elfcpp::Swap<32, big_endian>::writeval(wv, x);
3320
    return This::STATUS_OKAY;
3321
  }
3322
 
3323
  // R_ARM_THM_JUMP24: (S + A) | T - P
3324
  static typename This::Status
3325
  thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
3326
             const Symbol_value<32>* psymval, Arm_address address,
3327
             Arm_address thumb_bit);
3328
 
3329
  // R_ARM_THM_JUMP6: S + A – P
3330
  static inline typename This::Status
3331
  thm_jump6(unsigned char* view,
3332
            const Sized_relobj_file<32, big_endian>* object,
3333
            const Symbol_value<32>* psymval,
3334
            Arm_address address)
3335
  {
3336
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3337
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3338
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3339
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3340
    // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3341
    Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3342
    Reltype x = (psymval->value(object, addend) - address);
3343
    val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
3344
    elfcpp::Swap<16, big_endian>::writeval(wv, val);
3345
    // CZB does only forward jumps.
3346
    return ((x > 0x007e)
3347
            ? This::STATUS_OVERFLOW
3348
            : This::STATUS_OKAY);
3349
  }
3350
 
3351
  // R_ARM_THM_JUMP8: S + A – P
3352
  static inline typename This::Status
3353
  thm_jump8(unsigned char* view,
3354
            const Sized_relobj_file<32, big_endian>* object,
3355
            const Symbol_value<32>* psymval,
3356
            Arm_address address)
3357
  {
3358
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3359
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3360
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3361
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3362
    Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3363
    Reltype x = (psymval->value(object, addend) - address);
3364
    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3365
    return (utils::has_overflow<8>(x)
3366
            ? This::STATUS_OVERFLOW
3367
            : This::STATUS_OKAY);
3368
  }
3369
 
3370
  // R_ARM_THM_JUMP11: S + A – P
3371
  static inline typename This::Status
3372
  thm_jump11(unsigned char* view,
3373
            const Sized_relobj_file<32, big_endian>* object,
3374
            const Symbol_value<32>* psymval,
3375
            Arm_address address)
3376
  {
3377
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3378
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3379
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3380
    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3381
    Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3382
    Reltype x = (psymval->value(object, addend) - address);
3383
    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3384
    return (utils::has_overflow<11>(x)
3385
            ? This::STATUS_OVERFLOW
3386
            : This::STATUS_OKAY);
3387
  }
3388
 
3389
  // R_ARM_BASE_PREL: B(S) + A - P
3390
  static inline typename This::Status
3391
  base_prel(unsigned char* view,
3392
            Arm_address origin,
3393
            Arm_address address)
3394
  {
3395
    Base::rel32(view, origin - address);
3396
    return STATUS_OKAY;
3397
  }
3398
 
3399
  // R_ARM_BASE_ABS: B(S) + A
3400
  static inline typename This::Status
3401
  base_abs(unsigned char* view,
3402
           Arm_address origin)
3403
  {
3404
    Base::rel32(view, origin);
3405
    return STATUS_OKAY;
3406
  }
3407
 
3408
  // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3409
  static inline typename This::Status
3410
  got_brel(unsigned char* view,
3411
           typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3412
  {
3413
    Base::rel32(view, got_offset);
3414
    return This::STATUS_OKAY;
3415
  }
3416
 
3417
  // R_ARM_GOT_PREL: GOT(S) + A - P
3418
  static inline typename This::Status
3419
  got_prel(unsigned char* view,
3420
           Arm_address got_entry,
3421
           Arm_address address)
3422
  {
3423
    Base::rel32(view, got_entry - address);
3424
    return This::STATUS_OKAY;
3425
  }
3426
 
3427
  // R_ARM_PREL: (S + A) | T - P
3428
  static inline typename This::Status
3429
  prel31(unsigned char* view,
3430
         const Sized_relobj_file<32, big_endian>* object,
3431
         const Symbol_value<32>* psymval,
3432
         Arm_address address,
3433
         Arm_address thumb_bit)
3434
  {
3435
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3436
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3437
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3438
    Valtype addend = utils::sign_extend<31>(val);
3439
    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
3440
    val = utils::bit_select(val, x, 0x7fffffffU);
3441
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
3442
    return (utils::has_overflow<31>(x) ?
3443
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
3444
  }
3445
 
3446
  // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
3447
  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3448
  // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3449
  // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3450
  static inline typename This::Status
3451
  movw(unsigned char* view,
3452
       const Sized_relobj_file<32, big_endian>* object,
3453
       const Symbol_value<32>* psymval,
3454
       Arm_address relative_address_base,
3455
       Arm_address thumb_bit,
3456
       bool check_overflow)
3457
  {
3458
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3459
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3460
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3461
    Valtype addend = This::extract_arm_movw_movt_addend(val);
3462
    Valtype x = ((psymval->value(object, addend) | thumb_bit)
3463
                 - relative_address_base);
3464
    val = This::insert_val_arm_movw_movt(val, x);
3465
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
3466
    return ((check_overflow && utils::has_overflow<16>(x))
3467
            ? This::STATUS_OVERFLOW
3468
            : This::STATUS_OKAY);
3469
  }
3470
 
3471
  // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
3472
  // R_ARM_MOVT_PREL: S + A - P
3473
  // R_ARM_MOVT_BREL: S + A - B(S)
3474
  static inline typename This::Status
3475
  movt(unsigned char* view,
3476
       const Sized_relobj_file<32, big_endian>* object,
3477
       const Symbol_value<32>* psymval,
3478
       Arm_address relative_address_base)
3479
  {
3480
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3481
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3482
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3483
    Valtype addend = This::extract_arm_movw_movt_addend(val);
3484
    Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3485
    val = This::insert_val_arm_movw_movt(val, x);
3486
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
3487
    // FIXME: IHI0044D says that we should check for overflow.
3488
    return This::STATUS_OKAY;
3489
  }
3490
 
3491
  // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
3492
  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3493
  // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3494
  // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3495
  static inline typename This::Status
3496
  thm_movw(unsigned char* view,
3497
           const Sized_relobj_file<32, big_endian>* object,
3498
           const Symbol_value<32>* psymval,
3499
           Arm_address relative_address_base,
3500
           Arm_address thumb_bit,
3501
           bool check_overflow)
3502
  {
3503
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3504
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3505
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3506
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3507
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3508
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
3509
    Reltype x =
3510
      (psymval->value(object, addend) | thumb_bit) - relative_address_base;
3511
    val = This::insert_val_thumb_movw_movt(val, x);
3512
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3513
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3514
    return ((check_overflow && utils::has_overflow<16>(x))
3515
            ? This::STATUS_OVERFLOW
3516
            : This::STATUS_OKAY);
3517
  }
3518
 
3519
  // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
3520
  // R_ARM_THM_MOVT_PREL: S + A - P
3521
  // R_ARM_THM_MOVT_BREL: S + A - B(S)
3522
  static inline typename This::Status
3523
  thm_movt(unsigned char* view,
3524
           const Sized_relobj_file<32, big_endian>* object,
3525
           const Symbol_value<32>* psymval,
3526
           Arm_address relative_address_base)
3527
  {
3528
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3529
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3530
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3531
    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3532
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3533
    Reltype addend = This::extract_thumb_movw_movt_addend(val);
3534
    Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
3535
    val = This::insert_val_thumb_movw_movt(val, x);
3536
    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3537
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3538
    return This::STATUS_OKAY;
3539
  }
3540
 
3541
  // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3542
  static inline typename This::Status
3543
  thm_alu11(unsigned char* view,
3544
            const Sized_relobj_file<32, big_endian>* object,
3545
            const Symbol_value<32>* psymval,
3546
            Arm_address address,
3547
            Arm_address thumb_bit)
3548
  {
3549
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3550
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3551
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3552
    Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3553
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3554
 
3555
    //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3556
    // -----------------------------------------------------------------------
3557
    // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
3558
    // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
3559
    // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
3560
    // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
3561
    // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
3562
    // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
3563
 
3564
    // Determine a sign for the addend.
3565
    const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3566
                      || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3567
    // Thumb2 addend encoding:
3568
    // imm12 := i | imm3 | imm8
3569
    int32_t addend = (insn & 0xff)
3570
                     | ((insn & 0x00007000) >> 4)
3571
                     | ((insn & 0x04000000) >> 15);
3572
    // Apply a sign to the added.
3573
    addend *= sign;
3574
 
3575
    int32_t x = (psymval->value(object, addend) | thumb_bit)
3576
                - (address & 0xfffffffc);
3577
    Reltype val = abs(x);
3578
    // Mask out the value and a distinct part of the ADD/SUB opcode
3579
    // (bits 7:5 of opword).
3580
    insn = (insn & 0xfb0f8f00)
3581
           | (val & 0xff)
3582
           | ((val & 0x700) << 4)
3583
           | ((val & 0x800) << 15);
3584
    // Set the opcode according to whether the value to go in the
3585
    // place is negative.
3586
    if (x < 0)
3587
      insn |= 0x00a00000;
3588
 
3589
    elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3590
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3591
    return ((val > 0xfff) ?
3592
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
3593
  }
3594
 
3595
  // R_ARM_THM_PC8: S + A - Pa (Thumb)
3596
  static inline typename This::Status
3597
  thm_pc8(unsigned char* view,
3598
          const Sized_relobj_file<32, big_endian>* object,
3599
          const Symbol_value<32>* psymval,
3600
          Arm_address address)
3601
  {
3602
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3603
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3604
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3605
    Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3606
    Reltype addend = ((insn & 0x00ff) << 2);
3607
    int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3608
    Reltype val = abs(x);
3609
    insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3610
 
3611
    elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3612
    return ((val > 0x03fc)
3613
            ? This::STATUS_OVERFLOW
3614
            : This::STATUS_OKAY);
3615
  }
3616
 
3617
  // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3618
  static inline typename This::Status
3619
  thm_pc12(unsigned char* view,
3620
           const Sized_relobj_file<32, big_endian>* object,
3621
           const Symbol_value<32>* psymval,
3622
           Arm_address address)
3623
  {
3624
    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3625
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3626
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3627
    Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3628
                   | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3629
    // Determine a sign for the addend (positive if the U bit is 1).
3630
    const int sign = (insn & 0x00800000) ? 1 : -1;
3631
    int32_t addend = (insn & 0xfff);
3632
    // Apply a sign to the added.
3633
    addend *= sign;
3634
 
3635
    int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3636
    Reltype val = abs(x);
3637
    // Mask out and apply the value and the U bit.
3638
    insn = (insn & 0xff7ff000) | (val & 0xfff);
3639
    // Set the U bit according to whether the value to go in the
3640
    // place is positive.
3641
    if (x >= 0)
3642
      insn |= 0x00800000;
3643
 
3644
    elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3645
    elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3646
    return ((val > 0xfff) ?
3647
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
3648
  }
3649
 
3650
  // R_ARM_V4BX
3651
  static inline typename This::Status
3652
  v4bx(const Relocate_info<32, big_endian>* relinfo,
3653
       unsigned char* view,
3654
       const Arm_relobj<big_endian>* object,
3655
       const Arm_address address,
3656
       const bool is_interworking)
3657
  {
3658
 
3659
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3660
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3661
    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3662
 
3663
    // Ensure that we have a BX instruction.
3664
    gold_assert((val & 0x0ffffff0) == 0x012fff10);
3665
    const uint32_t reg = (val & 0xf);
3666
    if (is_interworking && reg != 0xf)
3667
      {
3668
        Stub_table<big_endian>* stub_table =
3669
            object->stub_table(relinfo->data_shndx);
3670
        gold_assert(stub_table != NULL);
3671
 
3672
        Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3673
        gold_assert(stub != NULL);
3674
 
3675
        int32_t veneer_address =
3676
            stub_table->address() + stub->offset() - 8 - address;
3677
        gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3678
                    && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3679
        // Replace with a branch to veneer (B <addr>)
3680
        val = (val & 0xf0000000) | 0x0a000000
3681
              | ((veneer_address >> 2) & 0x00ffffff);
3682
      }
3683
    else
3684
      {
3685
        // Preserve Rm (lowest four bits) and the condition code
3686
        // (highest four bits). Other bits encode MOV PC,Rm.
3687
        val = (val & 0xf000000f) | 0x01a0f000;
3688
      }
3689
    elfcpp::Swap<32, big_endian>::writeval(wv, val);
3690
    return This::STATUS_OKAY;
3691
  }
3692
 
3693
  // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3694
  // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
3695
  // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3696
  // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
3697
  // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
3698
  // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3699
  // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
3700
  // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3701
  // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
3702
  // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
3703
  static inline typename This::Status
3704
  arm_grp_alu(unsigned char* view,
3705
        const Sized_relobj_file<32, big_endian>* object,
3706
        const Symbol_value<32>* psymval,
3707
        const int group,
3708
        Arm_address address,
3709
        Arm_address thumb_bit,
3710
        bool check_overflow)
3711
  {
3712
    gold_assert(group >= 0 && group < 3);
3713
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3714
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3715
    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3716
 
3717
    // ALU group relocations are allowed only for the ADD/SUB instructions.
3718
    // (0x00800000 - ADD, 0x00400000 - SUB)
3719
    const Valtype opcode = insn & 0x01e00000;
3720
    if (opcode != 0x00800000 && opcode != 0x00400000)
3721
      return This::STATUS_BAD_RELOC;
3722
 
3723
    // Determine a sign for the addend.
3724
    const int sign = (opcode == 0x00800000) ? 1 : -1;
3725
    // shifter = rotate_imm * 2
3726
    const uint32_t shifter = (insn & 0xf00) >> 7;
3727
    // Initial addend value.
3728
    int32_t addend = insn & 0xff;
3729
    // Rotate addend right by shifter.
3730
    addend = (addend >> shifter) | (addend << (32 - shifter));
3731
    // Apply a sign to the added.
3732
    addend *= sign;
3733
 
3734
    int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3735
    Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3736
    // Check for overflow if required
3737
    if (check_overflow
3738
        && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3739
      return This::STATUS_OVERFLOW;
3740
 
3741
    // Mask out the value and the ADD/SUB part of the opcode; take care
3742
    // not to destroy the S bit.
3743
    insn &= 0xff1ff000;
3744
    // Set the opcode according to whether the value to go in the
3745
    // place is negative.
3746
    insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3747
    // Encode the offset (encoded Gn).
3748
    insn |= gn;
3749
 
3750
    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3751
    return This::STATUS_OKAY;
3752
  }
3753
 
3754
  // R_ARM_LDR_PC_G0: S + A - P
3755
  // R_ARM_LDR_PC_G1: S + A - P
3756
  // R_ARM_LDR_PC_G2: S + A - P
3757
  // R_ARM_LDR_SB_G0: S + A - B(S)
3758
  // R_ARM_LDR_SB_G1: S + A - B(S)
3759
  // R_ARM_LDR_SB_G2: S + A - B(S)
3760
  static inline typename This::Status
3761
  arm_grp_ldr(unsigned char* view,
3762
        const Sized_relobj_file<32, big_endian>* object,
3763
        const Symbol_value<32>* psymval,
3764
        const int group,
3765
        Arm_address address)
3766
  {
3767
    gold_assert(group >= 0 && group < 3);
3768
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3769
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3770
    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3771
 
3772
    const int sign = (insn & 0x00800000) ? 1 : -1;
3773
    int32_t addend = (insn & 0xfff) * sign;
3774
    int32_t x = (psymval->value(object, addend) - address);
3775
    // Calculate the relevant G(n-1) value to obtain this stage residual.
3776
    Valtype residual =
3777
        Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3778
    if (residual >= 0x1000)
3779
      return This::STATUS_OVERFLOW;
3780
 
3781
    // Mask out the value and U bit.
3782
    insn &= 0xff7ff000;
3783
    // Set the U bit for non-negative values.
3784
    if (x >= 0)
3785
      insn |= 0x00800000;
3786
    insn |= residual;
3787
 
3788
    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3789
    return This::STATUS_OKAY;
3790
  }
3791
 
3792
  // R_ARM_LDRS_PC_G0: S + A - P
3793
  // R_ARM_LDRS_PC_G1: S + A - P
3794
  // R_ARM_LDRS_PC_G2: S + A - P
3795
  // R_ARM_LDRS_SB_G0: S + A - B(S)
3796
  // R_ARM_LDRS_SB_G1: S + A - B(S)
3797
  // R_ARM_LDRS_SB_G2: S + A - B(S)
3798
  static inline typename This::Status
3799
  arm_grp_ldrs(unsigned char* view,
3800
        const Sized_relobj_file<32, big_endian>* object,
3801
        const Symbol_value<32>* psymval,
3802
        const int group,
3803
        Arm_address address)
3804
  {
3805
    gold_assert(group >= 0 && group < 3);
3806
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3807
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3808
    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3809
 
3810
    const int sign = (insn & 0x00800000) ? 1 : -1;
3811
    int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3812
    int32_t x = (psymval->value(object, addend) - address);
3813
    // Calculate the relevant G(n-1) value to obtain this stage residual.
3814
    Valtype residual =
3815
        Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3816
   if (residual >= 0x100)
3817
      return This::STATUS_OVERFLOW;
3818
 
3819
    // Mask out the value and U bit.
3820
    insn &= 0xff7ff0f0;
3821
    // Set the U bit for non-negative values.
3822
    if (x >= 0)
3823
      insn |= 0x00800000;
3824
    insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3825
 
3826
    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3827
    return This::STATUS_OKAY;
3828
  }
3829
 
3830
  // R_ARM_LDC_PC_G0: S + A - P
3831
  // R_ARM_LDC_PC_G1: S + A - P
3832
  // R_ARM_LDC_PC_G2: S + A - P
3833
  // R_ARM_LDC_SB_G0: S + A - B(S)
3834
  // R_ARM_LDC_SB_G1: S + A - B(S)
3835
  // R_ARM_LDC_SB_G2: S + A - B(S)
3836
  static inline typename This::Status
3837
  arm_grp_ldc(unsigned char* view,
3838
      const Sized_relobj_file<32, big_endian>* object,
3839
      const Symbol_value<32>* psymval,
3840
      const int group,
3841
      Arm_address address)
3842
  {
3843
    gold_assert(group >= 0 && group < 3);
3844
    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3845
    Valtype* wv = reinterpret_cast<Valtype*>(view);
3846
    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3847
 
3848
    const int sign = (insn & 0x00800000) ? 1 : -1;
3849
    int32_t addend = ((insn & 0xff) << 2) * sign;
3850
    int32_t x = (psymval->value(object, addend) - address);
3851
    // Calculate the relevant G(n-1) value to obtain this stage residual.
3852
    Valtype residual =
3853
      Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3854
    if ((residual & 0x3) != 0 || residual >= 0x400)
3855
      return This::STATUS_OVERFLOW;
3856
 
3857
    // Mask out the value and U bit.
3858
    insn &= 0xff7fff00;
3859
    // Set the U bit for non-negative values.
3860
    if (x >= 0)
3861
      insn |= 0x00800000;
3862
    insn |= (residual >> 2);
3863
 
3864
    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3865
    return This::STATUS_OKAY;
3866
  }
3867
};
3868
 
3869
// Relocate ARM long branches.  This handles relocation types
3870
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3871
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
3872
// undefined and we do not use PLT in this relocation.  In such a case,
3873
// the branch is converted into an NOP.
3874
 
3875
template<bool big_endian>
3876
typename Arm_relocate_functions<big_endian>::Status
3877
Arm_relocate_functions<big_endian>::arm_branch_common(
3878
    unsigned int r_type,
3879
    const Relocate_info<32, big_endian>* relinfo,
3880
    unsigned char* view,
3881
    const Sized_symbol<32>* gsym,
3882
    const Arm_relobj<big_endian>* object,
3883
    unsigned int r_sym,
3884
    const Symbol_value<32>* psymval,
3885
    Arm_address address,
3886
    Arm_address thumb_bit,
3887
    bool is_weakly_undefined_without_plt)
3888
{
3889
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3890
  Valtype* wv = reinterpret_cast<Valtype*>(view);
3891
  Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3892
 
3893
  bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3894
                    && ((val & 0x0f000000UL) == 0x0a000000UL);
3895
  bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3896
  bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3897
                          && ((val & 0x0f000000UL) == 0x0b000000UL);
3898
  bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3899
  bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3900
 
3901
  // Check that the instruction is valid.
3902
  if (r_type == elfcpp::R_ARM_CALL)
3903
    {
3904
      if (!insn_is_uncond_bl && !insn_is_blx)
3905
        return This::STATUS_BAD_RELOC;
3906
    }
3907
  else if (r_type == elfcpp::R_ARM_JUMP24)
3908
    {
3909
      if (!insn_is_b && !insn_is_cond_bl)
3910
        return This::STATUS_BAD_RELOC;
3911
    }
3912
  else if (r_type == elfcpp::R_ARM_PLT32)
3913
    {
3914
      if (!insn_is_any_branch)
3915
        return This::STATUS_BAD_RELOC;
3916
    }
3917
  else if (r_type == elfcpp::R_ARM_XPC25)
3918
    {
3919
      // FIXME: AAELF document IH0044C does not say much about it other
3920
      // than it being obsolete.
3921
      if (!insn_is_any_branch)
3922
        return This::STATUS_BAD_RELOC;
3923
    }
3924
  else
3925
    gold_unreachable();
3926
 
3927
  // A branch to an undefined weak symbol is turned into a jump to
3928
  // the next instruction unless a PLT entry will be created.
3929
  // Do the same for local undefined symbols.
3930
  // The jump to the next instruction is optimized as a NOP depending
3931
  // on the architecture.
3932
  const Target_arm<big_endian>* arm_target =
3933
    Target_arm<big_endian>::default_target();
3934
  if (is_weakly_undefined_without_plt)
3935
    {
3936
      gold_assert(!parameters->options().relocatable());
3937
      Valtype cond = val & 0xf0000000U;
3938
      if (arm_target->may_use_arm_nop())
3939
        val = cond | 0x0320f000;
3940
      else
3941
        val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
3942
      elfcpp::Swap<32, big_endian>::writeval(wv, val);
3943
      return This::STATUS_OKAY;
3944
    }
3945
 
3946
  Valtype addend = utils::sign_extend<26>(val << 2);
3947
  Valtype branch_target = psymval->value(object, addend);
3948
  int32_t branch_offset = branch_target - address;
3949
 
3950
  // We need a stub if the branch offset is too large or if we need
3951
  // to switch mode.
3952
  bool may_use_blx = arm_target->may_use_blx();
3953
  Reloc_stub* stub = NULL;
3954
 
3955
  if (!parameters->options().relocatable()
3956
      && (utils::has_overflow<26>(branch_offset)
3957
          || ((thumb_bit != 0)
3958
              && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
3959
    {
3960
      Valtype unadjusted_branch_target = psymval->value(object, 0);
3961
 
3962
      Stub_type stub_type =
3963
        Reloc_stub::stub_type_for_reloc(r_type, address,
3964
                                        unadjusted_branch_target,
3965
                                        (thumb_bit != 0));
3966
      if (stub_type != arm_stub_none)
3967
        {
3968
          Stub_table<big_endian>* stub_table =
3969
            object->stub_table(relinfo->data_shndx);
3970
          gold_assert(stub_table != NULL);
3971
 
3972
          Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
3973
          stub = stub_table->find_reloc_stub(stub_key);
3974
          gold_assert(stub != NULL);
3975
          thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3976
          branch_target = stub_table->address() + stub->offset() + addend;
3977
          branch_offset = branch_target - address;
3978
          gold_assert(!utils::has_overflow<26>(branch_offset));
3979
        }
3980
    }
3981
 
3982
  // At this point, if we still need to switch mode, the instruction
3983
  // must either be a BLX or a BL that can be converted to a BLX.
3984
  if (thumb_bit != 0)
3985
    {
3986
      // Turn BL to BLX.
3987
      gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3988
      val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3989
    }
3990
 
3991
  val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3992
  elfcpp::Swap<32, big_endian>::writeval(wv, val);
3993
  return (utils::has_overflow<26>(branch_offset)
3994
          ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3995
}
3996
 
3997
// Relocate THUMB long branches.  This handles relocation types
3998
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3999
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4000
// undefined and we do not use PLT in this relocation.  In such a case,
4001
// the branch is converted into an NOP.
4002
 
4003
template<bool big_endian>
4004
typename Arm_relocate_functions<big_endian>::Status
4005
Arm_relocate_functions<big_endian>::thumb_branch_common(
4006
    unsigned int r_type,
4007
    const Relocate_info<32, big_endian>* relinfo,
4008
    unsigned char* view,
4009
    const Sized_symbol<32>* gsym,
4010
    const Arm_relobj<big_endian>* object,
4011
    unsigned int r_sym,
4012
    const Symbol_value<32>* psymval,
4013
    Arm_address address,
4014
    Arm_address thumb_bit,
4015
    bool is_weakly_undefined_without_plt)
4016
{
4017
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4018
  Valtype* wv = reinterpret_cast<Valtype*>(view);
4019
  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4020
  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4021
 
4022
  // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4023
  // into account.
4024
  bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4025
  bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4026
 
4027
  // Check that the instruction is valid.
4028
  if (r_type == elfcpp::R_ARM_THM_CALL)
4029
    {
4030
      if (!is_bl_insn && !is_blx_insn)
4031
        return This::STATUS_BAD_RELOC;
4032
    }
4033
  else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4034
    {
4035
      // This cannot be a BLX.
4036
      if (!is_bl_insn)
4037
        return This::STATUS_BAD_RELOC;
4038
    }
4039
  else if (r_type == elfcpp::R_ARM_THM_XPC22)
4040
    {
4041
      // Check for Thumb to Thumb call.
4042
      if (!is_blx_insn)
4043
        return This::STATUS_BAD_RELOC;
4044
      if (thumb_bit != 0)
4045
        {
4046
          gold_warning(_("%s: Thumb BLX instruction targets "
4047
                         "thumb function '%s'."),
4048
                         object->name().c_str(),
4049
                         (gsym ? gsym->name() : "(local)"));
4050
          // Convert BLX to BL.
4051
          lower_insn |= 0x1000U;
4052
        }
4053
    }
4054
  else
4055
    gold_unreachable();
4056
 
4057
  // A branch to an undefined weak symbol is turned into a jump to
4058
  // the next instruction unless a PLT entry will be created.
4059
  // The jump to the next instruction is optimized as a NOP.W for
4060
  // Thumb-2 enabled architectures.
4061
  const Target_arm<big_endian>* arm_target =
4062
    Target_arm<big_endian>::default_target();
4063
  if (is_weakly_undefined_without_plt)
4064
    {
4065
      gold_assert(!parameters->options().relocatable());
4066
      if (arm_target->may_use_thumb2_nop())
4067
        {
4068
          elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4069
          elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4070
        }
4071
      else
4072
        {
4073
          elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4074
          elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4075
        }
4076
      return This::STATUS_OKAY;
4077
    }
4078
 
4079
  int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
4080
  Arm_address branch_target = psymval->value(object, addend);
4081
 
4082
  // For BLX, bit 1 of target address comes from bit 1 of base address.
4083
  bool may_use_blx = arm_target->may_use_blx();
4084
  if (thumb_bit == 0 && may_use_blx)
4085
    branch_target = utils::bit_select(branch_target, address, 0x2);
4086
 
4087
  int32_t branch_offset = branch_target - address;
4088
 
4089
  // We need a stub if the branch offset is too large or if we need
4090
  // to switch mode.
4091
  bool thumb2 = arm_target->using_thumb2();
4092
  if (!parameters->options().relocatable()
4093
      && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4094
          || (thumb2 && utils::has_overflow<25>(branch_offset))
4095
          || ((thumb_bit == 0)
4096
              && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4097
                  || r_type == elfcpp::R_ARM_THM_JUMP24))))
4098
    {
4099
      Arm_address unadjusted_branch_target = psymval->value(object, 0);
4100
 
4101
      Stub_type stub_type =
4102
        Reloc_stub::stub_type_for_reloc(r_type, address,
4103
                                        unadjusted_branch_target,
4104
                                        (thumb_bit != 0));
4105
 
4106
      if (stub_type != arm_stub_none)
4107
        {
4108
          Stub_table<big_endian>* stub_table =
4109
            object->stub_table(relinfo->data_shndx);
4110
          gold_assert(stub_table != NULL);
4111
 
4112
          Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4113
          Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4114
          gold_assert(stub != NULL);
4115
          thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
4116
          branch_target = stub_table->address() + stub->offset() + addend;
4117
          if (thumb_bit == 0 && may_use_blx)
4118
            branch_target = utils::bit_select(branch_target, address, 0x2);
4119
          branch_offset = branch_target - address;
4120
        }
4121
    }
4122
 
4123
  // At this point, if we still need to switch mode, the instruction
4124
  // must either be a BLX or a BL that can be converted to a BLX.
4125
  if (thumb_bit == 0)
4126
    {
4127
      gold_assert(may_use_blx
4128
                  && (r_type == elfcpp::R_ARM_THM_CALL
4129
                      || r_type == elfcpp::R_ARM_THM_XPC22));
4130
      // Make sure this is a BLX.
4131
      lower_insn &= ~0x1000U;
4132
    }
4133
  else
4134
    {
4135
      // Make sure this is a BL.
4136
      lower_insn |= 0x1000U;
4137
    }
4138
 
4139
  // For a BLX instruction, make sure that the relocation is rounded up
4140
  // to a word boundary.  This follows the semantics of the instruction
4141
  // which specifies that bit 1 of the target address will come from bit
4142
  // 1 of the base address.
4143
  if ((lower_insn & 0x5000U) == 0x4000U)
4144
    gold_assert((branch_offset & 3) == 0);
4145
 
4146
  // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
4147
  // We use the Thumb-2 encoding, which is safe even if dealing with
4148
  // a Thumb-1 instruction by virtue of our overflow check above.  */
4149
  upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4150
  lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
4151
 
4152
  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4153
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4154
 
4155
  gold_assert(!utils::has_overflow<25>(branch_offset));
4156
 
4157
  return ((thumb2
4158
           ? utils::has_overflow<25>(branch_offset)
4159
           : utils::has_overflow<23>(branch_offset))
4160
          ? This::STATUS_OVERFLOW
4161
          : This::STATUS_OKAY);
4162
}
4163
 
4164
// Relocate THUMB-2 long conditional branches.
4165
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
4166
// undefined and we do not use PLT in this relocation.  In such a case,
4167
// the branch is converted into an NOP.
4168
 
4169
template<bool big_endian>
4170
typename Arm_relocate_functions<big_endian>::Status
4171
Arm_relocate_functions<big_endian>::thm_jump19(
4172
    unsigned char* view,
4173
    const Arm_relobj<big_endian>* object,
4174
    const Symbol_value<32>* psymval,
4175
    Arm_address address,
4176
    Arm_address thumb_bit)
4177
{
4178
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4179
  Valtype* wv = reinterpret_cast<Valtype*>(view);
4180
  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4181
  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4182
  int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4183
 
4184
  Arm_address branch_target = psymval->value(object, addend);
4185
  int32_t branch_offset = branch_target - address;
4186
 
4187
  // ??? Should handle interworking?  GCC might someday try to
4188
  // use this for tail calls.
4189
  // FIXME: We do support thumb entry to PLT yet.
4190
  if (thumb_bit == 0)
4191
    {
4192
      gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4193
      return This::STATUS_BAD_RELOC;
4194
    }
4195
 
4196
  // Put RELOCATION back into the insn.
4197
  upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4198
  lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4199
 
4200
  // Put the relocated value back in the object file:
4201
  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4202
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4203
 
4204
  return (utils::has_overflow<21>(branch_offset)
4205
          ? This::STATUS_OVERFLOW
4206
          : This::STATUS_OKAY);
4207
}
4208
 
4209
// Get the GOT section, creating it if necessary.
4210
 
4211
template<bool big_endian>
4212
Arm_output_data_got<big_endian>*
4213
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4214
{
4215
  if (this->got_ == NULL)
4216
    {
4217
      gold_assert(symtab != NULL && layout != NULL);
4218
 
4219
      this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
4220
 
4221
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4222
                                      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4223
                                      this->got_, ORDER_DATA, false);
4224
 
4225
      // The old GNU linker creates a .got.plt section.  We just
4226
      // create another set of data in the .got section.  Note that we
4227
      // always create a PLT if we create a GOT, although the PLT
4228
      // might be empty.
4229
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4230
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4231
                                      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4232
                                      this->got_plt_, ORDER_DATA, false);
4233
 
4234
      // The first three entries are reserved.
4235
      this->got_plt_->set_current_data_size(3 * 4);
4236
 
4237
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4238
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
4239
                                    Symbol_table::PREDEFINED,
4240
                                    this->got_plt_,
4241
                                    0, 0, elfcpp::STT_OBJECT,
4242
                                    elfcpp::STB_LOCAL,
4243
                                    elfcpp::STV_HIDDEN, 0,
4244
                                    false, false);
4245
    }
4246
  return this->got_;
4247
}
4248
 
4249
// Get the dynamic reloc section, creating it if necessary.
4250
 
4251
template<bool big_endian>
4252
typename Target_arm<big_endian>::Reloc_section*
4253
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4254
{
4255
  if (this->rel_dyn_ == NULL)
4256
    {
4257
      gold_assert(layout != NULL);
4258
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4259
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4260
                                      elfcpp::SHF_ALLOC, this->rel_dyn_,
4261
                                      ORDER_DYNAMIC_RELOCS, false);
4262
    }
4263
  return this->rel_dyn_;
4264
}
4265
 
4266
// Insn_template methods.
4267
 
4268
// Return byte size of an instruction template.
4269
 
4270
size_t
4271
Insn_template::size() const
4272
{
4273
  switch (this->type())
4274
    {
4275
    case THUMB16_TYPE:
4276
    case THUMB16_SPECIAL_TYPE:
4277
      return 2;
4278
    case ARM_TYPE:
4279
    case THUMB32_TYPE:
4280
    case DATA_TYPE:
4281
      return 4;
4282
    default:
4283
      gold_unreachable();
4284
    }
4285
}
4286
 
4287
// Return alignment of an instruction template.
4288
 
4289
unsigned
4290
Insn_template::alignment() const
4291
{
4292
  switch (this->type())
4293
    {
4294
    case THUMB16_TYPE:
4295
    case THUMB16_SPECIAL_TYPE:
4296
    case THUMB32_TYPE:
4297
      return 2;
4298
    case ARM_TYPE:
4299
    case DATA_TYPE:
4300
      return 4;
4301
    default:
4302
      gold_unreachable();
4303
    }
4304
}
4305
 
4306
// Stub_template methods.
4307
 
4308
Stub_template::Stub_template(
4309
    Stub_type type, const Insn_template* insns,
4310
     size_t insn_count)
4311
  : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
4312
    entry_in_thumb_mode_(false), relocs_()
4313
{
4314
  off_t offset = 0;
4315
 
4316
  // Compute byte size and alignment of stub template.
4317
  for (size_t i = 0; i < insn_count; i++)
4318
    {
4319
      unsigned insn_alignment = insns[i].alignment();
4320
      size_t insn_size = insns[i].size();
4321
      gold_assert((offset & (insn_alignment - 1)) == 0);
4322
      this->alignment_ = std::max(this->alignment_, insn_alignment);
4323
      switch (insns[i].type())
4324
        {
4325
        case Insn_template::THUMB16_TYPE:
4326
        case Insn_template::THUMB16_SPECIAL_TYPE:
4327
          if (i == 0)
4328
            this->entry_in_thumb_mode_ = true;
4329
          break;
4330
 
4331
        case Insn_template::THUMB32_TYPE:
4332
          if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4333
            this->relocs_.push_back(Reloc(i, offset));
4334
          if (i == 0)
4335
            this->entry_in_thumb_mode_ = true;
4336
          break;
4337
 
4338
        case Insn_template::ARM_TYPE:
4339
          // Handle cases where the target is encoded within the
4340
          // instruction.
4341
          if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4342
            this->relocs_.push_back(Reloc(i, offset));
4343
          break;
4344
 
4345
        case Insn_template::DATA_TYPE:
4346
          // Entry point cannot be data.
4347
          gold_assert(i != 0);
4348
          this->relocs_.push_back(Reloc(i, offset));
4349
          break;
4350
 
4351
        default:
4352
          gold_unreachable();
4353
        }
4354
      offset += insn_size;
4355
    }
4356
  this->size_ = offset;
4357
}
4358
 
4359
// Stub methods.
4360
 
4361
// Template to implement do_write for a specific target endianness.
4362
 
4363
template<bool big_endian>
4364
void inline
4365
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4366
{
4367
  const Stub_template* stub_template = this->stub_template();
4368
  const Insn_template* insns = stub_template->insns();
4369
 
4370
  // FIXME:  We do not handle BE8 encoding yet.
4371
  unsigned char* pov = view;
4372
  for (size_t i = 0; i < stub_template->insn_count(); i++)
4373
    {
4374
      switch (insns[i].type())
4375
        {
4376
        case Insn_template::THUMB16_TYPE:
4377
          elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4378
          break;
4379
        case Insn_template::THUMB16_SPECIAL_TYPE:
4380
          elfcpp::Swap<16, big_endian>::writeval(
4381
              pov,
4382
              this->thumb16_special(i));
4383
          break;
4384
        case Insn_template::THUMB32_TYPE:
4385
          {
4386
            uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4387
            uint32_t lo = insns[i].data() & 0xffff;
4388
            elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4389
            elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4390
          }
4391
          break;
4392
        case Insn_template::ARM_TYPE:
4393
        case Insn_template::DATA_TYPE:
4394
          elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4395
          break;
4396
        default:
4397
          gold_unreachable();
4398
        }
4399
      pov += insns[i].size();
4400
    }
4401
  gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4402
}
4403
 
4404
// Reloc_stub::Key methods.
4405
 
4406
// Dump a Key as a string for debugging.
4407
 
4408
std::string
4409
Reloc_stub::Key::name() const
4410
{
4411
  if (this->r_sym_ == invalid_index)
4412
    {
4413
      // Global symbol key name
4414
      // <stub-type>:<symbol name>:<addend>.
4415
      const std::string sym_name = this->u_.symbol->name();
4416
      // We need to print two hex number and two colons.  So just add 100 bytes
4417
      // to the symbol name size.
4418
      size_t len = sym_name.size() + 100;
4419
      char* buffer = new char[len];
4420
      int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4421
                       sym_name.c_str(), this->addend_);
4422
      gold_assert(c > 0 && c < static_cast<int>(len));
4423
      delete[] buffer;
4424
      return std::string(buffer);
4425
    }
4426
  else
4427
    {
4428
      // local symbol key name
4429
      // <stub-type>:<object>:<r_sym>:<addend>.
4430
      const size_t len = 200;
4431
      char buffer[len];
4432
      int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4433
                       this->u_.relobj, this->r_sym_, this->addend_);
4434
      gold_assert(c > 0 && c < static_cast<int>(len));
4435
      return std::string(buffer);
4436
    }
4437
}
4438
 
4439
// Reloc_stub methods.
4440
 
4441
// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4442
// LOCATION to DESTINATION.
4443
// This code is based on the arm_type_of_stub function in
4444
// bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
4445
// class simple.
4446
 
4447
Stub_type
4448
Reloc_stub::stub_type_for_reloc(
4449
   unsigned int r_type,
4450
   Arm_address location,
4451
   Arm_address destination,
4452
   bool target_is_thumb)
4453
{
4454
  Stub_type stub_type = arm_stub_none;
4455
 
4456
  // This is a bit ugly but we want to avoid using a templated class for
4457
  // big and little endianities.
4458
  bool may_use_blx;
4459
  bool should_force_pic_veneer;
4460
  bool thumb2;
4461
  bool thumb_only;
4462
  if (parameters->target().is_big_endian())
4463
    {
4464
      const Target_arm<true>* big_endian_target =
4465
        Target_arm<true>::default_target();
4466
      may_use_blx = big_endian_target->may_use_blx();
4467
      should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4468
      thumb2 = big_endian_target->using_thumb2();
4469
      thumb_only = big_endian_target->using_thumb_only();
4470
    }
4471
  else
4472
    {
4473
      const Target_arm<false>* little_endian_target =
4474
        Target_arm<false>::default_target();
4475
      may_use_blx = little_endian_target->may_use_blx();
4476
      should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4477
      thumb2 = little_endian_target->using_thumb2();
4478
      thumb_only = little_endian_target->using_thumb_only();
4479
    }
4480
 
4481
  int64_t branch_offset;
4482
  if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4483
    {
4484
      // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4485
      // base address (instruction address + 4).
4486
      if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4487
        destination = utils::bit_select(destination, location, 0x2);
4488
      branch_offset = static_cast<int64_t>(destination) - location;
4489
 
4490
      // Handle cases where:
4491
      // - this call goes too far (different Thumb/Thumb2 max
4492
      //   distance)
4493
      // - it's a Thumb->Arm call and blx is not available, or it's a
4494
      //   Thumb->Arm branch (not bl). A stub is needed in this case.
4495
      if ((!thumb2
4496
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4497
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4498
          || (thumb2
4499
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4500
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4501
          || ((!target_is_thumb)
4502
              && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4503
                  || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4504
        {
4505
          if (target_is_thumb)
4506
            {
4507
              // Thumb to thumb.
4508
              if (!thumb_only)
4509
                {
4510
                  stub_type = (parameters->options().shared()
4511
                               || should_force_pic_veneer)
4512
                    // PIC stubs.
4513
                    ? ((may_use_blx
4514
                        && (r_type == elfcpp::R_ARM_THM_CALL))
4515
                       // V5T and above. Stub starts with ARM code, so
4516
                       // we must be able to switch mode before
4517
                       // reaching it, which is only possible for 'bl'
4518
                       // (ie R_ARM_THM_CALL relocation).
4519
                       ? arm_stub_long_branch_any_thumb_pic
4520
                       // On V4T, use Thumb code only.
4521
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
4522
 
4523
                    // non-PIC stubs.
4524
                    : ((may_use_blx
4525
                        && (r_type == elfcpp::R_ARM_THM_CALL))
4526
                       ? arm_stub_long_branch_any_any // V5T and above.
4527
                       : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4528
                }
4529
              else
4530
                {
4531
                  stub_type = (parameters->options().shared()
4532
                               || should_force_pic_veneer)
4533
                    ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
4534
                    : arm_stub_long_branch_thumb_only;  // non-PIC stub.
4535
                }
4536
            }
4537
          else
4538
            {
4539
              // Thumb to arm.
4540
 
4541
              // FIXME: We should check that the input section is from an
4542
              // object that has interwork enabled.
4543
 
4544
              stub_type = (parameters->options().shared()
4545
                           || should_force_pic_veneer)
4546
                // PIC stubs.
4547
                ? ((may_use_blx
4548
                    && (r_type == elfcpp::R_ARM_THM_CALL))
4549
                   ? arm_stub_long_branch_any_arm_pic   // V5T and above.
4550
                   : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
4551
 
4552
                // non-PIC stubs.
4553
                : ((may_use_blx
4554
                    && (r_type == elfcpp::R_ARM_THM_CALL))
4555
                   ? arm_stub_long_branch_any_any       // V5T and above.
4556
                   : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
4557
 
4558
              // Handle v4t short branches.
4559
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4560
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4561
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4562
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
4563
            }
4564
        }
4565
    }
4566
  else if (r_type == elfcpp::R_ARM_CALL
4567
           || r_type == elfcpp::R_ARM_JUMP24
4568
           || r_type == elfcpp::R_ARM_PLT32)
4569
    {
4570
      branch_offset = static_cast<int64_t>(destination) - location;
4571
      if (target_is_thumb)
4572
        {
4573
          // Arm to thumb.
4574
 
4575
          // FIXME: We should check that the input section is from an
4576
          // object that has interwork enabled.
4577
 
4578
          // We have an extra 2-bytes reach because of
4579
          // the mode change (bit 24 (H) of BLX encoding).
4580
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4581
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4582
              || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4583
              || (r_type == elfcpp::R_ARM_JUMP24)
4584
              || (r_type == elfcpp::R_ARM_PLT32))
4585
            {
4586
              stub_type = (parameters->options().shared()
4587
                           || should_force_pic_veneer)
4588
                // PIC stubs.
4589
                ? (may_use_blx
4590
                   ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4591
                   : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
4592
 
4593
                // non-PIC stubs.
4594
                : (may_use_blx
4595
                   ? arm_stub_long_branch_any_any       // V5T and above.
4596
                   : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
4597
            }
4598
        }
4599
      else
4600
        {
4601
          // Arm to arm.
4602
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4603
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4604
            {
4605
              stub_type = (parameters->options().shared()
4606
                           || should_force_pic_veneer)
4607
                ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
4608
                : arm_stub_long_branch_any_any;         /// non-PIC.
4609
            }
4610
        }
4611
    }
4612
 
4613
  return stub_type;
4614
}
4615
 
4616
// Cortex_a8_stub methods.
4617
 
4618
// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4619
// I is the position of the instruction template in the stub template.
4620
 
4621
uint16_t
4622
Cortex_a8_stub::do_thumb16_special(size_t i)
4623
{
4624
  // The only use of this is to copy condition code from a conditional
4625
  // branch being worked around to the corresponding conditional branch in
4626
  // to the stub.
4627
  gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4628
              && i == 0);
4629
  uint16_t data = this->stub_template()->insns()[i].data();
4630
  gold_assert((data & 0xff00U) == 0xd000U);
4631
  data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4632
  return data;
4633
}
4634
 
4635
// Stub_factory methods.
4636
 
4637
Stub_factory::Stub_factory()
4638
{
4639
  // The instruction template sequences are declared as static
4640
  // objects and initialized first time the constructor runs.
4641
 
4642
  // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4643
  // to reach the stub if necessary.
4644
  static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4645
    {
4646
      Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4647
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4648
                                                // dcd   R_ARM_ABS32(X)
4649
    };
4650
 
4651
  // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4652
  // available.
4653
  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4654
    {
4655
      Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
4656
      Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4657
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4658
                                                // dcd   R_ARM_ABS32(X)
4659
    };
4660
 
4661
  // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4662
  static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4663
    {
4664
      Insn_template::thumb16_insn(0xb401),      // push {r0}
4665
      Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4666
      Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
4667
      Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4668
      Insn_template::thumb16_insn(0x4760),      // bx   ip
4669
      Insn_template::thumb16_insn(0xbf00),      // nop
4670
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4671
                                                // dcd  R_ARM_ABS32(X)
4672
    };
4673
 
4674
  // V4T Thumb -> Thumb long branch stub. Using the stack is not
4675
  // allowed.
4676
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4677
    {
4678
      Insn_template::thumb16_insn(0x4778),      // bx   pc
4679
      Insn_template::thumb16_insn(0x46c0),      // nop
4680
      Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4681
      Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4682
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4683
                                                // dcd  R_ARM_ABS32(X)
4684
    };
4685
 
4686
  // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4687
  // available.
4688
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4689
    {
4690
      Insn_template::thumb16_insn(0x4778),      // bx   pc
4691
      Insn_template::thumb16_insn(0x46c0),      // nop
4692
      Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
4693
      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4694
                                                // dcd   R_ARM_ABS32(X)
4695
    };
4696
 
4697
  // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4698
  // one, when the destination is close enough.
4699
  static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4700
    {
4701
      Insn_template::thumb16_insn(0x4778),              // bx   pc
4702
      Insn_template::thumb16_insn(0x46c0),              // nop
4703
      Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
4704
    };
4705
 
4706
  // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
4707
  // blx to reach the stub if necessary.
4708
  static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4709
    {
4710
      Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
4711
      Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
4712
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4713
                                                // dcd   R_ARM_REL32(X-4)
4714
    };
4715
 
4716
  // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
4717
  // blx to reach the stub if necessary.  We can not add into pc;
4718
  // it is not guaranteed to mode switch (different in ARMv6 and
4719
  // ARMv7).
4720
  static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4721
    {
4722
      Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
4723
      Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4724
      Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4725
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4726
                                                // dcd   R_ARM_REL32(X)
4727
    };
4728
 
4729
  // V4T ARM -> ARM long branch stub, PIC.
4730
  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4731
    {
4732
      Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
4733
      Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4734
      Insn_template::arm_insn(0xe12fff1c),      // bx    ip
4735
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4736
                                                // dcd   R_ARM_REL32(X)
4737
    };
4738
 
4739
  // V4T Thumb -> ARM long branch stub, PIC.
4740
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4741
    {
4742
      Insn_template::thumb16_insn(0x4778),      // bx   pc
4743
      Insn_template::thumb16_insn(0x46c0),      // nop
4744
      Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
4745
      Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
4746
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4747
                                                // dcd  R_ARM_REL32(X)
4748
    };
4749
 
4750
  // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4751
  // architectures.
4752
  static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4753
    {
4754
      Insn_template::thumb16_insn(0xb401),      // push {r0}
4755
      Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
4756
      Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
4757
      Insn_template::thumb16_insn(0x4484),      // add  ip, r0
4758
      Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
4759
      Insn_template::thumb16_insn(0x4760),      // bx   ip
4760
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4761
                                                // dcd  R_ARM_REL32(X)
4762
    };
4763
 
4764
  // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4765
  // allowed.
4766
  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4767
    {
4768
      Insn_template::thumb16_insn(0x4778),      // bx   pc
4769
      Insn_template::thumb16_insn(0x46c0),      // nop
4770
      Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
4771
      Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
4772
      Insn_template::arm_insn(0xe12fff1c),      // bx   ip
4773
      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4774
                                                // dcd  R_ARM_REL32(X)
4775
    };
4776
 
4777
  // Cortex-A8 erratum-workaround stubs.
4778
 
4779
  // Stub used for conditional branches (which may be beyond +/-1MB away,
4780
  // so we can't use a conditional branch to reach this stub).
4781
 
4782
  // original code:
4783
  //
4784
  //    b<cond> X
4785
  // after:
4786
  //
4787
  static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4788
    {
4789
      Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
4790
      Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
4791
      Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
4792
                                                        //      b.w X
4793
    };
4794
 
4795
  // Stub used for b.w and bl.w instructions.
4796
 
4797
  static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4798
    {
4799
      Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4800
    };
4801
 
4802
  static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4803
    {
4804
      Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
4805
    };
4806
 
4807
  // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
4808
  // instruction (which switches to ARM mode) to point to this stub.  Jump to
4809
  // the real destination using an ARM-mode branch.
4810
  static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
4811
    {
4812
      Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
4813
    };
4814
 
4815
  // Stub used to provide an interworking for R_ARM_V4BX relocation
4816
  // (bx r[n] instruction).
4817
  static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4818
    {
4819
      Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
4820
      Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
4821
      Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
4822
    };
4823
 
4824
  // Fill in the stub template look-up table.  Stub templates are constructed
4825
  // per instance of Stub_factory for fast look-up without locking
4826
  // in a thread-enabled environment.
4827
 
4828
  this->stub_templates_[arm_stub_none] =
4829
    new Stub_template(arm_stub_none, NULL, 0);
4830
 
4831
#define DEF_STUB(x)     \
4832
  do \
4833
    { \
4834
      size_t array_size \
4835
        = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4836
      Stub_type type = arm_stub_##x; \
4837
      this->stub_templates_[type] = \
4838
        new Stub_template(type, elf32_arm_stub_##x, array_size); \
4839
    } \
4840
  while (0);
4841
 
4842
  DEF_STUBS
4843
#undef DEF_STUB
4844
}
4845
 
4846
// Stub_table methods.
4847
 
4848
// Remove all Cortex-A8 stub.
4849
 
4850
template<bool big_endian>
4851
void
4852
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4853
{
4854
  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4855
       p != this->cortex_a8_stubs_.end();
4856
       ++p)
4857
    delete p->second;
4858
  this->cortex_a8_stubs_.clear();
4859
}
4860
 
4861
// Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
4862
 
4863
template<bool big_endian>
4864
void
4865
Stub_table<big_endian>::relocate_stub(
4866
    Stub* stub,
4867
    const Relocate_info<32, big_endian>* relinfo,
4868
    Target_arm<big_endian>* arm_target,
4869
    Output_section* output_section,
4870
    unsigned char* view,
4871
    Arm_address address,
4872
    section_size_type view_size)
4873
{
4874
  const Stub_template* stub_template = stub->stub_template();
4875
  if (stub_template->reloc_count() != 0)
4876
    {
4877
      // Adjust view to cover the stub only.
4878
      section_size_type offset = stub->offset();
4879
      section_size_type stub_size = stub_template->size();
4880
      gold_assert(offset + stub_size <= view_size);
4881
 
4882
      arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4883
                                address + offset, stub_size);
4884
    }
4885
}
4886
 
4887
// Relocate all stubs in this stub table.
4888
 
4889
template<bool big_endian>
4890
void
4891
Stub_table<big_endian>::relocate_stubs(
4892
    const Relocate_info<32, big_endian>* relinfo,
4893
    Target_arm<big_endian>* arm_target,
4894
    Output_section* output_section,
4895
    unsigned char* view,
4896
    Arm_address address,
4897
    section_size_type view_size)
4898
{
4899
  // If we are passed a view bigger than the stub table's.  we need to
4900
  // adjust the view.
4901
  gold_assert(address == this->address()
4902
              && (view_size
4903
                  == static_cast<section_size_type>(this->data_size())));
4904
 
4905
  // Relocate all relocation stubs.
4906
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4907
      p != this->reloc_stubs_.end();
4908
      ++p)
4909
    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4910
                        address, view_size);
4911
 
4912
  // Relocate all Cortex-A8 stubs.
4913
  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4914
       p != this->cortex_a8_stubs_.end();
4915
       ++p)
4916
    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4917
                        address, view_size);
4918
 
4919
  // Relocate all ARM V4BX stubs.
4920
  for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4921
       p != this->arm_v4bx_stubs_.end();
4922
       ++p)
4923
    {
4924
      if (*p != NULL)
4925
        this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4926
                            address, view_size);
4927
    }
4928
}
4929
 
4930
// Write out the stubs to file.
4931
 
4932
template<bool big_endian>
4933
void
4934
Stub_table<big_endian>::do_write(Output_file* of)
4935
{
4936
  off_t offset = this->offset();
4937
  const section_size_type oview_size =
4938
    convert_to_section_size_type(this->data_size());
4939
  unsigned char* const oview = of->get_output_view(offset, oview_size);
4940
 
4941
  // Write relocation stubs.
4942
  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4943
      p != this->reloc_stubs_.end();
4944
      ++p)
4945
    {
4946
      Reloc_stub* stub = p->second;
4947
      Arm_address address = this->address() + stub->offset();
4948
      gold_assert(address
4949
                  == align_address(address,
4950
                                   stub->stub_template()->alignment()));
4951
      stub->write(oview + stub->offset(), stub->stub_template()->size(),
4952
                  big_endian);
4953
    }
4954
 
4955
  // Write Cortex-A8 stubs.
4956
  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4957
       p != this->cortex_a8_stubs_.end();
4958
       ++p)
4959
    {
4960
      Cortex_a8_stub* stub = p->second;
4961
      Arm_address address = this->address() + stub->offset();
4962
      gold_assert(address
4963
                  == align_address(address,
4964
                                   stub->stub_template()->alignment()));
4965
      stub->write(oview + stub->offset(), stub->stub_template()->size(),
4966
                  big_endian);
4967
    }
4968
 
4969
  // Write ARM V4BX relocation stubs.
4970
  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4971
       p != this->arm_v4bx_stubs_.end();
4972
       ++p)
4973
    {
4974
      if (*p == NULL)
4975
        continue;
4976
 
4977
      Arm_address address = this->address() + (*p)->offset();
4978
      gold_assert(address
4979
                  == align_address(address,
4980
                                   (*p)->stub_template()->alignment()));
4981
      (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4982
                  big_endian);
4983
    }
4984
 
4985
  of->write_output_view(this->offset(), oview_size, oview);
4986
}
4987
 
4988
// Update the data size and address alignment of the stub table at the end
4989
// of a relaxation pass.   Return true if either the data size or the
4990
// alignment changed in this relaxation pass.
4991
 
4992
template<bool big_endian>
4993
bool
4994
Stub_table<big_endian>::update_data_size_and_addralign()
4995
{
4996
  // Go over all stubs in table to compute data size and address alignment.
4997
  off_t size = this->reloc_stubs_size_;
4998
  unsigned addralign = this->reloc_stubs_addralign_;
4999
 
5000
  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5001
       p != this->cortex_a8_stubs_.end();
5002
       ++p)
5003
    {
5004
      const Stub_template* stub_template = p->second->stub_template();
5005
      addralign = std::max(addralign, stub_template->alignment());
5006
      size = (align_address(size, stub_template->alignment())
5007
              + stub_template->size());
5008
    }
5009
 
5010
  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5011
       p != this->arm_v4bx_stubs_.end();
5012
       ++p)
5013
    {
5014
      if (*p == NULL)
5015
        continue;
5016
 
5017
      const Stub_template* stub_template = (*p)->stub_template();
5018
      addralign = std::max(addralign, stub_template->alignment());
5019
      size = (align_address(size, stub_template->alignment())
5020
              + stub_template->size());
5021
    }
5022
 
5023
  // Check if either data size or alignment changed in this pass.
5024
  // Update prev_data_size_ and prev_addralign_.  These will be used
5025
  // as the current data size and address alignment for the next pass.
5026
  bool changed = size != this->prev_data_size_;
5027
  this->prev_data_size_ = size;
5028
 
5029
  if (addralign != this->prev_addralign_)
5030
    changed = true;
5031
  this->prev_addralign_ = addralign;
5032
 
5033
  return changed;
5034
}
5035
 
5036
// Finalize the stubs.  This sets the offsets of the stubs within the stub
5037
// table.  It also marks all input sections needing Cortex-A8 workaround.
5038
 
5039
template<bool big_endian>
5040
void
5041
Stub_table<big_endian>::finalize_stubs()
5042
{
5043
  off_t off = this->reloc_stubs_size_;
5044
  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045
       p != this->cortex_a8_stubs_.end();
5046
       ++p)
5047
    {
5048
      Cortex_a8_stub* stub = p->second;
5049
      const Stub_template* stub_template = stub->stub_template();
5050
      uint64_t stub_addralign = stub_template->alignment();
5051
      off = align_address(off, stub_addralign);
5052
      stub->set_offset(off);
5053
      off += stub_template->size();
5054
 
5055
      // Mark input section so that we can determine later if a code section
5056
      // needs the Cortex-A8 workaround quickly.
5057
      Arm_relobj<big_endian>* arm_relobj =
5058
        Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5059
      arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5060
    }
5061
 
5062
  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5063
      p != this->arm_v4bx_stubs_.end();
5064
      ++p)
5065
    {
5066
      if (*p == NULL)
5067
        continue;
5068
 
5069
      const Stub_template* stub_template = (*p)->stub_template();
5070
      uint64_t stub_addralign = stub_template->alignment();
5071
      off = align_address(off, stub_addralign);
5072
      (*p)->set_offset(off);
5073
      off += stub_template->size();
5074
    }
5075
 
5076
  gold_assert(off <= this->prev_data_size_);
5077
}
5078
 
5079
// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5080
// and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
5081
// of the address range seen by the linker.
5082
 
5083
template<bool big_endian>
5084
void
5085
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5086
    Target_arm<big_endian>* arm_target,
5087
    unsigned char* view,
5088
    Arm_address view_address,
5089
    section_size_type view_size)
5090
{
5091
  // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5092
  for (Cortex_a8_stub_list::const_iterator p =
5093
         this->cortex_a8_stubs_.lower_bound(view_address);
5094
       ((p != this->cortex_a8_stubs_.end())
5095
        && (p->first < (view_address + view_size)));
5096
       ++p)
5097
    {
5098
      // We do not store the THUMB bit in the LSB of either the branch address
5099
      // or the stub offset.  There is no need to strip the LSB.
5100
      Arm_address branch_address = p->first;
5101
      const Cortex_a8_stub* stub = p->second;
5102
      Arm_address stub_address = this->address() + stub->offset();
5103
 
5104
      // Offset of the branch instruction relative to this view.
5105
      section_size_type offset =
5106
        convert_to_section_size_type(branch_address - view_address);
5107
      gold_assert((offset + 4) <= view_size);
5108
 
5109
      arm_target->apply_cortex_a8_workaround(stub, stub_address,
5110
                                             view + offset, branch_address);
5111
    }
5112
}
5113
 
5114
// Arm_input_section methods.
5115
 
5116
// Initialize an Arm_input_section.
5117
 
5118
template<bool big_endian>
5119
void
5120
Arm_input_section<big_endian>::init()
5121
{
5122
  Relobj* relobj = this->relobj();
5123
  unsigned int shndx = this->shndx();
5124
 
5125
  // We have to cache original size, alignment and contents to avoid locking
5126
  // the original file.
5127
  this->original_addralign_ =
5128
    convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5129
 
5130
  // This is not efficient but we expect only a small number of relaxed
5131
  // input sections for stubs.
5132
  section_size_type section_size;
5133
  const unsigned char* section_contents =
5134
    relobj->section_contents(shndx, &section_size, false);
5135
  this->original_size_ =
5136
    convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
5137
 
5138
  gold_assert(this->original_contents_ == NULL);
5139
  this->original_contents_ = new unsigned char[section_size];
5140
  memcpy(this->original_contents_, section_contents, section_size);
5141
 
5142
  // We want to make this look like the original input section after
5143
  // output sections are finalized.
5144
  Output_section* os = relobj->output_section(shndx);
5145
  off_t offset = relobj->output_section_offset(shndx);
5146
  gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5147
  this->set_address(os->address() + offset);
5148
  this->set_file_offset(os->offset() + offset);
5149
 
5150
  this->set_current_data_size(this->original_size_);
5151
  this->finalize_data_size();
5152
}
5153
 
5154
template<bool big_endian>
5155
void
5156
Arm_input_section<big_endian>::do_write(Output_file* of)
5157
{
5158
  // We have to write out the original section content.
5159
  gold_assert(this->original_contents_ != NULL);
5160
  of->write(this->offset(), this->original_contents_,
5161
            this->original_size_);
5162
 
5163
  // If this owns a stub table and it is not empty, write it.
5164
  if (this->is_stub_table_owner() && !this->stub_table_->empty())
5165
    this->stub_table_->write(of);
5166
}
5167
 
5168
// Finalize data size.
5169
 
5170
template<bool big_endian>
5171
void
5172
Arm_input_section<big_endian>::set_final_data_size()
5173
{
5174
  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5175
 
5176
  if (this->is_stub_table_owner())
5177
    {
5178
      this->stub_table_->finalize_data_size();
5179
      off = align_address(off, this->stub_table_->addralign());
5180
      off += this->stub_table_->data_size();
5181
    }
5182
  this->set_data_size(off);
5183
}
5184
 
5185
// Reset address and file offset.
5186
 
5187
template<bool big_endian>
5188
void
5189
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5190
{
5191
  // Size of the original input section contents.
5192
  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5193
 
5194
  // If this is a stub table owner, account for the stub table size.
5195
  if (this->is_stub_table_owner())
5196
    {
5197
      Stub_table<big_endian>* stub_table = this->stub_table_;
5198
 
5199
      // Reset the stub table's address and file offset.  The
5200
      // current data size for child will be updated after that.
5201
      stub_table_->reset_address_and_file_offset();
5202
      off = align_address(off, stub_table_->addralign());
5203
      off += stub_table->current_data_size();
5204
    }
5205
 
5206
  this->set_current_data_size(off);
5207
}
5208
 
5209
// Arm_exidx_cantunwind methods.
5210
 
5211
// Write this to Output file OF for a fixed endianness.
5212
 
5213
template<bool big_endian>
5214
void
5215
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5216
{
5217
  off_t offset = this->offset();
5218
  const section_size_type oview_size = 8;
5219
  unsigned char* const oview = of->get_output_view(offset, oview_size);
5220
 
5221
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5222
  Valtype* wv = reinterpret_cast<Valtype*>(oview);
5223
 
5224
  Output_section* os = this->relobj_->output_section(this->shndx_);
5225
  gold_assert(os != NULL);
5226
 
5227
  Arm_relobj<big_endian>* arm_relobj =
5228
    Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5229
  Arm_address output_offset =
5230
    arm_relobj->get_output_section_offset(this->shndx_);
5231
  Arm_address section_start;
5232
  section_size_type section_size;
5233
 
5234
  // Find out the end of the text section referred by this.
5235
  if (output_offset != Arm_relobj<big_endian>::invalid_address)
5236
    {
5237
      section_start = os->address() + output_offset;
5238
      const Arm_exidx_input_section* exidx_input_section =
5239
        arm_relobj->exidx_input_section_by_link(this->shndx_);
5240
      gold_assert(exidx_input_section != NULL);
5241
      section_size =
5242
        convert_to_section_size_type(exidx_input_section->text_size());
5243
    }
5244
  else
5245
    {
5246
      // Currently this only happens for a relaxed section.
5247
      const Output_relaxed_input_section* poris =
5248
        os->find_relaxed_input_section(this->relobj_, this->shndx_);
5249
      gold_assert(poris != NULL);
5250
      section_start = poris->address();
5251
      section_size = convert_to_section_size_type(poris->data_size());
5252
    }
5253
 
5254
  // We always append this to the end of an EXIDX section.
5255
  Arm_address output_address = section_start + section_size;
5256
 
5257
  // Write out the entry.  The first word either points to the beginning
5258
  // or after the end of a text section.  The second word is the special
5259
  // EXIDX_CANTUNWIND value.
5260
  uint32_t prel31_offset = output_address - this->address();
5261
  if (utils::has_overflow<31>(offset))
5262
    gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5263
  elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
5264
  elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5265
 
5266
  of->write_output_view(this->offset(), oview_size, oview);
5267
}
5268
 
5269
// Arm_exidx_merged_section methods.
5270
 
5271
// Constructor for Arm_exidx_merged_section.
5272
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5273
// SECTION_OFFSET_MAP points to a section offset map describing how
5274
// parts of the input section are mapped to output.  DELETED_BYTES is
5275
// the number of bytes deleted from the EXIDX input section.
5276
 
5277
Arm_exidx_merged_section::Arm_exidx_merged_section(
5278
    const Arm_exidx_input_section& exidx_input_section,
5279
    const Arm_exidx_section_offset_map& section_offset_map,
5280
    uint32_t deleted_bytes)
5281
  : Output_relaxed_input_section(exidx_input_section.relobj(),
5282
                                 exidx_input_section.shndx(),
5283
                                 exidx_input_section.addralign()),
5284
    exidx_input_section_(exidx_input_section),
5285
    section_offset_map_(section_offset_map)
5286
{
5287
  // If we retain or discard the whole EXIDX input section,  we would
5288
  // not be here.
5289
  gold_assert(deleted_bytes != 0
5290
              && deleted_bytes != this->exidx_input_section_.size());
5291
 
5292
  // Fix size here so that we do not need to implement set_final_data_size.
5293
  uint32_t size = exidx_input_section.size() - deleted_bytes;
5294
  this->set_data_size(size);
5295
  this->fix_data_size();
5296
 
5297
  // Allocate buffer for section contents and build contents.
5298
  this->section_contents_ = new unsigned char[size];
5299
}
5300
 
5301
// Build the contents of a merged EXIDX output section.
5302
 
5303
void
5304
Arm_exidx_merged_section::build_contents(
5305
    const unsigned char* original_contents,
5306
    section_size_type original_size)
5307
{
5308
  // Go over spans of input offsets and write only those that are not
5309
  // discarded.
5310
  section_offset_type in_start = 0;
5311
  section_offset_type out_start = 0;
5312
  section_offset_type in_max =
5313
    convert_types<section_offset_type>(original_size);
5314
  section_offset_type out_max =
5315
    convert_types<section_offset_type>(this->data_size());
5316
  for (Arm_exidx_section_offset_map::const_iterator p =
5317
        this->section_offset_map_.begin();
5318
      p != this->section_offset_map_.end();
5319
      ++p)
5320
    {
5321
      section_offset_type in_end = p->first;
5322
      gold_assert(in_end >= in_start);
5323
      section_offset_type out_end = p->second;
5324
      size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5325
      if (out_end != -1)
5326
        {
5327
          size_t out_chunk_size =
5328
            convert_types<size_t>(out_end - out_start + 1);
5329
 
5330
          gold_assert(out_chunk_size == in_chunk_size
5331
                      && in_end < in_max && out_end < out_max);
5332
 
5333
          memcpy(this->section_contents_ + out_start,
5334
                 original_contents + in_start,
5335
                 out_chunk_size);
5336
          out_start += out_chunk_size;
5337
        }
5338
      in_start += in_chunk_size;
5339
    }
5340
}
5341
 
5342
// Given an input OBJECT, an input section index SHNDX within that
5343
// object, and an OFFSET relative to the start of that input
5344
// section, return whether or not the corresponding offset within
5345
// the output section is known.  If this function returns true, it
5346
// sets *POUTPUT to the output offset.  The value -1 indicates that
5347
// this input offset is being discarded.
5348
 
5349
bool
5350
Arm_exidx_merged_section::do_output_offset(
5351
    const Relobj* relobj,
5352
    unsigned int shndx,
5353
    section_offset_type offset,
5354
    section_offset_type* poutput) const
5355
{
5356
  // We only handle offsets for the original EXIDX input section.
5357
  if (relobj != this->exidx_input_section_.relobj()
5358
      || shndx != this->exidx_input_section_.shndx())
5359
    return false;
5360
 
5361
  section_offset_type section_size =
5362
    convert_types<section_offset_type>(this->exidx_input_section_.size());
5363
  if (offset < 0 || offset >= section_size)
5364
    // Input offset is out of valid range.
5365
    *poutput = -1;
5366
  else
5367
    {
5368
      // We need to look up the section offset map to determine the output
5369
      // offset.  Find the reference point in map that is first offset
5370
      // bigger than or equal to this offset.
5371
      Arm_exidx_section_offset_map::const_iterator p =
5372
        this->section_offset_map_.lower_bound(offset);
5373
 
5374
      // The section offset maps are build such that this should not happen if
5375
      // input offset is in the valid range.
5376
      gold_assert(p != this->section_offset_map_.end());
5377
 
5378
      // We need to check if this is dropped.
5379
     section_offset_type ref = p->first;
5380
     section_offset_type mapped_ref = p->second;
5381
 
5382
      if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5383
        // Offset is present in output.
5384
        *poutput = mapped_ref + (offset - ref);
5385
      else
5386
        // Offset is discarded owing to EXIDX entry merging.
5387
        *poutput = -1;
5388
    }
5389
 
5390
  return true;
5391
}
5392
 
5393
// Write this to output file OF.
5394
 
5395
void
5396
Arm_exidx_merged_section::do_write(Output_file* of)
5397
{
5398
  off_t offset = this->offset();
5399
  const section_size_type oview_size = this->data_size();
5400
  unsigned char* const oview = of->get_output_view(offset, oview_size);
5401
 
5402
  Output_section* os = this->relobj()->output_section(this->shndx());
5403
  gold_assert(os != NULL);
5404
 
5405
  memcpy(oview, this->section_contents_, oview_size);
5406
  of->write_output_view(this->offset(), oview_size, oview);
5407
}
5408
 
5409
// Arm_exidx_fixup methods.
5410
 
5411
// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5412
// is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
5413
// points to the end of the last seen EXIDX section.
5414
 
5415
void
5416
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5417
{
5418
  if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5419
      && this->last_input_section_ != NULL)
5420
    {
5421
      Relobj* relobj = this->last_input_section_->relobj();
5422
      unsigned int text_shndx = this->last_input_section_->link();
5423
      Arm_exidx_cantunwind* cantunwind =
5424
        new Arm_exidx_cantunwind(relobj, text_shndx);
5425
      this->exidx_output_section_->add_output_section_data(cantunwind);
5426
      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5427
    }
5428
}
5429
 
5430
// Process an EXIDX section entry in input.  Return whether this entry
5431
// can be deleted in the output.  SECOND_WORD in the second word of the
5432
// EXIDX entry.
5433
 
5434
bool
5435
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5436
{
5437
  bool delete_entry;
5438
  if (second_word == elfcpp::EXIDX_CANTUNWIND)
5439
    {
5440
      // Merge if previous entry is also an EXIDX_CANTUNWIND.
5441
      delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5442
      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5443
    }
5444
  else if ((second_word & 0x80000000) != 0)
5445
    {
5446
      // Inlined unwinding data.  Merge if equal to previous.
5447
      delete_entry = (merge_exidx_entries_
5448
                      && this->last_unwind_type_ == UT_INLINED_ENTRY
5449
                      && this->last_inlined_entry_ == second_word);
5450
      this->last_unwind_type_ = UT_INLINED_ENTRY;
5451
      this->last_inlined_entry_ = second_word;
5452
    }
5453
  else
5454
    {
5455
      // Normal table entry.  In theory we could merge these too,
5456
      // but duplicate entries are likely to be much less common.
5457
      delete_entry = false;
5458
      this->last_unwind_type_ = UT_NORMAL_ENTRY;
5459
    }
5460
  return delete_entry;
5461
}
5462
 
5463
// Update the current section offset map during EXIDX section fix-up.
5464
// If there is no map, create one.  INPUT_OFFSET is the offset of a
5465
// reference point, DELETED_BYTES is the number of deleted by in the
5466
// section so far.  If DELETE_ENTRY is true, the reference point and
5467
// all offsets after the previous reference point are discarded.
5468
 
5469
void
5470
Arm_exidx_fixup::update_offset_map(
5471
    section_offset_type input_offset,
5472
    section_size_type deleted_bytes,
5473
    bool delete_entry)
5474
{
5475
  if (this->section_offset_map_ == NULL)
5476
    this->section_offset_map_ = new Arm_exidx_section_offset_map();
5477
  section_offset_type output_offset;
5478
  if (delete_entry)
5479
    output_offset = Arm_exidx_input_section::invalid_offset;
5480
  else
5481
    output_offset = input_offset - deleted_bytes;
5482
  (*this->section_offset_map_)[input_offset] = output_offset;
5483
}
5484
 
5485
// Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
5486
// bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
5487
// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5488
// If some entries are merged, also store a pointer to a newly created
5489
// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
5490
// owns the map and is responsible for releasing it after use.
5491
 
5492
template<bool big_endian>
5493
uint32_t
5494
Arm_exidx_fixup::process_exidx_section(
5495
    const Arm_exidx_input_section* exidx_input_section,
5496
    const unsigned char* section_contents,
5497
    section_size_type section_size,
5498
    Arm_exidx_section_offset_map** psection_offset_map)
5499
{
5500
  Relobj* relobj = exidx_input_section->relobj();
5501
  unsigned shndx = exidx_input_section->shndx();
5502
 
5503
  if ((section_size % 8) != 0)
5504
    {
5505
      // Something is wrong with this section.  Better not touch it.
5506
      gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5507
                 relobj->name().c_str(), shndx);
5508
      this->last_input_section_ = exidx_input_section;
5509
      this->last_unwind_type_ = UT_NONE;
5510
      return 0;
5511
    }
5512
 
5513
  uint32_t deleted_bytes = 0;
5514
  bool prev_delete_entry = false;
5515
  gold_assert(this->section_offset_map_ == NULL);
5516
 
5517
  for (section_size_type i = 0; i < section_size; i += 8)
5518
    {
5519
      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5520
      const Valtype* wv =
5521
          reinterpret_cast<const Valtype*>(section_contents + i + 4);
5522
      uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5523
 
5524
      bool delete_entry = this->process_exidx_entry(second_word);
5525
 
5526
      // Entry deletion causes changes in output offsets.  We use a std::map
5527
      // to record these.  And entry (x, y) means input offset x
5528
      // is mapped to output offset y.  If y is invalid_offset, then x is
5529
      // dropped in the output.  Because of the way std::map::lower_bound
5530
      // works, we record the last offset in a region w.r.t to keeping or
5531
      // dropping.  If there is no entry (x0, y0) for an input offset x0,
5532
      // the output offset y0 of it is determined by the output offset y1 of
5533
      // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5534
      // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
5535
      // y0 is also -1.
5536
      if (delete_entry != prev_delete_entry && i != 0)
5537
        this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5538
 
5539
      // Update total deleted bytes for this entry.
5540
      if (delete_entry)
5541
        deleted_bytes += 8;
5542
 
5543
      prev_delete_entry = delete_entry;
5544
    }
5545
 
5546
  // If section offset map is not NULL, make an entry for the end of
5547
  // section.
5548
  if (this->section_offset_map_ != NULL)
5549
    update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5550
 
5551
  *psection_offset_map = this->section_offset_map_;
5552
  this->section_offset_map_ = NULL;
5553
  this->last_input_section_ = exidx_input_section;
5554
 
5555
  // Set the first output text section so that we can link the EXIDX output
5556
  // section to it.  Ignore any EXIDX input section that is completely merged.
5557
  if (this->first_output_text_section_ == NULL
5558
      && deleted_bytes != section_size)
5559
    {
5560
      unsigned int link = exidx_input_section->link();
5561
      Output_section* os = relobj->output_section(link);
5562
      gold_assert(os != NULL);
5563
      this->first_output_text_section_ = os;
5564
    }
5565
 
5566
  return deleted_bytes;
5567
}
5568
 
5569
// Arm_output_section methods.
5570
 
5571
// Create a stub group for input sections from BEGIN to END.  OWNER
5572
// points to the input section to be the owner a new stub table.
5573
 
5574
template<bool big_endian>
5575
void
5576
Arm_output_section<big_endian>::create_stub_group(
5577
  Input_section_list::const_iterator begin,
5578
  Input_section_list::const_iterator end,
5579
  Input_section_list::const_iterator owner,
5580
  Target_arm<big_endian>* target,
5581
  std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5582
  const Task* task)
5583
{
5584
  // We use a different kind of relaxed section in an EXIDX section.
5585
  // The static casting from Output_relaxed_input_section to
5586
  // Arm_input_section is invalid in an EXIDX section.  We are okay
5587
  // because we should not be calling this for an EXIDX section. 
5588
  gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5589
 
5590
  // Currently we convert ordinary input sections into relaxed sections only
5591
  // at this point but we may want to support creating relaxed input section
5592
  // very early.  So we check here to see if owner is already a relaxed
5593
  // section.
5594
 
5595
  Arm_input_section<big_endian>* arm_input_section;
5596
  if (owner->is_relaxed_input_section())
5597
    {
5598
      arm_input_section =
5599
        Arm_input_section<big_endian>::as_arm_input_section(
5600
          owner->relaxed_input_section());
5601
    }
5602
  else
5603
    {
5604
      gold_assert(owner->is_input_section());
5605
      // Create a new relaxed input section.  We need to lock the original
5606
      // file.
5607
      Task_lock_obj<Object> tl(task, owner->relobj());
5608
      arm_input_section =
5609
        target->new_arm_input_section(owner->relobj(), owner->shndx());
5610
      new_relaxed_sections->push_back(arm_input_section);
5611
    }
5612
 
5613
  // Create a stub table.
5614
  Stub_table<big_endian>* stub_table =
5615
    target->new_stub_table(arm_input_section);
5616
 
5617
  arm_input_section->set_stub_table(stub_table);
5618
 
5619
  Input_section_list::const_iterator p = begin;
5620
  Input_section_list::const_iterator prev_p;
5621
 
5622
  // Look for input sections or relaxed input sections in [begin ... end].
5623
  do
5624
    {
5625
      if (p->is_input_section() || p->is_relaxed_input_section())
5626
        {
5627
          // The stub table information for input sections live
5628
          // in their objects.
5629
          Arm_relobj<big_endian>* arm_relobj =
5630
            Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5631
          arm_relobj->set_stub_table(p->shndx(), stub_table);
5632
        }
5633
      prev_p = p++;
5634
    }
5635
  while (prev_p != end);
5636
}
5637
 
5638
// Group input sections for stub generation.  GROUP_SIZE is roughly the limit
5639
// of stub groups.  We grow a stub group by adding input section until the
5640
// size is just below GROUP_SIZE.  The last input section will be converted
5641
// into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5642
// input section after the stub table, effectively double the group size.
5643
// 
5644
// This is similar to the group_sections() function in elf32-arm.c but is
5645
// implemented differently.
5646
 
5647
template<bool big_endian>
5648
void
5649
Arm_output_section<big_endian>::group_sections(
5650
    section_size_type group_size,
5651
    bool stubs_always_after_branch,
5652
    Target_arm<big_endian>* target,
5653
    const Task* task)
5654
{
5655
  // We only care about sections containing code.
5656
  if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5657
    return;
5658
 
5659
  // States for grouping.
5660
  typedef enum
5661
  {
5662
    // No group is being built.
5663
    NO_GROUP,
5664
    // A group is being built but the stub table is not found yet.
5665
    // We keep group a stub group until the size is just under GROUP_SIZE.
5666
    // The last input section in the group will be used as the stub table.
5667
    FINDING_STUB_SECTION,
5668
    // A group is being built and we have already found a stub table.
5669
    // We enter this state to grow a stub group by adding input section
5670
    // after the stub table.  This effectively doubles the group size.
5671
    HAS_STUB_SECTION
5672
  } State;
5673
 
5674
  // Any newly created relaxed sections are stored here.
5675
  std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5676
 
5677
  State state = NO_GROUP;
5678
  section_size_type off = 0;
5679
  section_size_type group_begin_offset = 0;
5680
  section_size_type group_end_offset = 0;
5681
  section_size_type stub_table_end_offset = 0;
5682
  Input_section_list::const_iterator group_begin =
5683
    this->input_sections().end();
5684
  Input_section_list::const_iterator stub_table =
5685
    this->input_sections().end();
5686
  Input_section_list::const_iterator group_end = this->input_sections().end();
5687
  for (Input_section_list::const_iterator p = this->input_sections().begin();
5688
       p != this->input_sections().end();
5689
       ++p)
5690
    {
5691
      section_size_type section_begin_offset =
5692
        align_address(off, p->addralign());
5693
      section_size_type section_end_offset =
5694
        section_begin_offset + p->data_size();
5695
 
5696
      // Check to see if we should group the previously seen sections.
5697
      switch (state)
5698
        {
5699
        case NO_GROUP:
5700
          break;
5701
 
5702
        case FINDING_STUB_SECTION:
5703
          // Adding this section makes the group larger than GROUP_SIZE.
5704
          if (section_end_offset - group_begin_offset >= group_size)
5705
            {
5706
              if (stubs_always_after_branch)
5707
                {
5708
                  gold_assert(group_end != this->input_sections().end());
5709
                  this->create_stub_group(group_begin, group_end, group_end,
5710
                                          target, &new_relaxed_sections,
5711
                                          task);
5712
                  state = NO_GROUP;
5713
                }
5714
              else
5715
                {
5716
                  // But wait, there's more!  Input sections up to
5717
                  // stub_group_size bytes after the stub table can be
5718
                  // handled by it too.
5719
                  state = HAS_STUB_SECTION;
5720
                  stub_table = group_end;
5721
                  stub_table_end_offset = group_end_offset;
5722
                }
5723
            }
5724
            break;
5725
 
5726
        case HAS_STUB_SECTION:
5727
          // Adding this section makes the post stub-section group larger
5728
          // than GROUP_SIZE.
5729
          if (section_end_offset - stub_table_end_offset >= group_size)
5730
           {
5731
             gold_assert(group_end != this->input_sections().end());
5732
             this->create_stub_group(group_begin, group_end, stub_table,
5733
                                     target, &new_relaxed_sections, task);
5734
             state = NO_GROUP;
5735
           }
5736
           break;
5737
 
5738
          default:
5739
            gold_unreachable();
5740
        }
5741
 
5742
      // If we see an input section and currently there is no group, start
5743
      // a new one.  Skip any empty sections.  We look at the data size
5744
      // instead of calling p->relobj()->section_size() to avoid locking.
5745
      if ((p->is_input_section() || p->is_relaxed_input_section())
5746
          && (p->data_size() != 0))
5747
        {
5748
          if (state == NO_GROUP)
5749
            {
5750
              state = FINDING_STUB_SECTION;
5751
              group_begin = p;
5752
              group_begin_offset = section_begin_offset;
5753
            }
5754
 
5755
          // Keep track of the last input section seen.
5756
          group_end = p;
5757
          group_end_offset = section_end_offset;
5758
        }
5759
 
5760
      off = section_end_offset;
5761
    }
5762
 
5763
  // Create a stub group for any ungrouped sections.
5764
  if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5765
    {
5766
      gold_assert(group_end != this->input_sections().end());
5767
      this->create_stub_group(group_begin, group_end,
5768
                              (state == FINDING_STUB_SECTION
5769
                               ? group_end
5770
                               : stub_table),
5771
                               target, &new_relaxed_sections, task);
5772
    }
5773
 
5774
  // Convert input section into relaxed input section in a batch.
5775
  if (!new_relaxed_sections.empty())
5776
    this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5777
 
5778
  // Update the section offsets
5779
  for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5780
    {
5781
      Arm_relobj<big_endian>* arm_relobj =
5782
        Arm_relobj<big_endian>::as_arm_relobj(
5783
          new_relaxed_sections[i]->relobj());
5784
      unsigned int shndx = new_relaxed_sections[i]->shndx();
5785
      // Tell Arm_relobj that this input section is converted.
5786
      arm_relobj->convert_input_section_to_relaxed_section(shndx);
5787
    }
5788
}
5789
 
5790
// Append non empty text sections in this to LIST in ascending
5791
// order of their position in this.
5792
 
5793
template<bool big_endian>
5794
void
5795
Arm_output_section<big_endian>::append_text_sections_to_list(
5796
    Text_section_list* list)
5797
{
5798
  gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5799
 
5800
  for (Input_section_list::const_iterator p = this->input_sections().begin();
5801
       p != this->input_sections().end();
5802
       ++p)
5803
    {
5804
      // We only care about plain or relaxed input sections.  We also
5805
      // ignore any merged sections.
5806
      if ((p->is_input_section() || p->is_relaxed_input_section())
5807
          && p->data_size() != 0)
5808
        list->push_back(Text_section_list::value_type(p->relobj(),
5809
                                                      p->shndx()));
5810
    }
5811
}
5812
 
5813
template<bool big_endian>
5814
void
5815
Arm_output_section<big_endian>::fix_exidx_coverage(
5816
    Layout* layout,
5817
    const Text_section_list& sorted_text_sections,
5818
    Symbol_table* symtab,
5819
    bool merge_exidx_entries,
5820
    const Task* task)
5821
{
5822
  // We should only do this for the EXIDX output section.
5823
  gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5824
 
5825
  // We don't want the relaxation loop to undo these changes, so we discard
5826
  // the current saved states and take another one after the fix-up.
5827
  this->discard_states();
5828
 
5829
  // Remove all input sections.
5830
  uint64_t address = this->address();
5831
  typedef std::list<Output_section::Input_section> Input_section_list;
5832
  Input_section_list input_sections;
5833
  this->reset_address_and_file_offset();
5834
  this->get_input_sections(address, std::string(""), &input_sections);
5835
 
5836
  if (!this->input_sections().empty())
5837
    gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5838
 
5839
  // Go through all the known input sections and record them.
5840
  typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5841
  typedef Unordered_map<Section_id, const Output_section::Input_section*,
5842
                        Section_id_hash> Text_to_exidx_map;
5843
  Text_to_exidx_map text_to_exidx_map;
5844
  for (Input_section_list::const_iterator p = input_sections.begin();
5845
       p != input_sections.end();
5846
       ++p)
5847
    {
5848
      // This should never happen.  At this point, we should only see
5849
      // plain EXIDX input sections.
5850
      gold_assert(!p->is_relaxed_input_section());
5851
      text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
5852
    }
5853
 
5854
  Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
5855
 
5856
  // Go over the sorted text sections.
5857
  typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5858
  Section_id_set processed_input_sections;
5859
  for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5860
       p != sorted_text_sections.end();
5861
       ++p)
5862
    {
5863
      Relobj* relobj = p->first;
5864
      unsigned int shndx = p->second;
5865
 
5866
      Arm_relobj<big_endian>* arm_relobj =
5867
         Arm_relobj<big_endian>::as_arm_relobj(relobj);
5868
      const Arm_exidx_input_section* exidx_input_section =
5869
         arm_relobj->exidx_input_section_by_link(shndx);
5870
 
5871
      // If this text section has no EXIDX section or if the EXIDX section
5872
      // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5873
      // of the last seen EXIDX section.
5874
      if (exidx_input_section == NULL || exidx_input_section->has_errors())
5875
        {
5876
          exidx_fixup.add_exidx_cantunwind_as_needed();
5877
          continue;
5878
        }
5879
 
5880
      Relobj* exidx_relobj = exidx_input_section->relobj();
5881
      unsigned int exidx_shndx = exidx_input_section->shndx();
5882
      Section_id sid(exidx_relobj, exidx_shndx);
5883
      Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5884
      if (iter == text_to_exidx_map.end())
5885
        {
5886
          // This is odd.  We have not seen this EXIDX input section before.
5887
          // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
5888
          // issue a warning instead.  We assume the user knows what he
5889
          // or she is doing.  Otherwise, this is an error.
5890
          if (layout->script_options()->saw_sections_clause())
5891
            gold_warning(_("unwinding may not work because EXIDX input section"
5892
                           " %u of %s is not in EXIDX output section"),
5893
                         exidx_shndx, exidx_relobj->name().c_str());
5894
          else
5895
            gold_error(_("unwinding may not work because EXIDX input section"
5896
                         " %u of %s is not in EXIDX output section"),
5897
                       exidx_shndx, exidx_relobj->name().c_str());
5898
 
5899
          exidx_fixup.add_exidx_cantunwind_as_needed();
5900
          continue;
5901
        }
5902
 
5903
      // We need to access the contents of the EXIDX section, lock the
5904
      // object here.
5905
      Task_lock_obj<Object> tl(task, exidx_relobj);
5906
      section_size_type exidx_size;
5907
      const unsigned char* exidx_contents =
5908
        exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5909
 
5910
      // Fix up coverage and append input section to output data list.
5911
      Arm_exidx_section_offset_map* section_offset_map = NULL;
5912
      uint32_t deleted_bytes =
5913
        exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5914
                                                      exidx_contents,
5915
                                                      exidx_size,
5916
                                                      &section_offset_map);
5917
 
5918
      if (deleted_bytes == exidx_input_section->size())
5919
        {
5920
          // The whole EXIDX section got merged.  Remove it from output.
5921
          gold_assert(section_offset_map == NULL);
5922
          exidx_relobj->set_output_section(exidx_shndx, NULL);
5923
 
5924
          // All local symbols defined in this input section will be dropped.
5925
          // We need to adjust output local symbol count.
5926
          arm_relobj->set_output_local_symbol_count_needs_update();
5927
        }
5928
      else if (deleted_bytes > 0)
5929
        {
5930
          // Some entries are merged.  We need to convert this EXIDX input
5931
          // section into a relaxed section.
5932
          gold_assert(section_offset_map != NULL);
5933
 
5934
          Arm_exidx_merged_section* merged_section =
5935
            new Arm_exidx_merged_section(*exidx_input_section,
5936
                                         *section_offset_map, deleted_bytes);
5937
          merged_section->build_contents(exidx_contents, exidx_size);
5938
 
5939
          const std::string secname = exidx_relobj->section_name(exidx_shndx);
5940
          this->add_relaxed_input_section(layout, merged_section, secname);
5941
          arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
5942
 
5943
          // All local symbols defined in discarded portions of this input
5944
          // section will be dropped.  We need to adjust output local symbol
5945
          // count.
5946
          arm_relobj->set_output_local_symbol_count_needs_update();
5947
        }
5948
      else
5949
        {
5950
          // Just add back the EXIDX input section.
5951
          gold_assert(section_offset_map == NULL);
5952
          const Output_section::Input_section* pis = iter->second;
5953
          gold_assert(pis->is_input_section());
5954
          this->add_script_input_section(*pis);
5955
        }
5956
 
5957
      processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5958
    }
5959
 
5960
  // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5961
  exidx_fixup.add_exidx_cantunwind_as_needed();
5962
 
5963
  // Remove any known EXIDX input sections that are not processed.
5964
  for (Input_section_list::const_iterator p = input_sections.begin();
5965
       p != input_sections.end();
5966
       ++p)
5967
    {
5968
      if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5969
          == processed_input_sections.end())
5970
        {
5971
          // We discard a known EXIDX section because its linked
5972
          // text section has been folded by ICF.  We also discard an
5973
          // EXIDX section with error, the output does not matter in this
5974
          // case.  We do this to avoid triggering asserts.
5975
          Arm_relobj<big_endian>* arm_relobj =
5976
            Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5977
          const Arm_exidx_input_section* exidx_input_section =
5978
            arm_relobj->exidx_input_section_by_shndx(p->shndx());
5979
          gold_assert(exidx_input_section != NULL);
5980
          if (!exidx_input_section->has_errors())
5981
            {
5982
              unsigned int text_shndx = exidx_input_section->link();
5983
              gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5984
            }
5985
 
5986
          // Remove this from link.  We also need to recount the
5987
          // local symbols.
5988
          p->relobj()->set_output_section(p->shndx(), NULL);
5989
          arm_relobj->set_output_local_symbol_count_needs_update();
5990
        }
5991
    }
5992
 
5993
  // Link exidx output section to the first seen output section and
5994
  // set correct entry size.
5995
  this->set_link_section(exidx_fixup.first_output_text_section());
5996
  this->set_entsize(8);
5997
 
5998
  // Make changes permanent.
5999
  this->save_states();
6000
  this->set_section_offsets_need_adjustment();
6001
}
6002
 
6003
// Link EXIDX output sections to text output sections.
6004
 
6005
template<bool big_endian>
6006
void
6007
Arm_output_section<big_endian>::set_exidx_section_link()
6008
{
6009
  gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6010
  if (!this->input_sections().empty())
6011
    {
6012
      Input_section_list::const_iterator p = this->input_sections().begin();
6013
      Arm_relobj<big_endian>* arm_relobj =
6014
        Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6015
      unsigned exidx_shndx = p->shndx();
6016
      const Arm_exidx_input_section* exidx_input_section =
6017
        arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6018
      gold_assert(exidx_input_section != NULL);
6019
      unsigned int text_shndx = exidx_input_section->link();
6020
      Output_section* os = arm_relobj->output_section(text_shndx);
6021
      this->set_link_section(os);
6022
    }
6023
}
6024
 
6025
// Arm_relobj methods.
6026
 
6027
// Determine if an input section is scannable for stub processing.  SHDR is
6028
// the header of the section and SHNDX is the section index.  OS is the output
6029
// section for the input section and SYMTAB is the global symbol table used to
6030
// look up ICF information.
6031
 
6032
template<bool big_endian>
6033
bool
6034
Arm_relobj<big_endian>::section_is_scannable(
6035
    const elfcpp::Shdr<32, big_endian>& shdr,
6036
    unsigned int shndx,
6037
    const Output_section* os,
6038
    const Symbol_table* symtab)
6039
{
6040
  // Skip any empty sections, unallocated sections or sections whose
6041
  // type are not SHT_PROGBITS.
6042
  if (shdr.get_sh_size() == 0
6043
      || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6044
      || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6045
    return false;
6046
 
6047
  // Skip any discarded or ICF'ed sections.
6048
  if (os == NULL || symtab->is_section_folded(this, shndx))
6049
    return false;
6050
 
6051
  // If this requires special offset handling, check to see if it is
6052
  // a relaxed section.  If this is not, then it is a merged section that
6053
  // we cannot handle.
6054
  if (this->is_output_section_offset_invalid(shndx))
6055
    {
6056
      const Output_relaxed_input_section* poris =
6057
        os->find_relaxed_input_section(this, shndx);
6058
      if (poris == NULL)
6059
        return false;
6060
    }
6061
 
6062
  return true;
6063
}
6064
 
6065
// Determine if we want to scan the SHNDX-th section for relocation stubs.
6066
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6067
 
6068
template<bool big_endian>
6069
bool
6070
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6071
    const elfcpp::Shdr<32, big_endian>& shdr,
6072
    const Relobj::Output_sections& out_sections,
6073
    const Symbol_table* symtab,
6074
    const unsigned char* pshdrs)
6075
{
6076
  unsigned int sh_type = shdr.get_sh_type();
6077
  if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6078
    return false;
6079
 
6080
  // Ignore empty section.
6081
  off_t sh_size = shdr.get_sh_size();
6082
  if (sh_size == 0)
6083
    return false;
6084
 
6085
  // Ignore reloc section with unexpected symbol table.  The
6086
  // error will be reported in the final link.
6087
  if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6088
    return false;
6089
 
6090
  unsigned int reloc_size;
6091
  if (sh_type == elfcpp::SHT_REL)
6092
    reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6093
  else
6094
    reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6095
 
6096
  // Ignore reloc section with unexpected entsize or uneven size.
6097
  // The error will be reported in the final link.
6098
  if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6099
    return false;
6100
 
6101
  // Ignore reloc section with bad info.  This error will be
6102
  // reported in the final link.
6103
  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6104
  if (index >= this->shnum())
6105
    return false;
6106
 
6107
  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6108
  const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6109
  return this->section_is_scannable(text_shdr, index,
6110
                                   out_sections[index], symtab);
6111
}
6112
 
6113
// Return the output address of either a plain input section or a relaxed
6114
// input section.  SHNDX is the section index.  We define and use this
6115
// instead of calling Output_section::output_address because that is slow
6116
// for large output.
6117
 
6118
template<bool big_endian>
6119
Arm_address
6120
Arm_relobj<big_endian>::simple_input_section_output_address(
6121
    unsigned int shndx,
6122
    Output_section* os)
6123
{
6124
  if (this->is_output_section_offset_invalid(shndx))
6125
    {
6126
      const Output_relaxed_input_section* poris =
6127
        os->find_relaxed_input_section(this, shndx);
6128
      // We do not handle merged sections here.
6129
      gold_assert(poris != NULL);
6130
      return poris->address();
6131
    }
6132
  else
6133
    return os->address() + this->get_output_section_offset(shndx);
6134
}
6135
 
6136
// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6137
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6138
 
6139
template<bool big_endian>
6140
bool
6141
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6142
    const elfcpp::Shdr<32, big_endian>& shdr,
6143
    unsigned int shndx,
6144
    Output_section* os,
6145
    const Symbol_table* symtab)
6146
{
6147
  if (!this->section_is_scannable(shdr, shndx, os, symtab))
6148
    return false;
6149
 
6150
  // If the section does not cross any 4K-boundaries, it does not need to
6151
  // be scanned.
6152
  Arm_address address = this->simple_input_section_output_address(shndx, os);
6153
  if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6154
    return false;
6155
 
6156
  return true;
6157
}
6158
 
6159
// Scan a section for Cortex-A8 workaround.
6160
 
6161
template<bool big_endian>
6162
void
6163
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6164
    const elfcpp::Shdr<32, big_endian>& shdr,
6165
    unsigned int shndx,
6166
    Output_section* os,
6167
    Target_arm<big_endian>* arm_target)
6168
{
6169
  // Look for the first mapping symbol in this section.  It should be
6170
  // at (shndx, 0).
6171
  Mapping_symbol_position section_start(shndx, 0);
6172
  typename Mapping_symbols_info::const_iterator p =
6173
    this->mapping_symbols_info_.lower_bound(section_start);
6174
 
6175
  // There are no mapping symbols for this section.  Treat it as a data-only
6176
  // section.  Issue a warning if section is marked as containing
6177
  // instructions.
6178
  if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
6179
    {
6180
      if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6181
        gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6182
                       "erratum because it has no mapping symbols."),
6183
                     shndx, this->name().c_str());
6184
      return;
6185
    }
6186
 
6187
  Arm_address output_address =
6188
    this->simple_input_section_output_address(shndx, os);
6189
 
6190
  // Get the section contents.
6191
  section_size_type input_view_size = 0;
6192
  const unsigned char* input_view =
6193
    this->section_contents(shndx, &input_view_size, false);
6194
 
6195
  // We need to go through the mapping symbols to determine what to
6196
  // scan.  There are two reasons.  First, we should look at THUMB code and
6197
  // THUMB code only.  Second, we only want to look at the 4K-page boundary
6198
  // to speed up the scanning.
6199
 
6200
  while (p != this->mapping_symbols_info_.end()
6201
        && p->first.first == shndx)
6202
    {
6203
      typename Mapping_symbols_info::const_iterator next =
6204
        this->mapping_symbols_info_.upper_bound(p->first);
6205
 
6206
      // Only scan part of a section with THUMB code.
6207
      if (p->second == 't')
6208
        {
6209
          // Determine the end of this range.
6210
          section_size_type span_start =
6211
            convert_to_section_size_type(p->first.second);
6212
          section_size_type span_end;
6213
          if (next != this->mapping_symbols_info_.end()
6214
              && next->first.first == shndx)
6215
            span_end = convert_to_section_size_type(next->first.second);
6216
          else
6217
            span_end = convert_to_section_size_type(shdr.get_sh_size());
6218
 
6219
          if (((span_start + output_address) & ~0xfffUL)
6220
              != ((span_end + output_address - 1) & ~0xfffUL))
6221
            {
6222
              arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6223
                                                          span_start, span_end,
6224
                                                          input_view,
6225
                                                          output_address);
6226
            }
6227
        }
6228
 
6229
      p = next;
6230
    }
6231
}
6232
 
6233
// Scan relocations for stub generation.
6234
 
6235
template<bool big_endian>
6236
void
6237
Arm_relobj<big_endian>::scan_sections_for_stubs(
6238
    Target_arm<big_endian>* arm_target,
6239
    const Symbol_table* symtab,
6240
    const Layout* layout)
6241
{
6242
  unsigned int shnum = this->shnum();
6243
  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6244
 
6245
  // Read the section headers.
6246
  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6247
                                               shnum * shdr_size,
6248
                                               true, true);
6249
 
6250
  // To speed up processing, we set up hash tables for fast lookup of
6251
  // input offsets to output addresses.
6252
  this->initialize_input_to_output_maps();
6253
 
6254
  const Relobj::Output_sections& out_sections(this->output_sections());
6255
 
6256
  Relocate_info<32, big_endian> relinfo;
6257
  relinfo.symtab = symtab;
6258
  relinfo.layout = layout;
6259
  relinfo.object = this;
6260
 
6261
  // Do relocation stubs scanning.
6262
  const unsigned char* p = pshdrs + shdr_size;
6263
  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6264
    {
6265
      const elfcpp::Shdr<32, big_endian> shdr(p);
6266
      if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6267
                                                  pshdrs))
6268
        {
6269
          unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6270
          Arm_address output_offset = this->get_output_section_offset(index);
6271
          Arm_address output_address;
6272
          if (output_offset != invalid_address)
6273
            output_address = out_sections[index]->address() + output_offset;
6274
          else
6275
            {
6276
              // Currently this only happens for a relaxed section.
6277
              const Output_relaxed_input_section* poris =
6278
              out_sections[index]->find_relaxed_input_section(this, index);
6279
              gold_assert(poris != NULL);
6280
              output_address = poris->address();
6281
            }
6282
 
6283
          // Get the relocations.
6284
          const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6285
                                                        shdr.get_sh_size(),
6286
                                                        true, false);
6287
 
6288
          // Get the section contents.  This does work for the case in which
6289
          // we modify the contents of an input section.  We need to pass the
6290
          // output view under such circumstances.
6291
          section_size_type input_view_size = 0;
6292
          const unsigned char* input_view =
6293
            this->section_contents(index, &input_view_size, false);
6294
 
6295
          relinfo.reloc_shndx = i;
6296
          relinfo.data_shndx = index;
6297
          unsigned int sh_type = shdr.get_sh_type();
6298
          unsigned int reloc_size;
6299
          if (sh_type == elfcpp::SHT_REL)
6300
            reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6301
          else
6302
            reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6303
 
6304
          Output_section* os = out_sections[index];
6305
          arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6306
                                             shdr.get_sh_size() / reloc_size,
6307
                                             os,
6308
                                             output_offset == invalid_address,
6309
                                             input_view, output_address,
6310
                                             input_view_size);
6311
        }
6312
    }
6313
 
6314
  // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
6315
  // after its relocation section, if there is one, is processed for
6316
  // relocation stubs.  Merging this loop with the one above would have been
6317
  // complicated since we would have had to make sure that relocation stub
6318
  // scanning is done first.
6319
  if (arm_target->fix_cortex_a8())
6320
    {
6321
      const unsigned char* p = pshdrs + shdr_size;
6322
      for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
6323
        {
6324
          const elfcpp::Shdr<32, big_endian> shdr(p);
6325
          if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6326
                                                          out_sections[i],
6327
                                                          symtab))
6328
            this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6329
                                                     arm_target);
6330
        }
6331
    }
6332
 
6333
  // After we've done the relocations, we release the hash tables,
6334
  // since we no longer need them.
6335
  this->free_input_to_output_maps();
6336
}
6337
 
6338
// Count the local symbols.  The ARM backend needs to know if a symbol
6339
// is a THUMB function or not.  For global symbols, it is easy because
6340
// the Symbol object keeps the ELF symbol type.  For local symbol it is
6341
// harder because we cannot access this information.   So we override the
6342
// do_count_local_symbol in parent and scan local symbols to mark
6343
// THUMB functions.  This is not the most efficient way but I do not want to
6344
// slow down other ports by calling a per symbol target hook inside
6345
// Sized_relobj_file<size, big_endian>::do_count_local_symbols. 
6346
 
6347
template<bool big_endian>
6348
void
6349
Arm_relobj<big_endian>::do_count_local_symbols(
6350
    Stringpool_template<char>* pool,
6351
    Stringpool_template<char>* dynpool)
6352
{
6353
  // We need to fix-up the values of any local symbols whose type are
6354
  // STT_ARM_TFUNC.
6355
 
6356
  // Ask parent to count the local symbols.
6357
  Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
6358
  const unsigned int loccount = this->local_symbol_count();
6359
  if (loccount == 0)
6360
    return;
6361
 
6362
  // Initialize the thumb function bit-vector.
6363
  std::vector<bool> empty_vector(loccount, false);
6364
  this->local_symbol_is_thumb_function_.swap(empty_vector);
6365
 
6366
  // Read the symbol table section header.
6367
  const unsigned int symtab_shndx = this->symtab_shndx();
6368
  elfcpp::Shdr<32, big_endian>
6369
      symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6370
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6371
 
6372
  // Read the local symbols.
6373
  const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6374
  gold_assert(loccount == symtabshdr.get_sh_info());
6375
  off_t locsize = loccount * sym_size;
6376
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6377
                                              locsize, true, true);
6378
 
6379
  // For mapping symbol processing, we need to read the symbol names.
6380
  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6381
  if (strtab_shndx >= this->shnum())
6382
    {
6383
      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6384
      return;
6385
    }
6386
 
6387
  elfcpp::Shdr<32, big_endian>
6388
    strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6389
  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390
    {
6391
      this->error(_("symbol table name section has wrong type: %u"),
6392
                  static_cast<unsigned int>(strtabshdr.get_sh_type()));
6393
      return;
6394
    }
6395
  const char* pnames =
6396
    reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6397
                                                 strtabshdr.get_sh_size(),
6398
                                                 false, false));
6399
 
6400
  // Loop over the local symbols and mark any local symbols pointing
6401
  // to THUMB functions.
6402
 
6403
  // Skip the first dummy symbol.
6404
  psyms += sym_size;
6405
  typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
6406
    this->local_values();
6407
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6408
    {
6409
      elfcpp::Sym<32, big_endian> sym(psyms);
6410
      elfcpp::STT st_type = sym.get_st_type();
6411
      Symbol_value<32>& lv((*plocal_values)[i]);
6412
      Arm_address input_value = lv.input_value();
6413
 
6414
      // Check to see if this is a mapping symbol.
6415
      const char* sym_name = pnames + sym.get_st_name();
6416
      if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6417
        {
6418
          bool is_ordinary;
6419
          unsigned int input_shndx =
6420
            this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6421
          gold_assert(is_ordinary);
6422
 
6423
          // Strip of LSB in case this is a THUMB symbol.
6424
          Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6425
          this->mapping_symbols_info_[msp] = sym_name[1];
6426
        }
6427
 
6428
      if (st_type == elfcpp::STT_ARM_TFUNC
6429
          || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6430
        {
6431
          // This is a THUMB function.  Mark this and canonicalize the
6432
          // symbol value by setting LSB.
6433
          this->local_symbol_is_thumb_function_[i] = true;
6434
          if ((input_value & 1) == 0)
6435
            lv.set_input_value(input_value | 1);
6436
        }
6437
    }
6438
}
6439
 
6440
// Relocate sections.
6441
template<bool big_endian>
6442
void
6443
Arm_relobj<big_endian>::do_relocate_sections(
6444
    const Symbol_table* symtab,
6445
    const Layout* layout,
6446
    const unsigned char* pshdrs,
6447
    Output_file* of,
6448
    typename Sized_relobj_file<32, big_endian>::Views* pviews)
6449
{
6450
  // Call parent to relocate sections.
6451
  Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6452
                                                          pshdrs, of, pviews);
6453
 
6454
  // We do not generate stubs if doing a relocatable link.
6455
  if (parameters->options().relocatable())
6456
    return;
6457
 
6458
  // Relocate stub tables.
6459
  unsigned int shnum = this->shnum();
6460
 
6461
  Target_arm<big_endian>* arm_target =
6462
    Target_arm<big_endian>::default_target();
6463
 
6464
  Relocate_info<32, big_endian> relinfo;
6465
  relinfo.symtab = symtab;
6466
  relinfo.layout = layout;
6467
  relinfo.object = this;
6468
 
6469
  for (unsigned int i = 1; i < shnum; ++i)
6470
    {
6471
      Arm_input_section<big_endian>* arm_input_section =
6472
        arm_target->find_arm_input_section(this, i);
6473
 
6474
      if (arm_input_section != NULL
6475
          && arm_input_section->is_stub_table_owner()
6476
          && !arm_input_section->stub_table()->empty())
6477
        {
6478
          // We cannot discard a section if it owns a stub table.
6479
          Output_section* os = this->output_section(i);
6480
          gold_assert(os != NULL);
6481
 
6482
          relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6483
          relinfo.reloc_shdr = NULL;
6484
          relinfo.data_shndx = i;
6485
          relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6486
 
6487
          gold_assert((*pviews)[i].view != NULL);
6488
 
6489
          // We are passed the output section view.  Adjust it to cover the
6490
          // stub table only.
6491
          Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6492
          gold_assert((stub_table->address() >= (*pviews)[i].address)
6493
                      && ((stub_table->address() + stub_table->data_size())
6494
                          <= (*pviews)[i].address + (*pviews)[i].view_size));
6495
 
6496
          off_t offset = stub_table->address() - (*pviews)[i].address;
6497
          unsigned char* view = (*pviews)[i].view + offset;
6498
          Arm_address address = stub_table->address();
6499
          section_size_type view_size = stub_table->data_size();
6500
 
6501
          stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6502
                                     view_size);
6503
        }
6504
 
6505
      // Apply Cortex A8 workaround if applicable.
6506
      if (this->section_has_cortex_a8_workaround(i))
6507
        {
6508
          unsigned char* view = (*pviews)[i].view;
6509
          Arm_address view_address = (*pviews)[i].address;
6510
          section_size_type view_size = (*pviews)[i].view_size;
6511
          Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6512
 
6513
          // Adjust view to cover section.
6514
          Output_section* os = this->output_section(i);
6515
          gold_assert(os != NULL);
6516
          Arm_address section_address =
6517
            this->simple_input_section_output_address(i, os);
6518
          uint64_t section_size = this->section_size(i);
6519
 
6520
          gold_assert(section_address >= view_address
6521
                      && ((section_address + section_size)
6522
                          <= (view_address + view_size)));
6523
 
6524
          unsigned char* section_view = view + (section_address - view_address);
6525
 
6526
          // Apply the Cortex-A8 workaround to the output address range
6527
          // corresponding to this input section.
6528
          stub_table->apply_cortex_a8_workaround_to_address_range(
6529
              arm_target,
6530
              section_view,
6531
              section_address,
6532
              section_size);
6533
        }
6534
    }
6535
}
6536
 
6537
// Find the linked text section of an EXIDX section by looking at the first
6538
// relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
6539
// must be linked to its associated code section via the sh_link field of
6540
// its section header.  However, some tools are broken and the link is not
6541
// always set.  LD just drops such an EXIDX section silently, causing the
6542
// associated code not unwindabled.   Here we try a little bit harder to
6543
// discover the linked code section.
6544
//
6545
// PSHDR points to the section header of a relocation section of an EXIDX
6546
// section.  If we can find a linked text section, return true and
6547
// store the text section index in the location PSHNDX.  Otherwise
6548
// return false.
6549
 
6550
template<bool big_endian>
6551
bool
6552
Arm_relobj<big_endian>::find_linked_text_section(
6553
    const unsigned char* pshdr,
6554
    const unsigned char* psyms,
6555
    unsigned int* pshndx)
6556
{
6557
  elfcpp::Shdr<32, big_endian> shdr(pshdr);
6558
 
6559
  // If there is no relocation, we cannot find the linked text section.
6560
  size_t reloc_size;
6561
  if (shdr.get_sh_type() == elfcpp::SHT_REL)
6562
      reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6563
  else
6564
      reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6565
  size_t reloc_count = shdr.get_sh_size() / reloc_size;
6566
 
6567
  // Get the relocations.
6568
  const unsigned char* prelocs =
6569
      this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
6570
 
6571
  // Find the REL31 relocation for the first word of the first EXIDX entry.
6572
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6573
    {
6574
      Arm_address r_offset;
6575
      typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6576
      if (shdr.get_sh_type() == elfcpp::SHT_REL)
6577
        {
6578
          typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6579
          r_info = reloc.get_r_info();
6580
          r_offset = reloc.get_r_offset();
6581
        }
6582
      else
6583
        {
6584
          typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6585
          r_info = reloc.get_r_info();
6586
          r_offset = reloc.get_r_offset();
6587
        }
6588
 
6589
      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6590
      if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6591
        continue;
6592
 
6593
      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6594
      if (r_sym == 0
6595
          || r_sym >= this->local_symbol_count()
6596
          || r_offset != 0)
6597
        continue;
6598
 
6599
      // This is the relocation for the first word of the first EXIDX entry.
6600
      // We expect to see a local section symbol.
6601
      const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6602
      elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6603
      if (sym.get_st_type() == elfcpp::STT_SECTION)
6604
        {
6605
          bool is_ordinary;
6606
          *pshndx =
6607
            this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6608
          gold_assert(is_ordinary);
6609
          return true;
6610
        }
6611
      else
6612
        return false;
6613
    }
6614
 
6615
  return false;
6616
}
6617
 
6618
// Make an EXIDX input section object for an EXIDX section whose index is
6619
// SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
6620
// is the section index of the linked text section.
6621
 
6622
template<bool big_endian>
6623
void
6624
Arm_relobj<big_endian>::make_exidx_input_section(
6625
    unsigned int shndx,
6626
    const elfcpp::Shdr<32, big_endian>& shdr,
6627
    unsigned int text_shndx,
6628
    const elfcpp::Shdr<32, big_endian>& text_shdr)
6629
{
6630
  // Create an Arm_exidx_input_section object for this EXIDX section.
6631
  Arm_exidx_input_section* exidx_input_section =
6632
    new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6633
                                shdr.get_sh_addralign(),
6634
                                text_shdr.get_sh_size());
6635
 
6636
  gold_assert(this->exidx_section_map_[shndx] == NULL);
6637
  this->exidx_section_map_[shndx] = exidx_input_section;
6638
 
6639
  if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6640
    {
6641
      gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6642
                 this->section_name(shndx).c_str(), shndx, text_shndx,
6643
                 this->name().c_str());
6644
      exidx_input_section->set_has_errors();
6645
    }
6646
  else if (this->exidx_section_map_[text_shndx] != NULL)
6647
    {
6648
      unsigned other_exidx_shndx =
6649
        this->exidx_section_map_[text_shndx]->shndx();
6650
      gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6651
                   "%s(%u) in %s"),
6652
                 this->section_name(shndx).c_str(), shndx,
6653
                 this->section_name(other_exidx_shndx).c_str(),
6654
                 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6655
                 text_shndx, this->name().c_str());
6656
      exidx_input_section->set_has_errors();
6657
    }
6658
  else
6659
     this->exidx_section_map_[text_shndx] = exidx_input_section;
6660
 
6661
  // Check section flags of text section.
6662
  if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6663
    {
6664
      gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6665
                   " in %s"),
6666
                 this->section_name(shndx).c_str(), shndx,
6667
                 this->section_name(text_shndx).c_str(), text_shndx,
6668
                 this->name().c_str());
6669
      exidx_input_section->set_has_errors();
6670
    }
6671
  else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
6672
    // I would like to make this an error but currently ld just ignores
6673
    // this.
6674
    gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6675
                   "%s(%u) in %s"),
6676
                 this->section_name(shndx).c_str(), shndx,
6677
                 this->section_name(text_shndx).c_str(), text_shndx,
6678
                 this->name().c_str());
6679
}
6680
 
6681
// Read the symbol information.
6682
 
6683
template<bool big_endian>
6684
void
6685
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6686
{
6687
  // Call parent class to read symbol information.
6688
  Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
6689
 
6690
  // If this input file is a binary file, it has no processor
6691
  // specific flags and attributes section.
6692
  Input_file::Format format = this->input_file()->format();
6693
  if (format != Input_file::FORMAT_ELF)
6694
    {
6695
      gold_assert(format == Input_file::FORMAT_BINARY);
6696
      this->merge_flags_and_attributes_ = false;
6697
      return;
6698
    }
6699
 
6700
  // Read processor-specific flags in ELF file header.
6701
  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6702
                                              elfcpp::Elf_sizes<32>::ehdr_size,
6703
                                              true, false);
6704
  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6705
  this->processor_specific_flags_ = ehdr.get_e_flags();
6706
 
6707
  // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6708
  // sections.
6709
  std::vector<unsigned int> deferred_exidx_sections;
6710
  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6711
  const unsigned char* pshdrs = sd->section_headers->data();
6712
  const unsigned char* ps = pshdrs + shdr_size;
6713
  bool must_merge_flags_and_attributes = false;
6714
  for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6715
    {
6716
      elfcpp::Shdr<32, big_endian> shdr(ps);
6717
 
6718
      // Sometimes an object has no contents except the section name string
6719
      // table and an empty symbol table with the undefined symbol.  We
6720
      // don't want to merge processor-specific flags from such an object.
6721
      if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6722
        {
6723
          // Symbol table is not empty.
6724
          const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6725
             elfcpp::Elf_sizes<32>::sym_size;
6726
          if (shdr.get_sh_size() > sym_size)
6727
            must_merge_flags_and_attributes = true;
6728
        }
6729
      else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6730
        // If this is neither an empty symbol table nor a string table,
6731
        // be conservative.
6732
        must_merge_flags_and_attributes = true;
6733
 
6734
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6735
        {
6736
          gold_assert(this->attributes_section_data_ == NULL);
6737
          section_offset_type section_offset = shdr.get_sh_offset();
6738
          section_size_type section_size =
6739
            convert_to_section_size_type(shdr.get_sh_size());
6740
          const unsigned char* view =
6741
             this->get_view(section_offset, section_size, true, false);
6742
          this->attributes_section_data_ =
6743
            new Attributes_section_data(view, section_size);
6744
        }
6745
      else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6746
        {
6747
          unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6748
          if (text_shndx == elfcpp::SHN_UNDEF)
6749
            deferred_exidx_sections.push_back(i);
6750
          else
6751
            {
6752
              elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6753
                                                     + text_shndx * shdr_size);
6754
              this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6755
            }
6756
          // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6757
          if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6758
            gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6759
                         this->section_name(i).c_str(), this->name().c_str());
6760
        }
6761
    }
6762
 
6763
  // This is rare.
6764
  if (!must_merge_flags_and_attributes)
6765
    {
6766
      gold_assert(deferred_exidx_sections.empty());
6767
      this->merge_flags_and_attributes_ = false;
6768
      return;
6769
    }
6770
 
6771
  // Some tools are broken and they do not set the link of EXIDX sections. 
6772
  // We look at the first relocation to figure out the linked sections.
6773
  if (!deferred_exidx_sections.empty())
6774
    {
6775
      // We need to go over the section headers again to find the mapping
6776
      // from sections being relocated to their relocation sections.  This is
6777
      // a bit inefficient as we could do that in the loop above.  However,
6778
      // we do not expect any deferred EXIDX sections normally.  So we do not
6779
      // want to slow down the most common path.
6780
      typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6781
      Reloc_map reloc_map;
6782
      ps = pshdrs + shdr_size;
6783
      for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6784
        {
6785
          elfcpp::Shdr<32, big_endian> shdr(ps);
6786
          elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6787
          if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6788
            {
6789
              unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6790
              if (info_shndx >= this->shnum())
6791
                gold_error(_("relocation section %u has invalid info %u"),
6792
                           i, info_shndx);
6793
              Reloc_map::value_type value(info_shndx, i);
6794
              std::pair<Reloc_map::iterator, bool> result =
6795
                reloc_map.insert(value);
6796
              if (!result.second)
6797
                gold_error(_("section %u has multiple relocation sections "
6798
                             "%u and %u"),
6799
                           info_shndx, i, reloc_map[info_shndx]);
6800
            }
6801
        }
6802
 
6803
      // Read the symbol table section header.
6804
      const unsigned int symtab_shndx = this->symtab_shndx();
6805
      elfcpp::Shdr<32, big_endian>
6806
          symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6807
      gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6808
 
6809
      // Read the local symbols.
6810
      const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6811
      const unsigned int loccount = this->local_symbol_count();
6812
      gold_assert(loccount == symtabshdr.get_sh_info());
6813
      off_t locsize = loccount * sym_size;
6814
      const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6815
                                                  locsize, true, true);
6816
 
6817
      // Process the deferred EXIDX sections. 
6818
      for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6819
        {
6820
          unsigned int shndx = deferred_exidx_sections[i];
6821
          elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6822
          unsigned int text_shndx = elfcpp::SHN_UNDEF;
6823
          Reloc_map::const_iterator it = reloc_map.find(shndx);
6824
          if (it != reloc_map.end())
6825
            find_linked_text_section(pshdrs + it->second * shdr_size,
6826
                                     psyms, &text_shndx);
6827
          elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6828
                                                 + text_shndx * shdr_size);
6829
          this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
6830
        }
6831
    }
6832
}
6833
 
6834
// Process relocations for garbage collection.  The ARM target uses .ARM.exidx
6835
// sections for unwinding.  These sections are referenced implicitly by 
6836
// text sections linked in the section headers.  If we ignore these implicit
6837
// references, the .ARM.exidx sections and any .ARM.extab sections they use
6838
// will be garbage-collected incorrectly.  Hence we override the same function
6839
// in the base class to handle these implicit references.
6840
 
6841
template<bool big_endian>
6842
void
6843
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6844
                                             Layout* layout,
6845
                                             Read_relocs_data* rd)
6846
{
6847
  // First, call base class method to process relocations in this object.
6848
  Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6849
 
6850
  // If --gc-sections is not specified, there is nothing more to do.
6851
  // This happens when --icf is used but --gc-sections is not.
6852
  if (!parameters->options().gc_sections())
6853
    return;
6854
 
6855
  unsigned int shnum = this->shnum();
6856
  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6857
  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6858
                                               shnum * shdr_size,
6859
                                               true, true);
6860
 
6861
  // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
6862
  // to these from the linked text sections.
6863
  const unsigned char* ps = pshdrs + shdr_size;
6864
  for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6865
    {
6866
      elfcpp::Shdr<32, big_endian> shdr(ps);
6867
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6868
        {
6869
          // Found an .ARM.exidx section, add it to the set of reachable
6870
          // sections from its linked text section.
6871
          unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6872
          symtab->gc()->add_reference(this, text_shndx, this, i);
6873
        }
6874
    }
6875
}
6876
 
6877
// Update output local symbol count.  Owing to EXIDX entry merging, some local
6878
// symbols  will be removed in output.  Adjust output local symbol count
6879
// accordingly.  We can only changed the static output local symbol count.  It
6880
// is too late to change the dynamic symbols.
6881
 
6882
template<bool big_endian>
6883
void
6884
Arm_relobj<big_endian>::update_output_local_symbol_count()
6885
{
6886
  // Caller should check that this needs updating.  We want caller checking
6887
  // because output_local_symbol_count_needs_update() is most likely inlined.
6888
  gold_assert(this->output_local_symbol_count_needs_update_);
6889
 
6890
  gold_assert(this->symtab_shndx() != -1U);
6891
  if (this->symtab_shndx() == 0)
6892
    {
6893
      // This object has no symbols.  Weird but legal.
6894
      return;
6895
    }
6896
 
6897
  // Read the symbol table section header.
6898
  const unsigned int symtab_shndx = this->symtab_shndx();
6899
  elfcpp::Shdr<32, big_endian>
6900
    symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6901
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6902
 
6903
  // Read the local symbols.
6904
  const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6905
  const unsigned int loccount = this->local_symbol_count();
6906
  gold_assert(loccount == symtabshdr.get_sh_info());
6907
  off_t locsize = loccount * sym_size;
6908
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6909
                                              locsize, true, true);
6910
 
6911
  // Loop over the local symbols.
6912
 
6913
  typedef typename Sized_relobj_file<32, big_endian>::Output_sections
6914
     Output_sections;
6915
  const Output_sections& out_sections(this->output_sections());
6916
  unsigned int shnum = this->shnum();
6917
  unsigned int count = 0;
6918
  // Skip the first, dummy, symbol.
6919
  psyms += sym_size;
6920
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6921
    {
6922
      elfcpp::Sym<32, big_endian> sym(psyms);
6923
 
6924
      Symbol_value<32>& lv((*this->local_values())[i]);
6925
 
6926
      // This local symbol was already discarded by do_count_local_symbols.
6927
      if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
6928
        continue;
6929
 
6930
      bool is_ordinary;
6931
      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6932
                                                  &is_ordinary);
6933
 
6934
      if (shndx < shnum)
6935
        {
6936
          Output_section* os = out_sections[shndx];
6937
 
6938
          // This local symbol no longer has an output section.  Discard it.
6939
          if (os == NULL)
6940
            {
6941
              lv.set_no_output_symtab_entry();
6942
              continue;
6943
            }
6944
 
6945
          // Currently we only discard parts of EXIDX input sections.
6946
          // We explicitly check for a merged EXIDX input section to avoid
6947
          // calling Output_section_data::output_offset unless necessary.
6948
          if ((this->get_output_section_offset(shndx) == invalid_address)
6949
              && (this->exidx_input_section_by_shndx(shndx) != NULL))
6950
            {
6951
              section_offset_type output_offset =
6952
                os->output_offset(this, shndx, lv.input_value());
6953
              if (output_offset == -1)
6954
                {
6955
                  // This symbol is defined in a part of an EXIDX input section
6956
                  // that is discarded due to entry merging.
6957
                  lv.set_no_output_symtab_entry();
6958
                  continue;
6959
                }
6960
            }
6961
        }
6962
 
6963
      ++count;
6964
    }
6965
 
6966
  this->set_output_local_symbol_count(count);
6967
  this->output_local_symbol_count_needs_update_ = false;
6968
}
6969
 
6970
// Arm_dynobj methods.
6971
 
6972
// Read the symbol information.
6973
 
6974
template<bool big_endian>
6975
void
6976
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6977
{
6978
  // Call parent class to read symbol information.
6979
  Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6980
 
6981
  // Read processor-specific flags in ELF file header.
6982
  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6983
                                              elfcpp::Elf_sizes<32>::ehdr_size,
6984
                                              true, false);
6985
  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6986
  this->processor_specific_flags_ = ehdr.get_e_flags();
6987
 
6988
  // Read the attributes section if there is one.
6989
  // We read from the end because gas seems to put it near the end of
6990
  // the section headers.
6991
  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6992
  const unsigned char* ps =
6993
    sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6994
  for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6995
    {
6996
      elfcpp::Shdr<32, big_endian> shdr(ps);
6997
      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6998
        {
6999
          section_offset_type section_offset = shdr.get_sh_offset();
7000
          section_size_type section_size =
7001
            convert_to_section_size_type(shdr.get_sh_size());
7002
          const unsigned char* view =
7003
            this->get_view(section_offset, section_size, true, false);
7004
          this->attributes_section_data_ =
7005
            new Attributes_section_data(view, section_size);
7006
          break;
7007
        }
7008
    }
7009
}
7010
 
7011
// Stub_addend_reader methods.
7012
 
7013
// Read the addend of a REL relocation of type R_TYPE at VIEW.
7014
 
7015
template<bool big_endian>
7016
elfcpp::Elf_types<32>::Elf_Swxword
7017
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7018
    unsigned int r_type,
7019
    const unsigned char* view,
7020
    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7021
{
7022
  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7023
 
7024
  switch (r_type)
7025
    {
7026
    case elfcpp::R_ARM_CALL:
7027
    case elfcpp::R_ARM_JUMP24:
7028
    case elfcpp::R_ARM_PLT32:
7029
      {
7030
        typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7031
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7032
        Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7033
        return utils::sign_extend<26>(val << 2);
7034
      }
7035
 
7036
    case elfcpp::R_ARM_THM_CALL:
7037
    case elfcpp::R_ARM_THM_JUMP24:
7038
    case elfcpp::R_ARM_THM_XPC22:
7039
      {
7040
        typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042
        Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043
        Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7044
        return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
7045
      }
7046
 
7047
    case elfcpp::R_ARM_THM_JUMP19:
7048
      {
7049
        typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7050
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7051
        Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7052
        Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
7053
        return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
7054
      }
7055
 
7056
    default:
7057
      gold_unreachable();
7058
    }
7059
}
7060
 
7061
// Arm_output_data_got methods.
7062
 
7063
// Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
7064
// The first one is initialized to be 1, which is the module index for
7065
// the main executable and the second one 0.  A reloc of the type
7066
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7067
// be applied by gold.  GSYM is a global symbol.
7068
//
7069
template<bool big_endian>
7070
void
7071
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7072
    unsigned int got_type,
7073
    Symbol* gsym)
7074
{
7075
  if (gsym->has_got_offset(got_type))
7076
    return;
7077
 
7078
  // We are doing a static link.  Just mark it as belong to module 1,
7079
  // the executable.
7080
  unsigned int got_offset = this->add_constant(1);
7081
  gsym->set_got_offset(got_type, got_offset);
7082
  got_offset = this->add_constant(0);
7083
  this->static_relocs_.push_back(Static_reloc(got_offset,
7084
                                              elfcpp::R_ARM_TLS_DTPOFF32,
7085
                                              gsym));
7086
}
7087
 
7088
// Same as the above but for a local symbol.
7089
 
7090
template<bool big_endian>
7091
void
7092
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7093
  unsigned int got_type,
7094
  Sized_relobj_file<32, big_endian>* object,
7095
  unsigned int index)
7096
{
7097
  if (object->local_has_got_offset(index, got_type))
7098
    return;
7099
 
7100
  // We are doing a static link.  Just mark it as belong to module 1,
7101
  // the executable.
7102
  unsigned int got_offset = this->add_constant(1);
7103
  object->set_local_got_offset(index, got_type, got_offset);
7104
  got_offset = this->add_constant(0);
7105
  this->static_relocs_.push_back(Static_reloc(got_offset,
7106
                                              elfcpp::R_ARM_TLS_DTPOFF32,
7107
                                              object, index));
7108
}
7109
 
7110
template<bool big_endian>
7111
void
7112
Arm_output_data_got<big_endian>::do_write(Output_file* of)
7113
{
7114
  // Call parent to write out GOT.
7115
  Output_data_got<32, big_endian>::do_write(of);
7116
 
7117
  // We are done if there is no fix up.
7118
  if (this->static_relocs_.empty())
7119
    return;
7120
 
7121
  gold_assert(parameters->doing_static_link());
7122
 
7123
  const off_t offset = this->offset();
7124
  const section_size_type oview_size =
7125
    convert_to_section_size_type(this->data_size());
7126
  unsigned char* const oview = of->get_output_view(offset, oview_size);
7127
 
7128
  Output_segment* tls_segment = this->layout_->tls_segment();
7129
  gold_assert(tls_segment != NULL);
7130
 
7131
  // The thread pointer $tp points to the TCB, which is followed by the
7132
  // TLS.  So we need to adjust $tp relative addressing by this amount.
7133
  Arm_address aligned_tcb_size =
7134
    align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7135
 
7136
  for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7137
    {
7138
      Static_reloc& reloc(this->static_relocs_[i]);
7139
 
7140
      Arm_address value;
7141
      if (!reloc.symbol_is_global())
7142
        {
7143
          Sized_relobj_file<32, big_endian>* object = reloc.relobj();
7144
          const Symbol_value<32>* psymval =
7145
            reloc.relobj()->local_symbol(reloc.index());
7146
 
7147
          // We are doing static linking.  Issue an error and skip this
7148
          // relocation if the symbol is undefined or in a discarded_section.
7149
          bool is_ordinary;
7150
          unsigned int shndx = psymval->input_shndx(&is_ordinary);
7151
          if ((shndx == elfcpp::SHN_UNDEF)
7152
              || (is_ordinary
7153
                  && shndx != elfcpp::SHN_UNDEF
7154
                  && !object->is_section_included(shndx)
7155
                  && !this->symbol_table_->is_section_folded(object, shndx)))
7156
            {
7157
              gold_error(_("undefined or discarded local symbol %u from "
7158
                           " object %s in GOT"),
7159
                         reloc.index(), reloc.relobj()->name().c_str());
7160
              continue;
7161
            }
7162
 
7163
          value = psymval->value(object, 0);
7164
        }
7165
      else
7166
        {
7167
          const Symbol* gsym = reloc.symbol();
7168
          gold_assert(gsym != NULL);
7169
          if (gsym->is_forwarder())
7170
            gsym = this->symbol_table_->resolve_forwards(gsym);
7171
 
7172
          // We are doing static linking.  Issue an error and skip this
7173
          // relocation if the symbol is undefined or in a discarded_section
7174
          // unless it is a weakly_undefined symbol.
7175
          if ((gsym->is_defined_in_discarded_section()
7176
               || gsym->is_undefined())
7177
              && !gsym->is_weak_undefined())
7178
            {
7179
              gold_error(_("undefined or discarded symbol %s in GOT"),
7180
                         gsym->name());
7181
              continue;
7182
            }
7183
 
7184
          if (!gsym->is_weak_undefined())
7185
            {
7186
              const Sized_symbol<32>* sym =
7187
                static_cast<const Sized_symbol<32>*>(gsym);
7188
              value = sym->value();
7189
            }
7190
          else
7191
              value = 0;
7192
        }
7193
 
7194
      unsigned got_offset = reloc.got_offset();
7195
      gold_assert(got_offset < oview_size);
7196
 
7197
      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7198
      Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7199
      Valtype x;
7200
      switch (reloc.r_type())
7201
        {
7202
        case elfcpp::R_ARM_TLS_DTPOFF32:
7203
          x = value;
7204
          break;
7205
        case elfcpp::R_ARM_TLS_TPOFF32:
7206
          x = value + aligned_tcb_size;
7207
          break;
7208
        default:
7209
          gold_unreachable();
7210
        }
7211
      elfcpp::Swap<32, big_endian>::writeval(wv, x);
7212
    }
7213
 
7214
  of->write_output_view(offset, oview_size, oview);
7215
}
7216
 
7217
// A class to handle the PLT data.
7218
 
7219
template<bool big_endian>
7220
class Output_data_plt_arm : public Output_section_data
7221
{
7222
 public:
7223
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7224
    Reloc_section;
7225
 
7226
  Output_data_plt_arm(Layout*, Output_data_space*);
7227
 
7228
  // Add an entry to the PLT.
7229
  void
7230
  add_entry(Symbol* gsym);
7231
 
7232
  // Return the .rel.plt section data.
7233
  const Reloc_section*
7234
  rel_plt() const
7235
  { return this->rel_; }
7236
 
7237
  // Return the number of PLT entries.
7238
  unsigned int
7239
  entry_count() const
7240
  { return this->count_; }
7241
 
7242
  // Return the offset of the first non-reserved PLT entry.
7243
  static unsigned int
7244
  first_plt_entry_offset()
7245
  { return sizeof(first_plt_entry); }
7246
 
7247
  // Return the size of a PLT entry.
7248
  static unsigned int
7249
  get_plt_entry_size()
7250
  { return sizeof(plt_entry); }
7251
 
7252
 protected:
7253
  void
7254
  do_adjust_output_section(Output_section* os);
7255
 
7256
  // Write to a map file.
7257
  void
7258
  do_print_to_mapfile(Mapfile* mapfile) const
7259
  { mapfile->print_output_data(this, _("** PLT")); }
7260
 
7261
 private:
7262
  // Template for the first PLT entry.
7263
  static const uint32_t first_plt_entry[5];
7264
 
7265
  // Template for subsequent PLT entries. 
7266
  static const uint32_t plt_entry[3];
7267
 
7268
  // Set the final size.
7269
  void
7270
  set_final_data_size()
7271
  {
7272
    this->set_data_size(sizeof(first_plt_entry)
7273
                        + this->count_ * sizeof(plt_entry));
7274
  }
7275
 
7276
  // Write out the PLT data.
7277
  void
7278
  do_write(Output_file*);
7279
 
7280
  // The reloc section.
7281
  Reloc_section* rel_;
7282
  // The .got.plt section.
7283
  Output_data_space* got_plt_;
7284
  // The number of PLT entries.
7285
  unsigned int count_;
7286
};
7287
 
7288
// Create the PLT section.  The ordinary .got section is an argument,
7289
// since we need to refer to the start.  We also create our own .got
7290
// section just for PLT entries.
7291
 
7292
template<bool big_endian>
7293
Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
7294
                                                     Output_data_space* got_plt)
7295
  : Output_section_data(4), got_plt_(got_plt), count_(0)
7296
{
7297
  this->rel_ = new Reloc_section(false);
7298
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
7299
                                  elfcpp::SHF_ALLOC, this->rel_,
7300
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
7301
}
7302
 
7303
template<bool big_endian>
7304
void
7305
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7306
{
7307
  os->set_entsize(0);
7308
}
7309
 
7310
// Add an entry to the PLT.
7311
 
7312
template<bool big_endian>
7313
void
7314
Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7315
{
7316
  gold_assert(!gsym->has_plt_offset());
7317
 
7318
  // Note that when setting the PLT offset we skip the initial
7319
  // reserved PLT entry.
7320
  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7321
                       + sizeof(first_plt_entry));
7322
 
7323
  ++this->count_;
7324
 
7325
  section_offset_type got_offset = this->got_plt_->current_data_size();
7326
 
7327
  // Every PLT entry needs a GOT entry which points back to the PLT
7328
  // entry (this will be changed by the dynamic linker, normally
7329
  // lazily when the function is called).
7330
  this->got_plt_->set_current_data_size(got_offset + 4);
7331
 
7332
  // Every PLT entry needs a reloc.
7333
  gsym->set_needs_dynsym_entry();
7334
  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7335
                         got_offset);
7336
 
7337
  // Note that we don't need to save the symbol.  The contents of the
7338
  // PLT are independent of which symbols are used.  The symbols only
7339
  // appear in the relocations.
7340
}
7341
 
7342
// ARM PLTs.
7343
// FIXME:  This is not very flexible.  Right now this has only been tested
7344
// on armv5te.  If we are to support additional architecture features like
7345
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7346
 
7347
// The first entry in the PLT.
7348
template<bool big_endian>
7349
const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7350
{
7351
  0xe52de004,   // str   lr, [sp, #-4]!
7352
  0xe59fe004,   // ldr   lr, [pc, #4]
7353
  0xe08fe00e,   // add   lr, pc, lr 
7354
  0xe5bef008,   // ldr   pc, [lr, #8]!
7355
  0x00000000,   // &GOT[0] - .
7356
};
7357
 
7358
// Subsequent entries in the PLT.
7359
 
7360
template<bool big_endian>
7361
const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7362
{
7363
  0xe28fc600,   // add   ip, pc, #0xNN00000
7364
  0xe28cca00,   // add   ip, ip, #0xNN000
7365
  0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
7366
};
7367
 
7368
// Write out the PLT.  This uses the hand-coded instructions above,
7369
// and adjusts them as needed.  This is all specified by the arm ELF
7370
// Processor Supplement.
7371
 
7372
template<bool big_endian>
7373
void
7374
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7375
{
7376
  const off_t offset = this->offset();
7377
  const section_size_type oview_size =
7378
    convert_to_section_size_type(this->data_size());
7379
  unsigned char* const oview = of->get_output_view(offset, oview_size);
7380
 
7381
  const off_t got_file_offset = this->got_plt_->offset();
7382
  const section_size_type got_size =
7383
    convert_to_section_size_type(this->got_plt_->data_size());
7384
  unsigned char* const got_view = of->get_output_view(got_file_offset,
7385
                                                      got_size);
7386
  unsigned char* pov = oview;
7387
 
7388
  Arm_address plt_address = this->address();
7389
  Arm_address got_address = this->got_plt_->address();
7390
 
7391
  // Write first PLT entry.  All but the last word are constants.
7392
  const size_t num_first_plt_words = (sizeof(first_plt_entry)
7393
                                      / sizeof(plt_entry[0]));
7394
  for (size_t i = 0; i < num_first_plt_words - 1; i++)
7395
    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7396
  // Last word in first PLT entry is &GOT[0] - .
7397
  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7398
                                         got_address - (plt_address + 16));
7399
  pov += sizeof(first_plt_entry);
7400
 
7401
  unsigned char* got_pov = got_view;
7402
 
7403
  memset(got_pov, 0, 12);
7404
  got_pov += 12;
7405
 
7406
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7407
  unsigned int plt_offset = sizeof(first_plt_entry);
7408
  unsigned int plt_rel_offset = 0;
7409
  unsigned int got_offset = 12;
7410
  const unsigned int count = this->count_;
7411
  for (unsigned int i = 0;
7412
       i < count;
7413
       ++i,
7414
         pov += sizeof(plt_entry),
7415
         got_pov += 4,
7416
         plt_offset += sizeof(plt_entry),
7417
         plt_rel_offset += rel_size,
7418
         got_offset += 4)
7419
    {
7420
      // Set and adjust the PLT entry itself.
7421
      int32_t offset = ((got_address + got_offset)
7422
                         - (plt_address + plt_offset + 8));
7423
 
7424
      gold_assert(offset >= 0 && offset < 0x0fffffff);
7425
      uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7426
      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7427
      uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7428
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7429
      uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7430
      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7431
 
7432
      // Set the entry in the GOT.
7433
      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7434
    }
7435
 
7436
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7437
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7438
 
7439
  of->write_output_view(offset, oview_size, oview);
7440
  of->write_output_view(got_file_offset, got_size, got_view);
7441
}
7442
 
7443
// Create a PLT entry for a global symbol.
7444
 
7445
template<bool big_endian>
7446
void
7447
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
7448
                                       Symbol* gsym)
7449
{
7450
  if (gsym->has_plt_offset())
7451
    return;
7452
 
7453
  if (this->plt_ == NULL)
7454
    {
7455
      // Create the GOT sections first.
7456
      this->got_section(symtab, layout);
7457
 
7458
      this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7459
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7460
                                      (elfcpp::SHF_ALLOC
7461
                                       | elfcpp::SHF_EXECINSTR),
7462
                                      this->plt_, ORDER_PLT, false);
7463
    }
7464
  this->plt_->add_entry(gsym);
7465
}
7466
 
7467
// Return the number of entries in the PLT.
7468
 
7469
template<bool big_endian>
7470
unsigned int
7471
Target_arm<big_endian>::plt_entry_count() const
7472
{
7473
  if (this->plt_ == NULL)
7474
    return 0;
7475
  return this->plt_->entry_count();
7476
}
7477
 
7478
// Return the offset of the first non-reserved PLT entry.
7479
 
7480
template<bool big_endian>
7481
unsigned int
7482
Target_arm<big_endian>::first_plt_entry_offset() const
7483
{
7484
  return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7485
}
7486
 
7487
// Return the size of each PLT entry.
7488
 
7489
template<bool big_endian>
7490
unsigned int
7491
Target_arm<big_endian>::plt_entry_size() const
7492
{
7493
  return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7494
}
7495
 
7496
// Get the section to use for TLS_DESC relocations.
7497
 
7498
template<bool big_endian>
7499
typename Target_arm<big_endian>::Reloc_section*
7500
Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7501
{
7502
  return this->plt_section()->rel_tls_desc(layout);
7503
}
7504
 
7505
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7506
 
7507
template<bool big_endian>
7508
void
7509
Target_arm<big_endian>::define_tls_base_symbol(
7510
    Symbol_table* symtab,
7511
    Layout* layout)
7512
{
7513
  if (this->tls_base_symbol_defined_)
7514
    return;
7515
 
7516
  Output_segment* tls_segment = layout->tls_segment();
7517
  if (tls_segment != NULL)
7518
    {
7519
      bool is_exec = parameters->options().output_is_executable();
7520
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7521
                                       Symbol_table::PREDEFINED,
7522
                                       tls_segment, 0, 0,
7523
                                       elfcpp::STT_TLS,
7524
                                       elfcpp::STB_LOCAL,
7525
                                       elfcpp::STV_HIDDEN, 0,
7526
                                       (is_exec
7527
                                        ? Symbol::SEGMENT_END
7528
                                        : Symbol::SEGMENT_START),
7529
                                       true);
7530
    }
7531
  this->tls_base_symbol_defined_ = true;
7532
}
7533
 
7534
// Create a GOT entry for the TLS module index.
7535
 
7536
template<bool big_endian>
7537
unsigned int
7538
Target_arm<big_endian>::got_mod_index_entry(
7539
    Symbol_table* symtab,
7540
    Layout* layout,
7541
    Sized_relobj_file<32, big_endian>* object)
7542
{
7543
  if (this->got_mod_index_offset_ == -1U)
7544
    {
7545
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
7546
      Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7547
      unsigned int got_offset;
7548
      if (!parameters->doing_static_link())
7549
        {
7550
          got_offset = got->add_constant(0);
7551
          Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7552
          rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7553
                             got_offset);
7554
        }
7555
      else
7556
        {
7557
          // We are doing a static link.  Just mark it as belong to module 1,
7558
          // the executable.
7559
          got_offset = got->add_constant(1);
7560
        }
7561
 
7562
      got->add_constant(0);
7563
      this->got_mod_index_offset_ = got_offset;
7564
    }
7565
  return this->got_mod_index_offset_;
7566
}
7567
 
7568
// Optimize the TLS relocation type based on what we know about the
7569
// symbol.  IS_FINAL is true if the final address of this symbol is
7570
// known at link time.
7571
 
7572
template<bool big_endian>
7573
tls::Tls_optimization
7574
Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7575
{
7576
  // FIXME: Currently we do not do any TLS optimization.
7577
  return tls::TLSOPT_NONE;
7578
}
7579
 
7580
// Get the Reference_flags for a particular relocation.
7581
 
7582
template<bool big_endian>
7583
int
7584
Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7585
{
7586
  switch (r_type)
7587
    {
7588
    case elfcpp::R_ARM_NONE:
7589
    case elfcpp::R_ARM_V4BX:
7590
    case elfcpp::R_ARM_GNU_VTENTRY:
7591
    case elfcpp::R_ARM_GNU_VTINHERIT:
7592
      // No symbol reference.
7593
      return 0;
7594
 
7595
    case elfcpp::R_ARM_ABS32:
7596
    case elfcpp::R_ARM_ABS16:
7597
    case elfcpp::R_ARM_ABS12:
7598
    case elfcpp::R_ARM_THM_ABS5:
7599
    case elfcpp::R_ARM_ABS8:
7600
    case elfcpp::R_ARM_BASE_ABS:
7601
    case elfcpp::R_ARM_MOVW_ABS_NC:
7602
    case elfcpp::R_ARM_MOVT_ABS:
7603
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7604
    case elfcpp::R_ARM_THM_MOVT_ABS:
7605
    case elfcpp::R_ARM_ABS32_NOI:
7606
      return Symbol::ABSOLUTE_REF;
7607
 
7608
    case elfcpp::R_ARM_REL32:
7609
    case elfcpp::R_ARM_LDR_PC_G0:
7610
    case elfcpp::R_ARM_SBREL32:
7611
    case elfcpp::R_ARM_THM_PC8:
7612
    case elfcpp::R_ARM_BASE_PREL:
7613
    case elfcpp::R_ARM_MOVW_PREL_NC:
7614
    case elfcpp::R_ARM_MOVT_PREL:
7615
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7616
    case elfcpp::R_ARM_THM_MOVT_PREL:
7617
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7618
    case elfcpp::R_ARM_THM_PC12:
7619
    case elfcpp::R_ARM_REL32_NOI:
7620
    case elfcpp::R_ARM_ALU_PC_G0_NC:
7621
    case elfcpp::R_ARM_ALU_PC_G0:
7622
    case elfcpp::R_ARM_ALU_PC_G1_NC:
7623
    case elfcpp::R_ARM_ALU_PC_G1:
7624
    case elfcpp::R_ARM_ALU_PC_G2:
7625
    case elfcpp::R_ARM_LDR_PC_G1:
7626
    case elfcpp::R_ARM_LDR_PC_G2:
7627
    case elfcpp::R_ARM_LDRS_PC_G0:
7628
    case elfcpp::R_ARM_LDRS_PC_G1:
7629
    case elfcpp::R_ARM_LDRS_PC_G2:
7630
    case elfcpp::R_ARM_LDC_PC_G0:
7631
    case elfcpp::R_ARM_LDC_PC_G1:
7632
    case elfcpp::R_ARM_LDC_PC_G2:
7633
    case elfcpp::R_ARM_ALU_SB_G0_NC:
7634
    case elfcpp::R_ARM_ALU_SB_G0:
7635
    case elfcpp::R_ARM_ALU_SB_G1_NC:
7636
    case elfcpp::R_ARM_ALU_SB_G1:
7637
    case elfcpp::R_ARM_ALU_SB_G2:
7638
    case elfcpp::R_ARM_LDR_SB_G0:
7639
    case elfcpp::R_ARM_LDR_SB_G1:
7640
    case elfcpp::R_ARM_LDR_SB_G2:
7641
    case elfcpp::R_ARM_LDRS_SB_G0:
7642
    case elfcpp::R_ARM_LDRS_SB_G1:
7643
    case elfcpp::R_ARM_LDRS_SB_G2:
7644
    case elfcpp::R_ARM_LDC_SB_G0:
7645
    case elfcpp::R_ARM_LDC_SB_G1:
7646
    case elfcpp::R_ARM_LDC_SB_G2:
7647
    case elfcpp::R_ARM_MOVW_BREL_NC:
7648
    case elfcpp::R_ARM_MOVT_BREL:
7649
    case elfcpp::R_ARM_MOVW_BREL:
7650
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7651
    case elfcpp::R_ARM_THM_MOVT_BREL:
7652
    case elfcpp::R_ARM_THM_MOVW_BREL:
7653
    case elfcpp::R_ARM_GOTOFF32:
7654
    case elfcpp::R_ARM_GOTOFF12:
7655
    case elfcpp::R_ARM_SBREL31:
7656
      return Symbol::RELATIVE_REF;
7657
 
7658
    case elfcpp::R_ARM_PLT32:
7659
    case elfcpp::R_ARM_CALL:
7660
    case elfcpp::R_ARM_JUMP24:
7661
    case elfcpp::R_ARM_THM_CALL:
7662
    case elfcpp::R_ARM_THM_JUMP24:
7663
    case elfcpp::R_ARM_THM_JUMP19:
7664
    case elfcpp::R_ARM_THM_JUMP6:
7665
    case elfcpp::R_ARM_THM_JUMP11:
7666
    case elfcpp::R_ARM_THM_JUMP8:
7667
    // R_ARM_PREL31 is not used to relocate call/jump instructions but
7668
    // in unwind tables. It may point to functions via PLTs.
7669
    // So we treat it like call/jump relocations above.
7670
    case elfcpp::R_ARM_PREL31:
7671
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7672
 
7673
    case elfcpp::R_ARM_GOT_BREL:
7674
    case elfcpp::R_ARM_GOT_ABS:
7675
    case elfcpp::R_ARM_GOT_PREL:
7676
      // Absolute in GOT.
7677
      return Symbol::ABSOLUTE_REF;
7678
 
7679
    case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7680
    case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7681
    case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7682
    case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7683
    case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7684
      return Symbol::TLS_REF;
7685
 
7686
    case elfcpp::R_ARM_TARGET1:
7687
    case elfcpp::R_ARM_TARGET2:
7688
    case elfcpp::R_ARM_COPY:
7689
    case elfcpp::R_ARM_GLOB_DAT:
7690
    case elfcpp::R_ARM_JUMP_SLOT:
7691
    case elfcpp::R_ARM_RELATIVE:
7692
    case elfcpp::R_ARM_PC24:
7693
    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7694
    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7695
    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7696
    default:
7697
      // Not expected.  We will give an error later.
7698
      return 0;
7699
    }
7700
}
7701
 
7702
// Report an unsupported relocation against a local symbol.
7703
 
7704
template<bool big_endian>
7705
void
7706
Target_arm<big_endian>::Scan::unsupported_reloc_local(
7707
    Sized_relobj_file<32, big_endian>* object,
7708
    unsigned int r_type)
7709
{
7710
  gold_error(_("%s: unsupported reloc %u against local symbol"),
7711
             object->name().c_str(), r_type);
7712
}
7713
 
7714
// We are about to emit a dynamic relocation of type R_TYPE.  If the
7715
// dynamic linker does not support it, issue an error.  The GNU linker
7716
// only issues a non-PIC error for an allocated read-only section.
7717
// Here we know the section is allocated, but we don't know that it is
7718
// read-only.  But we check for all the relocation types which the
7719
// glibc dynamic linker supports, so it seems appropriate to issue an
7720
// error even if the section is not read-only.
7721
 
7722
template<bool big_endian>
7723
void
7724
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7725
                                            unsigned int r_type)
7726
{
7727
  switch (r_type)
7728
    {
7729
    // These are the relocation types supported by glibc for ARM.
7730
    case elfcpp::R_ARM_RELATIVE:
7731
    case elfcpp::R_ARM_COPY:
7732
    case elfcpp::R_ARM_GLOB_DAT:
7733
    case elfcpp::R_ARM_JUMP_SLOT:
7734
    case elfcpp::R_ARM_ABS32:
7735
    case elfcpp::R_ARM_ABS32_NOI:
7736
    case elfcpp::R_ARM_PC24:
7737
    // FIXME: The following 3 types are not supported by Android's dynamic
7738
    // linker.
7739
    case elfcpp::R_ARM_TLS_DTPMOD32:
7740
    case elfcpp::R_ARM_TLS_DTPOFF32:
7741
    case elfcpp::R_ARM_TLS_TPOFF32:
7742
      return;
7743
 
7744
    default:
7745
      {
7746
        // This prevents us from issuing more than one error per reloc
7747
        // section.  But we can still wind up issuing more than one
7748
        // error per object file.
7749
        if (this->issued_non_pic_error_)
7750
          return;
7751
        const Arm_reloc_property* reloc_property =
7752
          arm_reloc_property_table->get_reloc_property(r_type);
7753
        gold_assert(reloc_property != NULL);
7754
        object->error(_("requires unsupported dynamic reloc %s; "
7755
                      "recompile with -fPIC"),
7756
                      reloc_property->name().c_str());
7757
        this->issued_non_pic_error_ = true;
7758
        return;
7759
      }
7760
 
7761
    case elfcpp::R_ARM_NONE:
7762
      gold_unreachable();
7763
    }
7764
}
7765
 
7766
// Scan a relocation for a local symbol.
7767
// FIXME: This only handles a subset of relocation types used by Android
7768
// on ARM v5te devices.
7769
 
7770
template<bool big_endian>
7771
inline void
7772
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
7773
                                    Layout* layout,
7774
                                    Target_arm* target,
7775
                                    Sized_relobj_file<32, big_endian>* object,
7776
                                    unsigned int data_shndx,
7777
                                    Output_section* output_section,
7778
                                    const elfcpp::Rel<32, big_endian>& reloc,
7779
                                    unsigned int r_type,
7780
                                    const elfcpp::Sym<32, big_endian>& lsym)
7781
{
7782
  r_type = get_real_reloc_type(r_type);
7783
  switch (r_type)
7784
    {
7785
    case elfcpp::R_ARM_NONE:
7786
    case elfcpp::R_ARM_V4BX:
7787
    case elfcpp::R_ARM_GNU_VTENTRY:
7788
    case elfcpp::R_ARM_GNU_VTINHERIT:
7789
      break;
7790
 
7791
    case elfcpp::R_ARM_ABS32:
7792
    case elfcpp::R_ARM_ABS32_NOI:
7793
      // If building a shared library (or a position-independent
7794
      // executable), we need to create a dynamic relocation for
7795
      // this location. The relocation applied at link time will
7796
      // apply the link-time value, so we flag the location with
7797
      // an R_ARM_RELATIVE relocation so the dynamic loader can
7798
      // relocate it easily.
7799
      if (parameters->options().output_is_position_independent())
7800
        {
7801
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7802
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7803
          // If we are to add more other reloc types than R_ARM_ABS32,
7804
          // we need to add check_non_pic(object, r_type) here.
7805
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7806
                                      output_section, data_shndx,
7807
                                      reloc.get_r_offset());
7808
        }
7809
      break;
7810
 
7811
    case elfcpp::R_ARM_ABS16:
7812
    case elfcpp::R_ARM_ABS12:
7813
    case elfcpp::R_ARM_THM_ABS5:
7814
    case elfcpp::R_ARM_ABS8:
7815
    case elfcpp::R_ARM_BASE_ABS:
7816
    case elfcpp::R_ARM_MOVW_ABS_NC:
7817
    case elfcpp::R_ARM_MOVT_ABS:
7818
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7819
    case elfcpp::R_ARM_THM_MOVT_ABS:
7820
      // If building a shared library (or a position-independent
7821
      // executable), we need to create a dynamic relocation for
7822
      // this location. Because the addend needs to remain in the
7823
      // data section, we need to be careful not to apply this
7824
      // relocation statically.
7825
      if (parameters->options().output_is_position_independent())
7826
        {
7827
          check_non_pic(object, r_type);
7828
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7829
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7830
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
7831
            rel_dyn->add_local(object, r_sym, r_type, output_section,
7832
                               data_shndx, reloc.get_r_offset());
7833
          else
7834
            {
7835
              gold_assert(lsym.get_st_value() == 0);
7836
              unsigned int shndx = lsym.get_st_shndx();
7837
              bool is_ordinary;
7838
              shndx = object->adjust_sym_shndx(r_sym, shndx,
7839
                                               &is_ordinary);
7840
              if (!is_ordinary)
7841
                object->error(_("section symbol %u has bad shndx %u"),
7842
                              r_sym, shndx);
7843
              else
7844
                rel_dyn->add_local_section(object, shndx,
7845
                                           r_type, output_section,
7846
                                           data_shndx, reloc.get_r_offset());
7847
            }
7848
        }
7849
      break;
7850
 
7851
    case elfcpp::R_ARM_REL32:
7852
    case elfcpp::R_ARM_LDR_PC_G0:
7853
    case elfcpp::R_ARM_SBREL32:
7854
    case elfcpp::R_ARM_THM_CALL:
7855
    case elfcpp::R_ARM_THM_PC8:
7856
    case elfcpp::R_ARM_BASE_PREL:
7857
    case elfcpp::R_ARM_PLT32:
7858
    case elfcpp::R_ARM_CALL:
7859
    case elfcpp::R_ARM_JUMP24:
7860
    case elfcpp::R_ARM_THM_JUMP24:
7861
    case elfcpp::R_ARM_SBREL31:
7862
    case elfcpp::R_ARM_PREL31:
7863
    case elfcpp::R_ARM_MOVW_PREL_NC:
7864
    case elfcpp::R_ARM_MOVT_PREL:
7865
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7866
    case elfcpp::R_ARM_THM_MOVT_PREL:
7867
    case elfcpp::R_ARM_THM_JUMP19:
7868
    case elfcpp::R_ARM_THM_JUMP6:
7869
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7870
    case elfcpp::R_ARM_THM_PC12:
7871
    case elfcpp::R_ARM_REL32_NOI:
7872
    case elfcpp::R_ARM_ALU_PC_G0_NC:
7873
    case elfcpp::R_ARM_ALU_PC_G0:
7874
    case elfcpp::R_ARM_ALU_PC_G1_NC:
7875
    case elfcpp::R_ARM_ALU_PC_G1:
7876
    case elfcpp::R_ARM_ALU_PC_G2:
7877
    case elfcpp::R_ARM_LDR_PC_G1:
7878
    case elfcpp::R_ARM_LDR_PC_G2:
7879
    case elfcpp::R_ARM_LDRS_PC_G0:
7880
    case elfcpp::R_ARM_LDRS_PC_G1:
7881
    case elfcpp::R_ARM_LDRS_PC_G2:
7882
    case elfcpp::R_ARM_LDC_PC_G0:
7883
    case elfcpp::R_ARM_LDC_PC_G1:
7884
    case elfcpp::R_ARM_LDC_PC_G2:
7885
    case elfcpp::R_ARM_ALU_SB_G0_NC:
7886
    case elfcpp::R_ARM_ALU_SB_G0:
7887
    case elfcpp::R_ARM_ALU_SB_G1_NC:
7888
    case elfcpp::R_ARM_ALU_SB_G1:
7889
    case elfcpp::R_ARM_ALU_SB_G2:
7890
    case elfcpp::R_ARM_LDR_SB_G0:
7891
    case elfcpp::R_ARM_LDR_SB_G1:
7892
    case elfcpp::R_ARM_LDR_SB_G2:
7893
    case elfcpp::R_ARM_LDRS_SB_G0:
7894
    case elfcpp::R_ARM_LDRS_SB_G1:
7895
    case elfcpp::R_ARM_LDRS_SB_G2:
7896
    case elfcpp::R_ARM_LDC_SB_G0:
7897
    case elfcpp::R_ARM_LDC_SB_G1:
7898
    case elfcpp::R_ARM_LDC_SB_G2:
7899
    case elfcpp::R_ARM_MOVW_BREL_NC:
7900
    case elfcpp::R_ARM_MOVT_BREL:
7901
    case elfcpp::R_ARM_MOVW_BREL:
7902
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7903
    case elfcpp::R_ARM_THM_MOVT_BREL:
7904
    case elfcpp::R_ARM_THM_MOVW_BREL:
7905
    case elfcpp::R_ARM_THM_JUMP11:
7906
    case elfcpp::R_ARM_THM_JUMP8:
7907
      // We don't need to do anything for a relative addressing relocation
7908
      // against a local symbol if it does not reference the GOT.
7909
      break;
7910
 
7911
    case elfcpp::R_ARM_GOTOFF32:
7912
    case elfcpp::R_ARM_GOTOFF12:
7913
      // We need a GOT section:
7914
      target->got_section(symtab, layout);
7915
      break;
7916
 
7917
    case elfcpp::R_ARM_GOT_BREL:
7918
    case elfcpp::R_ARM_GOT_PREL:
7919
      {
7920
        // The symbol requires a GOT entry.
7921
        Arm_output_data_got<big_endian>* got =
7922
          target->got_section(symtab, layout);
7923
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7924
        if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7925
          {
7926
            // If we are generating a shared object, we need to add a
7927
            // dynamic RELATIVE relocation for this symbol's GOT entry.
7928
            if (parameters->options().output_is_position_independent())
7929
              {
7930
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7931
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7932
                rel_dyn->add_local_relative(
7933
                    object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7934
                    object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
7935
              }
7936
          }
7937
      }
7938
      break;
7939
 
7940
    case elfcpp::R_ARM_TARGET1:
7941
    case elfcpp::R_ARM_TARGET2:
7942
      // This should have been mapped to another type already.
7943
      // Fall through.
7944
    case elfcpp::R_ARM_COPY:
7945
    case elfcpp::R_ARM_GLOB_DAT:
7946
    case elfcpp::R_ARM_JUMP_SLOT:
7947
    case elfcpp::R_ARM_RELATIVE:
7948
      // These are relocations which should only be seen by the
7949
      // dynamic linker, and should never be seen here.
7950
      gold_error(_("%s: unexpected reloc %u in object file"),
7951
                 object->name().c_str(), r_type);
7952
      break;
7953
 
7954
 
7955
      // These are initial TLS relocs, which are expected when
7956
      // linking.
7957
    case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
7958
    case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
7959
    case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
7960
    case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
7961
    case elfcpp::R_ARM_TLS_LE32:        // Local-exec
7962
      {
7963
        bool output_is_shared = parameters->options().shared();
7964
        const tls::Tls_optimization optimized_type
7965
            = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7966
                                                         r_type);
7967
        switch (r_type)
7968
          {
7969
          case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
7970
            if (optimized_type == tls::TLSOPT_NONE)
7971
              {
7972
                // Create a pair of GOT entries for the module index and
7973
                // dtv-relative offset.
7974
                Arm_output_data_got<big_endian>* got
7975
                    = target->got_section(symtab, layout);
7976
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7977
                unsigned int shndx = lsym.get_st_shndx();
7978
                bool is_ordinary;
7979
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7980
                if (!is_ordinary)
7981
                  {
7982
                    object->error(_("local symbol %u has bad shndx %u"),
7983
                                  r_sym, shndx);
7984
                    break;
7985
                  }
7986
 
7987
                if (!parameters->doing_static_link())
7988
                  got->add_local_pair_with_rel(object, r_sym, shndx,
7989
                                               GOT_TYPE_TLS_PAIR,
7990
                                               target->rel_dyn_section(layout),
7991
                                               elfcpp::R_ARM_TLS_DTPMOD32, 0);
7992
                else
7993
                  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7994
                                                      object, r_sym);
7995
              }
7996
            else
7997
              // FIXME: TLS optimization not supported yet.
7998
              gold_unreachable();
7999
            break;
8000
 
8001
          case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8002
            if (optimized_type == tls::TLSOPT_NONE)
8003
              {
8004
                // Create a GOT entry for the module index.
8005
                target->got_mod_index_entry(symtab, layout, object);
8006
              }
8007
            else
8008
              // FIXME: TLS optimization not supported yet.
8009
              gold_unreachable();
8010
            break;
8011
 
8012
          case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8013
            break;
8014
 
8015
          case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8016
            layout->set_has_static_tls();
8017
            if (optimized_type == tls::TLSOPT_NONE)
8018
              {
8019
                // Create a GOT entry for the tp-relative offset.
8020
                Arm_output_data_got<big_endian>* got
8021
                  = target->got_section(symtab, layout);
8022
                unsigned int r_sym =
8023
                   elfcpp::elf_r_sym<32>(reloc.get_r_info());
8024
                if (!parameters->doing_static_link())
8025
                    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8026
                                            target->rel_dyn_section(layout),
8027
                                            elfcpp::R_ARM_TLS_TPOFF32);
8028
                else if (!object->local_has_got_offset(r_sym,
8029
                                                       GOT_TYPE_TLS_OFFSET))
8030
                  {
8031
                    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8032
                    unsigned int got_offset =
8033
                      object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8034
                    got->add_static_reloc(got_offset,
8035
                                          elfcpp::R_ARM_TLS_TPOFF32, object,
8036
                                          r_sym);
8037
                  }
8038
              }
8039
            else
8040
              // FIXME: TLS optimization not supported yet.
8041
              gold_unreachable();
8042
            break;
8043
 
8044
          case elfcpp::R_ARM_TLS_LE32:          // Local-exec
8045
            layout->set_has_static_tls();
8046
            if (output_is_shared)
8047
              {
8048
                // We need to create a dynamic relocation.
8049
                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8050
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8051
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8052
                rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8053
                                   output_section, data_shndx,
8054
                                   reloc.get_r_offset());
8055
              }
8056
            break;
8057
 
8058
          default:
8059
            gold_unreachable();
8060
          }
8061
      }
8062
      break;
8063
 
8064
    case elfcpp::R_ARM_PC24:
8065
    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8066
    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8067
    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8068
    default:
8069
      unsupported_reloc_local(object, r_type);
8070
      break;
8071
    }
8072
}
8073
 
8074
// Report an unsupported relocation against a global symbol.
8075
 
8076
template<bool big_endian>
8077
void
8078
Target_arm<big_endian>::Scan::unsupported_reloc_global(
8079
    Sized_relobj_file<32, big_endian>* object,
8080
    unsigned int r_type,
8081
    Symbol* gsym)
8082
{
8083
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8084
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
8085
}
8086
 
8087
template<bool big_endian>
8088
inline bool
8089
Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8090
    unsigned int r_type)
8091
{
8092
  switch (r_type)
8093
    {
8094
    case elfcpp::R_ARM_PC24:
8095
    case elfcpp::R_ARM_THM_CALL:
8096
    case elfcpp::R_ARM_PLT32:
8097
    case elfcpp::R_ARM_CALL:
8098
    case elfcpp::R_ARM_JUMP24:
8099
    case elfcpp::R_ARM_THM_JUMP24:
8100
    case elfcpp::R_ARM_SBREL31:
8101
    case elfcpp::R_ARM_PREL31:
8102
    case elfcpp::R_ARM_THM_JUMP19:
8103
    case elfcpp::R_ARM_THM_JUMP6:
8104
    case elfcpp::R_ARM_THM_JUMP11:
8105
    case elfcpp::R_ARM_THM_JUMP8:
8106
      // All the relocations above are branches except SBREL31 and PREL31.
8107
      return false;
8108
 
8109
    default:
8110
      // Be conservative and assume this is a function pointer.
8111
      return true;
8112
    }
8113
}
8114
 
8115
template<bool big_endian>
8116
inline bool
8117
Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8118
  Symbol_table*,
8119
  Layout*,
8120
  Target_arm<big_endian>* target,
8121
  Sized_relobj_file<32, big_endian>*,
8122
  unsigned int,
8123
  Output_section*,
8124
  const elfcpp::Rel<32, big_endian>&,
8125
  unsigned int r_type,
8126
  const elfcpp::Sym<32, big_endian>&)
8127
{
8128
  r_type = target->get_real_reloc_type(r_type);
8129
  return possible_function_pointer_reloc(r_type);
8130
}
8131
 
8132
template<bool big_endian>
8133
inline bool
8134
Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8135
  Symbol_table*,
8136
  Layout*,
8137
  Target_arm<big_endian>* target,
8138
  Sized_relobj_file<32, big_endian>*,
8139
  unsigned int,
8140
  Output_section*,
8141
  const elfcpp::Rel<32, big_endian>&,
8142
  unsigned int r_type,
8143
  Symbol* gsym)
8144
{
8145
  // GOT is not a function.
8146
  if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8147
    return false;
8148
 
8149
  r_type = target->get_real_reloc_type(r_type);
8150
  return possible_function_pointer_reloc(r_type);
8151
}
8152
 
8153
// Scan a relocation for a global symbol.
8154
 
8155
template<bool big_endian>
8156
inline void
8157
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
8158
                                     Layout* layout,
8159
                                     Target_arm* target,
8160
                                     Sized_relobj_file<32, big_endian>* object,
8161
                                     unsigned int data_shndx,
8162
                                     Output_section* output_section,
8163
                                     const elfcpp::Rel<32, big_endian>& reloc,
8164
                                     unsigned int r_type,
8165
                                     Symbol* gsym)
8166
{
8167
  // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8168
  // section.  We check here to avoid creating a dynamic reloc against
8169
  // _GLOBAL_OFFSET_TABLE_.
8170
  if (!target->has_got_section()
8171
      && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8172
    target->got_section(symtab, layout);
8173
 
8174
  r_type = get_real_reloc_type(r_type);
8175
  switch (r_type)
8176
    {
8177
    case elfcpp::R_ARM_NONE:
8178
    case elfcpp::R_ARM_V4BX:
8179
    case elfcpp::R_ARM_GNU_VTENTRY:
8180
    case elfcpp::R_ARM_GNU_VTINHERIT:
8181
      break;
8182
 
8183
    case elfcpp::R_ARM_ABS32:
8184
    case elfcpp::R_ARM_ABS16:
8185
    case elfcpp::R_ARM_ABS12:
8186
    case elfcpp::R_ARM_THM_ABS5:
8187
    case elfcpp::R_ARM_ABS8:
8188
    case elfcpp::R_ARM_BASE_ABS:
8189
    case elfcpp::R_ARM_MOVW_ABS_NC:
8190
    case elfcpp::R_ARM_MOVT_ABS:
8191
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8192
    case elfcpp::R_ARM_THM_MOVT_ABS:
8193
    case elfcpp::R_ARM_ABS32_NOI:
8194
      // Absolute addressing relocations.
8195
      {
8196
        // Make a PLT entry if necessary.
8197
        if (this->symbol_needs_plt_entry(gsym))
8198
          {
8199
            target->make_plt_entry(symtab, layout, gsym);
8200
            // Since this is not a PC-relative relocation, we may be
8201
            // taking the address of a function. In that case we need to
8202
            // set the entry in the dynamic symbol table to the address of
8203
            // the PLT entry.
8204
            if (gsym->is_from_dynobj() && !parameters->options().shared())
8205
              gsym->set_needs_dynsym_value();
8206
          }
8207
        // Make a dynamic relocation if necessary.
8208
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8209
          {
8210
            if (gsym->may_need_copy_reloc())
8211
              {
8212
                target->copy_reloc(symtab, layout, object,
8213
                                   data_shndx, output_section, gsym, reloc);
8214
              }
8215
            else if ((r_type == elfcpp::R_ARM_ABS32
8216
                      || r_type == elfcpp::R_ARM_ABS32_NOI)
8217
                     && gsym->can_use_relative_reloc(false))
8218
              {
8219
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8220
                rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8221
                                             output_section, object,
8222
                                             data_shndx, reloc.get_r_offset());
8223
              }
8224
            else
8225
              {
8226
                check_non_pic(object, r_type);
8227
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8228
                rel_dyn->add_global(gsym, r_type, output_section, object,
8229
                                    data_shndx, reloc.get_r_offset());
8230
              }
8231
          }
8232
      }
8233
      break;
8234
 
8235
    case elfcpp::R_ARM_GOTOFF32:
8236
    case elfcpp::R_ARM_GOTOFF12:
8237
      // We need a GOT section.
8238
      target->got_section(symtab, layout);
8239
      break;
8240
 
8241
    case elfcpp::R_ARM_REL32:
8242
    case elfcpp::R_ARM_LDR_PC_G0:
8243
    case elfcpp::R_ARM_SBREL32:
8244
    case elfcpp::R_ARM_THM_PC8:
8245
    case elfcpp::R_ARM_BASE_PREL:
8246
    case elfcpp::R_ARM_MOVW_PREL_NC:
8247
    case elfcpp::R_ARM_MOVT_PREL:
8248
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8249
    case elfcpp::R_ARM_THM_MOVT_PREL:
8250
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8251
    case elfcpp::R_ARM_THM_PC12:
8252
    case elfcpp::R_ARM_REL32_NOI:
8253
    case elfcpp::R_ARM_ALU_PC_G0_NC:
8254
    case elfcpp::R_ARM_ALU_PC_G0:
8255
    case elfcpp::R_ARM_ALU_PC_G1_NC:
8256
    case elfcpp::R_ARM_ALU_PC_G1:
8257
    case elfcpp::R_ARM_ALU_PC_G2:
8258
    case elfcpp::R_ARM_LDR_PC_G1:
8259
    case elfcpp::R_ARM_LDR_PC_G2:
8260
    case elfcpp::R_ARM_LDRS_PC_G0:
8261
    case elfcpp::R_ARM_LDRS_PC_G1:
8262
    case elfcpp::R_ARM_LDRS_PC_G2:
8263
    case elfcpp::R_ARM_LDC_PC_G0:
8264
    case elfcpp::R_ARM_LDC_PC_G1:
8265
    case elfcpp::R_ARM_LDC_PC_G2:
8266
    case elfcpp::R_ARM_ALU_SB_G0_NC:
8267
    case elfcpp::R_ARM_ALU_SB_G0:
8268
    case elfcpp::R_ARM_ALU_SB_G1_NC:
8269
    case elfcpp::R_ARM_ALU_SB_G1:
8270
    case elfcpp::R_ARM_ALU_SB_G2:
8271
    case elfcpp::R_ARM_LDR_SB_G0:
8272
    case elfcpp::R_ARM_LDR_SB_G1:
8273
    case elfcpp::R_ARM_LDR_SB_G2:
8274
    case elfcpp::R_ARM_LDRS_SB_G0:
8275
    case elfcpp::R_ARM_LDRS_SB_G1:
8276
    case elfcpp::R_ARM_LDRS_SB_G2:
8277
    case elfcpp::R_ARM_LDC_SB_G0:
8278
    case elfcpp::R_ARM_LDC_SB_G1:
8279
    case elfcpp::R_ARM_LDC_SB_G2:
8280
    case elfcpp::R_ARM_MOVW_BREL_NC:
8281
    case elfcpp::R_ARM_MOVT_BREL:
8282
    case elfcpp::R_ARM_MOVW_BREL:
8283
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8284
    case elfcpp::R_ARM_THM_MOVT_BREL:
8285
    case elfcpp::R_ARM_THM_MOVW_BREL:
8286
      // Relative addressing relocations.
8287
      {
8288
        // Make a dynamic relocation if necessary.
8289
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8290
          {
8291
            if (target->may_need_copy_reloc(gsym))
8292
              {
8293
                target->copy_reloc(symtab, layout, object,
8294
                                   data_shndx, output_section, gsym, reloc);
8295
              }
8296
            else
8297
              {
8298
                check_non_pic(object, r_type);
8299
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8300
                rel_dyn->add_global(gsym, r_type, output_section, object,
8301
                                    data_shndx, reloc.get_r_offset());
8302
              }
8303
          }
8304
      }
8305
      break;
8306
 
8307
    case elfcpp::R_ARM_THM_CALL:
8308
    case elfcpp::R_ARM_PLT32:
8309
    case elfcpp::R_ARM_CALL:
8310
    case elfcpp::R_ARM_JUMP24:
8311
    case elfcpp::R_ARM_THM_JUMP24:
8312
    case elfcpp::R_ARM_SBREL31:
8313
    case elfcpp::R_ARM_PREL31:
8314
    case elfcpp::R_ARM_THM_JUMP19:
8315
    case elfcpp::R_ARM_THM_JUMP6:
8316
    case elfcpp::R_ARM_THM_JUMP11:
8317
    case elfcpp::R_ARM_THM_JUMP8:
8318
      // All the relocation above are branches except for the PREL31 ones.
8319
      // A PREL31 relocation can point to a personality function in a shared
8320
      // library.  In that case we want to use a PLT because we want to
8321
      // call the personality routine and the dynamic linkers we care about
8322
      // do not support dynamic PREL31 relocations. An REL31 relocation may
8323
      // point to a function whose unwinding behaviour is being described but
8324
      // we will not mistakenly generate a PLT for that because we should use
8325
      // a local section symbol.
8326
 
8327
      // If the symbol is fully resolved, this is just a relative
8328
      // local reloc.  Otherwise we need a PLT entry.
8329
      if (gsym->final_value_is_known())
8330
        break;
8331
      // If building a shared library, we can also skip the PLT entry
8332
      // if the symbol is defined in the output file and is protected
8333
      // or hidden.
8334
      if (gsym->is_defined()
8335
          && !gsym->is_from_dynobj()
8336
          && !gsym->is_preemptible())
8337
        break;
8338
      target->make_plt_entry(symtab, layout, gsym);
8339
      break;
8340
 
8341
    case elfcpp::R_ARM_GOT_BREL:
8342
    case elfcpp::R_ARM_GOT_ABS:
8343
    case elfcpp::R_ARM_GOT_PREL:
8344
      {
8345
        // The symbol requires a GOT entry.
8346
        Arm_output_data_got<big_endian>* got =
8347
          target->got_section(symtab, layout);
8348
        if (gsym->final_value_is_known())
8349
          got->add_global(gsym, GOT_TYPE_STANDARD);
8350
        else
8351
          {
8352
            // If this symbol is not fully resolved, we need to add a
8353
            // GOT entry with a dynamic relocation.
8354
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8355
            if (gsym->is_from_dynobj()
8356
                || gsym->is_undefined()
8357
                || gsym->is_preemptible())
8358
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8359
                                       rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8360
            else
8361
              {
8362
                if (got->add_global(gsym, GOT_TYPE_STANDARD))
8363
                  rel_dyn->add_global_relative(
8364
                      gsym, elfcpp::R_ARM_RELATIVE, got,
8365
                      gsym->got_offset(GOT_TYPE_STANDARD));
8366
              }
8367
          }
8368
      }
8369
      break;
8370
 
8371
    case elfcpp::R_ARM_TARGET1:
8372
    case elfcpp::R_ARM_TARGET2:
8373
      // These should have been mapped to other types already.
8374
      // Fall through.
8375
    case elfcpp::R_ARM_COPY:
8376
    case elfcpp::R_ARM_GLOB_DAT:
8377
    case elfcpp::R_ARM_JUMP_SLOT:
8378
    case elfcpp::R_ARM_RELATIVE:
8379
      // These are relocations which should only be seen by the
8380
      // dynamic linker, and should never be seen here.
8381
      gold_error(_("%s: unexpected reloc %u in object file"),
8382
                 object->name().c_str(), r_type);
8383
      break;
8384
 
8385
      // These are initial tls relocs, which are expected when
8386
      // linking.
8387
    case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
8388
    case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
8389
    case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
8390
    case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
8391
    case elfcpp::R_ARM_TLS_LE32:        // Local-exec
8392
      {
8393
        const bool is_final = gsym->final_value_is_known();
8394
        const tls::Tls_optimization optimized_type
8395
            = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8396
        switch (r_type)
8397
          {
8398
          case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
8399
            if (optimized_type == tls::TLSOPT_NONE)
8400
              {
8401
                // Create a pair of GOT entries for the module index and
8402
                // dtv-relative offset.
8403
                Arm_output_data_got<big_endian>* got
8404
                    = target->got_section(symtab, layout);
8405
                if (!parameters->doing_static_link())
8406
                  got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8407
                                                target->rel_dyn_section(layout),
8408
                                                elfcpp::R_ARM_TLS_DTPMOD32,
8409
                                                elfcpp::R_ARM_TLS_DTPOFF32);
8410
                else
8411
                  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
8412
              }
8413
            else
8414
              // FIXME: TLS optimization not supported yet.
8415
              gold_unreachable();
8416
            break;
8417
 
8418
          case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
8419
            if (optimized_type == tls::TLSOPT_NONE)
8420
              {
8421
                // Create a GOT entry for the module index.
8422
                target->got_mod_index_entry(symtab, layout, object);
8423
              }
8424
            else
8425
              // FIXME: TLS optimization not supported yet.
8426
              gold_unreachable();
8427
            break;
8428
 
8429
          case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
8430
            break;
8431
 
8432
          case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
8433
            layout->set_has_static_tls();
8434
            if (optimized_type == tls::TLSOPT_NONE)
8435
              {
8436
                // Create a GOT entry for the tp-relative offset.
8437
                Arm_output_data_got<big_endian>* got
8438
                  = target->got_section(symtab, layout);
8439
                if (!parameters->doing_static_link())
8440
                  got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8441
                                           target->rel_dyn_section(layout),
8442
                                           elfcpp::R_ARM_TLS_TPOFF32);
8443
                else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8444
                  {
8445
                    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8446
                    unsigned int got_offset =
8447
                       gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8448
                    got->add_static_reloc(got_offset,
8449
                                          elfcpp::R_ARM_TLS_TPOFF32, gsym);
8450
                  }
8451
              }
8452
            else
8453
              // FIXME: TLS optimization not supported yet.
8454
              gold_unreachable();
8455
            break;
8456
 
8457
          case elfcpp::R_ARM_TLS_LE32:  // Local-exec
8458
            layout->set_has_static_tls();
8459
            if (parameters->options().shared())
8460
              {
8461
                // We need to create a dynamic relocation.
8462
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8463
                rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8464
                                    output_section, object,
8465
                                    data_shndx, reloc.get_r_offset());
8466
              }
8467
            break;
8468
 
8469
          default:
8470
            gold_unreachable();
8471
          }
8472
      }
8473
      break;
8474
 
8475
    case elfcpp::R_ARM_PC24:
8476
    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8477
    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8478
    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8479
    default:
8480
      unsupported_reloc_global(object, r_type, gsym);
8481
      break;
8482
    }
8483
}
8484
 
8485
// Process relocations for gc.
8486
 
8487
template<bool big_endian>
8488
void
8489
Target_arm<big_endian>::gc_process_relocs(
8490
    Symbol_table* symtab,
8491
    Layout* layout,
8492
    Sized_relobj_file<32, big_endian>* object,
8493
    unsigned int data_shndx,
8494
    unsigned int,
8495
    const unsigned char* prelocs,
8496
    size_t reloc_count,
8497
    Output_section* output_section,
8498
    bool needs_special_offset_handling,
8499
    size_t local_symbol_count,
8500
    const unsigned char* plocal_symbols)
8501
{
8502
  typedef Target_arm<big_endian> Arm;
8503
  typedef typename Target_arm<big_endian>::Scan Scan;
8504
 
8505
  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
8506
                          typename Target_arm::Relocatable_size_for_reloc>(
8507
    symtab,
8508
    layout,
8509
    this,
8510
    object,
8511
    data_shndx,
8512
    prelocs,
8513
    reloc_count,
8514
    output_section,
8515
    needs_special_offset_handling,
8516
    local_symbol_count,
8517
    plocal_symbols);
8518
}
8519
 
8520
// Scan relocations for a section.
8521
 
8522
template<bool big_endian>
8523
void
8524
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
8525
                                    Layout* layout,
8526
                                    Sized_relobj_file<32, big_endian>* object,
8527
                                    unsigned int data_shndx,
8528
                                    unsigned int sh_type,
8529
                                    const unsigned char* prelocs,
8530
                                    size_t reloc_count,
8531
                                    Output_section* output_section,
8532
                                    bool needs_special_offset_handling,
8533
                                    size_t local_symbol_count,
8534
                                    const unsigned char* plocal_symbols)
8535
{
8536
  typedef typename Target_arm<big_endian>::Scan Scan;
8537
  if (sh_type == elfcpp::SHT_RELA)
8538
    {
8539
      gold_error(_("%s: unsupported RELA reloc section"),
8540
                 object->name().c_str());
8541
      return;
8542
    }
8543
 
8544
  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
8545
    symtab,
8546
    layout,
8547
    this,
8548
    object,
8549
    data_shndx,
8550
    prelocs,
8551
    reloc_count,
8552
    output_section,
8553
    needs_special_offset_handling,
8554
    local_symbol_count,
8555
    plocal_symbols);
8556
}
8557
 
8558
// Finalize the sections.
8559
 
8560
template<bool big_endian>
8561
void
8562
Target_arm<big_endian>::do_finalize_sections(
8563
    Layout* layout,
8564
    const Input_objects* input_objects,
8565
    Symbol_table* symtab)
8566
{
8567
  bool merged_any_attributes = false;
8568
  // Merge processor-specific flags.
8569
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8570
       p != input_objects->relobj_end();
8571
       ++p)
8572
    {
8573
      Arm_relobj<big_endian>* arm_relobj =
8574
        Arm_relobj<big_endian>::as_arm_relobj(*p);
8575
      if (arm_relobj->merge_flags_and_attributes())
8576
        {
8577
          this->merge_processor_specific_flags(
8578
              arm_relobj->name(),
8579
              arm_relobj->processor_specific_flags());
8580
          this->merge_object_attributes(arm_relobj->name().c_str(),
8581
                                        arm_relobj->attributes_section_data());
8582
          merged_any_attributes = true;
8583
        }
8584
    }
8585
 
8586
  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8587
       p != input_objects->dynobj_end();
8588
       ++p)
8589
    {
8590
      Arm_dynobj<big_endian>* arm_dynobj =
8591
        Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8592
      this->merge_processor_specific_flags(
8593
          arm_dynobj->name(),
8594
          arm_dynobj->processor_specific_flags());
8595
      this->merge_object_attributes(arm_dynobj->name().c_str(),
8596
                                    arm_dynobj->attributes_section_data());
8597
      merged_any_attributes = true;
8598
    }
8599
 
8600
  // Create an empty uninitialized attribute section if we still don't have it
8601
  // at this moment.  This happens if there is no attributes sections in all
8602
  // inputs.
8603
  if (this->attributes_section_data_ == NULL)
8604
    this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8605
 
8606
  // Check BLX use.
8607
  const Object_attribute* cpu_arch_attr =
8608
    this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
8609
  if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
8610
    this->set_may_use_blx(true);
8611
 
8612
  // Check if we need to use Cortex-A8 workaround.
8613
  if (parameters->options().user_set_fix_cortex_a8())
8614
    this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8615
  else
8616
    {
8617
      // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8618
      // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8619
      // profile.  
8620
      const Object_attribute* cpu_arch_profile_attr =
8621
        this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8622
      this->fix_cortex_a8_ =
8623
        (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8624
         && (cpu_arch_profile_attr->int_value() == 'A'
8625
             || cpu_arch_profile_attr->int_value() == 0));
8626
    }
8627
 
8628
  // Check if we can use V4BX interworking.
8629
  // The V4BX interworking stub contains BX instruction,
8630
  // which is not specified for some profiles.
8631
  if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8632
      && !this->may_use_blx())
8633
    gold_error(_("unable to provide V4BX reloc interworking fix up; "
8634
                 "the target profile does not support BX instruction"));
8635
 
8636
  // Fill in some more dynamic tags.
8637
  const Reloc_section* rel_plt = (this->plt_ == NULL
8638
                                  ? NULL
8639
                                  : this->plt_->rel_plt());
8640
  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
8641
                                  this->rel_dyn_, true, false);
8642
 
8643
  // Emit any relocs we saved in an attempt to avoid generating COPY
8644
  // relocs.
8645
  if (this->copy_relocs_.any_saved_relocs())
8646
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
8647
 
8648
  // Handle the .ARM.exidx section.
8649
  Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
8650
 
8651
  if (!parameters->options().relocatable())
8652
    {
8653
      if (exidx_section != NULL
8654
          && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8655
        {
8656
          // Create __exidx_start and __exidx_end symbols.
8657
          symtab->define_in_output_data("__exidx_start", NULL,
8658
                                        Symbol_table::PREDEFINED,
8659
                                        exidx_section, 0, 0, elfcpp::STT_OBJECT,
8660
                                        elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8661
                                        0, false, true);
8662
          symtab->define_in_output_data("__exidx_end", NULL,
8663
                                        Symbol_table::PREDEFINED,
8664
                                        exidx_section, 0, 0, elfcpp::STT_OBJECT,
8665
                                        elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8666
                                        0, true, true);
8667
 
8668
          // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8669
          // the .ARM.exidx section.
8670
          if (!layout->script_options()->saw_phdrs_clause())
8671
            {
8672
              gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8673
                                                      0)
8674
                          == NULL);
8675
              Output_segment*  exidx_segment =
8676
                layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8677
              exidx_segment->add_output_section_to_nonload(exidx_section,
8678
                                                           elfcpp::PF_R);
8679
            }
8680
        }
8681
      else
8682
        {
8683
          symtab->define_as_constant("__exidx_start", NULL,
8684
                                     Symbol_table::PREDEFINED,
8685
                                     0, 0, elfcpp::STT_OBJECT,
8686
                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8687
                                     true, false);
8688
          symtab->define_as_constant("__exidx_end", NULL,
8689
                                     Symbol_table::PREDEFINED,
8690
                                     0, 0, elfcpp::STT_OBJECT,
8691
                                     elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8692
                                     true, false);
8693
        }
8694
    }
8695
 
8696
  // Create an .ARM.attributes section if we have merged any attributes
8697
  // from inputs.
8698
  if (merged_any_attributes)
8699
    {
8700
      Output_attributes_section_data* attributes_section =
8701
      new Output_attributes_section_data(*this->attributes_section_data_);
8702
      layout->add_output_section_data(".ARM.attributes",
8703
                                      elfcpp::SHT_ARM_ATTRIBUTES, 0,
8704
                                      attributes_section, ORDER_INVALID,
8705
                                      false);
8706
    }
8707
 
8708
  // Fix up links in section EXIDX headers.
8709
  for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8710
       p != layout->section_list().end();
8711
       ++p)
8712
    if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8713
      {
8714
        Arm_output_section<big_endian>* os =
8715
          Arm_output_section<big_endian>::as_arm_output_section(*p);
8716
        os->set_exidx_section_link();
8717
      }
8718
}
8719
 
8720
// Return whether a direct absolute static relocation needs to be applied.
8721
// In cases where Scan::local() or Scan::global() has created
8722
// a dynamic relocation other than R_ARM_RELATIVE, the addend
8723
// of the relocation is carried in the data, and we must not
8724
// apply the static relocation.
8725
 
8726
template<bool big_endian>
8727
inline bool
8728
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8729
    const Sized_symbol<32>* gsym,
8730
    unsigned int r_type,
8731
    bool is_32bit,
8732
    Output_section* output_section)
8733
{
8734
  // If the output section is not allocated, then we didn't call
8735
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
8736
  // the reloc here.
8737
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8738
      return true;
8739
 
8740
  int ref_flags = Scan::get_reference_flags(r_type);
8741
 
8742
  // For local symbols, we will have created a non-RELATIVE dynamic
8743
  // relocation only if (a) the output is position independent,
8744
  // (b) the relocation is absolute (not pc- or segment-relative), and
8745
  // (c) the relocation is not 32 bits wide.
8746
  if (gsym == NULL)
8747
    return !(parameters->options().output_is_position_independent()
8748
             && (ref_flags & Symbol::ABSOLUTE_REF)
8749
             && !is_32bit);
8750
 
8751
  // For global symbols, we use the same helper routines used in the
8752
  // scan pass.  If we did not create a dynamic relocation, or if we
8753
  // created a RELATIVE dynamic relocation, we should apply the static
8754
  // relocation.
8755
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8756
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8757
                 && gsym->can_use_relative_reloc(ref_flags
8758
                                                 & Symbol::FUNCTION_CALL);
8759
  return !has_dyn || is_rel;
8760
}
8761
 
8762
// Perform a relocation.
8763
 
8764
template<bool big_endian>
8765
inline bool
8766
Target_arm<big_endian>::Relocate::relocate(
8767
    const Relocate_info<32, big_endian>* relinfo,
8768
    Target_arm* target,
8769
    Output_section* output_section,
8770
    size_t relnum,
8771
    const elfcpp::Rel<32, big_endian>& rel,
8772
    unsigned int r_type,
8773
    const Sized_symbol<32>* gsym,
8774
    const Symbol_value<32>* psymval,
8775
    unsigned char* view,
8776
    Arm_address address,
8777
    section_size_type view_size)
8778
{
8779
  typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8780
 
8781
  r_type = get_real_reloc_type(r_type);
8782
  const Arm_reloc_property* reloc_property =
8783
    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8784
  if (reloc_property == NULL)
8785
    {
8786
      std::string reloc_name =
8787
        arm_reloc_property_table->reloc_name_in_error_message(r_type);
8788
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8789
                             _("cannot relocate %s in object file"),
8790
                             reloc_name.c_str());
8791
      return true;
8792
    }
8793
 
8794
  const Arm_relobj<big_endian>* object =
8795
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
8796
 
8797
  // If the final branch target of a relocation is THUMB instruction, this
8798
  // is 1.  Otherwise it is 0.
8799
  Arm_address thumb_bit = 0;
8800
  Symbol_value<32> symval;
8801
  bool is_weakly_undefined_without_plt = false;
8802
  bool have_got_offset = false;
8803
  unsigned int got_offset = 0;
8804
 
8805
  // If the relocation uses the GOT entry of a symbol instead of the symbol
8806
  // itself, we don't care about whether the symbol is defined or what kind
8807
  // of symbol it is.
8808
  if (reloc_property->uses_got_entry())
8809
    {
8810
      // Get the GOT offset.
8811
      // The GOT pointer points to the end of the GOT section.
8812
      // We need to subtract the size of the GOT section to get
8813
      // the actual offset to use in the relocation.
8814
      // TODO: We should move GOT offset computing code in TLS relocations
8815
      // to here.
8816
      switch (r_type)
8817
        {
8818
        case elfcpp::R_ARM_GOT_BREL:
8819
        case elfcpp::R_ARM_GOT_PREL:
8820
          if (gsym != NULL)
8821
            {
8822
              gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8823
              got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8824
                            - target->got_size());
8825
            }
8826
          else
8827
            {
8828
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8829
              gold_assert(object->local_has_got_offset(r_sym,
8830
                                                       GOT_TYPE_STANDARD));
8831
              got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8832
                            - target->got_size());
8833
            }
8834
          have_got_offset = true;
8835
          break;
8836
 
8837
        default:
8838
          break;
8839
        }
8840
    }
8841
  else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
8842
    {
8843
      if (gsym != NULL)
8844
        {
8845
          // This is a global symbol.  Determine if we use PLT and if the
8846
          // final target is THUMB.
8847
          if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
8848
            {
8849
              // This uses a PLT, change the symbol value.
8850
              symval.set_output_value(target->plt_section()->address()
8851
                                      + gsym->plt_offset());
8852
              psymval = &symval;
8853
            }
8854
          else if (gsym->is_weak_undefined())
8855
            {
8856
              // This is a weakly undefined symbol and we do not use PLT
8857
              // for this relocation.  A branch targeting this symbol will
8858
              // be converted into an NOP.
8859
              is_weakly_undefined_without_plt = true;
8860
            }
8861
          else if (gsym->is_undefined() && reloc_property->uses_symbol())
8862
            {
8863
              // This relocation uses the symbol value but the symbol is
8864
              // undefined.  Exit early and have the caller reporting an
8865
              // error.
8866
              return true;
8867
            }
8868
          else
8869
            {
8870
              // Set thumb bit if symbol:
8871
              // -Has type STT_ARM_TFUNC or
8872
              // -Has type STT_FUNC, is defined and with LSB in value set.
8873
              thumb_bit =
8874
                (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8875
                 || (gsym->type() == elfcpp::STT_FUNC
8876
                     && !gsym->is_undefined()
8877
                     && ((psymval->value(object, 0) & 1) != 0)))
8878
                ? 1
8879
                : 0);
8880
            }
8881
        }
8882
      else
8883
        {
8884
          // This is a local symbol.  Determine if the final target is THUMB.
8885
          // We saved this information when all the local symbols were read.
8886
          elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8887
          unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8888
          thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8889
        }
8890
    }
8891
  else
8892
    {
8893
      // This is a fake relocation synthesized for a stub.  It does not have
8894
      // a real symbol.  We just look at the LSB of the symbol value to
8895
      // determine if the target is THUMB or not.
8896
      thumb_bit = ((psymval->value(object, 0) & 1) != 0);
8897
    }
8898
 
8899
  // Strip LSB if this points to a THUMB target.
8900
  if (thumb_bit != 0
8901
      && reloc_property->uses_thumb_bit()
8902
      && ((psymval->value(object, 0) & 1) != 0))
8903
    {
8904
      Arm_address stripped_value =
8905
        psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8906
      symval.set_output_value(stripped_value);
8907
      psymval = &symval;
8908
    }
8909
 
8910
  // To look up relocation stubs, we need to pass the symbol table index of
8911
  // a local symbol.
8912
  unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8913
 
8914
  // Get the addressing origin of the output segment defining the
8915
  // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8916
  Arm_address sym_origin = 0;
8917
  if (reloc_property->uses_symbol_base())
8918
    {
8919
      if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8920
        // R_ARM_BASE_ABS with the NULL symbol will give the
8921
        // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8922
        // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8923
        sym_origin = target->got_plt_section()->address();
8924
      else if (gsym == NULL)
8925
        sym_origin = 0;
8926
      else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8927
        sym_origin = gsym->output_segment()->vaddr();
8928
      else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8929
        sym_origin = gsym->output_data()->address();
8930
 
8931
      // TODO: Assumes the segment base to be zero for the global symbols
8932
      // till the proper support for the segment-base-relative addressing
8933
      // will be implemented.  This is consistent with GNU ld.
8934
    }
8935
 
8936
  // For relative addressing relocation, find out the relative address base.
8937
  Arm_address relative_address_base = 0;
8938
  switch(reloc_property->relative_address_base())
8939
    {
8940
    case Arm_reloc_property::RAB_NONE:
8941
    // Relocations with relative address bases RAB_TLS and RAB_tp are
8942
    // handled by relocate_tls.  So we do not need to do anything here.
8943
    case Arm_reloc_property::RAB_TLS:
8944
    case Arm_reloc_property::RAB_tp:
8945
      break;
8946
    case Arm_reloc_property::RAB_B_S:
8947
      relative_address_base = sym_origin;
8948
      break;
8949
    case Arm_reloc_property::RAB_GOT_ORG:
8950
      relative_address_base = target->got_plt_section()->address();
8951
      break;
8952
    case Arm_reloc_property::RAB_P:
8953
      relative_address_base = address;
8954
      break;
8955
    case Arm_reloc_property::RAB_Pa:
8956
      relative_address_base = address & 0xfffffffcU;
8957
      break;
8958
    default:
8959
      gold_unreachable();
8960
    }
8961
 
8962
  typename Arm_relocate_functions::Status reloc_status =
8963
        Arm_relocate_functions::STATUS_OKAY;
8964
  bool check_overflow = reloc_property->checks_overflow();
8965
  switch (r_type)
8966
    {
8967
    case elfcpp::R_ARM_NONE:
8968
      break;
8969
 
8970
    case elfcpp::R_ARM_ABS8:
8971
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
8972
        reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8973
      break;
8974
 
8975
    case elfcpp::R_ARM_ABS12:
8976
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
8977
        reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8978
      break;
8979
 
8980
    case elfcpp::R_ARM_ABS16:
8981
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
8982
        reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
8983
      break;
8984
 
8985
    case elfcpp::R_ARM_ABS32:
8986
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
8987
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8988
                                                     thumb_bit);
8989
      break;
8990
 
8991
    case elfcpp::R_ARM_ABS32_NOI:
8992
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
8993
        // No thumb bit for this relocation: (S + A)
8994
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
8995
                                                     0);
8996
      break;
8997
 
8998
    case elfcpp::R_ARM_MOVW_ABS_NC:
8999
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9000
        reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9001
                                                    0, thumb_bit,
9002
                                                    check_overflow);
9003
      break;
9004
 
9005
    case elfcpp::R_ARM_MOVT_ABS:
9006
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9007
        reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
9008
      break;
9009
 
9010
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9011
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9012
        reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9013
                                                        0, thumb_bit, false);
9014
      break;
9015
 
9016
    case elfcpp::R_ARM_THM_MOVT_ABS:
9017
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9018
        reloc_status = Arm_relocate_functions::thm_movt(view, object,
9019
                                                        psymval, 0);
9020
      break;
9021
 
9022
    case elfcpp::R_ARM_MOVW_PREL_NC:
9023
    case elfcpp::R_ARM_MOVW_BREL_NC:
9024
    case elfcpp::R_ARM_MOVW_BREL:
9025
      reloc_status =
9026
        Arm_relocate_functions::movw(view, object, psymval,
9027
                                     relative_address_base, thumb_bit,
9028
                                     check_overflow);
9029
      break;
9030
 
9031
    case elfcpp::R_ARM_MOVT_PREL:
9032
    case elfcpp::R_ARM_MOVT_BREL:
9033
      reloc_status =
9034
        Arm_relocate_functions::movt(view, object, psymval,
9035
                                     relative_address_base);
9036
      break;
9037
 
9038
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9039
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9040
    case elfcpp::R_ARM_THM_MOVW_BREL:
9041
      reloc_status =
9042
        Arm_relocate_functions::thm_movw(view, object, psymval,
9043
                                         relative_address_base,
9044
                                         thumb_bit, check_overflow);
9045
      break;
9046
 
9047
    case elfcpp::R_ARM_THM_MOVT_PREL:
9048
    case elfcpp::R_ARM_THM_MOVT_BREL:
9049
      reloc_status =
9050
        Arm_relocate_functions::thm_movt(view, object, psymval,
9051
                                         relative_address_base);
9052
      break;
9053
 
9054
    case elfcpp::R_ARM_REL32:
9055
      reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9056
                                                   address, thumb_bit);
9057
      break;
9058
 
9059
    case elfcpp::R_ARM_THM_ABS5:
9060
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9061
        reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9062
      break;
9063
 
9064
    // Thumb long branches.
9065
    case elfcpp::R_ARM_THM_CALL:
9066
    case elfcpp::R_ARM_THM_XPC22:
9067
    case elfcpp::R_ARM_THM_JUMP24:
9068
      reloc_status =
9069
        Arm_relocate_functions::thumb_branch_common(
9070
            r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9071
            thumb_bit, is_weakly_undefined_without_plt);
9072
      break;
9073
 
9074
    case elfcpp::R_ARM_GOTOFF32:
9075
      {
9076
        Arm_address got_origin;
9077
        got_origin = target->got_plt_section()->address();
9078
        reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
9079
                                                     got_origin, thumb_bit);
9080
      }
9081
      break;
9082
 
9083
    case elfcpp::R_ARM_BASE_PREL:
9084
      gold_assert(gsym != NULL);
9085
      reloc_status =
9086
          Arm_relocate_functions::base_prel(view, sym_origin, address);
9087
      break;
9088
 
9089
    case elfcpp::R_ARM_BASE_ABS:
9090
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
9091
        reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
9092
      break;
9093
 
9094
    case elfcpp::R_ARM_GOT_BREL:
9095
      gold_assert(have_got_offset);
9096
      reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9097
      break;
9098
 
9099
    case elfcpp::R_ARM_GOT_PREL:
9100
      gold_assert(have_got_offset);
9101
      // Get the address origin for GOT PLT, which is allocated right
9102
      // after the GOT section, to calculate an absolute address of
9103
      // the symbol GOT entry (got_origin + got_offset).
9104
      Arm_address got_origin;
9105
      got_origin = target->got_plt_section()->address();
9106
      reloc_status = Arm_relocate_functions::got_prel(view,
9107
                                                      got_origin + got_offset,
9108
                                                      address);
9109
      break;
9110
 
9111
    case elfcpp::R_ARM_PLT32:
9112
    case elfcpp::R_ARM_CALL:
9113
    case elfcpp::R_ARM_JUMP24:
9114
    case elfcpp::R_ARM_XPC25:
9115
      gold_assert(gsym == NULL
9116
                  || gsym->has_plt_offset()
9117
                  || gsym->final_value_is_known()
9118
                  || (gsym->is_defined()
9119
                      && !gsym->is_from_dynobj()
9120
                      && !gsym->is_preemptible()));
9121
      reloc_status =
9122
        Arm_relocate_functions::arm_branch_common(
9123
            r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9124
            thumb_bit, is_weakly_undefined_without_plt);
9125
      break;
9126
 
9127
    case elfcpp::R_ARM_THM_JUMP19:
9128
      reloc_status =
9129
        Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9130
                                           thumb_bit);
9131
      break;
9132
 
9133
    case elfcpp::R_ARM_THM_JUMP6:
9134
      reloc_status =
9135
        Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9136
      break;
9137
 
9138
    case elfcpp::R_ARM_THM_JUMP8:
9139
      reloc_status =
9140
        Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9141
      break;
9142
 
9143
    case elfcpp::R_ARM_THM_JUMP11:
9144
      reloc_status =
9145
        Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9146
      break;
9147
 
9148
    case elfcpp::R_ARM_PREL31:
9149
      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
9150
                                                    address, thumb_bit);
9151
      break;
9152
 
9153
    case elfcpp::R_ARM_V4BX:
9154
      if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9155
        {
9156
          const bool is_v4bx_interworking =
9157
              (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9158
          reloc_status =
9159
            Arm_relocate_functions::v4bx(relinfo, view, object, address,
9160
                                         is_v4bx_interworking);
9161
        }
9162
      break;
9163
 
9164
    case elfcpp::R_ARM_THM_PC8:
9165
      reloc_status =
9166
        Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9167
      break;
9168
 
9169
    case elfcpp::R_ARM_THM_PC12:
9170
      reloc_status =
9171
        Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9172
      break;
9173
 
9174
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9175
      reloc_status =
9176
        Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9177
                                          thumb_bit);
9178
      break;
9179
 
9180
    case elfcpp::R_ARM_ALU_PC_G0_NC:
9181
    case elfcpp::R_ARM_ALU_PC_G0:
9182
    case elfcpp::R_ARM_ALU_PC_G1_NC:
9183
    case elfcpp::R_ARM_ALU_PC_G1:
9184
    case elfcpp::R_ARM_ALU_PC_G2:
9185
    case elfcpp::R_ARM_ALU_SB_G0_NC:
9186
    case elfcpp::R_ARM_ALU_SB_G0:
9187
    case elfcpp::R_ARM_ALU_SB_G1_NC:
9188
    case elfcpp::R_ARM_ALU_SB_G1:
9189
    case elfcpp::R_ARM_ALU_SB_G2:
9190
      reloc_status =
9191
        Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9192
                                            reloc_property->group_index(),
9193
                                            relative_address_base,
9194
                                            thumb_bit, check_overflow);
9195
      break;
9196
 
9197
    case elfcpp::R_ARM_LDR_PC_G0:
9198
    case elfcpp::R_ARM_LDR_PC_G1:
9199
    case elfcpp::R_ARM_LDR_PC_G2:
9200
    case elfcpp::R_ARM_LDR_SB_G0:
9201
    case elfcpp::R_ARM_LDR_SB_G1:
9202
    case elfcpp::R_ARM_LDR_SB_G2:
9203
      reloc_status =
9204
          Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9205
                                              reloc_property->group_index(),
9206
                                              relative_address_base);
9207
      break;
9208
 
9209
    case elfcpp::R_ARM_LDRS_PC_G0:
9210
    case elfcpp::R_ARM_LDRS_PC_G1:
9211
    case elfcpp::R_ARM_LDRS_PC_G2:
9212
    case elfcpp::R_ARM_LDRS_SB_G0:
9213
    case elfcpp::R_ARM_LDRS_SB_G1:
9214
    case elfcpp::R_ARM_LDRS_SB_G2:
9215
      reloc_status =
9216
          Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9217
                                               reloc_property->group_index(),
9218
                                               relative_address_base);
9219
      break;
9220
 
9221
    case elfcpp::R_ARM_LDC_PC_G0:
9222
    case elfcpp::R_ARM_LDC_PC_G1:
9223
    case elfcpp::R_ARM_LDC_PC_G2:
9224
    case elfcpp::R_ARM_LDC_SB_G0:
9225
    case elfcpp::R_ARM_LDC_SB_G1:
9226
    case elfcpp::R_ARM_LDC_SB_G2:
9227
      reloc_status =
9228
          Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9229
                                              reloc_property->group_index(),
9230
                                              relative_address_base);
9231
      break;
9232
 
9233
      // These are initial tls relocs, which are expected when
9234
      // linking.
9235
    case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9236
    case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9237
    case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9238
    case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9239
    case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9240
      reloc_status =
9241
        this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9242
                           view, address, view_size);
9243
      break;
9244
 
9245
    // The known and unknown unsupported and/or deprecated relocations.
9246
    case elfcpp::R_ARM_PC24:
9247
    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9248
    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9249
    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
9250
    default:
9251
      // Just silently leave the method. We should get an appropriate error
9252
      // message in the scan methods.
9253
      break;
9254
    }
9255
 
9256
  // Report any errors.
9257
  switch (reloc_status)
9258
    {
9259
    case Arm_relocate_functions::STATUS_OKAY:
9260
      break;
9261
    case Arm_relocate_functions::STATUS_OVERFLOW:
9262
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9263
                             _("relocation overflow in %s"),
9264
                             reloc_property->name().c_str());
9265
      break;
9266
    case Arm_relocate_functions::STATUS_BAD_RELOC:
9267
      gold_error_at_location(
9268
        relinfo,
9269
        relnum,
9270
        rel.get_r_offset(),
9271
        _("unexpected opcode while processing relocation %s"),
9272
        reloc_property->name().c_str());
9273
      break;
9274
    default:
9275
      gold_unreachable();
9276
    }
9277
 
9278
  return true;
9279
}
9280
 
9281
// Perform a TLS relocation.
9282
 
9283
template<bool big_endian>
9284
inline typename Arm_relocate_functions<big_endian>::Status
9285
Target_arm<big_endian>::Relocate::relocate_tls(
9286
    const Relocate_info<32, big_endian>* relinfo,
9287
    Target_arm<big_endian>* target,
9288
    size_t relnum,
9289
    const elfcpp::Rel<32, big_endian>& rel,
9290
    unsigned int r_type,
9291
    const Sized_symbol<32>* gsym,
9292
    const Symbol_value<32>* psymval,
9293
    unsigned char* view,
9294
    elfcpp::Elf_types<32>::Elf_Addr address,
9295
    section_size_type /*view_size*/ )
9296
{
9297
  typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
9298
  typedef Relocate_functions<32, big_endian> RelocFuncs;
9299
  Output_segment* tls_segment = relinfo->layout->tls_segment();
9300
 
9301
  const Sized_relobj_file<32, big_endian>* object = relinfo->object;
9302
 
9303
  elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9304
 
9305
  const bool is_final = (gsym == NULL
9306
                         ? !parameters->options().shared()
9307
                         : gsym->final_value_is_known());
9308
  const tls::Tls_optimization optimized_type
9309
      = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9310
  switch (r_type)
9311
    {
9312
    case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
9313
        {
9314
          unsigned int got_type = GOT_TYPE_TLS_PAIR;
9315
          unsigned int got_offset;
9316
          if (gsym != NULL)
9317
            {
9318
              gold_assert(gsym->has_got_offset(got_type));
9319
              got_offset = gsym->got_offset(got_type) - target->got_size();
9320
            }
9321
          else
9322
            {
9323
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9324
              gold_assert(object->local_has_got_offset(r_sym, got_type));
9325
              got_offset = (object->local_got_offset(r_sym, got_type)
9326
                            - target->got_size());
9327
            }
9328
          if (optimized_type == tls::TLSOPT_NONE)
9329
            {
9330
              Arm_address got_entry =
9331
                target->got_plt_section()->address() + got_offset;
9332
 
9333
              // Relocate the field with the PC relative offset of the pair of
9334
              // GOT entries.
9335
              RelocFuncs::pcrel32(view, got_entry, address);
9336
              return ArmRelocFuncs::STATUS_OKAY;
9337
            }
9338
        }
9339
      break;
9340
 
9341
    case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
9342
      if (optimized_type == tls::TLSOPT_NONE)
9343
        {
9344
          // Relocate the field with the offset of the GOT entry for
9345
          // the module index.
9346
          unsigned int got_offset;
9347
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9348
                        - target->got_size());
9349
          Arm_address got_entry =
9350
            target->got_plt_section()->address() + got_offset;
9351
 
9352
          // Relocate the field with the PC relative offset of the pair of
9353
          // GOT entries.
9354
          RelocFuncs::pcrel32(view, got_entry, address);
9355
          return ArmRelocFuncs::STATUS_OKAY;
9356
        }
9357
      break;
9358
 
9359
    case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
9360
      RelocFuncs::rel32(view, value);
9361
      return ArmRelocFuncs::STATUS_OKAY;
9362
 
9363
    case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
9364
      if (optimized_type == tls::TLSOPT_NONE)
9365
        {
9366
          // Relocate the field with the offset of the GOT entry for
9367
          // the tp-relative offset of the symbol.
9368
          unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9369
          unsigned int got_offset;
9370
          if (gsym != NULL)
9371
            {
9372
              gold_assert(gsym->has_got_offset(got_type));
9373
              got_offset = gsym->got_offset(got_type);
9374
            }
9375
          else
9376
            {
9377
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9378
              gold_assert(object->local_has_got_offset(r_sym, got_type));
9379
              got_offset = object->local_got_offset(r_sym, got_type);
9380
            }
9381
 
9382
          // All GOT offsets are relative to the end of the GOT.
9383
          got_offset -= target->got_size();
9384
 
9385
          Arm_address got_entry =
9386
            target->got_plt_section()->address() + got_offset;
9387
 
9388
          // Relocate the field with the PC relative offset of the GOT entry.
9389
          RelocFuncs::pcrel32(view, got_entry, address);
9390
          return ArmRelocFuncs::STATUS_OKAY;
9391
        }
9392
      break;
9393
 
9394
    case elfcpp::R_ARM_TLS_LE32:        // Local-exec
9395
      // If we're creating a shared library, a dynamic relocation will
9396
      // have been created for this location, so do not apply it now.
9397
      if (!parameters->options().shared())
9398
        {
9399
          gold_assert(tls_segment != NULL);
9400
 
9401
          // $tp points to the TCB, which is followed by the TLS, so we
9402
          // need to add TCB size to the offset.
9403
          Arm_address aligned_tcb_size =
9404
            align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9405
          RelocFuncs::rel32(view, value + aligned_tcb_size);
9406
 
9407
        }
9408
      return ArmRelocFuncs::STATUS_OKAY;
9409
 
9410
    default:
9411
      gold_unreachable();
9412
    }
9413
 
9414
  gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9415
                         _("unsupported reloc %u"),
9416
                         r_type);
9417
  return ArmRelocFuncs::STATUS_BAD_RELOC;
9418
}
9419
 
9420
// Relocate section data.
9421
 
9422
template<bool big_endian>
9423
void
9424
Target_arm<big_endian>::relocate_section(
9425
    const Relocate_info<32, big_endian>* relinfo,
9426
    unsigned int sh_type,
9427
    const unsigned char* prelocs,
9428
    size_t reloc_count,
9429
    Output_section* output_section,
9430
    bool needs_special_offset_handling,
9431
    unsigned char* view,
9432
    Arm_address address,
9433
    section_size_type view_size,
9434
    const Reloc_symbol_changes* reloc_symbol_changes)
9435
{
9436
  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9437
  gold_assert(sh_type == elfcpp::SHT_REL);
9438
 
9439
  // See if we are relocating a relaxed input section.  If so, the view
9440
  // covers the whole output section and we need to adjust accordingly.
9441
  if (needs_special_offset_handling)
9442
    {
9443
      const Output_relaxed_input_section* poris =
9444
        output_section->find_relaxed_input_section(relinfo->object,
9445
                                                   relinfo->data_shndx);
9446
      if (poris != NULL)
9447
        {
9448
          Arm_address section_address = poris->address();
9449
          section_size_type section_size = poris->data_size();
9450
 
9451
          gold_assert((section_address >= address)
9452
                      && ((section_address + section_size)
9453
                          <= (address + view_size)));
9454
 
9455
          off_t offset = section_address - address;
9456
          view += offset;
9457
          address += offset;
9458
          view_size = section_size;
9459
        }
9460
    }
9461
 
9462
  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9463
                         Arm_relocate>(
9464
    relinfo,
9465
    this,
9466
    prelocs,
9467
    reloc_count,
9468
    output_section,
9469
    needs_special_offset_handling,
9470
    view,
9471
    address,
9472
    view_size,
9473
    reloc_symbol_changes);
9474
}
9475
 
9476
// Return the size of a relocation while scanning during a relocatable
9477
// link.
9478
 
9479
template<bool big_endian>
9480
unsigned int
9481
Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9482
    unsigned int r_type,
9483
    Relobj* object)
9484
{
9485
  r_type = get_real_reloc_type(r_type);
9486
  const Arm_reloc_property* arp =
9487
      arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9488
  if (arp != NULL)
9489
    return arp->size();
9490
  else
9491
    {
9492
      std::string reloc_name =
9493
        arm_reloc_property_table->reloc_name_in_error_message(r_type);
9494
      gold_error(_("%s: unexpected %s in object file"),
9495
                 object->name().c_str(), reloc_name.c_str());
9496
      return 0;
9497
    }
9498
}
9499
 
9500
// Scan the relocs during a relocatable link.
9501
 
9502
template<bool big_endian>
9503
void
9504
Target_arm<big_endian>::scan_relocatable_relocs(
9505
    Symbol_table* symtab,
9506
    Layout* layout,
9507
    Sized_relobj_file<32, big_endian>* object,
9508
    unsigned int data_shndx,
9509
    unsigned int sh_type,
9510
    const unsigned char* prelocs,
9511
    size_t reloc_count,
9512
    Output_section* output_section,
9513
    bool needs_special_offset_handling,
9514
    size_t local_symbol_count,
9515
    const unsigned char* plocal_symbols,
9516
    Relocatable_relocs* rr)
9517
{
9518
  gold_assert(sh_type == elfcpp::SHT_REL);
9519
 
9520
  typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
9521
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
9522
 
9523
  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9524
      Scan_relocatable_relocs>(
9525
    symtab,
9526
    layout,
9527
    object,
9528
    data_shndx,
9529
    prelocs,
9530
    reloc_count,
9531
    output_section,
9532
    needs_special_offset_handling,
9533
    local_symbol_count,
9534
    plocal_symbols,
9535
    rr);
9536
}
9537
 
9538
// Relocate a section during a relocatable link.
9539
 
9540
template<bool big_endian>
9541
void
9542
Target_arm<big_endian>::relocate_for_relocatable(
9543
    const Relocate_info<32, big_endian>* relinfo,
9544
    unsigned int sh_type,
9545
    const unsigned char* prelocs,
9546
    size_t reloc_count,
9547
    Output_section* output_section,
9548
    off_t offset_in_output_section,
9549
    const Relocatable_relocs* rr,
9550
    unsigned char* view,
9551
    Arm_address view_address,
9552
    section_size_type view_size,
9553
    unsigned char* reloc_view,
9554
    section_size_type reloc_view_size)
9555
{
9556
  gold_assert(sh_type == elfcpp::SHT_REL);
9557
 
9558
  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9559
    relinfo,
9560
    prelocs,
9561
    reloc_count,
9562
    output_section,
9563
    offset_in_output_section,
9564
    rr,
9565
    view,
9566
    view_address,
9567
    view_size,
9568
    reloc_view,
9569
    reloc_view_size);
9570
}
9571
 
9572
// Perform target-specific processing in a relocatable link.  This is
9573
// only used if we use the relocation strategy RELOC_SPECIAL.
9574
 
9575
template<bool big_endian>
9576
void
9577
Target_arm<big_endian>::relocate_special_relocatable(
9578
    const Relocate_info<32, big_endian>* relinfo,
9579
    unsigned int sh_type,
9580
    const unsigned char* preloc_in,
9581
    size_t relnum,
9582
    Output_section* output_section,
9583
    off_t offset_in_output_section,
9584
    unsigned char* view,
9585
    elfcpp::Elf_types<32>::Elf_Addr view_address,
9586
    section_size_type,
9587
    unsigned char* preloc_out)
9588
{
9589
  // We can only handle REL type relocation sections.
9590
  gold_assert(sh_type == elfcpp::SHT_REL);
9591
 
9592
  typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9593
  typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9594
    Reltype_write;
9595
  const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9596
 
9597
  const Arm_relobj<big_endian>* object =
9598
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9599
  const unsigned int local_count = object->local_symbol_count();
9600
 
9601
  Reltype reloc(preloc_in);
9602
  Reltype_write reloc_write(preloc_out);
9603
 
9604
  elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9605
  const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9606
  const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9607
 
9608
  const Arm_reloc_property* arp =
9609
    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9610
  gold_assert(arp != NULL);
9611
 
9612
  // Get the new symbol index.
9613
  // We only use RELOC_SPECIAL strategy in local relocations.
9614
  gold_assert(r_sym < local_count);
9615
 
9616
  // We are adjusting a section symbol.  We need to find
9617
  // the symbol table index of the section symbol for
9618
  // the output section corresponding to input section
9619
  // in which this symbol is defined.
9620
  bool is_ordinary;
9621
  unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9622
  gold_assert(is_ordinary);
9623
  Output_section* os = object->output_section(shndx);
9624
  gold_assert(os != NULL);
9625
  gold_assert(os->needs_symtab_index());
9626
  unsigned int new_symndx = os->symtab_index();
9627
 
9628
  // Get the new offset--the location in the output section where
9629
  // this relocation should be applied.
9630
 
9631
  Arm_address offset = reloc.get_r_offset();
9632
  Arm_address new_offset;
9633
  if (offset_in_output_section != invalid_address)
9634
    new_offset = offset + offset_in_output_section;
9635
  else
9636
    {
9637
      section_offset_type sot_offset =
9638
          convert_types<section_offset_type, Arm_address>(offset);
9639
      section_offset_type new_sot_offset =
9640
          output_section->output_offset(object, relinfo->data_shndx,
9641
                                        sot_offset);
9642
      gold_assert(new_sot_offset != -1);
9643
      new_offset = new_sot_offset;
9644
    }
9645
 
9646
  // In an object file, r_offset is an offset within the section.
9647
  // In an executable or dynamic object, generated by
9648
  // --emit-relocs, r_offset is an absolute address.
9649
  if (!parameters->options().relocatable())
9650
    {
9651
      new_offset += view_address;
9652
      if (offset_in_output_section != invalid_address)
9653
        new_offset -= offset_in_output_section;
9654
    }
9655
 
9656
  reloc_write.put_r_offset(new_offset);
9657
  reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9658
 
9659
  // Handle the reloc addend.
9660
  // The relocation uses a section symbol in the input file.
9661
  // We are adjusting it to use a section symbol in the output
9662
  // file.  The input section symbol refers to some address in
9663
  // the input section.  We need the relocation in the output
9664
  // file to refer to that same address.  This adjustment to
9665
  // the addend is the same calculation we use for a simple
9666
  // absolute relocation for the input section symbol.
9667
 
9668
  const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9669
 
9670
  // Handle THUMB bit.
9671
  Symbol_value<32> symval;
9672
  Arm_address thumb_bit =
9673
     object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9674
  if (thumb_bit != 0
9675
      && arp->uses_thumb_bit()
9676
      && ((psymval->value(object, 0) & 1) != 0))
9677
    {
9678
      Arm_address stripped_value =
9679
        psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9680
      symval.set_output_value(stripped_value);
9681
      psymval = &symval;
9682
    }
9683
 
9684
  unsigned char* paddend = view + offset;
9685
  typename Arm_relocate_functions<big_endian>::Status reloc_status =
9686
        Arm_relocate_functions<big_endian>::STATUS_OKAY;
9687
  switch (r_type)
9688
    {
9689
    case elfcpp::R_ARM_ABS8:
9690
      reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9691
                                                              psymval);
9692
      break;
9693
 
9694
    case elfcpp::R_ARM_ABS12:
9695
      reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9696
                                                               psymval);
9697
      break;
9698
 
9699
    case elfcpp::R_ARM_ABS16:
9700
      reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9701
                                                               psymval);
9702
      break;
9703
 
9704
    case elfcpp::R_ARM_THM_ABS5:
9705
      reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9706
                                                                  object,
9707
                                                                  psymval);
9708
      break;
9709
 
9710
    case elfcpp::R_ARM_MOVW_ABS_NC:
9711
    case elfcpp::R_ARM_MOVW_PREL_NC:
9712
    case elfcpp::R_ARM_MOVW_BREL_NC:
9713
    case elfcpp::R_ARM_MOVW_BREL:
9714
      reloc_status = Arm_relocate_functions<big_endian>::movw(
9715
          paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9716
      break;
9717
 
9718
    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9719
    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9720
    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9721
    case elfcpp::R_ARM_THM_MOVW_BREL:
9722
      reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9723
          paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9724
      break;
9725
 
9726
    case elfcpp::R_ARM_THM_CALL:
9727
    case elfcpp::R_ARM_THM_XPC22:
9728
    case elfcpp::R_ARM_THM_JUMP24:
9729
      reloc_status =
9730
        Arm_relocate_functions<big_endian>::thumb_branch_common(
9731
            r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9732
            false);
9733
      break;
9734
 
9735
    case elfcpp::R_ARM_PLT32:
9736
    case elfcpp::R_ARM_CALL:
9737
    case elfcpp::R_ARM_JUMP24:
9738
    case elfcpp::R_ARM_XPC25:
9739
      reloc_status =
9740
        Arm_relocate_functions<big_endian>::arm_branch_common(
9741
            r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9742
            false);
9743
      break;
9744
 
9745
    case elfcpp::R_ARM_THM_JUMP19:
9746
      reloc_status =
9747
        Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9748
                                                       psymval, 0, thumb_bit);
9749
      break;
9750
 
9751
    case elfcpp::R_ARM_THM_JUMP6:
9752
      reloc_status =
9753
        Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9754
                                                      0);
9755
      break;
9756
 
9757
    case elfcpp::R_ARM_THM_JUMP8:
9758
      reloc_status =
9759
        Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9760
                                                      0);
9761
      break;
9762
 
9763
    case elfcpp::R_ARM_THM_JUMP11:
9764
      reloc_status =
9765
        Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9766
                                                       0);
9767
      break;
9768
 
9769
    case elfcpp::R_ARM_PREL31:
9770
      reloc_status =
9771
        Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9772
                                                   thumb_bit);
9773
      break;
9774
 
9775
    case elfcpp::R_ARM_THM_PC8:
9776
      reloc_status =
9777
        Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9778
                                                    0);
9779
      break;
9780
 
9781
    case elfcpp::R_ARM_THM_PC12:
9782
      reloc_status =
9783
        Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9784
                                                     0);
9785
      break;
9786
 
9787
    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9788
      reloc_status =
9789
        Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9790
                                                      0, thumb_bit);
9791
      break;
9792
 
9793
    // These relocation truncate relocation results so we cannot handle them
9794
    // in a relocatable link.
9795
    case elfcpp::R_ARM_MOVT_ABS:
9796
    case elfcpp::R_ARM_THM_MOVT_ABS:
9797
    case elfcpp::R_ARM_MOVT_PREL:
9798
    case elfcpp::R_ARM_MOVT_BREL:
9799
    case elfcpp::R_ARM_THM_MOVT_PREL:
9800
    case elfcpp::R_ARM_THM_MOVT_BREL:
9801
    case elfcpp::R_ARM_ALU_PC_G0_NC:
9802
    case elfcpp::R_ARM_ALU_PC_G0:
9803
    case elfcpp::R_ARM_ALU_PC_G1_NC:
9804
    case elfcpp::R_ARM_ALU_PC_G1:
9805
    case elfcpp::R_ARM_ALU_PC_G2:
9806
    case elfcpp::R_ARM_ALU_SB_G0_NC:
9807
    case elfcpp::R_ARM_ALU_SB_G0:
9808
    case elfcpp::R_ARM_ALU_SB_G1_NC:
9809
    case elfcpp::R_ARM_ALU_SB_G1:
9810
    case elfcpp::R_ARM_ALU_SB_G2:
9811
    case elfcpp::R_ARM_LDR_PC_G0:
9812
    case elfcpp::R_ARM_LDR_PC_G1:
9813
    case elfcpp::R_ARM_LDR_PC_G2:
9814
    case elfcpp::R_ARM_LDR_SB_G0:
9815
    case elfcpp::R_ARM_LDR_SB_G1:
9816
    case elfcpp::R_ARM_LDR_SB_G2:
9817
    case elfcpp::R_ARM_LDRS_PC_G0:
9818
    case elfcpp::R_ARM_LDRS_PC_G1:
9819
    case elfcpp::R_ARM_LDRS_PC_G2:
9820
    case elfcpp::R_ARM_LDRS_SB_G0:
9821
    case elfcpp::R_ARM_LDRS_SB_G1:
9822
    case elfcpp::R_ARM_LDRS_SB_G2:
9823
    case elfcpp::R_ARM_LDC_PC_G0:
9824
    case elfcpp::R_ARM_LDC_PC_G1:
9825
    case elfcpp::R_ARM_LDC_PC_G2:
9826
    case elfcpp::R_ARM_LDC_SB_G0:
9827
    case elfcpp::R_ARM_LDC_SB_G1:
9828
    case elfcpp::R_ARM_LDC_SB_G2:
9829
      gold_error(_("cannot handle %s in a relocatable link"),
9830
                 arp->name().c_str());
9831
      break;
9832
 
9833
    default:
9834
      gold_unreachable();
9835
    }
9836
 
9837
  // Report any errors.
9838
  switch (reloc_status)
9839
    {
9840
    case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9841
      break;
9842
    case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9843
      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9844
                             _("relocation overflow in %s"),
9845
                             arp->name().c_str());
9846
      break;
9847
    case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9848
      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9849
        _("unexpected opcode while processing relocation %s"),
9850
        arp->name().c_str());
9851
      break;
9852
    default:
9853
      gold_unreachable();
9854
    }
9855
}
9856
 
9857
// Return the value to use for a dynamic symbol which requires special
9858
// treatment.  This is how we support equality comparisons of function
9859
// pointers across shared library boundaries, as described in the
9860
// processor specific ABI supplement.
9861
 
9862
template<bool big_endian>
9863
uint64_t
9864
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
9865
{
9866
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9867
  return this->plt_section()->address() + gsym->plt_offset();
9868
}
9869
 
9870
// Map platform-specific relocs to real relocs
9871
//
9872
template<bool big_endian>
9873
unsigned int
9874
Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
9875
{
9876
  switch (r_type)
9877
    {
9878
    case elfcpp::R_ARM_TARGET1:
9879
      // This is either R_ARM_ABS32 or R_ARM_REL32;
9880
      return elfcpp::R_ARM_ABS32;
9881
 
9882
    case elfcpp::R_ARM_TARGET2:
9883
      // This can be any reloc type but usually is R_ARM_GOT_PREL
9884
      return elfcpp::R_ARM_GOT_PREL;
9885
 
9886
    default:
9887
      return r_type;
9888
    }
9889
}
9890
 
9891
// Whether if two EABI versions V1 and V2 are compatible.
9892
 
9893
template<bool big_endian>
9894
bool
9895
Target_arm<big_endian>::are_eabi_versions_compatible(
9896
    elfcpp::Elf_Word v1,
9897
    elfcpp::Elf_Word v2)
9898
{
9899
  // v4 and v5 are the same spec before and after it was released,
9900
  // so allow mixing them.
9901
  if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9902
      || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
9903
      || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9904
    return true;
9905
 
9906
  return v1 == v2;
9907
}
9908
 
9909
// Combine FLAGS from an input object called NAME and the processor-specific
9910
// flags in the ELF header of the output.  Much of this is adapted from the
9911
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9912
// in bfd/elf32-arm.c.
9913
 
9914
template<bool big_endian>
9915
void
9916
Target_arm<big_endian>::merge_processor_specific_flags(
9917
    const std::string& name,
9918
    elfcpp::Elf_Word flags)
9919
{
9920
  if (this->are_processor_specific_flags_set())
9921
    {
9922
      elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9923
 
9924
      // Nothing to merge if flags equal to those in output.
9925
      if (flags == out_flags)
9926
        return;
9927
 
9928
      // Complain about various flag mismatches.
9929
      elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9930
      elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
9931
      if (!this->are_eabi_versions_compatible(version1, version2)
9932
          && parameters->options().warn_mismatch())
9933
        gold_error(_("Source object %s has EABI version %d but output has "
9934
                     "EABI version %d."),
9935
                   name.c_str(),
9936
                   (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9937
                   (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9938
    }
9939
  else
9940
    {
9941
      // If the input is the default architecture and had the default
9942
      // flags then do not bother setting the flags for the output
9943
      // architecture, instead allow future merges to do this.  If no
9944
      // future merges ever set these flags then they will retain their
9945
      // uninitialised values, which surprise surprise, correspond
9946
      // to the default values.
9947
      if (flags == 0)
9948
        return;
9949
 
9950
      // This is the first time, just copy the flags.
9951
      // We only copy the EABI version for now.
9952
      this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9953
    }
9954
}
9955
 
9956
// Adjust ELF file header.
9957
template<bool big_endian>
9958
void
9959
Target_arm<big_endian>::do_adjust_elf_header(
9960
    unsigned char* view,
9961
    int len) const
9962
{
9963
  gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9964
 
9965
  elfcpp::Ehdr<32, big_endian> ehdr(view);
9966
  unsigned char e_ident[elfcpp::EI_NIDENT];
9967
  memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9968
 
9969
  if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9970
      == elfcpp::EF_ARM_EABI_UNKNOWN)
9971
    e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9972
  else
9973
    e_ident[elfcpp::EI_OSABI] = 0;
9974
  e_ident[elfcpp::EI_ABIVERSION] = 0;
9975
 
9976
  // FIXME: Do EF_ARM_BE8 adjustment.
9977
 
9978
  elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9979
  oehdr.put_e_ident(e_ident);
9980
}
9981
 
9982
// do_make_elf_object to override the same function in the base class.
9983
// We need to use a target-specific sub-class of
9984
// Sized_relobj_file<32, big_endian> to store ARM specific information.
9985
// Hence we need to have our own ELF object creation.
9986
 
9987
template<bool big_endian>
9988
Object*
9989
Target_arm<big_endian>::do_make_elf_object(
9990
    const std::string& name,
9991
    Input_file* input_file,
9992
    off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
9993
{
9994
  int et = ehdr.get_e_type();
9995
  if (et == elfcpp::ET_REL)
9996
    {
9997
      Arm_relobj<big_endian>* obj =
9998
        new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
9999
      obj->setup();
10000
      return obj;
10001
    }
10002
  else if (et == elfcpp::ET_DYN)
10003
    {
10004
      Sized_dynobj<32, big_endian>* obj =
10005
        new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
10006
      obj->setup();
10007
      return obj;
10008
    }
10009
  else
10010
    {
10011
      gold_error(_("%s: unsupported ELF file type %d"),
10012
                 name.c_str(), et);
10013
      return NULL;
10014
    }
10015
}
10016
 
10017
// Read the architecture from the Tag_also_compatible_with attribute, if any.
10018
// Returns -1 if no architecture could be read.
10019
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10020
 
10021
template<bool big_endian>
10022
int
10023
Target_arm<big_endian>::get_secondary_compatible_arch(
10024
    const Attributes_section_data* pasd)
10025
{
10026
  const Object_attribute* known_attributes =
10027
    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10028
 
10029
  // Note: the tag and its argument below are uleb128 values, though
10030
  // currently-defined values fit in one byte for each.
10031
  const std::string& sv =
10032
    known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10033
  if (sv.size() == 2
10034
      && sv.data()[0] == elfcpp::Tag_CPU_arch
10035
      && (sv.data()[1] & 128) != 128)
10036
   return sv.data()[1];
10037
 
10038
  // This tag is "safely ignorable", so don't complain if it looks funny.
10039
  return -1;
10040
}
10041
 
10042
// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10043
// The tag is removed if ARCH is -1.
10044
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10045
 
10046
template<bool big_endian>
10047
void
10048
Target_arm<big_endian>::set_secondary_compatible_arch(
10049
    Attributes_section_data* pasd,
10050
    int arch)
10051
{
10052
  Object_attribute* known_attributes =
10053
    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10054
 
10055
  if (arch == -1)
10056
    {
10057
      known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10058
      return;
10059
    }
10060
 
10061
  // Note: the tag and its argument below are uleb128 values, though
10062
  // currently-defined values fit in one byte for each.
10063
  char sv[3];
10064
  sv[0] = elfcpp::Tag_CPU_arch;
10065
  gold_assert(arch != 0);
10066
  sv[1] = arch;
10067
  sv[2] = '\0';
10068
 
10069
  known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10070
}
10071
 
10072
// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10073
// into account.
10074
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10075
 
10076
template<bool big_endian>
10077
int
10078
Target_arm<big_endian>::tag_cpu_arch_combine(
10079
    const char* name,
10080
    int oldtag,
10081
    int* secondary_compat_out,
10082
    int newtag,
10083
    int secondary_compat)
10084
{
10085
#define T(X) elfcpp::TAG_CPU_ARCH_##X
10086
  static const int v6t2[] =
10087
    {
10088
      T(V6T2),   // PRE_V4.
10089
      T(V6T2),   // V4.
10090
      T(V6T2),   // V4T.
10091
      T(V6T2),   // V5T.
10092
      T(V6T2),   // V5TE.
10093
      T(V6T2),   // V5TEJ.
10094
      T(V6T2),   // V6.
10095
      T(V7),     // V6KZ.
10096
      T(V6T2)    // V6T2.
10097
    };
10098
  static const int v6k[] =
10099
    {
10100
      T(V6K),    // PRE_V4.
10101
      T(V6K),    // V4.
10102
      T(V6K),    // V4T.
10103
      T(V6K),    // V5T.
10104
      T(V6K),    // V5TE.
10105
      T(V6K),    // V5TEJ.
10106
      T(V6K),    // V6.
10107
      T(V6KZ),   // V6KZ.
10108
      T(V7),     // V6T2.
10109
      T(V6K)     // V6K.
10110
    };
10111
  static const int v7[] =
10112
    {
10113
      T(V7),     // PRE_V4.
10114
      T(V7),     // V4.
10115
      T(V7),     // V4T.
10116
      T(V7),     // V5T.
10117
      T(V7),     // V5TE.
10118
      T(V7),     // V5TEJ.
10119
      T(V7),     // V6.
10120
      T(V7),     // V6KZ.
10121
      T(V7),     // V6T2.
10122
      T(V7),     // V6K.
10123
      T(V7)      // V7.
10124
    };
10125
  static const int v6_m[] =
10126
    {
10127
      -1,        // PRE_V4.
10128
      -1,        // V4.
10129
      T(V6K),    // V4T.
10130
      T(V6K),    // V5T.
10131
      T(V6K),    // V5TE.
10132
      T(V6K),    // V5TEJ.
10133
      T(V6K),    // V6.
10134
      T(V6KZ),   // V6KZ.
10135
      T(V7),     // V6T2.
10136
      T(V6K),    // V6K.
10137
      T(V7),     // V7.
10138
      T(V6_M)    // V6_M.
10139
    };
10140
  static const int v6s_m[] =
10141
    {
10142
      -1,        // PRE_V4.
10143
      -1,        // V4.
10144
      T(V6K),    // V4T.
10145
      T(V6K),    // V5T.
10146
      T(V6K),    // V5TE.
10147
      T(V6K),    // V5TEJ.
10148
      T(V6K),    // V6.
10149
      T(V6KZ),   // V6KZ.
10150
      T(V7),     // V6T2.
10151
      T(V6K),    // V6K.
10152
      T(V7),     // V7.
10153
      T(V6S_M),  // V6_M.
10154
      T(V6S_M)   // V6S_M.
10155
    };
10156
  static const int v7e_m[] =
10157
    {
10158
      -1,       // PRE_V4.
10159
      -1,       // V4.
10160
      T(V7E_M), // V4T.
10161
      T(V7E_M), // V5T.
10162
      T(V7E_M), // V5TE.
10163
      T(V7E_M), // V5TEJ.
10164
      T(V7E_M), // V6.
10165
      T(V7E_M), // V6KZ.
10166
      T(V7E_M), // V6T2.
10167
      T(V7E_M), // V6K.
10168
      T(V7E_M), // V7.
10169
      T(V7E_M), // V6_M.
10170
      T(V7E_M), // V6S_M.
10171
      T(V7E_M)  // V7E_M.
10172
    };
10173
  static const int v4t_plus_v6_m[] =
10174
    {
10175
      -1,               // PRE_V4.
10176
      -1,               // V4.
10177
      T(V4T),           // V4T.
10178
      T(V5T),           // V5T.
10179
      T(V5TE),          // V5TE.
10180
      T(V5TEJ),         // V5TEJ.
10181
      T(V6),            // V6.
10182
      T(V6KZ),          // V6KZ.
10183
      T(V6T2),          // V6T2.
10184
      T(V6K),           // V6K.
10185
      T(V7),            // V7.
10186
      T(V6_M),          // V6_M.
10187
      T(V6S_M),         // V6S_M.
10188
      T(V7E_M),         // V7E_M.
10189
      T(V4T_PLUS_V6_M)  // V4T plus V6_M.
10190
    };
10191
  static const int* comb[] =
10192
    {
10193
      v6t2,
10194
      v6k,
10195
      v7,
10196
      v6_m,
10197
      v6s_m,
10198
      v7e_m,
10199
      // Pseudo-architecture.
10200
      v4t_plus_v6_m
10201
    };
10202
 
10203
  // Check we've not got a higher architecture than we know about.
10204
 
10205
  if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
10206
    {
10207
      gold_error(_("%s: unknown CPU architecture"), name);
10208
      return -1;
10209
    }
10210
 
10211
  // Override old tag if we have a Tag_also_compatible_with on the output.
10212
 
10213
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10214
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10215
    oldtag = T(V4T_PLUS_V6_M);
10216
 
10217
  // And override the new tag if we have a Tag_also_compatible_with on the
10218
  // input.
10219
 
10220
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10221
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10222
    newtag = T(V4T_PLUS_V6_M);
10223
 
10224
  // Architectures before V6KZ add features monotonically.
10225
  int tagh = std::max(oldtag, newtag);
10226
  if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10227
    return tagh;
10228
 
10229
  int tagl = std::min(oldtag, newtag);
10230
  int result = comb[tagh - T(V6T2)][tagl];
10231
 
10232
  // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10233
  // as the canonical version.
10234
  if (result == T(V4T_PLUS_V6_M))
10235
    {
10236
      result = T(V4T);
10237
      *secondary_compat_out = T(V6_M);
10238
    }
10239
  else
10240
    *secondary_compat_out = -1;
10241
 
10242
  if (result == -1)
10243
    {
10244
      gold_error(_("%s: conflicting CPU architectures %d/%d"),
10245
                 name, oldtag, newtag);
10246
      return -1;
10247
    }
10248
 
10249
  return result;
10250
#undef T
10251
}
10252
 
10253
// Helper to print AEABI enum tag value.
10254
 
10255
template<bool big_endian>
10256
std::string
10257
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10258
{
10259
  static const char* aeabi_enum_names[] =
10260
    { "", "variable-size", "32-bit", "" };
10261
  const size_t aeabi_enum_names_size =
10262
    sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10263
 
10264
  if (value < aeabi_enum_names_size)
10265
    return std::string(aeabi_enum_names[value]);
10266
  else
10267
    {
10268
      char buffer[100];
10269
      sprintf(buffer, "<unknown value %u>", value);
10270
      return std::string(buffer);
10271
    }
10272
}
10273
 
10274
// Return the string value to store in TAG_CPU_name.
10275
 
10276
template<bool big_endian>
10277
std::string
10278
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10279
{
10280
  static const char* name_table[] = {
10281
    // These aren't real CPU names, but we can't guess
10282
    // that from the architecture version alone.
10283
   "Pre v4",
10284
   "ARM v4",
10285
   "ARM v4T",
10286
   "ARM v5T",
10287
   "ARM v5TE",
10288
   "ARM v5TEJ",
10289
   "ARM v6",
10290
   "ARM v6KZ",
10291
   "ARM v6T2",
10292
   "ARM v6K",
10293
   "ARM v7",
10294
   "ARM v6-M",
10295
   "ARM v6S-M",
10296
   "ARM v7E-M"
10297
 };
10298
 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10299
 
10300
  if (value < name_table_size)
10301
    return std::string(name_table[value]);
10302
  else
10303
    {
10304
      char buffer[100];
10305
      sprintf(buffer, "<unknown CPU value %u>", value);
10306
      return std::string(buffer);
10307
    }
10308
}
10309
 
10310
// Merge object attributes from input file called NAME with those of the
10311
// output.  The input object attributes are in the object pointed by PASD.
10312
 
10313
template<bool big_endian>
10314
void
10315
Target_arm<big_endian>::merge_object_attributes(
10316
    const char* name,
10317
    const Attributes_section_data* pasd)
10318
{
10319
  // Return if there is no attributes section data.
10320
  if (pasd == NULL)
10321
    return;
10322
 
10323
  // If output has no object attributes, just copy.
10324
  const int vendor = Object_attribute::OBJ_ATTR_PROC;
10325
  if (this->attributes_section_data_ == NULL)
10326
    {
10327
      this->attributes_section_data_ = new Attributes_section_data(*pasd);
10328
      Object_attribute* out_attr =
10329
        this->attributes_section_data_->known_attributes(vendor);
10330
 
10331
      // We do not output objects with Tag_MPextension_use_legacy - we move
10332
      //  the attribute's value to Tag_MPextension_use.  */
10333
      if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10334
        {
10335
          if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10336
              && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10337
                != out_attr[elfcpp::Tag_MPextension_use].int_value())
10338
            {
10339
              gold_error(_("%s has both the current and legacy "
10340
                           "Tag_MPextension_use attributes"),
10341
                         name);
10342
            }
10343
 
10344
          out_attr[elfcpp::Tag_MPextension_use] =
10345
            out_attr[elfcpp::Tag_MPextension_use_legacy];
10346
          out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10347
          out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10348
        }
10349
 
10350
      return;
10351
    }
10352
 
10353
  const Object_attribute* in_attr = pasd->known_attributes(vendor);
10354
  Object_attribute* out_attr =
10355
    this->attributes_section_data_->known_attributes(vendor);
10356
 
10357
  // This needs to happen before Tag_ABI_FP_number_model is merged.  */
10358
  if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10359
      != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10360
    {
10361
      // Ignore mismatches if the object doesn't use floating point.  */
10362
      if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10363
        out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10364
            in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
10365
      else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10366
               && parameters->options().warn_mismatch())
10367
        gold_error(_("%s uses VFP register arguments, output does not"),
10368
                   name);
10369
    }
10370
 
10371
  for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10372
    {
10373
      // Merge this attribute with existing attributes.
10374
      switch (i)
10375
        {
10376
        case elfcpp::Tag_CPU_raw_name:
10377
        case elfcpp::Tag_CPU_name:
10378
          // These are merged after Tag_CPU_arch.
10379
          break;
10380
 
10381
        case elfcpp::Tag_ABI_optimization_goals:
10382
        case elfcpp::Tag_ABI_FP_optimization_goals:
10383
          // Use the first value seen.
10384
          break;
10385
 
10386
        case elfcpp::Tag_CPU_arch:
10387
          {
10388
            unsigned int saved_out_attr = out_attr->int_value();
10389
            // Merge Tag_CPU_arch and Tag_also_compatible_with.
10390
            int secondary_compat =
10391
              this->get_secondary_compatible_arch(pasd);
10392
            int secondary_compat_out =
10393
              this->get_secondary_compatible_arch(
10394
                  this->attributes_section_data_);
10395
            out_attr[i].set_int_value(
10396
                tag_cpu_arch_combine(name, out_attr[i].int_value(),
10397
                                     &secondary_compat_out,
10398
                                     in_attr[i].int_value(),
10399
                                     secondary_compat));
10400
            this->set_secondary_compatible_arch(this->attributes_section_data_,
10401
                                                secondary_compat_out);
10402
 
10403
            // Merge Tag_CPU_name and Tag_CPU_raw_name.
10404
            if (out_attr[i].int_value() == saved_out_attr)
10405
              ; // Leave the names alone.
10406
            else if (out_attr[i].int_value() == in_attr[i].int_value())
10407
              {
10408
                // The output architecture has been changed to match the
10409
                // input architecture.  Use the input names.
10410
                out_attr[elfcpp::Tag_CPU_name].set_string_value(
10411
                    in_attr[elfcpp::Tag_CPU_name].string_value());
10412
                out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10413
                    in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10414
              }
10415
            else
10416
              {
10417
                out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10418
                out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10419
              }
10420
 
10421
            // If we still don't have a value for Tag_CPU_name,
10422
            // make one up now.  Tag_CPU_raw_name remains blank.
10423
            if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10424
              {
10425
                const std::string cpu_name =
10426
                  this->tag_cpu_name_value(out_attr[i].int_value());
10427
                // FIXME:  If we see an unknown CPU, this will be set
10428
                // to "<unknown CPU n>", where n is the attribute value.
10429
                // This is different from BFD, which leaves the name alone.
10430
                out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10431
              }
10432
          }
10433
          break;
10434
 
10435
        case elfcpp::Tag_ARM_ISA_use:
10436
        case elfcpp::Tag_THUMB_ISA_use:
10437
        case elfcpp::Tag_WMMX_arch:
10438
        case elfcpp::Tag_Advanced_SIMD_arch:
10439
          // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10440
        case elfcpp::Tag_ABI_FP_rounding:
10441
        case elfcpp::Tag_ABI_FP_exceptions:
10442
        case elfcpp::Tag_ABI_FP_user_exceptions:
10443
        case elfcpp::Tag_ABI_FP_number_model:
10444
        case elfcpp::Tag_VFP_HP_extension:
10445
        case elfcpp::Tag_CPU_unaligned_access:
10446
        case elfcpp::Tag_T2EE_use:
10447
        case elfcpp::Tag_Virtualization_use:
10448
        case elfcpp::Tag_MPextension_use:
10449
          // Use the largest value specified.
10450
          if (in_attr[i].int_value() > out_attr[i].int_value())
10451
            out_attr[i].set_int_value(in_attr[i].int_value());
10452
          break;
10453
 
10454
        case elfcpp::Tag_ABI_align8_preserved:
10455
        case elfcpp::Tag_ABI_PCS_RO_data:
10456
          // Use the smallest value specified.
10457
          if (in_attr[i].int_value() < out_attr[i].int_value())
10458
            out_attr[i].set_int_value(in_attr[i].int_value());
10459
          break;
10460
 
10461
        case elfcpp::Tag_ABI_align8_needed:
10462
          if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10463
              && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10464
                  || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10465
                      == 0)))
10466
            {
10467
              // This error message should be enabled once all non-conforming
10468
              // binaries in the toolchain have had the attributes set
10469
              // properly.
10470
              // gold_error(_("output 8-byte data alignment conflicts with %s"),
10471
              //            name);
10472
            }
10473
          // Fall through.
10474
        case elfcpp::Tag_ABI_FP_denormal:
10475
        case elfcpp::Tag_ABI_PCS_GOT_use:
10476
          {
10477
            // These tags have 0 = don't care, 1 = strong requirement,
10478
            // 2 = weak requirement.
10479
            static const int order_021[3] = {0, 2, 1};
10480
 
10481
            // Use the "greatest" from the sequence 0, 2, 1, or the largest
10482
            // value if greater than 2 (for future-proofing).
10483
            if ((in_attr[i].int_value() > 2
10484
                 && in_attr[i].int_value() > out_attr[i].int_value())
10485
                || (in_attr[i].int_value() <= 2
10486
                    && out_attr[i].int_value() <= 2
10487
                    && (order_021[in_attr[i].int_value()]
10488
                        > order_021[out_attr[i].int_value()])))
10489
              out_attr[i].set_int_value(in_attr[i].int_value());
10490
          }
10491
          break;
10492
 
10493
        case elfcpp::Tag_CPU_arch_profile:
10494
          if (out_attr[i].int_value() != in_attr[i].int_value())
10495
            {
10496
              // 0 will merge with anything.
10497
              // 'A' and 'S' merge to 'A'.
10498
              // 'R' and 'S' merge to 'R'.
10499
              // 'M' and 'A|R|S' is an error.
10500
              if (out_attr[i].int_value() == 0
10501
                  || (out_attr[i].int_value() == 'S'
10502
                      && (in_attr[i].int_value() == 'A'
10503
                          || in_attr[i].int_value() == 'R')))
10504
                out_attr[i].set_int_value(in_attr[i].int_value());
10505
              else if (in_attr[i].int_value() == 0
10506
                       || (in_attr[i].int_value() == 'S'
10507
                           && (out_attr[i].int_value() == 'A'
10508
                               || out_attr[i].int_value() == 'R')))
10509
                ; // Do nothing.
10510
              else if (parameters->options().warn_mismatch())
10511
                {
10512
                  gold_error
10513
                    (_("conflicting architecture profiles %c/%c"),
10514
                     in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10515
                     out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10516
                }
10517
            }
10518
          break;
10519
        case elfcpp::Tag_VFP_arch:
10520
            {
10521
              static const struct
10522
              {
10523
                  int ver;
10524
                  int regs;
10525
              } vfp_versions[7] =
10526
                {
10527
                  {0, 0},
10528
                  {1, 16},
10529
                  {2, 16},
10530
                  {3, 32},
10531
                  {3, 16},
10532
                  {4, 32},
10533
                  {4, 16}
10534
                };
10535
 
10536
              // Values greater than 6 aren't defined, so just pick the
10537
              // biggest.
10538
              if (in_attr[i].int_value() > 6
10539
                  && in_attr[i].int_value() > out_attr[i].int_value())
10540
                {
10541
                  *out_attr = *in_attr;
10542
                  break;
10543
                }
10544
              // The output uses the superset of input features
10545
              // (ISA version) and registers.
10546
              int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10547
                                 vfp_versions[out_attr[i].int_value()].ver);
10548
              int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10549
                                  vfp_versions[out_attr[i].int_value()].regs);
10550
              // This assumes all possible supersets are also a valid
10551
              // options.
10552
              int newval;
10553
              for (newval = 6; newval > 0; newval--)
10554
                {
10555
                  if (regs == vfp_versions[newval].regs
10556
                      && ver == vfp_versions[newval].ver)
10557
                    break;
10558
                }
10559
              out_attr[i].set_int_value(newval);
10560
            }
10561
          break;
10562
        case elfcpp::Tag_PCS_config:
10563
          if (out_attr[i].int_value() == 0)
10564
            out_attr[i].set_int_value(in_attr[i].int_value());
10565
          else if (in_attr[i].int_value() != 0
10566
                   && out_attr[i].int_value() != 0
10567
                   && parameters->options().warn_mismatch())
10568
            {
10569
              // It's sometimes ok to mix different configs, so this is only
10570
              // a warning.
10571
              gold_warning(_("%s: conflicting platform configuration"), name);
10572
            }
10573
          break;
10574
        case elfcpp::Tag_ABI_PCS_R9_use:
10575
          if (in_attr[i].int_value() != out_attr[i].int_value()
10576
              && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
10577
              && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10578
              && parameters->options().warn_mismatch())
10579
            {
10580
              gold_error(_("%s: conflicting use of R9"), name);
10581
            }
10582
          if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10583
            out_attr[i].set_int_value(in_attr[i].int_value());
10584
          break;
10585
        case elfcpp::Tag_ABI_PCS_RW_data:
10586
          if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10587
              && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10588
                  != elfcpp::AEABI_R9_SB)
10589
              && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10590
                  != elfcpp::AEABI_R9_unused)
10591
              && parameters->options().warn_mismatch())
10592
            {
10593
              gold_error(_("%s: SB relative addressing conflicts with use "
10594
                           "of R9"),
10595
                           name);
10596
            }
10597
          // Use the smallest value specified.
10598
          if (in_attr[i].int_value() < out_attr[i].int_value())
10599
            out_attr[i].set_int_value(in_attr[i].int_value());
10600
          break;
10601
        case elfcpp::Tag_ABI_PCS_wchar_t:
10602
          if (out_attr[i].int_value()
10603
              && in_attr[i].int_value()
10604
              && out_attr[i].int_value() != in_attr[i].int_value()
10605
              && parameters->options().warn_mismatch()
10606
              && parameters->options().wchar_size_warning())
10607
            {
10608
              gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10609
                             "use %u-byte wchar_t; use of wchar_t values "
10610
                             "across objects may fail"),
10611
                           name, in_attr[i].int_value(),
10612
                           out_attr[i].int_value());
10613
            }
10614
          else if (in_attr[i].int_value() && !out_attr[i].int_value())
10615
            out_attr[i].set_int_value(in_attr[i].int_value());
10616
          break;
10617
        case elfcpp::Tag_ABI_enum_size:
10618
          if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10619
            {
10620
              if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10621
                  || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10622
                {
10623
                  // The existing object is compatible with anything.
10624
                  // Use whatever requirements the new object has.
10625
                  out_attr[i].set_int_value(in_attr[i].int_value());
10626
                }
10627
              else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
10628
                       && out_attr[i].int_value() != in_attr[i].int_value()
10629
                       && parameters->options().warn_mismatch()
10630
                       && parameters->options().enum_size_warning())
10631
                {
10632
                  unsigned int in_value = in_attr[i].int_value();
10633
                  unsigned int out_value = out_attr[i].int_value();
10634
                  gold_warning(_("%s uses %s enums yet the output is to use "
10635
                                 "%s enums; use of enum values across objects "
10636
                                 "may fail"),
10637
                               name,
10638
                               this->aeabi_enum_name(in_value).c_str(),
10639
                               this->aeabi_enum_name(out_value).c_str());
10640
                }
10641
            }
10642
          break;
10643
        case elfcpp::Tag_ABI_VFP_args:
10644
          // Already done.
10645
          break;
10646
        case elfcpp::Tag_ABI_WMMX_args:
10647
          if (in_attr[i].int_value() != out_attr[i].int_value()
10648
              && parameters->options().warn_mismatch())
10649
            {
10650
              gold_error(_("%s uses iWMMXt register arguments, output does "
10651
                           "not"),
10652
                         name);
10653
            }
10654
          break;
10655
        case Object_attribute::Tag_compatibility:
10656
          // Merged in target-independent code.
10657
          break;
10658
        case elfcpp::Tag_ABI_HardFP_use:
10659
          // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10660
          if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10661
              || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10662
            out_attr[i].set_int_value(3);
10663
          else if (in_attr[i].int_value() > out_attr[i].int_value())
10664
            out_attr[i].set_int_value(in_attr[i].int_value());
10665
          break;
10666
        case elfcpp::Tag_ABI_FP_16bit_format:
10667
          if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10668
            {
10669
              if (in_attr[i].int_value() != out_attr[i].int_value()
10670
                  && parameters->options().warn_mismatch())
10671
                gold_error(_("fp16 format mismatch between %s and output"),
10672
                           name);
10673
            }
10674
          if (in_attr[i].int_value() != 0)
10675
            out_attr[i].set_int_value(in_attr[i].int_value());
10676
          break;
10677
 
10678
        case elfcpp::Tag_DIV_use:
10679
          // This tag is set to zero if we can use UDIV and SDIV in Thumb
10680
          // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10681
          // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10682
          // CPU.  We will merge as follows: If the input attribute's value
10683
          // is one then the output attribute's value remains unchanged.  If
10684
          // the input attribute's value is zero or two then if the output
10685
          // attribute's value is one the output value is set to the input
10686
          // value, otherwise the output value must be the same as the
10687
          // inputs.  */ 
10688
          if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10689
            {
10690
              if (in_attr[i].int_value() != out_attr[i].int_value())
10691
                {
10692
                  gold_error(_("DIV usage mismatch between %s and output"),
10693
                             name);
10694
                }
10695
            }
10696
 
10697
          if (in_attr[i].int_value() != 1)
10698
            out_attr[i].set_int_value(in_attr[i].int_value());
10699
 
10700
          break;
10701
 
10702
        case elfcpp::Tag_MPextension_use_legacy:
10703
          // We don't output objects with Tag_MPextension_use_legacy - we
10704
          // move the value to Tag_MPextension_use.
10705
          if (in_attr[i].int_value() != 0
10706
              && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10707
            {
10708
              if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10709
                  != in_attr[i].int_value())
10710
                {
10711
                  gold_error(_("%s has has both the current and legacy "
10712
                               "Tag_MPextension_use attributes"),
10713
                             name);
10714
                }
10715
            }
10716
 
10717
          if (in_attr[i].int_value()
10718
              > out_attr[elfcpp::Tag_MPextension_use].int_value())
10719
            out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10720
 
10721
          break;
10722
 
10723
        case elfcpp::Tag_nodefaults:
10724
          // This tag is set if it exists, but the value is unused (and is
10725
          // typically zero).  We don't actually need to do anything here -
10726
          // the merge happens automatically when the type flags are merged
10727
          // below.
10728
          break;
10729
        case elfcpp::Tag_also_compatible_with:
10730
          // Already done in Tag_CPU_arch.
10731
          break;
10732
        case elfcpp::Tag_conformance:
10733
          // Keep the attribute if it matches.  Throw it away otherwise.
10734
          // No attribute means no claim to conform.
10735
          if (in_attr[i].string_value() != out_attr[i].string_value())
10736
            out_attr[i].set_string_value("");
10737
          break;
10738
 
10739
        default:
10740
          {
10741
            const char* err_object = NULL;
10742
 
10743
            // The "known_obj_attributes" table does contain some undefined
10744
            // attributes.  Ensure that there are unused.
10745
            if (out_attr[i].int_value() != 0
10746
                || out_attr[i].string_value() != "")
10747
              err_object = "output";
10748
            else if (in_attr[i].int_value() != 0
10749
                     || in_attr[i].string_value() != "")
10750
              err_object = name;
10751
 
10752
            if (err_object != NULL
10753
                && parameters->options().warn_mismatch())
10754
              {
10755
                // Attribute numbers >=64 (mod 128) can be safely ignored.
10756
                if ((i & 127) < 64)
10757
                  gold_error(_("%s: unknown mandatory EABI object attribute "
10758
                               "%d"),
10759
                             err_object, i);
10760
                else
10761
                  gold_warning(_("%s: unknown EABI object attribute %d"),
10762
                               err_object, i);
10763
              }
10764
 
10765
            // Only pass on attributes that match in both inputs.
10766
            if (!in_attr[i].matches(out_attr[i]))
10767
              {
10768
                out_attr[i].set_int_value(0);
10769
                out_attr[i].set_string_value("");
10770
              }
10771
          }
10772
        }
10773
 
10774
      // If out_attr was copied from in_attr then it won't have a type yet.
10775
      if (in_attr[i].type() && !out_attr[i].type())
10776
        out_attr[i].set_type(in_attr[i].type());
10777
    }
10778
 
10779
  // Merge Tag_compatibility attributes and any common GNU ones.
10780
  this->attributes_section_data_->merge(name, pasd);
10781
 
10782
  // Check for any attributes not known on ARM.
10783
  typedef Vendor_object_attributes::Other_attributes Other_attributes;
10784
  const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10785
  Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10786
  Other_attributes* out_other_attributes =
10787
    this->attributes_section_data_->other_attributes(vendor);
10788
  Other_attributes::iterator out_iter = out_other_attributes->begin();
10789
 
10790
  while (in_iter != in_other_attributes->end()
10791
         || out_iter != out_other_attributes->end())
10792
    {
10793
      const char* err_object = NULL;
10794
      int err_tag = 0;
10795
 
10796
      // The tags for each list are in numerical order.
10797
      // If the tags are equal, then merge.
10798
      if (out_iter != out_other_attributes->end()
10799
          && (in_iter == in_other_attributes->end()
10800
              || in_iter->first > out_iter->first))
10801
        {
10802
          // This attribute only exists in output.  We can't merge, and we
10803
          // don't know what the tag means, so delete it.
10804
          err_object = "output";
10805
          err_tag = out_iter->first;
10806
          int saved_tag = out_iter->first;
10807
          delete out_iter->second;
10808
          out_other_attributes->erase(out_iter);
10809
          out_iter = out_other_attributes->upper_bound(saved_tag);
10810
        }
10811
      else if (in_iter != in_other_attributes->end()
10812
               && (out_iter != out_other_attributes->end()
10813
                   || in_iter->first < out_iter->first))
10814
        {
10815
          // This attribute only exists in input. We can't merge, and we
10816
          // don't know what the tag means, so ignore it.
10817
          err_object = name;
10818
          err_tag = in_iter->first;
10819
          ++in_iter;
10820
        }
10821
      else // The tags are equal.
10822
        {
10823
          // As present, all attributes in the list are unknown, and
10824
          // therefore can't be merged meaningfully.
10825
          err_object = "output";
10826
          err_tag = out_iter->first;
10827
 
10828
          //  Only pass on attributes that match in both inputs.
10829
          if (!in_iter->second->matches(*(out_iter->second)))
10830
            {
10831
              // No match.  Delete the attribute.
10832
              int saved_tag = out_iter->first;
10833
              delete out_iter->second;
10834
              out_other_attributes->erase(out_iter);
10835
              out_iter = out_other_attributes->upper_bound(saved_tag);
10836
            }
10837
          else
10838
            {
10839
              // Matched.  Keep the attribute and move to the next.
10840
              ++out_iter;
10841
              ++in_iter;
10842
            }
10843
        }
10844
 
10845
      if (err_object && parameters->options().warn_mismatch())
10846
        {
10847
          // Attribute numbers >=64 (mod 128) can be safely ignored.  */
10848
          if ((err_tag & 127) < 64)
10849
            {
10850
              gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10851
                         err_object, err_tag);
10852
            }
10853
          else
10854
            {
10855
              gold_warning(_("%s: unknown EABI object attribute %d"),
10856
                           err_object, err_tag);
10857
            }
10858
        }
10859
    }
10860
}
10861
 
10862
// Stub-generation methods for Target_arm.
10863
 
10864
// Make a new Arm_input_section object.
10865
 
10866
template<bool big_endian>
10867
Arm_input_section<big_endian>*
10868
Target_arm<big_endian>::new_arm_input_section(
10869
    Relobj* relobj,
10870
    unsigned int shndx)
10871
{
10872
  Section_id sid(relobj, shndx);
10873
 
10874
  Arm_input_section<big_endian>* arm_input_section =
10875
    new Arm_input_section<big_endian>(relobj, shndx);
10876
  arm_input_section->init();
10877
 
10878
  // Register new Arm_input_section in map for look-up.
10879
  std::pair<typename Arm_input_section_map::iterator, bool> ins =
10880
    this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
10881
 
10882
  // Make sure that it we have not created another Arm_input_section
10883
  // for this input section already.
10884
  gold_assert(ins.second);
10885
 
10886
  return arm_input_section;
10887
}
10888
 
10889
// Find the Arm_input_section object corresponding to the SHNDX-th input
10890
// section of RELOBJ.
10891
 
10892
template<bool big_endian>
10893
Arm_input_section<big_endian>*
10894
Target_arm<big_endian>::find_arm_input_section(
10895
    Relobj* relobj,
10896
    unsigned int shndx) const
10897
{
10898
  Section_id sid(relobj, shndx);
10899
  typename Arm_input_section_map::const_iterator p =
10900
    this->arm_input_section_map_.find(sid);
10901
  return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10902
}
10903
 
10904
// Make a new stub table.
10905
 
10906
template<bool big_endian>
10907
Stub_table<big_endian>*
10908
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10909
{
10910
  Stub_table<big_endian>* stub_table =
10911
    new Stub_table<big_endian>(owner);
10912
  this->stub_tables_.push_back(stub_table);
10913
 
10914
  stub_table->set_address(owner->address() + owner->data_size());
10915
  stub_table->set_file_offset(owner->offset() + owner->data_size());
10916
  stub_table->finalize_data_size();
10917
 
10918
  return stub_table;
10919
}
10920
 
10921
// Scan a relocation for stub generation.
10922
 
10923
template<bool big_endian>
10924
void
10925
Target_arm<big_endian>::scan_reloc_for_stub(
10926
    const Relocate_info<32, big_endian>* relinfo,
10927
    unsigned int r_type,
10928
    const Sized_symbol<32>* gsym,
10929
    unsigned int r_sym,
10930
    const Symbol_value<32>* psymval,
10931
    elfcpp::Elf_types<32>::Elf_Swxword addend,
10932
    Arm_address address)
10933
{
10934
  typedef typename Target_arm<big_endian>::Relocate Relocate;
10935
 
10936
  const Arm_relobj<big_endian>* arm_relobj =
10937
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10938
 
10939
  bool target_is_thumb;
10940
  Symbol_value<32> symval;
10941
  if (gsym != NULL)
10942
    {
10943
      // This is a global symbol.  Determine if we use PLT and if the
10944
      // final target is THUMB.
10945
      if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
10946
        {
10947
          // This uses a PLT, change the symbol value.
10948
          symval.set_output_value(this->plt_section()->address()
10949
                                  + gsym->plt_offset());
10950
          psymval = &symval;
10951
          target_is_thumb = false;
10952
        }
10953
      else if (gsym->is_undefined())
10954
        // There is no need to generate a stub symbol is undefined.
10955
        return;
10956
      else
10957
        {
10958
          target_is_thumb =
10959
            ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10960
             || (gsym->type() == elfcpp::STT_FUNC
10961
                 && !gsym->is_undefined()
10962
                 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10963
        }
10964
    }
10965
  else
10966
    {
10967
      // This is a local symbol.  Determine if the final target is THUMB.
10968
      target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10969
    }
10970
 
10971
  // Strip LSB if this points to a THUMB target.
10972
  const Arm_reloc_property* reloc_property =
10973
    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10974
  gold_assert(reloc_property != NULL);
10975
  if (target_is_thumb
10976
      && reloc_property->uses_thumb_bit()
10977
      && ((psymval->value(arm_relobj, 0) & 1) != 0))
10978
    {
10979
      Arm_address stripped_value =
10980
        psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10981
      symval.set_output_value(stripped_value);
10982
      psymval = &symval;
10983
    }
10984
 
10985
  // Get the symbol value.
10986
  Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10987
 
10988
  // Owing to pipelining, the PC relative branches below actually skip
10989
  // two instructions when the branch offset is 0.
10990
  Arm_address destination;
10991
  switch (r_type)
10992
    {
10993
    case elfcpp::R_ARM_CALL:
10994
    case elfcpp::R_ARM_JUMP24:
10995
    case elfcpp::R_ARM_PLT32:
10996
      // ARM branches.
10997
      destination = value + addend + 8;
10998
      break;
10999
    case elfcpp::R_ARM_THM_CALL:
11000
    case elfcpp::R_ARM_THM_XPC22:
11001
    case elfcpp::R_ARM_THM_JUMP24:
11002
    case elfcpp::R_ARM_THM_JUMP19:
11003
      // THUMB branches.
11004
      destination = value + addend + 4;
11005
      break;
11006
    default:
11007
      gold_unreachable();
11008
    }
11009
 
11010
  Reloc_stub* stub = NULL;
11011
  Stub_type stub_type =
11012
    Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11013
                                    target_is_thumb);
11014
  if (stub_type != arm_stub_none)
11015
    {
11016
      // Try looking up an existing stub from a stub table.
11017
      Stub_table<big_endian>* stub_table =
11018
        arm_relobj->stub_table(relinfo->data_shndx);
11019
      gold_assert(stub_table != NULL);
11020
 
11021
      // Locate stub by destination.
11022
      Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
11023
 
11024
      // Create a stub if there is not one already
11025
      stub = stub_table->find_reloc_stub(stub_key);
11026
      if (stub == NULL)
11027
        {
11028
          // create a new stub and add it to stub table.
11029
          stub = this->stub_factory().make_reloc_stub(stub_type);
11030
          stub_table->add_reloc_stub(stub, stub_key);
11031
        }
11032
 
11033
      // Record the destination address.
11034
      stub->set_destination_address(destination
11035
                                    | (target_is_thumb ? 1 : 0));
11036
    }
11037
 
11038
  // For Cortex-A8, we need to record a relocation at 4K page boundary.
11039
  if (this->fix_cortex_a8_
11040
      && (r_type == elfcpp::R_ARM_THM_JUMP24
11041
          || r_type == elfcpp::R_ARM_THM_JUMP19
11042
          || r_type == elfcpp::R_ARM_THM_CALL
11043
          || r_type == elfcpp::R_ARM_THM_XPC22)
11044
      && (address & 0xfffU) == 0xffeU)
11045
    {
11046
      // Found a candidate.  Note we haven't checked the destination is
11047
      // within 4K here: if we do so (and don't create a record) we can't
11048
      // tell that a branch should have been relocated when scanning later.
11049
      this->cortex_a8_relocs_info_[address] =
11050
        new Cortex_a8_reloc(stub, r_type,
11051
                            destination | (target_is_thumb ? 1 : 0));
11052
    }
11053
}
11054
 
11055
// This function scans a relocation sections for stub generation.
11056
// The template parameter Relocate must be a class type which provides
11057
// a single function, relocate(), which implements the machine
11058
// specific part of a relocation.
11059
 
11060
// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
11061
// SHT_REL or SHT_RELA.
11062
 
11063
// PRELOCS points to the relocation data.  RELOC_COUNT is the number
11064
// of relocs.  OUTPUT_SECTION is the output section.
11065
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11066
// mapped to output offsets.
11067
 
11068
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11069
// VIEW_SIZE is the size.  These refer to the input section, unless
11070
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11071
// the output section.
11072
 
11073
template<bool big_endian>
11074
template<int sh_type>
11075
void inline
11076
Target_arm<big_endian>::scan_reloc_section_for_stubs(
11077
    const Relocate_info<32, big_endian>* relinfo,
11078
    const unsigned char* prelocs,
11079
    size_t reloc_count,
11080
    Output_section* output_section,
11081
    bool needs_special_offset_handling,
11082
    const unsigned char* view,
11083
    elfcpp::Elf_types<32>::Elf_Addr view_address,
11084
    section_size_type)
11085
{
11086
  typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11087
  const int reloc_size =
11088
    Reloc_types<sh_type, 32, big_endian>::reloc_size;
11089
 
11090
  Arm_relobj<big_endian>* arm_object =
11091
    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11092
  unsigned int local_count = arm_object->local_symbol_count();
11093
 
11094
  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11095
 
11096
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11097
    {
11098
      Reltype reloc(prelocs);
11099
 
11100
      typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11101
      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11102
      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11103
 
11104
      r_type = this->get_real_reloc_type(r_type);
11105
 
11106
      // Only a few relocation types need stubs.
11107
      if ((r_type != elfcpp::R_ARM_CALL)
11108
         && (r_type != elfcpp::R_ARM_JUMP24)
11109
         && (r_type != elfcpp::R_ARM_PLT32)
11110
         && (r_type != elfcpp::R_ARM_THM_CALL)
11111
         && (r_type != elfcpp::R_ARM_THM_XPC22)
11112
         && (r_type != elfcpp::R_ARM_THM_JUMP24)
11113
         && (r_type != elfcpp::R_ARM_THM_JUMP19)
11114
         && (r_type != elfcpp::R_ARM_V4BX))
11115
        continue;
11116
 
11117
      section_offset_type offset =
11118
        convert_to_section_size_type(reloc.get_r_offset());
11119
 
11120
      if (needs_special_offset_handling)
11121
        {
11122
          offset = output_section->output_offset(relinfo->object,
11123
                                                 relinfo->data_shndx,
11124
                                                 offset);
11125
          if (offset == -1)
11126
            continue;
11127
        }
11128
 
11129
      // Create a v4bx stub if --fix-v4bx-interworking is used.
11130
      if (r_type == elfcpp::R_ARM_V4BX)
11131
        {
11132
          if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11133
            {
11134
              // Get the BX instruction.
11135
              typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11136
              const Valtype* wv =
11137
                reinterpret_cast<const Valtype*>(view + offset);
11138
              elfcpp::Elf_types<32>::Elf_Swxword insn =
11139
                elfcpp::Swap<32, big_endian>::readval(wv);
11140
              const uint32_t reg = (insn & 0xf);
11141
 
11142
              if (reg < 0xf)
11143
                {
11144
                  // Try looking up an existing stub from a stub table.
11145
                  Stub_table<big_endian>* stub_table =
11146
                    arm_object->stub_table(relinfo->data_shndx);
11147
                  gold_assert(stub_table != NULL);
11148
 
11149
                  if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11150
                    {
11151
                      // create a new stub and add it to stub table.
11152
                      Arm_v4bx_stub* stub =
11153
                        this->stub_factory().make_arm_v4bx_stub(reg);
11154
                      gold_assert(stub != NULL);
11155
                      stub_table->add_arm_v4bx_stub(stub);
11156
                    }
11157
                }
11158
            }
11159
          continue;
11160
        }
11161
 
11162
      // Get the addend.
11163
      Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11164
      elfcpp::Elf_types<32>::Elf_Swxword addend =
11165
        stub_addend_reader(r_type, view + offset, reloc);
11166
 
11167
      const Sized_symbol<32>* sym;
11168
 
11169
      Symbol_value<32> symval;
11170
      const Symbol_value<32> *psymval;
11171
      bool is_defined_in_discarded_section;
11172
      unsigned int shndx;
11173
      if (r_sym < local_count)
11174
        {
11175
          sym = NULL;
11176
          psymval = arm_object->local_symbol(r_sym);
11177
 
11178
          // If the local symbol belongs to a section we are discarding,
11179
          // and that section is a debug section, try to find the
11180
          // corresponding kept section and map this symbol to its
11181
          // counterpart in the kept section.  The symbol must not 
11182
          // correspond to a section we are folding.
11183
          bool is_ordinary;
11184
          shndx = psymval->input_shndx(&is_ordinary);
11185
          is_defined_in_discarded_section =
11186
            (is_ordinary
11187
             && shndx != elfcpp::SHN_UNDEF
11188
             && !arm_object->is_section_included(shndx)
11189
             && !relinfo->symtab->is_section_folded(arm_object, shndx));
11190
 
11191
          // We need to compute the would-be final value of this local
11192
          // symbol.
11193
          if (!is_defined_in_discarded_section)
11194
            {
11195
              typedef Sized_relobj_file<32, big_endian> ObjType;
11196
              typename ObjType::Compute_final_local_value_status status =
11197
                arm_object->compute_final_local_value(r_sym, psymval, &symval,
11198
                                                      relinfo->symtab);
11199
              if (status == ObjType::CFLV_OK)
11200
                {
11201
                  // Currently we cannot handle a branch to a target in
11202
                  // a merged section.  If this is the case, issue an error
11203
                  // and also free the merge symbol value.
11204
                  if (!symval.has_output_value())
11205
                    {
11206
                      const std::string& section_name =
11207
                        arm_object->section_name(shndx);
11208
                      arm_object->error(_("cannot handle branch to local %u "
11209
                                          "in a merged section %s"),
11210
                                        r_sym, section_name.c_str());
11211
                    }
11212
                  psymval = &symval;
11213
                }
11214
              else
11215
                {
11216
                  // We cannot determine the final value.
11217
                  continue;
11218
                }
11219
            }
11220
        }
11221
      else
11222
        {
11223
          const Symbol* gsym;
11224
          gsym = arm_object->global_symbol(r_sym);
11225
          gold_assert(gsym != NULL);
11226
          if (gsym->is_forwarder())
11227
            gsym = relinfo->symtab->resolve_forwards(gsym);
11228
 
11229
          sym = static_cast<const Sized_symbol<32>*>(gsym);
11230
          if (sym->has_symtab_index() && sym->symtab_index() != -1U)
11231
            symval.set_output_symtab_index(sym->symtab_index());
11232
          else
11233
            symval.set_no_output_symtab_entry();
11234
 
11235
          // We need to compute the would-be final value of this global
11236
          // symbol.
11237
          const Symbol_table* symtab = relinfo->symtab;
11238
          const Sized_symbol<32>* sized_symbol =
11239
            symtab->get_sized_symbol<32>(gsym);
11240
          Symbol_table::Compute_final_value_status status;
11241
          Arm_address value =
11242
            symtab->compute_final_value<32>(sized_symbol, &status);
11243
 
11244
          // Skip this if the symbol has not output section.
11245
          if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11246
            continue;
11247
          symval.set_output_value(value);
11248
 
11249
          if (gsym->type() == elfcpp::STT_TLS)
11250
            symval.set_is_tls_symbol();
11251
          else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11252
            symval.set_is_ifunc_symbol();
11253
          psymval = &symval;
11254
 
11255
          is_defined_in_discarded_section =
11256
            (gsym->is_defined_in_discarded_section()
11257
             && gsym->is_undefined());
11258
          shndx = 0;
11259
        }
11260
 
11261
      Symbol_value<32> symval2;
11262
      if (is_defined_in_discarded_section)
11263
        {
11264
          if (comdat_behavior == CB_UNDETERMINED)
11265
            {
11266
              std::string name = arm_object->section_name(relinfo->data_shndx);
11267
              comdat_behavior = get_comdat_behavior(name.c_str());
11268
            }
11269
          if (comdat_behavior == CB_PRETEND)
11270
            {
11271
              // FIXME: This case does not work for global symbols.
11272
              // We have no place to store the original section index.
11273
              // Fortunately this does not matter for comdat sections,
11274
              // only for sections explicitly discarded by a linker
11275
              // script.
11276
              bool found;
11277
              typename elfcpp::Elf_types<32>::Elf_Addr value =
11278
                arm_object->map_to_kept_section(shndx, &found);
11279
              if (found)
11280
                symval2.set_output_value(value + psymval->input_value());
11281
              else
11282
                symval2.set_output_value(0);
11283
            }
11284
          else
11285
            {
11286
              if (comdat_behavior == CB_WARNING)
11287
                gold_warning_at_location(relinfo, i, offset,
11288
                                         _("relocation refers to discarded "
11289
                                           "section"));
11290
              symval2.set_output_value(0);
11291
            }
11292
          symval2.set_no_output_symtab_entry();
11293
          psymval = &symval2;
11294
        }
11295
 
11296
      // If symbol is a section symbol, we don't know the actual type of
11297
      // destination.  Give up.
11298
      if (psymval->is_section_symbol())
11299
        continue;
11300
 
11301
      this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
11302
                                addend, view_address + offset);
11303
    }
11304
}
11305
 
11306
// Scan an input section for stub generation.
11307
 
11308
template<bool big_endian>
11309
void
11310
Target_arm<big_endian>::scan_section_for_stubs(
11311
    const Relocate_info<32, big_endian>* relinfo,
11312
    unsigned int sh_type,
11313
    const unsigned char* prelocs,
11314
    size_t reloc_count,
11315
    Output_section* output_section,
11316
    bool needs_special_offset_handling,
11317
    const unsigned char* view,
11318
    Arm_address view_address,
11319
    section_size_type view_size)
11320
{
11321
  if (sh_type == elfcpp::SHT_REL)
11322
    this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11323
        relinfo,
11324
        prelocs,
11325
        reloc_count,
11326
        output_section,
11327
        needs_special_offset_handling,
11328
        view,
11329
        view_address,
11330
        view_size);
11331
  else if (sh_type == elfcpp::SHT_RELA)
11332
    // We do not support RELA type relocations yet.  This is provided for
11333
    // completeness.
11334
    this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11335
        relinfo,
11336
        prelocs,
11337
        reloc_count,
11338
        output_section,
11339
        needs_special_offset_handling,
11340
        view,
11341
        view_address,
11342
        view_size);
11343
  else
11344
    gold_unreachable();
11345
}
11346
 
11347
// Group input sections for stub generation.
11348
//
11349
// We group input sections in an output section so that the total size,
11350
// including any padding space due to alignment is smaller than GROUP_SIZE
11351
// unless the only input section in group is bigger than GROUP_SIZE already.
11352
// Then an ARM stub table is created to follow the last input section
11353
// in group.  For each group an ARM stub table is created an is placed
11354
// after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
11355
// extend the group after the stub table.
11356
 
11357
template<bool big_endian>
11358
void
11359
Target_arm<big_endian>::group_sections(
11360
    Layout* layout,
11361
    section_size_type group_size,
11362
    bool stubs_always_after_branch,
11363
    const Task* task)
11364
{
11365
  // Group input sections and insert stub table
11366
  Layout::Section_list section_list;
11367
  layout->get_allocated_sections(&section_list);
11368
  for (Layout::Section_list::const_iterator p = section_list.begin();
11369
       p != section_list.end();
11370
       ++p)
11371
    {
11372
      Arm_output_section<big_endian>* output_section =
11373
        Arm_output_section<big_endian>::as_arm_output_section(*p);
11374
      output_section->group_sections(group_size, stubs_always_after_branch,
11375
                                     this, task);
11376
    }
11377
}
11378
 
11379
// Relaxation hook.  This is where we do stub generation.
11380
 
11381
template<bool big_endian>
11382
bool
11383
Target_arm<big_endian>::do_relax(
11384
    int pass,
11385
    const Input_objects* input_objects,
11386
    Symbol_table* symtab,
11387
    Layout* layout,
11388
    const Task* task)
11389
{
11390
  // No need to generate stubs if this is a relocatable link.
11391
  gold_assert(!parameters->options().relocatable());
11392
 
11393
  // If this is the first pass, we need to group input sections into
11394
  // stub groups.
11395
  bool done_exidx_fixup = false;
11396
  typedef typename Stub_table_list::iterator Stub_table_iterator;
11397
  if (pass == 1)
11398
    {
11399
      // Determine the stub group size.  The group size is the absolute
11400
      // value of the parameter --stub-group-size.  If --stub-group-size
11401
      // is passed a negative value, we restrict stubs to be always after
11402
      // the stubbed branches.
11403
      int32_t stub_group_size_param =
11404
        parameters->options().stub_group_size();
11405
      bool stubs_always_after_branch = stub_group_size_param < 0;
11406
      section_size_type stub_group_size = abs(stub_group_size_param);
11407
 
11408
      if (stub_group_size == 1)
11409
        {
11410
          // Default value.
11411
          // Thumb branch range is +-4MB has to be used as the default
11412
          // maximum size (a given section can contain both ARM and Thumb
11413
          // code, so the worst case has to be taken into account).  If we are
11414
          // fixing cortex-a8 errata, the branch range has to be even smaller,
11415
          // since wide conditional branch has a range of +-1MB only.
11416
          //
11417
          // This value is 48K less than that, which allows for 4096
11418
          // 12-byte stubs.  If we exceed that, then we will fail to link.
11419
          // The user will have to relink with an explicit group size
11420
          // option.
11421
            stub_group_size = 4145152;
11422
        }
11423
 
11424
      // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11425
      // page as the first half of a 32-bit branch straddling two 4K pages.
11426
      // This is a crude way of enforcing that.  In addition, long conditional
11427
      // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
11428
      // erratum, limit the group size to  (1M - 12k) to avoid unreachable
11429
      // cortex-A8 stubs from long conditional branches.
11430
      if (this->fix_cortex_a8_)
11431
        {
11432
          stubs_always_after_branch = true;
11433
          const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11434
          stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
11435
        }
11436
 
11437
      group_sections(layout, stub_group_size, stubs_always_after_branch, task);
11438
 
11439
      // Also fix .ARM.exidx section coverage.
11440
      Arm_output_section<big_endian>* exidx_output_section = NULL;
11441
      for (Layout::Section_list::const_iterator p =
11442
             layout->section_list().begin();
11443
           p != layout->section_list().end();
11444
           ++p)
11445
        if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11446
          {
11447
            if (exidx_output_section == NULL)
11448
              exidx_output_section =
11449
                Arm_output_section<big_endian>::as_arm_output_section(*p);
11450
            else
11451
              // We cannot handle this now.
11452
              gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11453
                           "non-relocatable link"),
11454
                          exidx_output_section->name(),
11455
                          (*p)->name());
11456
          }
11457
 
11458
      if (exidx_output_section != NULL)
11459
        {
11460
          this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
11461
                                   symtab, task);
11462
          done_exidx_fixup = true;
11463
        }
11464
    }
11465
  else
11466
    {
11467
      // If this is not the first pass, addresses and file offsets have
11468
      // been reset at this point, set them here.
11469
      for (Stub_table_iterator sp = this->stub_tables_.begin();
11470
           sp != this->stub_tables_.end();
11471
           ++sp)
11472
        {
11473
          Arm_input_section<big_endian>* owner = (*sp)->owner();
11474
          off_t off = align_address(owner->original_size(),
11475
                                    (*sp)->addralign());
11476
          (*sp)->set_address_and_file_offset(owner->address() + off,
11477
                                             owner->offset() + off);
11478
        }
11479
    }
11480
 
11481
  // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
11482
  // beginning of each relaxation pass, just blow away all the stubs.
11483
  // Alternatively, we could selectively remove only the stubs and reloc
11484
  // information for code sections that have moved since the last pass.
11485
  // That would require more book-keeping.
11486
  if (this->fix_cortex_a8_)
11487
    {
11488
      // Clear all Cortex-A8 reloc information.
11489
      for (typename Cortex_a8_relocs_info::const_iterator p =
11490
             this->cortex_a8_relocs_info_.begin();
11491
           p != this->cortex_a8_relocs_info_.end();
11492
           ++p)
11493
        delete p->second;
11494
      this->cortex_a8_relocs_info_.clear();
11495
 
11496
      // Remove all Cortex-A8 stubs.
11497
      for (Stub_table_iterator sp = this->stub_tables_.begin();
11498
           sp != this->stub_tables_.end();
11499
           ++sp)
11500
        (*sp)->remove_all_cortex_a8_stubs();
11501
    }
11502
 
11503
  // Scan relocs for relocation stubs
11504
  for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11505
       op != input_objects->relobj_end();
11506
       ++op)
11507
    {
11508
      Arm_relobj<big_endian>* arm_relobj =
11509
        Arm_relobj<big_endian>::as_arm_relobj(*op);
11510
      // Lock the object so we can read from it.  This is only called
11511
      // single-threaded from Layout::finalize, so it is OK to lock.
11512
      Task_lock_obj<Object> tl(task, arm_relobj);
11513
      arm_relobj->scan_sections_for_stubs(this, symtab, layout);
11514
    }
11515
 
11516
  // Check all stub tables to see if any of them have their data sizes
11517
  // or addresses alignments changed.  These are the only things that
11518
  // matter.
11519
  bool any_stub_table_changed = false;
11520
  Unordered_set<const Output_section*> sections_needing_adjustment;
11521
  for (Stub_table_iterator sp = this->stub_tables_.begin();
11522
       (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11523
       ++sp)
11524
    {
11525
      if ((*sp)->update_data_size_and_addralign())
11526
        {
11527
          // Update data size of stub table owner.
11528
          Arm_input_section<big_endian>* owner = (*sp)->owner();
11529
          uint64_t address = owner->address();
11530
          off_t offset = owner->offset();
11531
          owner->reset_address_and_file_offset();
11532
          owner->set_address_and_file_offset(address, offset);
11533
 
11534
          sections_needing_adjustment.insert(owner->output_section());
11535
          any_stub_table_changed = true;
11536
        }
11537
    }
11538
 
11539
  // Output_section_data::output_section() returns a const pointer but we
11540
  // need to update output sections, so we record all output sections needing
11541
  // update above and scan the sections here to find out what sections need
11542
  // to be updated.
11543
  for (Layout::Section_list::const_iterator p = layout->section_list().begin();
11544
      p != layout->section_list().end();
11545
      ++p)
11546
    {
11547
      if (sections_needing_adjustment.find(*p)
11548
          != sections_needing_adjustment.end())
11549
        (*p)->set_section_offsets_need_adjustment();
11550
    }
11551
 
11552
  // Stop relaxation if no EXIDX fix-up and no stub table change.
11553
  bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11554
 
11555
  // Finalize the stubs in the last relaxation pass.
11556
  if (!continue_relaxation)
11557
    {
11558
      for (Stub_table_iterator sp = this->stub_tables_.begin();
11559
           (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11560
            ++sp)
11561
        (*sp)->finalize_stubs();
11562
 
11563
      // Update output local symbol counts of objects if necessary.
11564
      for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11565
           op != input_objects->relobj_end();
11566
           ++op)
11567
        {
11568
          Arm_relobj<big_endian>* arm_relobj =
11569
            Arm_relobj<big_endian>::as_arm_relobj(*op);
11570
 
11571
          // Update output local symbol counts.  We need to discard local
11572
          // symbols defined in parts of input sections that are discarded by
11573
          // relaxation.
11574
          if (arm_relobj->output_local_symbol_count_needs_update())
11575
            {
11576
              // We need to lock the object's file to update it.
11577
              Task_lock_obj<Object> tl(task, arm_relobj);
11578
              arm_relobj->update_output_local_symbol_count();
11579
            }
11580
        }
11581
    }
11582
 
11583
  return continue_relaxation;
11584
}
11585
 
11586
// Relocate a stub.
11587
 
11588
template<bool big_endian>
11589
void
11590
Target_arm<big_endian>::relocate_stub(
11591
    Stub* stub,
11592
    const Relocate_info<32, big_endian>* relinfo,
11593
    Output_section* output_section,
11594
    unsigned char* view,
11595
    Arm_address address,
11596
    section_size_type view_size)
11597
{
11598
  Relocate relocate;
11599
  const Stub_template* stub_template = stub->stub_template();
11600
  for (size_t i = 0; i < stub_template->reloc_count(); i++)
11601
    {
11602
      size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11603
      const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
11604
 
11605
      unsigned int r_type = insn->r_type();
11606
      section_size_type reloc_offset = stub_template->reloc_offset(i);
11607
      section_size_type reloc_size = insn->size();
11608
      gold_assert(reloc_offset + reloc_size <= view_size);
11609
 
11610
      // This is the address of the stub destination.
11611
      Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
11612
      Symbol_value<32> symval;
11613
      symval.set_output_value(target);
11614
 
11615
      // Synthesize a fake reloc just in case.  We don't have a symbol so
11616
      // we use 0.
11617
      unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11618
      memset(reloc_buffer, 0, sizeof(reloc_buffer));
11619
      elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11620
      reloc_write.put_r_offset(reloc_offset);
11621
      reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11622
      elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11623
 
11624
      relocate.relocate(relinfo, this, output_section,
11625
                        this->fake_relnum_for_stubs, rel, r_type,
11626
                        NULL, &symval, view + reloc_offset,
11627
                        address + reloc_offset, reloc_size);
11628
    }
11629
}
11630
 
11631
// Determine whether an object attribute tag takes an integer, a
11632
// string or both.
11633
 
11634
template<bool big_endian>
11635
int
11636
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11637
{
11638
  if (tag == Object_attribute::Tag_compatibility)
11639
    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11640
            | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11641
  else if (tag == elfcpp::Tag_nodefaults)
11642
    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11643
            | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11644
  else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11645
    return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11646
  else if (tag < 32)
11647
    return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11648
  else
11649
    return ((tag & 1) != 0
11650
            ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11651
            : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11652
}
11653
 
11654
// Reorder attributes.
11655
//
11656
// The ABI defines that Tag_conformance should be emitted first, and that
11657
// Tag_nodefaults should be second (if either is defined).  This sets those
11658
// two positions, and bumps up the position of all the remaining tags to
11659
// compensate.
11660
 
11661
template<bool big_endian>
11662
int
11663
Target_arm<big_endian>::do_attributes_order(int num) const
11664
{
11665
  // Reorder the known object attributes in output.  We want to move
11666
  // Tag_conformance to position 4 and Tag_conformance to position 5
11667
  // and shift everything between 4 .. Tag_conformance - 1 to make room.
11668
  if (num == 4)
11669
    return elfcpp::Tag_conformance;
11670
  if (num == 5)
11671
    return elfcpp::Tag_nodefaults;
11672
  if ((num - 2) < elfcpp::Tag_nodefaults)
11673
    return num - 2;
11674
  if ((num - 1) < elfcpp::Tag_conformance)
11675
    return num - 1;
11676
  return num;
11677
}
11678
 
11679
// Scan a span of THUMB code for Cortex-A8 erratum.
11680
 
11681
template<bool big_endian>
11682
void
11683
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11684
    Arm_relobj<big_endian>* arm_relobj,
11685
    unsigned int shndx,
11686
    section_size_type span_start,
11687
    section_size_type span_end,
11688
    const unsigned char* view,
11689
    Arm_address address)
11690
{
11691
  // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11692
  //
11693
  // The opcode is BLX.W, BL.W, B.W, Bcc.W
11694
  // The branch target is in the same 4KB region as the
11695
  // first half of the branch.
11696
  // The instruction before the branch is a 32-bit
11697
  // length non-branch instruction.
11698
  section_size_type i = span_start;
11699
  bool last_was_32bit = false;
11700
  bool last_was_branch = false;
11701
  while (i < span_end)
11702
    {
11703
      typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11704
      const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11705
      uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11706
      bool is_blx = false, is_b = false;
11707
      bool is_bl = false, is_bcc = false;
11708
 
11709
      bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11710
      if (insn_32bit)
11711
        {
11712
          // Load the rest of the insn (in manual-friendly order).
11713
          insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11714
 
11715
          // Encoding T4: B<c>.W.
11716
          is_b = (insn & 0xf800d000U) == 0xf0009000U;
11717
          // Encoding T1: BL<c>.W.
11718
          is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11719
          // Encoding T2: BLX<c>.W.
11720
          is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11721
          // Encoding T3: B<c>.W (not permitted in IT block).
11722
          is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11723
                    && (insn & 0x07f00000U) != 0x03800000U);
11724
        }
11725
 
11726
      bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11727
 
11728
      // If this instruction is a 32-bit THUMB branch that crosses a 4K
11729
      // page boundary and it follows 32-bit non-branch instruction,
11730
      // we need to work around.
11731
      if (is_32bit_branch
11732
          && ((address + i) & 0xfffU) == 0xffeU
11733
          && last_was_32bit
11734
          && !last_was_branch)
11735
        {
11736
          // Check to see if there is a relocation stub for this branch.
11737
          bool force_target_arm = false;
11738
          bool force_target_thumb = false;
11739
          const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11740
          Cortex_a8_relocs_info::const_iterator p =
11741
            this->cortex_a8_relocs_info_.find(address + i);
11742
 
11743
          if (p != this->cortex_a8_relocs_info_.end())
11744
            {
11745
              cortex_a8_reloc = p->second;
11746
              bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11747
 
11748
              if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11749
                  && !target_is_thumb)
11750
                force_target_arm = true;
11751
              else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11752
                       && target_is_thumb)
11753
                force_target_thumb = true;
11754
            }
11755
 
11756
          off_t offset;
11757
          Stub_type stub_type = arm_stub_none;
11758
 
11759
          // Check if we have an offending branch instruction.
11760
          uint16_t upper_insn = (insn >> 16) & 0xffffU;
11761
          uint16_t lower_insn = insn & 0xffffU;
11762
          typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11763
 
11764
          if (cortex_a8_reloc != NULL
11765
              && cortex_a8_reloc->reloc_stub() != NULL)
11766
            // We've already made a stub for this instruction, e.g.
11767
            // it's a long branch or a Thumb->ARM stub.  Assume that
11768
            // stub will suffice to work around the A8 erratum (see
11769
            // setting of always_after_branch above).
11770
            ;
11771
          else if (is_bcc)
11772
            {
11773
              offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11774
                                                              lower_insn);
11775
              stub_type = arm_stub_a8_veneer_b_cond;
11776
            }
11777
          else if (is_b || is_bl || is_blx)
11778
            {
11779
              offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11780
                                                         lower_insn);
11781
              if (is_blx)
11782
                offset &= ~3;
11783
 
11784
              stub_type = (is_blx
11785
                           ? arm_stub_a8_veneer_blx
11786
                           : (is_bl
11787
                              ? arm_stub_a8_veneer_bl
11788
                              : arm_stub_a8_veneer_b));
11789
            }
11790
 
11791
          if (stub_type != arm_stub_none)
11792
            {
11793
              Arm_address pc_for_insn = address + i + 4;
11794
 
11795
              // The original instruction is a BL, but the target is
11796
              // an ARM instruction.  If we were not making a stub,
11797
              // the BL would have been converted to a BLX.  Use the
11798
              // BLX stub instead in that case.
11799
              if (this->may_use_blx() && force_target_arm
11800
                  && stub_type == arm_stub_a8_veneer_bl)
11801
                {
11802
                  stub_type = arm_stub_a8_veneer_blx;
11803
                  is_blx = true;
11804
                  is_bl = false;
11805
                }
11806
              // Conversely, if the original instruction was
11807
              // BLX but the target is Thumb mode, use the BL stub.
11808
              else if (force_target_thumb
11809
                       && stub_type == arm_stub_a8_veneer_blx)
11810
                {
11811
                  stub_type = arm_stub_a8_veneer_bl;
11812
                  is_blx = false;
11813
                  is_bl = true;
11814
                }
11815
 
11816
              if (is_blx)
11817
                pc_for_insn &= ~3;
11818
 
11819
              // If we found a relocation, use the proper destination,
11820
              // not the offset in the (unrelocated) instruction.
11821
              // Note this is always done if we switched the stub type above.
11822
              if (cortex_a8_reloc != NULL)
11823
                offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11824
 
11825
              Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11826
 
11827
              // Add a new stub if destination address in in the same page.
11828
              if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11829
                {
11830
                  Cortex_a8_stub* stub =
11831
                    this->stub_factory_.make_cortex_a8_stub(stub_type,
11832
                                                            arm_relobj, shndx,
11833
                                                            address + i,
11834
                                                            target, insn);
11835
                  Stub_table<big_endian>* stub_table =
11836
                    arm_relobj->stub_table(shndx);
11837
                  gold_assert(stub_table != NULL);
11838
                  stub_table->add_cortex_a8_stub(address + i, stub);
11839
                }
11840
            }
11841
        }
11842
 
11843
      i += insn_32bit ? 4 : 2;
11844
      last_was_32bit = insn_32bit;
11845
      last_was_branch = is_32bit_branch;
11846
    }
11847
}
11848
 
11849
// Apply the Cortex-A8 workaround.
11850
 
11851
template<bool big_endian>
11852
void
11853
Target_arm<big_endian>::apply_cortex_a8_workaround(
11854
    const Cortex_a8_stub* stub,
11855
    Arm_address stub_address,
11856
    unsigned char* insn_view,
11857
    Arm_address insn_address)
11858
{
11859
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11860
  Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11861
  Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11862
  Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11863
  off_t branch_offset = stub_address - (insn_address + 4);
11864
 
11865
  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11866
  switch (stub->stub_template()->type())
11867
    {
11868
    case arm_stub_a8_veneer_b_cond:
11869
      // For a conditional branch, we re-write it to be an unconditional
11870
      // branch to the stub.  We use the THUMB-2 encoding here.
11871
      upper_insn = 0xf000U;
11872
      lower_insn = 0xb800U;
11873
      // Fall through
11874
    case arm_stub_a8_veneer_b:
11875
    case arm_stub_a8_veneer_bl:
11876
    case arm_stub_a8_veneer_blx:
11877
      if ((lower_insn & 0x5000U) == 0x4000U)
11878
        // For a BLX instruction, make sure that the relocation is
11879
        // rounded up to a word boundary.  This follows the semantics of
11880
        // the instruction which specifies that bit 1 of the target
11881
        // address will come from bit 1 of the base address.
11882
        branch_offset = (branch_offset + 2) & ~3;
11883
 
11884
      // Put BRANCH_OFFSET back into the insn.
11885
      gold_assert(!utils::has_overflow<25>(branch_offset));
11886
      upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11887
      lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11888
      break;
11889
 
11890
    default:
11891
      gold_unreachable();
11892
    }
11893
 
11894
  // Put the relocated value back in the object file:
11895
  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11896
  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11897
}
11898
 
11899
template<bool big_endian>
11900
class Target_selector_arm : public Target_selector
11901
{
11902
 public:
11903
  Target_selector_arm()
11904
    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11905
                      (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11906
  { }
11907
 
11908
  Target*
11909
  do_instantiate_target()
11910
  { return new Target_arm<big_endian>(); }
11911
};
11912
 
11913
// Fix .ARM.exidx section coverage.
11914
 
11915
template<bool big_endian>
11916
void
11917
Target_arm<big_endian>::fix_exidx_coverage(
11918
    Layout* layout,
11919
    const Input_objects* input_objects,
11920
    Arm_output_section<big_endian>* exidx_section,
11921
    Symbol_table* symtab,
11922
    const Task* task)
11923
{
11924
  // We need to look at all the input sections in output in ascending
11925
  // order of of output address.  We do that by building a sorted list
11926
  // of output sections by addresses.  Then we looks at the output sections
11927
  // in order.  The input sections in an output section are already sorted
11928
  // by addresses within the output section.
11929
 
11930
  typedef std::set<Output_section*, output_section_address_less_than>
11931
      Sorted_output_section_list;
11932
  Sorted_output_section_list sorted_output_sections;
11933
 
11934
  // Find out all the output sections of input sections pointed by
11935
  // EXIDX input sections.
11936
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11937
       p != input_objects->relobj_end();
11938
       ++p)
11939
    {
11940
      Arm_relobj<big_endian>* arm_relobj =
11941
        Arm_relobj<big_endian>::as_arm_relobj(*p);
11942
      std::vector<unsigned int> shndx_list;
11943
      arm_relobj->get_exidx_shndx_list(&shndx_list);
11944
      for (size_t i = 0; i < shndx_list.size(); ++i)
11945
        {
11946
          const Arm_exidx_input_section* exidx_input_section =
11947
            arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11948
          gold_assert(exidx_input_section != NULL);
11949
          if (!exidx_input_section->has_errors())
11950
            {
11951
              unsigned int text_shndx = exidx_input_section->link();
11952
              Output_section* os = arm_relobj->output_section(text_shndx);
11953
              if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11954
                sorted_output_sections.insert(os);
11955
            }
11956
        }
11957
    }
11958
 
11959
  // Go over the output sections in ascending order of output addresses.
11960
  typedef typename Arm_output_section<big_endian>::Text_section_list
11961
      Text_section_list;
11962
  Text_section_list sorted_text_sections;
11963
  for (typename Sorted_output_section_list::iterator p =
11964
        sorted_output_sections.begin();
11965
      p != sorted_output_sections.end();
11966
      ++p)
11967
    {
11968
      Arm_output_section<big_endian>* arm_output_section =
11969
        Arm_output_section<big_endian>::as_arm_output_section(*p);
11970
      arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11971
    }
11972
 
11973
  exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11974
                                    merge_exidx_entries(), task);
11975
}
11976
 
11977
Target_selector_arm<false> target_selector_arm;
11978
Target_selector_arm<true> target_selector_armbe;
11979
 
11980
} // End anonymous namespace.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.